Fisheries Handbook of Engineering Requirements and Biological Criteria

by Milo. C. Bell
Fisheries Handbook

of

Engineering Requirements & Biological Criteria

by

Milo C. Bell

Fish Passage Development and Evaluation Program
Corps of Engineers, North Pacific Division
Portland, Oregon
Foreword

The first edition of the “Fisheries Handbook of Engineering Requirements and Biological Criteria” published in February, 1973 was prepared by Mr. Milo C. Bell under contract to the U.S. Army Corps of Engineers, North Pacific Division. The handbook was prepared as part of the Fisheries Engineering Research Program and is a compilation of the information and expertise Mr. Bell obtained throughout his career as a civil engineer working on fish passage problems in the northwest.

The first edition received wide acceptance and though is has been out of print for a number of years, there is still demand. As a result of the continued demand and since new information had become available, this revised edition has been prepared.

Portland District contracted with Mr. Bell to revise and update a number of chapters, add information on some east coast species of fish, and prepare a new chapter on oxygen for inclusion in the second edition.

The information contained in this Handbook and the format in which it is presented has not been edited by the Corps of Engineers and reflects the knowledge and expert opinions of the author.
Introduction

This handbook is for use by engineers and biologists employed in design problems on fish facilities and in the operation of existing facilities.

When examining criteria for these works it must be recognized that there are local requirements that may dictate approaches and limits. It further must be recognized that individual states and agencies of the Federal government have adopted standards that may be in variance with each other.

It is not the purpose of this handbook to dictate policy, nor can the user assume that the criteria set forth are acceptable at any specific location. The handbook does set forth limits that may be used in design for estimating facility sizes, water requirements, general costs and operating procedures. When costs are shown it must be recognized that various state and federal agencies are required by law to observe salary levels and working conditions which, in turn, may dictate plant sizes and capital costs and operational procedures and costs. The user of this handbook also must recognize that state and federal agencies such as pollution control authorities and water use granting authorities, enforce regulations that may dictate, expand or limit the standards set by fishery agencies. Examination of these standards should be made by any investigator.

As the body of information in scientific management of fisheries is less than 50 years old, it must follow that criteria set forth in this book may be substantially altered by findings in current research projects. In many cases, basic biological factors are not fully understood, making the criteria empirical in nature and subject to the necessary treatment of all such data.

The criteria chosen for this handbook are the result of examinations of both published and unpublished works of various agencies and individuals and thus may be in variance. In developing the details, workable limits have been set forth but cannot be considered as absolute under the state-of-the-art.
About The Author:

Milo C. Bell has spent over 40 years in the field of fisheries as a researcher, designer, teacher and consultant. He holds the rank of Professor Emeritus at the University of Washington College of Fisheries. He is a member of the National Academy of Engineering, a Fellow of the American Institute of Fisheries Research Biologists, and a Registered Professional Engineer. He received a Bachelor of Science degree in Mechanical Engineering from the University of Washington in 1930.

He was Chief Engineer of the Washington Department of Fisheries and the International Pacific Salmon Fisheries Commission. He was one of the principal designers of the fishway system at Bonneville Dam, and he has assisted the Corps of Engineers as a consultant on fish passage facility design at other dams on the Columbia River and in Puget Sound.

He has served as a consultant in all of the Pacific Coast states and in the Province of British Columbia, and for a number of major power companies and agencies on both coasts and in the Midwestern part of the United States. He has been responsible for the design of more than 60 fish facilities in the form of hatcheries, fishways and artificial spawning beds, and for more than 50 fish screens.

Other fishery activities have concerned the development of methods of measuring spawning areas, the development of equipment for testing behavioral patterns of young and adult fish, the analysis of data on fish passage through turbines and spillways, and the development of models for use in the design of fish facilities.
Acknowledgements

The following agencies and individuals furnished materials and made suggestions; their aid is gratefully acknowledged:

Corps of Engineers Fisheries-Engineering Research Program, Technical Advisory Committee - review of first outline and suggestions for changes and/or additions.

Corps of Engineers:
Edward M. Mains, North Pacific Division
Raymond C. Oligher, Walla Walla District
Philbin F. Moon, Portland District
Clyde Archibald, Portland District
Ivan Donaldson, Portland District

Oregon Fish Commission:
Edward K. Neubauer
Ernest R. Jeffries

Oregon Game Commission:
William Pitney
Chris Jensen
Reino Koski

Washington Department of Fisheries:
Russell Webb

Washington Department of Game:
Clifford Millenbach

Allan C. DeLacy, College of Fisheries, University of Washington - review of various chapters and suggestions.

Illustrations, pictures and tables have been used from publications of the Corps of Engineers, Oregon Fish Commission, Oregon Game Commission and Washington Department of Fisheries. These are credited in the chapters and are here acknowledged.
Contributors

Zell E. Parkhurst - research and preparation of materials used in various chapters in the handbook.

Ernestine Brown - library research and annotations of more than 2,500 publications, of which selected references were listed in the handbook.

Marjorie Stevens - direction of preparation of materials and copy editing.

Ann Downs - illustrations and tables.

Don M. Fagot - review of materials used in chapters "Food Producing Areas and their Requirements" and "Temperature."

CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1 ..</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Information</td>
<td>1-10</td>
</tr>
<tr>
<td>Miscellaneous Information</td>
<td></td>
</tr>
<tr>
<td>Conversion factors</td>
<td></td>
</tr>
<tr>
<td>Terminology and equivalents</td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous information</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous definitions</td>
<td></td>
</tr>
<tr>
<td>Cubic foot diagram</td>
<td></td>
</tr>
<tr>
<td>Basic formulas</td>
<td></td>
</tr>
<tr>
<td>Some pipe and circle areas</td>
<td></td>
</tr>
<tr>
<td>Beaufort scale of wind velocity</td>
<td></td>
</tr>
<tr>
<td>Relative humidity tables</td>
<td></td>
</tr>
<tr>
<td>Weight of dynamite charge (40% or 50%)</td>
<td></td>
</tr>
<tr>
<td>vs. distance from charge within lethal range</td>
<td></td>
</tr>
<tr>
<td>Nomograph showing the solubility of oxygen in water</td>
<td></td>
</tr>
<tr>
<td>Nomograph for determining N2 (with A2) at ats. pressure and different temperatures</td>
<td></td>
</tr>
<tr>
<td>Nomograph for determining O2 saturation at different temperatures and altitudes.</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2 ..	11-14
Definitions of Common Term in Use	
A number of biological terms are defined.	

Chapter 3 ..	15-16
Legal	
State, federal officers, commissions	
empowered to carry out intent of an act	
General statutes cover habitat protection.	
Migrating fish protected by fishways	
and screening of intakes.	
Habitat protected by limiting pollution.	
Laws pertaining to flows in river channels.	
Coordination of individual states and	
federal government.	
References to early legal action.	

Chapter 4 ..	17-19
Scientific and Common Names of Some of the	
More Abundant Fish Species	
Common and scientific names and sketches of	
fishes common to the Pacific Coast.	

Chapter 5 ..	21-49
Useful Factors in Life History of Most	
Common Species	
Occurrence and spawning characteristics of	
salmonid and related species.	
Method for determining brood year.	
Detailed tables follow.	

Chapter 6 ..	51-59
Swimming Speeds of Adult and Juvenile Fish	
Importance of cruising, sustained & darting	
swimming speeds to fish facility structures.	
Amount of energy loss in transfer of	
muscular energy to propulsion.	
Forces working against fish movement.	
Effects of exhaustive exercise.	
Ratio of sustained speed to darting speed	
and cruising speed to darting speed.	
Attractive velocities at obstructions and	
fishways.	
Effects of velocity gradients.	
Method of Determining the time fish can	
maintain various speeds.	
Velocities to be used in designing upstream	
facilities.	
Pulsing velocities and turbulence effects.	
Pollution effects.	

Chapter 7 ..	61-68
Spawning Criteria	
Oxygen requirements	
Stream flow, velocity and depth (diagrams	
shown).	
Size and shape of redds (including a sketch)	
Water quality	
Temperature	
Energy requirements	

Chapter 8 ..	69-88
Food Producing Areas & their Requirements	
Assessing food potential for fish production	
Important physical and biological parameters	
that affect food production.	
Problems associated with using standing	
food crops as an indicator of an area's	
potential. Evaluation of food potential of	
an area. Mathematical model for estimating	
stream width, depth and velocities with	
respect to average annual flow.	
Shapes of stream beds.	
Energy control in streams.	
Amounts of food, space, and quality of	
water required for growth.	
Oxygen levels and temperature effects.	
Age and quality of lakes.	
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Effects of Fish Pressure</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undisturbed fish populations in confined areas reduced when subjected to continued fishing pressure. Frequently maximum size limit imposed. Net mesh size exercises selective action on size of fish caught. Mesh size may also affect sex ratio of salmon escapement. Timing of runs. Escapement must take into account natural attrition or unnatural hazards to which fish are subjected. Intensive fishery may result in minor delay to movement of fish. Plantings over many years may cause genetic changes. Regulation changes that allow for large escapement by time period closures result in waves of fish approaching fish facilities.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Water Quality</th>
<th>91-92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved oxygen criteria. pH value. pH influence on toxicity of dissolved materials. Fish in acid vs. alkaline waters. Controlled use of phosphates and nitrates.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Temperature Effects on Fish</th>
<th>93-101</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Silt and Turbidity</th>
<th>103-109</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Toxicities of Elements and Compound</th>
<th>111-117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limits (standard and goals) in fresh and salt water for many common metals are given. Effects on fish life are reported for many of the elements and compounds.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Metals</th>
<th>119-120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace amounts of metals in natural waters. Adverse effects of effluents from industrial plants. Synergistic effects of two or more metal elements. Types of piping in hatcheries and aquaria. Check water quality before introduction of new strains of fish.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 15</th>
<th>Plastics</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance of properties. Toxic qualities. Toxicity studies.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Pesticides and Herbicides</th>
<th>123-125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be judiciously applied. Some pesticides have been discarded because of inherent danger. Many solvents, diluents and other carriers used with pesticides also have toxic properties. An important factor to be considered is the biological magnification. In making judgment necessary to measure toxicity of a compound in a specific environment. Insufficient data available on toxicity, both short term and cumulative, of more than a few common pesticides of their degradation products. Establishment of tolerable concentration of pesticides for fish requires consideration of food chain accumulation. Chlorinated hydrocarbons more toxic to fish. Organic phosphates are generally, but not always, less toxic to fish.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herbicides, in general, are less toxic to fish than insecticides. Inorganic herbicides are being replaced in many areas by some of more effective proprietary organic products. Various aromatic solvents also used. Of particular major concern in any consideration of effects of pesticides on aquatic biota are conditions that may prevail in river estuaries.

Chapter 17 ... 127-130

Fish Toxicants
Competent technicians should be employed to apply toxicants. Rotenone most widely used and acceptable. Reasonable care should be used in handling and applying rotenone. Discussion of stability of different forms of this toxicant. Formulas given for determining amount of rotenone needed in body of water. Factors affecting rotenone concentration. Conversion table when rotenone content varies between 5 and 10%. Antimycin A (Fintril) powerful, action irreversible. Toxic effect of Antimycin A occurs slowly than that of rotenone. Combination of Antimycin A and rotenone more toxic than either of these toxicants alone. Possible disadvantages to use of Antimycin A. Use of chlorinated hydrocarbons compounds, organophosphates and selectively toxins discussed.

Chapter 18 ... 131-132

Avoidance

Chapter 19 ... 133-148

Hatcheries

Chapter 20 ... 149-156

Rearing Ponds

Chapter 21 ... 157-167

Fish Diseases. Types, Causes, and Remedies
Most disease organisms treatable and controlled. Fish diseases divided into several categories. Categories generally may be considered as nutritional or organic, bacterial, virus, external parasites, internal parasites, and fungi. More common ones are listed and described here.

See Index - Fish Diseases at beginning of the chapter.

Chapter 22 ... 169-176

Use of Anaesthetics and Tranquilizer Drugs in Fisheries Work
Various compounds are covered. Effects of water temperature, water quality and sizes of fish. Water solubility. Importance of listed range of concentration for variety of fish. Preferred use. Check for possible side effects. Time required for anaesthesia and recovery. Effect on humans in contact with drugs.

Chapter 23 ... 177

Fish Pumps
"Bladeless" pump. Propeller pumps for water and fish passage. Avoidance of injector-type and vacuum-type pumps.
CONTENTS

Chapter 24 179-181
Downstream Migrants, Movement of
Time of downstream migration · Factors influencing and the downstream migration of salmon and steelhead · Migration path of downstream migrants · Migration rate of downstream migrants · Diel fluctuation in downstream migration · Mortality of downstream migrants · Residualism · Estuary rearing areas.

Chapter 25 183-184
Passage of Fish Through Turbines, Spillways and Conduit
Descent of fish from one level in a river to another · Summaries of success of passage through turbines and spillways have been published in two previous compendia (references nos. 1 and 2) · Pressures up to 2,000 feet of head have been experimented with · Shock waves that produced negative pressures should be avoided · Cavitation to be minimized or eliminated · Large clearances should be provided in vanes of runners of turbines and pumps, between runners and wicket gates · Temperature of water important · Francis and Kaplan runners should be considered separately

Chapter 26 185-199
Artificial Guidance of Fish
Natural guidance factors may be used in artificial guidance · Effects of light · Temperature gradients · Electric screens as barrier · Bubble screens not effective · Pressure change · Depth consideration · Velocity effect · Use of louver screens · Effectiveness of wire screens · Precautions for screening devices · Method of computing mesh size · Approach velocity factor · Discussion of accompanying exhibits · Need of screen bypasses

Chapter 27 201-205
Artificial Spawning Channel
Used as alternates to hatcheries · Two general types: upwelling and stream · Temperature, oxygen and pollution affect artificial spawning channels · Normally permit greater percolation rate and higher survival of eggs to fry · General design criteria for channel given · Diagrams, charts and exhibits included.

Chapter 28 207-208
Predation
Occurrence in same species due to size difference · Menace of squawfish and suggested control · Effect of turbidity · effect of bypasses · Menace of fish-eating birds and aquatic mammals · Suggested method for controlling predator populations.

Chapter 29 209-213
Fyke nets, description and use · Effectiveness of gill nets · Beach seine value · Traps and pounds and nets · Plankton nets · Weirs · Underwater photography · Fish wheels · Electric fish collectors · Exhibits at end of chapter.

Chapter 30 215-220
Transportation — Mechanical Hauling of Fish
Necessary amount of space and water · Recommended temperature · Tank types and fish handling · Aeration methods · Tank truck costs and cost of operation · Control of toxic metabolic products · Aerial planting of trout · Pumps and air compressors for aeration · Barging in transportation · Tables and photograph.
Chapter 31 ... 221
Culverts
Flow coefficients • Culverts size and setting • Pressure head and velocity • Gradient and bed roughness • Minimum flow passage levels and swimming depths.

Chapter 32 ... 223-226
Channel Changes
Principal methods used • Effect of increased velocities • Suitable flows for salmonid production • Chezy's formula for measurements of changes • Application of this formula to Washington streams • Wetted perimeter effect on velocity • Pools and riffles affect velocities in chute sections • Importance of gravel size • Methods of lessening velocity head in a pool • Importance of bed stability.

Chapter 33 ... 227-230
Locks and Mechanical Handling
Surface and pressure locks • Rounds vs. rectangular locks • Removal of fish from lock chamber • Types of approach • Success in use of locks vs. use of hauling tanks • Factors in design of a lock • Rules for hauling tanks • Exhibits at end of chapter.

Chapter 34 ... 231-273
Fishway Structures at Dams and Natural Obstructions
Fishway head differences • Structures size criteria • Basis of choice for fishway patterns • Limited application for Denil fishway types • Tabulated fishway design data with reference to related exhibits • Special considerations for site conditions and individual species of fish • Orifice depths size of openings • Fish jumping causes and prevention • Discussion of weir and orifice type fishways • Methods of trapping fish • Times of fish movement • Position of fishway entrances and light effects • Effect of spillway flow • Relation of submerged or surface type jump to fishway entrances • Collection systems at powerhouses • Methods of attracting fish to desired locations • Controlling flows from fishway entrances • Location of fishway exits • Barrier dams to divert fish to fishway system • Effect of high dams • Discussion of counting stations • Brief mention of fish locks • Effects of deep reservoirs in river areas on migrants • Nitrogen entrainment under certain spillway conditions • Criteria for design of temporary fishways during construction of permanent structures • All exhibits shown at end of chapter.

Chapter 35 ... 275-289
Oxygen
Composition of air • Stream reaeration • Oxygen sag curve • Deoxygenation coefficient • Reaeration coefficient • Pond reaeration • Diffusion coefficient • Absorption coefficient • Oxygen consumption of fed and starved sockeye • Oxygen use by migrating sockeye • Oxygen use of adult fish from rest levels to feeding levels • Oxygen concentrations at various temperatures in fresh water with formulae to adjust for pressure and salinity • Re-oxygenation efficiency of stones, micropore tubes and latex tubes • Capacity of oxygen cylinders.

Index ... 283-290
Conversion Factors

English to Metric and Metric to English

<table>
<thead>
<tr>
<th>English Unit</th>
<th>Multiplier</th>
<th>Metric Unit</th>
<th>Multiplier</th>
<th>English Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>0.0394</td>
<td>inches</td>
</tr>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimeters</td>
<td>0.3937</td>
<td>inches</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
<td>3.2808</td>
<td>feet</td>
</tr>
<tr>
<td>miles</td>
<td>1.6093</td>
<td>kilometers</td>
<td>0.6214</td>
<td>miles</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>square inches</td>
<td>645.16</td>
<td>square millimeters</td>
<td>0.00155</td>
<td>square inches</td>
</tr>
<tr>
<td>square feet</td>
<td>0.0929</td>
<td>square meters</td>
<td>10.7643</td>
<td>square feet</td>
</tr>
<tr>
<td>acres</td>
<td>0.4047</td>
<td>hectares</td>
<td>2.4710</td>
<td>acres</td>
</tr>
<tr>
<td>square miles</td>
<td>2.590</td>
<td>square kilometers</td>
<td>0.3861</td>
<td>square miles</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cubic inches</td>
<td>0.0164</td>
<td>liters</td>
<td>61.02</td>
<td>cubic inches</td>
</tr>
<tr>
<td>cubic inches</td>
<td>16.387</td>
<td>cubic centimeters</td>
<td>0.0610</td>
<td>cubic inches</td>
</tr>
<tr>
<td>cubic feet</td>
<td>0.0283</td>
<td>cubic meters</td>
<td>35.357</td>
<td>cubic feet</td>
</tr>
<tr>
<td>cubic yards</td>
<td>0.7646</td>
<td>cubic meters</td>
<td>0.3079</td>
<td>cubic yards</td>
</tr>
<tr>
<td>gallons</td>
<td>3.7854</td>
<td>liters</td>
<td>0.2642</td>
<td>gallons</td>
</tr>
<tr>
<td>acre-feet</td>
<td>1233.5</td>
<td>cubic meters</td>
<td>0.0008</td>
<td>acre-feet</td>
</tr>
<tr>
<td>thousands of acre-feet</td>
<td>1.2335</td>
<td>cubic hecxtometers</td>
<td>0.8107</td>
<td>thousands of acre-feet</td>
</tr>
<tr>
<td>millions of acre-feet</td>
<td>1.2335</td>
<td>cubic kilometers</td>
<td>0.8107</td>
<td>millions of acre-feet</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cubic feet/second</td>
<td>0.0283</td>
<td>cubic meters/second</td>
<td>35.3357</td>
<td>cubic feet/second</td>
</tr>
<tr>
<td>gallons/minute</td>
<td>0.0631</td>
<td>liters/second</td>
<td>15.85</td>
<td>gallons/minute</td>
</tr>
<tr>
<td>gallons/minute</td>
<td>3.7854</td>
<td>liters/minute</td>
<td>0.2642</td>
<td>gallons/day</td>
</tr>
<tr>
<td>gallons/minute</td>
<td>6.309x10^{-5}</td>
<td>cubic meters/second</td>
<td>15850.372</td>
<td>gallons/minute</td>
</tr>
<tr>
<td>million gallons/day</td>
<td>.0438</td>
<td>cubic meters/second</td>
<td>22.8311</td>
<td>million gallons/day</td>
</tr>
<tr>
<td>Mass (Weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pounds</td>
<td>0.4536</td>
<td>kilograms</td>
<td>2.2046</td>
<td>pounds</td>
</tr>
<tr>
<td>ounces</td>
<td>28.3495</td>
<td>grams</td>
<td>0.0353</td>
<td>ounces</td>
</tr>
<tr>
<td>grains</td>
<td>0.0648</td>
<td>grams</td>
<td>15.432</td>
<td>grains</td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feet/second</td>
<td>0.3048</td>
<td>meters/second</td>
<td>3.2808</td>
<td>feet/second</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horsepower</td>
<td>0.746</td>
<td>kilowatts</td>
<td>1.3405</td>
<td>horsepower</td>
</tr>
<tr>
<td>British thermal unit</td>
<td>2.93x10^{-4}</td>
<td>kilowatt hour</td>
<td>3412.0</td>
<td>British thermal unit</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pounds/square inch</td>
<td>6.8948</td>
<td>kilopascals</td>
<td>0.1450</td>
<td>pounds/square inch</td>
</tr>
<tr>
<td>feet head of water</td>
<td>2.989</td>
<td>kilopascals</td>
<td>0.3346</td>
<td>feet head of water</td>
</tr>
<tr>
<td>pounds/square inch</td>
<td>51/7112</td>
<td>millimeters Hg</td>
<td>0.0193</td>
<td>pounds/square inch</td>
</tr>
</tbody>
</table>
Conversion Factors (continued)
English to Metric and Metric to English

<table>
<thead>
<tr>
<th>English Unit</th>
<th>Metric Unit</th>
<th>Multiplier</th>
<th>English Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>gallons/minute/foot drawdown</td>
<td>liters/minute/meter drawdown</td>
<td>12.419</td>
<td>gallons/minute/foot drawdown</td>
</tr>
<tr>
<td>parts/million</td>
<td>milligrams/liter</td>
<td>1.0</td>
<td>parts/million</td>
</tr>
<tr>
<td>grain/gallon</td>
<td>milligrams/liter</td>
<td>17.1233</td>
<td>grain/gallon</td>
</tr>
</tbody>
</table>

Specific Capacity

- **Specific Capacity**

Concentration PPM

- **Concentration PPM**

Temperature

- **Temperature**

Other Equivalents

- **Other Equivalents**

- 7000 grains = 1 pound
- 1 grain/gallon = 17.12 parts/million
- 1 grain/gallon = 142.9 lbs/million gallons
- 1 pound/million gallons = 0.1199 parts/million
- 1 part/million = 0.0584 grains/gallon
- 1 part/million = 8.34 pounds/million gallons
- 1 gallon = 231 cubic inches
- 1 cubic foot = 7.48 gallons
- 1 cubic foot of water = 62.4 pounds
- 1 gallon of water = 8.34 pounds
- 1 cubic foot/second = 646,300 gallons/24 hours (449 gpm)
- 1 million gallons/24 hrs = 1.547 cubic feet/second
- 1 million gallons/24 hrs = 694 gallons/minute
- 1 acre = 43.560 square feet

- ° Fahrenheit \((^\circ F-32)/1.8\)
- ° Celsius \((^\circ C \times 1.8)+32\)
- ° Fahrenheit
TERMINOLOGY AND EQUIVALENTS

Legal measurement of water - one cubic foot per second (cfs, second feet or cusecs) or fraction of cfs.

One second foot = 7.48 U.S. gallons per second
= 448.8 U.S. gallons per minute
= 646,317 U.S. gallons per day

One second foot for a day = 86,400 cubic feet or 1,983 acre feet

One acre foot is a surface acre covered one foot in depth

Runoff from watersheds is measured in acre feet or in inches per square mile

Acre = 43,560 sq. ft.
Square mile = 640 acres

Power:

\[\text{hp} = 550 \text{ foot pounds per second} = 33,000 \text{ foot pounds per minute} \]

1 K.W. = 1.3405 hp
1 KWH = 3412 BTU

Atmospheric pressure at sea level is 14.697 lbs. per sq. in. = 33.901 feet of fresh water depth

Slope in channels is measured by fall per unit of length, as feet per mile

Velocity is measured in feet per second = 1.4667 feet per second = 1 mile per hour

\[F = (M)(g) \quad \text{Force} = \text{Mass X gravity} \]
\[M = W \, g \quad \text{Mass} = \text{Weight gravity} \]

Maximum density of water is at 39.3° F. or about 4° C.

Fresh water pressure equals .43344 lbs. per sq. in. per ft. of depth

Water weighs 62.424 lbs/cu. ft. at maximum density
Water weighs 62.416 lbs/cu. ft. at 32° F.
Water weighs 62.419 lbs/cu. ft. at 45° F.
Water weighs 62.390 lbs/cu. ft. at 55° F.

DEFINITIONS

Q Discharge in cubic feet per second (c.f.s. or second feet) or any of the other units expressing volumes per unit of time defined in previous sections.

A Cross-sectional area in square feet or other convenient unit.

V Average of mean velocity in feet per second or other convenient unit.

V Velocity at a point in feet per second or other convenient unit.

g Acceleration of gravity (usually considered to be 32.2 ft./sec./sec.)

H Head in feet acting on a weir, at a dam, or over an orifice \(\frac{V^2}{2g} \)

h Head in feet acting on an orifice, and also velocity head \(\frac{V^2}{2g} \)

C Coefficient of discharge (dimensionless) for an orifice or weir, or coefficient of roughness for an open channel or pipe.

R Hydraulic radius of a stream in feet, which is equal to a cross-sectional area (A) divided by the wetted perimeter of the cross-section (P). A/P in sq. ft. and feet.

S Gradient or slope of open channel expressed as drop in feet divided by the length of the channel in feet over which the drop takes place, (assuming total energy gradient, slope of water surface, and grade of channel are the same).

n Coefficient of roughness used in the Manning formula for open channels or pipes.

L Length of weir crest in feet or length of a channel.

M Mass

W Weight

F Force
MISCELLANEOUS INFORMATION

Uses of dams:
- Power - for head
- Storage - for all water uses
- Diversion - for water uses
- Flood control - completely emptied
- Sediment control
- Navigation - for depth and velocity control
- Multipurpose - can be utilized for many water uses

Dam nomenclature:
- Overflow section or spillway
- Non-overflow section
- Crest - top
- Gravity - method of security
- Arch - method of security
- Gravity arch - method of security
- Rock fill - gravity types
- Dirt fill - gravity types
- Training walls - means of directing flow
- Head - usually in feet and defined as useful difference in elevation for T.W. to H.W.

MISCELLANEOUS DEFINITIONS

WS - water surface
NWS - normal water surface of a lake or stream
HWS - high water surface of a lake or stream
LWS - low water surface of a lake or stream
TWS - tail water surface below a dam
HW - pool surface above a dam
El. - elevation above sea level

Power House:
- Tail race - below the units
- Draft tube - conduit from a turbine
- Penstock - intake to a turbine
- Turbine - a water wheel to obtain power
- Generator - electrical unit to generate power
- Deck - walking or work surface
- Outlet works - in tail race
- Outlet towers - means of water control to inlet
- Trash rack - a protective structure

Spillway:
- Gated - use of a gate for control of spill or HW
- Weir - no control
- Apron - to prevent scour below a spillway
- O.G. (ogee or ogive) - shape of spillway
- Ski jump - shape of spillway
- Tainter or radial gates - segments of circles
- Drum gates - circular
- Needle bars or logs - vertical
- Stop logs - horizontal
The above represents a cubic foot of water moving at a speed or velocity of 1 foot per second.

It is called:
1. second-foot
2. cubic foot per second
3. c.f.s.

It is the legal measurement of water.

It is equal to 1.983 acre-feet of water in 24 hours, flowing from storage or into a storage reservoir.

It is equal to:
- 7.48 gallons per second
- 448.8 gallons per minute
- 646,317 gallons per day

BASIC FORMULAS

\[Q = AV \]
\[V = \sqrt{\frac{2gh}{}} \]
\[P = Wh \]
\[V = C \sqrt{RS} \quad \text{where} \quad R = \frac{A}{P} \]

\[Q = 3.33 LH^{3/2} \]
SOME PIPE AND CIRCLE AREAS

For Use in Hydraulics

<table>
<thead>
<tr>
<th>Nom. Size</th>
<th>ID ins.</th>
<th>ID ft.</th>
<th>TH. ins.</th>
<th>ID²/25A² ft².25</th>
<th>DIA</th>
<th>DIS²/25 ft².25</th>
<th>A² ft²</th>
<th>WT - Wrought</th>
<th>WI - Wrought Iron</th>
<th>ID - Inside diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0.622</td>
<td>0.0519</td>
<td>.109</td>
<td>0.4770.00211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>0.824</td>
<td>0.0687</td>
<td>.113</td>
<td>0.5120.00371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.049</td>
<td>0.0874</td>
<td>.133</td>
<td>0.5440.00600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.380</td>
<td>0.1150</td>
<td>.140</td>
<td>0.5820.01040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2</td>
<td>1.610</td>
<td>0.1342</td>
<td>.145</td>
<td>0.6050.01414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.067</td>
<td>0.1722</td>
<td>.154</td>
<td>0.6440.02330</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2</td>
<td>2.469</td>
<td>0.2057</td>
<td>.203</td>
<td>0.6730.03322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.068</td>
<td>0.2557</td>
<td>.218</td>
<td>0.7110.05130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1/2</td>
<td>3.548</td>
<td>0.296</td>
<td>.226</td>
<td>0.7380.06870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.026</td>
<td>0.336</td>
<td>.237</td>
<td>0.7610.08840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.047</td>
<td>0.420</td>
<td>.258</td>
<td>0.8040.1390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.065</td>
<td>0.506</td>
<td>.280</td>
<td>0.8420.2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7.981</td>
<td>0.665</td>
<td>.322</td>
<td>0.9020.3474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10.02</td>
<td>0.836</td>
<td>.365</td>
<td>0.9560.5475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12.00</td>
<td>1.000</td>
<td>.375</td>
<td>1.0000.7854</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 OD</td>
<td>13.25</td>
<td>1.106</td>
<td>.375</td>
<td>1.0240.9569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 OD</td>
<td>15.25</td>
<td>1.270</td>
<td>.375</td>
<td>1.0621.268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 OD</td>
<td>17.25</td>
<td>1.438</td>
<td>.375</td>
<td>1.0921.623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 OD</td>
<td>19.25</td>
<td>1.605</td>
<td>.375</td>
<td>1.1262.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 OD</td>
<td>23.25</td>
<td>1.938</td>
<td>.375</td>
<td>1.1802.949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WT - Wrought
WI - Wrought Iron
ID - Inside diameter

BEAUFORT SCALE OF WIND VELOCITY

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Wind velocity (mph)</th>
<th>Former terms used in weather forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Less than 1</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>1-3</td>
<td>Very light</td>
</tr>
<tr>
<td>2</td>
<td>4-7</td>
<td>Light</td>
</tr>
<tr>
<td>3</td>
<td>8-12</td>
<td>Gentle</td>
</tr>
<tr>
<td>4</td>
<td>13-18</td>
<td>Moderate</td>
</tr>
<tr>
<td>5</td>
<td>19-24</td>
<td>Fresh</td>
</tr>
<tr>
<td>6</td>
<td>25-38</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Smoke rises vertically; no movement of leaves, bushes, trees, or grass.
Direction of wind shown by smoke drift; tall grass and weeds away slightly; quaking aspen leaves move; small branches move gently; dead leaves on oaks rustle.
Wind felt on face; trees of pole size in open sway gently; small branches of pine move noticeably; dead, dry leaves rustle and move; stands of broom sedge sway.
Leaves and small twigs in motion; dry leaves on ground blow about; twigs of hardwood trees move distinctly, and large branches of pine in the open toss; whole trees in dense stands sway; trees of pole size in the open sway noticeably.
Small branches move; tops of large hardwood trees sway noticeably; pines of pole size in open sway violently; whole trees in dense stands sway noticeably.
Inconvenience is felt in walking against wind; branchlets are broken from trees; small trees in leaf sway; entire hardwood trees sway, their tips whip about violently; twigs broken from pines.
Progress is impeded when walking against wind; large branches in motion; branches broken from hardwood trees and tops from conifers.
RELATIVE HUMIDITY TABLES

Wet-bulb Temperature in Fahrenheit

| Wet-bulb Temperature (°F) | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 80 | 82 |
|---------------------------|
| 40 | 100 |
| 42 | 92 | 92 | 93 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 44 | 93 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 46 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 48 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 50 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 52 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 54 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 56 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 58 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 60 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |
| 62 | 94 | 94 | 94 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 |

CORRECTION FOR ELEVATION. The relative humidity at any given temperature rises slightly with increased elevation owing to a reduction in atmospheric pressure. The relative humidity indicated may be corrected by adding 1 percent when used at elevations between 500 and 1,999 ft. (e.g., for a dry-bulb temperature of 50° and a wet-bulb temperature of 40°, read 38 + 1, or 39 percent); 2 percent between 2,000 ft. and 3,999 ft.; 3 percent between 4,000 ft and 5,999 ft.; and 5 percent for elevations above 6,000 ft.

Air Temperature in °F

<table>
<thead>
<tr>
<th>Air Temperature in °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
Nomograph is correct if these lines are straight.

Pacific Oceanographic Group
Nanaimo, B.C.
NOMOGRAM FOR DETERMINING N_2 (WITH A_2) AT ATS. PRESSURE AND DIFFERENT TEMPERATURES

Water Temperatures

Nitrogen M.G.M. Per Litre (P.P.M.)

Based on Weight

Nitrogen C.C. Per Litre

Based on Volume

From Hutchinson
DEFINITION OF COMMON TERMS IN USE

Aerobic Organism - An organism that thrives in the presence of oxygen.

Algae - Simple plants, many microscopic, containing chlorophyll. Most algae are aquatic and may produce a nuisance when environmental conditions are suitable for prolific growth.

Allocation - The process of legally dedicating specific amounts of the water resource for application to beneficial uses by means of water rights.

Alluvium - Stream deposits of comparatively recent time.

Ambient - The natural conditions (or environment) at a given place or time.

Anadromous Fishes - Fishes that spend a part of their life in the sea or lakes, but ascend rivers at more or less regular intervals to spawn. Examples are salmon, some trout, shad, and striped bass.

Aquifer - An underground bed or stratum of earth, gravel, or porous stone which contains water. A geological rock formation, bed, or zone that may be referred to as a water-bearing bed.

Anaerobic Organisms - Microorganisms that thrive best, or only, when deprived of oxygen.

Autotrophic - Self-nourishing; denoting green plants and those forms of bacteria that do not require organic carbon or nitrogen, but can form their own food out of inorganic salts and carbon dioxide.

Base Flow - As defined in the Water Resources Act of 1971 (Ch. 90.54 RCW), base flows are the flows administratively established “necessary to provide for the preservation of wildlife, fish, scenic, aesthetic and other environmental values, and navigational values.”

Benthos - Bottom dwelling organisms.

Benthic Region - The bottom of a body of water.

Bio-assay - A determination of the concentration of a given material by comparison with a standard preparation, or the determination of the quantity necessary to affect a test animal under stated laboratory conditions.

Biochemical Oxygen Demand (BOD) - The amount of oxygen required to decompose a given amount of organic compounds to simple, stable substances within a specified time at a specified temperature. BOD serves as a guide to indicate the degree of organic pollution in water.

Biomass - The weight of all life in a specified unit of environment or an expression of the total mass or weight of a given population, both plant and animal.

Biota - All living organisms of a region.

Bloom - A readily visible concentrated growth or aggregation of plankton (plant and animal).

Coliform - Any of a number of organisms common to the intestinal tract of man and animals, used as an indicator of water pollution.

Consumptive Use - The amount of water used in such a way that it is no longer directly available. Includes water discharged into the air during industrial uses, or given off by plants as they grow (transpiration), or water which is retained in the plant tissues, or any use of water which prevents it from being directly available.

Control Station - Any streamflow measurement site at which a regulatory base flow has been established.

Dissolved Oxygen (DO) - Amount of oxygen dissolved in water.

Diversion - The physical act of removing water from a stream or other body of surface water.

Drainage Area - The area of land drained by a stream, measured in the horizontal plane. It is the area enclosed by a drainage divide.

Drainage Basin - A part of the surface of the earth that is occupied by a drainage system consisting of a surface stream of a permanent body of water together with all tributary streams and bodies of impounded water (lakes, ponds, reservoirs, etc.).

Dystrophic Lakes - Brown-water lakes with a very low lime content and a very high humus content. These lakes often lack nutrients.

Ecology - The science of the interrelations between living organisms and their environment.

Ecosystem - An ecological system; the interaction of living organisms and the nonliving environment producing an exchange of materials between the living and the nonliving.

Effluent - A discharge or emission of a liquid or gas, usually waste material.

Emission - A discharge of pollutants into the atmosphere, usually as a result of burning or the operation of internal combustion engines.

Endangered Species - any species which, as determined by the Fish and Wildlife Service, is in danger of extinction throughout all or a significant portion of its range other than a species of the class Insecta determined to constitute a pest whose protection would present an overwhelming and overriding risk to man.

Epilimnion - That region of a body of water that extends from the surface to the thermocline and does not have a permanent temperature stratification.

Escapement - Adult fish that “escape” fishing gear to migrate upstream to spawning grounds.

Estuary - Commonly an arm of the sea at the lower end of a river. Estuaries are often enclosed by land except at channel entrance points.

Eulittoral Zone - The shore zone of a body of water between the limits of water-level fluctuation.

Euphotic Zone - The lighted region that extends vertically from the water surface to the level at which photosynthesis fails to occur because of ineffective light penetration.

Euryhaline Organisms - Organisms that are able to live in waters of a wide range of salinity.
Eurytopic Organisms - Organisms with a wide range of tolerance to a particular environmental factor. Examples are slideworms and bloodworms.

Eutrophication - The intentional or unintentional enrichment of water.

Eutrophic Waters - Waters with a good supply of nutrients. These waters may support rich organic productions, such as algal blooms.

Fall Overturn - A physical phenomenon that may take place in a body of water during the early autumn. The sequence of events leading to fall overturn include: (1) cooling of surface waters, (2) density change in surface waters producing convection currents from top to bottom, (3) circulation of the total water volume by wind action, and (4) vertical temperature equality, 4 degrees C. The overturn results in a uniformity of the physical and chemical properties of the water.

Fingerlings - Fish whose size ranges from approximately one to three inches.

Floe - A small, light, loose mass, as of a fine precipitate.

Flood - Any relatively high streamflow or an overflow that comes from a river or body of water and which causes or threatens damage.

Flood Plain - Lowland bordering a river, subject to flooding when stream overflows.

Food-Chain - The dependence of organisms upon others in a series for food. The chain begins with plants or scavenging organisms and ends with the largest carnivores.

Fry (sac fry or alevin) - The stage in the life of a fish between the hatching of the egg and the absorption of the yolk sac. From this stage until they attain a length of one inch the young fish are considered advanced fry.

Gaging Station - A particular location on a stream, canal, lake, or reservoir where systematic measurements are made on the quantity of water flow.

Ground Water - Water in the ground lying in the zone of saturation. Natural recharge includes water added by rainfall, flowing through pores or small openings in the soil into the water table.

Habitat - The natural abode of a plant or animal, including all biotic, climatic, and soil conditions, or other environmental influences affecting life.

Heavy Metals - A group that includes all metallic elements with atomic numbers greater than 20, the most familiar of which are chromium, manganese, iron, cobalt, nickel, copper and zinc but that also includes arsenic, selenium, silver, cadmium, tin, antimony, mercury, and lead, among others.

Herbivore - An organism that feeds on vegetation.

Heterotrophic Organisms - Organisms that are dependent on organic matter for food.

Holdovers - Fish that take up residence in reservoirs rather than completing migration to the sea; may complete migration the following year.

Holomictic Lakes - Lakes that are completely circulated to the bottom at time of winter cooling.

Homoiothermic Animals - Animals that possess a temperature-regulating mechanism to maintain a more or less constant body temperature (warm-blooded animals).

Hydrologic Cycle - The continual exchange of moisture between the earth and the atmosphere, consisting of evaporation, condensation, precipitation (rain or snow), stream runoff, absorption into the soil, and evaporation in repeating cycles.

Hypolimnion - The region of a body of water that extends from the thermocline to the bottom of the lake and is removed from surface influence.

Impoundment - A body of water formed by confining and storing the water.

Lenitic or Lentic Environment - Standing water and its various intergrades, as lakes, ponds and swamps.

Limnetic Zone - The open-water region of a lake.

Littoral Zone - The shoreward region of a body of water.

Lotic Environment - Running waters, as streams or rivers.

Median Lethal Dose (LD50) - Dose lethal to 50 per cent of a group of test organisms for a specified period. The dose material may be ingested or injected.

Median Tolerance Limit (TLm) - Concentration of the tested material in a suitable diluent (experimental water) at which just 50 per cent of the test animals are able to survive for a specified period of exposure.

Meromictic Lakes - Lakes in which dissolved substances create a gradient of density differences in depth, preventing complete mixing or circulation of the water.

Nanoplankton - Very small plankton not retained by a plankton net equipped with No. 25 silk bolting cloth.

Nekton - Swimming organisms able to navigate at will.

Neuston - Organisms resting or swimming on the surface film of the water.

Nonconsumptive Use - Use of water in a manner which does not consume the resource. Fishery, aesthetic, and hydropower uses are examples of nonconsumptive use.

Oligotrophic Waters - Waters with a small supply of nutrients, supporting little organic production.

Oxygen-Debt - A phenomenon that occurs in an organism when available oxygen is inadequate to supply the respiratory demand. During such a period the metabolic processes result in the accumulation of breakdown products that are not oxidized until sufficient oxygen becomes available.

Pelagic Zone - The free-water region of a large body of water.

Periphyton - The association of aquatic organisms attached or clinging to stems and leaves of rooted plants or other surfaces projecting above the bottom.
Photosynthesis - The process by which simple sugars and starches are produced from carbon dioxide and water by living plant cells, with the aid of chlorophyll and in the presence of light.

Phototropism - Movement in response to a light gradient.

Phytoplankton - Plant plankton that live unattached in water.

Piscicide - Substances or a mixture of substances intended to destroy or control fish populations.

Plankton (Plankter) - Organisms of relatively small size, mostly microscopic, that have either relatively small powers of locomotion or that drift in the water with waves, currents, and other water motion.

Poikilothermic Animals - Animals that lack a temperature-regulating mechanism that offsets external temperature changes (cold-blooded animals). Their temperature fluctuates to a large degree with that of their environment. Examples are fish, shellfish and aquatic insects.

Potamology - Study of the physical, chemical, geological and biological aspects of rivers.

Primary Productivity - The rate of photosynthetic carbon fixation by plants and bacteria forming the base of the food chain.

Profundal Zone - The deep and bottom-water area beyond the depth of effective light penetration. All of the lake floor beneath the hypolimnion.

Public Waters - All waters not previously appropriated.

Rearing area - The place where juvenile fish live. It must meet certain environmental requirements for food supply, cover, and temperature.

Redd (Nest) - A type of fish-spawning area associated with running water and clean gravel.

Reservation - An approved priority claim to water for a future beneficial use.

Rheotropism - Movement in response to the stimulus of a current gradient in water.

Riparian - Pertaining to the banks of streams, lakes, or tidewater.

Ripple - A section of a stream in which the water is usually more shallow and the current is of greater velocity than in the connecting pools; a ripple is smaller than a rapid and more shallow than a chute.

River Basin - The total area drained by a river and its tributaries; watershed; drainage basin.

Run - A group of fish that ascend a river to spawn.

Runoff - That part of precipitation which appears in surface streams. This is the streamflow before it is affected by artificial diversion, reservoirs, or other man-made changes in or on stream channels.

Salmonoid - Fish belonging to the family salmonidae, including salmon, trout, char, and allied freshwater and anadromous fishes.

Seiche - A form of periodic current system, described as a standing wave, in which some stratum of the water in a basin oscillates about one or more nodes.

Sessile Organisms - Organisms that sit directly on a base without support, attached or merely resting unattached on a substrate.

Seston - The living and nonliving bodies of plants or animals that float or swim in the water.

Smolt - An anadromous fish that is physiologically ready to undergo the transition from fresh to salt water; age varies depending on species and environmental conditions.

Smoltification - The biological process whereby an anadromous fish becomes capable of undergoing the transition from fresh to salt water.

Spawning - The laying of eggs, especially by fish.

Spring Overturn - A physical phenomenon that may take place in a body of water during the early spring. The sequence of events leading to spring overturn include (1) melting of ice cover when present, (2) warming of surface waters, (3) density change in surface waters producing convection currents from top to bottom, (4) circulation of the total water volume by wind action, and (5) vertical temperature equality, 4 degrees C. The overturn results in a uniformity of the physical and chemical properties of the water.

Stenotopic Organisms - Organisms with a narrow range of tolerance for a particular environmental factor. Examples are trout, stonefly nymphs, oyster larvae, etc.

Storage - Water naturally or artificially impounded in surface or underground reservoirs.

Storage reservoir - A reservoir in which storage is held over from the annual high-water season to the following low-water season. Storage reservoirs which refill at the end of each annual high-water season are "annual storage" reservoirs. Those which cannot refill all usable power storage by the end of each annual high-water season are "cyclic storage" reservoirs.

Streamflow - The discharge or water flow that occurs in a natural channel. The word discharge can be applied to a canal, but streamflow describes only the discharge in a surface stream course. Streamflow applies to discharge whether or not it is affected by diversion or reservoirs.

Sublittoral Zone - The part of the shore from the lowest water level to the lower boundary of plant growth.

Symbiosis - Two organisms of different species living together, one or both of which may benefit and neither is harmed.

Thermocline - That layer in a body of water where the temperature difference is greatest per unit of depth. It is the layer in which the drop in temperature equals or exceeds one degree C. (1.8 degrees Fah.) per meter (39.37 inches).

Trophogenic Region - The superficial layer of a lake in which organic production from mineral substances takes place on the basis of light energy.

Trophicolytic Region - The deep layer of a lake, where organic dissimilation predominates because of light deficiency.
Turbidity - The cloudiness of water caused by the presence of suspended matter. These particles cause light to be scattered and absorbed rather than transmitted in straight lines. It is often measured in Jackson Turbidity Units (JTU).

Watershed - The area from which water drains to a single point. In a natural basin, the area contributing flow to a given place on a stream.

Zooplankton - Animal microorganisms living unattached in water. They include small crustacea, such as daphnia and cyclops, and single-celled animals as protozoa, etc.
The fishery resource at water development projects is protected by law under general statutes contained in State Codes and Public Laws of the Federal Government. Sections vary in wording among the states and their agencies but do not define the exact structural requirements to be fulfilled under the stated law. In most cases, discretionary powers are given to the State or Federal officers named by law to carry out the intent of an act. In some cases, commissions are so empowered.

Basically, adult fish at dams or obstructions are protected by the requirement of construction and operation of fishways; downstream migrants are protected from diversion from a stream by requirements for screening of intakes. As an alternate to the above, in lieu settlements may be allowed, such as construction and operation of fish hatcheries and man-made spawning channels. The general statutes cover habitat protection by limiting types and quantities of pollution and stream bed operations that might damage environmental areas. In special cases, fish sanctuaries have been set aside by legislative action.

Of more recent development are laws pertaining to the adequacy of flows in river channels, including both minimum and maximum flows required for maintenance of fish life.

The statutes of individual states and the Federal government require agencies involved in water use development to confer with each other for coordinating protection activities. Where the development of power is involved, agencies such as the Federal Power Commission have been given authority to consider comprehensive or basin-type development and, hence, the language of each license issued has an important bearing in the decision making of all agencies involved in such a basin. Classification of water purity by pollution control agencies may also define protection to fish life.

Appropriation acts of the States and the Federal government may also contain language pertaining to the administration and requirement for fisheries protection at water use developments and should be reviewed for each project.

In addition to present-day laws, a background approach leading to public laws for the protection of migratory fish is contained in Magna Charta. An excellent summation of the ownership of land under the water, or the water over the land, is contained in the "history and law of fisheries" by Stuart A. Moore and Hubert Stuart Moore, published in London in 1903.

References to early federal legal action in the United States is contained in "Compilation of federal laws, relating to the conservation and development of our nation's fish and wildlife resources - Part IV (Fishways at river and harbor project) Act of August 11, 1885."

Caution: Since the Federal Court decisions affecting fishing rights of Native Americans and the instigation of the 200-mile zone, the basic State laws have been and are being modified to the extent that it is essential that all actions be reviewed to reflect the results of the above-mentioned changes. The legal aspects of fisheries management have been changed radically.

Recent legislation in certain states permits the development of private hatcheries and the use of the returning runs.

The agency names shown in the laws have been altered in many cases, and the agencies referred to in the references have been consolidated with other conservation agencies, sometimes resulting in a newly-named agency. In almost all cases, past authority has been transferred to the new agency.

References Reviewed

Sections 1120-1150, Fish hatcheries; 1300-1602, Wildlife conservation law of 1947; 5900-6028, Dams, conduits and screens; 6400-6511, Fish planting and propagation; 12015,...unlawfully polluting, contaminating or obstructing waters to detriment of fish life...

Section 6554, Requirements for screening of outlets as prescribed in Section 6451 may be waived by the Commission.

Sections 36-112, Fish hatcheries; 36-1101-1108, Protection of fish; 36-1101, Pollution of streams...prohibited; 36-1102, Penalty for taking or destroying fish...; 36-1103, Fishways in dams - removal of unused dams; 36-1104, Construction of new fishways...; 36-1105, Obstruction of streams unlawful; 36-1106, water power mills must have screens; 36-1107, Fish screens in irrigation canals; 36-1108, Power of Fish and Game Commission, screening devices.

Sections 496.405, Acquisition of lands and waters; 498.705-750, Fish screening...and fishways; 501.010-060, Fish hatcheries; 541.605-990, Fish habitats and spawning areas - removal of material; 449.105-107, Control of pollution generally; 498.540-545, Placing substances in water...; 164.820, Placing drift in streams.

Sections 506.215, Maintaining hatcheries...; 509.112-115, Wasting, injuring and destroying fish; 509.600, Destroying, injuring or taking food fish near fishway; 509.605, Fishways in artificial stream obstruction; 509.610, neglect to maintain fishway; 509.615, Screening artificial watercourse; 509.620, Condemning inadequate and ordering new fishways.

Chapter 75.20, Restrictions as to dams, ditches and other uses of waters and waterways. Sections 75.20.010-030, Columbia River sanctuary; 75.20.040, Fish guards required; 75.20.050, Water flow to be maintained; 75.20.060, Fishways required in dams, obstructions...; 75.20.061, Director may modify, etc., inadequate fishways and protective devices; 75.20.070, Unlawful to fish in or interfere with fishways, screens, etc.; 75.20.080, Unlawful to interfere with or damage ladders, guards, etc.; 75.20.090. If fishway is impractical, fish hatcheries may be provided in lieu; 75.20.100, Hydraulic projects - plans must be approved; 75.20.110, Columbia River sanctuary - 1960 Act.

Sections 77.12.200, Hatcheries...; 76.16.210, Fishways and protective devices; 77.16.221, modify inadequate fishways and protective devices; 77.16.160, Unlawful to molest fish screens...; 77.16.220, Requirements.

...new section to Chapter 90.48 RCW...oil pollution.

Section 3 (new section),...establish minimum water flows or levels for streams, lakes or other public waters for purposes of protecting fish, game birds, or other wildlife resources...

Part I. Fish and wildlife - general.
A. Fish and Wildlife Act of 1956; B. Fish and Wildlife Coordination Act; C. Recreational use of fish and wildlife...
Part II. Fish and fisheries.
L. Authorities relating to specific fish hatcheries and to other facilities...; M. Authorities relating to fisheries research, studies and propagation.
SCIENTIFIC AND COMMON NAMES OF SOME OF
THE MORE ABUNDANT FISH SPECIES

Salmon

Chinook
Chinook
Coho
Pink
Chum
Sockeye
Kokanee (landlocked sockeye)

Squawfish
Chiselmouth
Columbia River Chub
(peaemouth)
Roach
Mountain sucker
Large scale sucker
Bridgrip sucker
Redside shiner
Dace

Chinook
Coho
Pink
Chum
Sockeye

(Teleostei) Oncorhynchus tsawytscha
(Teleostei) Oncorhynchus kisutch
(Teleostei) Oncorhynchus gorbuscha
(Teleostei) Oncorhynchus keta
(Teleostei) Oncorhynchus nerka

(Teleostei) Squawfish
(Teleostei) Chiselmouth
(Teleostei) Columbia River Chub
(Teleostei) Peaemouth
(Teleostei) Roach
(Teleostei) Mountain sucker
(Teleostei) Large scale sucker
(Teleostei) Bridgrip sucker
(Teleostei) Redside shiner
(Teleostei) Dace

Trout

Steelhead
Rainbow
Cutthroat (coastal)
Brown
Golden

(Teleostei) Salmo gairdneri
(Teleostei) Salmo gairdneri
(Teleostei) Salmo clarki
(Teleostei) Salmo trutta
(Teleostei) Salmo aqua-bonita

(Teleostei) Arctic grayling

(Teleostei) Thymallus articus

(Teleostei) Whitefish (mountain)

(Teleostei) Prosopium williamsoni

(Teleostei) Sturgeon (white)

(Teleostei) Acipenser transmontanus

(Teleostei) Sturgeon (green)

(Teleostei) Acipenser medirostris

(Teleostei) Smelt (eulachon)

(Teleostei) Thaleichthys pacificus

(Teleostei) American shad

(Teleostei) Alosa sapidissima

(Teleostei) Striped bass

(Teleostei) Morone saxatilis

(Teleostei) White bass

(Teleostei) Roccus chrysops

(Teleostei) Largemouth bass

(Teleostei) Micropterus salmoides

(Teleostei) Smallmouth bass

(Teleostei) Micropterus dolomieu

(Teleostei) Spotted bass

(Teleostei) Micropterus punctualatus

(Teleostei) White crappie

(Teleostei) Pomoxis annularis

(Teleostei) Black crappie

(Teleostei) Pomoxis nigromaculatus

(Teleostei) Bluegill

(Teleostei) Lepomis macrochirus

(Teleostei) Pumpkinseed

(Teleostei) Lepomis gibbosus

(Teleostei) Green Sunfish

(Teleostei) Lepomis cyanellus

(Teleostei) Sacramento perch

(Teleostei) Archoplites interruptus

(Teleostei) Channel catfish

(Teleostei) Ictalurus punctatus

(Teleostei) White catfish

(Teleostei) Ictalurus catus

(Teleostei) Yellow bullhead

(Teleostei) Ictalurus natalis

(Teleostei) Brown bullhead

(Teleostei) Ictalurus nebulosus

(Teleostei) Black bullhead

(Teleostei) Ictalurus melas

(Teleostei) Yellow perch

(Teleostei) Perca flavescens

(Teleostei) Carp

(Teleostei) Cyprinus carpio
GAME AND RESIDENT SPECIES
(Some of the More Abundant Northwest and Northern California Species)

Largemouth Bass
White Crappie
Black Crappie
Blue Gill

Salmon
Trout
Char
Whitefish
Smelt
American Shad
Largemouth Bass
Smallmouth Bass
Striped Bass
Chapter 5
Useful Factors in Life History of Most Common Species
GENERAL RECORD INFORMATION

<table>
<thead>
<tr>
<th>Request Identifier:</th>
<th>21621365</th>
<th>Status:</th>
<th>SHIPPED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Date:</td>
<td>20060718</td>
<td>Source:</td>
<td>ILLiad</td>
</tr>
<tr>
<td>OCLC Number:</td>
<td>13311581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower:</td>
<td>MZF</td>
<td>Need Before:</td>
<td>20060808</td>
</tr>
<tr>
<td>Receive Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due Date:</td>
<td>20060818</td>
<td>Renewal Request:</td>
<td></td>
</tr>
<tr>
<td>Lenders:</td>
<td>UDR, OKD, XRV, SAP, WRJ</td>
<td>New Due Date:</td>
<td></td>
</tr>
</tbody>
</table>

BIBLIOGRAPHIC INFORMATION

- **Author:** Bell, Milo C.
- **Title:** Fisheries handbook of engineering requirements & biological criteria / [Rev. ed.].
- **Imprint:** Portland, Or. : Fish Passage Development and Evaluation Program, Corps of Engineers, North Pacific Division, 1986.

BORROWING INFORMATION

- **Patron:** Spinelli, Justin
- **Ship To:** RSDD/The Libraries/Montana State University-Bozeman/ 1 Centennial Mall/Bozeman, MT 59717-3320
- **Bill To:** same Will accept invoice
- **Ship Via:** ARIEL / LIBRARY MAIL / 1ST CLASS
- **Maximum Cost:** IFM - $25
- **Copyright Compliance:** None
- **Fax:** ARIEL 153.90.170.65 FAX (406) 994-4117
- **Email:** bozemanill@montana.edu
- **Affiliation:** BCR / LVIS / AMIGOS / Global ILL Framework (GIF) / EFTS

LENDING INFORMATION

- **Lending Charges:** None
- **Shipped:** 20060718
- **Ship Insurance:**
- **Lending Notes:** Please fax all articles to 303-445-6303 if there is no charge. Thank you.
- **Lending Restrictions:**

 U.S. Bureau of Reclamation/Library-ILL D-7925/P.O. Box 25007/Denver Fed. Center/Denver,
USEFUL FACTORS IN LIFE HISTORY OF MOST COMMON SPECIES

In using the table, it must be recognized that there are variables not shown. The table is intended to cover only those factors that affect to some degree the design of fish facilities. It does not depict the full range of factors needed for the management of these species.

In large rivers it has been shown that chinook salmon are generally present throughout the year.

In anadromous species the sex ratio of returning fish is assumed to be closely balanced; however, there are known variations. It is not uncommon to find up to 20 per cent precocious males in runs in major streams. When considering a specific site, such factors can have an important bearing on the numbers to be handled.

Not infrequently, more normal sized males than females appear in the early part of a run, although the sex ratio may be closely balanced by the end of a season. Early and late segments of runs are subjected to the most adverse natural conditions that may diminish the effectiveness of these spawners. Sex ratios within various streams may be unbalanced by fishing pressure of differential gear efficiencies.

Jacks of the various species are generally considered precocious males that mature one to two years in advance of the normal cyclic time. Occasionally a few early-maturing females have been noted. The cause of precociousness is not fully understood. The literature attributes population pressures and artificial propagation techniques as possible causes.

Under normal spawning conditions the fish are paired, although a male will mate more than once. Males usually outlive females and, in general, can be said to live slightly longer in fresh water than females.

Time for the completion of the spawning act may vary from three to seven days. This is an important item in determining spawning bed sizes.

Redds must not be dried or exposed to stagnant water. Eggs should not be disturbed during the tender period, after they are water hardened and before they are eyed. (See chapter on Spawning Criteria.)

The number of eggs carried within the females varies with size and species and may not be 100 per cent viable. The literature discloses that eggs may be retained and not extruded before death. Not all of the eggs in a skein ripen simultaneously. Fry emerge somewhat in the order of the time of depositing in the redd, accounting for peaks of downstream migration.

Hatching time is a function of temperature: a degree-day is one degree above 32° F. for a 24-hour period. With considerable variation, approximately 900 degree-days are required for salmon hatching and an equal number for the absorption of the yolk sac, which gives approximately 1,800 degree-days. In contrast to the salmon hatching period, incubation of trout eggs requires approximately 720 degree-days.

Because of the variation, these figures should be used only as an approximation of the length of time that either spend in a spawning bed or a hatching facility.

Although the energy utilization is not thoroughly described, it is useful for comparative purposes. It could be expected in the anadromous stocks, which cease feeding upon entering fresh water, that the male uses over 60 per cent of its stored energy for body maintenance and the female uses less than 60 per cent at normal temperature levels to time of death. The sex products of the female account for 16 to 18 per cent of the body energy, as opposed to 5 to 6 percent in the male. It could be expected that the female uses double the body energy in nest building (3 to 5 percent) as does the male. Therefore, as noted above, the males, living longer, would require more energy for body maintenance.

Egg size is a function of size or age of females. Larger, older females produce larger eggs. Egg sizes given generally refer to green eggs; however, the sizes of water-hardened eggs represent space room required in artificial propagation and are approximated in the tables here, as they vary widely.

Brood years were defined by the Pacific Marine Fisheries Commission in 1957 as follows:

'Brood year' refers to the calendar year in which the bulk of eggs is deposited. Time of egg deposition by a given species is determined by its habits over most of its range in Western North America.

For example:

1. Use as brood year the calendar year of spawning for pink, sockeye, and chinook salmon and for cutthroat and wild rainbow trout.

2. Use a brood year the earlier of the two calendar years of spawning for chum and silver salmon.

3. Use as brood year the later of the two calendar years of spawning for steelhead and fall spawning rainbow trout.

See also chapters on Disease, Silt, Spawning Criteria and Water Quality.

21
Useful Factors in Life History of Most Common Species in Western United States

Occurrence

<table>
<thead>
<tr>
<th>Sport, Comm., Predaceous, Forage, Nuisance</th>
<th>Age at Maturity</th>
<th>Wt. (range)</th>
<th>Av. No. of Eggs (range)</th>
<th>Time in F.W. (rearing)</th>
<th>Time in Ocean</th>
</tr>
</thead>
</table>

Fall Chinook Salmon

<table>
<thead>
<tr>
<th>Location</th>
<th>Age</th>
<th>Wt.</th>
<th>Eggs</th>
<th>Time in F.W.</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Col. R., Snake R., & tribs.</td>
<td>3-5 yrs.</td>
<td>15-40 lb.</td>
<td>6,000</td>
<td>Up to 1 yr.</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Large streams</td>
<td>3-5 yrs.</td>
<td>15-20 lb.</td>
<td>5,000</td>
<td>Dec.-June</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Medium Streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Dec.-June</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Small streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Dec.-June</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Coastal Wash., S,C med. streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>3-5 mos.</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Coastal Wash., S,C small streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>3-5 mos.</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Sacramento R. S,C (fall)</td>
<td>4 yrs.</td>
<td>10-50 lb.</td>
<td>5,000</td>
<td>3 mos.</td>
<td>3+ yrs.</td>
</tr>
<tr>
<td>Sacramento R. S (winter)</td>
<td>4 yrs.</td>
<td>10-30 lb.</td>
<td>5,000</td>
<td>3 mos.</td>
<td>3+ yrs.</td>
</tr>
<tr>
<td>Sacramento R. S (spring)</td>
<td>4 yrs.</td>
<td>10-30 lb.</td>
<td>5,000</td>
<td>2 mos. 3+ yrs. (Aug.-Sept.)</td>
<td>2-5 yrs.</td>
</tr>
</tbody>
</table>

Spring Chinook Salmon

<table>
<thead>
<tr>
<th>Location</th>
<th>Age</th>
<th>Wt.</th>
<th>Eggs</th>
<th>Time in F.W.</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col. R., Snake R., & upper tribs.</td>
<td>4-6 yrs.</td>
<td>10-20 lb.</td>
<td>5,000</td>
<td>1 yr. or longer</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Large streams</td>
<td>4-6 yrs.</td>
<td>10-20 lb.</td>
<td>5,000</td>
<td>Year around</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Coastal Wash., S,C med. streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1 yr. + seaward migration</td>
<td>2-5 yrs.</td>
</tr>
</tbody>
</table>

Summer Chinook Salmon

<table>
<thead>
<tr>
<th>Location</th>
<th>Age</th>
<th>Wt.</th>
<th>Eggs</th>
<th>Time in F.W.</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col. R. & upper tribs.</td>
<td>4-6 yrs.</td>
<td>10-30 lb.</td>
<td>5,000</td>
<td>1 yr. or longer</td>
<td>2-5 yrs.</td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks—Uses or Effects on Other Fish</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time of Adult Migration</th>
<th>Preferred Temperature</th>
<th>Spawning Time</th>
<th>Egg Incubation</th>
<th>Downstream Migration</th>
<th>Remarks—Uses or Effects on Other Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. thru May</td>
<td></td>
<td>Late July-late Sept.</td>
<td></td>
<td>During 2nd spring & summer</td>
<td></td>
</tr>
<tr>
<td>March-early June</td>
<td></td>
<td>Aug.-mid Oct.</td>
<td>Late Aug.-Jan.</td>
<td>During 2nd spring at 5-6"</td>
<td></td>
</tr>
<tr>
<td>June-mid Aug.</td>
<td></td>
<td>Sept.-mid Nov.</td>
<td></td>
<td>Nest builders</td>
<td></td>
</tr>
</tbody>
</table>

(3-5 in.) Nest builders
Useful Factors in Life History of Most Common Species in Western United States

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Sport, Comm., Predaceous, Forage, Nuisance</th>
<th>Age at Maturity</th>
<th>Wt. (range)</th>
<th>Av. No. of Eggs (range)</th>
<th>Time in F.W. (rearing)</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coho Salmon</td>
<td>Large streams S,C</td>
<td>3 yrs.</td>
<td>5-20 lb. (av. 8 lb.)</td>
<td>3,000-4,000 (av. size, 6.6-7.9 mm)</td>
<td>1 yr. + (year around)</td>
<td>2 yrs.</td>
</tr>
<tr>
<td>Medium streams S,C</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>Year around</td>
<td>2 yrs.</td>
</tr>
<tr>
<td>Small streams S,C</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>Year around</td>
<td>2 yrs.</td>
</tr>
<tr>
<td>Coastal Wash., med. streams S,C</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>1 yr. +</td>
<td>2 yrs.</td>
</tr>
<tr>
<td>Coastal Wash., small streams S,C</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>1 yr. +</td>
<td>2 yrs.</td>
</tr>
<tr>
<td>Lower and mid- Col. R. & trib.s. S,C</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>1 yr. + (year around)</td>
<td>2 yrs.</td>
</tr>
</tbody>
</table>

Note: Small runs appear in June in certain streams.

Pink Salmon

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Sport, Comm., Predaceous, Forage, Nuisance</th>
<th>Age at Maturity</th>
<th>Wt. (range)</th>
<th>Av. No. of Eggs (range)</th>
<th>Time in F.W. (rearing)</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large streams C,S</td>
<td>2 yrs. 3-10 lb. (av. 4 lb.)</td>
<td>1,500-2,700 (av. size, 7 mm)</td>
<td>Mid Jan.- late May</td>
<td>1 1/2 yrs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium streams C,S</td>
<td>****</td>
<td>****</td>
<td>Dec.- March</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small streams C,S</td>
<td>****</td>
<td>****</td>
<td>Dec.- March</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.C. & S.E. Alaska C</td>
<td>****</td>
<td>****</td>
<td>Feb.- May</td>
<td>****</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chum Salmon

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Sport, Comm., Predaceous, Forage, Nuisance</th>
<th>Age at Maturity</th>
<th>Wt. (range)</th>
<th>Av. No. of Eggs (range)</th>
<th>Time in F.W. (rearing)</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large streams C</td>
<td>3-4 yrs. 8-12 lb. (av. 10 lb.)</td>
<td>3,000 (av. size, 7-8.7 mm)</td>
<td>Dec.- May</td>
<td>2 1/2 yrs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium streams C</td>
<td>****</td>
<td>****</td>
<td>Feb.- May</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small streams C</td>
<td>****</td>
<td>****</td>
<td>Feb.- May</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks–Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time of Adult Migration</th>
<th>Preferred Temperature</th>
<th>Spawning Time</th>
<th>Egg Incubation</th>
<th>Downstream Migration</th>
<th>Remarks–Uses or Effects on Other Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid July-late Aug. 50-55° F</td>
<td>Late Aug.-late Oct.</td>
<td>Late Aug.-mid Oct.</td>
<td>Dec.-May</td>
<td>Mainly commercial catch; small sport fishery; runs occur in Puget Sound only in odd-numbered years.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time of Adult Migration</th>
<th>Preferred Temperature</th>
<th>Spawning Time</th>
<th>Egg Incubation</th>
<th>Downstream Migration</th>
<th>Remarks–Uses or Effects on Other Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
<td>Time in Ocean</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Chum Salmon (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Wash., C med. streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1 mo. +</td>
<td>"</td>
</tr>
<tr>
<td>Coastal Wash., C small streams</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1 mo. (approx.)</td>
<td>"</td>
</tr>
<tr>
<td>Sockeye Salmon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia R. to C Alaska, in some large streams that provide lake habitat</td>
<td>3-5 yrs.</td>
<td>3-8 lb. (av. 6 lb.) larger in Alaska</td>
<td>3,500 (av. size, 5.5-6 mm)</td>
<td>1-3 yrs.</td>
<td>1-4 yrs.</td>
</tr>
<tr>
<td>Kokanee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calif, Oreg., Wash., and B.C. in large, cool lakes and reservoirs</td>
<td>2-7 yrs. (mostly 3-5 yrs.)</td>
<td>1/8-1 lb. (8-18 in., av. 12 in.)</td>
<td>400-500 for fish 11-12" length</td>
<td>Life</td>
<td>--</td>
</tr>
<tr>
<td>Steelhead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal streams and river systems, northern Calif. to Alaska</td>
<td></td>
<td></td>
<td>Egg sizes vary widely with size of female. Consider 4-6 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash. streams S</td>
<td>3-6 yrs.</td>
<td>5-30 lb.</td>
<td>5,000</td>
<td>1-3 yrs. (av. 2 yrs.)</td>
<td>1-4 yrs.</td>
</tr>
<tr>
<td>Columbia River S "A" Group</td>
<td>3-4 yrs.</td>
<td>4-12 lb. (av. 5-6 lb.)</td>
<td>2,500</td>
<td>1-2 yrs.</td>
<td>2-3 yrs.</td>
</tr>
<tr>
<td>"B" Group</td>
<td>5-6 yrs.</td>
<td>8-20 lb. (av. 9 lb.)</td>
<td>3,500</td>
<td>1-2 yrs.</td>
<td>3-4 yrs.</td>
</tr>
<tr>
<td>Remarks–Uses or Effects on Other Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest builders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fry enter lakes where they remain one to three years before migrating to the ocean.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest builders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formerly limited to lakes with residual sockeye populations; later successfully introduced into many inland lakes and reservoirs; often easily caught; good sport fish, provides forage for large trout in some areas, spawning occurs in tribs. to lakes or around lake shore. Primarily plankton feeders.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest builders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sport caught</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sport and commercial catch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time of Adult Migration</th>
<th>Preferred Temperature</th>
<th>Spawning Time</th>
<th>Egg Incubation</th>
<th>Downstream Migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some river systems as Fraser and Skeena have 2 peak periods (early runs in late July-early Aug.; late runs in Sept.-Oct.)</td>
<td>50-55°F</td>
<td>Aug.-Nov.</td>
<td>80-140 days depending on temp.; fry emergence in April-May</td>
<td>April-June (sea-ward)</td>
</tr>
<tr>
<td>April-Nov.</td>
<td>50-55°F</td>
<td>Feb.-June</td>
<td>Feb.-July</td>
<td>March-June</td>
</tr>
<tr>
<td>June-early Aug.</td>
<td>50-55°F</td>
<td>Feb.-March</td>
<td>Feb.-April</td>
<td>March-June</td>
</tr>
<tr>
<td>Aug. thru Oct.</td>
<td>50-55°F</td>
<td>April-May</td>
<td>April-June</td>
<td>March-June</td>
</tr>
</tbody>
</table>
Useful Factors in Life History of Most Common Species in Western United States

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Sport, Comm., Predaceous, Forage, Nuisance</th>
<th>Age at Maturity</th>
<th>Wt. (range)</th>
<th>Av. No. of Eggs (range)</th>
<th>Time in F.W. (rearing)</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steelhead (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash. streams S</td>
<td></td>
<td>3-6 yrs.</td>
<td>5-28 lb. (av. 8 lb.)</td>
<td>3,500</td>
<td>1-3 yrs. (av. 2 yrs.)</td>
<td>1-4 yrs.</td>
</tr>
<tr>
<td>Columbia River S and incidental commercial catch</td>
<td></td>
<td>3-6 yrs.</td>
<td>6-20 lb. (av. 8 lb.)</td>
<td>3,500</td>
<td>1-3 yrs. (av. 2 yrs.)</td>
<td>1-4 yrs.</td>
</tr>
<tr>
<td>Fall Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento R. S</td>
<td></td>
<td>2-3 yrs.</td>
<td>1-12 lb. (av. 4 lb.)</td>
<td>1,500</td>
<td>1 yr.</td>
<td>1-2 yrs.</td>
</tr>
<tr>
<td>Spring Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River S and incidental commercial catch</td>
<td></td>
<td>3-5 yrs.</td>
<td>5-20 lb.</td>
<td>2,500</td>
<td>1-2 yrs.</td>
<td>2-3 yrs.</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thruout Pacific S slope; widely distributed thru hatcheries into other regions; Baja Calif. to Bristol Bay, Alaska, abundant.</td>
<td></td>
<td>3-4 yrs.</td>
<td>1/4-42 lb. (av. 1/2 lb.)</td>
<td>1,500</td>
<td>Life (av. size, 3.1-6.9 mm)</td>
<td>--</td>
</tr>
<tr>
<td>Coastal Cutthroat Trout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Calif. to Prince William Sound in south-east Alaska</td>
<td></td>
<td>3-4 yrs.</td>
<td>Resident 1/4-17 lb. sea-run 1/2-4 lb. (av. 1 lb.)</td>
<td>800-1,200</td>
<td>Life or sea-run 1-3 yrs. normal 2 yrs.</td>
<td>Sea-run 1/2-1 yr.</td>
</tr>
<tr>
<td>Brown Trout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduced into streams, lakes, and reservoirs; Calif. to B.C.</td>
<td></td>
<td>3-4 yrs.</td>
<td>1/4-40 lb. (av. 1-3 lb.)</td>
<td>1,500-2,500</td>
<td>Life (av. size, 4.05-5.39 mm)</td>
<td>--</td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks--Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Nov.-mid June</td>
<td>50-55° F</td>
<td>Feb.-June</td>
<td>Feb.-July</td>
<td>March-June</td>
<td>Important sport fishery</td>
<td></td>
</tr>
<tr>
<td>Nov. thru May</td>
<td>50-55° F</td>
<td>Feb. thru May</td>
<td>Feb.-June</td>
<td>March-June</td>
<td>Sport and commercial catch</td>
<td></td>
</tr>
<tr>
<td>Early Aug.-Nov.</td>
<td>50-58° F</td>
<td>Jan.-March</td>
<td>Jan.-April</td>
<td>Next spring as yearlings</td>
<td>Popular sport fishery</td>
<td></td>
</tr>
<tr>
<td>Late Feb.-early June</td>
<td>50-55° F</td>
<td>Late Dec.-March</td>
<td>Late Dec.-May</td>
<td>Spring and summer of following year</td>
<td>Sport and commercial catch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-58° F</td>
<td>Normally spring; hatchery brood-stocks of fall spawners have been developed</td>
<td>Normally April-June depending on water temp.</td>
<td></td>
<td>Nest builders</td>
<td></td>
</tr>
<tr>
<td>Sea-run July-Dec.</td>
<td>50° F</td>
<td>Resident Feb.-May; sea-run Dec.-June</td>
<td>Resident Feb.-June; June Dec.-July</td>
<td>Sea-run March-June</td>
<td>Native to Pacific slope; spawns in small, cool, well-aerated streams. Mostly wild stock; not easily held for hatchery production. Nest builders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55-60° F</td>
<td>Fall and early winter</td>
<td>Sept.-Dec., depending on conditions</td>
<td>water than most</td>
<td>Tolerates warmer trout; the only trout with both black and red spots; cannibalistic; many reach large size; unusually wary and often hard to catch. Nest builders</td>
<td></td>
</tr>
</tbody>
</table>
USEFUL FACTORS IN LIFE HISTORY OF MOST COMMON SPECIES IN WESTERN UNITED STATES

<table>
<thead>
<tr>
<th>Occurrence</th>
<th>Sport, Comm., Predaceous, Forage, Nuisance</th>
<th>Age at Maturity</th>
<th>Wt. (range)</th>
<th>Av. No. of Eggs (range)</th>
<th>Time in F.W. (rearing)</th>
<th>Time in Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brook Trout (Char)</td>
<td>Introduced throughout the U.S. west of the Continental Divide; well established in many mountain lake and streams where it becomes overpopulated and stunted.</td>
<td>3-4 yrs.</td>
<td>1/8-5 lb. (av. 1/4-1/2 lb.)</td>
<td>500-2,500 (av. size, 4.1-5.5 mm)</td>
<td>Life</td>
<td>-</td>
</tr>
<tr>
<td>Dolly Varden (Char)</td>
<td>Native to Pacific slope from McCloud R., Calif. to Kamchatka and west to Japan; widely distributed in both lakes and streams. Sea-runs occur in some areas, particularly in B.C. and Alaska with fish of large size.</td>
<td>4-6 yrs.</td>
<td>1/4-20 lb. (av. 1/2-3 lb.)</td>
<td>1,500-3,500 (av. size, 5-6 mm)</td>
<td>Life, (sea-run 2-3 yrs.)</td>
<td>Sea-run migrate from ocean to lakes each fall.</td>
</tr>
<tr>
<td>Lake Trout or Mackinaw (Char)</td>
<td>Introduced from Great Lakes Area into a few large, deep, coldwater lakes of the Pacific slope from Calif. north and in some inland mountain areas. Native to many large lakes in interior B.C. and Alaska.</td>
<td>4-5 yrs.</td>
<td>1-80 lb. 2,000-5,000 lb. (usually 5-20 lb.)</td>
<td>Life</td>
<td>Sea-run migrate from ocean to lakes each fall.</td>
<td>-</td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks–Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>50-55° F</td>
<td>Fall</td>
<td>Sept.-Dec., depending on water temp.</td>
<td>--</td>
<td>Nest builders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spawns successfully in fall in lakes and streams at higher elevations. Prefers cool water. Has light colored spots against darker body color, dorsal wavy reticulation, white-edged ventral and anal fins, small scales.</td>
<td></td>
</tr>
<tr>
<td>Mid Aug.-early Nov. (ocean to lake)</td>
<td>50-55° F</td>
<td>Sept.-Nov.</td>
<td>Sept.-March depending on water temp; Most hatch in March, 4-5 mo. after fertilization.</td>
<td>Sea-run spring and early summer, mainly May & June as (cont.)</td>
<td>Nest builders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sepht.-Mar. depending on water temp; Most hatch in March, 4-5 mo. after fertilization.</td>
<td></td>
<td>Not highly regarded as sport fish; prefer deep-water lakes; considered predaceous on eggs and young of salmon and trout; long-lived, about 8 years; few spawn more than twice; spawn in parent stream; winter in lakes.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>45-50° F</td>
<td>Fall</td>
<td>Sept.-Mar. depending on water temp.</td>
<td></td>
<td>Nest builders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Largest of the chars; spawn in lakes in rocky ledges without building redd; found in cold, deep water; very predaceous; not easily caught; sport value is chiefly in frequent large size. Hybrid from female lake trout and male brook trout, called "splake" is artificially propagated and stocked in B.C. long-lived (up to 20 yrs.)</td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>Sport, Comm., Forage, Nuisance</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
<td>Time in Ocean</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Rocky Mountain Whitefish</td>
<td></td>
<td>3-4 yrs.</td>
<td>1/8-4 lb. (av. 1/2 lb. wt. & 11 in. length)</td>
<td>2,500</td>
<td>Life</td>
<td>-</td>
</tr>
<tr>
<td>East slope of the Sierra Nevada in Calif. and Nev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>west slope of the Continental Divide in mountain streams and lakes of Mont., Idaho, Utah, Oreg., Wash., B.C., including some interior east slope river systems in B.C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Sturgeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Monterey S,C Bay, Calif. to Alaska, in major river systems</td>
<td>Females 12-15 yrs.</td>
<td>5-1800 lb. female weighs 40 lb. at 12 yrs. age (av.) and 4 ft. in length</td>
<td>50,000 5 million</td>
<td>Varies - some migrate, some remain in F.W.</td>
<td>Varies</td>
<td></td>
</tr>
<tr>
<td>Green Sturgeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Calif. C to Alaska; usually in brackish or salt water in the estuaries or near the ocean entrance of major river systems.</td>
<td>12-15 yrs.</td>
<td>5-350 lb.</td>
<td>50,000 2 million</td>
<td>Seldom in F.W.</td>
<td>Mainly in salt or brackish water</td>
<td></td>
</tr>
<tr>
<td>Columbia River Smelt (eulachon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Calif. S,C to northwest Alaska in some major river systems.</td>
<td>2-3 yrs.</td>
<td>2 oz. (under 12 in. in length at maturity)</td>
<td>25,000 (7,000-60,000)</td>
<td>Slight-drift to ocean soon after hatching</td>
<td>Usually 3 yrs.</td>
<td></td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Temperature</td>
<td>Egg Incubation Time</td>
<td>Downstream Migration</td>
<td>Remarks—Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Fall (Oct.-Nov.) spawn from 42°F down to 32°F on falling temp.</td>
<td>45-50°F</td>
<td>Oct. thru March; 5 mo. at 35°F. (hatch mainly in March at 40-42°F)</td>
<td>Small sucker-like mouth, adipose fin; prefer clear, cold water; mainly a bottom feeder; competes with trout & salmon; eggs released freely—no nest building; some limited winter sport fishery value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downstream in summer and fall; upstream in spring</td>
<td>Mod. to cool water; adaptable to wide temp. range</td>
<td>Spring & summer</td>
<td>1-2 weeks, depending on temp.</td>
<td>Summer</td>
<td>Small commercial & sport fisheries; roe is valued for caviar; fish are bottom feeders, long-lived, fish over 80 yrs. of age recorded. Mainly a winter fishery.</td>
<td></td>
</tr>
<tr>
<td>Slight migration</td>
<td>Ocean temp.</td>
<td>Spring & summer</td>
<td>1-2 weeks</td>
<td>Slight</td>
<td>Smaller than white sturgeon, and of inferior quality as food; less common than the white sturgeon.</td>
<td></td>
</tr>
<tr>
<td>Late Dec. to Mar.</td>
<td>45-47°F</td>
<td>Jan.-Mar.</td>
<td>3 weeks at 47°F</td>
<td>Feb.-Mar. (fry carried by stream currents to ocean soon after hatching)</td>
<td>Adhesive eggs</td>
<td>Adults die after spawning; spawn in major trib. over fine sand to which eggs adhere. Caught by hand dip-netting; popular sport and food fish during short spawning migration period.</td>
</tr>
<tr>
<td>Species</td>
<td>Sport, Comm., Predaceous, Forage, Nuisance</td>
<td>Occurrence</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>American Shad</td>
<td>S,C</td>
<td>Calif, to Alaska, mainly between the Sacramento and Col. Rivers. In Col. R. spawn mainly off Washougal reef and from Bonn. to John Day dams.</td>
<td>Female-6 yrs.</td>
<td>2-6 lb.</td>
<td>30,000</td>
<td>2-3 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male-5 yrs.</td>
<td>av. 3 lb.</td>
<td>(25,000-156,000)</td>
<td></td>
</tr>
<tr>
<td>Striped Bass</td>
<td>S,P</td>
<td>Exotic sp. spread north from Sacramento to R. delta and San Francisco Bay but not numerous north of Umpqua R. Landlocked in some large Calif. reservoirs.</td>
<td>Female-5 yrs.</td>
<td>1 1/2-80 lb. (av. 8 lb.)</td>
<td>900,000</td>
<td>Varies; Varies, some stay usually in fresh less than 1 year and brackish water; many migrate to ocean in fall at 2 yrs. of age.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male-2 yrs.</td>
<td></td>
<td>(9 lb. fish) (av. size, 1.28-1.36 mm) (Swells 2-1/2 times in 12 hrs.)</td>
<td></td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>S,P</td>
<td>Warmwater Lakes and reservoirs, Calif. to B.C.</td>
<td>1-2 yrs. (9-10 inches)</td>
<td>1/2-10 lb. (av. 2-3 lb.)</td>
<td>5,000-8,000</td>
<td>Life</td>
</tr>
<tr>
<td>Smallmouth Bass</td>
<td>S,P</td>
<td>Scattered warm-water streams, lakes, and reservoirs; Calif. to B.C. Not common in northwest</td>
<td>2-3 yrs.</td>
<td>1/2-5 lb. (av. 1-2 lb.)</td>
<td>2,000-5,000</td>
<td>Life</td>
</tr>
<tr>
<td>White Crappie</td>
<td>S,P</td>
<td>Warmwater lakes, reservoirs and river sloughs Calif. to B.C.</td>
<td>2-3 yrs.</td>
<td>1/3-4 lb.</td>
<td>2,000-14,000</td>
<td>Life</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N when overpopulation occurs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Crappie</td>
<td>S,P</td>
<td>Warmwater lakes, reservoirs, and river sloughs, Calif. to B.C.</td>
<td>2-3 yrs.</td>
<td>1/3-4 lb.</td>
<td>20,000-60,000</td>
<td>Life</td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks–Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Upstream, Mid May-July (peak in June)</td>
<td>Prefer moderate temp., 60-65° F</td>
<td>July</td>
<td>3-6 days depending on temp.</td>
<td>Fall</td>
<td>Demersal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exotic sp. spread north from Sacramento R; eggs released freely into water; some repeat spawning but many die after spawning; roe is valued; not an important fresh food fish; some filleted and smoked; good sport fish.</td>
<td></td>
</tr>
<tr>
<td>Upstream annually in April-June for spawning</td>
<td>60-65° F</td>
<td>April-June (peak in May)</td>
<td>60 hrs. at 64° F</td>
<td>Late summer and fall</td>
<td>Demersal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eggs released freely into water and carried by currents during incubation; predaceous on small fish; excellent sport and food fish</td>
<td></td>
</tr>
<tr>
<td>70-75° F</td>
<td>Spring, water temp. above 60° F</td>
<td>5 days at 66° F, 2 days at 72° F</td>
<td>No</td>
<td>Nest builders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Important sport fish; very predaceous and cannibalistic</td>
<td></td>
</tr>
<tr>
<td>60-70° F</td>
<td>Spring, water temp. above 60° F</td>
<td>3 3/4 days at 67° F; 3 1/2 days at 71° F; 2 1/2 days at 78° F</td>
<td>No</td>
<td>Nest builders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good sport fish in some sluggish streams and impoundments.</td>
<td></td>
</tr>
<tr>
<td>64-68° F</td>
<td>March-July</td>
<td></td>
<td></td>
<td>Nest builders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adaptable to turbid water where they predominate over black crappie.</td>
<td></td>
</tr>
<tr>
<td>75° F growth, 58-64° F</td>
<td>March-July</td>
<td></td>
<td></td>
<td>Nest builders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Predominate over white crappie in clear waters.</td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
<td>Time in Ocean</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Bluegill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmwater ponds, lakes, reservoirs, and sluggish streams</td>
<td>1 year plus</td>
<td>1/8-1/2 3,000 lb.</td>
<td>Life (av. size, 1.04 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately warm ponds, lakes, reservoirs and sluggish streams having abundant aquatic vegetation, Calif. to B.C.</td>
<td>1 year plus</td>
<td>1/8-1/2 1,500 lb.</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Sunfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmwater lakes, reservoirs and sluggish streams, Calif. to Wash.</td>
<td>1 year plus</td>
<td>1/8-1/2 1,500 lb.</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento Perch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calif. and Nev., sloughs and sluggish river channels, clear lk. in Calif. Pyramid and Walker Lakes in Nev.</td>
<td>1-2 yrs.</td>
<td>1/4-3 lb.</td>
<td>84,000</td>
<td>Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Catfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmwater lakes, S reservoirs, and streams; Calif. to Wash.</td>
<td>5-8 yrs.</td>
<td>1/4-13 1/2 lb.</td>
<td>4,000-40,000 (av. size, 3.2 mm)</td>
<td>Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Catfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmwater lakes, S,C,P reservoirs and large streams in Calif.; widely distributed; abundant in Sacramento, San Joaquin R. delta.</td>
<td>3-4 yrs.</td>
<td>1/4-3 1/2 lb.</td>
<td>2,000-4,000</td>
<td>Life (fresh to slightly brackish water)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks–Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>60-80° F for growth, above 68° F for spawning.</td>
<td>April-Sept., peak May-June</td>
<td>32 hrs. at 72-74° F</td>
<td>No</td>
<td>Nest builders</td>
<td>Good forage fish; very prolific; good pond sport fish. Maturity is based on size rather than age.</td>
<td></td>
</tr>
<tr>
<td>60-70° F above 68° F for spawning</td>
<td>April-Sept., peak May-June</td>
<td>3 days at 82° F</td>
<td>Nest builders</td>
<td>Adaptable to cooler water and more aquatic vegetation than bluegill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spawn above 60° F 60-70° F</td>
<td>May-Aug., peak in June</td>
<td>Nest builders</td>
<td>Adaptable to cooler water than other sunfish; often compete with trout in reservoirs; hybridizes readily with other sunfish.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-75° F</td>
<td>May-Aug.</td>
<td>Calif. native species; no longer abundant due to egg predation by exotic species; not widely distributed; stocking usually not successful; not a nest builder; eggs slightly adhesive.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80° F, spawn at 70-85° F</td>
<td>May-July</td>
<td>9-10 days at 60-65° F, 5-6 days at 77° F</td>
<td>Nest builders</td>
<td>Excellent sport and food fish; slow growth and stunting occurs in turbid waters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-75° F, spawn above 70° F</td>
<td>June-July</td>
<td>6-7 days at 80° F</td>
<td>Nest builders</td>
<td>Important commercial and sport fish in Calif., prefer clear, open water without dense aquatic vegetation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful Factors in Life History of Most Common Species in Western United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
<td>Time in Ocean</td>
<td></td>
</tr>
<tr>
<td>Yellow Bullhead</td>
<td>Warmwater lakes, S reservoirs, and sluggish streams; Colorado R. in Calif., scattered areas in Oreg. and Wash.</td>
<td>3 yrs.</td>
<td>1/4-2 1/2 lb.</td>
<td>2,000-12,000</td>
<td>Life</td>
<td></td>
</tr>
<tr>
<td>Brown Bullhead</td>
<td>Warmwater ponds, lakes, reservoirs, and sluggish streams; Calif. to B.C., abundant.</td>
<td>3 yrs.</td>
<td>1/4-3 lb.</td>
<td>2,000-12,000</td>
<td>Life</td>
<td></td>
</tr>
<tr>
<td>Black Bullhead</td>
<td>Warmwater ponds, lakes, reservoirs, and sluggish streams; Calif. to B.C.; abundant.</td>
<td>S,N</td>
<td>3 yrs.</td>
<td>1/4-3 lb.</td>
<td>2,000-12,000</td>
<td>Life</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>Lakes, reservoirs, and sluggish streams of moderate temp; Calif. to B.C.; abundant.</td>
<td>S,N</td>
<td>1-2 yrs.</td>
<td>1/8-3 lb. (av. 1/4 lb.)</td>
<td>5,000-50,000</td>
<td>Life</td>
</tr>
<tr>
<td>Carp</td>
<td>Lakes, reservoirs, ponds, & sluggish streams of warm to moderate temp. having abundant vegetation and aquatic nutrients; Calif. to B.C., in fresh and brackish water; abundant.</td>
<td>S,C,N</td>
<td>Male-1-2 yrs. Female-2-3 yrs.</td>
<td>1/4-60 lb. (av. 2-6 lb.)</td>
<td>1/2 million-1 million (av. size, 1.5 mm)</td>
<td>Life</td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks–Uses or Effects on Other Fish</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>70-75° F, spawn at 69° F & above</td>
<td>Late spring and early summer</td>
<td>5 days at 77° F, 7 days at 69° F</td>
<td>Nest builders</td>
<td>Has rounded caudal fin and white chin barbels; prefers clear water and abundant aquatic vegetation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-80° F, spawn at 69° F and above</td>
<td>Late spring and early summer</td>
<td>5 days at 77° F, 7 days at 69° F</td>
<td>Nest builders</td>
<td>Has square tail and dark chin barbels; brown mottled sides, pectoral fins with barbed spine; prefers warm water.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-80° F, spawn at 69° F and above</td>
<td>April-June</td>
<td>5 days at 77° F, 7 days at 69° F</td>
<td>Nest builders</td>
<td>Has square tail and dark chin barbels; dark brown sides are not mottled, pectoral spines not barbed, body short and stouter than brown bullhead; tolerant to high temp., turbid water, and many pollutants.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-60° F, spawn at 45-55° F</td>
<td>Early spring</td>
<td>3-4 weeks at 45-55° F</td>
<td>Adaptable to a wide range of water temp. May limit trout population in some areas; easily caught.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68° F, spawn at 60-68° F</td>
<td>Spring & summer</td>
<td>4 days at 71° F</td>
<td>Adaptable to a wide temp. range, and to turbid, polluted, and waters of low dissolved oxygen; fast-growing in fertile waters; mainly vegetarian; destroy aquatic vegetation & degrade aquatic environment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>Sport, Comm., Predaceous, Forage, Nuisance</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
<td>Time in Ocean</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Squawfish</td>
<td></td>
<td>5-6 yrs.</td>
<td>1/4-5 lb.</td>
<td>5,000-20,000</td>
<td>Life</td>
<td></td>
</tr>
<tr>
<td>Chiselmouth</td>
<td></td>
<td>N</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia River Chub or Peamouth</td>
<td>P,N</td>
<td>Lakes, reservoirs, and coastal rivers of Oregon, Wash., and B.C., abundant.</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roach or Tui Chub</td>
<td>F,N</td>
<td>Lakes and reservoirs of Columbia, Klamath, and Sacramento R. systems, eastern Sierra Mts. in Calif. and Nevada; abundant.</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largescale Sucker</td>
<td>N</td>
<td>Lakes, reservoirs and streams of the coasts of Oreg., Wash., and B.C. abundant.</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctic Grayling</td>
<td>S</td>
<td>North Canada, Alaska & Montana</td>
<td>Life</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Squawfish: Occurs in lakes, reservoirs, and coastal streams in Oregon, Washington, and British Columbia; in warm to moderate water temp.
- Chiselmouth: Occurs in lakes, reservoirs, and streams of moderate temp. in the Columbia and Fraser R. systems and eastern Oregon.
- Columbia River Chub or Peamouth: Occurs in lakes, reservoirs, and coastal rivers of Oregon, Washington, and British Columbia, abundant.
- Roach or Tui Chub: Occurs in lakes and reservoirs of Columbia, Klamath, and Sacramento R. systems, eastern Sierra Mts. in California and Nevada; abundant.
- Largescale Sucker: Occurs when overpopulation occurs on the coasts of Oregon, Washington, and British Columbia; abundant.
- Arctic Grayling: Occurs in North Canada, Alaska, and Montana; abundant.
<table>
<thead>
<tr>
<th>Time of Adult Migration</th>
<th>Preferred Temperature</th>
<th>Spawning Time</th>
<th>Egg Incubation Time</th>
<th>Downstream Migration</th>
<th>Remarks–Uses or Effects on Other Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60-70° F</td>
<td>May-June</td>
<td>7 days at</td>
<td></td>
<td>Extremely predaceous on young salmonids; high rate of reproduction; competes for food and space with desirable species. A closely related species occurs in Calif.</td>
</tr>
<tr>
<td></td>
<td>Mainly vegetarian; competes for space and food with desirable species; a fine scaled minnow; mouth on ventral side of hornylated head; av. size 9-10 inches.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May-June</td>
<td></td>
<td></td>
<td></td>
<td>Will tolerate salt-water; tail deeply forked, small barbel at corner of small mouth; competes for food and space with salmonids; predaceous on salmon eggs; spawn in both lakes and streams.</td>
</tr>
<tr>
<td></td>
<td>Spawn at 55-60° F</td>
<td>Spring</td>
<td></td>
<td></td>
<td>Several sub-species; slow growing; very prolific; often eliminate trout by competition and overcrowding; provide forage for bass and trout for 2 years.</td>
</tr>
<tr>
<td></td>
<td>50-60° F</td>
<td>April-May</td>
<td>2 weeks at 55° F</td>
<td></td>
<td>Very prolific; compete for food and overcrowd desirable species.</td>
</tr>
<tr>
<td></td>
<td>May-June</td>
<td>48° F</td>
<td>May-June</td>
<td>June & Sept-Oct</td>
<td>Slightly adhesive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May-July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>Sport, Comm., Predaceous, Forage, Nuisance</td>
<td>Age at Maturity</td>
<td>Wt. (range)</td>
<td>Av. No. of Eggs (range)</td>
<td>Time in F.W. (rearing)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Bridgelip or Columbia Small-Scaled Sucker</td>
<td>N Klamath, Columbia, and Fraser River systems, usually in running water; abundant.</td>
<td>5-6 yrs.</td>
<td>1/4-5 lb. (av. 1-2 lb.)</td>
<td>10,000-20,000</td>
<td>Life</td>
</tr>
<tr>
<td>Redside Shiner</td>
<td>F,N Sluggish coastal streams, ponds, lakes, and reservoirs in Calif., Oreg., Wash., and B.C., abundant.</td>
<td>2-3 yrs.</td>
<td>1-3 oz.</td>
<td>Life</td>
<td></td>
</tr>
<tr>
<td>Dace</td>
<td>F Small streams and along shore areas of lakes and reservoirs, widely distributed from Mexico to Alaska, coastal and inland, over a wide range of water temp.; mainly bottom dwellers, usually with rock cover.</td>
<td>All small, 1/4-2 oz.</td>
<td>Few</td>
<td>Life</td>
<td></td>
</tr>
<tr>
<td>Golden Trout</td>
<td>S Upper Kern R. in Calif. Also hatchery propagated & stocked at high elevations in So. Sierra Nevada mtns.</td>
<td>3-4 yrs.</td>
<td>1/4-3 lb. (av. 1/2 lb.)</td>
<td>300-800</td>
<td>Life</td>
</tr>
<tr>
<td>White Bass</td>
<td>S,C,P Introduced into Calif. from Mississippi R. drainage. Stocked in Nacimiento reservoir.</td>
<td>2-4 yrs.</td>
<td>1/2-3 lb.</td>
<td>200,000-900,000 (av. 500,000)</td>
<td>Life</td>
</tr>
<tr>
<td>Time of Adult Migration</td>
<td>Preferred Temperature</td>
<td>Spawning Time</td>
<td>Egg Incubation</td>
<td>Downstream Migration</td>
<td>Remarks–Uses or Effects on Other Fish</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>50-60° F</td>
<td>Late spring</td>
<td></td>
<td>None</td>
<td>None</td>
<td>Competes with more desirable species.</td>
</tr>
<tr>
<td>50-60° F</td>
<td>May-Aug.</td>
<td></td>
<td>None</td>
<td>None</td>
<td>Very prolific; their forage value usually is more than offset by harmful effects of overcrowding and competition with young salmonids for food.</td>
</tr>
<tr>
<td>Wide range, spawn at 53° F</td>
<td>Spring-early summer</td>
<td></td>
<td>None</td>
<td>None</td>
<td>Several species; small (under 6 inches) minnows; may compete with fingerling salmonids for food; solitary (non-schooling), not an important forage fish.</td>
</tr>
<tr>
<td>June-late August</td>
<td>50° F</td>
<td>June-late August</td>
<td>20 days at 58° F</td>
<td>None</td>
<td>Occur only in small streams & lakes at high altitudes of Sierra Nevada. Very highly colored. No golden trout eggs shipped from Calif.</td>
</tr>
<tr>
<td>Upstream annually, April-June</td>
<td>55-60° F</td>
<td>April-June</td>
<td>20 days at 60° F</td>
<td>Return to deep water after spawning</td>
<td>Mainly in lakes & large, shallow reservoirs; also thrive in large rivers. Require abundant forage fish, as gizzard or threadfin shad. Female lays demersal adhesive eggs near surface that sink & adhere to rocks and vegetation.</td>
</tr>
<tr>
<td>Fish Species (Common & Scientific Names)</td>
<td>Spawning & Egg Incubation</td>
<td>Size & Number of Eggs</td>
<td>Larvae Size</td>
<td>Other Pertinent Information</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Gizzard shad Dorosoma cepedianum</td>
<td>Spawning occurs at temperatures of 65° F (17-23° C) in spring or early summer over a variety of substrates ranging from boulders & gravel to beds of silt and sand. Eggs hatch in 95 hours at 62° F (16° C) or in approx. 36 hours at 80° F (26.7° C).</td>
<td>Diameters of mature eggs in ovaries range from 0.45 to 0.55 mm. Fertilized eggs after fixation were 0.75 mm. Fecundity ranges from 22,405 to 543,912, averaging 379,000 eggs.</td>
<td>Average hatching length of yolk sac larvae is 3.25 mm, with body depth estimated at 0.2 mm. Larvae body shape is long & slender (10.8 mm TL).</td>
<td>Eggs, although demersal, often drift with the current. As they are adhesive, they attach themselves to any object they contact. After the 20-mm stage of growth, the gizzard shad’s shape begins to change to the adult form. It is one of the few native species that can subsist solely on vegetative material.</td>
<td></td>
</tr>
<tr>
<td>Paddlefish Polyodon syathula</td>
<td>Upstream spawning migration starts when water temperature reaches 50° F (10° C) & river is lowering & currents are weakening. Spawning occurs over large gravel bars in rapidly-flowing water. Eggs hatch in 7 days or less at 62.5-70° F (18-21° C).</td>
<td>Fertilized egg diameters range from 2.7 to 4.0 mm, averaging 3.0 mm. Average fecundity determined from spawning two fish was 315,000.</td>
<td>Median fry lengths range from 8.0 to 9.5 mm, averaging 8.2 mm.</td>
<td>Unfertilized eggs are nonadhesive. Fertilized eggs form a sticky coating, causing them to adhere to anything with which they come in contact. Sac larvae exhibit continuous erratic swimming, from bottom to surface.</td>
<td></td>
</tr>
<tr>
<td>Longnose gar Lepisosteus osseus</td>
<td>Spawning occurs in shallow waters of lake & large streams (over vegetation) in late spring or early summer. There is evidence of upstream spawning migrations during spring freshets. Group spawning believed to take place. 6 to 8 days for egg incubation.</td>
<td>Egg diameters range from 2.1 to 3.2 mm. Fecundity for 30.2- to 53.9-inch (76.7- to 137.0-mm) females was 4,273 to 59,422, with an average of 27,820.</td>
<td>Approx. 8 mm.</td>
<td>Eggs are adhesive & scattered randomly at spawning, becoming attached to vegetation. Sac fry can swim but are relatively inactive, hanging vertically for long periods, attached by their adhesive structure to objects in the water. Yolk sac is absorbed in 7 days. Young grow rapidly, possibly six times as fast as young of other North American freshwater species.</td>
<td></td>
</tr>
<tr>
<td>Rainbow smelt Osmerus mordax</td>
<td>Spawning migration to rivers and streams begins in spring. Eggs hatch in 2-3 weeks, depending on temperature.</td>
<td>Average egg diameter was 0.9 to 1.0 mm Fecundity for 5.0- to 8.2-inch (127-209 mm) females ranged from 8,500 to 69,000.</td>
<td>5 mm long at hatching.</td>
<td>Some live their entire lives in freshwater lakes, but normally are anadromous, returning to freshwater rivers to spawn. They are sensitive to light and are often found along the bottom during daylight.</td>
<td></td>
</tr>
<tr>
<td>Fish Species</td>
<td>Spawning & Egg Incubation</td>
<td>Size & Number of Eggs</td>
<td>Larvae Size</td>
<td>Other Pertinent Information</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Silvery minnow</td>
<td>Spawning occurs in late April to early May when water temperatures are 55.4-68.9°F (13.0-20.5°C). Fish spawn in daylight, broadcasting the eggs over decaying vegetation in water 2-6 inches deep.</td>
<td>Egg diameter is 1.0 mm. Fecundity ranged from 2,000 in a 2-1/2 inch (60 mm) female to 6,600 in a 3-1/2 inch (90 mm) female.</td>
<td>Newy-hatched larvae are 6 mm in length.</td>
<td>Prior to spawning, adults migrate from the lakes or rivers to slow-moving, lower reaches of tributary streams or well-vegetated lagoons. Eggs are nonadhesive. Yolk sac larvae stay near the bottom, while larvae rise to the surface and concentrate in small schools usually among emergent vegetation.</td>
<td></td>
</tr>
<tr>
<td>Bridle shiner</td>
<td>Spawning occurs from late May to mid-July in New Hampshire and from early May to August in New York State.</td>
<td>Diameters of eggs range from 0.8 mm-1.5 mm.</td>
<td>Yolk sac larvae length is 4.1 mm.</td>
<td>Eggs in ovary mature progressively during the spawning period. This is considered an excellent forage fish because of its small size and relatively weak swimming ability.</td>
<td></td>
</tr>
<tr>
<td>Spottail shiner</td>
<td>Spawning occurs inshore during the spring and early summer. In Lake Erie, fish spawn at depths of 3-4 feet.</td>
<td>Average egg diameter is 0.8 mm. Fecundity of yearlings ranged from 100-1,400 eggs and of 2-year-olds ranged from 1,300-2,600 eggs.</td>
<td>Putative yolk sac larvae is 5 mm in length.</td>
<td>Often the most abundant minnow of northern lakes.</td>
<td></td>
</tr>
<tr>
<td>Bigmouth buffalo</td>
<td>Spawning occurs from mid-May to early June and peaks at water temperatures of 60-65°F (15.5-18.3°C). Fish move out of lakes and large rivers to spawn in small tributaries, marshes, or flooded lake margins. Spring freshets and flooding seem to be necessary to initiate spawning activity. Eggs hatch in approx. 2 weeks.</td>
<td>Diameters of preserved eggs ranged from 1.2-1.8 mm. Fecundity of 26.2-inch (665 mm) female was 750,000.</td>
<td></td>
<td>Eggs are adhesive and attach themselves to vegetation after being scattered at spawning.</td>
<td></td>
</tr>
<tr>
<td>Pygmy whitefish</td>
<td>Spawning is assumed to take place in shallow water of streams or lakes during late fall through early winter.</td>
<td>In Naknek River, Alaska, diameter of mature eggs in the ovaries was 2.4 mm, and 2.0 mm in Lake Superior. A 5.1-inch (130 mm) female in Lake Superior averaged 440 eggs while same-sized female from Naknek River averaged 580 eggs.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Threespine stickleback
Gasterosteus aculeatus

- Spawning & Egg Incubation: Spawning generally occurs in June or July, but breeding continues throughout the summer (April-September, inclusive). Male constructs a nest of twigs and other debris on the bottom, usually in a sandy, shallow area. Hatching occurs in 7 days at 66.2°F (19°C). Females lay from 50-200 eggs during spawning, but often spawn more than once in a season.

<table>
<thead>
<tr>
<th>Size & Number of Eggs</th>
<th>Larvae Size</th>
<th>Other Pertinent Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg diameters range from 1.5-1.7 mm.</td>
<td>Newly-hatched larvae are 4.2-4.5 mm long.</td>
<td>Nearly circumpolar in distribution. The barrel-shaped, hollow nest is held together by a mucilaginous kidney secretion. Eggs are adhesive and are laid in small clusters inside the nest.</td>
</tr>
</tbody>
</table>

Northern pike
Esox lucius

- Spawning occurs in the spring as soon as the ice melts when water temperatures are 40-52°F (4.4-11°C). Spawning generally occurs during daylight over weedy marshes, floodplains of rivers, and bays of larger lakes. Eggs usually hatch in 12-14 days. At 64-68°F (17.8-20°C) eggs hatched in 4-5 days.

<table>
<thead>
<tr>
<th>Size & Number of Eggs</th>
<th>Other Pertinent Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg diameters range from 2.5-3.0 mm. Average fecundity is 32,000 eggs.</td>
<td>Pike occur throughout the northern hemisphere. Eggs are demersal and initially adhesive, forming clumps that break apart in 5 days. Newly-hatched fry attach to vegetation by adhesive glands for 6-10 days, subsisting on yolk material. Growth is rapid in young; 1-month fish are 1-3/4 inches (43 mm) and are 6 inches (152 mm) by the end of summer.</td>
</tr>
</tbody>
</table>

Alewife
Alosa Psuedoharengus

- Time of spawning ranges from April to mid-July. Spawning occurs in lakes or streams above the influence of salt water, at night & over sandy or gravelly bottoms in pairs or groups of three. Eggs hatch in 6 days at 60°F (15.6°C) or in 3 days at 72°F (22.2°C).

<table>
<thead>
<tr>
<th>Size & Number of Eggs</th>
<th>Other Pertinent Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average diameter of unfertilized eggs is 0.9 mm. Freshwater female's fecundity ranges from 10,000 to 12,000.</td>
<td>Adults are noted to negotiate rapids and fishways better than American shad and to migrate further upstream. Alewives move inshore at night & offshore during daylight hours. Eggs are broadcast at random, are demersal & are essentially non-adhesive. Adults move to deep water after spawning where they remain throughout winter. Annual mortality in the Great Lakes is probably caused by fish's inability to adjust to rapidly-changing temperatures.</td>
</tr>
<tr>
<td>Fish Species (Common and Scientific Names)</td>
<td>Spawning & Egg Incubation</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Muskellunge
Esox masquinongy</td>
<td>Spawning occurs in April-May when water temperatures are 49-59° F (9.4-14° C) with optimum of 55° (12.8° C) during the day, in weedy, flooded areas in water 15-20 inches deep. Eggs hatch in 8-14 days at temperatures of 53-63° F (11.7-17.2° C).</td>
</tr>
<tr>
<td>Utah chub
Gila atraria</td>
<td>Spawning occurs mainly during late June or July in Montana when water temperatures are above 53° F (12° C). Spawning occurs in 2 feet (60 cm) of water over various bottom types, but most eggs were recovered from sand and gravel bottoms. Eggs hatch within 2 weeks.</td>
</tr>
<tr>
<td>Cisco
Coregonus artedii</td>
<td>Spawn in the winter at temperatures at approx. 39.0-41.0° C), with a peak number of fish spawning at 37.9° F (3.3° C). In inland lakes, fish spawn over almost any kind of substrate, but often over a gravel or stony substrate in shallow water, 3-10 feet deep. In the Great Lakes spawning may occur in shallow water, at midwater depths of 30-40 feet below the surface, and near the bottom in the water 210 feet deep. Hatching occurs at spring ice breakup, 92 days incubation at 42° F (5.6° C), 106 days at 41° F (5° C).</td>
</tr>
<tr>
<td>Golden redhorse
Moxostoma erythrurum</td>
<td>Spawning occurs over riffles in the main stream of a river in 59-60° F (15-15.5° C). Eggs are broadcast over the stream bottom.</td>
</tr>
</tbody>
</table>
A

PACIFIC SALMON
ADULTS

Average length in inches
Average weight in pounds

Chinook

Coho

Pink

Chum

Sockeye

Length in inches

23 lbs.

9-1/2 lbs.

4 lbs.

9 lbs.

9 lbs.
B

Length/weight relationship
for adults of major species in the study area

Largemouth bass
Smallmouth bass
Spotted bass
Coosa bass
Rock bass
White bass
Striped bass
Bullhead catfish
Channel catfish
Cisco (Great Lakes)
Cisco (Lake Erie)
Whitefish (Great Lakes)
Whitefish (Rocky Mountain)
Shad
Sunfish (Several species)
Crappie (two species)
Walleye
Sauger
Yellow Perch

Expected Range
Length in inches
Weight in lbs.

Scale: lbs. and inches
Chapter 6
Swimming Speeds of Adult & Juvenile Fish
SWIMMING SPEEDS OF ADULT AND JUVENILE FISH

In the development of fish facility structures, three aspects of swimming speeds are of concern.

1. Cruising - a speed that can be maintained for long periods of time (hours).
2. Sustained - a speed that can be maintained for minutes.
3. Darting - a single effort, not sustainable.

Exhibit A and B show the relative swimming speeds of selected adult and juvenile species. Exhibit C shows swimming speeds for Mackenzie River fish. Exhibit D shows the swimming effort of sockeye salmon fry at Chilko Lake.

Fish normally employ cruising speed for movement (as in migration), sustained speed for passage through difficult areas, and darting speed for feeding or escape purposes. Each speed requires a different level of muscular energy, and it may be assumed that there is a 15 per cent loss in the transfer of muscular energy to propulsion.

The force on the fish may be considered equivalent to that associated with any object, either moving within water or stationary in moving water. Energy involved may be computed by the following equation.

\[F = \frac{C_d AW V^2}{2g} \]

where
- \(F \) = force (in pounds)
- \(C_d \) = drag coefficient = .2
- Area = cross sectional area in square feet
- \(W \) = weight of water (62.4 pounds per cubic foot)
- \(V \) = summation of velocities in feet per second
- \(g \) = gravity (32.2 feet per second per second)

Thus, force through a distance gives foot-pounds and can be converted to British thermal units or calories.

As energy requirements are related to the square of the apparent velocity, the reason why fish tire rapidly as the velocity increases is evident from the above formula. The build-up of lactic acid as a result of unusual activity can be fatal. A number of investigators have indicated that fish may recuperate rapidly after exhaustive exercise. Conversely, it has been noted that up to 2 hours are required for fish to recover and assume normal movement after tiring exercise.

An early investigator (Reference No. 36) used the weight of the fish to establish a ratio of sustained speed to darting speed of approximately .5 to .7. This has been borne out by recent investigations in which lengths of fish were used as a measure.

The data indicate that a fish's cruising speed level may be 15 to 20 per cent of its darting speed level. This is further supported by data from experiments on jumping fish computing the velocities at which the fish leave the surface by using the following formula and comparing the results with the results of the swimming tests.

\[V = \sqrt{2gh} \]

where
- \(V \) = initial velocity in feet per second (at water surface)
- \(g \) = gravity (32.2 feet per second per second)
- \(h \) = height in feet of jump above water surface

Investigations have shown that fish are able to sense low levels of velocity (a delta difference of less than .1 fps) and, hence, may seek and find the most favorable areas, which makes it difficult to use average velocities in determining the effects of swimming speeds. It is suggested that normal distribution curves be utilized for this purpose.

Adults frequently seek higher velocities at obstructions, which may be utilized to attract them to fishway entrances. Such velocities should be well under the darting speed of the species and sizes involved but may exceed their cruising speed.

Swimming speeds are affected by available oxygen and swimming effort may be reduced by 60 per cent at oxygen levels of one-third saturation. Oxygen levels also affect other functions of fish.

Temperatures at either end of the optimum range for any species affects swimming effort. A graphic presentation (Exhibit E) has been prepared from Reference 16 and shows that a reduction of swimming effort of 50 per cent may occur as a result of adverse temperatures.

In dealing with problems at specific sites where swimming speed is important, such as the protection of juveniles ahead of protective screening or the guidance of fish (both adult and juvenile), the effects of temperature and oxygen must be evaluated.

As fish sense changes in velocity, they may avoid moving from one gradient to another, particularly from a lower to a higher gradient. When guiding or directing fish, smooth transitions and accelerations are desirable in order to prevent them from stopping, hesitating or refusing to enter a particular area.

It is assumed that fish use visual references in their movements and, therefore, behave differently in darkness than in light. Stimuli other than velocity may guide the fish's movement within established levels of cruising and sustained speed. Downstream migrating fish may lock into a velocity and be swept along at speeds that are well in excess of their cruising speeds.

In the design of upstream facilities, velocities must be kept well below the darting speeds for general passage.
A means of determining the time that fish are capable of maintaining various speeds is given below:

\[\text{Work (ft. lbs/ft)} \]

\[\text{A means of determining the time that fish are capable of maintaining various speeds is given below:} \]

\[k = \frac{C_d A 62.4 \text{ lbs.}}{2g} \]

assuming \(C_d \) does not vary throughout the swimming ranges.

\[A = \text{Cross sectional area in square feet.} \]

\[V_m = \text{Maximum swimming velocity in feet per second.} \]

\[D(\text{Swimming Distance}) = VT \]

\[\text{Work} = kV^2D \text{ or } kV^3T \]

The maximum time that darting can be maintained is estimated at 5 to 10 seconds, thus the time that maximum sustained speeds can be maintained is shown by the relationship

\[kV^3T_s = kV^3_mT_m \]

where \(kV^3_mT_m \) = maximum energy factor at optimum temperature.

Velocities should not be averaged as the energy factor varies with the square of instantaneous velocity. Pulsing velocities can increase the instantaneous energy requirements by four times throughout the darting speed range. This may account for the variations in performance time found in the tests on swimming speeds. Because of turbulence and pulsing, a maximum darting time of 7-1/2 seconds is a suggested value. As fish are capable of swimming for hours at the upper ranges of their cruising speeds, it is assumed that no oxygen deficiency occurs at this level. Above this level, fish apparently are not capable of passing water over their gills at the rate necessary to obtain this increased oxygen required for the additional energy expenditure.

In addition to the effects of oxygen and temperature, swimming performance is also adversely affected by various pollutants. Selected references are included to indicate the source material for those pollutants that are of major concern.
RELATIVE SWIMMING SPEEDS OF ADULT FISH

- Chinook
- Coho
- Sockeye
- Steelhead (2'-2.7')
- Cutthroat
- Brown Trout
- Grayling
- Whitefish
- Shad
- Herring (6''-11'')
- Anchovy
- Carp
- Goldfish (4''-8'')
- Suckers
- Cod (1.8')
- Mackerel (13''-15'')
- Plaice (2.4''-10'')
- Mullet (9.5'')
- Stickleback (4'')
- Lamprey
- Eel (2'')
- Eel (3'')
- Eel (5'')
- Eel (8'')

--- Cruising Speed
- Sustained Speed
- Darting Speed

Velocity in Feet/Second
B

RELATIVE SWIMMING SPEEDS OF YOUNG FISH

Cruising Speed
Sustained Speed
Darting Speed

Velocity in Feet/Second
<table>
<thead>
<tr>
<th>Fish</th>
<th>Length Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Char (14")</td>
<td></td>
</tr>
<tr>
<td>Arctic Grayling (8"-12")</td>
<td></td>
</tr>
<tr>
<td>Round Whitefish (12")</td>
<td></td>
</tr>
<tr>
<td>Humpback Whitefish (2"-4")</td>
<td></td>
</tr>
<tr>
<td>Humpback Whitefish (6"-1.5")</td>
<td></td>
</tr>
<tr>
<td>Broad Whitefish (1.5"-3.5")</td>
<td></td>
</tr>
<tr>
<td>Broad Whitefish (5"-14")</td>
<td></td>
</tr>
<tr>
<td>Mountain Whitefish (12")</td>
<td></td>
</tr>
<tr>
<td>Inconnu (7"-17")</td>
<td></td>
</tr>
<tr>
<td>Arctic Cisco (16.5")</td>
<td></td>
</tr>
<tr>
<td>Least Cisco (11.5")</td>
<td></td>
</tr>
<tr>
<td>Goldeye (9")</td>
<td></td>
</tr>
<tr>
<td>Trout Perch (3")</td>
<td></td>
</tr>
<tr>
<td>Yellow Walleye (9"-16")</td>
<td></td>
</tr>
<tr>
<td>Longnose Sucker (4"-16")</td>
<td></td>
</tr>
<tr>
<td>White Sucker (7"-16")</td>
<td></td>
</tr>
<tr>
<td>Chub (7"-12")</td>
<td></td>
</tr>
<tr>
<td>Emerald Shiner (2.5")</td>
<td></td>
</tr>
<tr>
<td>Burbot (8"-2')</td>
<td></td>
</tr>
</tbody>
</table>

Sustained Speed

Velocity in Feet/Second
SWIMMING SPEED OF Sockeye Fry at Chilko Lake

TOTAL EFFORT 1.8'/SEC. FOR ONE FOOT

LENGTH 1.08"
TEMPERATURE 45° - 55° F

WATER VELOCITY IN FT./SEC.

FORWARD PROGRESS IN FT./SEC.
MAXIMUM SUSTAINED CRUISING OF SOCKEYE AND COHO UNDERYEARLINGS IN RELATION TO TEMPERATURE

from Brett, 1958

Acclimation Temperature Fahrenheit

Cruising Speed Ft/Sec

Ultimate Upper Lethal Temperatures

Acclimation Temperature Centigrade
References Reviewed

References Reviewed (Continued)

47. Rulifson, Roger A. “Temperature and water velocity effects on the swimming performances of young of the year striped mullet (Mugil cephalus), spot Leiostomus xanthurus), and pinfish (Legodon rhomboides), Fisheries Research Board of Canada, Journal, 34:2316-2322. 1977.
SPAWNING CRITERIA

The general requirement is an environment in which the adults are able to spawn with a minimum of molestation.

The spawning habits of the most common species may be separated into three types:

1. Nest builders, including salmon, trout, char, catfish and most species of bass.
2. The group that produces demersal or free-floating eggs and larvae which develop rapidly in the current. (Well-known examples of this type are the striped bass and the American shad.)
3. The species that reproduce by means of adhesive eggs that attach themselves to aquatic plants or submerged rocks after extrusion. (Common examples of this type are the Sacramento perch, Columbia River smelt or eulachon, the surf smelts and other members of the family Osmeridae, and many of the minnow (Cyprinidae) and perch (Percidae) families.

The latter two types of reproduction (free-floating demersal eggs and adhesive eggs) are both subject to high losses from predation and environmental variations. Consequently, large numbers of eggs and larvae must be produced in order that a few may develop to maturity.

Salmon and trout are gravel nest builders and, while shad eggs are demersal and smelt eggs are adhesive, all of these species require clean gravel or sand for successful spawning. Much of the general information is briefed in the chapter, "Useful Factors in the Life History of the most Common Species."

As oxygen is a requirement for egg development and for support of newly hatched juveniles, streams that have oxygen levels of near saturation are the best producers. See chapter, "Water Quality." Supersaturation of nitrogen above a level of 104 ppm is dangerous.

Silt has a negative effect on spawning conditions. This is described in the chapter, "Silt and Turbidity."

In general, salmon and trout spawn in the same general stream areas, with depth factors somewhat commensurate with the weight of the fish. Trout select areas ranging from 6 inches to 2.5 feet in depth; salmon spawn between ranges of 9 inches and 3.5 feet.

Generally, the velocity at the bed of the stream (over the spawning bed) is less than the sustained speed of the fish. See chapter, "Swimming Speeds of Adult and Juvenile Fish," which gives velocities ranging between 1.5 and 3 fps. As stream bed composition is a factor of slope and flow (quantity) the spawning bed composition may vary as shown in the chapter, "Artificial Spawning Channels," (.75 inch to 4 inches diameter on a normal grading curve). The beds are usually constructed in stable areas of a stream at riffles or reaches. Deposited eggs may be destroyed if the beds become dried, frozen or devoid of oxygen during the incubation period. Eggs kept damp and supplied with oxygen will hatch, but the newly hatched fry require flowing water for survival.

The redds vary in size as shown in the following table:

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
<th>Approx. Average Wt.-lbs.</th>
<th>Average Area of Redd-sq.yds.</th>
<th>Area recommended per spawning pair-sq.yds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook</td>
<td>Burner</td>
<td>25</td>
<td>6.1</td>
<td>24</td>
</tr>
<tr>
<td>a. summer & fall run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. spring run</td>
<td></td>
<td>15</td>
<td>3.9</td>
<td>16</td>
</tr>
<tr>
<td>Coho</td>
<td></td>
<td>9</td>
<td>3.4</td>
<td>14</td>
</tr>
<tr>
<td>Chums</td>
<td></td>
<td>10</td>
<td>2.7</td>
<td>11</td>
</tr>
<tr>
<td>Sockeye</td>
<td></td>
<td>3</td>
<td>2.1</td>
<td>8</td>
</tr>
<tr>
<td>Chinook (spring run)</td>
<td>Chambers et al</td>
<td>3</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Pinks</td>
<td>Hourston & MacKinnon</td>
<td>5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Trout</td>
<td>Stuart</td>
<td>1(?)</td>
<td>0.3</td>
<td>2</td>
</tr>
</tbody>
</table>

During the spawning act a defense area against encroachment is enforced by the spawning pair. The general size of this area is shown on the table on Page 61. In the best spawning areas superimposition of redds by late spawners may occur. The eggs are laid in clusters and covered by gravel. A square foot of good spawning bed contains from 125 to 200 eggs. False redds may be dug and abandoned; pink salmon particularly are noted for this phenomenon. When spawning grounds are overcrowded, spawning may occur in undesirable areas resulting in little or no production. If fish are denied access to proper spawning grounds, females may die unspawned or the eggs may be deformed.
As temperature is a major factor in success of spawning, the conditions shown in the chapter, "Temperature - Effects on Fish," are necessary for reproduction. During their tender stage, eggs are particularly sensitive to adverse temperature changes.

The physical measurements of spawning grounds have been taken from a number of sources and represent hundreds of measurements of desirable spawning reaches of rivers. Velocities, depths and flows must match the timing of runs and temperature requirements. Absence of one of these factors is sufficient to negate the effectiveness of others.

Anadromous stocks, which do not feed from their time of entry into fresh water, live on their stored energy. The following table shows the general energy utilization, although this varies among species and distances from salt water.

<table>
<thead>
<tr>
<th>Per Cent Energy Utilization</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life maintenance</td>
<td>60-70</td>
<td>50-60</td>
</tr>
<tr>
<td>Swimming</td>
<td>10-12</td>
<td>10-12</td>
</tr>
<tr>
<td>Nest building activities</td>
<td>1-2</td>
<td>3-5</td>
</tr>
<tr>
<td>Gonad and egg development</td>
<td>5-6</td>
<td>16-18</td>
</tr>
<tr>
<td>Residual (at death)</td>
<td>8-10</td>
<td>12-15</td>
</tr>
</tbody>
</table>

As noted in the above table, life maintenance requirements account for the greatest expenditure of energy. As fish are cold-blooded animals, the energy utilization is a function of temperature. This relationship is shown in the chapter, "Temperature - Effects on Fish." If the temperature is elevated during migration or spawning, the body requirements for life maintenance may exhaust the available supply of energy and result in early death prior to spawning. It has been noted that a sudden drop in temperature will cause all spawning activity to cease, which can result in lowered nest building activity and reduced production.

A means of computing energy requirements for swimming is shown in the chapter, "Swimming Speeds of Adult and Juvenile Fish."

The energy requirements for gonad and egg development can be computed from the weight of the sex products.

The energy requirement for nest building is an approximation, computed from the swimming activities.

Exhibit C indicates the advance of the spawning bed as the nest building continues. The eggs are laid in clusters and subsequently are covered with gravel. The shaping of the redd by digging results in percolation of water through the beds. The nest building tends to clean the gravel and the beds become spongy.

Exhibits A and B depict one method of evaluating the area of the stream bed utilized by fish for spawning. As velocity and depth are both limiting factors, they both must be within the optimum range. Similar techniques have been developed by other agencies and are equally useful.

Exhibit D shows one method of determining flow requirements.

Exhibit E gives another approach to the problem of determining optimum flow. (Reference no. 41) The formulae give a range of flows. Rainfall and runoff timing are widely variable, requiring that the computed flow be compared to gaging data to select the best fit for an individual stream, or for a section of a stream within a watershed. Under certain conditions, the use of any one formula may give an amount in excess of the available flow in a stream section.

BASIC FORMULAE USED

To determine optimum wetted areas of streams, based upon spawning requirements of salmonid fish, a number of approaches were reviewed for their potential use. They were revised and one additional formula developed.*

A division of streams in the State of Washington was found, with particular reference to Western Washington streams. It is known that stream bed width is a function of runoff. It has been determined under this study that those streams having an origin below 2,200 feet elevation have a flow requirement for stream bed coverage greater that those streams having an origin above 2,200 feet elevation: that is, a stream bed requires more water to maintain the maximum spawning potential in the former case than in the latter case.

It was found in the study that drainage area, as well as discharge, is a major factor in determining optimum useful flows for fish and wildlife.

The three basic formulae used are as follows:

1. \[Q_{o1} = 0.89 Q_m^{1.09} \left(\frac{Q_m}{\text{Area}} \right)^{1.44}\]

2. \[Q = (10.1^{31164})(Q_m - 29329)(\text{Area})^{33292}\]

3. \[Q_{dA} = 0.89 Q_m^{1.09} \left(\frac{(Q_m)^6}{Q_m + 10.2653} \right)^{1.44} \left(\frac{3.08363}{\text{Area}} \right)^{1.44}\]

\(Q_{o1}, Q - Q_{dA}\) are computed required flows

Area in Sq. miles

\(Q_m\) - means discharge

In determining flows for the ungaged streams the required flows were equated to the drainage areas by the geographical factors associated with precipitation and elevation. Relationship was determined for the mean flows to maximum flows, using the gaged small streams when the maximum flows were 1,000 second feet or less and the ratio was less than 1:100. Forty-six streams used gave a relationship of 63 per cent which was used to establish the expected mean flow from a basin, the formula being:

\[Q_m = \text{required max. flow for fish and wildlife} \times 0.63\]

The minimum flow relationship was determined for the same streams giving a factor of 291 per cent.

Streams from the higher elevations in Eastern Washington gave relationships of 53 per cent and 1584 per cent.

*Applicable only for the geographical area of the State of Washington or its equivalent in weather patterns. Other areas would require basic studies to determine the general relationships.
METHOD OF APPLICATION OF OPTIMUM CRITERIA TO A PARTICULAR STUDY SECTION.

Washington State Department of Fisheries,
Drawn: 12-19-67 By: JK MaGee

*Fish Velocity - Taken at Spawning Depth, i.e. 0.4 ft Above Bottom.

**Depth Exaggerated for Clarity on this Diagram.
SPAWNING CHARACTERISTIC CURVES, TYPICAL STREAM

AMOUNT OF SECTION HAVING OPTIMUM SPAWNING CONDITIONS

Washington State Department of Fisheries
Drawn: 12-18-67 By: JK MaGee
REDD SIZE INCREASES
AS SPAWNING ACTION PROCEEDS

After Clifford J. Burner

Location and Comparative Abundance of OVA.
APPROXIMATE METHOD OF DETERMINING SPAWNING FLOW REQUIREMENTS BASED ON PAST STUDIES BY W.D.F.

Washington Department of Fisheries
Plotted: J. Magee 12-18-67

Curve Data

<table>
<thead>
<tr>
<th>Pt. No.</th>
<th>River Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Southfork Willapa</td>
</tr>
<tr>
<td>2.</td>
<td>Southfork Skokomish</td>
</tr>
<tr>
<td>3.</td>
<td>Sultan</td>
</tr>
<tr>
<td>4.</td>
<td>Tolt</td>
</tr>
<tr>
<td>5.</td>
<td>Wynoochee</td>
</tr>
<tr>
<td>6.</td>
<td>Cowlitz</td>
</tr>
</tbody>
</table>

Graph Relating Basin Area to Multiplier "X" for use in the Equation: \(Q_s = \frac{X}{G} \frac{A_u}{G} \)

Where:
- \(A_u \) = Area of Basin Upstream From Point of Interest.
- \(G \) = "Geographical Factor" in USGS Circular 191.
- \(Q_s \) = Minimum Acceptable Spawning Flow.

DRAINAGE AREA ABOVE STUDY SECTION, \(A_u \) Sq. Mi.

MULTIPLIER "X"

35. Canada Department of Fisheries, “Puntledge River: the fisheries problems associated with the power development of the Puntledge River, Vancouver Island, B.C.” Vancouver, B.C. October, 1958.

Chapter 8

Food Producing Areas & their Requirements
FOOD PRODUCING AREAS AND THEIR REQUIREMENTS

In assessing the food potential for the production of fish in fresh water, measurements are necessary in both streams and lakes.

In streams the physical parameters that require measurement include width, wetted bed area and its roughness (gravel size), cross section, slope, quality, velocity gradient and flow in cubic feet per second. The relationships of pool, flat and riffle frequencies should be measured at one of the energy balancing mechanisms.

In lakes the measurements required include volume, depth, density gradient, surface area, inflow, discharge and clarity. Within these measured water areas there exists a complex relationship among growth, life maintenance requirements and the cropping of food organisms, all of which are limited by other major physical factors, such as temperature, altitude, dissolved solids and gases, turbidity, thermocline location and pollution.

Fish are specialized feeders to degrees that vary with species and size; however, because of the above parameters, the presence or absence of a specific food may not give a true index of the suitability of an area for fish production. The measurement of standing food crops is also not a true indicator of an area's potential, as the volume of a crop may be limited by the abundance of feeders in relation to the life cycle of the food organisms.

The principal concern along the Pacific Coast has been with salmonoid fish whose production in any area reflects the stress of the environment. In order to set optimum water volumes, a more precise delineation than has been made is necessary to determine the relationship between the organisms on which these fish feed and the pounds of fish produced.

In accordance with Exhibits J and K, or with more precise data if available, the food potential of the subregions of streams may be evaluated. In those areas suitable for spawning, the food-producing characteristics of streams should follow closely the lower parameters delineated for trout spawning.

It may be expected that below flood level bed shapes (width, depth and velocity relationships) are related to .6 power of the average annual flow of any stream. (Q_a in cubic feet per second)

$$Q = (W)(d)(v)$$

where

- Q = flow in cubic feet per second (at any time)
- W = stream width in feet
- d = average stream depth in feet
- v = average stream velocity in feet per second

Width (W) can be approximated by using $Q^{.6}$ with a multiplier. Average depth (d) can be approximated by using $Q^{-.3}$ with a multiplier. Average velocity (v) can be approximated by using $Q^{-.1}$ with a multiplier. The sum of the exponents used should equal 1, and the three multipliers multiplied together should equal 1 or approach 1.

The following limited table of multipliers, read horizontally and used in conjunction with the exponents shown above, gives the approximate width, average depth and average velocity of a stream. To utilize this table, at least one of the major measurements at a known flow level is needed to obtain the other two.

Multipliers for Approximating Stream Characteristics

<table>
<thead>
<tr>
<th>W</th>
<th>V</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.00</td>
<td>.595</td>
<td>.237</td>
</tr>
<tr>
<td>6.55</td>
<td>.606</td>
<td>.249</td>
</tr>
<tr>
<td>6.20</td>
<td>.625</td>
<td>.262</td>
</tr>
<tr>
<td>5.85</td>
<td>.635</td>
<td>.247</td>
</tr>
<tr>
<td>5.59</td>
<td>.650</td>
<td>.277</td>
</tr>
<tr>
<td>5.40</td>
<td>.650</td>
<td>.294</td>
</tr>
<tr>
<td>5.30</td>
<td>.660</td>
<td>.302</td>
</tr>
<tr>
<td>5.00</td>
<td>.665</td>
<td>.302</td>
</tr>
<tr>
<td>4.60</td>
<td>.710</td>
<td>.306</td>
</tr>
<tr>
<td>4.35</td>
<td>.750</td>
<td>.310</td>
</tr>
<tr>
<td>4.10</td>
<td>.785</td>
<td>.313</td>
</tr>
<tr>
<td>3.92</td>
<td>8.20</td>
<td>.316</td>
</tr>
<tr>
<td>3.75</td>
<td>.850</td>
<td>.319</td>
</tr>
<tr>
<td>2.80</td>
<td>1.10</td>
<td>.330</td>
</tr>
<tr>
<td>2.38</td>
<td>1.28</td>
<td>.339</td>
</tr>
<tr>
<td>1.59</td>
<td>1.81</td>
<td>.359</td>
</tr>
</tbody>
</table>

Superimposed on the general stream bed characteristics, as determined by the average annual discharge, are an area's ability to produce food.

The shapes of stream beds vary from chutes, with relatively steep sides that give the stream bed a somewhat rectangular shape, to channels that almost approach trapezoidal or elliptical in shape.

The control of energy in streams varies and may be at riffles, chutes, rapid, bends, falls or turbulence, or in sections containing large rocks or in the flats of long reaches.

As shown in Exhibits L, N and O, terrestrial food normally does not represent a major part of a fish's diet and the fish are dependent on the wetted areas of a stream. Aquatic food supplies do not shift within the stream sections as stream levels rise or fall, so that the permanent wetted area of a channel, or the low flow, is the governing factor in food production. This is further substantiated by the fact that food organisms generally have at least a one-year life cycle and they do not reestablish themselves in areas that are alternately wetted and dried. The maximum food supply from flies is available in mid-spring (References 12 and 13) and they become less available as fish food when their winged stage is reached in late spring and early summer.

Within the streams, food is required for the support of body functions and, in greater amounts (in the juvenile stage), for growth; hence, the number of pounds of fish that may be supported in an area at a given time depends on the availability of food, the weight of the fast-growing juveniles and the total pounds of the fish at or approaching adult stage, or at least at a point of decelerated growth. This is borne out by Exhibits B, E, F and H. An assumption may be made that in stable West Coast streams where the environment is suitable .4 to .8 yearling per square yard is supported.

Reference No. 9 shows the wet weight of individual bottom organisms, which varies between 1.0×10^{-8} and 8.0×10^{-2} grams (3.21×10^{-5} and 2.56×10^{-3} ounces), with an overall average of approximately 6.80×10^{-3} grams (2.18×10^{-4} ounces). Using the above, it may be shown that the average amount of food present in a stream throughout a year may vary from 45 to 177 pounds per acre. Reference No. 13 indicates that a stream with an average yearly standing
food crop of 45 pounds per acre can produce 500 pounds of trout (plus other species) per acre per year. This means that when considering the average amount of food required for maintenance, about 1.23 per cent per day of the body weight of the fish (55° F average temperature), plus about 4.2 pounds of natural food for every pound of fish produced (Exhibit C), the stream and the immediate area must provide a minimum of 3,200 pound of food per acre per year to produce 500 pounds of trout.

When normally clear streams are required to carry silt, the result is a lowering of food production.

Flood flows, or those flows above bank full capacity of a stream, may reduce the food produced in any year by channel scour, deposition of bed load material or rechannelization. The rate at which the water level in a stream rises is an important factor in channel shaping and, hence, floods of comparable magnitude but with different generation times do not produce the same stream effects. These factors probably are most relevant to streams under flood management.

Oxygen is not only a requirement for the production of food, but it affects both the feeding and growth rates of salmonoid fish. If the oxygen level drops below 50 per cent saturation, the food consumption, gain in weight and food conversion ratio all drop (Exhibit Q). To obtain the maximum use of food, lowered oxygen level, coupled with higher than normal stream temperatures, must be avoided in stream management practices.

The temperature of the environment is an important factor that affects food digestion, growth, disease incidence, aging, weight, size, swimming speed, energy requirements and feeding and foraging rates. These effects are partially shown by Exhibits A-I. In addition, it can be shown that the preferential temperature for salmonoid fish varies generally between 49 and 57° F, with feeding rates decreasing at 62° F. The energy requirements and, hence, the food requirements, rise with temperature, at least doubling between 50 and 68° F (Exhibit A and others). This is further substantiated by the oxygen demands as shown on the exhibits. At approximately 48° F the same conditions of growth exist as at temperatures of 62° F and they decline with falling temperatures. This is further supported by Exhibit I, which shows the hours of digestion time required for ingested foods. Exhibit H shows that in the case of nonfeeding adult salmon higher than normal temperatures can only result in early exhaustion of their total stored energy.

The potential production of food from various stream reaches is shown in Exhibit J, which indicates that riffle areas are the most productive. Exhibit M, which shows the standing crop in four stream test sections in Convict Creek (two parallel, repeated in series), indicates a reasonable stability in total production when lengths are measured as a straight line, although the wetted areas varied by 18 per cent. The section with the greatest velocity produced the greatest weight of food per square foot. In the final measurement of any stream, the relationship of riffles to pools must be established, as these sections respond differently to varying flow regimes.

Exhibit P indicated many interrelationships of food organisms cycles, stream flows, time of year, temperature and condition factors. In salmon-producing streams, the maximum requirement for food occurs in the spring, the time of maximum growth and condition recovery.

When considering the pounds of fish present, fish size is important, as a lake supports fewer pounds of growing fish than adult fish.

The age of a lake is important, as it is commonly accepted that during the first three years of its life a newly-formed lake is highly productive, but this is not indicative of a firm level of production as the lake ages.

Lakes that are rehabilitated by the removal of predators may be planted at a rate at least four times greater than that of accepted planting practices. The range for trout planting is approximately 3 lbs per acre for fry, 6 lbs per acre for 3- to 4-inch fish, 13 lbs per acre for 5- to 6-inch fish, 40 lbs per acre for 8- to 10-inch fish and 60 lbs per acre for 10- to 12-inch fish. Catchable production of 2-lb fish may vary between 25 and 60 lbs per acre.

The pH level of a lake and the levels of phosphates and nitrates are important in food production, and it is accepted that lakes that are slightly alkaline are the better producers.
Feeding Rate for Rainbow Trout of Various Sizes at Various Temperatures

<table>
<thead>
<tr>
<th>Temperature (° F)</th>
<th>Per Cent Body Weight to be Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>CFB A D</td>
</tr>
<tr>
<td>41</td>
<td>CFB A D</td>
</tr>
<tr>
<td>42</td>
<td>CB A D</td>
</tr>
<tr>
<td>43</td>
<td>CB A D</td>
</tr>
<tr>
<td>44</td>
<td>CB A D</td>
</tr>
<tr>
<td>45</td>
<td>CFB A D</td>
</tr>
<tr>
<td>46</td>
<td>CFB A D</td>
</tr>
<tr>
<td>47</td>
<td>CFB A D</td>
</tr>
<tr>
<td>48</td>
<td>CFB A D</td>
</tr>
<tr>
<td>49</td>
<td>C B A D</td>
</tr>
<tr>
<td>50</td>
<td>C B A D</td>
</tr>
<tr>
<td>51</td>
<td>CFB A D</td>
</tr>
<tr>
<td>52</td>
<td>CFB A D</td>
</tr>
<tr>
<td>53</td>
<td>CFB A D</td>
</tr>
<tr>
<td>54</td>
<td>CFB A D</td>
</tr>
<tr>
<td>55</td>
<td>CFB A D</td>
</tr>
<tr>
<td>56</td>
<td>CFB A D</td>
</tr>
<tr>
<td>57</td>
<td>CFB A D</td>
</tr>
<tr>
<td>58</td>
<td>CFB A D</td>
</tr>
<tr>
<td>59</td>
<td>CFB A D</td>
</tr>
<tr>
<td>60</td>
<td>CFB A D</td>
</tr>
<tr>
<td>61</td>
<td>CFB A D</td>
</tr>
<tr>
<td>62</td>
<td>CFB A D</td>
</tr>
<tr>
<td>63</td>
<td>CFB A D</td>
</tr>
<tr>
<td>64</td>
<td>CFB A D</td>
</tr>
<tr>
<td>65</td>
<td>CFB A D</td>
</tr>
<tr>
<td>66</td>
<td>CFB A D</td>
</tr>
<tr>
<td>67</td>
<td>CFB A D</td>
</tr>
<tr>
<td>68</td>
<td>CFB A D</td>
</tr>
<tr>
<td>69</td>
<td>CFB A D</td>
</tr>
<tr>
<td>70</td>
<td>CFB A D</td>
</tr>
<tr>
<td>71</td>
<td>CFB A D</td>
</tr>
<tr>
<td>72</td>
<td>CFB A D</td>
</tr>
<tr>
<td>73</td>
<td>CFB A D</td>
</tr>
<tr>
<td>74</td>
<td>CFB A D</td>
</tr>
<tr>
<td>75</td>
<td>CFB A D</td>
</tr>
</tbody>
</table>

A = 3-4 in. fish
B = 5-6 in. fish
C = 10 in. fish
D = 3-4 in. fish
E = 5-6 in. fish
F = 10 in. fish

N.B. Values from 61° to 75° F are extrapolated from the experimental data.
Energy values must account for changes in tissue water content up to 20 per cent.

Prepared by Don M. Fagot -- data from Reference no. 46
B
Energy Requirements (in K Per Day)* Compared With Oxygen Demands

<table>
<thead>
<tr>
<th>Temperature (° F)</th>
<th>Brett's Oxygen Requirements</th>
<th>Trout Diet in Ponds</th>
<th>Oxygen Trout Diet in Ponds Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5-6 in. fish (0.08 lbs.)</td>
<td>10 in. fish (0.4 lbs.)</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>0.56</td>
<td>1.33</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0.91</td>
<td>2.50</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>1.50</td>
<td>3.32</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>2.10</td>
<td>5.15</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>2.90</td>
<td>7.30</td>
</tr>
</tbody>
</table>

*K = 1000 calories

Prepared by Don M. Fagot from Reference nos. 40 & 46

C
Food Conversions of Salmonids

<table>
<thead>
<tr>
<th>Ratio, Weight Fed to Weight Gained</th>
<th>Type of Food</th>
<th>Per cent Protein (Wet Weight)</th>
<th>K per lb. Food*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.74:1</td>
<td>Abernathy test diet:</td>
<td>25</td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td>16.32% salmon meal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.63% dried skim milk</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.42% cottonseed meal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.81% wheat germ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.61% soybean oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00% vitamin mix</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.21% water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7:1</td>
<td>Brine shrimp</td>
<td>11.8</td>
<td>336</td>
</tr>
<tr>
<td>2.9:1</td>
<td>50% meat and 50% meal</td>
<td>27.6</td>
<td>725</td>
</tr>
<tr>
<td>2.9:1</td>
<td>100% meat</td>
<td>18.3</td>
<td>415</td>
</tr>
<tr>
<td>4.9:1</td>
<td>Natural foods</td>
<td>11.5</td>
<td>280</td>
</tr>
<tr>
<td>6.05:1</td>
<td>Gammarus (amphipods)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

K = 1000 calories

Prepared by Don M. Fagot from data supplied by Roger E. Burrows (Reference no. 47)

D
Effect of Feeding of Live Minnows to Brook Trout

<table>
<thead>
<tr>
<th>Average Temperature</th>
<th>48.2° F</th>
<th>55.4° F</th>
<th>62.6° F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight fed per day</td>
<td>5.02</td>
<td>6.95</td>
<td>5.57</td>
</tr>
<tr>
<td>(grams)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight gain per day</td>
<td>1.42</td>
<td>1.92</td>
<td>1.44</td>
</tr>
<tr>
<td>(grams)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per cent weight gain</td>
<td>1.46</td>
<td>1.99</td>
<td>1.49</td>
</tr>
<tr>
<td>per day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per cent body weight</td>
<td>5.19</td>
<td>7.2</td>
<td>5.75</td>
</tr>
<tr>
<td>fed per day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion ratio</td>
<td>3.61</td>
<td>3.64</td>
<td>3.90</td>
</tr>
</tbody>
</table>

When temperatures reached 62.6° F, feeding decreased. At temperatures above 69.8° F, the fish only ate 0.85 per cent body weight per day. Average weight 96.7 grams.

Adapted from Reference no. 38

72
Daily Feeding Rate of Brook Trout
(as Per Cent of Body Weight—All Meat Diet)

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Length (Inches)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>6.2</td>
<td>3.1</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>10.0</td>
<td>5.0</td>
<td>3.3</td>
<td>2.5</td>
<td>2.0</td>
<td>1.7</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>13.7</td>
<td>6.8</td>
<td>4.6</td>
<td>3.4</td>
<td>2.7</td>
<td>2.3</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>17.4</td>
<td>8.7</td>
<td>5.8</td>
<td>4.3</td>
<td>3.5</td>
<td>2.9</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>21.1</td>
<td>10.5</td>
<td>7.0</td>
<td>5.2</td>
<td>4.2</td>
<td>3.5</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>24.8</td>
<td>12.4</td>
<td>8.3</td>
<td>6.2</td>
<td>5.0</td>
<td>4.1</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>28.5</td>
<td>14.2</td>
<td>9.5</td>
<td>7.1</td>
<td>5.7</td>
<td>4.8</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

N.B. Values to Left and Below Lines are Extrapolated Figures.

Expected Daily Percentage Increase in Weight

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Length (Inches)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>2.07</td>
<td>1.04</td>
<td>0.69</td>
<td>0.52</td>
<td>0.42</td>
<td>0.35</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.33</td>
<td>1.67</td>
<td>1.11</td>
<td>0.83</td>
<td>0.67</td>
<td>0.56</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4.56</td>
<td>2.28</td>
<td>1.52</td>
<td>1.14</td>
<td>0.91</td>
<td>0.76</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>5.79</td>
<td>2.89</td>
<td>1.93</td>
<td>1.45</td>
<td>1.16</td>
<td>0.97</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>7.02</td>
<td>3.51</td>
<td>2.34</td>
<td>1.75</td>
<td>1.40</td>
<td>1.17</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>8.28</td>
<td>4.14</td>
<td>2.76</td>
<td>2.07</td>
<td>1.66</td>
<td>1.38</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>9.51</td>
<td>4.75</td>
<td>3.17</td>
<td>2.38</td>
<td>1.90</td>
<td>1.59</td>
<td>1.36</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Reference No. 41
<table>
<thead>
<tr>
<th>Water Temperature (° F)</th>
<th>Initial Weight grams</th>
<th>Initial Weight ounces</th>
<th>Final Weight grams</th>
<th>Final Weight ounces</th>
<th>Per Cent Gain per month</th>
<th>Per Cent Gain per day</th>
<th>Gain oz. per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.38</td>
<td>0.049</td>
<td>1.85</td>
<td>0.066</td>
<td>134</td>
<td>4.8</td>
<td>0.00060</td>
</tr>
<tr>
<td>55</td>
<td>1.38</td>
<td>0.049</td>
<td>2.31</td>
<td>0.0813</td>
<td>167</td>
<td>5.95</td>
<td>0.00115</td>
</tr>
<tr>
<td>60</td>
<td>1.38</td>
<td>0.049</td>
<td>2.62</td>
<td>0.0945</td>
<td>190</td>
<td>6.8</td>
<td>0.00162</td>
</tr>
<tr>
<td>65</td>
<td>1.38</td>
<td>0.049</td>
<td>2.46</td>
<td>0.0855</td>
<td>178</td>
<td>6.35</td>
<td>0.00130</td>
</tr>
<tr>
<td>50</td>
<td>5.78</td>
<td>0.204</td>
<td>9.12</td>
<td>0.322</td>
<td>58</td>
<td>2.06</td>
<td>0.00421</td>
</tr>
<tr>
<td>55</td>
<td>5.78</td>
<td>0.204</td>
<td>10.92</td>
<td>0.389</td>
<td>89</td>
<td>3.18</td>
<td>0.00675</td>
</tr>
<tr>
<td>60</td>
<td>5.78</td>
<td>0.204</td>
<td>12.08</td>
<td>0.426</td>
<td>109</td>
<td>3.90</td>
<td>0.00792</td>
</tr>
<tr>
<td>65</td>
<td>5.78</td>
<td>0.204</td>
<td>11.21</td>
<td>0.401</td>
<td>94</td>
<td>3.36</td>
<td>0.00703</td>
</tr>
<tr>
<td>50</td>
<td>8.85</td>
<td>0.311</td>
<td>12.92</td>
<td>0.451</td>
<td>46</td>
<td>1.64</td>
<td>0.0050</td>
</tr>
<tr>
<td>55</td>
<td>8.85</td>
<td>0.311</td>
<td>13.28</td>
<td>0.464</td>
<td>50</td>
<td>1.78</td>
<td>0.00546</td>
</tr>
<tr>
<td>60</td>
<td>8.85</td>
<td>0.311</td>
<td>15.40</td>
<td>0.549</td>
<td>74</td>
<td>2.64</td>
<td>0.00850</td>
</tr>
<tr>
<td>65</td>
<td>8.85</td>
<td>0.311</td>
<td>14.80</td>
<td>0.520</td>
<td>67</td>
<td>2.38</td>
<td>0.00746</td>
</tr>
</tbody>
</table>

Prepared by Don M. Fagot from data supplied by Roger E. Burrows (Reference No. 47)
G
Per Cent Length gain of Fall Chinook Fingerlings During a 28-Day Period

Bureau of Sport Fish and Wildlife Salmon Cultural Laboratory
Longview, Washington

<table>
<thead>
<tr>
<th>Water Temperature (° F)</th>
<th>InitialLength</th>
<th>FinalLength</th>
<th>Per CentGain per month</th>
<th>Per CentGain per day</th>
<th>Gain inches per day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mm)</td>
<td>(in)</td>
<td>(mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>1.93</td>
<td>54</td>
<td>11.05</td>
<td>0.3946</td>
</tr>
<tr>
<td>55</td>
<td>49</td>
<td>1.93</td>
<td>58</td>
<td>11.80</td>
<td>0.4214</td>
</tr>
<tr>
<td>60</td>
<td>49</td>
<td>1.93</td>
<td>61</td>
<td>12.42</td>
<td>0.4439</td>
</tr>
<tr>
<td>65</td>
<td>49</td>
<td>1.93</td>
<td>59</td>
<td>12.00</td>
<td>0.4286</td>
</tr>
<tr>
<td>50</td>
<td>79</td>
<td>3.11</td>
<td>92</td>
<td>11.60</td>
<td>0.4143</td>
</tr>
<tr>
<td>55</td>
<td>79</td>
<td>3.11</td>
<td>98</td>
<td>12.45</td>
<td>0.4446</td>
</tr>
<tr>
<td>60</td>
<td>79</td>
<td>3.11</td>
<td>101</td>
<td>12.80</td>
<td>0.4571</td>
</tr>
<tr>
<td>65</td>
<td>79</td>
<td>3.11</td>
<td>99</td>
<td>12.54</td>
<td>0.4479</td>
</tr>
<tr>
<td>50</td>
<td>91</td>
<td>3.56</td>
<td>103</td>
<td>11.30</td>
<td>0.4036</td>
</tr>
<tr>
<td>55</td>
<td>91</td>
<td>3.58</td>
<td>104</td>
<td>11.40</td>
<td>0.4071</td>
</tr>
<tr>
<td>60</td>
<td>91</td>
<td>3.58</td>
<td>110</td>
<td>12.10</td>
<td>0.4321</td>
</tr>
<tr>
<td>65</td>
<td>91</td>
<td>3.58</td>
<td>108</td>
<td>11.85</td>
<td>0.4232</td>
</tr>
</tbody>
</table>

Prepared by Don M. Fagot from data supplied by Roger E. Burrows
(Reference no. 47)

H
Food Consumption at Various Temperatures and Sizes
(Using Abernathy Soft Pellet 27.5 Per Cent Protein)

<table>
<thead>
<tr>
<th>Temperature (° F)</th>
<th>Per Cent Body Weight Drop in Food Fed Between Per Cent Fingerlings & Adults</th>
<th>Type of Food</th>
<th>Per Cent Body Weight Gain Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3.0</td>
<td>Abernathy soft pellet</td>
<td>27.5</td>
</tr>
<tr>
<td>45</td>
<td>3.8</td>
<td>Dry pellet</td>
<td>40</td>
</tr>
<tr>
<td>50 to 2.00 inches</td>
<td>4.8</td>
<td>Meat diet</td>
<td>18</td>
</tr>
<tr>
<td>60</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>0.8</td>
<td></td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td>68.0</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td></td>
<td>68.0</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td></td>
<td>68.5</td>
</tr>
</tbody>
</table>

Prepared by Don M. Fagot from data supplied by Roger E. Burrows, (Reference no. 47)
I

Digestion Time Required by Trout at Various Temperatures

<table>
<thead>
<tr>
<th>Food Organism</th>
<th>49-53</th>
<th>43-44</th>
<th>35-36</th>
<th>32-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helodrilus (soft bodied)</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>--</td>
</tr>
<tr>
<td>(oligochaete)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus (intermediate hardness) (amphipod)</td>
<td>13</td>
<td>18</td>
<td>26</td>
<td>43</td>
</tr>
<tr>
<td>Arctopsyche (hard bodied)</td>
<td>16</td>
<td>24</td>
<td>44</td>
<td>70</td>
</tr>
<tr>
<td>(caddisfly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Reference no. 44

J

Per Cent Occurrence of Trout Food in Streams

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Organism</th>
<th>Riffle</th>
<th>Flat</th>
<th>Pool</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoptera (caddisfly)</td>
<td>26.96</td>
<td>10.85</td>
<td>12.68</td>
<td>50.49</td>
<td></td>
</tr>
<tr>
<td>Diptera (true fly)</td>
<td>5.62</td>
<td>5.66</td>
<td>3.82</td>
<td>15.10</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera (mayfly)</td>
<td>5.32</td>
<td>4.56</td>
<td>4.35</td>
<td>14.23</td>
<td></td>
</tr>
<tr>
<td>Coleoptera (beetles)</td>
<td>4.82</td>
<td>2.11</td>
<td>6.26</td>
<td>13.19</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>1.37</td>
<td>0.87</td>
<td>3.11</td>
<td>5.35</td>
<td></td>
</tr>
<tr>
<td>Annelida (worms)</td>
<td>1.68</td>
<td>0.05</td>
<td>0.09</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>Plecoptera (stonefly)</td>
<td>0.26</td>
<td>0.02</td>
<td>0.02</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Reference no. 12
Gross Distribution of the Aquatic Invertebrate Fauna with Water Velocity, Mean Depth, and Substrate Particle Size.

See Reference No. 9
Abundance and Volume of the Four Dominant Orders of Aquatic Insects by Months

See Reference No. 9
<table>
<thead>
<tr>
<th>Organisms</th>
<th>Areas in Convict Creek</th>
<th>Individual Weight of Organism (Grams)</th>
<th>Average Total Weight Gr/Ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Trichoptera (caddisfly)</td>
<td>74</td>
<td>87</td>
<td>77</td>
</tr>
<tr>
<td>Coleoptera (beetles)</td>
<td>55</td>
<td>74</td>
<td>45</td>
</tr>
<tr>
<td>Ephemeroptera (mayfly)</td>
<td>59</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>Oligochaeta (aquatic worm)</td>
<td>26</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Diptera (true fly)</td>
<td>18</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Plecoptera (stonefly)</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Misc.¹</td>
<td>27</td>
<td>42</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>264</td>
<td>320</td>
<td>231</td>
</tr>
</tbody>
</table>

¹Includes mollusks, flatworms, roundworms, water mites, egg masses.
Adapted from Reference no. 9

<table>
<thead>
<tr>
<th>Organism</th>
<th>Total Number</th>
<th>Percent of Total Number</th>
<th>1962</th>
<th>1963</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichoptera</td>
<td>2974</td>
<td>25.8</td>
<td>43.4</td>
<td>24.4</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>2914</td>
<td>25.3</td>
<td>21.1</td>
<td>14.7</td>
</tr>
<tr>
<td>Diptera</td>
<td>2783</td>
<td>24.2</td>
<td>11.7</td>
<td>32.1</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>514</td>
<td>4.5</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>Terrestrial¹</td>
<td>1940</td>
<td>16.9</td>
<td>12.9</td>
<td>19.3</td>
</tr>
<tr>
<td>Misc.²</td>
<td>380</td>
<td>3.3</td>
<td>3.8</td>
<td>2.1</td>
</tr>
</tbody>
</table>

¹Includes Ants, Flies, Lepidopteran Larvae, Grasshoppers, and Leafhoppers.
²Includes Beetles, Oligochaetes, Mullusks, Roundworms and Water Mites.
See Reference no. 9
--Mean Monthly Averages and Trends for Quantity and Type of Material Ingested by Trout.

See Reference No. 9
--Condition of the Trout (K) in Relation to Utilization and Abundance of Bottom Organisms, Rate of Flow and Stream Temperature.

See Reference No. 9
Oxygen and Growth of Young Coho Salmon

Figure 1. Weight gains (or losses) in 19 to 28 days among frequently fed age-class 0 coho, expresses as percentages of the initial weight of the fish, in relation to dissolved oxygen concentration. The curve has been fitted to the points representing results of tests performed in the year 1956 only. All of the 1956 positive weight gain values are results of 21-day tests.

Figure 2. Grams of food (beach hoppers) consumed by frequently fed age-class 0 coho salmon per day per gram of initial weight of the fish, in relation to dissolved oxygen concentration. The curve has been fitted to the points representing the 1956 data only.
Food Conversion Ratio

Oxygen and Growth of Young Coho Salmon

Figure 3. Food conversion ratios for frequently fed age-class 0 coho salmon, or their weight gains in grams per gram of food (beach hoppers) consumed, in relation to dissolved oxygen concentration. A food conversion ratio of zero (not a ratio having a negative value) has been assigned to each group of fish that lost weight. The curve has been fitted to the points representing the 1956 data only.

Saturation values at 20° C

2 = 22% 5 = 56% 8 = 90%
3 = 33% 6 = 68% 9 = 103%
4 = 45% 7 = 79%

Adapted from Reference no. 34
Rearing Characteristic Curve of Typical Stream

River Flow in c.f.s.

Relative Usable Food Production Area, Per Cent

Approximate Point of Overbank Flow

Washington State Department of Fisheries
Drawn: 12-18-67 By: JK MaGee
<table>
<thead>
<tr>
<th>Species</th>
<th>Nooksack-Sumas</th>
<th>Skagit-Samish</th>
<th>Stillaquamish</th>
<th>Widbey-Camano</th>
<th>Snohomish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook</td>
<td>1,260</td>
<td>19,190</td>
<td>4,940</td>
<td>7,680</td>
<td></td>
</tr>
<tr>
<td>Coho</td>
<td>7,410</td>
<td>49,290</td>
<td>21,200</td>
<td>36,440</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td>73,130</td>
<td>485,000</td>
<td>268,750</td>
<td>148,750</td>
<td></td>
</tr>
<tr>
<td>Chum</td>
<td>54,860</td>
<td>115,940</td>
<td>8,400</td>
<td>50</td>
<td>21,150</td>
</tr>
<tr>
<td>Sockeye</td>
<td></td>
<td>2,330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer steelhead</td>
<td>70</td>
<td>330</td>
<td>1,500</td>
<td>1,700</td>
<td></td>
</tr>
<tr>
<td>Winter steelhead</td>
<td>4,900</td>
<td>60,500</td>
<td>24,900</td>
<td>53,800</td>
<td></td>
</tr>
<tr>
<td>Sea. Cut.</td>
<td>26,600</td>
<td>75,300</td>
<td>59,300</td>
<td>23,500</td>
<td>48,500</td>
</tr>
<tr>
<td>Lbs./acre of salmonid</td>
<td>200.5</td>
<td>227</td>
<td>83.9</td>
<td>116</td>
<td>245</td>
</tr>
<tr>
<td>Standing crop lb./acre</td>
<td>218</td>
<td>275</td>
<td>137.9</td>
<td>127.1</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>(29-770)</td>
<td>(90-690)</td>
<td>(70-170)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total harvest of lakes and ponds</td>
<td>> 10-100</td>
<td>> 10-300</td>
<td>> 10-100</td>
<td>> 10-300</td>
<td>> 10-100</td>
</tr>
<tr>
<td></td>
<td>50#</td>
<td>150#</td>
<td>50#</td>
<td>150#</td>
<td>150#</td>
</tr>
<tr>
<td>Miles of usable stream</td>
<td>275.1</td>
<td>571.4</td>
<td>216.2</td>
<td></td>
<td>370 miles stream if 10 ft. wide 435 acres 112,500 lbs. of fish.</td>
</tr>
</tbody>
</table>

These figures are intended for comparative purposes only. They show the wide variability in production that is expected under natural conditions. Extracted from reference No. 48.
Average Annual Escapement (Wild and Hatchery-Reared Fish) and Salmon Production in Selected Streams in the State of Washington

<table>
<thead>
<tr>
<th>Cedar-Green</th>
<th>Puyallup</th>
<th>Nisqually-Deschutes</th>
<th>West Sound</th>
<th>Elwha-Dungeness</th>
<th>San Juan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,490</td>
<td>2,030</td>
<td>3,850</td>
<td>3,760</td>
<td>1,140</td>
<td>50</td>
</tr>
<tr>
<td>32,480</td>
<td>7,570</td>
<td>4,890</td>
<td>74,460</td>
<td>2,540</td>
<td>50</td>
</tr>
<tr>
<td>14,750</td>
<td>4,510</td>
<td>187,010</td>
<td>164,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,680</td>
<td>22,200</td>
<td>10,730</td>
<td>129,340</td>
<td>2,560</td>
<td>50</td>
</tr>
<tr>
<td>90,000</td>
<td></td>
<td>80</td>
<td>750</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>39,400</td>
<td>26,500</td>
<td>7,300</td>
<td>11,600</td>
<td>9,200</td>
<td></td>
</tr>
<tr>
<td>45,800</td>
<td>19,900</td>
<td>27,600</td>
<td>133,000</td>
<td>29,520</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>205.7</td>
<td>28.8</td>
<td>172.2</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td>245.5</td>
<td>334.3</td>
<td>252.7</td>
<td>250</td>
<td>99.4</td>
<td></td>
</tr>
<tr>
<td>(107-448)</td>
<td>(206-378)</td>
<td>(200-310)</td>
<td>(144-353)</td>
<td>(90-100)</td>
<td></td>
</tr>
<tr>
<td>> 10-200</td>
<td>> 10-100</td>
<td>> 10-300</td>
<td>> 10-300</td>
<td>> 10-50</td>
<td></td>
</tr>
<tr>
<td>100#</td>
<td>50#</td>
<td>150#</td>
<td>150#</td>
<td>25#</td>
<td></td>
</tr>
<tr>
<td>142.6</td>
<td>266</td>
<td>195.6</td>
<td>614.3</td>
<td>79.3</td>
<td></td>
</tr>
</tbody>
</table>

These figures are intended for comparative purposes only. They show the wide variability in production that is expected under natural conditions. Extracted from reference No. 48.
References

Chapter 9
Effects of Fishing Pressure
EFFECTS OF FISHING PRESSURE

Undisturbed fish populations in confined areas normally include a number of large, old individuals. When such fish populations are subjected to continued fishing pressure, either commercial or sport, there is a tendency for these numbers to be reduced. Ultimately, this may result in the deposition of too few eggs to maintain the catch. This is recognized by fishery managers, and frequently a maximum size limit is imposed for protection of the brood stock. Examples are regulations in the McKenzie River for rainbow trout and in the Columbia River for sturgeon.

The population of anadromous fish, particularly Pacific salmon and steelhead, are affected by the fact that the bulk of the upstream runs may be dominated by one or two age groups for each species, which causes variance in the length of time that returning adults are exposed to a fishery.

There is no doubt that net mesh size exercises a selective action on the size of the fish caught. In practice, mesh sizes may be changed to permit escapement of smaller fish or to limit the take of one species while permitting the take of another. It is also to be expected that this would have some genetic effect if practiced over many cycles.

Mesh size also may affect the sex ratio of the salmon escapement as male chinook salmon usually are larger than the females and have a more pronounced head and jaw structure, or "kipe," which renders them more vulnerable. In a hook and line fishery, hook size is utilized as one means of controlling size of fish taken. As the fish approach maturity, they undergo a body shape change, making them more vulnerable to nets. This is particularly pronounced in pink salmon.

Another phenomenon associated with fishing pressure is in the timing of runs. A commercial fishing season that concentrates on the early or late segment of a run may cause, over a period of years, a shift of the run towards an earlier or later period.

It has been noted repeatedly that the largest returns do not necessarily result from the largest escapements. The escapement should be sufficient to make optimum use of available natural spawning areas or to supply parent hatcheries with an adequate return of spawners. It appears logical that when the fish must migrate long distances, or remain in fresh water for long periods of time, the escapement must take into account the natural attrition or unnatural hazards to which the fish are subjected and which cause loss.

Injuries to fish by a net fishery are noted and may cause mortalities by increasing the incidence of fungus, resulting from the loss of protective slime or from abrasion.

It has been reported that an intensive fishery may result in a minor delay to the movement of fish. Intensive hook and line fisheries for trout usually result in the need of artificial augmentation by planting. Such planting over many years may cause genetic changes in the resident species or the substitution of one species for another.

Regulation changes that allow for large escapement by time period closures result in waves of fish approaching fish facilities, and this factor must be considered in the sizing and operation of such facilities, as these waves may represent the bulk of the escapement and should be handled without delay.
WATER QUALITY

Many elements and chemical compounds in waste products of industry and agriculture and from sanitary sewers create toxic conditions for fish. See chapter “Toxicities of Elements and Compounds.”

Many of the normal criteria of water quality reflect overall toxic conditions, and the accepted parameters of these indicators may need reappraisal, particularly when they occur simultaneously or when oxygen is at levels less than 5 ppm.

The accepted minimum level for dissolved oxygen (DO) has been stated to be 5 ppm. It has been demonstrated, however, that for the most successful incubation of salmon and trout eggs, the DO should be near saturation level. In reference No. 1 it is stated that adequate growth, embryonic development and fish activity can be limited by a reduction of DO only slightly below the saturation limit. DO criteria should be based on considerations other than those of survival. For the cold-water biota, it is desirable that DO concentrations be at or near saturation. This is especially important in spawning areas where DO levels must not be below 7 ppm at any time. See chapter “Swimming Speeds of Adult and Juvenile Fish” for oxygen effects.

There is no optimum pH value for fish in general; however, in waters where good fish fauna occur, the pH usually is found to be between 6.7 and 8.3. In reference No. 22 it is stated that the permissible range of pH for fish depends on many factors such as temperature, dissolved oxygen, prior acclimatization, and the content of various anions and cations. The tolerance of fish to low concentrations of dissolved oxygen varies markedly with pH.

In reference No. 3 it is stated that the toxicity of sodium sulfide increases as the pH decreases and sulfide (S⁻) and bisulfide (HS⁻) ions are converted into toxic hydrogen sulfide.

The pH level also influences the toxicity of dissolved materials, as cyanide and ammonia, and metallic salts, as copper sulfate, as these are less toxic in more alkaline waters.

In reference No. 3 it is stated that many species of fish can live in acid water, but it appears that under these conditions the fish may grow more slowly and fail to attain the same size as other individuals of the same species that live in alkaline streams.

Species or races of fish that are adapted to alkaline waters fail to do well and often die when transplanted to slightly acid waters. The reason for this failure to adjust to a different pH is not fully understood, but has been observed by fish culturists and investigators for many years.

Silt and turbidity are factors in water quality. See chapter “Silt and Turbidity.”

The introduction of phosphates and nitrates should be discouraged unless under tightly controlled conditions, as large blooms of offensive algae may result in the reduction of depletion of oxygen supplies, or the creation of offensive tastes and odors. For recommended levels see chapter “Toxicities of Elements and Compounds.”

See also chapters “Plastics” and “Pesticides and Herbicides” for use limitations.

Abbreviations Used

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>adults</td>
<td>A</td>
</tr>
<tr>
<td>acclimated</td>
<td>ACC</td>
</tr>
<tr>
<td>all races</td>
<td>AR</td>
</tr>
<tr>
<td>avoid</td>
<td>AV</td>
</tr>
<tr>
<td>delayed</td>
<td>D</td>
</tr>
<tr>
<td>fry</td>
<td>F</td>
</tr>
<tr>
<td>fall Chinook</td>
<td>FA</td>
</tr>
<tr>
<td>inactive</td>
<td>IA</td>
</tr>
<tr>
<td>juveniles</td>
<td>J</td>
</tr>
<tr>
<td>lower lethal</td>
<td>LL</td>
</tr>
<tr>
<td>lower threshold</td>
<td>LT</td>
</tr>
<tr>
<td>mortality</td>
<td>M</td>
</tr>
<tr>
<td>optimum</td>
<td>OPT</td>
</tr>
<tr>
<td>preferred</td>
<td>P</td>
</tr>
<tr>
<td>poor growth</td>
<td>PG</td>
</tr>
<tr>
<td>spring Chinook</td>
<td>SP</td>
</tr>
<tr>
<td>summer Chinook</td>
<td>SU</td>
</tr>
<tr>
<td>tolerance</td>
<td>T</td>
</tr>
<tr>
<td>upper lethal</td>
<td>UL</td>
</tr>
</tbody>
</table>

Combine terms as follows:

- preferred for fry P-F
- adult mortality A-M

References

10. American Fisheries Society, “A symposium on water quality criteria to protect aquatic life.” Special publication No. 4. (Supplement to Transactions of the American Fisheries Society, 96(1).) 1967.

27. Warren, Charles E., and Dean L. Shumway, “Influence of dissolved oxygen on freshwater fishes.” Progress report, September 1, 1960 through August 31, 1964. U.S. Public Health Service, Division Water Supply and Pollution Control Research Grant WP 135. Oregon State University, Department of Fisheries and Wildlife, Corvallis, Oregon. October 1, 1964. (This material has been reviewed but the results have not been cited, in accordance with the authors’ request.)

TEMPERATURE — EFFECTS OF FISH

Natural environmental temperature changes impose stresses on fish populations. Over many years various species and subspecies have adjusted to upper and lower levels, within which are optimum ranges. It has been recorded in the literature that species of fish that encounter wide ranges of environmental conditions in subregions because of geographic factors adjust their optimum temperature levels within their total range by adjusting to the average annual temperature of the subregion. Exhibits A to K show ranges for fish common to the Pacific Coast regions.

When natural or artificial phenomena cause shifts away from optimum ranges, the populations are depressed. Under natural cyclic conditions stressing is not usually repeated in successive years.

It has been found that adults of the cold-water species may die unspawned if they are subjected to higher than normal temperatures for long periods of time. This is discussed in the chapter, “Spawning Criteria.” As fish are cold-blooded animals, their metabolism rate rises with temperature. Adult fish have been known to cease migrating when subjected to extreme temperatures, approaching the upper limit shown on Exhibit C.

Spawning may cease if the temperature drops to a level that is near or below the lower tolerance range.

During the egg’s tender stage (the first half of the incubation period) temperatures that are elevated or lowered from the upper or lower tolerance range result in increased mortalities, and a sudden raising or lowering of temperatures during this stage can cause excessive mortalities.

Growth of the young is also related to temperature levels as discussed in the chapter, “Food Producing Areas and their Requirements.” Generally, all cold-water fish cease growing at temperatures above 68° F. because of the increased metabolic rate. This is shown in Chapter 8.

The warm-water species respond generally to the same temperature pattern as the cold-water species, or in accordance with the levels shown on Exhibits H, I, and J.

Beneficial effects may be realized by increasing temperatures during normally cold months, and two years’ growth may be realized in one year by the use of this method.

Disease organisms also respond to temperature, causing excessive losses to fish life. Various diseases and their triggering temperature ranges are discussed in the chapter, “Fish Diseases - Types, Causes and Remedies.” Generally, the triggering level is below or above the lower or upper tolerance level.

It is known that fish suffer heat shock when brought rapidly from lower to higher temperatures, and this phenomenon can result in loss of equilibrium. Acclimation time is important in the handling of fish as it affects their equilibrium, swimming speed and metabolism. This is shown on Exhibits K, L and M.

As temperature affects the gas equilibrium in water, a nitrogen embolism can be caused and oxygen deficiencies created.

Heat has a synergistic effect and must be considered when measuring other stresses within the environment.

Swimming speeds are altered by both temperature and oxygen, and the levels must be considered in the design of facilities for handling, passing, diverting or holding fish.

Fish are capable of sensing a temperature differential of less than .5° F. Nothing is recorded to indicate why fish choose to enter areas of temperature higher than their optimum levels or to show that they actively and immediately avoid high temperatures. The evidence indicates that they do not necessarily move away from high temperature areas (and this is particularly true of warm-water fish) until the temperature reaches their upper tolerance level. Acclimation and genetic adaptation may be factors in this phenomenon.
COMMERCIAL SPECIES - GENERAL SPAWNING RANGE

<table>
<thead>
<tr>
<th></th>
<th>Temperature ° F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 30 40 50 60 70 80 90 100</td>
</tr>
<tr>
<td>Chum</td>
<td></td>
</tr>
<tr>
<td>Chinook</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td></td>
</tr>
<tr>
<td>Sockeye</td>
<td></td>
</tr>
<tr>
<td>Shad</td>
<td></td>
</tr>
<tr>
<td>Smelt</td>
<td></td>
</tr>
</tbody>
</table>

COMMERCIAL SPECIES - HATCHING RANGE

<table>
<thead>
<tr>
<th></th>
<th>Temperature ° F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 30 40 50 60 70 80 90 100</td>
</tr>
<tr>
<td>Chum</td>
<td></td>
</tr>
<tr>
<td>Chinook</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Pink</td>
<td></td>
</tr>
<tr>
<td>Sockeye</td>
<td></td>
</tr>
<tr>
<td>Shad</td>
<td></td>
</tr>
<tr>
<td>Smelt</td>
<td></td>
</tr>
</tbody>
</table>
G

SPORTFISH - HATCHING RANGE

<table>
<thead>
<tr>
<th>Fish Type</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Striped Bass</td>
<td>20 — 30 — 40</td>
</tr>
<tr>
<td>Smallmouth Bass</td>
<td>60 — 70</td>
</tr>
<tr>
<td>Largemouth Bass</td>
<td>65 — 71</td>
</tr>
<tr>
<td>Bluegill Sunfish</td>
<td>66 — 70</td>
</tr>
<tr>
<td>Channel Catfish</td>
<td>66 — 70</td>
</tr>
<tr>
<td>Whitefish</td>
<td>34 — 38 — 46</td>
</tr>
<tr>
<td>Rainbow Trout</td>
<td>37 — 55 — 68</td>
</tr>
<tr>
<td>Kokanee</td>
<td>32 — 38 — 55</td>
</tr>
<tr>
<td>Brook Trout</td>
<td>39 — 54 — 50</td>
</tr>
<tr>
<td>Steelhead Trout</td>
<td>36 — 52 — 68</td>
</tr>
<tr>
<td>Brown Trout</td>
<td>36 — 52 — 68</td>
</tr>
<tr>
<td>Cutthroat</td>
<td>40 — 55</td>
</tr>
</tbody>
</table>

H

ROUGHFISH - OPTIMUM RANGE

<table>
<thead>
<tr>
<th>Fish Type</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carp</td>
<td>38 — 60 — 81</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>34 — 54 — 85</td>
</tr>
<tr>
<td>Pumpkinseed Sunfish</td>
<td></td>
</tr>
<tr>
<td>Brown Bullhead</td>
<td>66</td>
</tr>
<tr>
<td>White Crappie</td>
<td></td>
</tr>
<tr>
<td>Perch Perca fluviatilus</td>
<td>77</td>
</tr>
<tr>
<td>Squawfish</td>
<td>61 — 68 — 85</td>
</tr>
<tr>
<td>Sucker</td>
<td>53 — 71 — 86</td>
</tr>
<tr>
<td>Black Bullhead</td>
<td>95</td>
</tr>
</tbody>
</table>
I

ROUGHFISH - SPAWNING RANGE

Temperature ° F

<table>
<thead>
<tr>
<th>Temperature ° F</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>65</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>45</td>
<td>69</td>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpkinseed Sunfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>70.5</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Bullhead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Shiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>70.5</td>
<td>80</td>
<td></td>
<td>OPT</td>
</tr>
<tr>
<td>Green Sunfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J

ROUGHFISH - HATCHING RANGE

Temperature ° F

<table>
<thead>
<tr>
<th>Temperature ° F</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>71</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpkinseed Sunfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OPT</td>
</tr>
<tr>
<td>Brown Bullhead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>70</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Shiner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squawfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>
K

Energy Requirements (in k Per Day *) Compared With Oxygen Demands

<table>
<thead>
<tr>
<th>Temperature (° F)</th>
<th>Trout Diet in Ponds (0.08 lbs)</th>
<th>10 Inch Fish (0.4 lbs)</th>
<th>8 Inch Fish (0.22 lbs)</th>
<th>Brett’s Oxygen Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>0.56</td>
<td>1.33</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.91</td>
<td>2.50</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1.50</td>
<td>3.32</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>2.10</td>
<td>5.15</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2.90</td>
<td>7.30</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

*K = 1000 calories

Prepared by Don M. Fagot from References no. 44 and 46

L

Digestion Time Required by Trout at Various Temperatures

<table>
<thead>
<tr>
<th>Food Organism (1/2 gram meal)</th>
<th>Hours Required for Complete Digestion at Various Temperatures (° F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helodrilus (soft bodied) (oligochaete)</td>
<td>12 18 25 --</td>
</tr>
<tr>
<td>Gammarus (intermediate hardness) (amphipod)</td>
<td>13 18 26 43</td>
</tr>
<tr>
<td>Archtopysche (hard bodied) (caddisfly)</td>
<td>16 24 44 70</td>
</tr>
</tbody>
</table>

Adapted from Reference no. 45

M

Maximum Sustained Cruising of Sockeye and Coho Underyearlings in Relation to Temperature

from Drett, 1958

Acclimation Temperature Fahrenheit

<table>
<thead>
<tr>
<th>Acclimation Temperature Centigrade</th>
<th>Ultimate Upper Lethal Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>35</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>59</td>
<td>25</td>
</tr>
<tr>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
</tr>
</tbody>
</table>

Cruising Speed ft/Sec

<table>
<thead>
<tr>
<th>Acclimation Temperature Centigrade</th>
<th>Cruising Speed CM/Sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>0.50</td>
</tr>
<tr>
<td>15</td>
<td>0.75</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
</tr>
<tr>
<td>25</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Adapted from Reference no. 13
References Reviewed

34. Altman, Philip L., and Dorothy S. Dittmer, Compiler and Editor, “Environmental biology.” Federation of American Societies for Experimental Biology, Bethesda, Maryland. pp. 86-102. 1966. (All rights reserved. This book protected by copyright.)

Chapter 12
Silt & Turbidity
In considering the effects of transported sediments on stream beds and fisheries, it is necessary to distinguish between the types of sediment.

Bed load is material moving on or near the bed. It may consist of materials rolled or slid along the bed in substantially continuous contact with the bed.

Turbidity is caused by fine materials, mainly inorganic, although it also can be caused by organic materials, or a combination of both.

Turbidity should not be confused with water color, which is due to staining action. Pigment extracts from vegetation often occur in solution in acid swamps and bogs, imparting a brown color to waters emanating from them. Dyes and other highly colored substances frequently present in industrial wastes also may stain water. Since pigments in solution, as well as particles in suspension, reduce the amount of light transmitted, the color of water affects turbidimeter readings, making them too high.

Turbidity in lakes and reservoirs commonly is determined as that depth at which a Secchi disc reading is obtainable. There are at least three recognized methods of measuring turbidity. Where the Jackson turbidity meter is used, the assumption has been made that one Jackson Turbidity Unit (JTU) is equal to one ppm on a silica scale. Other methods give readings in parts per million or weight per unit volume.

Sedimentation is a result of the settling-out or deposition of suspended materials. This occurs mainly in quiet waters, as lakes, reservoirs, and stream sections with low velocities. Particles causing bed load or turbidity may be deposited or suspended, depending on the velocity, and become inter-changeable. (See reference No. 24.)

The sedimentation rates follow Stokes’ Law and depend upon (1) the density of the fluid (water) through which the particle is falling, (2) the density or relative weight of the particle, that is, the specific gravity of the particle, and (3) the size of the particle. A sedimentation time of one hour usually is used as an index. As the density of water varies with temperature, a correction must be made.

Some reservoirs are so constructed that they can be flushed periodically to remove the accumulated sediment. When such reservoirs are located upstream from the spawning areas of anadromous fish, the resultant heavy load of silt deposited downstream during flushing may interfere with spawning and seriously reduce successful egg incubation.

Silt may occur as a result of natural causes, such as land slides, the washing of glacial flour and normal bank cutting or bed erosion. In addition silt materials can be deposited from mining activities, gravel washing, land use and forestry practices.

Excess turbidity from organic materials in the process of oxidation may reduce oxygen below safe levels.

Decaying vegetation is usually not a problem in fast-moving, mountain streams or in conifered watersheds. In slow-moving water or in swamp areas bordered by deciduous trees, such organic materials may cause problems. Turbidity may come from industrial or sewage wastes, or it may be caused by living material such as plankton. Usually, such living material must be present at levels greater than 0.1 per cent by volume.

Relatively large quantities (500 to 1,000 ppm) of suspended water-borne material can be carried for short periods of time without detriment to fish. The catch of fish is affected above levels of 30 JTU, as visual references are lost. Primary food production is lowered above levels of 25 JTU.

The effect of bed load is not so well defined by ppm or volume. Its presence can kill burried eggs or alevins by denying water interchange and can smother food organisms.

In reference 16 it is indicated that in the Scott River, California the organisms, which averaged 249 per square foot above the silt-laden tributary, were reduced to 36 organisms below. This is verified by work below placer mines in Alaska, where fine materials were deposited on the bed of a stream. It was found in the Stillaguhamish River in Washington that 50 to 100 per cent of the eggs deposited were lost, owing to the low permeability of the river bed below a natural slide. Work in Bluewater Creek in Montana (reference No. 26) indicated that when the sediment load in the stream was reduced, the trout production was materially increased and the rough fish production reduced. Studies conducted after a natural slide in the Chilcotin River in British Columbia indicated that salmonoid fish will not move in streams where the silt content is above 4,000 ppm. Streams with silt loads averaging between 80 and 400 ppm should not be considered good areas for supporting fresh water fisheries; streams with less than 25 ppm may be expected to support good fresh water fisheries.

The following is a comparison of lake production and turbidity levels:

<table>
<thead>
<tr>
<th>Turbidity Level</th>
<th>Pounds of Fish per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear lakes below 25 ppm</td>
<td>160</td>
</tr>
<tr>
<td>Intermediate lakes (25 to 100 ppm)</td>
<td>94</td>
</tr>
<tr>
<td>Muddy lakes over 100 ppm</td>
<td>30</td>
</tr>
</tbody>
</table>

Some species of fish will not spawn in excessively turbid water, such as bass and bluegill. Female salmon and trout, in the course of their prespawning activity, will wash the silt away from the gravel in the redd. However, when the deposition of an excess amount of silt occurs throughout the redd after spawning has been completed, there is a resultant interference with the proper percolation of water upward through the redd, loss of dissolved oxygen, and lack of proper removal of catabolic products. This “smothering” of eggs also promotes the growth of fungus, which may spread from dead eggs throughout the entire redd. The extent of the harmful effects of siltation on the spawning and egg incubation of salmon and trout depends upon the amount and type of material deposited, as well as the time of occurrence. When silt contains clay particles, resembling loam, it may form a hard, compact crust over the stream bed which spawning fish are unable to remove, those rendering the spawning area unusable. The same condition may occur when organic materials, such as wood pulp fibers are mixed with silt, forming an impenetrable mat over the spawning rubble. Silt also may contain toxic residues from industrial or agricultural wastes which may be lethal to developing eggs and alevins.

Generally, salmonoid eggs will suffer a mortality of 85 per cent when 15 to 20 per cent of the voids are filled with sediment. Properly constructed sediment basins, built in connection with road building activities, gravel wash and mining operations, which effectively remove the sediment, are recommended to eliminate this source of silt.
Most experimental work has shown that whereas fish can survive high concentrations of suspended matter for short periods, prolonged exposure to some types of materials in most species results in a thickening of the cells of the respiratory epithelium (so-called clubbed gills) and the eventual fusion of adjacent gill lamellae, definitely interfering with respiration. Fish do not have gill cleaners for removing foreign matter, and must rely on the flow of water through the gill chambers, the production of lubricating mucous and intermittent “coughing.” Evidence of gill irritation in trout and salmon fingerlings held in turbid water has been noted frequently by fish culturists, and is considered a common avenue of infection for fungi and pathogenic bacteria.

It is apparent that some species, such as salmon, suffer more physical distress in turbid water than do others. Carp and bullhead catfish are not visibly affected by some types of turbidity, and will thrive in waters rendered quite turbid by decaying vegetation and other organic material.

Fine materials that cause turbidity are detrimental in hatchery operations, coating the eggs, and thus reducing the necessary oxygen interchange.

The adverse effects of silt settling in redds have been reported on in references 15, 20 and 24.

Figure 1 gives a graphic presentation of survival versus apparent velocity through the gravel redds.

Table A summarizes sediment concentrations in coastal rivers in California, Oregon and Washington. (See reference No. 24.)

In some ranch and farm ponds of the midwest and southeastern portions of the United States, colloidal suspensions of finely divided clay particles occur almost continuously, and must be precipitated by chemicals in order for sufficient sunlight to penetrate the water. Ground agricultural limestone (calcium carbonate), superphosphate, alum, and agricultural gypsum (calcium sulfate) are used for this purpose.

Table B is included to show the difference in suspended materials between the Fraser River at Hope and the Columbia River at Pasco. Both of these rivers are utilized by salmonoid fish for transportation to their spawning grounds. This indicates that whereas fish may lose visual reference at the levels of suspended sediment shown, their movement is not impeded.

Table C shows the levels of silt concentrations that cause fatalities in various species. This does not mean that such fish would not have died from lack of natural food at much lower concentrations, either because such food is not visible to the fish or is not present.

Figures 2 and 3, taken from reference No. 24, show further the effects of silt in spawning areas.

Table A

<table>
<thead>
<tr>
<th>State</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal</td>
<td></td>
</tr>
<tr>
<td>Rivers</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>137</td>
<td>107</td>
<td>88</td>
<td>96</td>
<td>51</td>
<td>32</td>
<td>44</td>
<td>56</td>
<td>42</td>
<td>47</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>Oregon</td>
<td>94</td>
<td>107</td>
<td>58</td>
<td>113</td>
<td>107</td>
<td>194</td>
<td>81</td>
<td>74</td>
<td>62</td>
<td>33</td>
<td>37</td>
<td>13</td>
</tr>
<tr>
<td>Washington</td>
<td>6</td>
<td>24</td>
<td>47</td>
<td>41</td>
<td>26</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>13</td>
<td>14</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Interior</td>
<td></td>
</tr>
<tr>
<td>Rivers</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>12</td>
<td>7</td>
<td>19</td>
<td>18</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>28</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>27</td>
<td>16</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>20</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Washington</td>
<td>12</td>
<td>7</td>
<td>19</td>
<td>18</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>28</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Table B

Suspended sediment concentration in ppm in the Fraser River at Hope.

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>370</td>
<td>503</td>
<td>189</td>
<td>98</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>-</td>
<td>23</td>
<td>162</td>
<td>672</td>
<td>187</td>
<td>127</td>
<td>73</td>
<td>45</td>
<td>-</td>
<td>31</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>970</td>
<td>374</td>
<td>200</td>
<td>158</td>
<td>96</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Suspended sediment concentration in ppm in the Columbia River at Pasco.

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910-1911 Average</td>
<td>4</td>
<td>17</td>
<td>46</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1954-1956 Average</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>19</td>
<td>19</td>
<td>14</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Table C

<table>
<thead>
<tr>
<th>Common Name of Fish</th>
<th>Range of Temperature (degrees C)</th>
<th>Average time of test (days)</th>
<th>Fatal Turbidity in ppm Minimum</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden shiner</td>
<td>20-29</td>
<td>7.1</td>
<td>55,000</td>
<td>166,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Mosquito fish</td>
<td>20-28</td>
<td>16.5</td>
<td>120,000</td>
<td>181,500</td>
<td>225,000</td>
</tr>
<tr>
<td>Goldfish</td>
<td>24-32</td>
<td>12.0</td>
<td>90,000</td>
<td>197,000</td>
<td>270,000</td>
</tr>
<tr>
<td>Green sunfish</td>
<td>20-29</td>
<td>5.5</td>
<td>50,000</td>
<td>166,500</td>
<td>225,000</td>
</tr>
<tr>
<td>Black bullhead</td>
<td>22-32</td>
<td>17.0</td>
<td>175,000</td>
<td>222,000</td>
<td>270,000</td>
</tr>
<tr>
<td>Red shiner</td>
<td>22-32</td>
<td>9.0</td>
<td>175,000</td>
<td>183,000</td>
<td>190,000</td>
</tr>
<tr>
<td>River carpsucker</td>
<td>24-32</td>
<td>9.6</td>
<td>105,000</td>
<td>165,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Largemouth bass</td>
<td>16-32</td>
<td>7.6</td>
<td>52,000</td>
<td>101,000</td>
<td>150,000</td>
</tr>
<tr>
<td>Pumpkinseed</td>
<td>16-22</td>
<td>13.0</td>
<td>16,500</td>
<td>69,000</td>
<td>120,000</td>
</tr>
<tr>
<td>Orangespotted sunfish</td>
<td>22-32</td>
<td>10.0</td>
<td>100,000</td>
<td>157,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Channel catfish</td>
<td>24-32</td>
<td>9.3</td>
<td>—</td>
<td>85,000</td>
<td>—</td>
</tr>
<tr>
<td>Blackstrip top-minnow</td>
<td>22-26</td>
<td>19.3</td>
<td>—</td>
<td>175,000</td>
<td>—</td>
</tr>
<tr>
<td>Black crappie</td>
<td>28-29</td>
<td>2.0</td>
<td>—</td>
<td>145,000</td>
<td>—</td>
</tr>
<tr>
<td>Rock bass</td>
<td>—</td>
<td>3.5</td>
<td>—</td>
<td>38,250</td>
<td>—</td>
</tr>
</tbody>
</table>

Relation Between Rate of Flow of Water Through a Gravel Bed and the Survival of Sockeye Eggs in the Gravel.

See Reference No. 24
Figure 2

Grading curves of seven experimental gravels and survival of sockeye eggs in these gravels at a uniform water velocity of 0.0167 cm/sec.
Figure 3

The Effect of Gravel Size and Uniformity on the Survival of Sockeye Eggs at a Flow of 0.0167 cm/sec.

See Reference No.24
References Reviewed

Chapter 13
Toxicities of Elements & Compounds
TOXICITIES OF ELEMENTS AND COMPOUNDS

Remarks

Barium

Appears to be less cumulative in the body than some other metallic poisons. Indications are that in the carbonate or sulfate form it is relatively insoluble and therefore not apt to be present in solution. In Washington most streams contain sufficient bicarbonate to precipitate all but minute amounts of barium. Could be present in colloidal suspension, a chelate, an organic compound, or in other ways.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fresh Water</td>
<td></td>
</tr>
<tr>
<td>Goal*</td>
<td>0.01 mg/l</td>
<td>WQC suggests a limit of 5.0 mg/l is to protect fish and aquatic life from toxic effects.</td>
</tr>
<tr>
<td>Standard**</td>
<td>0.05 mg/l</td>
<td></td>
</tr>
<tr>
<td>Salt Water</td>
<td>0.05 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Fish

WQC suggests a limit of 5.0 mg/l is to protect fish and aquatic life from toxic effects.

Boron

Although boron may be toxic to humans and animals in high concentrations, there appears to be so little likelihood of such concentrations being reached that boron is not considered a hazard. Boron is believed to be present in Washington waters in only trace amounts.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>0.1 mg/l</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0.3 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Salt Water

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>4.7 mg/l</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>5.5 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Fish

WQC suggests a level of 0.05 mg/l is safe for fish and aquatic life.

Cadmium

The Dept. of Health, Education and Welfare, Public Health Service, Drinking Water Standards, imposes a mandatory limit on cadmium of 0.01 mg/l, on the basis of its toxicity to humans. Cadmium appears to be somewhat cumulative in the body.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>0.0005 mg/l</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0.001 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Salt Water

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>0.000011 mg/l</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0.000013 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Fish

WQC suggests a level of 0.001 mg/l is safe for fish and aquatic life.

Chromium

Chromium does not appear to be cumulative in the body. The U.S.P.H.S. limit is derived partially from the fact that 0.05 mg/l is about the lower limit of detectability of hexavalent chromium. Published information indicates that much larger concentrations are without adverse effects upon humans, and it is probable that the U.S.P.H.S. limit of 0.05 mg/l is extremely conservative.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Trace</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0.01 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Salt Water

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>0.00005 mg/l</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0.00006 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Fish

WQC suggests a level of 0.0005 mg/l is safe for fish and aquatic life.

* Goal, the more restrictive of the quality criteria, is defined as the desirable value of water quality parameters, which may or may not be practicable at the present time.

** Standard, the less restrictive of the quality criteria, is proposed as an objective to be achieved or maintained immediately or within a short period of time.
Remarks

Copper

The U.S.P.H.S. Drinking Water Standards recommended limit on copper is 1.0 mg/l.

Copper is essential to plant life, but toxic when present in excess. The permissible range appears to lie below about 0.1 mg/l for the most sensitive macroscopic plants.

Threshold toxic limits of copper to animals appear to be substantially higher than the limit proposed for human use.

Copper sulfate is widely used as a cheap and effective algicide; however, in hard water the margin between the dosage required as an effective algicide and the toxic level for fish is very narrow, and may result in fish kills.

Marine biota are sensitive to copper. Oyster larvae require some copper (0.05-0.06 mg/l), but toxic effects begin to occur between 0.1 and 0.5 mg/l.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>0.02 mg/l</td>
</tr>
<tr>
<td>Goal</td>
<td>Standard</td>
</tr>
<tr>
<td>Above natural background</td>
<td></td>
</tr>
</tbody>
</table>

Fresh Water	0.05 mg/l above background
Salt Water	Less than 0.05 mg/l
Goal	Standard
Less than 0.06 mg/l	

Iron

Stock and wildlife require some iron as do humans. There is no evidence to indicate that the toxicity threshold for animals is substantially lower than for humans.

Irrigated agriculture is relatively unaffected by iron. Some iron appears to be beneficial to certain plants.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>0.0 mg/l</td>
</tr>
<tr>
<td>Goal</td>
<td>Standard</td>
</tr>
<tr>
<td>above natural content</td>
<td></td>
</tr>
</tbody>
</table>

Fresh Water	0.1 mg/l
Salt Water	less than 0.2 mg/l
Goal	Standard
0.1 mg/l	0.2 mg/l

Fish may be adversely affected by dissolved iron, although the amount of iron in solution (ferrous iron) will be extremely small in well-aerated streams, i.e., those capable of supporting fish. There is some evidence that concentrations as low as 0.2 mg/l of ferrous iron may be deleterious, but some fish are known to thrive at higher concentrations.

Lead

The U.S.P.H.S. Drinking Water Standards mandatory limit on lead concentration is 0.05 mg/l. This limit is based on the toxicity of lead, enhanced by its tendency to accumulate in the body.

There is some evidence that lead is injurious to plants, but the threshold concentrations appear to be well above the U.S.P.H.S. Drinking Water Standards limit.

Animals are sensitive to lead poisoning, as are humans, and apparently to about the same extent.

Aquatic life also is susceptible to toxic effects from lead, although the mechanism by which the damage occurs may be different.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>Limit of detectability Standard 0.02 mg/l</td>
</tr>
<tr>
<td>Goal</td>
<td>Standard</td>
</tr>
</tbody>
</table>

Fresh Water	0.00003 mg/l
Salt Water	0.004 mg/l
Goal	Standard
Remarks

Manganese

The U.S.P.H.S. Drinking Water Standards recommended limit on manganese of 0.05 mg/1 is based on esthetic and economic as well as physiological considerations. The physiological hazards from excessive manganese are of dubious nature and occur at uncertain threshold concentration values, but it is apparent that 0.05 mg/1 is substantially below any toxicity threshold.

Excessive concentrations of manganese may be harmful to plants, but the threshold levels of damage appear substantially higher than the Drinking Water Standards limit.

Animals appear to be unaffected by manganese at concentrations substantially higher than the U.S.P.H.S. limit.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Salt Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Trace</td>
<td>0.002 mg/1</td>
</tr>
<tr>
<td>Standard</td>
<td>0.01 mg/1</td>
<td>0.04 mg/1</td>
</tr>
</tbody>
</table>

Potassium

Within the limits imposed by commonly accepted standards, potassium has a negligible effect on most beneficial uses of water.

Some potassium is essential to plant nourishment, and it is commonly used as an ingredient (K₂O) in fertilizers to stimulate plankton growth in ponds. The range of concentration for this use is on the order of 0-5 mg/1.

Selenium

The U.S.P.H.S. Drinking Water Standards impose a mandatory limit on selenium of 0.01 mg/1, based on toxicity.

Plants can tolerate much more selenium than can humans. However, food crops will incorporate some selenium into the edible portions and selenium poisoning can result from eating the plants. This effect is not believed to be detectable when the concentration of selenium in irrigation water is below 0.01 mg/1.

Stock and wildlife are susceptible to selenium poisoning, the result being known as alkali disease or blind stagers. This can result from ingestion of feed grown on selenium-rich soil, or from selenium-bearing water. It is believed that cattle can tolerate 0.4 to 0.5 mg/1 without showing toxic effects, and this probably represents the order of magnitude of tolerance of other animals.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Salt Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Limit of detectability 0.002 mg/1</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>0.004 mg/1</td>
</tr>
</tbody>
</table>

Silver

The U.S.P.H.S. Drinking Water Standards mandatory limit on silver is 0.05 mg/1. This limit is based primarily on the cosmetic effect of silver excessive ingestion resulting in a permanent discoloration of the skin and eyes. From the effects of silver on humans, it would be expected that levels safe for human consumption would be entirely safe for terrestrial animals.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Fresh Water</th>
<th>Salt Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Limit of detectability 0.0004 mg/1</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>0.0003 mg/1</td>
</tr>
</tbody>
</table>

Fish

Fish appear to have some tolerance for manganese and at the limit of 0.05 mg/1 it probably is not detrimental to them.

Adverse effects upon fish are reported at potassium concentrations on the order of 50 mg/1, especially in soft water and water low in total salt content.

Fish appear to be somewhat more sensitive to selenium than are humans. Quantitative data are scarce, but it would appear that the conservative limit established by the U.S.P.H.S. Drinking Water Standards for human consumption is probably acceptable for most, if not all, fish. Fish apparently concentrate selenium in their livers, as a result of ingestion of selenium which enters the food chain at the plankton level.

Fish are quite sensitive to silver, lethal effects having been observed at concentrations as low as 0.003 mg/1. Plankton appear to be somewhat less sensitive than fish, but the difference is slight and, from the limited data available, may be more apparent than real.
Remarks

Sodium

Because sodium is a waste product of many beneficial uses of water and has little adverse effect upon water in limited amounts, the use of a river to carry sodium is of less importance than other additives.

Sodium, like several other solutes in water, may indicate the presence of sewage of agricultural drainage. It is a conservative pollutant because most sodium salts are highly soluble and hence no removal occurs in either water treatment or sewage treatment processes. Where the natural sodium load is small the sodium concentration can serve as a pollution index.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>10 mg/1 over natural concentration</td>
</tr>
<tr>
<td>Standard</td>
<td>35 mg/1 over natural concentration</td>
</tr>
<tr>
<td>Salt Water</td>
<td>10,500 mg/1</td>
</tr>
<tr>
<td>Standard</td>
<td>12,500 mg/1</td>
</tr>
</tbody>
</table>

Fish

Zinc

The U.S.P.H.S. Drinking Water Standards recommended limit on zinc of 5.0 mg/1 is based on esthetic effects. Zinc is essential to human nutrition and, while toxic in large amounts, is not adverse physiologically within the range of esthetic acceptability.

Zinc is essential to plants and, as with humans, can be toxic if present to excess. Values as low as 3 mg/1 have been observed to be harmful.

The adverse effects of zinc to stock and wildlife are comparable to the effects on humans. Some synergistic effects appear to occur when zinc is present in combination with selenium, copper and possibly other materials.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Goal</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>Limit of detectability</td>
<td>Limit of detectability</td>
</tr>
<tr>
<td>Salt Water</td>
<td>0.01 mg/1</td>
<td>0.012 mg/1</td>
</tr>
</tbody>
</table>

Fish are strongly affected by zinc. Concentrations as low as 0.01 mg/1 have been observed to be lethal. The toxicity of zinc is greatest in soft water. Shellfish appear less sensitive to zinc than do swimmers, but are able to concentrate zinc from large amounts of water, possibly by ingestion of plankton which concentrate zinc from the water.

Ammonia nitrogen

The U.S.P.H.S. Drinking Water Standards lists no limit for ammonia nitrogen, although the WHO European Drinking Water Standards set a recommended limit of 0.5 mg/1 as NH₃. However, any such limits are based on the presence of ammonia being an indicator of organic pollution rather than on its toxicity.

Because of its potentially toxic effects on fish and because of the fact that it indicates organic pollution of water and serves as a nutrient for nuisance growth, the following limits are proposed for ammonia nitrogen.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Goal</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>0.3 mg/1</td>
<td>0.5 mg/1</td>
</tr>
<tr>
<td>Salt Water</td>
<td>0.0025 mg/1</td>
<td>0.003 mg/1</td>
</tr>
</tbody>
</table>

Fish appear to be more affected by undissociated ammonium hydroxide (NH₄OH) than by the ammonium ion (NH₄⁺). Thus the toxicity of a given concentration of ammonia to fish increases with increasing pH. As with most other toxicants, the effects of ammonia are increased at low oxygen concentrations. The concentrations of ammonia at which fish suffer distress are variously reported at from 0.3 mg/1 upward, but the majority of values indicated lie above 1.0 mg/1.

Cyanide

The U.S.P.H.S. Drinking Water Standards contain both recommended (0.01 mg/1) and the mandatory (0.2 mg/1) limits for cyanide. These limits are based on toxicity, but the derivation of them appears to be founded more on toxicity to fish than to humans.

Stock and wildlife appear no more sensitive toward cyanide than do humans.

<table>
<thead>
<tr>
<th>Limits</th>
<th>Goal</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td>0.005 mg/1</td>
<td>0.01 mg/1</td>
</tr>
<tr>
<td>Salt Water</td>
<td>None detectable</td>
<td>0.01 mg/1</td>
</tr>
</tbody>
</table>

Fish appear quite sensitive to cyanide, more so than to lower forms of aquatic life. The lowest concentration at which toxic effects are noted is 0.05 mg/1 (trout); but 0.02 mg/1 were survived by trout for a period of 27 days. In view of the other data cited, the U.S.P.H.S. recommended limit (0.01 mg/1) is probably a reasonable limit for safety to all aquatic life.
Remarks

Fluoride

The U.S.P.H.S. Drinking Water Standards mandatory fluoride limit varies from 0.6 to 1.7 mg/1, depending in part on the average air temperature and hence the amount of water consumed per day. For drinking purposes, fluoride is generally considered to be a valuable addition to water. Too much fluoride, however, leads to mottled tooth enamel and in high doses it can be toxic.

The threshold concentration of fluoride in water at which damage to irrigated crops begins to occur appears to lie between 10 and 100 mg/1. 1.0 mg/1 of fluoride seems to have no deleterious effect on livestock.

Nitrate

A major problem with nitrate is eutrophication. Blooms of algae and other aquatic plants have severe economic and esthetic effects, affect fish and other aquatic life, including the killing of fish when a bloom dies and deoxygenation occurs, and cause serious problems in water treatment for domestic use. Blooms of algae and massive growths of other aquatic plants are possible when the nitrate content in the presence of other essential nutrients is about 0.5 mg/1 or more.

Based on considerations of eutrophication alone, the following limits for nitrate are used.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Fresh Water</th>
<th>0.5 mg/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td></td>
<td>Salt Water</td>
<td>1.3 mg/1</td>
</tr>
<tr>
<td>Standard</td>
<td>1.5 mg/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fish

Fish and other aquatic life appear to be affected by fluoride in much the same way as do land animals, and in approximately the same concentration ranges. The lowest concentration at which adverse effects are reported (slower and poorer hatchings) (species not identified) is 1.5 mg/1.

Nitrogen

Water will absorb only a certain amount of nitrogen from the air at atmospheric pressure and at a given temperature. When the air is under pressure the water becomes supersaturated with dissolved gases (oxygen, nitrogen, and carbon dioxide). Excess nitrogen often occurs in spring or well water. It also may result from air entering the intake side of a water pump, or from air entering the intake of a gravity pipe line and being forced into solution by the gravity head on the line. Sudden warming of water may cause supersaturation.

It is not always easy to remove immediately all excess nitrogen from a water supply. This can be done by vigorously breaking up the water so that excess gas is released to the atmosphere.

Saturation

Of the excess gases in supersaturated water, nitrogen is least tolerated by fish. Nitrogen is absorbed into the blood stream, causing gas bubbles which result in death of the fish. Fry will develop a visible gas bubble in the body cavity.

The percent of nitrogen saturation in water which is detrimental or lethal to salmon is as follows:

- Fry 103%
- Fingerlings and yearlings ... 113% (lethal)
- 105-112% (eye damage and blindness)
- Adult salmon 118% (eye damage)

Phosphates

Phosphates are of concern primarily because of the fact that phosphorus, being a fertilizer, frequently present naturally only in limited amounts, can contribute to the growth of aquatic organisms, especially when water is impounded. Such growths can reach severe nuisance proportions even with very small phosphate concentrations. Heavy algal blooms have been observed in lakes when the phosphate concentration exceeds 0.03 mg/1.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Fresh Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td></td>
<td>0.03 mg/1</td>
</tr>
<tr>
<td>Standard</td>
<td>0.15 mg/1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Salt Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td></td>
<td>0.3 mg/1</td>
</tr>
<tr>
<td>Standard</td>
<td>0.4 mg/1</td>
<td></td>
</tr>
</tbody>
</table>
Remarks

Radioactivity
The effects of radioactivity in surface waters are extremely complex. However, there appears to be no safe threshold below which no damage to man or other living organisms will result from exposure to ionizing radiation. Any exposure is detrimental. It appears that concentration is by far the most serious effect. Radionuclides in the aquatic or marine environment may effect organisms by (a) direct radiation from the water or accumulated bottom sediments, (b) absorption of radioactive material on the body surfaces, (c) absorption through cell membranes of soluble substances, and (d) ingestion or radionuclides along with food and water. For herbivores and carnivores, including fish, ingestion of radionuclides concentrated by lower forms of life appears to be the major route of accumulation.

Limits

W.Q.C. Fresh and Salt Water

Goal
No induced radioactivity
U.S.P.H.S. Drinking Water Standards

Fish
Exposure to humans and fishes and be increased profoundly by consumption of food products such as shellfish or plankton, some of which concentrate radionuclides within themselves from large amounts of water. The present radioactivity in the Columbia River poses no direct somatic hazard toward fish.

Surfactants
Surfactants are also known as surface-acting agents or detergents. The surfactant formerly in widespread use in household washing products was ABS, which presented a considerable problem. The surfactant used almost exclusively since 1965 is LAS, which is more readily biodegradable.

The U.S.P.H.S. Drinking Water Standards recommended limit for ABS is 0.5 mg/l. The substitution of terms and retention of the former limits would appear reasonable for LAS.

Hydrogen sulfide (H\textsubscript{2}S)
The sources of H\textsubscript{2}S in water include natural processes of decomposition, sewage and industrial wastes, such as those from tanneries, paper mills, textile mills, chemical plants, and gas-manufacturing works. It is a major component of Kraft mill waste liquors, which is the principal source of this type of pollution in the Pacific Northwest.

In the presence of certain sulfur-utilizing bacteria, sulfides and H\textsubscript{2}S can be oxidized to colloidal sulfur, and these bacteria or their deposits may be considered as corollary pollutants.

Methanethiol
This gas is also known as methyl mercaptan, and occurs in Kraft pulp mill wastes. At certain concentrations and water temperatures it can be highly toxic to fish.

Methyl ethyl Ketone
This is a widely used liquid solvent in industry. It is used in the manufacture of synthetic resins, and is highly soluble in water. Bioassays indicate that at certain concentrations it is toxic to fish.
Remarks

Phenol and Phenolic Compounds

Phenolic wastes arise from the distillation of wood, from chemical plants, gas works, oil refineries and other industrial operations, as well as from human and animal refuse. Phenol is commonly used in the manufacture of synthetic resins and other industrial compounds. It is highly soluble in water.

Phenol is biologically dissipated in a concentration of 1.0 mg/1 at 20° C. in 1 to 7 days under aerobic conditions. At 4° C. (39.2 F) complete dissipation required 5-19 days. Under anaerobic conditions dissipation occurs at a slower rate.

The U.S.P.H.S. Drinking Water Standards recommended limit of 0.001 mg/1 for phenol is primarily an esthetic limit, based upon the undesirable taste imparted to water by chlorination when even minute amounts of phenol are present.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Goal</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fish

Fish are reported to have been harmed by phenol concentrations as low as 0.079 mg/1. However, the taste of fish may be affected by subtoxic levels of phenol in the water.

Meccury

Mercury has been found to be inert, but enters the aquatic food chain and becomes concentrated in fish and is transferred from prey to predator.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Goal</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

There are a large number of miscellaneous toxicants that may be present in industrial effluents. These would include mercaptans, sulfides, resins, chlorine and residues from metal processing. These are also contained in pulp mill effluents. They can be readily reduced to near zero levels by effective effluent treatment. Because of their adverse effect and because they are amenable to removal from waste streams, concentrations of these effluents should not exceed the limits of reliable analytical detectability.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Goal</th>
<th>Standard (interim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arsenic

Arsenic compounds occur naturally in some waters of the Western United States. The elemental arsenic is reported to be insoluble in water, but many of the arsenates are highly soluble. It is found as a by-product from the processing of ores and may be liberated as dust. It is used in other metallurgical processes in the manufacture of glassware and ceramics. It is used in tanneries and dye manufacture and other chemical industries.

<table>
<thead>
<tr>
<th>Limits</th>
<th>W.Q.C.</th>
<th>Goal</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References Reviewed

Trace amounts of metals are found in various natural waters. Effluents from industrial plants may contain many heavy ions which could cause death or inhibit the growth of necessary plant life. The recommended levels of these elements are shown in the chapter "Toxicities of Elements and Compounds."

Synergistic effects are recognized and when two or more metal elements are present they may have adverse effects at much lower levels than either one individually. When they are found in combination, this factor should be considered.

In closed systems, such as aquaria and hatcheries, all copper piping should be avoided, as well as zinc coated pipes. The presence of bronze in pump propellers, ring labyrinths and packing nuts should be avoided. Under closed conditions low levels of metals may accumulate in the animals, with lethal effects.

Stainless steel of low numbers generally should be avoided.

Phenol treatment of wooden pipes should be avoided.

The formulae for paints should be obtained before their application in aquaria or closed systems to determine whether they contain metals.

As natural waters do carry trace metals to which certain strains of fish have become adapted, it is advisable to check water quality before introducing strains of fish not previously accustomed to such levels.

References Reviewed

PLASTICS

The use of plastic materials in all phases of aquaculture should be approached with caution. Some of these substances may offer some advantages over older, more conventional materials, chiefly their light weight and durability and the fact that most of them can be produced in molded form. Experience has shown, however, that their properties, particularly their reaction to waters of various quality and their effects on aquatic organisms, are not always innocuous. This applies even to substances that are described as inert and non-toxic for most uses.

Generally, the pure polymers are non-toxic, but additives may be responsible for toxic reactions to fish. In addition to known highly toxic additives, as tricresyl phosphate, the manufacturing process may incorporate various pigments, dyes, fillers or stabilizers, which have unknown toxic effects of fish and other aquatic organisms. Further, many of these products have a surface coating of paint, lacquer, or varnish which in itself may be highly toxic. The major hazard arising from such a coating is associated with the presence of heavy metals, especially lead, although cadmium, barium, chromium, antimony, and various organic dyes frequently are employed, with possible toxic results.

Another plastic material, polyvinyl chloride, is virtually inert in itself; yet chemicals introduced in the compounding of the polymer, including fillers, stabilizers, pigments, etc., may produce toxic hazards to fish. (Reference No. 1) Thus products made of polyvinyl chloride may or may not be toxic to fish, depending upon the manufacture. It becomes apparent that frequently one cannot generalize on the toxicity of certain classes of these compounds.

The U.S. Bureau of Sport Fisheries and Wildlife, Fish Control Laboratory, La Crosse, Wisconsin, has reported a well documented incident of the toxicity to fish of an epoxy cement used to bind fiberglass screen holders to troughs. The cement consisted of an epoxy resin, an amide hardener, and methyl ethyl ketone as a thinner. This combination proved extremely toxic to both rainbow trout and goldfish. The conclusion was that, even in a constantly changing water supply, such a cement should be thoroughly hardened and well flushed or leached before it is used with fish. (Reference No. 3)

Fishery research investigators at the Marine Science Center, Oregon State University, at Newport, Oregon, found that in their work on the culture of the larvae of the bay mussels there was a great deal of variation in the toxic effects of the same class of plastic compound produced by different manufacturers.

The phenoxy resins have Food and Drug Administration acceptability for all food contact uses. (Reference No. 2). Since aqueous solutions of either high or low pH value do not attact phenoxy, it should be in itself rather inert and non-toxic.

The ABS resins have been found to be toxic to fish.

Shellfish research investigators at the Point Whitney Laboratory of the Washington Department of Fisheries have conducted toxicity studies on a great many plastic materials. These were undertaken in conjunction with bioassays of 48-hour oyster embryos. It should be pointed out that the toxic effects were based on embryonic development, and not on the metabolic processes occurring in feeding. Their most significant conclusion was that there was no consistency in the toxic effects encountered; different lots of the same basic plastic material, from the same manufacturers, have varying results. However, some general conclusions were made which, it should be cautioned, do not eliminate the necessity for checking the toxicity of each new lot of plastic material used. The studies at the Point Whitney Laboratory indicated the following:

Polyethylene sheeting generally is non-toxic.
Polyvinyl chloride sheeting generally is toxic.
The rigid polyvinyl-chloride extrusions usually are nontoxic.
Polyvinyl-chloride piping generally has been non-toxic in the past; a new formulation has not been checked.
Based on limited testing, Teflon sheeting was non-toxic.
Saran piping, poly-propylene rope, and fiberglass are non-toxic.
Aged neoprene sheeting and aged neoprene innertubes are toxic.

References Reviewed
Chapter 16
Pesticides & Herbicides
PESTICIDES AND HERBICIDES

The term “pesticide” in its broad connotation may include any substance used for the control of unwanted or harmful animal and plant life. If they are not judiciously applied, the secondary or side effects of many pesticides may be extremely harmful to fish, man and the entire ecological environment. These harmful effects have been increasingly recognized, unfortunately mainly because of disasters to the biota, and a better understanding has developed for the need of pesticide application controls and permissible concentrations in surface waters. Some pesticides have been discarded because of inherent danger, long-term residual toxicities, or cumulative toxic build-up that affects other organisms.

Some target organisms are known to develop strains that are immune to certain pesticides. New and improved chemical compounds are constantly being developed, together with a better awareness of the problems encountered in pesticide use.

The literature is extensive on the occurrence of fish kills and the effects on the biota of the injudicious use of pesticides. A considerable amount of research has been conducted on toxic effects on fish of a vast number of pesticides at various concentration levels, as well as on their residual qualities, the toxic build-up in aquatic organisms caused by prolonged exposure to sublethal concentrations of pesticides, and the transfer effects to other animals, both wild and domestic.

Without attempting to list or describe all of the known pesticide formulations now or formerly used, consideration is given to the principal classes of these products and their effects on fish and other aquatic organisms.

Many solvents, diluents, and other carriers used with pesticides also have toxic properties. Solvents, such as xylene, alkylated napthenes, fuel oil and kerosene, have some toxicity. This effect is believed to be particularly evident in aquatic environments when solvents have an opportunity to be emulsified by riffles in streams. (Reference No. 1)

The addition of synergists and/or various adjuvants to make a particular pesticide more effective has been practiced by the pesticide manufacturing industry for many years. For example, sulfoxide is used as an effective synergist with rotenone. Adjuvants include wetting or spreading agents, stickers, penetrants and emulsifiers. (Reference No. 1)

An important factor that must be considered in the effects of pesticides is the biological magnification. This occurs particularly with the chlorinated hydrocarbons, such as DDT and Endrin. Many animals, including fish (and especially oysters) have the ability to remove organochlorides present at sublethal levels in the surrounding water and store them in their fatty tissues. Death occurs when the animal’s food supply is restricted, the body fat is mobilized and the pesticide that is stored in the fat depots of the body is released into the bloodstream. Equally disastrous is the mobilization of such body fats to form sex products, which may contain sufficiently high levels of the pollutant so that normal development of the young is impossible.

Another serious effect of the biological magnification and storage of toxic residues, for example, is that fish may gradually build up DDT residues of 15 to 20 mg/1 without apparent ill effect, but other fish, mammals and birds preying on these contaminated fish may be killed immediately or suffer irreparable damage. Long term of chronic toxicities, therefore, are more insidious and difficult to define than acute toxicities. Both types for a given compound vary, however, with water temperature, water chemistry and biological factors such as age, sex, size and condition, as well as with the species of fish affected. In making a judgment, it is necessary to measure toxicity of a compound in a specific environment, or to have an estimate of all these factors. “Safe” dosages for DDT range from 0.01 lb/acre, indicating the extent of variation existing as a result of actual and assumed differences in species susceptibility, vegetative cover, water chemistry and other factors. Reference No. 3 gives an excellent list of the toxicity levels of most of the common pesticides.

Because of these complicated factors, there are insufficient data available on the toxicity, both short-term and cumulative, of more than a few common pesticides or their degradation products. Because of their known toxicity it is imperative that the introduction of pesticides or their residues to surface waters be rigidly controlled and minimized by all available means. (Reference No. 4)

In Reference No. 6 it is recommended that in the absence of toxicity data, other than the 96-hour TLm, an arbitrary application factor of 1/100 of this amount should be used as the criterion of permissible levels.

In Reference No. 2 it is pointed out that since fish can concentrate chlorinated hydrocarbons up to 10,000 times, the water quality criteria for these substances should be based on this biological magnification and not on the TLm (50). However, establishment of tolerable concentrations of pesticides for fish requires the consideration of food-chain accumulation, tissue residues rendering the fish unfit for consumption, potential hazard to fish from reabsorption of fat-stored pesticides, and off-tastes or tainting from certain types of pesticides.

The two main groups of synthetic pesticides are the chlorinated hydrocarbons and the organic phosphates. The chlorinated hydrocarbons are the more toxic to fish. Many are stable, not metabolized or excreted to any degree, and remain stored in tissues. As residues in soil and marine sediments, they may persist unchanged for many years and, consequently, present a continuing threat to animal communities. As a general rule, the acute toxicity of this group of pesticides increases with the level of metabolic activity so that their presence may cause two or three times more damage in summer than in winter.

The organic phosphates are generally, but not always, less toxic to fishes. Some have a remarkable synergistic effect, as EPN and malathion, which together cause an increased acute toxicity of 50-fold. Typically, they hydrolyze or break down into less toxic products much more readily than the chlorinated hydrocarbons. Practically all persist for less than a year, while some last only a few days in the environment. Most are degraded rather quickly in warm water and, consequently, are more hazardous to aquatic animals at winter than at summer temperatures.

The carbamate group of chemicals includes one common insecticide called "Sevin." Its acute toxicity to both mammals and fish is quite low and it does not appear to present any problem for fish in the concentrations normally used. The 96-hour TLm value for bluegills was 11.0 mg/1, and for fathead minnows, 41.0 mg/1, at 25° C., using the commercial grade of Sevin, a 50 per cent wettable powder. (Reference No. 1)
The other major group of chemical products that frequently affect fish is the herbicides. These can be divided into inorganic products, such as sodium arsenite, copper sulfate and mercuric chloride (corrosive sublimate) and organic products, such as Aqualin, Dichlobenil, Dichlone and many others.

Herbicides, in general, are less toxic to fish than insecticides, although there are some notable exceptions, as toxaphene. The inorganic herbicides are being replaced in many areas by some of the more effective proprietary organic products.

Copper sulfate is a commonly used algicide. Its toxicity to fish varies markedly with the water chemistry and it is about ten times more toxic to rainbow trout in soft waters (12 mg/1 as CaCO₃) than in hard waters. The sulfates of copper and zinc and those of copper and cadmium are synergistic in soft waters in their toxic effect on fish.

Several rosin amine compounds are used as algicides. Rosin amine D acetate is sold under the proprietary name of Delrad and is also known as RADA. It is toxic to various fish species at 0.4 to 0.7 mg/1. (Reference No. 1)

Various aromatic solvents also are used for the control of submerged aquatic plants, particularly in irrigation canals. Some of these petroleum or coal-tar derivatives are quite toxic to fish, as well as to other aquatic life. In aquaria, Socal No. 3 at 4.2 mg/1 killed from 40 to 60 per cent of the white crappies tested. Ortho Aquatic Weed Killer, which is 95 per cent aromatic petroleum distillate, had a LD₅₀ of 50 mg/1 in 72 hours with 3-inch silver salmon. (Reference No. 1)

The acute toxicity to fish of several commonly used herbicides, namely endothal, diquat, hyamine, dalapon and silvex is reported in Reference No. 5.

The use of 2,4-D has been successful in the control of water hyacinth and other emergent water weeds. It is perhaps the most widely used chemical compound for weed control, and is not acutely toxic to fish. In laboratory tests the lowest concentration of 2,4-D that caused mortality was 100 mg/1. However, certain esters and amines of 2,4-D have been found to be more toxic and, particularly in still, shallow water, may harm fish at dosages used for weed control. (Reference No. 1)

Of particular major concern in any consideration of the effects of pesticides on the aquatic biota are the conditions that may prevail in river estuaries. These estuaries areas suffer the cumulative effects of pesticide residues brought in from long distances upstream. In addition to the long-term residual toxic properties of some of the chemical products deposited in the estuaries, there are synergistic effects that result when some of these products are brought together in this generally favorable environment. The estuaries are extremely important reproduction and living areas in the early life stages of many of our economically important fish and shellfish. The marine crustaceans, such as crabs, lobsters and shrimp, are extremely sensitive to the array of insecticides to which they are exposed. The mollusks are also affected and accumulate large amounts of sublethal concentrations of toxicants in their fatty tissues. In general, shrimp are much more sensitive than fish or oysters to all types of pesticides. For this reason, the Federal Water Pollution Control Administration uses shrimp as a yardstick for establishing safe levels of pesticides that might be expected as toxicants in the marine environment.

References Reviewed

FISH TOXICANTS

In using any toxic substance, it is cautioned that at least two sources be checked for concentration limits to insure that no damage to human, animal or plant life results. In most cases, competent technicians should be employed to apply toxicants. People not associated with the work in general should be excluded during the operation.

Rotenone

Rotenone is the most widely used and accepted fish toxicant because it is effective, comparatively nontoxic to most mammals, rapidly degradable, fairly economical and usually has no permanent serious effects on the nontarget biota. Reasonable care should be used in handling and applying rotenone, however, since eye inflammation and skin irritation may occur from continuous exposure to the dry, powdered form. Persons exposed to emulsifiable rotenone spray should wash immediately exposed skin surfaces.

The powdered form, usually containing 5 to 20 per cent of the active rotenone ingredient, may be the most economical if manpower requirements for application are discounted. However, the toxicity of the dry, powdered root is known to decline in storage, especially at higher air temperatures.

The liquid, emulsifiable rotenone products available commercially remain stable in sealed metal containers, and have the advantage of easier application; however, the price is higher than that of the powdered root.

Special commercial formulations of emulsifiable rotenone also are available and have some advantages in certain situations. One commercial preparation disperses more rapidly in both a downward and horizontal direction and, therefore, is better adapted to deep waters.

Some commercial preparations contain synergists which, it is reported, produce equally toxic effects with a lesser amount of the rotenone ingredient. One of the synergists used is piperyl butoxide. Another preparation uses sulf oxide as a synergist. Comparative results vary in different bodies of water with the synergistic products and those containing only rotenone, other cube extractives, and the carrier. It should be pointed out, however, that any of the emulsifiable, liquid rotenone preparations available may impart an undesirable taste to fish salvaged for food. This may be a considerable factor in favor of using the dry, powdered root where a large kill of desirable food fish is anticipated.

There are several simple arithmetic methods of determining the amount of rotenone needed to produce a desirable toxic level in a body of water, using either the dry, powdered root or the liquid, emulsifiable preparation. There are also some short cut methods that are convenient in field work. Correction tables are available that allow for variations in the actual amount of toxic ingredients, as well as nomographs for quick determination of the rate of disposal required for running waters and amounts of toxicant required.

Small ponds usually are measured in cubic feet and total pounds of water (1 cu. ft. = 62.4 lbs.)

\[
62.4 \times \text{cu. ft. of water} = \text{lbs. of dry root required for 1 ppm}
\]

\[
\frac{1,000,000}{1,000,000} = 1 \text{ ppm (5% rotenone content)}
\]

For larger water areas:

\[
\text{Surface acres} \times \text{av. depth in feet} \times 2.72 = \text{lbs. dry root required for 1 ppm (5% rotenone content)}
\]

Using emulsifiable (liquid) rotenone:

\[
1 \text{ gal. emulsive per 3 acre feet} = 1 \text{ ppm by volume or 0.328 gal. (2.6 pints) per acre foot} = 1 \text{ ppm by volume}
\]

The rotenone concentration required to obtain a complete kill varies with a number of factors, including the target species, water temperature, water quality, pH, turbidity and dissolved oxygen. The required concentration will range between 0.5 and 2.0 ppm. A minimum concentration of 0.5 will give good results with most species of fish under favorable conditions; that is, when the water temperature is not higher than 55 to 60° F. from top to bottom, the pH is near neutral, the dissolved oxygen is low and the water is not turbid. If carp, catfish or other resistant species are present it may be necessary to use a concentration of 1 to 2 ppm, with repeated treatment, to eradicate them, particularly if there are springs or other uncontrollable sources of untreated water inflow.

Rotenone exhibits selective toxic effect on some species of fish at certain concentration levels. Temperature and water chemistry also are critical factors in obtaining a selective toxic effect. In managing mixed populations of warmwater species, it is often possible to obtain a selective action with rotenone, as in the control of gizzard and thread-fin shad. (Reference No. 17)

Special rotenone preparations are available that will or will not penetrate the thermocline readily. Although trout are very sensitive to rotenone, low levels of concentration (0.025 to 0.01 ppm) have been used to reduce the population of warmwater fish in the epilimnion without harming trout in the hypolimnion.

Antimycin A (Fintrol)

Antimycin is a powerful antifungal antibiotic that was developed at the University of Wisconsin. Since 1963 the Bureau of Sports Fisheries and Wildlife Fish Control Laboratory at La Crosse, Wisconsin has conducted extensive laboratory and field tests of Antimycin A as a fish toxicant. (Reference No. 13) This work has shown that Antimycin A has some very remarkable properties as a fish toxicant. It is absorbed into the gills of fish and kills by interfering with the respiration of body cells. Its action is irreversible and, once a fish has had brief exposure, it is doomed.

Only very small quantities of the substance are required to cause lethal effects with fish, a concentration of 1 to 5 parts per billion being sufficient with most of the species tested. Antimycin A kills fish at both cool and warm water temperatures, but toxicity increases with water temperature. It does not repel fish. Plankton, aquatic plants, amphibians and bottom fauna are not affected by the concentrations used to kill fish. Its toxicity to mammals is very low. It degrades rapidly in water and detoxification occurs within 24 to 96 hours. The toxicant is slightly more effective in soft waters.
An important feature of Antimycin A is that it can be used as a selective toxicant if applied at the proper concentration level. Carp, pumpkinseed and bluegill sunfish are among the species more sensitive to Antimycin A. Freshwater catfish are among the less sensitive species. In one field experiment large populations of carp and green sunfish were completely eradicated by a concentration that allowed northern pike and largemouth bass to survive.

Antimycin A is also toxic to fish eggs at somewhat higher concentrations. This is a marked advantage in some trash fish eradication projects.

Antimycin A can be readily detoxified by the use of potassium permanganate. In one test 10 parts per billion of toxicant were deactivated by one part per million of potassium permanganate.

Since the antibiotic was shown to be extremely toxic at concentrations as low as 1 ug/1 (parts per billion), a problem arose in obtaining adequate dispersal of the small amounts required. This led to the formulation of Antimycin A on sand to facilitate dispersal, and in application to temperature-stratified and/or weed-infested waters.

Another interesting feature of Antimycin A shown by work at the La Crosse Fish Control Laboratory is its synergistic interaction with rotenone. The toxic effect of Antimycin A occurs more slowly than that or rotenone. However, the LC50 (lethal concentration causing 50 per cent mortality) in a specified time after 48 hour and 96 hour exposures of rainbow trout and bluegill to 12° C. (55.6° F) showed that the combination of Antimycin A and rotenone is more toxic than either of these toxicants alone. (Reference 12)

In summary, Antimycin A at concentrations ranging from 0.1 ug/1 to 2.0 ug/1, depending on pH and water temperature, will kill highly sensitive species such as trout, perch, herring and gizzard shad. Slightly less sensitive species, as carp, minnows and sunfishes, may be effectively controlled at concentrations of 2.0 ug/1 to 10.0 ug/1. Highly resistant species, as freshwater catfish, gars and bowfins may require concentrations of 10.0 ug/1 to 20.0 ug/1, depending on water conditions.

The possible disadvantages to the use of Antimycin A are two. First, a rapid degradation of the antibiotic occurs under some field conditions, particularly where the pH is high (approaching 10) and there is an abundance of free hydroxyl (OH) ions. Under such conditions, the rapid degradation of the toxicant has been known to allow some fish to escape. Second, Antimycin A, used at the recommended concentrations, at present is much more expensive than rotenone. When formulated with sand as a carrier, it is bulky and heavy, resulting in high shipping costs.

The Wisconsin Alumni Research Foundation licensed the Ayerst Laboratories, New York, to produce and market Antimycin. The commercial product is called “Fintrol.” It was registered as a toxicant in June, 1966 and has been approved by the Pesticide Regulations Division of the United States Department of Agriculture for use in freshwater fishery management.

Chlorinated hydrocarbon compounds

Many of the organic pesticides, and particularly the chlorinated hydrocarbon compounds, have been used at higher than normal concentrations as fish toxicants. They have the same objectionable features as piscicides that they present as pesticides; i.e., their long-lasting toxicity, transfer and build-up effects on other portions of the biota.

The most commonly used chlorinated hydrocarbon insecticide, which also has been widely used as a piscicide, is toxaphene (chlorinated camphene). Toxaphene is very effective and economical as a fish toxicant, as it is lethal to all species at about 0.2 ppm and to trout at much lower concentrations, depending on water quality and physical conditions. (Reference No. 22) However, wide variations have occurred in the length of time lentic waters have remained toxic after treatment with toxaphene; some waters have remained toxic for a year or more. For this reason, and also because of the effects on the entire biota, including cumulative toxic effects in the food chain, the use of toxaphene as a fish toxicant has been largely discontinued by most fishery managers.

The herbicide, acrolein (Aqualin), has been used experimentally as a fish toxicant. It is effective against most species, including carp, at 3 ppm, but is more expensive than rotenone. (Reference No. 21)

Endrin, a chlorinated hydrocarbon insecticide, also has been used as an effective fish toxicant at very low concentrations. The same objections apply to endrin as a piscicide that apply to other chlorinated hydrocarbon compounds.

Organophosphates

Recent research indicates that some organophosphates, including Ethyl Guthion, GC-3582 and GC-3583, may offer outstanding possibilities for the control of trash fish. These materials are known to be unstable in water and are believed to have little or no accumulation tendency in nontarget components of the biota. (Reference No. 10)

It has been shown recently that Bayer 73 (commercial Bayluscide), an effective molluscicide, is also highly toxic to at least 18 species of freshwater fish. Various temperatures and water qualities in static bio-assays do not influence the toxicity greatly, but pH variations in chemically-buffered solutions do. The biodegradability, efficacy and relative safety of Bayer 73 indicate its possible future usefulness as a general fish toxicant. (Reference No. 15)

Sodium Cyanide

Another chemical that is very effective as a fish toxicant is sodium cyanide. (Reference No. 9) It is not used extensively because it has not been approved by the U.S. Food and Drug Administration. Approval has not been given because of possible potential danger to the applicator. When sodium cyanide is dissolved in water, it forms hydrocyanide acid and may release a small amount of hydrogen cyanide gas at the surface. Lethal amounts of this gas are released if the chemical comes in contact with an acid.

Cresol

Commercial cresol has been used in some areas, mainly as a fast-acting means of sampling fish populations in small streams. It provides a useful collection method in streams where the low conductivity of the water renders electric shocking methods ineffective.

Cresol is available in various concentrations, based on its phenol equivalent as a disinfectant. The most effective use is obtained from the highly concentrated phenolic emulsifiable disinfectant (coefficient 30). It should be cautioned that this is highly toxic to humans and extreme care should be taken to avoid contact of the chemical with any part of the body.
The application rate is determined by stream velocity, volume, temperature and water quality; however, 1 gallon of cresol (p.e. 30) per 4 second feet usually will treat 100 yards of stream.

Fish normally surface within two minutes after treatment is started and may be easily captured. A good feature of cresol is that affected fish usually recover in fresh water within three to five minutes. Fish not captured immediately after they exhibit distress revive rapidly as the treated water is displaced. (Reference No. 8)

Selective toxins

A refinement in recent years in the field of pesticides application has been the development of selective toxins. These are extremely valuable tools for the fishery manager, and it is anticipated that research and field trials presently underway on additional selective toxins will be of great future benefit.

The most intensive work and large scale application of a selective toxin has been the development on the Great Lakes of an effective lamprey larvicide. Hundreds of chemical compounds were screened before an effective nitrophenol compound (TFM) and its nitrosalicylanilide synergist (DCN) were selected. This work is well documented and offers the best hope of restoring the lake trout populations in the Great Lakes area. (Reference No. 16)

The recent development of another selective toxin is of particular interest in the Pacific northwest, where infestations of squawfish in lakes and reservoirs often present a problem to the fishery manager. This toxicant, which is selective to squawfish, was developed by Dr. Craig MacPhee, assisted by Mr. Richard Ruelle, at the University of Idaho. (Reference No. 23) The chemical compound was developed as the result of an extensive bio-assay screening program sponsored by the Bureau of Commercial Fisheries, Columbia River Fisheries Program Office.* The compound, termed "Squoxin," is a nonchlorinated hydrocarbon, C 21 H16 O2, referred to as methylene-1,1'-di-2-naphthol. The patent for its use has been assigned to the United States Government. The compound acts on the nervous system of the squawfish as a vaso-constrictor, thus preventing efficient use of oxygen and the proper function of the capillaries. It has the following attractive features:

1. It is lethal to squawfish at the low concentration of 0.1 ppm and is not harmful to salmon or trout at this level.
2. It has no effect on aquatic insects or other fish foods, humans or land animals.
3. It is a slow-working but short-lived toxin that becomes ineffective within a few hours.
4. It does not act as a repellant; fish apparently are unaware of or undisturbed by its presence.
5. It is economical and efficient. It is easy to provide metered application of the liquid toxicant. Good water diffusion is obtained.

* See Reference No. 24

Thanite

The common liquid insecticide sold under the name of “Thanite” is 82 per cent isobornyl thiocyanatoacetate and 18 per cent other active terpenes. It has been shown to be an effective selective toxin in warm water fishery management. This product is two to three times more sensitive to centrarchids, than bluegill and green sunfish, as well as rainbow trout, it is to cyprinids and ictalurids, as the golden shiner, channel catfish and black bullheads. Since overcrowding by sunfish as forage species is a common problem, Thanite is an effective tool. It has another advantage in that adult bass and sunfish can be salvaged unharmed if promptly removed to fresh water. The action of Thanite is similar to that of sodium cyanide, but it is not so potentially dangerous to handle as cyanide. The cost of treatment with Thanite is comparable to that with rotenone.

It should be mentioned that the use of isobornyl thiocyanatoacetate has not been approved by the U.S. Food and Drug Administration for fish population control, and it probably will be confined to experimental fish control work. (Reference No. 5)

* Conversion table to determine number of 50-pound bags per 1,000 pounds when rotenone content varies between 5 and 10%.

<table>
<thead>
<tr>
<th>Rotenone percentage (indicated on bags)</th>
<th>Number of 50-pound bags required to get the equivalent of 1,000 lbs. of 5% rotenone.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0%</td>
<td>20.0</td>
</tr>
<tr>
<td>5.2%</td>
<td>19.23</td>
</tr>
<tr>
<td>5.4%</td>
<td>18.52</td>
</tr>
<tr>
<td>5.6%</td>
<td>17.86</td>
</tr>
<tr>
<td>5.8%</td>
<td>17.24</td>
</tr>
<tr>
<td>6.0%</td>
<td>16.67</td>
</tr>
<tr>
<td>6.2%</td>
<td>16.13</td>
</tr>
<tr>
<td>6.4%</td>
<td>15.63</td>
</tr>
<tr>
<td>6.6%</td>
<td>15.15</td>
</tr>
<tr>
<td>6.8%</td>
<td>14.70</td>
</tr>
<tr>
<td>7.0%</td>
<td>14.29</td>
</tr>
<tr>
<td>7.2%</td>
<td>13.89</td>
</tr>
<tr>
<td>7.4%</td>
<td>13.51</td>
</tr>
<tr>
<td>7.6%</td>
<td>13.16</td>
</tr>
<tr>
<td>7.8%</td>
<td>12.82</td>
</tr>
<tr>
<td>8.0%</td>
<td>12.50</td>
</tr>
<tr>
<td>8.2%</td>
<td>12.19</td>
</tr>
<tr>
<td>8.4%</td>
<td>11.90</td>
</tr>
<tr>
<td>8.6%</td>
<td>11.63</td>
</tr>
<tr>
<td>8.8%</td>
<td>11.36</td>
</tr>
<tr>
<td>9.0%</td>
<td>11.11</td>
</tr>
<tr>
<td>9.2%</td>
<td>10.87</td>
</tr>
<tr>
<td>9.4%</td>
<td>10.65</td>
</tr>
<tr>
<td>9.6%</td>
<td>10.42</td>
</tr>
<tr>
<td>9.8%</td>
<td>10.20</td>
</tr>
<tr>
<td>10.0%</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Example:

If a biologist desired 17,000 pounds of rotenone and the material on hand was labeled 6.8%, he would get 17 times 14.70 which equals 249.9 or 250 50-pound bags.

* From State of Washington Department of Game Table.
References Reviewed

Chapter 18
Avoidance
AVOIDANCE

Basically, avoidance can be defined as a reluctance or refusal of fish to move from one place or situation to another. Avoidance reaction can be immediate or from long-term exposure to a changed condition.

Fish apparently do not recognize danger areas if they are already adapted to conditions as the high velocities that may exist at diversions. If downstream migrants are in high velocities, they may choose to remain there and avoid changing to lower velocities. Conversely, if they are in low velocities they may refuse to enter higher velocities, such as those encountered in ferrying across a stream or screen face. Upstream migrants do not avoid high velocities, although such velocities can result in their being swept into the buckets of dams. (See chapter “Swimming Speeds.”) Fish may enter areas of high turbulence by darting movement but normally they avoid such areas at sustained swimming levels.

In general fish may become locked into a situation, whether good or bad.

Fish may avoid high temperatures as they are capable of sensing low temperature differences, but they may remain in temperatures at their upper tolerance level for long periods of time before moving to cooler areas. This could be defined as long-term avoidance. (See chapter “Temperature - Effects of Fish.”) Fish acclimated to high temperatures that are near their upper tolerance may more readily move to even higher temperatures than do fish that are acclimated to temperatures well below this threshold. Conditioning preceding avoidance movement may be the important triggering effect.

Fish may avoid pressure changes, although they can become accustomed to considerable depth over a period of time.

Fish may avoid light intensity changes, both high and low, as they do when seeking shadow areas in fishway passage. (See chapter “Artificial Guidance.”)

Fish may avoid sudden noise or movement, but ignore the same noise or movement if it continues over a long period of time.

They may enter contaminated areas even if such are danger areas as they apparently do not recognize all contaminants.

They will avoid electric shock but there is no evidence that they have a directional response if trapped in moving water, under which condition they may dart into a field. In still water they may learn to avoid electric stimuli.

Fish do enter areas of low oxygen level, apparently seeking ways through such areas, but generally appear to avoid total areas of low oxygen levels simply because of their inability to survive within. Fish are known not to avoid water with supersaturated nitrogen and may be so trapped and killed. Siltation levels must be high to cause long-term avoidance. (See chapter “Silt and Turbidity.”)

Their general behavioral pattern of movement indicates that they will ultimately seek velocities near their cruising speed limit for movement. They will penetrate silted water. They will generally avoid bright lights. They will adapt to both temperature and depth or pressure situations if not lethal. If held in waters near their upper tolerance level, they ultimately will seek cooler waters. They also may seek cooler waters, if food is in short supply or if conserving body fats is required. They will respond to shadow and light patterns, generally favoring cover. In clear water downstream migrants usually move in darkness periods, but under turbid conditions they will move in daylight.

Fish react to certain chemicals, although not many have been tested. If possible, they apparently avoid sublethal levels of copper and zinc. They may avoid chlorine as low as 1 milligram per litre but, if locked into a situation where chlorine is present at levels of 0.1 mg/1, they may choose to remain there, although the concentration finally may be lethal. Fish do not avoid all pesticides and herbicides, although salmon and trout react by refusing to enter areas that have 2,4-D in extremely low concentrations.

Fish normally avoid exposure and constriction, although these tendencies are negated when they are required to accept trapping by movement from a larger to a smaller space to gain direct movement. Transition should be provided to avoid abrupt spatial changes.

Fish avoid odors and apparently are able to recognize the representative odor of their home stream. Odors that cause sharp reactions are those of mammalian skin, particularly man, dog and bear in which L-Serine has been identified. A single introduction of L-Serine may cause avoidance of up to 20 minutes. There is good evidence as to the synergistic effects of various combinations of temperature, light and odor; therefore, the most acceptable level known should be provided at all passage facilities.

References Reviewed

5. Kleerekoper, Herman, “Olfaction in fishes.” Indiana University Press, Bloomington. 1969. (No part of this book may be reproduced without permission in writing from the publisher.)

HATCHERIES

Hatcheries have an important place in fishery management. In recent years their efficiency has been greatly increased by the application of increased knowledge of the biological needs of fish and by improvements in fish cultural methods in the areas of egg hatching facilities, rearing procedures, and disease prevention and control. This increased efficiency has resulted in increased growth and higher survival rates for juveniles, and, therefore, greater adult returns. Planting techniques have not improved proportionately.

The values of hatcheries lie in several functions: (1) to mitigate fish losses caused by construction of barriers to natural spawning and rearing areas and/or diversion of stream flows for water uses; (2) to maintain and increase overexploited fish stocks; (3) to mitigate fish losses caused by pollution or alteration of the natural environment; (4) to stock or rehabilitate habitable areas where fish populations have been eliminated or badly depleted by unfavorable conditions or to utilize new areas not available because of obstructions; (5) to enhance production in areas where natural production potential (rearing capacity) is not realized; and (6) to introduce species that are suitable to an altered environment, as are warm-water or pan fish to certain reservoir areas.

Hatchery production of Pacific salmon includes all five West Coast species. The best results are obtained with coho and fall chinook salmon. Spring chinook are now being successfully handled in limited areas. Some kokanee (land-locked sockeye) eggs also are taken at a few locations for lake and reservoir stocking.

Hatchery production of trout is concerned chiefly with indigenous or long-established species, principally steelhead and resident rainbow. Native cutthroat trout are propagated in some areas where they occur naturally. The introduced Eastern brook chartr is propagated to a limited extent for special stocking requirements, such as high mountain lakes where it is self-sustaining. Only small numbers of brown trout, another introduced species, are reared.

There are many hatcheries for warm-water species whose specific function is to supply game fish. There is a large industry dependent on pond culture for various species. The most recent is the use of heated water effluent in fish cultural work to speed up the hatching and rearing time or to make available large numbers of fish in warm water pond rearing.

Few hatcheries are ideally suited for handling both warm and cold water species and few are suitable for both maintaining a brood stock and rearing salmon. Rainbow trout brood stock will not produce satisfactory eggs if the water temperature is constantly over 56° F., whereas salmon and steelhead fingerlings for rapid growth require water in the upper portion of the optimum temperature range (55 to 60° F.).

Around the 50th parallel, incubation temperatures below 42° F. have an adverse effect on salmon and rainbow trout eggs, causing excessive losses. It is recognized that north of this parallel the optimum requirements decrease and south of this parallel they increase. The change in the optimum temperature range may also be affected by latitude. Then the amount of water required for egg incubation at locations where heated water can be obtained cheaply makes it heating to optimum range feasible, thereby increasing the efficiency of the hatchery.

Sudden drops or rises in temperature should be avoided during the critical tender stages of egg development.

Warm-water fish, including largemouth bass, sunfish, catfish, and crappie, are not propagated extensively in the Northwest because of their limited use and because it is normally a cold-water environment.

In contrast to fishery management policies that have required further restrictions on fishing seasons and gear for catch limitation, properly planned hatchery operations may often permit greater catches. (See references No. 5, 11, 18, 21, 32, 33, and 35.) Continuing studies during recent years indicate an overall benefit-cost ratio between 2 and 3 to 1 for hatcheries. The estimated average catch-escapement ratio for the hatcheries under study was between 3 and 6 to 1. (See references No. 5, 33, and 35.)

For species differences as to timing, fecundity, and size, see chapters "Useful Factors in the Life History of the Most Common Species" (For egg sizes see table beginning page 34) and "Spawning Criteria."

In site selection for a once-through-flow-system hatchery, the primary requisite is a constant, ample supply of clear, good quality water, within the optimum temperature range and free from disease organisms. (See chapter "Temperature - Effects on Fish."

The water supply must be adequate to maintain a year-round sustained flow for the hatchery and pond system in accordance with the planned fish production capacity. It must be legally protected from upstream diversions, impoundments, or degradation of water quality. Its source may be rivers or small streams, deep wells, artesian wells or springs, lakes or reservoirs, or a combination of sources, each of which has advantages and peculiar problems. Streams and rivers are subject to fluctuation, which usually carries considerable amounts of debris that require screening at the intake. Silt is also a problem in some streams, and requires a settling basin.

Streams, lakes, and reservoirs support hosts that transmit disease organisms. Deep wells require pumping and frequently carry an excess amount of nitrogen that must be dispelled. Lakes and reservoirs often promote excess algae growth; they also may present temperature problems, depending on the extent of water level fluctuation and the location of the hatchery water intake. A multi-level intake may be required. All intake from streams and lakes require that small fish be screened out of the water supply. In cold areas the intakes must be protected against freezing or frazil ice.

Hatcheries should be located away from flood plains or adequately protected from floods.

Reliable power supplies must be available within reasonable distance for station operation or from a supply on station.

The hatchery should be accessible by good roads at all seasons, as well as within reasonable distance of schools, stores, and other living requirements of station personnel. Ease of communication is also an essential item.

Water recirculation and reconditioning offer advantages, particularly where the amount of water available and the incidence of fish diseases are limiting factors. The cost of
recirculating water versus the cost of a once-through system can be compensated for by increased fish production. (See reference No. 20.) Recirculating systems may be used at either hatcheries or rearing ponds, or at both. The water re-use requires a replacement supply of 5 to 10 percent.

A major problem in a water recirculation system is the gradual buildup of metabolic wastes. In reference No. 37 it is shown that at stocking rates of less than five pounds of fish per gpm, urea was the principal product, and had no apparent harmful effects; however, above five pounds of fish per gpm, ammonia was dominant, and was toxic to fish when they were continuously exposed to concentrations of the un-ionized form as low as 0.006 ppm. A biological filter system is needed to provide nitrifying bacterial beds for the transformation of ammonia wastes into harmless nitrates. pH control can be satisfied by using oyster shells or chemical additives. Oxygen replenishment and carbon dioxide dissipation is accomplished by re-aerating devices in the water reconditioning system which will provide 90 to 100 per cent aeration at saturation levels. The small amount of replacement water required has several advantages. It makes sterilization easier when using sand filters and ultraviolet radiation. The filters first remove particles larger than 15 microns, including silt, protozoan disease organisms, and parasitic trematode worms. This is a necessity to allow for use of ultraviolet radiation, which is effective in destroying disease organisms smaller than 15 microns, including some protozoans, bacteria, and viruses. Water temperature control in a re-use system frequently can be achieved by the amount of replacement water introduced. Another method is to route approximately 10 per cent of the recirculating water, or as needed, through a heat exchanger for cooling or heating. (See reference No. 20.)

For the control of parasites, disease organisms and bacteria other than by ultraviolet methods, see chapter “Fish Diseases - Types, Causes and Remedies.”

Egg losses in hatcheries have been greatly reduced by the introduction into the water supply of fungus-inhibiting chemicals, such as malachite green. One such system is shown on Exhibit A.

Topical treatment of affected trout brood stock sometimes is undertaken. Careful handling and avoidance of overcrowding will reduce injuries and abrasion, which serve as an entry point for Saprolegnia, the common fungus infection. Some fish culturists prefer to keep brood stocks in earth ponds in order to avoid abrasions from concrete walls.

Excessive growth of algae in hatchery water supplies may clog screens, valves and nozzles, and, in extreme cases, hinder fish activity by clogging gills and interfering with respiration. Heavy crops of algae in warm-water ponds may produce oxygen supersaturation in daylight and sufficient depletion at night to cause fish kills. A method of overcoming this is to increase the number of water changes per hour. Algae grow in great profusion in water courses rich in nutrients. Green algae grow best in water temperatures of 77 to 95° F. but are found at lower temperatures. Blue-green algae, often considered as one indicator of water pollution, grow best in water temperatures of 86 to 104° F. but are found at temperatures below this range.

Copper sulfate is the most widely used chemical for control of microscopic and single-filament algae. It is not effective against branched forms or leafy waterweeds. The effective concentration may be close to the tolerance level for fish, especially salmonids, depending on mineral content of the water and, if used, must be closely regulated. In soft water with a total alkalinity of 50 ppm or less, the maximum dosage of copper sulfate considered safe for fish is 0.25 ppm for a single application. In hard waters where total alkalinity is above 50 ppm, concentrations up to 1 ppm or even higher may be used, depending on the total alkalinity.

Certain commonly sold commercial materials should be avoided in hatchery constructions where they would come in contact with the water supply, such as copper, galvanized pipe, cadmium plated screens and fittings, some aluminum and low numbered stainless steel alloys and lead (including solder). Bronze fittings and impellers should be avoided.

Many paints, particularly rust-preventative types, lacquers, varnish, and some plastics, contain materials that may be toxic.

Creosote, which contains phenol, must be avoided.

Fresh concrete may be somewhat toxic until it has been leached in running water or thoroughly cured.

See chapters “Toxicities of Elements and Compounds,” “Plastics,” “Pesticides and Herbicides,” “Water Quality,” and “Metals.”

Adult salmon and steelhead ponds require special consideration. Large ponds are prefered to avoid overcrowding. Within suitable dissolved oxygen and water temperature ranges, adult holding capacity is based on a maximum of two pounds of fish per cubic foot of water, with a complete water change 1.5 times per hour. Where possible, holding ponds should be located where there is a good attraction flow to encourage voluntary entrance of spawners. In general, they should be adapted to eliminate unnecessary handling, and for convenience in spawning operations.

Frequently they are built in tandem as an aid in separating male and female, as well as sexually mature and immature fish. Freeboard up to six feet may be required to prevent fish from jumping out of the pond. A portion of the pond surface is sometimes screened to provide shade as an aid in keeping the fish quiet. Some holding ponds are made with sloping side walls to discourage jumping. In ponds with a surface inflow through a rack or screen at the upper end, a considerable amount of crowding, jumping and fighting the intake structure may occur, with consequent injury to fish and eggs. This can be eliminated by providing an upwelling type of water inflow from the bottom of the pond.

Trout brood stock ponds usually do not differ greatly from the type generally used for rearing, except that they may be larger and deeper. As the fish are held for indefinite periods, the trout brood stock pond usually is operated considerably below its maximum capacity under ideal conditions of oxygen and water temperature. Some fish culturists prefer partially shaded earth ponds for this purpose to simulate natural conditions and prevent unnecessary disturbance and possible injury to the fish. All ponds should be provided with complete drainage facilities. In sockeye holding ponds, the upwelling method is the only one that is acceptable. See chapter “Rearing Ponds” for currently used sizes and loading capacities versus water supplies.

The main hatchery building is used primarily for egg incubation and initial feeding of fry, and includes storage room for baskets, trays, screens and other fish-cultural equipment, as well as personnel facilities, including office and laboratory space. The building should be located near the ponds and other station operations. A conventional sal-
mon hatchery might be provided with troughs 16 feet long, 16 inches wide and 16 inches deep, placed in tandem with individual water intake gate valves. In salmon hatcheries the newly-fertilized eggs are water-hardened, measured and placed immediately in hatching containers. Depending on the type of hatching container (basket, tray, barrel or box) individual egg capacities may vary from 30,000 to 50,000 per basket, from 8,000 to 10,000 per tray, and from 250,000 to 500,000 in a barrel or box. The capacity of these containers depends on the following: egg size (see Table 1), availability of oxygen (See Chapter, Oxygen) and needs of individual species. When trays are used for chum fry, biological rings are recommended.

It has been found that hatchery fry at swim-up time are generally smaller than fry emerging from natural spawning grounds. Fish culturists have developed various methods to increase the fry size, which lessens growth time and, consequently, improves survival rate.

After the first 24 to 48 hours, the eggs become tender and are not handled until they reach the eyed stage, which usually occurs in two to three weeks, depending on temperature, or within approximately one-third of the total incubation period. In five or six weeks after hatching, the yolk-sac fry or alevins absorb all of the yolk material, swim actively toward the surface and start feeding. When the eggs are eyed, they usually are shocked by syphon action, the infertile eggs are removed, and the others placed on trays and stacked. As the embryo develops, the oxygen requirement increases. Eyed eggs require 12 to 20 (an average of 15) gpm inflow per trough, with the water directed up from the bottom through each tray. Salmon and trout fry may be transferred to ponds or feeding tanks as soon as they reach the feeding stage.

A minimum aisle working space of two feet must be provided between each battery of two troughs. A working space corridor across the hatchery at each end of the troughs of at least six feet in width is recommended. Troughs may be constructed of wood, concrete, fiberglass or aluminum.

Many trout hatcheries and some salmon hatcheries use shallow troughs 16 feet long, 12 inches wide and 8 inches deep. This type of trough might be used to incubate up to 50,000 steelhead eggs per basket, 6 baskets per trough, and to feed up to 25,000 or 50 pounds of fry at a water inflow of 10 gpm. Care must be taken that baskets and screens are not clogged with egg shells at the time of hatching. Steelhead fry usually are transferred to rearing ponds when they reach a size of about 100 fish per pond.

The amount of food fed daily to various species of salmon and trout is based on a percentage of body weight, taking into consideration the type of food, the size of fish and the water temperature. See Exhibit F.

In newer hatchery design vertical incubator cabinets have replaced troughs, and there is a current trend to replace a part of the cabinets with barrels or boxes. Incubator cabinets reduce the amount of water required for incubation but, more important, they require only about one-half the amount of floor space as troughs, with a proportionate reduction for the barrels or boxes. A typical eight-tray incubator cabinet measures approximately 2 feet square and 2-1/2 feet high. Two such cabinets may be stacked vertically. The frames may be made of aluminum, and the trays of fiberglass reinforced polyester resin. The eggs remain in the trays until the normal swim-up and the start of the feeding stage.

Frequently eyed eggs are transferred from one hatchery to another. This may occur when one station has surplus eggs. It is much easier and more economical to transport eyed eggs than small fish. Some stations may have colder water that is better adapted to egg incubation. The optimum temperature range for salmon egg incubation is 45 to 55° F. Other stations may have warmer water better adapted to the rapid rearing of fingerlings. Temperatures of 55 to 60° F. are desirable for salmon rearing. This is also an important consideration in the hatching and rearing of trout. These factors must be weighed against the possibility of straying, if fish are transferred among stations to lessen the growing time.

To prevent possible disease transmission, eggs should be disinfected before being transferred to another hatchery.

Provision should be made in hatchery design for various labor-saving devices. These include such items as automatic fish grading and sorting equipment for use in ponds, automatic fish feeding equipment, bin loaders and fish food conveyors, adequate driveways between ponds, self-cleaning screens, fish pumps or other mechanized fish loading equipment, and convenient fish weighing facilities.

An adequate cold room for storage of fish food must be provided at a convenient location on the station. Its capacity depends on the extent of the rearing program, but generally a minimal capacity of 60,000 pounds is desirable. This is because food deliveries for reasons of economy usually are made in 40,000-pound lots. Dry foods should be stored at a low humidity and dehumidification equipment now is included in plans for such storage areas. Since the advent of improved pellet foods, extensive and fast-freezing facilities are not required. Large food preparation rooms, with food cutting, grinding, and mixing equipment no longer are necessary. A recent concept for large installations is the construction of bulk fish food storage areas, using one-ton bins and bin loaders. This takes less space and is more economical than storing food in 50-pound sacks.

Recent studies of effluent discharges from several hatcheries conducted by the Federal Water Quality Administration indicate that, in order to comply with applicable water quality standards, some waste treatment method must be adopted. Some remedial measures may be required at existing hatcheries, and water treatment facilities should be included in designs for new hatcheries.

The problem of water pollution from hatchery discharge lessens if a hatchery uses a water reconditioning and re-use system, which results in a lesser outflow. Partial treatment also is affordable by biological filters and ultraviolet sterilization; however, the discharge of filter backwash and skimming water one or more times daily may create some problems. An adequate hatchery waste disposal system should provide filtration and aeration facilities, sedimentation by means of a settling basin, and means of disposing of solid wastes. Two-hour holding should be considered. Chemical treatment of waste water also may be required. The once-flow-through type of pond system using much larger flows, presents greater problems in designing pollution control equipment.

Shop and garage buildings are required, usually combined, where station automotive and other equipment can be maintained. Automotive equipment should include one or more pickup type trucks for hauling equipment and supplies, and should be capable of carrying a small, 200-gallon capacity portable fish distribution tank.
The number and size of fish distribution units depends on the pounds of fish to be delivered. Often larger units are planned to serve the needs of several hatcheries in a region. See chapter "Transportation - Mechanical Hauling of Fish."

A separate small fireproof building should be provided for storage of paint and volatile or highly inflammable liquids.

Adequate fire protection should be provided for all buildings, with fire hydrants and hoses at convenient locations.

Satisfactory family housing, as well as bachelor quarters, should be provided for permanent members of the hatchery staff. It is advantageous to have a minimum number of employees living on the station in the event of emergencies and as a precaution against theft and vandalism.

Other items of consideration in hatchery design include the water pipelines, gradients for gravity flows, intakes and discharge structures. Adequate valves must be provided at the intake and throughout the hatchery and pond system so that the water can be controlled and distributed as desired. Trash racks and self-cleaning screens may be necessary on the water intake structure. Alarm systems should be installed to give positive warning in case of either power or water supply failure. Diesel-powered electric generators should be available on a stand-by basis in the event of a major power supply failure. Diesel-powered electric generators should be available on a stand-by basis in the event of a major power supply outage, particularly where pumping is required.

Eggs and fry must be protected against direct sunlight. Hatchery rooms should remain in darkness when not being serviced by personnel. Filament lighting is recommended over fluorescent lighting. General illumination should be held at a level to make possible safety and movement. Direct working light should be provided for servicing troughs and cabinets.

Civil Service and other labor requirements may dictate the number of people at a station. The general policy is to maintain as few permanent personnel as possible, augmenting this force by temporary help during the fish-handling season.

For comparative purposes, one man-year is required for each 20,000 to 25,000 pounds of fish produced.

There are many means of marking and tagging fish to measure recovery. Some of the methods that have been developed in recent years are described below.

Tetracycline is included in the diet of young fish to cause a deposit to form in the bony tissues which becomes a fluorescent gold color when illuminated by ultraviolet light.

Cold-branding of young salmon and steelhead has been used successfully for short-term marking (about six weeks), with some brands remaining visible for a much longer period. The branding tool is cooled in a mixture of acetone and dry ice at minus 78° C. Liquid nitrogen may also be used as a cooling agent.

Various tattooing and metal dart inserting instruments have been developed and radioactive isotopes have been used experimentally.

One of the chief objections to most fish marking techniques is that they allow little or no identification of the individual fish. Where this is needed, some form of serially numbered tag is required for later reading. Sonic tags transmit signals which enable the fishery biologist to chart the location and movement of individual fish. Sonic tags are expensive. Although their size has been reduced, they are still difficult to insert, causing difficulty for use with large numbers.

Numbered tags in widespread use are made of monel metal and are similar to cattle ear tags. These usually are attached to the gill cover or the base of the caudal fin. Various modifications of paired metal and plastic disc and button type tags, first used in Europe, have also been used successfully here. These often are attached by means of a rustproof wire through the base of the dorsal fin rays, or through the gill cover. Other less commonly used tags are the plastic spaghetti and silk streamer types. Internal metal and plastic tags have been used on some marine species by means of a small incision into the body cavity.

Tattooing by fluorescent dye is used for short-term marking. Fish also may be identified for short periods by spraying techniques.

Fish handled for tagging frequently are anaesthetized. See chapter "Use of Anaesthetics and Tranquilizer Drugs in Fisheries Work."

A tag that has had widespread, successful use is the coded wire tag inserted in the snout.

Elevation affects the availability of oxygen. This is shown in the table on Exhibits B and C, and in the chapter "Oxygen."

As an aid in determining the changing requirement of fish because of size and temperature, see Exhibit D.

The effect of oxygen on weight gain, food consumption and food conversion is shown on Exhibit E. It is evident that as the temperature reaches 40° F. the ability of the fish to assimilate food is materially reduced. This is shown on Exhibits F, G and H and is also covered in reference No. 39. This suggests that feeding might be reduced to once a week when the temperature is at 40° F. or below. High temperatures increases the metabolic rate, as shown on the exhibits. It is also indicated that salmonoid fish reduce their feeding when temperatures are above 62° F.

The calorific content of various foods and their conversion is shown on Exhibit I.

As an aid in determining fish per pound related to inches of weight of fish in grams or ounces, refer to Exhibit J.

A method of computing pumping costs developed by the Washington Department of Fisheries is shown on Exhibit K.

Rates for stocking natural ponds or lakes with hatchery fish vary with the size of the fish. Three hundred to 500 small fingerlings per acre may be planted. Not over 150 per acre is recommended in the two to three inch range. Approximately 280 per acre is recommended in the three to four inch range, 200 per acre at the five to six inch range, and 140 per acre at the eight to ten inch range. In rehabilitated lakes the stocking rate may be increased to 500 to 700 pounds of small fingerlings per acre.

To help in determining size factors, included are tables and exhibits.
Table 1 Approximate number of temperature units required for egg hatching and swim up for Pacific salmon at 50° F. (1 unit for each 1° F. above 32° F. for 24 hours)

<table>
<thead>
<tr>
<th></th>
<th>Units to hatching</th>
<th>Units to swim up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook</td>
<td>900</td>
<td>1,700</td>
</tr>
<tr>
<td>Coho</td>
<td>850</td>
<td>1,500</td>
</tr>
<tr>
<td>Sockeye</td>
<td>1,350</td>
<td>1,900</td>
</tr>
<tr>
<td>Chum</td>
<td>950</td>
<td>1,200</td>
</tr>
<tr>
<td>Pink</td>
<td>1,100</td>
<td>1,800</td>
</tr>
</tbody>
</table>

A rule may be applied that hatching uses 2/3 of the day degrees needed for swim up.

Table 2 Variability in heat needed over a time period is shown by the following tables.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Units to hatching</th>
<th>Units to swim up</th>
</tr>
</thead>
<tbody>
<tr>
<td>40° F.</td>
<td>1,003</td>
<td>1,520</td>
</tr>
<tr>
<td>42° F.</td>
<td>1,115</td>
<td>1,690</td>
</tr>
<tr>
<td>44° F.</td>
<td>1,172</td>
<td>1,776</td>
</tr>
<tr>
<td>48° F.</td>
<td>1,309</td>
<td>1,984</td>
</tr>
<tr>
<td>54° F.</td>
<td>1,467</td>
<td>2,222</td>
</tr>
</tbody>
</table>

Sockeye

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Units to hatching</th>
<th>Units to swim up</th>
</tr>
</thead>
<tbody>
<tr>
<td>34° F.</td>
<td>450</td>
<td>682</td>
</tr>
<tr>
<td>36° F.</td>
<td>734</td>
<td>1,112</td>
</tr>
<tr>
<td>38° F.</td>
<td>942</td>
<td>1,428</td>
</tr>
<tr>
<td>40° F.</td>
<td>1,115</td>
<td>1,690</td>
</tr>
<tr>
<td>42° F.</td>
<td>1,172</td>
<td>1,776</td>
</tr>
<tr>
<td>44° F.</td>
<td>1,201</td>
<td>1,820</td>
</tr>
<tr>
<td>48° F.</td>
<td>1,254</td>
<td>1,908</td>
</tr>
<tr>
<td>50° F.</td>
<td>1,365</td>
<td>2,068</td>
</tr>
<tr>
<td>52° F.</td>
<td>1,441</td>
<td>2,184</td>
</tr>
<tr>
<td>54° F.</td>
<td>1,523</td>
<td>2,308</td>
</tr>
<tr>
<td>56° F.</td>
<td>1,626</td>
<td>2,464</td>
</tr>
</tbody>
</table>

(See Reference No. 41).

Table 3 Suggested conditions for the storage of Oregon Moist Pellets and Abernathy Dry Feed and food size for various fish sizes.

<table>
<thead>
<tr>
<th></th>
<th>Oregon Moist Pellets</th>
<th>Abernathy Dry Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long term storage</td>
<td>Keep frozen at 5-10° F.</td>
<td>Equip storage area with a dehydrator to keep food dry</td>
</tr>
<tr>
<td>conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short term storage</td>
<td>Refrigerate after opening food sack</td>
<td>Hold in dry area after opening food sack</td>
</tr>
<tr>
<td>conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding conditions</td>
<td>Feed to fish when water temperature is below 45° F.</td>
<td>Feed to fish when water temperature is above 45° F.</td>
</tr>
<tr>
<td>(For both Oregon Moist pellets and Abernathy Dry Feed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish size/ration size</td>
<td>Fish Size in inches</td>
<td></td>
</tr>
<tr>
<td>1200-1000 fish/lb</td>
<td>Starting mash</td>
<td></td>
</tr>
<tr>
<td>1000-500 fish/lb</td>
<td>1/32 pellet</td>
<td></td>
</tr>
<tr>
<td>500-250 fish/lb</td>
<td>3/64 pellet</td>
<td></td>
</tr>
<tr>
<td>250-150 fish/lb</td>
<td>1/16 pellet</td>
<td></td>
</tr>
<tr>
<td>150-50 fish/lb</td>
<td>3/32 pellet</td>
<td></td>
</tr>
<tr>
<td>50-15 fish/lb</td>
<td>1/8 pellet</td>
<td></td>
</tr>
<tr>
<td>15 and above fish/lb</td>
<td>3/16 pellet</td>
<td></td>
</tr>
</tbody>
</table>
A

By-Pass
To Domestic Water Supply
Apparatus for Treatment of Hatchery Water Supply with Malachite Green

B

POND LOAD FACTORS AS RELATED TO LENGTH OF TROUT AND SALMON TO ESTIMATE WEIGHT OF FISH (LBS.) PER GPM INFLOW

<table>
<thead>
<tr>
<th>Feet above mean sea level</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.24</td>
<td>2.18</td>
<td>2.11</td>
<td>2.05</td>
<td>1.98</td>
<td>1.92</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
</tr>
<tr>
<td>1,000</td>
<td>2.18</td>
<td>2.11</td>
<td>2.05</td>
<td>1.98</td>
<td>1.92</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
</tr>
<tr>
<td>2,000</td>
<td>2.11</td>
<td>2.05</td>
<td>1.98</td>
<td>1.92</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
</tr>
<tr>
<td>3,000</td>
<td>2.05</td>
<td>1.98</td>
<td>1.92</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
</tr>
<tr>
<td>4,000</td>
<td>1.98</td>
<td>1.92</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
</tr>
<tr>
<td>5,000</td>
<td>1.92</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>6,000</td>
<td>1.86</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
</tr>
<tr>
<td>7,000</td>
<td>1.79</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
</tr>
<tr>
<td>8,000</td>
<td>1.73</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
</tr>
<tr>
<td>9,000</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
</tr>
<tr>
<td>10,000</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
</tr>
</tbody>
</table>

F x L = W
F = Load Factor
L = Length of fish in inches
W = Weight in pounds per GPM inflow

Prepared by Bruce B. Cannady
April 23, 1969
POND LOAD FACTORS AS RELATED TO LENGTH OF TROUT AND SALMON TO ESTIMATE WEIGHT OF FISH (LBS.) PER GPM INFLOW

<table>
<thead>
<tr>
<th>Water Temperatures (°F)</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>1.54</td>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>1.48</td>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>1.40</td>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>1.36</td>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>1.33</td>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.06</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>1.29</td>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.06</td>
<td>1.03</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.25</td>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.06</td>
<td>1.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.06</td>
<td>1.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>1.14</td>
<td>1.11</td>
<td>1.08</td>
<td>1.06</td>
<td>1.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: 50° F., 5,000′MSL, 4” (40 per lb.)=
1.6 x 4 = 6.4 lbs. fish per GPM inflow

Based on preliminary data from fish loading experiments at Bozeman Fish Cultural Department Center, Montana.
OREGON PELLET FEEDING CHART

(For Salmon and Steelhead; Includes Recommended Feeding Level and Feeding Frequency)

Feeding level (L) expressed as percentage of lot weight to be fed per feeding day.
Feeding frequency (F) expressed as number of days to feed per week and number of feedings per day.
Example: 7/4 means feed 7 days per week, 4 times per day; E/1 means feed every other day, 1 feeding per day.

Fish size (number per pound)

<table>
<thead>
<tr>
<th>Ave. H₂O temp. (°F)</th>
<th>800-300</th>
<th>300-200</th>
<th>200-135</th>
<th>150-90</th>
<th>90-60</th>
<th>60-40</th>
<th>40-25</th>
<th>25-larger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>L</td>
<td>F</td>
<td>L</td>
<td>F</td>
</tr>
<tr>
<td>35</td>
<td>2.7</td>
<td>7/5</td>
<td>2.3</td>
<td>7/4</td>
<td>1.8</td>
<td>7/2</td>
<td>1.6</td>
<td>6/1</td>
</tr>
<tr>
<td>36</td>
<td>2.8</td>
<td></td>
<td>2.4</td>
<td>1.9</td>
<td>1.8</td>
<td>1.4</td>
<td>1.4</td>
<td>E/1</td>
</tr>
<tr>
<td>37</td>
<td>2.9</td>
<td></td>
<td>2.5</td>
<td>2.0</td>
<td>1.9</td>
<td>1.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3.0</td>
<td></td>
<td>2.6</td>
<td>2.1</td>
<td>2.0</td>
<td>1.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3.2</td>
<td></td>
<td>2.7</td>
<td>2.2</td>
<td>2.1</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.4</td>
<td></td>
<td>2.8</td>
<td>2.3</td>
<td>1.9</td>
<td>7/1</td>
<td>1.6</td>
<td>6/1</td>
</tr>
<tr>
<td>41</td>
<td>3.6</td>
<td>2.9</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>1.3</td>
<td>1.4</td>
<td>E/1</td>
</tr>
<tr>
<td>42</td>
<td>3.8</td>
<td>3.0</td>
<td>2.5</td>
<td>2.1</td>
<td>1.9</td>
<td>1.4</td>
<td>1.4</td>
<td>E/1</td>
</tr>
<tr>
<td>43</td>
<td>4.0</td>
<td>3.1</td>
<td>2.6</td>
<td>2.2</td>
<td>2.0</td>
<td>1.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4.2</td>
<td>3.3</td>
<td>2.7</td>
<td>2.3</td>
<td>2.1</td>
<td>1.7</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>45</td>
<td>4.4</td>
<td>3.5</td>
<td>2.8</td>
<td>2.4</td>
<td>2.2</td>
<td>1.8</td>
<td>1.8</td>
<td>1.4</td>
</tr>
<tr>
<td>46</td>
<td>4.6</td>
<td>3.7</td>
<td>2.9</td>
<td>2.5</td>
<td>2.3</td>
<td>2.0</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>47</td>
<td>4.8</td>
<td>3.9</td>
<td>3.0</td>
<td>2.6</td>
<td>2.5</td>
<td>2.1</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>48</td>
<td>5.0</td>
<td>4.1</td>
<td>3.2</td>
<td>2.7</td>
<td>2.6</td>
<td>2.2</td>
<td>2.4</td>
<td>1.6</td>
</tr>
<tr>
<td>49</td>
<td>5.2</td>
<td>4.3</td>
<td>3.4</td>
<td>2.8</td>
<td>2.7</td>
<td>2.4</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>50</td>
<td>5.6</td>
<td>4.5</td>
<td>3.6</td>
<td>2.9</td>
<td>2.8</td>
<td>2.1</td>
<td>6/1</td>
<td>1.8</td>
</tr>
<tr>
<td>51</td>
<td>5.9</td>
<td>4.7</td>
<td>3.8</td>
<td>3.0</td>
<td>2.9</td>
<td>2.2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>52</td>
<td>6.2</td>
<td>4.9</td>
<td>4.0</td>
<td>3.2</td>
<td>3.0</td>
<td>2.3</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>53</td>
<td>6.5</td>
<td>5.1</td>
<td>4.2</td>
<td>3.4</td>
<td>3.2</td>
<td>2.5</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>54</td>
<td>6.8</td>
<td>5.4</td>
<td>4.4</td>
<td>3.6</td>
<td>3.3</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>55</td>
<td>7.1</td>
<td>5.7</td>
<td>4.6</td>
<td>3.8</td>
<td>3.5</td>
<td>2.7</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>56</td>
<td>7.5</td>
<td>6.0</td>
<td>4.8</td>
<td>4.0</td>
<td>3.7</td>
<td>2.8</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>57</td>
<td>7.9</td>
<td>6.3</td>
<td>5.0</td>
<td>4.2</td>
<td>4.0</td>
<td>2.9</td>
<td>2.8</td>
<td>3.2</td>
</tr>
<tr>
<td>58</td>
<td>8.3</td>
<td>6.6</td>
<td>5.3</td>
<td>4.4</td>
<td>4.2</td>
<td>3.0</td>
<td>2.9</td>
<td>3.4</td>
</tr>
<tr>
<td>59</td>
<td>8.7</td>
<td>6.9</td>
<td>5.6</td>
<td>4.6</td>
<td>4.4</td>
<td>3.2</td>
<td>3.1</td>
<td>3.6</td>
</tr>
<tr>
<td>60</td>
<td>9.1</td>
<td>7.2</td>
<td>5.9</td>
<td>4.8</td>
<td>4.7</td>
<td>3.6</td>
<td>3.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

RECOMMENDED PELLET SIZE

<table>
<thead>
<tr>
<th>Fish Size (number per pound)</th>
<th>Pellet Size (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800-500</td>
<td>1/32</td>
</tr>
<tr>
<td>500-250</td>
<td>3/64</td>
</tr>
<tr>
<td>250-150</td>
<td>1/16</td>
</tr>
<tr>
<td>150-50</td>
<td>3/32</td>
</tr>
<tr>
<td>50-larger</td>
<td>1/18</td>
</tr>
</tbody>
</table>

Other trout are fed at 1% body weight, varying with temperature.

February 1968
E

Oxygen and Growth of Young Coho Salmon

Figure 1. Weight gains (or losses) in 19 to 28 days among frequently fed age-class 0 coho salmon, expressed as percentages of the initial weight of the fish, in relation to dissolved oxygen concentration. The curve has been fitted to the points representing results of tests performed in the year 1956 only. All of the 1956 positive weight gain values are results of 21-day tests.

Figure 2. Grams of food (beach hoppers) consumed by frequently fed age-class 0 coho salmon per day per gram of initial weight of the fish, in relation to dissolved oxygen concentration. The curve has been fitted to the points representing the 1956 data only.
Figure 3. Food conversion ratios for frequently fed age-class 0 coho salmon, or their weight gains in grams per gram of food (beach hoppers) consumed, in relation to dissolved oxygen concentration. A food conversion ratio of zero (not a ratio having a negative value) has been assigned to each group of fish that lost weight. The curve has been fitted to the points representing the 1956 data only.

Saturation Values at 20° C

| | 2 = 22% | 3 = 33% | 4 = 45% | 5 = 56% | 6 = 68% | 7 = 79% | 8 = 90% | 9 = 103% |

Adapted from Reference no 34 of chapter, “Food Producing Areas and Their Requirements.”
Feeding Rate for Rainbow Trout of Various Sizes at Various Temperatures

<table>
<thead>
<tr>
<th>Temperature (° F)</th>
<th>Per Cent Body Weight To Be Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>CFB A D</td>
</tr>
<tr>
<td>41</td>
<td>CFB A D</td>
</tr>
<tr>
<td></td>
<td>A = 3-4 in. fish</td>
</tr>
<tr>
<td>42</td>
<td>CFB A D</td>
</tr>
<tr>
<td></td>
<td>B = 5-6 in. fish</td>
</tr>
<tr>
<td>43</td>
<td>CB A D</td>
</tr>
<tr>
<td></td>
<td>all meat diet</td>
</tr>
<tr>
<td>44</td>
<td>CB A D</td>
</tr>
<tr>
<td></td>
<td>C = 10 in. fish</td>
</tr>
<tr>
<td>45</td>
<td>CFB A D</td>
</tr>
<tr>
<td>46</td>
<td>CFB A D</td>
</tr>
<tr>
<td>47</td>
<td>CFB A D</td>
</tr>
<tr>
<td>48</td>
<td>CFB A D</td>
</tr>
<tr>
<td>49</td>
<td>C B A D</td>
</tr>
<tr>
<td>50</td>
<td>C B A D</td>
</tr>
<tr>
<td>51</td>
<td>C FB A D</td>
</tr>
<tr>
<td>52</td>
<td>C FB A D</td>
</tr>
<tr>
<td>53</td>
<td>CFB A D</td>
</tr>
<tr>
<td>54</td>
<td>CFB A D</td>
</tr>
<tr>
<td>55</td>
<td>CFB A D</td>
</tr>
<tr>
<td>56</td>
<td>CFB A D</td>
</tr>
<tr>
<td>57</td>
<td>CFB A D</td>
</tr>
<tr>
<td>58</td>
<td>CFB A D</td>
</tr>
<tr>
<td>59</td>
<td>CFB A D</td>
</tr>
<tr>
<td>60</td>
<td>CFB A D</td>
</tr>
<tr>
<td>61</td>
<td>CFB A D</td>
</tr>
<tr>
<td>62</td>
<td>CFB A D</td>
</tr>
<tr>
<td>63</td>
<td>CFB A D</td>
</tr>
<tr>
<td>64</td>
<td>CFB A D</td>
</tr>
<tr>
<td>65</td>
<td>CFB A D</td>
</tr>
<tr>
<td>66</td>
<td>CFB A D</td>
</tr>
<tr>
<td>67</td>
<td>CFB AE D</td>
</tr>
<tr>
<td>68</td>
<td>CFB A D</td>
</tr>
<tr>
<td>69</td>
<td>CFB A D</td>
</tr>
<tr>
<td>70</td>
<td>CFB A D</td>
</tr>
<tr>
<td>71</td>
<td>CFB AE D</td>
</tr>
<tr>
<td>72</td>
<td>CFB A D</td>
</tr>
<tr>
<td>73</td>
<td>CFB A D</td>
</tr>
<tr>
<td>74</td>
<td>CFB A D</td>
</tr>
<tr>
<td>75</td>
<td>CFB A D</td>
</tr>
</tbody>
</table>

N.B. Values from 61° to 75° are extrapolated from the experimental data.
Energy values must account for changes in tissue water content up to 20 per cent.

Prepared by Don M. Fagot – data from Reference no. 25
G

Food Consumption at Various Temperatures and Sizes (Using Abernathy Soft Pellet 27.5 Per Cent Protein)

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Per Cent Body Weight Per Day in Food Fed & Adults</th>
<th>Per Cent Drop in Food Fed Between Fingerlings</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>3.0</td>
<td>--</td>
</tr>
<tr>
<td>45</td>
<td>3.8</td>
<td>--</td>
</tr>
<tr>
<td>50</td>
<td>4.8</td>
<td>--</td>
</tr>
<tr>
<td>55</td>
<td>6.1</td>
<td>--</td>
</tr>
<tr>
<td>60</td>
<td>7.6</td>
<td>--</td>
</tr>
<tr>
<td>1.33 inches</td>
<td>0.8</td>
<td>62.5</td>
</tr>
<tr>
<td>to 2.00 inches</td>
<td>1.0</td>
<td>62.0</td>
</tr>
</tbody>
</table>

Adults

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Per Cent Body Weight Per Day</th>
<th>Per Cent Drop in Food Fed Between Fingerlings</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.5</td>
<td>68.0</td>
</tr>
<tr>
<td>55</td>
<td>1.9</td>
<td>68.0</td>
</tr>
<tr>
<td>60</td>
<td>2.4</td>
<td>68.5</td>
</tr>
</tbody>
</table>

Comparison of Abernathy Soft Pellet With Two Other Types of Food

<table>
<thead>
<tr>
<th>Type of Food</th>
<th>Per Cent Protein (wet weight)</th>
<th>Per Cent Body Weight Gain Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abernathy</td>
<td>27.5</td>
<td>5.4</td>
</tr>
<tr>
<td>Soft pellet</td>
<td>40</td>
<td>4.5</td>
</tr>
<tr>
<td>Dry pellet</td>
<td>18</td>
<td>7.4</td>
</tr>
<tr>
<td>Meat diet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared from data supplied by Roger E. Burrows

H

Effect of Feeding of Live Minnows to Brook Trout

<table>
<thead>
<tr>
<th>Average Temperature °F</th>
<th>Weight fed per day (grams)</th>
<th>Weight gain per day (grams)</th>
<th>Per cent weight gain per day</th>
<th>Per cent body weight fed per day</th>
<th>Conversion ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.2</td>
<td>5.02</td>
<td>1.42</td>
<td>1.46</td>
<td>5.19</td>
<td>3.61</td>
</tr>
<tr>
<td>55.4</td>
<td>6.95</td>
<td>1.92</td>
<td>1.99</td>
<td>7.2</td>
<td>3.64</td>
</tr>
<tr>
<td>62.6</td>
<td>5.57</td>
<td>1.44</td>
<td>1.49</td>
<td>5.75</td>
<td>3.90</td>
</tr>
</tbody>
</table>

When temperatures reached 62.6°F, feeding decreased. At temperatures above 69.8°F, the fish only ate 0.85 per cent body weight per day.

Average weight 96.7 grams.

Adapted from Reference no. 40.

I

Food Conversions of Salmonids

<table>
<thead>
<tr>
<th>Ratio, Weight Fed to Weight Gained</th>
<th>Type of Food</th>
<th>Per cent Protein Wet Weight K per lb. Food*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.74:1</td>
<td>Abernathy test diet: 16.32% salmon meal 15.63% dried skim milk 10.42% cottonseed meal 7.81% wheat germ 9.61% soybean oil 2.00% vitamin mix 38.21% water</td>
<td>25 1070</td>
</tr>
<tr>
<td>2.7:1</td>
<td>Brine shrimp</td>
<td>11.8 336</td>
</tr>
<tr>
<td>2.9:1</td>
<td>50% meat and 50% meal</td>
<td>27.6 725</td>
</tr>
<tr>
<td>2.9:1</td>
<td>100% meat</td>
<td>18.3 415</td>
</tr>
<tr>
<td>4.9:1</td>
<td>Natural foods</td>
<td>11.5 280</td>
</tr>
<tr>
<td>6.05:1</td>
<td>Gammarus (amphipods)</td>
<td>-- --</td>
</tr>
</tbody>
</table>

K = 1000 calories

Prepared from data supplied by Roger E. Burrows
Legend

To Find the Weight Per Fish Use
The Following Formula

\[W = Y \left(\frac{1}{X}\right) \]

Where \(W \) = Weight Per Fish

- \(Y = 16.0 \) if Weight Desired is in Ounces
- \(454.0 \) if Weight Desired is in Grams

\(X \) = The Number of Fish Per Pound

at the Known Length

Trout - Average Length in (mm)

<table>
<thead>
<tr>
<th>Avg. Wt/Fish</th>
<th>Avg. Length in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0016</td>
<td>50.8</td>
</tr>
<tr>
<td>0.0454</td>
<td>101.6</td>
</tr>
<tr>
<td>16.0</td>
<td>203.2</td>
</tr>
<tr>
<td>454.0</td>
<td>254.0</td>
</tr>
</tbody>
</table>

Chart Details

- **Ounces**
- **Grams**

- **Fish Per lb.**
- **Average Length in Inches**

- **Legend**

- **Formula**: \(W = Y \left(\frac{1}{X}\right) \)
- **Conditions**:
 - \(Y = 16.0 \) if Weight Desired is in Ounces
 - \(454.0 \) if Weight Desired is in Grams

- **Variables**:
 - \(W \): Weight Per Fish
 - \(Y \): Number of Fish Per Pound
 - \(X \): Average Length in Inches
Pumping Cost
@ 80% Eff.
& 0.71¢/kwh
References Reviewed

REARING PONDS

Until recently rearing ponds were considered a part of hatchery operations. They may now be built and operated as separate units, although they generally are dependent on hatcheries as a source of fish. Improved fish food and improved feeding techniques, such as automatic or power feeders, have allowed rearing ponds to become independent units.

Fish held in rearing ponds may depend entirely on natural food supplies or in part or wholly on prepared foods. (See chapters “Hatcheries” and “Food Producing Areas and their Requirements” for amounts of food required.)

The fish reared in such ponds are not subjected to many of the natural hazards, including predation by other species; however, they are subjected to unnatural crowding and cannibalism and careful grading for size is required to control the latter.

In general, ponds should be constructed so they may be drained rapidly and the fish collected at a central point, such as a “kettle.” Fish are collected for purposes of grading, treatment for disease, or planting. The ponds are drained for cleaning and disinfecting. Cleaning can be accomplished by suction or by temporarily increased velocities.

Pond loadings are related to size and weight of the fish per unit of surface area, volume or flow. Loadings are based in part to meet oxygen requirements and to provide living space.

The chapter “Hatcheries” contains a table showing the required reduction in poundage of fish due to the elevation above sea level at which ponds are operated. Oxygen saturation is reduced as elevation increases although the requirements of the fish remain the same.

The table on pages 150 and 151 gives the relationship of various types of ponds and the relationship of depth, flow, volume, area and pounds or numbers of fish as now used. Pounds of fish reared show a similarity among the various types of ponds when equated to the above factors. Large, natural rearing ponds follow more closely the levels of highly productive lakes.

As temperature is a governing factor in growth, water quality and quantity of rearing ponds require special attention. If closed-circuit supply systems are used, they should provide for cooling, filtration, sterilization, degasification, reoxygenation and pH control. The residue from rearing ponds has a high BOD and, perhaps, an offensive odor, and the effect of this on the receiving waters should be considered. Preferably it should be handled as a separate waste item apart from normal drains. See Exhibit B.

Exhibit A is a schematic sketch for a natural rearing pond.

As small rearing ponds vary in shape from raceway to rectangular to circular, with all variations between, the principal design criteria should provide a reasonably uniform distribution of flow to assure better distribution of food and improved growth. High velocities should be avoided because of weight loss that results from excessive swimming. (See chapter “Swimming Speeds of Adult and Juvenile Fish.”)

The drainage system must be large enough so that when ponds are built in batteries, dewatering activities will not interfere with the normal discharges from other ponds.

In accordance with work done by Haskell (1955), the carrying capacities of ponds at any given temperature are directly related to the length of fish contained therein. For example, a pond will carry three times the weight of a 6-inch fish as a 2-inch fish.

An increase or decrease in the total weight of fish in a pond for a new loading may be determined by the following formula:

$$\ln \left(\frac{W_{\text{ Norse}}}{W_{\text{E in pond}}} \right) = \frac{E}{N}$$

As noted, the metabolic rate is a major factor in determining the total weight of fish in a pond. Fish at a stage of rapid growth require more space room per pound than fish that have reached a stage of decreased feeding requirements.

Various investigators have examined the oxygen demand of fish in rearing, feeding, and holding ponds. Designers may find that to choose a basis for the design of rearing and feeding ponds, they must consider the effects of non-uniform oxygen demands caused by the fish’s activity level changes that occur as a result of daylight, darkness, feeding or pond cleaning, compared with the demand at minimum activity.

The experimental work discloses that large fish do not recover as rapidly as small fish from levels of high oxygen use. The laboratory work has also shown that more pounds of fish might be reared per pond than is permitted under hatchery operations. The work shows that there is an upper loading limit. Loading is usually expressed as pounds of fish per cubic foot of pond space. There also is an upper limit under different conditions (temperature level and fish size) to the number of pounds of fish that should be supported per gallon of inflowing water.

Other limiting factors are efficient operating sizes and limiting velocities in the tanks and ponds.

It is apparent that when fish are introduced into ponds they should be given an adequate time to recover, perhaps with additional oxygen to be supplied by additional flow. Stress of handling and transportation, which require a greater oxygen demand for recovery to a normal state, may account for some of its variation in survival of planted fish.

The start of feeding may require a number of small feeding tanks so that the efficiency of growth to food supply can be monitored and the food supply regulated. Low feeding densities of 1/2 pound of fish per cubic foot at this point have been found to be beneficial.

The transfer of fish between tanks and ponds can be accomplished by hose if sufficient drop exists between them.

For ease in converting units, the following can be applied:

- ppm/lb fish/gpm = 500.6 mg O₂/kg fish/hr
- Ox O₂/lb fish/hr = 1.6 x 10⁻⁵ mg O₂/kg fish/hr
- lb fish/gpm = 0.25 lbs fish/ft³ water
There follow 5 tables that demonstrate the above-mentioned relationships of metabolic rates, carrying capacities, maximum loading densities, oxygen consumption after pond cleaning and feeding and effects on oxygen consumption by handling.

<table>
<thead>
<tr>
<th>Rearing Ponds</th>
<th>Type</th>
<th>Size</th>
<th>Normal Water Depth</th>
<th>Water Requirement</th>
<th>Water Changes Per Hour</th>
<th>Water Re-use</th>
<th>Add'l Water Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burrows Re-circulating</td>
<td>75' x 17'</td>
<td>2.5 ft</td>
<td>720 GPM or 5776 cu ft/hr</td>
<td>1.1</td>
<td>684 GPM</td>
<td>36 GPM</td>
</tr>
<tr>
<td></td>
<td>Raceway (F.W.S.)</td>
<td>80' x 8'</td>
<td>2.0 ft</td>
<td>400 GPM or 3208 cu ft/hr</td>
<td>1.3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Raceway (California Fish & Game)</td>
<td>100' x 10'</td>
<td>3.0 ft</td>
<td>625 GPM or 5013 cu ft/hr</td>
<td>1.7</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Raceway (Washington Game)</td>
<td>100' x 10'</td>
<td>2.5 ft</td>
<td>450 GPM or 3600 cu ft/hr</td>
<td>1.44</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Circular (California Fish & Game)</td>
<td>14 ft dia.</td>
<td>2.5 ft</td>
<td>50 GPM or 401 cu ft/hr</td>
<td>1.0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Circular (Washington Game)</td>
<td>40 ft dia.</td>
<td>2.5 ft</td>
<td>200 GPM or 1604 cu ft/hr</td>
<td>0.5</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Holding Pond, Beaver Creek (Washington Game)</td>
<td>120' x 12'</td>
<td>5.0 ft</td>
<td>5386 GPM or 43,196 cu ft/hr</td>
<td>0.6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Raceway (Dirt- Wood Wall) So. Tacoma</td>
<td>80' x 10'</td>
<td>1 1/2- 2 ft</td>
<td>1346 GPM or 10,795 cu ft/hr</td>
<td>9.0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Rearing Lake (Naural) Cowlitz Hatchery (Washington Game)</td>
<td>1450' x 175'; 5 acres</td>
<td>4' sloping to 10 ft Ave. 7 ft</td>
<td>4488 GPM (normal); 35,994 cu ft/hr</td>
<td>0.02</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Adult Holding Pond (Skamania)</td>
<td>200' x 12'</td>
<td>5.0 ft</td>
<td>8976 GPM</td>
<td>0.07</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fish Capacity</td>
<td>Surface Area (Square Feet)</td>
<td>Volume (Cubic Feet)</td>
<td>Pounds Fish per Square Foot</td>
<td>Pounds Fish per Cubic Foot</td>
<td>Pounds Fish per GPM at Intake</td>
<td>Cost w/ out Land</td>
<td>Cost to Recirculate</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>3780 lbs @ 90/lb; 4725 lbs @ 50/lb</td>
<td>1275</td>
<td>5100</td>
<td>3.7 lbs @ 50/lb</td>
<td>0.93 lbs per ft³ @ 50/lb</td>
<td>6.5 lbs/min. @ 50/lb</td>
<td>1275</td>
<td>5100</td>
</tr>
<tr>
<td>2000 lbs @ 100/lb; 3200 lbs @ 10/lb</td>
<td>640</td>
<td>2560</td>
<td>3.13 lbs @ 100/lb</td>
<td>0.78 lbs per ft³ @ 100/lb</td>
<td>5 lbs/min. @ 100/lb</td>
<td>2000</td>
<td>3200</td>
</tr>
<tr>
<td>3000 lbs @ 100/lb; 4000 lbs @ 10/lb</td>
<td>1000</td>
<td>3000</td>
<td>3.0 lbs @ 100/lb</td>
<td>1.0 lb per ft³ @ 100/lb</td>
<td>4.8 lbs/min. @ 100/lb</td>
<td>3000</td>
<td>4000</td>
</tr>
<tr>
<td>3000 lbs @ 10/lb</td>
<td>1000</td>
<td>2500</td>
<td>3.0 lbs @ 10/lb</td>
<td>1.2 lbs per ft³ @ 10/lb</td>
<td>6.6 lbs/min. @ 10/lb</td>
<td>3000</td>
<td>10</td>
</tr>
<tr>
<td>400 lbs @ 100/lb</td>
<td>153.86</td>
<td>384.65</td>
<td>2.6 lbs @ 100/lb</td>
<td>1.04 lbs per ft³ @ 100/lb</td>
<td>8.0 lbs/min. @ 100/lb</td>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>2000 lbs @ 10/lb</td>
<td>1256</td>
<td>3140</td>
<td>1.6 lbs @ 10/lb</td>
<td>0.64 lbs per ft³ @ 10/lb</td>
<td>10.0 lbs/min. @ 10/lb</td>
<td>2000</td>
<td>10</td>
</tr>
<tr>
<td>16,000 lbs @ 10/lb (steelhead)</td>
<td>1440</td>
<td>7200</td>
<td>11.11 lbs @ 10/lb</td>
<td>2.2 lbs per ft³ @ 10/lb</td>
<td>3.0 lbs/min. @ 10/lb</td>
<td>16,000</td>
<td>11.11</td>
</tr>
<tr>
<td>400 lbs @ 10/lb</td>
<td>800</td>
<td>1200-1600</td>
<td>5.0 lbs @ 10/lb</td>
<td>3.3 lbs per ft³ @ 10/lb</td>
<td>3.0 lbs/min. @ 10/lb</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>50,000 lbs @ 6/lb</td>
<td>253,750</td>
<td>1,776,250</td>
<td>0.2 lbs @ 6/lb</td>
<td>0.03 lbs per ft³ @ 6/lb</td>
<td>11.1 lbs/min. @ 6/lb</td>
<td>50,000</td>
<td>6</td>
</tr>
<tr>
<td>30,000 lbs Steelhead</td>
<td>2400</td>
<td>12,000</td>
<td>12.5 lbs</td>
<td>2.5 lbs per ft³ adults</td>
<td>3.3 lbs/min. for adults</td>
<td>30,000</td>
<td>Steelhead</td>
</tr>
</tbody>
</table>
Metabolic Rates of Fish

<table>
<thead>
<tr>
<th>Temp. °F</th>
<th>Standard metabolic (ppm/lb fish/gpm)</th>
<th>Intermediate Low maintenance ration</th>
<th>Metabolic rates High maintenance ration</th>
<th>Maximum ration</th>
<th>Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>.080</td>
<td>.104</td>
<td>.196</td>
<td></td>
<td>.613</td>
</tr>
<tr>
<td>40</td>
<td>.082</td>
<td>.106</td>
<td>.200</td>
<td></td>
<td>.617</td>
</tr>
<tr>
<td>41</td>
<td>.084</td>
<td>.108</td>
<td>.204</td>
<td></td>
<td>.621</td>
</tr>
<tr>
<td>42</td>
<td>.086</td>
<td>.112</td>
<td>.208</td>
<td></td>
<td>.625</td>
</tr>
<tr>
<td>43</td>
<td>.088</td>
<td>.116</td>
<td>.212</td>
<td></td>
<td>.629</td>
</tr>
<tr>
<td>44</td>
<td>.090</td>
<td>.120</td>
<td>.216</td>
<td></td>
<td>.633</td>
</tr>
<tr>
<td>45</td>
<td>.092</td>
<td>.124</td>
<td>.220</td>
<td></td>
<td>.637</td>
</tr>
<tr>
<td>46</td>
<td>.094</td>
<td>.128</td>
<td>.226</td>
<td></td>
<td>.643</td>
</tr>
<tr>
<td>47</td>
<td>.096</td>
<td>.132</td>
<td>.232</td>
<td></td>
<td>.649</td>
</tr>
<tr>
<td>48</td>
<td>.098</td>
<td>.134</td>
<td>.238</td>
<td></td>
<td>.655</td>
</tr>
<tr>
<td>49</td>
<td>.100</td>
<td>.138</td>
<td>.242</td>
<td></td>
<td>.659</td>
</tr>
<tr>
<td>50</td>
<td>.102</td>
<td>.142</td>
<td>.248</td>
<td>.431</td>
<td>.665</td>
</tr>
<tr>
<td>51</td>
<td>.104</td>
<td>.144</td>
<td>.254</td>
<td>.439</td>
<td>.671</td>
</tr>
<tr>
<td>52</td>
<td>.106</td>
<td>.148</td>
<td>.260</td>
<td>.447</td>
<td>.677</td>
</tr>
<tr>
<td>53</td>
<td>.108</td>
<td>.150</td>
<td>.266</td>
<td>.455</td>
<td>.683</td>
</tr>
<tr>
<td>54</td>
<td>.112</td>
<td>.152</td>
<td>.276</td>
<td>.465</td>
<td>.693</td>
</tr>
<tr>
<td>55</td>
<td>.118</td>
<td>.156</td>
<td>.288</td>
<td>.475</td>
<td>.705</td>
</tr>
<tr>
<td>56</td>
<td>.124</td>
<td>.160</td>
<td>.300</td>
<td>.485</td>
<td>.717</td>
</tr>
<tr>
<td>57</td>
<td>.128</td>
<td>.164</td>
<td>.310</td>
<td>.497</td>
<td>.727</td>
</tr>
<tr>
<td>58</td>
<td>.132</td>
<td>.168</td>
<td>.320</td>
<td>.507</td>
<td>.737</td>
</tr>
<tr>
<td>59</td>
<td>.136</td>
<td>.172</td>
<td>.332</td>
<td>.519</td>
<td>.749</td>
</tr>
<tr>
<td>60</td>
<td>.140</td>
<td>.176</td>
<td>.342</td>
<td>.531</td>
<td>.759</td>
</tr>
<tr>
<td>61</td>
<td>.144</td>
<td>.180</td>
<td>.354</td>
<td>.547</td>
<td>.771</td>
</tr>
<tr>
<td>62</td>
<td>.148</td>
<td>.184</td>
<td>.366</td>
<td>.565</td>
<td>.783</td>
</tr>
<tr>
<td>63</td>
<td>.152</td>
<td>.188</td>
<td>.382</td>
<td>.581</td>
<td>.799</td>
</tr>
<tr>
<td>64</td>
<td>.156</td>
<td>.192</td>
<td>.399</td>
<td>.599</td>
<td>.817</td>
</tr>
<tr>
<td>65</td>
<td>.160</td>
<td>.196</td>
<td>.416</td>
<td>.617</td>
<td>.838</td>
</tr>
<tr>
<td>66</td>
<td>.164</td>
<td>.200</td>
<td>.431</td>
<td>.637</td>
<td>.848</td>
</tr>
<tr>
<td>67</td>
<td>.168</td>
<td>.204</td>
<td>.447</td>
<td>.665</td>
<td>.862</td>
</tr>
<tr>
<td>68</td>
<td>.172</td>
<td>.208</td>
<td>.465</td>
<td>.882</td>
<td></td>
</tr>
</tbody>
</table>

Based upon data in this table, the following formulae will apply in calculating oxygen use rates:

Linear Regression
\[x = \text{temperature (°F)} \]
\[y = \log O_2 \text{ consumption (ppm/lb fish/gpm)} \]

Standard metabolism
\[y = 1.790 + 0.017 x \]

Intermediate metabolism minimum
\[y = -1.883 + 0.019 x \]

Low maintenance feedings
\[y = 1.499 + 0.013 x \]

High maintenance (same as 1975 night levels)
\[y = -1.243 + 0.013 x \]

Maximum ration (Brett 1970)
\[y = -.896 + 0.010 x \]

Feeding Data from Brett and Zala (1975) adjusted to Brett’s 1970 curves.
\[y = 0.438 + 0.005 x \]

Adapted from References 1 and 2.
CARRYING CAPACITIES OF PONDS IN LBS PER GPM
(Laboratory-determined from standard metabolic rates)

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Mean size (1.85 g)</th>
<th>Mean size (5.90 g)</th>
<th>Mean size (17.50 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42°</td>
<td>28.33</td>
<td>30.00</td>
<td>37.71</td>
</tr>
<tr>
<td>44°</td>
<td>21.38</td>
<td>24.80</td>
<td>31.80</td>
</tr>
<tr>
<td>46°</td>
<td>17.88</td>
<td>20.34</td>
<td>26.22</td>
</tr>
<tr>
<td>48°</td>
<td>14.36</td>
<td>17.23</td>
<td>22.40</td>
</tr>
<tr>
<td>50°</td>
<td>12.33</td>
<td>14.13</td>
<td>18.93</td>
</tr>
<tr>
<td>52°</td>
<td>10.64</td>
<td>12.20</td>
<td>15.62</td>
</tr>
<tr>
<td>54°</td>
<td>9.06</td>
<td>10.91</td>
<td>13.71</td>
</tr>
<tr>
<td>56°</td>
<td>7.63</td>
<td>9.18</td>
<td>11.84</td>
</tr>
<tr>
<td>58°</td>
<td>6.72</td>
<td>8.00</td>
<td>10.00</td>
</tr>
<tr>
<td>60°</td>
<td>5.80</td>
<td>7.02</td>
<td>9.09</td>
</tr>
<tr>
<td>62°</td>
<td>5.14</td>
<td>6.23</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Maximum loading densities

<table>
<thead>
<tr>
<th>Fish size (grams)</th>
<th>Lb/fish/ft³ water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78</td>
</tr>
<tr>
<td>2</td>
<td>0.82</td>
</tr>
<tr>
<td>3</td>
<td>0.89</td>
</tr>
<tr>
<td>4</td>
<td>0.94</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>1.11</td>
</tr>
<tr>
<td>15</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Holding of adults is generally on the basis of a maximum of 2 lbs per cubic foot.

See Reference No. 13.

Piper (1970) suggests loading densities as follows: a rule of thumb which might be used to avoid undue fish crowding is to avoid holding trout at more than one-half their length in pounds per foot³ H₂O (i.e., 4” fish should not be stocked at densities greater than 2 lbs/ft³).

See Reference No. 14.

Oxygen consumption of fingerling Chinook in four ponds (52°F) after pond cleaning and feeding

<table>
<thead>
<tr>
<th>Mean oxygen consumption</th>
<th>High oxygen consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time after cleaning</td>
<td>Time after feeding</td>
</tr>
<tr>
<td>0.75 hr</td>
<td>0 (start)</td>
</tr>
<tr>
<td>1.5 hr</td>
<td>0.75</td>
</tr>
<tr>
<td>2 hr</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Adapted from Reference No. 4
A

Rearing Area

Typical of a Natural Rearing Pond as May be Constructed

Barrier Dam

Screen Control Structure

Flow

Rearing Area
Potential Composition of Effluent From Rearing Ponds

(Removal of 90 percent of the settleable solids removes 85 percent of the BOD).

From Willoughby et al., 1972.

See Reference No. 10.
Oxygen Consumption Measured at Time Intervals After Handling at 50° F.

(15 minutes)

<table>
<thead>
<tr>
<th>Fish Size</th>
<th>Mg O₂/kg fish/hr</th>
<th>O₂/lb fish/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inch (24 g)</td>
<td>360</td>
<td>58 x 10⁻⁴</td>
</tr>
<tr>
<td>6 inch (43.6 g)</td>
<td>375</td>
<td>60 x 10⁻⁴</td>
</tr>
<tr>
<td>7 inch (78 g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(30 minutes)

<table>
<thead>
<tr>
<th>Fish Size</th>
<th>Mg O₂/kg fish/hr</th>
<th>O₂/lb fish/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inch (24 g)</td>
<td>280</td>
<td>45 x 10⁻⁴</td>
</tr>
<tr>
<td>6 inch (43.6 g)</td>
<td>350</td>
<td>56 x 10⁻⁴</td>
</tr>
<tr>
<td>7 inch (78 g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(45 minutes)

<table>
<thead>
<tr>
<th>Fish Size</th>
<th>Mg O₂/kg fish/hr</th>
<th>O₂/lb fish/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inch (24 g)</td>
<td>255</td>
<td>41 x 10⁻⁴</td>
</tr>
<tr>
<td>6 inch (43.6 g)</td>
<td>310</td>
<td>50 x 10⁻⁴</td>
</tr>
<tr>
<td>7 inch (78 g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1 hour)

<table>
<thead>
<tr>
<th>Fish Size</th>
<th>Mg O₂/kg fish/hr</th>
<th>O₂/lb fish/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inch (24 g)</td>
<td>240</td>
<td>39 x 10⁻⁴</td>
</tr>
<tr>
<td>6 inch (43.6 g)</td>
<td>325</td>
<td>52 x 10⁻⁴</td>
</tr>
<tr>
<td>7 inch (78 g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2 hours)

<table>
<thead>
<tr>
<th>Fish Size</th>
<th>Mg O₂/kg fish/hr</th>
<th>O₂/lb fish/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inch (24 g)</td>
<td>215</td>
<td>35 x 10⁻⁴</td>
</tr>
<tr>
<td>6 inch (43.6 g)</td>
<td>340</td>
<td>55 x 10⁻⁴</td>
</tr>
<tr>
<td>7 inch (78 g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References Reviewed

Chapter 21
Fish Diseases
- Types, Causes & Remedies

INDEX--FISH DISEASES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Disease Type</th>
<th>Disease Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>157</td>
<td>Nutritional or organic diseases</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Nutritional or dietary gill diseases</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Hepatoma of rainbow trout</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Bacterial diseases</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Bacterial or eastern gill disease</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Columnaris</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Fin rot</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Cold-water or peduncle disease</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Bacterial diseases (internal)</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Bacterial hemorrhagic septicema</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Kidney disease</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Furunculosis</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Fish tuberculosis</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Ulcer disease of trout</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Vibrio disease</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Virus diseases</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Infectious pancreatic necrosis</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Sockeye salmon virus</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Lymphocystis</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>External protozoan parasites</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Trichodiniasis</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Costiasis</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Ichthyophthiriasian</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Parasitic copepods</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>External parasitic worms</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Gyrodactylus</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Internal protozoan parasites</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Hexamitiasis</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Myxosporidia</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Ichthysporidium</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Salmon poisoning disease</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Blood fluke</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Haplosporidia</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Fungus disease</td>
<td></td>
</tr>
</tbody>
</table>
FISH DISEASES
TYPES, CAUSES, AND REMEDIES

Fish diseases are of concern principally in hatchery production. Epidemics may occur occasionally under natural conditions, more often in lakes and reservoirs, than in fast running streams. When these occur in the wild they usually are due to widespread parasitic infestation. In hatcheries fish are more susceptible to all types of infections. When disease occurs in a hatchery it is more readily apparent, and in the past frequently has impaired the success of artificial propagation.

Formerly some fish diseases, and particularly parasitic infestations, as Ichthyophthirius, were commonly accepted as being ever present and an inescapable source of loss in hatchery operations. Today, with present methods of disinfecting water supplies, pasteurization of fish food ingredients, and new therapeutic chemicals, most disease organisms are treatable and controllable. The use of wild fish and eggs from wild fish in artificial propagation, together with transfers of fish and eggs between stations, requires a continuing effort to prevent the spread of infectious diseases and resultant loss.

Although some diseases that formerly caused large losses of hatchery fish are no longer of major concern, the fish culturist is still beset with a formidable array of fish pathogens. Most fish disease outbreaks in a hatchery are now recognized in their early stages and, with the new and improved drugs and better treatment procedures, are controlled before they reach epidemic proportions.

Fish diseases may be divided into several categories. The proper category of a particular disease outbreak must be established as a first step toward determining the cause and the adoption of remedial measures. These categories generally may be considered as nutritional or organic, bacterial, virus, external parasites, internal parasites, and fungi. No attempt is made to identify all of the diseases that may be contained in each of these categories. However, the more common ones are listed and described, together with the usual conditions of occurrence and suggested treatment.

Nutritional or organic diseases

Mortality of hatchery fish from these causes is not nearly as prevalent now as formerly, due to improved formulation of dry foods and better refrigeration and preparation of meat products. However, nutritional requirements vary between species, and components vary in commercial food products. More work has been done on the nutritional requirements of salmonids than other species. There are known vitamin, protein, and mineral requirements. There is danger in excess amounts of carbohydrates in fish diets, as contained in cereals.

Vitamin deficiencies result in nervousness, mortality from shock and fright, poor appetite, blindness and hemorrhagic eyes, anemia, and poor growth.

Protein deficiencies, expressed by lack of essential amino acids, are quickly apparent. Deficiency syndromes are loss of appetite and lack of growth.

Excess dietary fat causes damage to the liver and kidneys, including fatty infiltrations of these organs, and edema, or accumulation of fluids in the body cavity.

In order to assure proper nutritional values for fish after a proper diet is determined, good food storage and food preparation procedures must be maintained. Prolonged storage should be avoided, as well as over-heating of cooked food products, or improper refrigeration. Quality control of fish food products also is essential.

Nutritional or dietary gill disease

The widespread adoption of adequate vitamin-fortified diets has greatly reduced the incidence of this disease.

Occurrence: In salmon and trout being reared in fresh water.

Description and Symptoms: Gill filaments and lamellae swollen and fused, starting at the base of the lamellae. Affected fish are listless and lose appetite.

Cause: Pantothenic acid deficiency in diet.

Treatment: Increase sources of pantothenic acid in diet. Beef, liver, milk, dietary yeast, and distillers solubles are good sources of pantothenic acid.

Hepatoma of rainbow trout

Occurrence: Hepatoma has been noted and described in many species of fish for years. However, a high incidence of the disease occurred in hatchery-reared rainbow trout in the spring of 1960, focusing attention on the disease. Diet improvements have prevented additional major outbreaks.

Description and Symptoms: The disease is characterized by the presence of white nodules of varying size and number on the liver. In advanced stages the abdominal walls are distended by the internal tumors. Internally the normal cell structure is broken down, and necrotic and hemorrhagic areas occur. Metastases are sometimes found in the kidney. Outbreaks usually occur in yearling and adult fish.

Causative Agent: Nutrition has been shown to be the cause of sudden extensive outbreaks. Some investigators have considered that heredity and in-breading of hatchery rainbow brood stock may make these fish more susceptible to the disease. Halver and others have shown that hatchery-reared rainbow trout are particularly susceptible to the carcinogenic effects of aflotoxin contained in cottonseed meal and peanut meal.

Temperature Range: Unknown, but apparently water temperature is not a factor.

Prevention: Since the disease in not infectious, the best preventive measure is an adequate diet, free of meal containing the carcinogenic aflatoxin.

Treatment: No effective treatment has been developed for fish after the disease is externally recognizable.

Bacterial diseases (external)

Bacterial or eastern gill disease

Occurrence: A common external bacterial infection found in hatchery reared salmon and trout, but also reported in largemouth and smallmouth bass and black crappie.

Description and Symptoms: Proliferation of gill epithelium, due to irritation, and causing swollen, fused, club-like gill filaments and lamellae. This interferes with the normal exchange of gases in the gills, and thus impedes respiration. In severe infestations mortality of infected fish may occur quickly from large numbers of bacteria impeding respiration.
Infected fish become listless, lose color, have poor appetite, exhibit increased gill activity and extended opercles, and frequently have excess mucous on clubbed gills.

Causative Agent: Several species of myxobacteria may be present on the gills, either singly or together.

Temperature Range: Occurs over a wide range of water temperature, from 35 to 70 degrees Fah.

Prevention: Since this disease seems to be associated with overcrowding of salmonid fingerlings, it has been recommended that standard 80 x 20 feet rearing ponds not be stocked in excess of 4 lb. of fish per gallon per minute of flow, and that dirt ponds and straight-flow通过raceways not be stocked in excess of 6 lb. of fish per gallon per minute of flow.

The water supply should also be free of silt or other gill irritants, as well as possible upstream infected fish populations.

Lignasan at 1 to 2 ppm is used effectively as a prophylactic at some stations, but may be acutely toxic in some water supplies.

Treatment: The treatment of choice, except for rainbow trout for which it is toxic, is 80% pyridyl mercuric acetate (PMA) at a concentration of 2 ppm for 1 to 3 consecutive days.

Since PMA is no longer readily available, Diquat is used at 8.4 to 16.8 ppm (2 to 4 p.p.m. Diquat cation) for 3 or 4 consecutive days.

Hyamine 1622 at 2 ppm (active ingredient) for 3 or 4 consecutive days may be more effective than Diquat. In any case reoccurrence of the disease may require repeated treatments.

Columnaris

Occurrence: A common, warm-water external bacterial infection which, in its advanced stages, may also become systemic and cause reinfection. Although usually occurring in epidemic proportions only in hatchery reared salmonids, it also occurs in wild fish and in other species in fresh water.

Description and Symptoms: Forms lesions which may completely erode gills. Organism also frequently enters body of fish through any break or scratch in skin, forming yellow to orange circular eroded lesions which enlarge rapidly. When the lesion has penetrated to blood vessels the infection may become systemic. The organism forms dish-shaped, with yellow slime around periphery. Disease develops and spreads rapidly under favorable conditions, causing high mortality.

Causative Agent: One of the myxobacteria, Chondrococcus columnaris.

Temperature Range: High virulence strains and low virulence strains of columnaris are recognized. Outbreaks of high virulence strains occur when average water temperatures reach 60 degrees Fah., and the low virulence strains become apparent when the average water temperature is over 68 degrees Fah. A reduction in temperature may greatly reduce the severity of a disease outbreak.

Prevention: Removal of wild fish, if possible, from a hatchery water supply may prevent infection. Fish should not be crowded or handled when the water temperature approaches 60 degrees Fah. or warmer.

Treatment: There are two standard treatment methods. One is by baths, either in PMA at a concentration of 2 ppm for several consecutive days, or in Diquat baths at 8.4 - 16.8 ppm for four consecutive days. If the infection is systemic (well advanced) it is necessary to add sulfamethazine to the diet in conjunction with the PMA baths.

The other method is to add Terramycin to the diet at a level of 4 grams per 100 lb. of fish per day for ten consecutive days. Terramycin usually is effective in eliminating the bacteria, both externally and internally. However, reinfection will soon occur if the disease organism is present and the water temperature favorable.

Fin rot

Occurrence: Fin-rot or tail-rot is an external bacterial disease which may occur among hatchery-reared salmonids of any age. However, epidemics usually occur only shortly after the fish have started feeding. These may be severe, with high mortality and poor appearance of survivors.

Description and Symptoms: Fin-rot may occur in conjunction with several other diseases, which may cause some confusion in identification and treatment. Typically, infected fish show a white discoloration along the outer edge of the fins. This extends toward the base of the fins as the disease progresses, destroying the fin, often leaving only a ragged remnant of fin rays.

Causative Agent: Not a great deal is known about bacterial fin-rot, partly because its general appearance may be almost identical with fin conditions associated with other diseases. However, there is considerable evidence that it is of bacterial origin, and is usually associated with myxobacteria. For unknown reasons, fin-rot usually follows egg-yolk disease or other difficulties encountered in poor incubation.

Temperature Range: Water temperature apparently is not a significant factor with this disease.

Prevention: Over-crowding and excessive handling should be avoided. When incidence of the disease is slight, removal of infected fish may be of benefit.

Treatment: In some cases treatment with a bactericide, such as PMA or Hyamine 1622, may be an aid in preventing spread of the disease.

Cold-water or peduncle disease

Occurrence: This is an external bacterial infection occurring in hatchery reared trout and salmon, especially in young coho. The disease usually occurs in epidemic proportions among alevins or fry that have just begun feeding.

Description and Symptoms: The most apparent characteristic of the disease is the erosion of the peduncle and often the complete loss of the tail. Lesions also may occur along the sides of the body, particularly on larger fish. Another symptom is the dark color of the caudal area, which increases as the disease progresses. In yolk-sac fry the epithelium covering the yolk material is attacked and eroded. Loss of yolk material quickly causes mortality. Epidemics frequently are severe, often exceeding 50 percent in sac-fry.

Causative Agent: The disease is caused by one of the myxobacteria, Cytophage psychrophila. It may be carried by resident fish in the water supply.

Temperature Range: The distinctive feature of cold-water disease is that in production ponds the optimum temperature for outbreaks is 40 - 50 degrees Fah. In yolk-sac fry the disease may persist and even increase in severity up to 60 degrees Fah.
Prevention: The inclusion of sulfamethazine at low levels in the diet will aid in preventing outbreaks of the disease. There is evidence that with coho yolk-sac fry, outbreaks may be associated with excessive water velocity in deep troughs; therefore, if troughs are used, they should be the shallow type in order to provide sufficient dissolved oxygen at flows not over 4 to 5 gallons per minute.

Treatment: Daily baths with PMA or Hyamine 1622, accompanied by Terramycin at the standard level or sulfamethazine in the diet. Sulfas should be fed at 10-20 grams per 100 lb. of fish per day in starter diets, or 5 grams per 100 lbs. of fish per day in pelleted diets. Treatment may be required for 10-20 days.

Sporocytophaga sp.

Occurrence: An external myxobacterial infection found in chinook, coho, and sockeye salmon and steelhead trout when reared in seawater.

Description and Symptoms: The disease forms large lesions on the sides and abdominal surface of infected fish. The skin around lesions has the appearance of having been ground away or "sandpapered."

Causative Agent: Lesions are filled with a myxobacterium which has been found to belong to the genus Sporocytophaga.

Temperature Range: Unknown.

Prevention: Terramycin and Aureomycin are reported to be effective against this and other marine myxobacteria at a level of 1 ppm in the water.

Treatment: PMA (pyridylmercuric acetate) is effective against this disease, but may not be readily available. Lignasan is also reported to be satisfactory at a concentration of 1 ppm for one hour on four consecutive days.

Bacterial diseases (internal)

Bacterial hemorrhagic septicemia

Occurrence: This is an insidious internal disease condition which is not adequately known or completely understood. It, or closely related forms, may infect fingerling and adult salmon and trout. It may occur among only a few individual fish, or it may assume epidemic proportions. It is closely related to the "red-mouth" disease of rainbow trout, as well as to the "red-vent" disease of salmon. It occurs in both salmonids and other cold-water fish, as the red-sore disease of pike, as well as in warmwater pond fish.

Description and Symptoms: Since the disease is septi- cemic, the causative bacteria usually are present in the blood and internal organs. The abdominal cavity usually is distended and filled with slightly opaque or bloody fluid. The kidney may be swollen and soft, the liver pale, small hemorrhages present in the peritoneum and muscles. The lower intestine and vent are usually swollen, inflamed, with bloody contents. Externally there may be superficial shallow grayish or red ulcers. The area around the mouth may be inflamed and eroded as occurs in "red-mouth" disease of rainbow trout.

Causative Agent: The disease is caused by any or several members of the Aeromonas and Pseudomonas groups of bacteria. Prominent among these is Aeromonas liquefaciens, although a number of other forms have been isolated and described. The "red-mouth" disease of rainbow trout has long been attributed to Pseudomonas hydrophila.

Temperature Range: Since this disease or closely related forms occur in both coldwater and warmwater fish, it must be assumed to cover a wide range of water temperature conditions. However, it has been observed that outbreaks usually occur, at least in warmwater ponds, along with a prolonged increased in water temperature. This normally occurs in the spring.

Prevention: Inasmuch as one of the organisms commonly associated with this disease, Aeromonas liquefaciens, is commonly associated with decaying organic matter, it is assumed that dead fish or an undue accumulation of excess food or excrement on pond bottoms may provide a medium for disease transmission. Excess handling such as occurs in grading, marking, weighing or any undue source or stress may trigger the disease if it is present.

Infected fish should of course be removed, although other unknown carriers may be present. These may include frogs or infected protozoan parasites, thus making it difficult to eliminate the disease with any certainty.

Treatment: Terramycin or chloromycetin in the diet at a rate of 2.5 to 3.5 grams per 100 lb. of fish fed is usually the preferred treatment. This may have to be repeated several times at two to three week intervals. The sulfonamides, as sulfamethazine or sulfamerazine, may also be effective, particularly against red-mouth disease in trout. However, Sulmet is not effective against outbreaks caused by Aeromonas liquefaciens. Sulfonamides may be included in the diet at a rate of 10 grams per 100 lbs. of fish per day.

Kidney disease

Occurrence: This internal bacterial disease formerly caused high mortalities among all species of hatchery reared salmon up to yearling size. It is also found among young wild salmon fingerlings, which in some cases may be a source of hatchery infection. It also has had serious outbreaks among hatchery reared trout. It is also thought to occur in adult salmon.

With the widespread adoption of improved, pasteurized fish foods in the past four to five years, this disease no longer is normally a cause of great concern in artificial propagation.

Description and Symptoms: The disease organism circulates in the blood stream of infected fish, multiplies slowly, and forms foci of infection in the internal organs. These are primarily in the kidney, where blisters and ulcers occur. The liver, spleen, and heart may also be centers of infection and exhibit pus-filled lesions. The blisters may extend into the muscles, forming externally visible blebs under the skin, which may develop into deep external lesions. As the kidney breaks down, excess fluid may occur in the body cavity, causing great distention of the abdomen. An exophthalmic condition or "pop-eye" also may occur. In the latter stages of the disease the smaller capillaries in the skin may rupture, giving the skin a red-speckled appearance. Hemorrhaging may also occur at the base of the fins.

Causative Agent: The disease recently has been determined to be caused by a small, unnamed diplobacillus of the genus Corynebacterium. It may enter the fish either from infected food or from infected fish in the hatchery or water supply. There is considerable evidence that a former major source of the disease was the feeding of infected carcasses and visceral of infected adult salmon.

Temperature Range: The disease occurs over a wide range of water temperatures. The incubation period is rather long, being 60 to 90 days at water temperatures of 45-50 degrees Fah., and 30 to 35 days at temperatures above 52 degrees Fah.
Prevention: Salmon viscera should not be fed unless it has been pasteurized. Cottonseed meal in the diet apparently provides more resistance to the disease in young salmon than corn gluten. A low level of sulfamethazine in the diet (2 grams per 100 lb. of fish per day) is used as a prophylactic measure, but may result in a sulfua resistance. Infected fish act as carriers and should of course be removed from the hatchery and, if possible, from the water supply.

Treatment: Control remains mainly a matter of good preventive measures rather than treatment. Temporary control in trout has been obtained with the inclusion of 8 to 10 grams of Gantrisin or sulfamerazine per 100 lb. of fish per day. Frequently treatment must be repeated for one week each month. Erythromycin in the feed at the rate of 4.5 grams per 100 lb. of fish per day for three weeks gave the best control under laboratory conditions. However, a completely satisfactory treatment has not been found.

Furunculosis

Occurrence: Furunculosis is an internal bacterial disease which was known in Europe for many years before it was brought to this country. All salmonid fish are susceptible, both hatchery reared and wild fish. It is also found among many other fish species. The bacterium may enter fish either through an open scratch or wound, or through the digestive tract. In its acute stage it is systemic, and is carried throughout the body by the blood stream. Formerly this disease often reached epidemic proportions which were impossible to control, and it was responsible for enormous mortalities. In recent years effective control measures have been developed.

Description and Symptoms: As indicated by its name, the disease frequently gives rise to deep, boil-like lesions on the body. Other typical symptoms are blood-shot frayed fins, particularly the dorsal. There may be a bloody discharge from the vent, and internally there may be many small hemorrhages in the tissues. Necrosis of the kidney may occur, and the spleen will be bright red and swollen. In acute stages the gills may be pale or white, due to a breakdown of the capillaries.

Causative Agent: Furunculosis is caused by a water-borne bacterium, Aeromonas salmonicida.

Temperature Range: The disease can occur over a wide range of water temperatures. However, the optimum incubation temperature for outbreaks in salmon usually occurs between 56 and 70 degrees Fahrenheit, when the disease develops and spreads rapidly, becoming apparent within a week of infection. Below 45 degrees Fahrenheit, the infection becomes latent, without further development of symptoms or increased mortality.

Prevention: Since the bacterium may occur on eggs taken from infected fish, any eggs transferred from hatcheries where the disease occurs should be disinfected with sulfamerthioate or acriflavine.

Where possible, infected fish above a hatchery water supply should be removed. Rough fish spawning above a hatchery water intake frequently are a source of infection.

Treatment: The usual treatment is by the addition of one of the sulfonamides to the diet at a rate of 10 grams per 100 lbs. of fish per day. However, some strains of the bacterium are sulfu-resistant. Among the antibiotics, Terramycin or Chloromycetin have proved effective when fed at a rate of 2.5 to 3.5 grams per 100 lb. of fish per day. Furazolidone (Furoxone) also has been found effective when properly fed; nifl80, a commercial product containing 11 percent furazolidone is effective when fed at a rate of 25 to 35 grams per 100 lb. of fish per day for 10 days. However, if a wet diet is used, the nifl80 must be added immediately before feeding, as it is destroyed by the presence of fresh meat or fish products. A most promising treatment is the recent development of an oral vaccine called FSA (furunculosis soluble antigen). This antigen provides temporary protection lasting several weeks or months, depending in the initial level and water temperature. It is added to the diet in small amounts, and is most evenly distributed in food for hatchery use by inclusion in the food manufacturing formula.

Fish tuberculosis

Occurrence: Despite its name, this disease is not related to the organism causing tuberculosis in warm-blooded animals, and it cannot be contracted by them. It occurs in many species of fish in both fresh and salt water. Fish tuberculosis is an internal, chronic bacterial infection with formerly was quite prevalent in hatchery reared salmon. It now occurs only rarely and is of serious concern to fish culturists.

Description and Symptoms: In salmon the disease may invade almost every tissue of the body. The infection is chronic and develops slowly, taking one to four years to become apparent. Typically, caseous (cheeselike) lesions are found in the liver and kidney after the fish are more than two years old. Similar small lesions may be found in the spleen, intestine, and pyloric caeca. Adhesion of these organs may also occur.

Adult salmon having the disease often are observed to have small gonnads on their spawning migration. They also may fail to develop any of the secondary sexual characters normally present in mature salmon at time of spawning, and the sexes cannot easily be determined from external examination. Growth is also affected, the mature diseased fish having an average length of several inches less than normal. The time of the spawning migration of diseased fish is also irregular, such fish returning from the ocean during any month of the year.

Causative Agent: The disease is caused by various species of bacteria belonging to the genus Mycobacterium.

Temperature Range: Not known, but apparently not a significant factor.

Prevention: It has been repeatedly demonstrated that the causative organism is transmitted by the feeding of raw carcasses or viscera of infected fish. When this practice was continous the prevalence of the disease increased with each life cycle. Since this practice was abandoned the incidence of the disease has become negligible in hatchery production.

Treatment: No effective treatment, either prophylactic or therapeutic, has been developed.

Ulcer disease of trout

Occurrence: Ulcer disease is an internal bacterial infection. It occurs primarily in brook trout, but brown and lake trout are also susceptible. Rainbow trout are resistant but not immune. The disease is the cause of considerable concern in trout hatcheries in the northeastern part of the United States and eastern Canada, where it causes high mortalities.

Description and Symptoms: Typically the disease exhibits shallow open ulcers on the sides of the body. Lesions may also occur on the fins, which then become
frayed, and the tissue between the fin rays is destroyed. Frequently the symptoms may be confused with those of furunculosis, especially since it may often occur in association with the latter disease. Frequently the jaws and roof of the mouth become infected and are eroded away. In its early stages the disease occurs as small, whitish pimples or tufts resembling small patches of fungus, which can appear on almost any part of the body. These develop into small, circular, shallow ulcers, usually red, which increase in size and may form a large irregular lesion. When external symptoms are absent the organism can be found in the kidney. In active infections the disease becomes septicemic. The best diagnosis is made by bacteriological methods, since the disease resembles other ulcer forming infections.

Causative Agent: Ulcer disease is caused by a bacterium, *Hemophilus piscium*. Adult fish frequently act as carriers. It may be transmitted through the water or in food contaminated by bacteria present in the water or feces.

Temperature Range: It is reported that the disease will not break out at water temperatures below 45 degrees Fah.

Prevention: Trout eggs from sources where the disease is known to occur should be disinfected before being brought into the hatchery.

Treatment: The most effective treatment is by the addition of antibiotics such as Terramycin or chloramphenicol to the diet at a level of 2.5 to 3.5 grams per 100 lb. of fish per day until the outbreak is under control. The sulfonamides usually are not effective, but may be of some help if the fish are resistant to the disease.

Vibrio disease

Occurrence: This disease normally may occur in all species of salmon being reared in salt water. It also has been reported to occur in trout being reared in fresh water that are fed the raw flesh of infected marine fish. It also occurs in wild marine fish, and has been found in herring.

Description and Symptoms: The disease is well described as a bacterial hemorrhagic septicemia, and was formerly called "salt water furunculosis" because of the resemblance to the symptoms of the latter disease. Typically, large bloody lesions appear in the skin and throughout the musculature, due to the breakdown of blood vessels and tissues. The gills bleed easily, and a bloody discharge may be expressed from the vent. Hemorrhaging of the eyes also occurs, any may the the only external symptom observed. In small fingerlings death may occur before any external symptoms are apparent.

Causative Agent: The disease is caused by one or several bacteria of the genus *Vibrio*.

Temperature Range: All known outbreaks have occurred at water temperatures over 50 degrees Fah., and the most severe at temperatures near 60 degrees Fah.

Prevention: Salmon being reared in salt water should not be subjected to undue stress, as in handling, especially at abnormally high water temperatures. Low dissolved oxygen levels also will subject these fish to undue stress. The organism may be acquired by feeding raw fish carcasses, or it may be transmitted by infected carrier fish. When an outbreak is expected, as during periods of abnormally high water temperature, sulfamethazine should be included in the feed as a prophylactic measure at a level of 2 grams per 100 lb. of fish per day throughout the critical period.

Treatment: The disease may be effectively controlled by the addition of Terramycin to the diet at a level of 2.5 to 3.5 grams per 100 lb. of fish, or sulfamethazine at the normal level of 10 grams per 100 lb. of fish per day, for a ten day period.

Virus diseases

The field of virus diseases in fish was little known in the past, and it is probable that many puzzling outbreaks for which no causative agents could be isolated were caused by virus infections. In recent years the accepted clinical methods of virus determination have been used to establish the presence of a virus as the causative factor in several severe disease outbreaks among both trout and salmon in hatchery reared fish.

Infectious pancreatic necrosis

Occurrence: This disease, commonly called IPN, occurs primarily in brook trout, although it also has been found in rainbow, brown, cutthroat, and Atlantic salmon. It apparently is identical with a disease which earlier was called "acute catarrhal enteritis." It is extremely infectious, occurs among young salmonid fish shortly after they start feeding, and may cause mortalities as high as 80 percent.

Description and Symptoms: Typically the young infected fish whirl or swim in a horizontal spiraling manner. The fish may at times swim in a frenzied manner, alternating with quiescent periods when they may rest on the bottom. Internally the stomach and interior intestine are filled with a thick, clear or slightly whitish mucous material, distended, and empty of food. The spleen and liver may be almost colorless. Severe necrosis of the pancreas and hyaline degeneration of skeletal muscle are also characteristic of the disease.

Causative Agent: Accepted clinical methods have demonstrated that the disease is caused by a virus. The microscopic lesions are almost identical to those of the Coxsackie virus in mice.

Temperature Range: Unknown; the disease is reported to be less common in hatcheries having constant-temperature spring water.

Prevention: The disease is extremely contagious, suspected carrier fish should be removed from the water supply and the hatchery. The disease may be water-borne, or transmitted by ingestion of infected food. Strict sanitary measures are necessary to prevent spread of the infection.

Treatment: No effective treatment is known for infected fish. Like most virus diseases, it does not respond to any known chemotherapy.

Sockeye salmon virus

Occurrence: This disease formerly caused high mortalities among sockeye salmon and kokanee fingerlings being reared in several federal hatcheries in Washington in the upper Columbia River watershed. The disease is extremely infectious. It is carried by infected adult salmon spawners and transmitted by the feedings of raw infected sockeye carcasses and viscera. The incidence of the disease was reduced to a low level when this feeding practice was discontinued.
Description and Symptoms: Symptoms vary with the size of the fingerlings infected. If the disease occurs in the spring when the fish are small, the typical symptoms are lethargy, side-swimming, erratic behavior, and hemorrhaging at the base of the fins. Surviving fish often develop spinal deformities. If an outbreak occurs in the following fall when the fish are larger, the hemorrhaging symptom is more prevalent. Reddish areas also develop along the sides, small hemorrhagic areas occur in the visceral fat, and the intestine also may be inflamed.

Causative Agent: Accepted clinical methods have shown that the disease is caused by an unknown virus.

Temperature Range: The disease occurs over a wide range of water temperatures, being virulent from 40 to 60 degrees Fah.

Prevention: The only known effective preventive measure is not to feed raw or frozen salmon carcasses, eggs, or viscera.

Treatment: No effective treatment is known for infected fish. Such fish should be eradicated and strict sanitary methods employed to prevent spread of the infection.

Chinook salmon virus

Occurrence: This virus-like disease has caused high mortalities of chinook salmon fingerlings at the federal hatchery at Coleman, California, in the Sacramento River system. The disease occurs shortly after the young fish are moved from the hatchery to the ponds for rearing.

Description and Symptoms: Typical symptoms include lethargy, dark coloration, erratic behavior, pop-eye, and a well defined hemorrhagic area in the dorsal region behind the head.

Causative Agent: Accepted clinical methods indicate that the disease is caused by an unknown virus.

Temperature Range: Outbreaks occur at water temperatures below 50 degrees Fah. When the water becomes warmer the epidemic subsides.

Prevention: No effective preventive measures have been developed.

Treatment: No effective treatment is known.

Lymphocystis

Occurrence: This virus disease occurs in a number of marine and freshwater fish. It is most apparent among some that are artificially propagated in fresh water, including the walleye and many of the Centrarchids or sunfish family. The disease has not been reported among salmonids. It is of a chronic nature which is seldom if ever fatal.

Description and Symptoms: The disease is characterized by external lesions, although these may also occur internally. Host cells which become infected are stimulated to abnormal growth. These raised growths of tissue enlarge until they burst, releasing virus particles into the water. Among Centrarchids the lesions are usually limited to the fins, and commonly the caudal fin is the principal site of infection. In some fishes lesions may occur on any portion or over the entire body. Hemorrhagic areas occur during acute stages.

Causative Agent: It is well established that the disease is caused by a virus which is water-borne and transmitted by infected fish.

Temperature Range: Unknown; apparently the disease occurs over a wide range of water temperatures.

Prevention: The only preventive measure known is to remove and destroy all infected host fish from the hatchery or pond water supply.

Treatment: No effective treatment of infected fish is known.

External protozoan parasites

Trichodiniasis

Occurrence: Several species of Trichodina commonly parasitize many species of fish in fresh water, both warm-water and cold-water species, including the salmonids. The parasite is found on both hatchery reared and wild fish. When numerous they can cause serious losses among hatchery reared fish. The disease disappears from downstream salmon migrants when they enter salt water.

Description and Symptoms: When abundant the organism may cause considerable irritation of the gills, as well as to the skin and fins. The fins may become frayed, and irregular whitish areas appear on the skin. A typical symptom is frequent flashing of infected fish in attempts to remove the irritating parasites. The fish develop a tattered appearance if untreated, and suffer loss of appetite.

Causative Agent: A number of species of this ciliated protozoan parasitize various species of fish. Apparently one species infects chinook and another coho salmon. Other species are found on trout and other fishes. The parasite is transmitted directly and rapidly from close association with infected fish.

Temperature Range: Unknown; water temperature below 50 degrees Fah. do not inhibit the parasite, which apparently has a wide temperature tolerance.

Prevention: Uncrowded ponds and adequate dissolved oxygen will aid in preventing rapid spread of the disease in hatchery ponds.

Treatment: Fortunately, Trichodina responds readily to treatment. It can readily be controlled by formalin, salt, PMA, Diquat, malachite green, or acetic acid. Formalin baths at a concentration of 1:6,000 for one hour is the preferred removal treatment. Where ponds are not conducive to flushing, or where secondary bacterial infection is suspected, Diquat at 8.4 or 16.8 ppm, for four consecutive days is recommended.

Costiasis

Occurrence: This is a common external parasitic infestation of both trout and salmon. It is introduced into hatcheries from wild host fish. The disease is most destructive among fry and young fingerlings, although older fish may also suffer losses. The disease may occur among alevins in the hatchery, but severe losses usually do not occur until the young fish have started feeding. The organism may often be present in salmon hatcheries without causing an epidemic unless conditions are favorable for an outbreak, such as overcrowding or poor nutrition. Migration to salt water does not halt the infection.
Description and Symptoms: The parasite typically infects the gills and fins, and, in heavily infected fish, a bluish film may spread over the entire body. This disease may cause death with any drastic tissue changes.

Young infected fish may become very lethargic. Sudden flashing may be evident when the body surface is infected.

Causative Agent: The disease is caused by a small protozoan flagellate, Costia necatrix. Positive identification is made only under the microscope.

Temperature Range: Unknown; may occur at all normal salmon or trout hatchery temperatures.

Prevention: Young fish should not be overcrowded. A good balanced diet should be maintained. Formalin baths at a concentration of 1:6,000 for one hour may be used as prophylaxis, provided that bacterial gill disease is not present. Formalin is lethal if fish are weakened by bacterial gill disease.

Treatment: The preferred treatment is the formalin bath, as indicated. This may need to be repeated. An acetic acid dip at 1:500 concentration also is reported to give good results.

Ichthyophthiriasis

Occurrence: This is the most widespread external parasitic disease of fish. It is found on a wide variety of species, including warm-water species as well as salmon and trout. It occurs on both hatchery reared and wild fish. The causative organism is frequently present in hatchery ponds, but not lethal except to young fish under optimum conditions for the causative organism.

Description and Symptoms: The parasite typically infests the epithelial layers of the gills, fins, and skin. The infestation can be detected visibly, and appears as small, grayish white swellings on the body and fins. Young infected fish often may be seen to rub against the bottom or sides of a pond in efforts to dislodge the parasite. Young infected salmon exhibit considerable flashing, jumping, and erratic movement. As the parasite develops the fish become listless and dark in color. When mature, after a period of ten days to five weeks, depending on water temperature, the parasite drops off the host fish and settles to the bottom of the pond. Here it encysts and multiplies. After several days, depending on water temperature, the cyst bursts and a large number of the minute, free-swimming ciliates emerge and actively seek a host fish, where they bore into the epithelium and repeat the life cycle.

Causative Agent: The disease is caused by a ciliated protozoan, Ichthyophthirius multifiliis.

Temperature Range: This is a comparatively warm-water disease. The organism frequently is present but inactive at low water temperatures. The disease often breaks out in salmon fingerlings, especially chinook, at water temperatures above 60 degrees Fah. The optimum temperature for the organism has been noted as 77 to 80 degrees Fah.

Prevention: Removal of infected host fish from the water supply where possible will reduce the source of infection in hatchery ponds.

Lowering the water level and increasing the water velocity in raceway ponds every few days for a period of several hours will wash out the cysts and free-swimming stage of the parasite and reduce the incidence of infestation during periods of high water temperature.

Treatment: There is no effective treatment of the host fish after the parasite is embedded in the epithelium. However, the infestation may not be lethal, and reinfection can be prevented. The cystic and free-swimming stages are easily killed by a variety of chemical treatments. The preferred treatment is a formalin bath at a concentration of 1:6,000 for one hour, repeated daily until all the parasites leave the host fish. This usually requires about four days at 70 degrees Fah., or thirty or more days at 50 degrees Fah.

Parasitic copepods

Occurrence: Several species of these parasitic crustaceans infest trout and salmon, including both wild and hatchery reared fish. They are found in both fresh and salt water, and may sometimes occur in sufficient abundance to be troublesome, particularly in trout hatcheries. Adult fish usually are more heavily parasitized than fingerlings.

Description and Symptoms: The most common copepod infestation is easily observed. The organism is typically attached to the gills and fins. It is relatively large, several millimeters in length, and is yellowish white in color. The organism commonly observed is the female, bearing a pair of long egg sacs posteriorly, within which the embryos undergo complete development. When fully developed the egg sacs break open and the young, free-swimming larvae actively seek another host.

While attached to the gills the parasite debilitates the host fish by sucking large quantities of blood, and also by mechanical injuries to the tissues, which often result in secondary infections.

Light infestations do little harm, but in overcrowded broodstock holding ponds, under optimum conditions for the parasite, considerable losses may occur. Such mortalities usually occur during the spawning season, when the vitality of the fish is already low.

Causative Agent: The most common form is Salmonicola edwardsi. Another form is found on a great variety of wild fish, and is named Lernaea carassii commonly called “anchor worm.”

Temperature Range: Infestation occurs over a wide range of water temperatures.

Prevention: One obvious measure is to isolate infected fish. Host fish should be removed from the hatchery water supply where possible. The free-swimming larval stage may be prevented from entering the hatchery water supply by a sand filter.

Treatment: No effective measure has been developed for treatment of host fish after the parasite has become embedded in the gills and other tissues. However, the free-swimming larval stage is easily killed by a strong salt solution, by a formalin bath at a concentration of 1:6,000 for one hour, or by Lindane at concentrations of 1:10 million to 1:40 million.

Since the adult female copepod may remain alive on the host fish for two months or more, and normally lays two batches of eggs, chemical treatment may not be entirely effective.

Partial control also may be obtained by keeping infested host fish in ponds having increased water velocity, so as to wash out the free-swimming larval stage.
External parasitic worms
 Gyrodactylus

Occurrence: This monogenetic trematode commonly infests trout, but also has been found on adult sockeye salmon. Very similar or possibly the identical species occurs on a wide variety of fish, including warm-water species. The organism is found in both hatchery reared and wild trout. When ignored under overcrowded hatchery conditions the parasite may cause heavy mortality among trout.

Description and Symptoms: The parasite may occur almost anywhere on the host fish, but is usually most abundant on the dorsal and caudal fins, which become badly frayed and eroded. The affected body surfaces become covered with a bluish-gray slime due to the increased secretion of mucus. A low power lens will reveal the organism, usually attached to the host by a pair of curved hooks at the posterior end. They may also be observed slowly crawling over the surface of the fish. Infected fish often can be seen to rub themselves against the sides or bottom of the pond in an evident attempt to dislodge the parasite. Heavy infestations have an extremely debilitating effect on the host. A bad feature is that the disease makes the host fish susceptible to fungus and other secondary infections.

Causative Agent: The infestation is caused by a monogenetic trematode, *Gyrodactylus elegans*.

Temperature Range: Unknown, but apparently the parasite occurs over a wide range of water temperatures.

Prevention: Infected fish should be removed from hatchery water supplies where possible. Increased water flow through holding ponds may aid in reducing the extent of infestation.

Treatment: The parasite can be easily controlled, and no hatchery need suffer serious losses from this organism. The preferred treatment is a formalin bath at a concentration of 1:4,000 for one hour.

Internal protozoan parasites
 Hexamitiasis

Occurrence: This widespread hatchery disease, formerly called “octomitus” occurs in both salmon and trout being reared artificially. The disease formerly appeared in epidemic proportions, but in recent years has not been a serious source of trouble. It is believed that the former outbreaks probably were due to inadequate diets, and also may have been precipitated by overcrowding and size variation among fingerling fish.

Description and Symptoms: This small flagellated protozoan is found in the anterior intestine, stomach, and gall bladder of infected fish. The most serious outbreaks occur among fingerlings, and it is the young fish that suffer heavy mortalities. The most common symptom is the appearance of emaciated fish, commonly referred to as “pinheads”. Infected fingerlings suffer loss of appetite and become weak and listless. In acute infestations fingerlings may exhibit a whirling or corkscrew motion, or they may lie on the bottom of the trough or pond and bend the body from side to side with quick, spasmodic movements. The only sure method of diagnosis is by microscopical examination of the intestinal contents.

Causative Agent: The disease is caused by mass infestation of a protozoan flagellate, *Hexamita salmonis*.

Temperature Range: Unknown.

Prevention: The organism frequently appears in the intestinal tract of apparently healthy carrier fish, and may also exist in a free, resistant, dormant cyst stage. When the cyst is ingested by a host fish it quickly develops into the active flagellate. Because of these features of the life history, it is very difficult to eliminate the organism completely from a hatchery population.

The best preventive measures are to avoid overcrowding, provide an adequate balanced diet, and maintain uniform sized fish in ponds by proper grading.

Treatment: Formerly the classic treatment was by the addition of calomel at a level of 0.05 to 2.0 percent, or carbarsone at a level of 2.0 percent, to the diet for four days. This flushed the intestinal tract and presumably removed most of the parasites. However, calomel is frequently toxic and also unpalatable to the fish. It has been suggested that epsom salts would be more satisfactory.

Myxosporidia

This is the largest group of internal protozoan parasites of fish; more than 700 species having been described. They are found in a wide variety of fish, including fresh-water, marine, and anadromous species, and in both hatchery-reared and wild fish. At least seven species have been identified as responsible for disease outbreaks in northwest salmon hatcheries. The following description is limited to *Ceratomyxa*, the most damaging myxosporidian found in this area.

Occurrence: This parasite has been found in chinook and coho salmon, as well as in trout, at several hatcheries in the lower Columbia River watershed, where it has been responsible for serious losses of adult fish. The disease also occurs in fingerlings. It also has been reported in rainbow and steelhead trout at a California hatchery. It is significant that all outbreaks of *Ceratomyxa* have occurred in hatcheries associated with a lake or reservoir, which appears necessary for formation of the infectious stage.

Description and Symptoms: As the name indicates, this entire class of Protozoa, called *Sporozoa*, is characterized by the formation and release of small resistant spores. This enables them to withstand unfavorable conditions outside the host, and renders them very difficult to eradicate.

The parasite multiplies throughout the tissues of the host fish. Infected adult chinook may exhibit nodules in the gut which may develop into perforated intestinal walls and pyloric caeca before death. Gross lesions may occur in the liver, kidney, spleen, and musculature, which abcess as they progress. Infected adult coho usually show grossly thickened intestinal walls and pyloric caeca before death. The life cycle of *Ceratomyxa* is not completely known. Mature spores may be formed and the death of the host occur within 20 to 30 days following initial infection.

Causative Agent: The disease is caused by a myxosporidian parasite, *Ceratomyxa shasta*.

Temperature Range: It appears that water temperatures above 50 degrees Fah. are necessary for initial infection. The disease progresses more rapidly with increased water temperature.

Prevention: The best preventive measure where the disease has not occurred is to prohibit the transfer of eggs or fish from infected waters.
Where hatchery infection is known to be carried by the water supply, it may be possible to treat the water by any of several methods. These include chlorination or ultra-violet irradiation, thus preventing the entrance of the infectious stages of the parasite.

Treatment: No effective treatment is known for infected fish.

Ichthyosporidium

Occurrence: This sporozoan internal parasite may be found in many species of fish, both fresh-water and marine. It is of interest because it has been responsible for serious losses of yearling, marketable size rainbow trout in several commercial hatcheries.

Description and Symptoms: Typically the parasite attacks the kidney and liver, although the spleen and intestines also may be enlarged and infected. Externally the organism causes lesions in the skin and gills.

Causative Agent: The disease is caused by a parasitic sporozoan, *Ichthyosporidium hoferi*. An oral route of infection is the normal means of transmission.

Temperature Range: Unknown, but the spores apparently are resistant to a wide range of water temperatures.

Prevention: Outbreaks in commercial rainbow trout hatcheries are known to have been caused by feeding the raw carcasses of infected carp. No untreated fish or meat products should be included in the diet.

Where possible, any infected fish in the hatchery water supply should be removed. Likewise any infected fish in hatchery ponds should be removed, and the ponds drained and sterilized before reuse. Due to the resistant nature of the spores, eradication may be difficult.

Treatment: Control of this disease lies in prevention rather than treatment. No effective treatment is known for infected fish.

Salmon poisoning disease

There are a number of internal parasitic worms and flukes which may infect fish. Only infrequently do they interfere seriously with hatchery operations. One of particular interest is responsible for the “salmon poisoning disease” of dogs.

Occurrence: This disease is caused by a digenetic trematode, and occurs among a wide variety of fresh-water and anadromous fish where the parent or spawning stream supports a population of the specific snail intermediate host.

Description and Symptoms: The disease actually is caused by a rickettsian which parasitized the fluke. Both the fluke and the rickettsian remain viable in salmon while the fish are in the ocean. The adult form on the fluke attaches in the intestine of fish-eating carnivorous mammals, as dogs, bears, and raccoons. The mammalian host acquires the parasite by ingesting the encysted metacercaria contained in the raw flesh of infected fish. Eggs are discharged through the mammalian intestinal tract. If the eggs enter water they hatch as free-swimming miracidia. The miracidia must bore into a specific aquatic snail, *Oxytremia plicifera*, where they multiply and later leave the snail as free-swimming cercaria. Upon coming into contact with a fish, the cercaria bore in and encyst as metacercaria.

Large numbers of encysted metacercaria have a debilitating effect on young fish, which often appear emaciated. The optic nerve often is affected in heavy infestations, causing blindness and exophthalmos, commonly called “popeye.”

Causative Agent: The so-called “salmon poisoning disease” is caused by the digenetic trematode or flatworm, *Nanophyetus salmincola*.

Temperature Range: Unknown.

Prevention: No effective measures have been developed to completely eradicate the intermediate host snail in streams. Where the hatchery infection is known to be carried by the water supply, the most promising measure is to continuously disinfect the water supply, thus destroying the free-swimming cercaria. This also might be accomplished by chemicals. Electric grids also have been reported to be effective for this purpose.

Treatment: No effective method has been devised to rid infested fish of the encysted metacercaria.

Blood fluke

Occurrence: This disease is caused by a digenetic trematode, and is found in both trout and salmon where the parent or spawning stream supports a population of the specific snail intermediate host. This parasite has been known to cause serious losses among hatchery-reared rainbow and cutthroat trout. It is not known to have caused serious trouble in young salmon.

Description and Symptoms: The rather complicated life history of this parasite is somewhat similar to *Nanophyetus salmincola*, which as responsible for “salmon poisoning disease.” The principal difference is that the blood fluke lives in the gill arteries of the host fish, where it lays eggs which lodge and develop in the gill capillaries.

Since the disease centers in the gills, a heavy infestation may inhibit respiration. The miracidia leaving the gills could also cause an extensive loss of blood and damage the gill epithelium. This also could make the host fish susceptible to secondary bacterial infections and fungus.

Causative Agent: In trout the parasite has been identified as the digenetic trematode, *Sanguinicola davisi*. The adult fluke has not been described in salmon, but probably is the same species.

Temperature Range: Unknown.

Prevention: In cases where the free-swimming larvae or cercariae are carried into a hatchery in the water supply, the ideal preventive measure is to destroy the snail intermediate host population upstream. Since this is seldom practicable or possible, in a heavily infested stream it may be advantageous to disinfect the hatchery water supply, either chemically or by means of an electric grid.

Treatment: No effective method has been devised to rid the gills of infected host fish of this parasite.

Haplosporidia

Occurrence: A member of this group of sporozoans is generally considered responsible for several hatchery and spawning channel infestations among adult chinook salmon and fry, and in adult coho salmon. It has been observed in both the Columbia and Sacramento River systems.
Description and Symptoms: This parasite typically infests the gills, but also may be found on the skin of the host fish. Mature cysts are readily visible on the gills as white spheres about 1 mm. in diameter. Each cyst contains myriads of small spores. The gill lamellae and filaments are drastically displaced by developing cysts. When cysts are formed in the skin they greatly resemble an infestation of Ichthyophthirius. Cysts on the gills of fry apparently interfere greatly with respiration. Adult fish seem to be able to withstand a relatively heavy infestation. However, the gill damage renders the fish much more susceptible to bacterial gill disease, fungus, and other secondary infections. Mature cysts are dislodged from the gills and drop to the bottom of the pond. The entire life cycle has not been described, but is supposed to be relatively uncomplicated.

Causative Agent: This parasitic infestation generally is considered to be caused by an organism belonging to the Haplosporidia, namely Dermocystidium salmonis.

Temperature Range: Unknown.

Prevention: No effective preventive measure is known except for the removal of infected fish.

Treatment: No effective treatment has been developed.

Fungus disease

Occurrence: There are a number of aquatic fungi which may attack most fish and fish eggs in fresh water under conditions favorable for the plant growth. The zoospores which spread the infection are almost universally present in hatchery water supplies. Varying descriptions of fungus infestations may be due in part to the several species which may occur.

Fungus may occur on any part of the fish, but normally enters and develops on any injured body surface, or in areas where the protective covering slime has been rubbed away.

Causative Agent: The commonly observed fungus infection is due to the invasion of Saprolegnia parasitica.

Temperature Range: Occurs over a wide range of water temperatures but develops more rapidly in warm water.

Prevention: The preferred method of fungus prevention for eggs is the addition of malachite green to the water supply, usually at a concentration of 1:450,000 for one hour period several times a week. The optimum application must be determined in accordance with individual hatchery water quality conditions.

Treatment: Malachite green is preferred, and may be used at a concentration of 1:19,000 for ten to thirty seconds as an effective dip. A prolonged three percent salt bath may be substituted if other fungicides are not immediately available.

The basic information in this chapter is contained principally in Reference No. 2.

References Reviewed

References Reviewed (continued)

Chapter 22
Use of Anaesthetics & Tranquilizer Drugs in Fisheries Work
USE OF ANESTHETICS
AND TRANQUILIZER DRUGS
IN FISHERIES WORK

Those drugs in most common use are shown in the table on pages 173 - 175, which includes notations on their effects. As noted, some have a wide range of application and others are particularly adaptable to special uses.

The time factor, both for general anesthesia and for tranquilizers, varies widely with water temperature, water quality and size of fish, and also exhibits variation between some species. Examples of this variation for various drugs are shown in the table on pages 173 - 175, and for a specific drug, M.S. 222, in the tables on pages 170 and 171 are taken directly from the publication, "M.S. 222 - Sandoz, the anesthetic of choice in work with cold-blooded animals." Technical Bulletin of Sandoz Pharmaceuticals, Hanover, N.J.

Certain drugs, as sodium amytal, are not effective in seawater or highly alkaline water; further, the effects of some drugs on fish are not known or recorded. Test trials always should be conducted within the listed range of concentration before large scale use. Research and field trials may reveal drugs that are equal or superior to those listed.

Many of the drugs listed are known by several names, of which only the most common are given. Those that are narcotics or hypnotics may not be obtained easily. All should be used with proper care to prevent irritation or more serious effects on humans in contact with the drugs. One that was formerly used widely, urethane, is omitted because of possible carcinogenic effect. Continuous checks should be kept on all for possible side effects.

Most of the data contained on pages 173 - 175 is presented in greater detail in Bulletin No. 148 of the Fisheries Research Board of Canada, 1964 (Revised 1967) by Gordon R. Bell, "A guide to the properties, characteristics and uses of some general anesthetics for fish."

More specific details on types of drugs and certain of their effects may be obtained from the reference:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Reference No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types</td>
<td>1 - 28</td>
</tr>
<tr>
<td>Doses by species</td>
<td>10, 29 - 42, 45, 46</td>
</tr>
<tr>
<td>Doses - Concentration</td>
<td>1, 7, 14, 16, 18, 25, 26, 33 - 35, 42, 47</td>
</tr>
<tr>
<td>Doses - Duration</td>
<td>1, 14, 26, 34, 36</td>
</tr>
<tr>
<td>Uses - Hatcheries</td>
<td>34, 47, 48</td>
</tr>
<tr>
<td>Uses - Transportation</td>
<td>9, 11, 12, 14, 16, 24, 42, 49 - 59</td>
</tr>
<tr>
<td>Uses - Tagging and marking</td>
<td>60 - 61</td>
</tr>
<tr>
<td>Effects on humans</td>
<td>1, 18</td>
</tr>
<tr>
<td>Preference</td>
<td>1, 8, 15, 16, 18, 24, 31, 35, 42, 47</td>
</tr>
<tr>
<td>Recovery time</td>
<td>1, 11, 13, 27, 34, 42</td>
</tr>
<tr>
<td>Side effects</td>
<td>1, 18, 20, 25, 33, 47</td>
</tr>
</tbody>
</table>

Also see chapters on Hatcheries and Transportation for uses of anesthetics and tranquilizer drugs.
<table>
<thead>
<tr>
<th>Variety of Fish</th>
<th>Concentration of M.S. 222</th>
<th>Anesthesia Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver Salmon Fingerlings</td>
<td>1:3,785</td>
<td>2-4 min.</td>
<td>Fin clipping. Some mortality longer than 4 min. None at 2 min. (mortality 37 out of 11,922.)</td>
</tr>
<tr>
<td>Sockeye Salmon Immature</td>
<td>1:12,000</td>
<td>4-5 min.</td>
<td>Exp. for weight, length and scale data. No adverse effects.</td>
</tr>
<tr>
<td>Salmon (O. nerka)</td>
<td>1:12,500</td>
<td>15-30 min. to 2 hrs.</td>
<td>Marking—no adverse effects.</td>
</tr>
<tr>
<td>Salmon fingerlings</td>
<td>1:17,000 to 17,5000</td>
<td>10 min.</td>
<td>Fin marking exp. No adverse effect. Little difference in time to anesthetize different fish.</td>
</tr>
<tr>
<td>Lake Trout (8-20")</td>
<td>1:13,100</td>
<td>30 min.</td>
<td>Generally no adverse effect, but if temp. increased to 80° F, mortality occurred.</td>
</tr>
<tr>
<td>Bluegills (3-7")</td>
<td>1.3,333</td>
<td>5 min.</td>
<td></td>
</tr>
<tr>
<td>Lake Trout (C. namaycush)</td>
<td>1.12,500</td>
<td>5-15 min.</td>
<td>Larger fish took longer time to feel effects of drug. No adverse effect.</td>
</tr>
<tr>
<td>Steelhead Rainbow Trout (yearlings)</td>
<td>1:15,140</td>
<td>5 min.</td>
<td>Fin clipping. No loss and no adverse effect using several hundred thousand. Fish regained their senses very rapidly upon being placed in fresh water.</td>
</tr>
<tr>
<td>Rainbow Trout (Fall & Spring Spawn)</td>
<td>1:3,785 to 1:11,625</td>
<td>1-2 min.</td>
<td>Subcutaneous Tagging. If temp. above 60° F at 1:3,785 mortality occurred, but did not occur if conc. was 1:11625. Reported as superior to Urethane for subcutaneous tagging.</td>
</tr>
<tr>
<td>Brown & Rainbow Trout</td>
<td>1:5,530</td>
<td>18-20 min.</td>
<td>Spawning—no adverse effect.</td>
</tr>
<tr>
<td>Variety of Fish</td>
<td>Concentration of MS222</td>
<td>Anesthesia Time</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>13. Large Mouth Bass</td>
<td>1:3,000</td>
<td>1-3 min.</td>
<td>Weighing & measuring exp. No adverse effect. Found M.S. 222 very satisfactory.</td>
</tr>
<tr>
<td>14. Rainbow & Brook Trout, Bass, Bluegills</td>
<td>1:3,785 for experiment 1:38,750 for transportation</td>
<td>to 13 hrs.</td>
<td>No adverse effect when exposed for a short time. Reported as excellent for spawning, fin clipping, tagging exp. Used in transportation as long as 8 hrs. at 1:38750. Promising but conflicting results during transportation.</td>
</tr>
<tr>
<td>15. Tropical & Goldfish, Bluegills, Bullheads</td>
<td>1:3,500</td>
<td>4-10 min.</td>
<td>No adverse effect, even when used repeatedly tri-weekly over several months on same animals. Longer time reported to anesthetize larger goldfish. Most observation at a temperature of 68° ± 3° F.</td>
</tr>
<tr>
<td>16. Rainbow Trout Brook Trout, Large Mouth Bass</td>
<td>1:15,500</td>
<td>20 min.</td>
<td>Tagging and fin clipping 10% mortality on one strain of rainbow trout. between amount of M.S. 222 and size of animal-direct relation.</td>
</tr>
<tr>
<td>Common Name</td>
<td>Preferred Use</td>
<td>Concentration</td>
<td>Time Required for Anesthesia (min.)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>M.S. 222 (solid) (Tricaine methanesulfonate)</td>
<td>Marking, tagging, spawn taking, operations, transportation</td>
<td>0.5-1.0 g./gal.</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.14 g./gal.</td>
<td>Tranquilizer</td>
</tr>
<tr>
<td>Chloretone (crystal) (Chlorbutanol)</td>
<td>Marking, tagging</td>
<td>1.5 g./gal.</td>
<td>1-2</td>
</tr>
<tr>
<td>Quinaldine (liquid)</td>
<td>Marking, tagging</td>
<td>5-12 p.p.m.</td>
<td>1-6</td>
</tr>
<tr>
<td>Methyl pentynol (liquid)</td>
<td>Transportation</td>
<td>2-4 ml./gal.</td>
<td>Tranquilizer</td>
</tr>
<tr>
<td>Sodium amytal (solid) (Amobarbital sodium)</td>
<td>Transportation in soft water</td>
<td>0.5-0.8 g./gal.</td>
<td>Tranquilizer, slow acting-</td>
</tr>
<tr>
<td>Tert.-amyl alcohol (liquid) (Amylene hydrate)</td>
<td>Marking, tagging, Transportation</td>
<td>5-6 ml./gal.</td>
<td>8-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2 ml./gal.</td>
<td></td>
</tr>
<tr>
<td>Tribromoethanol (solid)</td>
<td>Short-term experiments</td>
<td>5-50 p.p.m.</td>
<td>Varies</td>
</tr>
<tr>
<td>Phenoxyethanol (liquid) (Phenoethol)</td>
<td>Marking, tagging, general anesthesia</td>
<td>0.5-1.5 ml./gal.</td>
<td>2-5</td>
</tr>
<tr>
<td>Chloral hydrate (solid)</td>
<td>Short-term anesthesia</td>
<td>9.5-14 g./Imp.gal.</td>
<td>2-3</td>
</tr>
</tbody>
</table>
Anesthetics for Fish

<table>
<thead>
<tr>
<th>Solubility in water</th>
<th>Stability</th>
<th>Effect</th>
<th>Toxicity to Man</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>G./100/ml</td>
<td>Undiluted</td>
<td>Soln.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very soluble</td>
<td>Stable</td>
<td>Loses strength slowly</td>
<td>Decreases activity & O_2 consumption</td>
<td>Slight</td>
</tr>
<tr>
<td>0.8 Mix stock soln. with warm water</td>
<td>Sublimes</td>
<td>Fairly stable</td>
<td>Depressant; relaxes involuntary muscles</td>
<td>Irritant</td>
</tr>
<tr>
<td>Slight; mix stock soln. with acetone or ethanol</td>
<td>Fair, Keep tightly closed</td>
<td>Several days</td>
<td>Unknown; may be depressant</td>
<td>Slight</td>
</tr>
<tr>
<td>Density 0.87, will float unless mixed</td>
<td>Stable</td>
<td>Stable</td>
<td>Decreases activity & O_2 consumption</td>
<td>Slight</td>
</tr>
<tr>
<td>Very soluble</td>
<td>Stable</td>
<td>Loses strength slowly</td>
<td>Sedation; reduces O_2 consumption</td>
<td>Normally non-toxic</td>
</tr>
<tr>
<td>Density 0.81 14</td>
<td>Stable</td>
<td>Stable</td>
<td>Depressant; reduces O_2 consumption</td>
<td>Irritant</td>
</tr>
<tr>
<td>Mix with ethanol, ether or amylene hydrate $^{2.5}$</td>
<td>Slowly decomposes</td>
<td>Decomposes in water</td>
<td>Depressant</td>
<td>Strong irritant</td>
</tr>
<tr>
<td>Mix stock soln. with warm water or ethanol $^{2.67}$</td>
<td>Stable</td>
<td>Stable</td>
<td>--</td>
<td>Effective dose for deep anesthesia lethal level. Fish may be hyperactive during induction & recovery.</td>
</tr>
<tr>
<td>21</td>
<td>Slowly volatizes</td>
<td>Decomposes slowly</td>
<td>Depressant</td>
<td>Irritant</td>
</tr>
</tbody>
</table>
Commonly Used

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Preferred Use</th>
<th>Concentration</th>
<th>Time Required for Anesthesia (min.)</th>
<th>Recovery (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ether (liquid)</td>
<td>Short-term anesthesia</td>
<td>1/oz./gal.</td>
<td>1-2</td>
<td>3-20</td>
</tr>
<tr>
<td>Ethyl oxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiouracil (solid)</td>
<td>Transportation</td>
<td>388 p.p.m.</td>
<td>Several hours</td>
<td>Slow</td>
</tr>
<tr>
<td>Propoxate (solid)</td>
<td>Transportation, Marking, tagging</td>
<td>2-4 p.p.m. for anesthesia near salmon; 1/4 p.p.m. or less for transport</td>
<td>2-3</td>
<td>5-9</td>
</tr>
<tr>
<td>4 SP (solid)</td>
<td>Marking, tagging</td>
<td>20-50 p.p.m.</td>
<td>12-25</td>
<td>6-8</td>
</tr>
<tr>
<td>(4-Styrylpyridine)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References Reviewed

Anesthetics for Fish

<table>
<thead>
<tr>
<th>Solubility in water (G./100/ml)</th>
<th>Stability Undiluted</th>
<th>Soln.</th>
<th>Effect</th>
<th>Toxicity to Man</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5<sup>20</sup> Density 0.71 Mix thoroughly</td>
<td>Good, but volatile</td>
<td>Good but evaporates readily</td>
<td>Narcotic to central nervous system</td>
<td>Irritant</td>
<td>Very flammable & explosive in air. Use only in well ventilated area. Extremely volatile. Limited use. Cheap & readily available, but others more suitable for fish.</td>
</tr>
</tbody>
</table>

Soluble, dissolve in warm water	Stable	Stable	Reduces metabolism; O₂ consumption reduced 20%	—	Slow acting; other drugs more effective.
Very soluble	Stable	Good; can re-use	Sedative; reduces metabolism	Unknown; should be non-irritating	Not yet commercially available; Belgium import; unduly expensive.
Slight; dissolve in acetone	Stable	Good; can reuse	Deep anaesthesia; reduces respiration & heart action	Non-irritating; safe to handle	Mix well to avoid precipitation; low water solubility could be disadvantage.

18. Toth, Robert, "Fish anesthetics." In "Inland Fisheries Management" edited by Alex Calhoun, California Department of Fish and Game, pp. 148-149. Sacramento, California. 1966.

37. Hanson, Harry A., "Tranquilizing formula of quinaldine and M.S. 222 for salmon and steelhead." Unpublished correspondence to Harlan B. Holmes from the California Department of Fish and Game.

49. "Report on the use of sodium amytal and seconal sodium as an aid in the transport of fish." Unpublished correspondence from the California Fish and Game Department.

52. Calhoun, Alex., "Hypnotic drugs as an aid in fish transportation." Unpublished correspondence to Harlan B. Holmes from the California Department of Fish and Game. (Mimeo.) 3 pp., 1953.

FISH PUMPS

With the design of the so-called “bladeless” pump, it became possible to pass fish through pumps.

Special pumps are used to remove juvenile fish from ponds or traps, as they are a convenient method of handling fish in volume, and are expected to have better than 90 per cent efficiency when properly designed and operated under low head. In the design of these pumps, the pressure of the intake (suction) should not be less than 8 lbs. abs. All venturi action should be eliminated and an rpm of less than 300 is advisable. Blade and vane clearances should be commensurate with the size of fish to be handled.

Fish are also passed through pumps installed for delivering water. Generally, the efficiency of fish passage follows the efficiency of the pump. Usually, pumps are relatively high speed, with a minimum diameter which increases the potential mechanical kill of fish routed through such equipment. Where both large volumes of water and fish passage are involved, propeller pumps are recommended, with the center-line of the runner set below the water surface level at the intake.

Pumps designed with runners similar to turbines should have the equivalent passage rates of turbines operating under the same conditions.

Injector-type pumps should be avoided, as they create sudden changes in velocity that may cause death.

Vacuum-type pumps built on the ventura principle also should be avoided as they create suction at the intake. Reduction of pressure by one-half can cause embolism.

Air lift pumps that operate by the introduction of air into a U column are reported to be successful as shown by Reference No. 6, which includes design criteria, and by tests conducted by the Washington State Department of Fisheries in 1967.

References Reviewed

Chapter 24
Movement of Downstream Migrants
DOWNSTREAM MIGRANTS, MOVEMENT OF

Time of Downstream Migration

The periods of downstream migration are shown in the chapter, "Useful Factors in Life History of Most Common Species."

The bulk of the downstream migration of pink salmon fry occurs almost immediately after the yolk sac is absorbed and the fry emerge from the gravel, at which time they are about 1 to 1-1/2 inches in length, 1/4 to 3/10 inch in depth and 3/16 inch in width.

Chum salmon fry also make their downstream migration soon after they emerge from the gravel or, at most, after a brief period of stream rearing. At this time they are approximately 1-1/2 to 2 inches in length.

Silver or coho juveniles spend their first year in fresh water and are usually from 3-1/2 to 4-1/2 inches long at the time of seaward migration. They vary from 5/10 to 9/10 inch in depth and from 1/4 to 1/2 inch in width. In the northerly part of their range, about half of the young remain in fresh water a second year, obtaining extra size.

Although sockeye salmon (blueback in the Columbia) have a lake rearing period from one to four years, in the Columbia and Fraser River systems and Puget Sound most move seaward in their second year at a length of 3-1/2 to 5 inches.

It is difficult to be specific regarding the time of downstream migration of chinook salmon in a river where a number of runs and races are present as the downstream migrants enter the lower section of the river throughout most of the year. In general, the bulk of the seaward migration occurs during the spring and summer months. There have been recent encouraging results from returns of marked migrant fall coho. There are two distinct downstream movements of chinook in the upper Columbia River system; the first, composed of fry in their first year of life; occurs in March and April and the second, composed mainly of fingerlings in their second year, occurs in June and July.

There is great variation in the size of chinook downstream migrants. In general, fall chinook juveniles migrate to the ocean early in the first year of life, usually about 90 days after yolk absorption, at length of about 2 to 3 inches. Spring chinook juveniles are expected to remain in fresh water for at least a year before migrating to the ocean in their second spring or later when they are about 3 to 5 inches in length. Sexually mature males are found in fresh water in their second year when as small as 5 inches in length.

The majority of steelhead smolts are two years old when they migrate to salt water. Some migrate in the second spring after hatching, or in their second year of life. Downstream migration of steelhead appears to be more closely associated with size than with age, although it is also associated with spring high water flows. A few steelhead juveniles require three years in fresh water to attain their migratory size of 6 to 8 inches.

Factors Influencing the Downstream Migration of Salmon and Steelhead

Normally, both substantial increases in stream flow and rising water temperatures precede the first significant expansion in the numbers of downstream migrant fingerlings. For example, in the region of the 49th parallel fish begin to move downstream at 50° F. This triggering temperature is modified by the average annual temperature regime of a subregion and varies with both latitude and elevation. Visual references and light conditions both affect fish passage at dams and diversions.

In clear, still water silver salmon were attracted to sub-surface lights with intensities in the range of .000025 to .0035 foot candles, whereas at an intensity of 1.3 foot candles, no attraction occurred. (See reference No. 37) In both clear and turbid waters, surface lights with an intensity of .015 foot candles proved to be an effective guiding stimulus (attraction), while a 300 watt light bulb caused repulsion. (See reference No. 38)

Migration Path of Downstream Migrants

The horizontal distribution of downstream migrants may occur across an entire stream, depending on light and water clarity, although usually the area along the shore line has the larger numbers of fish and, particularly, smaller sized fish.

The vertical distribution generally with show the largest number of downstream migrants in the top 2-1/2 feet, although this may be altered by factors such as sunlight, water clarity, and temperature.

Migration Rate of Downstream Migrants

Marking and recovery research projects on chinook downstream migrants at major dams have shown that downstream movement is correlated with water flows, and averages 13 miles per day at low flow discharge and 23 miles per day at moderate river discharge. The migration time through the major impoundments may be three times longer than that for the natural run of the river which may closely approximate the difference in water velocity.

Diel Fluctuation in Downstream Migration

Downstream movement of fingerlings occurs throughout the day with the greatest movement usually occurring during the hours of darkness. Artificial lighting may be a factor in reducing normal hours of total darkness. It has been noted that the daylight movement of downstream migrants is heavier when the water is turbid, although this condition is usually associated with increased flows. Visual references may be a major factor in timing of fish entering openings leading to channels, traps, etc.

Mortality of Downstream Migrants

See chapters entitled, "Passage of Fish through Turbines, spillways and Conduits", "Swimming Speeds of Adult and Juvenile Fish", "Fish Diseases - Types, Causes and Remedies", and "Water Quality". Not all the mortality suffered in the river sections can be attributed to physical injuries incurred in passing the dams. Predation, disease, pollution, residualism, increased water temperature, lack of dissolved oxygen, reduced stream velocity, excess nitrogen, and other factors undoubtedly account for varying degrees of loss in the downstream migration.
Avoidance behavior and daily movement particularly contribute to delayed downstream migration and resultant mortality. The relationship of dissolved oxygen and temperature characteristics in reservoirs also contributes to delay. Often suitable temperatures exist only at depths where oxygen concentrations are unsuitable, and vice versa. This creates barriers which might not exist if only one factor were involved.

Residualism

An unknown portion of the apparent loss of downstream migrating salmonids at dams may in fact be due to residualism in reservoir areas. This is more common with some species, as sockeye, than others. One of the chief factors can be reduced water velocity, resulting in slowed downstream movement and subsequent physiological changes.

Residualism also may increase the extent of predation on juvenile downstream migrants. Many residual fish, both salmon and steelhead, attain a size where they subsist largely on small fish.

Estuary Rearing Areas

Recent research work on juvenile fall chinook salmon in the Columbia River estuary has shown that the extent of natural rearing in the lower river area is a function of size which, in turn, is coordinated with the development of the osmo-regulatory process. The main stem lower Columbia River nursery area was found to be fresh water in the Clatskanie-Mayer area. This area is subject to tidal influence. Juvenile salmon grow rapidly in this area and remain until physiological changes allow them to migrate seaward. Natural rearing of fall chinook was not found to occur in the continually brackish water areas. Salmon that were reared to an unusually large size in a hatchery before release were found to migrate immediately to the ocean, without any natural rearing en route.

Estuarial areas are important to pink and chum salmon fry survival as these are their preliminary growth areas. Estuarial areas such as the large delta area of the Sacramento River in California have been found to be extremely important in the growth pattern of chinook salmon and chad. It has also been noted that the velocity of a river entering an estuary or lake has an immediate effect on the dispersal of fry into a receiving area.

References Reviewed

2. Houston, Arthur H., "Influence of size upon the adaptation of steelhead trout (Salmo gairdneri) and chum salmon (Oncorhynchus keta) to sea water." Fisheries Research Board of Canada, Journal, 18(3):401-415.

28. Washington State Department of Fisheries, “Determination of the normal stream distribution, size, time and current preferences of downstream migrating salmon and steelhead trout in the Columbia and Snake Riv-
Chapter 25
Passage of Fish Through Turbines
Spillways & Conduits
PASSAGE OF FISH THROUGH TURBINES, SPILLWAYS AND CONDUITS

Fish descend from one level in a river to another by the following routes: normal stream gradient, falls or rapids in natural streams, spillways of various patterns, turbines of various patterns and sizes, and special by-passes.

Summaries of success of passage through turbines and spillways have been published in two compendia. (References No. 1 and 2.) From the studies summarized, certain facts are evident. Pressures (up to 2,000 feet of head) have been experimented with, shown minimal losses of eggs, larvae and juveniles. Instantaneous pressure changes to one-half of the acclimatized level may cause embolism and death. Sudden deceleration or shearing action, beginning at approximately 40 fps, may cause injury or death. The first evidence of damage to fish is descaling.

In normal river gradients, most of the above-mentioned stresses are absent. Where falls or rapids are of sufficient height to create velocities approaching 40 fps (25 feet of head), potential damage exists. In development projects shock waves that produce negative pressures should be avoided; cavitation should be minimized or eliminated; ventura action should be avoided; rapid changes of direction, creating possible areas of sudden deceleration or areas of mechanical strike, should be avoided; and large clearances should be provided in the vanes of the runners of turbines and pumps, and between runners and wicket gates.

In salmonoid fish, the volume of the swim bladder will follow the formula

\[PV = C \]

where

- \(P \) = pressure (pounds per square inch absolute)
- \(V \) = volume of the gases
- \(C \) = constant

It is obvious from this formula that if the pressure is halved, the volume will double, at which stress levels swim bladders can rupture and cause death.

It has been noted that when the temperature of the water exceeds 50° F., fish handling becomes more difficult, and fish brought rapidly from cooler depths to warmer surfaces and stressed, suffer higher death rates than those that are fully equilibrated to higher temperature. No time factor has been recorded for the equilibration phenomenon. Flow nets at intakes should be evaluated to determine temperature gradients through which fish will pass. (See Exhibit A)

A measurement of potential cavitation in turbines and pumps is shown by the Sigma value, which should be examined for individual machines to ascertain whether it is in a range above potential cavitation levels.

Turbines of modern design generally have a fish passage efficiency of 85 per cent or higher.

Francis and Kaplan runners should be considered separately. In Francis wheels, wicket gate opening, Sigma and fish length are the important variables, whereas in Kaplans, the square root of the head and Sigma are the most important variables. In both types the center line of the runner should be below the minimum tail race level. All machines should be run at levels of maximum efficiency as success of passage is shown to decrease below this point. In most modern units efficiency curves may be determined from the model turbine test data.

Salmonoid fish, in becoming depth accustomed, gulp air at the surface, bringing their buoyancy to a level comparable with that of the depth they will inhabit. Fish with counter flow systems are able to extract gasses from the water and by this means may adjust to depth. Experimental results indicate that salmonoid fish with open swim bladders are capable of rapid adjustment of the gas level within the swim bladder, if pressure changes occur in as brief a time as .10 second. Fish capable of gulping air (including nitrogen) under pressure equilibrate and are subject to embolism if brought suddenly to the surface.

The above is the reason for the examination of flow nets, and the reason why pressure changes in conduit systems where fish are to be passed, including hatchery plantings by hose, should be thoroughly examined. Differential heights of 16 feet in a ventura action can cause embolism and may account for certain losses that are encountered when fish are planted from hauling tanks.

Where fish are permitted free fall, the striking velocity should include the initial velocity of the drop, plus the velocity due to acceleration, less the energy loss due to drag.
References Reviewed

ARTIFICIAL GUIDANCE OF FISH

Guidance may be defined as a means of directing fish from one location to another, and includes both natural and artificial means. When artificial guidance works in concert with the phenomenon of natural guidance, the animal responds more readily. When offered a choice of stimuli causing guidance or movement, the fish may choose a single factor that may be dominant at that place and time.

Factors causing natural guidance are recognized as light (or its absence), velocity, channel shapes, depth, sound, odor, temperature and perhaps others. These also may be utilized for artificial guidance.

In the field of artificial guidance, the stimuli also include mechanically developed factors such as bubbles, electric fields, and high velocities. Chemical barriers that produce avoidance reactions may be used, but generally are not considered practical; however, certain chemicals cause complete rejection of an area of a stream or strong fright reactions but not necessarily guidance. Visual references are associated with illumination of objects. It is assumed that under natural conditions fish utilize targets as a measure of position or movement. In the fields of screening or fixed barriers, wire screens, both fixed and movable, louvers and rack bars are used. The use of these screens may be coupled with target references or velocity references. In channel shaping, depth may be used to direct fish into deeper areas or to maintain them at their desired levels. As velocity can be a barrier, it is possible to manipulate spillways or turbine discharges to reject from, attract to or hold fish in specific areas. In the use of depth, by setting intakes at +3 atmospheres, the pressure or depth factor acts as a screen. Other methods that have been tried are visible curtains, such as chains or metal strips.

It is evident from the above listing that more than one phenomenon may be present at a screening location. When all factors work together, the most effective guidance is obtained. Individual fish or groups of fish may respond more readily to one particular stimulus, which can override others, i.e., the fish’s instinct to move from areas of sunlight to shade, or their reluctance to move from their selected depth or velocity gradient, etc. There is no evidence that fish learn with one experience: under pond conditions, with repeated applications, fish will learn to respond to painful experiences by avoiding and to feeding rewards by attraction.

Light, when used artificially as a guidance stimulus, repels fish at higher intensities and attracts them at the lower intensities. (See chapter “Downstream Migrants, Movement of”.) Under natural conditions, fish react negatively to moonlight. This habit is taken advantage of in commercial fishing by net placement in dark areas of streams.

Turbid or discolored water, which diffuses and absorbs light, also affects movement by obscuring targets and other visual references.

When velocities are used, it must be kept in mind that fish react to changes of less than .1 fps or at a level below current meter measurement. As swimming ability is a function of length, ambient temperature and oxygen level, such factors must be measured and the guidance velocities used must be within the allowable parameters shown in the chapters “Swimming Speeds of Adults and Juveniles” and “Temperature - Effects on Fish.” Lighting at projects is constantly being changed and may become a variable in passage as it may inadvertently become a guidance mechanism, and this factor should be considered in the operation of fishway facilities, particularly at entrances and exits.

Under natural conditions visual references are known to be present in fishing operations, such as leads, natural kelp beds, and symmetrically placed objects as piling. Shore lines act as natural guides and such guides can be used effectively when placing entrances and exits at fish facilities structures. Conversely, when these act as negative attraction, they should be avoided. Sudden transitions from shore lines to deep pools should be avoided, where possible. Sloping surfaces or ledges may be utilized for the transition.

There is no evidence to explain why fish enter areas of higher than desirable temperature (and may initially choose them) as they normally will seek the most equitable temperatures. Adverse high temperature gradients at surfaces will generally be avoided by cold water species, provided that the more equitable temperature areas are not devoid of oxygen. Surface outlets may be rejected as a part of the total area that is being rejected. Warm areas may be sought in times of critical low temperature. There is no evidence that an immediate change of temperature is a direct guidance stimulus at the point of transition.

It is generally expected that upstream migrants will seek the farthest upstream point. Downstream migrants move to the lowest point possible. As a general rule, this results in guidance and indicates a good location for entrances. Blind corners, particularly with 90° angles, should be avoided as fish tend to accumulate at such points and may jump, with subsequent injury. Such areas, coupled with upwelling, are particularly objectionable for smooth passage.

Chemicals that cause avoidance are discussed in the chapter “Avoidance”.

Electric screens have not proven to be successful in guidance but may be used as a barrier. Shocked fish are usually swept downstream, making electric fields generally ineffective for guidance. (See chapters “Temperature - Effects on Fish” and “Recovery Gear.”) (See Exhibit A for a general arrangement of electrodes.)

Although the literature shows that fish have an immediate response to bubbles (which may be a fright response), experiments with salmonoid fish indicate that bubble screens are not effective in either stopping or guiding. There is evidence that fish will lead, to some degree, along lighted bubbles but this advantage is negated under conditions of darkness or turbidity. The literature discloses that a fright reaction may be engendered by sound, hanging chains, light or other phenomena beyond ambient.

Pressure change is useful as a guidance mechanism, as it has been found that fish do not readily sound, even though instantaneous increases are not harmful. Feeding fish in lakes, however, are known to move vertically under darkness conditions but avoid deep areas under lighted conditions, indicating that the instinct to be guided by pressure can be negated by stronger stimuli.

Fish normally approach facilities in a limited range of depths and, ideally, attractive entrances should be placed at such depths. Most adult salmon may be assumed to be between the surface and 6 feet of depth, and practically all are between the surface and 12 feet of depth at dams and falls. This pattern may be varied, of course, by temperature, turbidity and oxygen levels. The bulk of the downstream migrant salmonoids may be assumed to be within the first 3 feet of depth but it must be recognized that throughout a season they will be dispersed as light, turbidity, and temperature change.
Velocity may be used as a barrier or to attract fish. Swimming speeds, which are related to the ability of fish to translate their stored energy into movement, are shown in the chapter “Swimming Speeds of Adult and Juvenile Fish”. Cruising speeds generally are attractive, and the upper limits of darting speeds, a barrier. Sustained speeds over a period of time may also become a barrier. Owing to the fish’s ability to sense low velocities, transfers across velocity gradients should be avoided, if possible, and acceleration and deceleration should be gradual throughout the range of sustained speed.

Barrier dams prevent passage by creating upper darting velocities, but also provide attraction velocities to the entrance located at the farthest upstream point. (See Exhibits I and J.)

Louver screens work on a guidance velocity principle but present operational difficulties in providing a continuing combination of ideal conditions. They are not commonly recommended where complete screening is required. Louver screens, as do bar racks, accumulate debris, which may effectively alter the ideal velocity conditions as designed. Exhibit A depicts the louver principle. The fish is carried along the face of the louver array by the flow. It generally lies pointed upstream but not parallel with the flow and thus is kept free of the louver face. The swimming effort generated must be sufficient to keep the fish from entering the velocity through the louver slats, but not sufficient to overcome the transport velocity.

Wire screens are the most effective method of providing guidance or preventing penetration of fish into an intake. As screens collect debris, there must be a washing mechanism. The back wash principle is shown on Exhibit B. The drum screen operates on a revolving principle, with the debris washed free from the downstream side. The same principle can be used on the commercially-built travelling water screens, although these are normally cleaned by sprays behind the upstream face.

Exhibit C shows a fixed screen that is cleaned by a trash rake.

All screening devices have common problems, including debris. They are subject to damage by heavy objects and must be protected by guards. They are affected by bed load and so must pass sands and gravels. They must be protected against icing, where such conditions prevail. They require a head differential sufficient to pass water through the mesh. The mesh openings must be small enough to prevent passage of the juvenile fish to be diverted. When requirements call for smaller mesh sizes, problems associated with filamentous algae are encountered.

Fish behavior must be considered as it varies throughout a season and among species. Salmonoid behavior differs under daylight and darkness conditions. Fish trapped on the face of screens suffer the loss of gill action and may quickly smother. Fish plastered on a screen face cannot readily lift themselves against the velocity, although they may swim laterally. Where lateral movement is required, the screen face must be free of projections. The variability in face alignment should not exceed .4 of the fish’s width and should be rounded.

As fish are stopped generally by the measurement at the bony part of the head, square mesh is more effective than slotted mesh as the fish have a greater depth than width measurement. The following gives a method of computing mesh size but must be used with care as there is a great lack of measurement of fish on which to base a universal formula.

\[
M = \text{Maximum screen mesh opening in inches} \\
L = \text{Length of fish in inches} \\
D = \text{Depth in inches} \\
L/D = F \quad \text{(Fineness Ratio)} \\
M = [.04 + (L-2.35).04]F \quad \text{where } F \text{ is 5 to 6.5} \\
M = [.03 + (L-1.6).03]F \quad \text{where } F \text{ is 6.5 to 8} \\
M = [.02 + (L-1.6).02]F \quad \text{where } F \text{ is 9+}.
\]

As F becomes greater, the body depth approaches the skull depth, which is the governing depth for nonpenetration. Number of fish used for F values was small and the formulae should be used only as a guide. Samples at all sites should be measured for true values.

Because of the problem of fish plastering against all screens, head losses should be held to a minimum and are recommended to be not over .25 inch or .02 foot. Exhibit D shows the percent of opening area in the screen as affecting head loss. It is noted from this exhibit that a screen angled at 45° with the current is slightly more effective in passing water. Generally speaking, a wire screen will lose the head required to produce the velocity through the mesh. From the standpoint of fish efficiency, velocity of approach and head loss are the governing factors.

The variability in swimming performances due to size, temperature and oxygen is described in the chapter “Swimming Speeds of Adult and Juvenile Fish”. The size of fish to be stopped must be known in order to properly set a minimum velocity of approach.

It must be kept in mind that when their references are lost because of darkness or turbidity, fish are more apt to be swept against the screen and killed. This factor must be weighed in the choice of approach velocity.

Exhibits E, F, G and H indicate typical configurations of screening installations. Exhibit E (top) is the one most commonly used in water screen design, but it is least effective for fish protection because of the lack of directional guidance, pocketing in the corners, poor escape areas and a requirement that the fish swim back upstream to escape. Exhibit E (bottom) gives a better arrangement, although there is no guidance and no escape routes provided. This arrangement would be most effective in ponds or lakes where there are no migratory fish present. Exhibit F (top) shows a smooth faced screen which, although it provides no guidance, allows for lateral movement to by-passes without pocketing and does not require upstream swimming. Exhibit F (bottom) and Exhibit H are the preferred types of installation. They use smooth-faced screens with directional guidance and without pocketing.

These sketches show principles rather than design and can be utilized at moving or fixed screen installations. As these screens as depicted require low velocities, any protective trash racks required should be kept free of the screens, thereby eliminating interference to the lateral movement. Winter protection can be provided by housing and other methods, such as heating or introduction of warmed water.

Because of their location, many screens require by-passes, which accumulate and concentrate fish, inviting predation. By-pass outlets should provide for dispersion or introduction into areas that discourage predator concentration, such as high velocities or upwelling. Entrances into by-passes should provide smooth transition.

See chapter 5, table entitled “Biological Information on Some Common Species in Continental United States.”
LOUVER SLATS

Flow-Straightening Vane

Flow

Louver Slat 2 1/2 x 3/16 in., 1 in. apart

By-Pass

ELECTRIC FENCE

A - Electrodes
B - Support Cable Vertical
C - Support Cable Horizontal
B
REVOLVING DRUM SCREEN

PLAN VIEW

SECTION
MODEL "T" SCREEN

Bypass Weir

Crank Drive Arm

"T" Shaped Wiper Blade and Arm

Paddle Wheel Drive with Curved Metal Blades

Trough for Trash Collection Can be Placed Here

Timber Trash Rack

FLOW

Bypass to River

Reinforced Concrete
Head discharge curve and associated curve indices for a plane screen with an open area of 63.3% placed in the vertical position (90°) compared with 48% and 67% openings.

- Plane screen, 63.3% open area.
- Plane screen, 48% open area, 90°
- Drum screen, 63.3% open area
- Plane screen, 67% open area, 90°
Recessed Screen
No By-Pass
Poor Design

Smooth-Faced Screen
No By-Pass
Somewhat Better Design
Smooth-Faced Screen with By-Pass
Better Design

Smooth-Faced Screen
River Becomes By-Pass
Best Design
G

Angle Face with By-Pass
Good Design

Reverse Angle Face
Using One By-Pass
Best Design

Pipe Riser to Underground Return Pipe

Trash Rack Face

Collector

RIVER FLOW OR STILLWATER
Side View of Screen Installation
With Alternate Uses of Curtain Wall and Trash Rack

Smooth-Faced Screen
Typical Cross Section of Barrier Dam and Apron

Plan View of a Barrier Dam Placed in a River
References Reviewed

24. Munro, W.R., “The use of louver screens as a means of diverting salmon smolts.” International Council for the Exploration of the Sea, Salmon and Trout Committee, Committee Minutes No. 33. 1965. (This paper not to be cited without prior reference to the author.)

57. Hartley, W.G., "Power station cooling water intakes as a hazard to migrating salmon smolts." International Council for the Exploration of the Sea, Salmon and Trout Committee, Committee Minutes No. 151. 1965. (This paper has been reviewed but the results have not been cited, in accordance with the author's request.)

63. "Tracy fisheries project: report on fish screen experiments at Coleman." (Unpublished report in Mr. Milo Bell's file.)

Chapter 27
Artificial Spawning Channels
ARTIFICIAL SPAWNING CHANNELS

Artificial man-made spawning channels may be used as alternates to hatcheries. They are scattered generally from northern California to northern British Columbia, and are currently used for the production of chinook, sockeye, pink and chum salmon. There are two general types: upwelling and stream. Sockeye, with lake-spawning characteristics, use the upwelling type. Other species prefer the stream type. Exhibits A and B give general cross sections of the two types.

Natural factors, as temperature, oxygen and pollution, affect artificial spawning channels. As constructed, they normally permit a greater percolation rate and, hence, a higher survival rate of eggs to fry. Because of this factor, fry may emerge earlier in artificial spawning channels than do their counterparts in natural stream beds. As the beds age, silt may close the voids, requiring the cleaning of the beds to increase production. If possible, bed load should be removed from the spawning channel's flow. Spawning activity frequently begins at the edges of the channels or near the controls. Eggs may be hand-planted but high density plants are not recommended.

Exhibit C shows a diagram of operation for a specific channel used by the Washington State Department of Fisheries.

To introduce fish into artificial spawning channels, a barrier dam or some other method of providing a lead may be required. See chapter "Artificial Guidance of Fish" for barrier dam details.

Exhibit D gives a possible layout for an artificial spawning channel and pertinent structures that may be required.

Fish will return to spawning channels of properly imprinted.

Individual channels vary but the following criteria indicate the general design limits currently in use.

Widths - 12 to 40 feet.

Channels are designed to provide for:
- counting of adults into area
- drying for maintenance and fry removal
- screens at upper end for predator control
- settling basins for silt removal

Flood flows - use 5 feet per second for bank protection design.

General lengths of bed segments up to 1,000 feet with a control for each segment.

Gravels:
- spawning bed - 80 percent 1/2 inch to 1-1/2 or 2 inches;
- balance up to 4 inches
- under-bed - 2 feet coarse (3 inches plus) gravel

Hydraulic criteria:
- velocity average = 1.5 feet per second
depth = 1.5 feet during spawning times
slope = .0006
roughness = n = .023 to .025
percolation rate = 1,100 mm/hr
spawning flows = 2.25 cfs per foot of mean width
incubation flows = ≥ 1.5 cfs per foot of mean width
fry removal flows = 3.0+ cfs per foot of mean width

time in gravel (egg to fry) approximately 110 days at 50° F.
125-200 eggs per square foot of bed
egg depth in gravel - 3 inches to 12 inches
females live approximately 10 days after spawning
survival rate (egg to fry) 40-60 percent average (up to 95 percent reported)
fry size - close to that of fry hatched in natural streams

(See chapter "Spawning Criteria" for redd sizes.)
WELLSDAM SPAWNING CHANNEL

DEPARTMENT OF FISHERIES
WATER REQUIREMENTS AND OPERATIONS BY TIME

Well Requirements Based on 54° F Well Water

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Water Requirements

<table>
<thead>
<tr>
<th>Q in C.F.S.</th>
<th>Channel Maintenance Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75 C.F.S. in Channel Total</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>25</td>
<td>142 C.F.S. in Channel Total</td>
</tr>
</tbody>
</table>

Pond Maintenance Period

- 25 C.F.S. to Rearing Pond
- 25 C.F.S. to Rearing Pond from Channel
- 25 C.F.S. to Rearing Pond by Pipe
- 1 C.F.S. Additional Well Water in Hatchery Building
- Egg Incubation
- Fry Hatching
- Force Fry from Channel to Pond

Adult Spawning

- Egg Incubation
- 1 C.F.S. Additional Water in Hatchery Bldg. (Well Water)
- Adult Spawning
- Also Hatchery Loading Time Period (if Needed)

Fingerling Rearing Period - Feeding During Most of Period

- Capture Adults
- From Channel By Pipe
- Pond Wtr
- 25 C.F.S. to Rearing Pond
PLAN-
TYPICAL LAYOUT

[Diagram of a typical layout for water management and fisheries with labels such as Existing Stream, Intake from Stream, Pipeline, Drop Structures 4 Locations, 100-200 CFS, Fishway, Temporary Screening Structure Adult, Barrier Dam, Screen, Adult Holding Pond, Lead Rock or Barrier Dam Adult if Required, Main River, Flow, Settling Basin, Intake from River, Artificial Spawning Channel.]
References Reviewed

PREDATION

Predation occurs to some extent throughout the life cycle of most species of fish, and is a significant factor in their rate of survival and abundance. It is considered advantageous to reduce the rate of predation on the economically important food and sports fish species.

Predation often occurs among fish of the same species, because of size difference. It is beneficial in salmonoid cultural operations to size-grade the ponded fingerlings at frequent intervals to prevent cannibalism and fin damage and to promote even growth.

Predation is of particular concern with anadromous species, and chiefly with salmon and steelhead trout. There is little or no control over predation that occurs during their ocean residence, which constitutes a considerable portion of their life cycle. Measures are increasingly being adopted to reduce the extent of freshwater predation, particularly in fingerling stage. Fish that are ready to migrate at release from hatcheries show less evidence of predation and a higher survival than smaller fingerlings that remain in schools in shallow water after release.

The greatest source of predation to salmon and trout is other species of fish, such as squawfish (*Ptychocheilus oregonensis*). Extensive field studies by the National Marine Fisheries Service and U.S. Fish and Wildlife Service have shown the range and extent of squawfish depredation and have resulted in recommendations for partial control measures by netting, electric shocking, and the use of fish toxicants. See chapter on Fish Toxicants.

In the Columbia River squawfish seining operations at hatchery release points showed large number of these fish to be present, and squawfish stomach analyses showed large numbers of salmon and fingerlings consumed.

Squawfish are a menace to young salmonoids, particularly in reservoirs and slack water areas. It has been noted that they congregate around hatchery discharge drains, where they feed on waste hatchery food and refuse. Unless these fish can be easily eradicated, it is not advisable to release salmonoid fingerlings at such locations. It is preferable to liberate them a sufficient distance from a hatchery to avoid predator concentration. It has been observed that when several liberations of salmon fingerlings are made at the same location at frequent intervals over a number of hours, a concentration of these fingerlings occurs in the area before the last release of fish has had an opportunity to disperse downstream. This also leads to a concentration of squawfish in the same area and extensive predation.

Suggested basin-wide control measures for squawfish can include their segregation and trapping in the fishways.

Trucking or barging of hatchery-produced salmon fingerlings downstream, at least past obstructions, is advantageous in avoiding predators, but may interfere to some extent with homing.

In one large segment of fish culture concerned with the production of warmwater species, such as largemouth bass, predation is controlled by removal of the bass fry from the brood ponds to prevent cannibalism. However, in this type of fish culture, a predator-prey relationship is essential. As soon as the young bass approach the size where they can capture other fish (within their first year), forage fish are introduced into the pond in the proper ratio. In fertilized ponds this ratio generally is 700-1000 bluegill or other sun-
References Reviewed

RECOVERY GEAR

Various types of nets, traps and other gear are used in collecting fish for study. Each is adapted to use under specific conditions.

Fyke nets

Fyke nets have been used in Europe for centuries. In the Pacific Northwest they have been used for sampling downstream migrants of anadromous species. They are not without limitation because of the relatively small amount of water that they strain. They may be either stationary or used as tow or push nets. (Exhibit B) Stationary fyke nets may be provided with wings or a lead, or both. The size of opening of both the mouth and mesh varies widely. The mesh size may decrease toward the small or cod end of the net. Each of the several sections of the net is supported by a frame or hoop, which also supports an inner funnel-shaped throat. A typical pyramidal-shaped fyke net might be 10 feet long and 4 feet square at the mouth, with a 1/4 or 3/16 stretch mesh knotless webb in the fyke section, and 1/2 inch stretch mesh in the wings and lead. (Exhibit B)

A common problem with fyke nets is that unless located in clean water they may rapidly become plugged and the amount of water strained through them may be greatly reduced. Such variability introduces bias with numbers of fish collected and their sizes; therefore, they are often of doubtful quantitative value in recovering fish unless checked at frequent intervals by means of a flow meter at the mouth. Another difficulty is that stationary fyke nets fish only limited areas, and therefore their location is of primary importance in obtaining true samples. The movable fyke net, either tow or push, overcomes the fixed position objection but is most effectively fished at or near the surface as it is difficult to hold at fixed levels or horizontal positions. It is selective for various sizes of free-swimming organisms, depending on the towing speed.

The velocity in which a fyke net is set or towed must be greater than the sustained speed of the fish to be captured. Depending on the relative size of the mesh opening, the velocity in the throat of the net is less than the surrounding velocities. In using these nets, the swimming speed of the animal and its size should be known, and the head loss through the meshes should be known or calculated to determine the approach velocity to the throat. As mentioned, debris is a problem. (See chapter, "Swimming Speeds of Adult and Juvenile Fish.")

Gill Nets

A useful tool in fisheries management is the experimental gill net, which will capture a wide variety of species and sizes of fish. A typical experimental gill net may consist of five 25-foot sections of nylon mesh, ranging from 1/2 inch square mesh at one end to 1-1/2 inch square mesh at the other end. It is usually 6 feet deep for surface fishing, or at the level where fish are expected to occur, and is weighted and anchored at the bottom and buoyed at the top so as to hang nearly vertical, and laid in a straight line. It is most effective at night, and particularly on dark, moonless nights, when the mesh is less visible or invisible to the fish.

Beach Seines

Another useful fishery management tool is the beach seine. This is used extensively in warm water fishery studies in ponds and lakes, as well as in other suitable areas that are free from snags, large rocks and heavy floating debris, and high velocities. It may be used for population sampling and, on a larger scale, for reduction of overpopulations, and for salvage and transfer of fish populations. The beach seine is not as harmful to fish as a gill net. It is usually of uniform mesh size, with the mesh opening depending on species and size of fish for which it is used. It is most useful in shallow water.

The normal operating procedure is for one end of the net to be held on shore and the other end to be laid out on an arc and brought back to shore. The lead line and float line then are gradually brought in together, care being taken to keep the lead line on the bottom.

A variation of the beach seine is the bag seine, which is similar but with the addition of a bag section in the center that aids in retaining large numbers of fish.

Traps and Pound Nets

Floating trap nets are useful in some situations, as fish salvage work or for reducing undesirable fish populations. The pirate trap net, developed in the Great Lakes area, may be set quickly, has effective wings, and is useful in quiet or slow-moving water areas. (Exhibit A)

Pound nets usually are staked out with a lead, a pot and a spiller, all open at the top.

The California type of cylindrical trap net is similar to a large fyke net, and is easily rolled into position and removed.

The inclined-plane trap is an effective means of catching and holding downstream migrants without excessive injury to the fish. (Exhibit B) Another version, the fixed inclined-plane trap, dissipates the water flowing in a downstream direction, with the live box at the base. Only a small portion of the water enters the box, the rest being passed through a screened or louvered surface.

Plankton Nets

Plankton nets are somewhat similar in shape to conical fyke nets, but are usually smaller and are without wings or framework, except at the mouth. They are without inner fykes. They are typically made of finely woven silk or nylon bolting cloth. The mesh size must be chosen with respect to the size of the organisms to be captured; otherwise, these nets can be highly selective.

Some plankton nets, as the Clarke-Bumpus net, may be opened and closed at predetermined depths, and the amount of water strained in a given period may be calculated by means of an attached flow meter.

The fine weave of the detachable cod ends of these nets is limited only by the specific requirements for reasonable strength and durability.

Weirs

The use of stream weirs long has been an effective means of catching or enumerating anadromous fish. Indians formerly used V-shaped brush and willow weirs in conjunction with basket traps to take salmon.

Weirs may be provided with downstream traps, such as the inclined-plane type, for catching downstream migrant fingerlings.
Weirs may be either of temporary or permanent construction. They are best adapted to small and medium size streams. By the nature of their construction, they should be constantly attended; otherwise, excessive injuries result.

Electric weir devices have been tried, usually with only limited success. Generally, these consist of a series of spaced vertical electrodes across a stream. (See chapter, "Artificial Guidance of Fish"). There is some experimental evidence to indicate that the amount of electricity necessary to stop or divert salmon in their repeated attempts to pass an electric barrier can cause injury.

Photo Aids

The development of scuba diving and underwater photographic equipment in recent years, including infrared film, has made possible observations of fish in natural habitat.

Closed circuit television cameras, underwater photography and electronic fish counters are in use, but are still under developmental examination for improvement and reliability. Light source and its intensity and dispersion is a major factor in identifying or recognizing individuals.

Fish Wheel

Fish wheels have been used commercially for capturing adults, both as fixed and movable gear. They have been adapted to today's use for capturing adults for experimental purposes. A floating adaptation is shown on Exhibit A.

The wheel is activated by the current. The fish are scooped and delivered through a chute to a trap or box. Their effectiveness has been increased by the use of leads and curtains.

As all such gear, they are subject to damage by debris, and should be given at least daily attendance.

Electric Fish Collectors

There have been a number of improvements in the application of electricity to fish sampling methods in recent years. Battery-powered, back-pack units have been developed for use in streams. Larger, more versatile generating units have been developed for use in boats, with converters for either alternating or direct current. Electric fish shockers are most effective in hard or alkaline waters that have good conductivity, and are unsatisfactory in soft waters. In small streams their efficiency is enhanced by placing a block of cattle salt upstream a short distance from the shocker, thus providing an electrolyte. Most fishery field workers now prefer variable-voltage, direct-current pulsators. Direct current, which is less damaging, has the distinctive advantage of directing a fish toward the anode by locking it in a curved position. Alternating current, particularly with a higher gradient along the fish's body, causes a more violent contraction of the large dorsal muscle, which often causes injury or death by crushing the spinal column.

The fish's mobility is impaired at a voltage level of .5 V per cm or approximately 1.25 V per inch. Equilibrium is lost at 2.5 V per inch. Pulse rate is equally important and should be above 10 pulses per second. A higher pulse rate increases effectiveness of the current.
FISH WHEEL

Baskets Wire Coiled

Chute

Pontoon

Flow

FLOATING TRAP NET

Anchor

Pot

Wing

Floats

Lead

Use Jigger If Not Shore Connected

Anchor

Shore

211
INCLINED-PLANE SCREEN TRAP

FYKE NET (Side View)
References Reviewed

Chapter 30
Transportation
- Mechanical Hauling of Fish
TRANSPORTATION
MECHANICAL HAULING OF FISH

Until recently improvements in methods of fish transportation and distribution have not kept pace with other aspects of fish culture, and certain percentage losses in distribution were accepted as inevitable.

Both adult and young fish are transported by tank truck. The figure generally used is one pound of fish per gallon of water; for short hauls this weight allowance may be increased by as much as 30 per cent.

When large adult fish (30 to 40 pounds) are hauled, the poundage should be reduced by 50 per cent. This factor apparently is a part of the space room requirement for larger sized fish.

As temperature affects metabolic rates, the poundage should be decreased at temperatures above 50° F. The capacity of a tank truck is reduced at high altitudes.

Exhibit A shows a loading table used by the Oregon Game Commission, indicating the effect of the more active metabolic rates of the young fish and their distribution within a tank.

The current practice in hauling young is to starve them for two or three days to reduce the oxygen demand. (As adult salmon and trout migrating upstream do not feed, oxygen demand for food consumption need not be considered.) It is commonly known that as fish activity rises the oxygen demand may increase more than threefold. This accounts for the immediate oxygen sag that occurs in tank trucks. As the available oxygen drops to 5 ppm or less, the activity level of the fish drops and the oxygen level in the tank truck may rebuild. Exhibit B shows results of studies on tank trucks made by the Oregon Game Commission.

As fish activity reduces in cooler water, present-day practice is to reduce tank temperatures to the mid 40’s. There is a difference of opinion as to the use of anesthetics in reducing fish activity for the purpose of increasing load. (See chapter on “Anesthetics” for those in use.)

Tank trucks used for hauling young fish may be open or closed; whereas those for hauling adults must be closed systems. Adults usually are placed in the tank trucks from hoppers that fit into a hatch opening. Prior to the introduction of adults into a tank truck, it is filled with water; the hopper load of water and fish is then lowered into the tank by valving the hopper volume. The fish usually are discharged through quick-acting valves or gates. Such trucks also may be used for handling small fish and therefore are equipped for hose connections to permit the discharge of the small fish.

As the amounts of dissolved carbon dioxide and ammonia builds up in the water supply because of metabolic processes, vents must be provided in closed tanks. Aeration of water is provided by venturi action. One such arrangement is shown on Exhibit C. The numbers or pounds of small fish introduced into the tank may be arrived at by a displacement measurement. One such method is shown on Exhibit D. Studies of postplanting mortalities of yearling rainbow trout from four Oregon Game Commission hatcheries compared the effectiveness of the venturi and overhead spray types of aeration equipment. The venturi aeration was judged superior.

Present-day trucks are equipped with mechanical refrigeration. Most tanks are insulated and the exteriors coated with aluminum paint to reduce heat buildup. A tank truck of modern design is shown on Exhibit E.

Closed tanks are kept full to prevent the sloshing of the water. Open tanks are equipped with baffles to prevent the spillage of water by sudden directional changes.

All areas in contact with the water must be free of toxic compounds. See chapter “Toxicities of Elements and Compounds.”

The pumping capacity usually permits complete recirculation of water in the tanks every five to seven minutes. If ice is used directly as a chiller, it should be free of any chlorine residue.

Shad may be hauled in tank trucks, but special care must be taken in the design of the tanks to eliminate all corners.

The purchase cost of a present-day tank truck (complete) is between $35,000 and $40,000. The cost of operating such equipment, based on 18,000 to 20,000 miles of travel annually, is approximately $1.00 per mile. This factor will vary, depending on the initial cost of the tank truck, write-off period and man-hours.

Capacities vary between 1,000 and 2,000 gallons.

Pure oxygen may be carried as an emergency feature.

Water tempering commonly was practiced at the place of liberation to gradually bring the temperature to that of the receiving water, although some experiments have shown that the value of tempering for differences of less than 10 degrees F. has been exaggerated.

Aeration will remove carbon dioxide to some extent; however, other toxic metabolic products, as ammonia, urea and uric acid, are almost impossible to remove by aeration. As the ammonia concentration increases to 1 ppm, the oxygen concentration in the blood decreases to about one-seventh normal, and the carbon dioxide content increases about 15 per cent, with resulting suffocation. Therefore, in fish distribution units it is most practical to prevent, if possible, the production of toxic metabolic products rather than attempting to remove them. On long hauls, complete changes of water load may be necessary.

The buildup of carbon dioxide is often considered another limited factor in fish transportation. When carbon dioxide remains below 15 ppm, with satisfactory dissolved oxygen and suitable water temperature, it has little effect. When the carbon dioxide level reaches 25 ppm, the fish often show signs of distress. The extent of pH drop in a fish holding unit gives a good indication of the increase in carbon dioxide.

In a few locations, where mountainous terrain makes it advantageous, aerial planting of trout is accomplished by use of a small water-filled tank. Electrically driven pumps often are used for water circulation, since safety precludes the use of small internal combustion engine driven pumps in a closed aircraft. Oxygen usually is introduced into the fish tank under pressure regulators and diffused through carborundum stones or carbon rods. The Montana Department of Fish and Game has used a removable 94-gallon capacity cylindrical tank installed in the floor camera port in a small
Cessna airplane. A normal load for a short flying time is 200 pounds of trout in 55 gallons of water at temperatures of 40 to 50 degrees F. An electric air pump is used at intervals, together with oxygen metered through four carbon rods. The tank is emptied in about three seconds through a 10-inch dump valve at altitudes of 200 to 300 feet and airspeeds of about 80 miles per hour. Cost of distribution of 200 pounds of fish was approximately $25.00, compared with $33.00 for truck transportation. Aerial distribution is much faster, and is accomplished without significant mortality. Similar aerial distribution procedures are used by other fishery agencies where expeditious.

Loading of the tanks may be accomplished directly from the pond by means of special type pumps which do not injure fish. See chapter “Fish Pumps”.

Smaller, portable 150 to 200 gallon capacity tanks are adapted for use on pickup-type trucks. These tanks usually are equipped with venturi air intakes and overhead spray water circulation, driven by one or two small gasoline engine powered pumps. Regulated oxygen injection also often is used, particularly with small fingerlings. A pressure filter may be inserted in the water circulation system. Such filters are effective in removing solid waste materials, fish scales, and other particulate matter which may clog spray nozzles.

The California Department of Fish and Game has developed an improved design for a small (150-gallon) tank. This is reported to safely carry 500 pounds of catchable size trout on short hauls by the rapid recirculation of water without excessive turbulence. A 1.5-inch centrifugal pump completely circulates the water every 1.5 minutes. Water is drawn from four evenly-spaced points on the bottom of the tank, circulated through an aspirator, and discharged through horizontal spray nozzles at four pounds pressure.

An economical method of tank aeration used by the Washington Department of Game is by use of an air compressor operated by a one-half horsepower direct current motor. Air is forced through a number of flat carbonized stones arranged longitudinally and flush with the bottom of the tank. Water circulation is provided by two gas engine driven pumps having a capacity of 200 to 250 gpm and utilizing an overhead spray system.

Another method of fish transportation, which has been used mainly for anadromous fish and particularly downstream salmon migrants, is barging. Fish are placed in live wells in a barge constructed for continuous flow of water.

1000 GAL. FISH LIBERATION TRUCK LOADING TABLE

<table>
<thead>
<tr>
<th>Size in inches</th>
<th>No. per pound</th>
<th>1/2</th>
<th>1</th>
<th>1-1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfed fry*</td>
<td>4,000</td>
<td>180</td>
<td>160</td>
<td>120</td>
<td>100</td>
<td>90</td>
<td>70</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>Adv. fry*</td>
<td>2,000</td>
<td>200</td>
<td>190</td>
<td>180</td>
<td>150</td>
<td>135</td>
<td>100</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>1-1/2</td>
<td>750</td>
<td>330</td>
<td>300</td>
<td>275</td>
<td>250</td>
<td>200</td>
<td>175</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>500</td>
<td>475</td>
<td>425</td>
<td>370</td>
<td>350</td>
<td>335</td>
<td>275</td>
<td>250</td>
</tr>
<tr>
<td>2-1/2</td>
<td>150</td>
<td>650</td>
<td>550</td>
<td>500</td>
<td>475</td>
<td>450</td>
<td>425</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>700</td>
<td>600</td>
<td>550</td>
<td>525</td>
<td>500</td>
<td>475</td>
<td>425</td>
<td>425</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>850</td>
<td>750</td>
<td>650</td>
<td>600</td>
<td>550</td>
<td>525</td>
<td>500</td>
<td>475</td>
</tr>
<tr>
<td>4-1/2</td>
<td>30</td>
<td>900</td>
<td>800</td>
<td>700</td>
<td>650</td>
<td>600</td>
<td>550</td>
<td>500</td>
<td>460</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>1,000</td>
<td>950</td>
<td>800</td>
<td>700</td>
<td>625</td>
<td>575</td>
<td>525</td>
<td>475</td>
</tr>
<tr>
<td>5-1/2</td>
<td>15</td>
<td>1,050</td>
<td>975</td>
<td>850</td>
<td>750</td>
<td>650</td>
<td>600</td>
<td>575</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>1,100</td>
<td>1,025</td>
<td>900</td>
<td>800</td>
<td>750</td>
<td>700</td>
<td>675</td>
<td>600</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>1,200</td>
<td>1,100</td>
<td>1,000</td>
<td>875</td>
<td>750</td>
<td>825</td>
<td>800</td>
<td>750</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1,300</td>
<td>1,150</td>
<td>1,000</td>
<td>950</td>
<td>900</td>
<td>850</td>
<td>800</td>
<td>775</td>
</tr>
</tbody>
</table>

*Fry loads over 1-1/2 hour hauls may be increased by 30 per cent if 20 fry baskets are used.

Hauling time is from the time loading of fish is started until completely unloaded.

In hauling eastern brook or salmon, reduce load of fry by 20 per cent, 1-1/2 to 3" fish by 15 per cent, and 3" fish and over by 10 per cent.

From Oregon State Game Commission table.
O₂ Drop After Loading - Random Loads
Oregon State Game Commission

O₂ PPM

Hours

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5 6 7 8 9 10 11 12 13
Part Description

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>1" Size</th>
<th>¾" Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Std. B.I.P. Tee, with ¼" slot run ends open</td>
<td>1" x 1" x 1"</td>
<td>¾" x ¾" x ¾"</td>
</tr>
<tr>
<td>B</td>
<td>Std. B.I.P. Nipple</td>
<td>1" x 4½"</td>
<td>¾" x 4½"</td>
</tr>
<tr>
<td>C</td>
<td>Sweat Bushing</td>
<td>1" x ¾"</td>
<td>¾" x ¾"</td>
</tr>
<tr>
<td>D</td>
<td>Sweat Reducer</td>
<td>1" x ¾"</td>
<td>¾" x ¾"</td>
</tr>
<tr>
<td>E</td>
<td>90° Short radius Sweat Ell</td>
<td>¾" φ</td>
<td>¾" φ</td>
</tr>
<tr>
<td>F</td>
<td>Std. B.I.P. Tee</td>
<td>1" x 1" x 1"</td>
<td>¾" x ¾" x ¾"</td>
</tr>
</tbody>
</table>
FIRST: Fill Tank to 2-3 inches over top of gauge orifice, start pump, open valve to gauge, Magnets attach gauge to side of tank.

SECOND: Simultaneously set scale to read 0 lb. (Fig. 1) on the bottom of the meniscus and plumb-bob to required dot on gauge body. The black dot for 4 holer (9'-6" 1.0.) and red dot for 3 holer (8'-0" 1.0.) tank.

THIRD: Read lbs. (dry) fish loaded directly off scale as shown in Fig. 2. With practice, the scale may be interpolated to 5 lb. readings.

Oregon State Game Commission
References Reviewed

CULVERTS

Culverts are used to pass water under roads and dykes, and through general land areas. The water may come from small drainage areas with only intermittent flows, but in many cases it comes from drainage areas sufficiently large to support continuous runoff. In this case passage of salmon or trout is generally required.

Normally, culvert design is not compatible with fish passage, because of the generally increased flow in a culvert compared with a stream of equivalent area or hydraulic radius (R).

\[R = \frac{\text{area in square feet}}{\text{wetted surface in feet}} \]

The increased flow is caused by the diminished roughness coefficients in culverts compared with roughness coefficients in normal streams. Streams are assumed to have roughness coefficients of .022 to .050, giving a Chezy (C) number of 68 to 37, when \(R = 1 \).

Average velocities with a slope of .005 approximate 4.8 to 2.6 feet per second, which are favorable for transportation of fish.

Culverts with smooth surfaces have a roughness coefficient of .010, giving a Chezy number of 149, when \(R = 1 \).

Thus, for the same cross section, two to four times the flow will be passed through the culvert as through an equal section of stream, with equal slope (S).

\[Q = CVRS \quad \text{where} \quad S = \frac{\text{drop in feet}}{\text{length in feet}} \]

In the design of culverts, the stream profile that exists should be used as a basis for the culvert size and setting, and in determining the general roughness coefficient of the structure.

The water level control below the culvert should be provided by the natural stream control. If the pressure head and velocity head in the culvert are greater at the discharge end than the stream supported naturally, a resulting sudden expansion occurs with digging and the creation of a pool. Under the new conditions the level of the stream, unless heavily paved by rock weighing 40 pounds or more, will respond to the new energy level with a drop, usually presenting new passage problems. Culverts should be built to near zero gradient and with a bed roughness equal to the natural stream bed roughness, the high water control depending upon the natural stream levels below.

Repairs to existing culverts may require both a passageway to the culvert floor and increased floor roughness to simulate stream conditions. (Reference No. 4.) Minimum swimming depths (12 inches) should be allowed at minimum flow passage levels.

Darkness in a culvert is not a block to fish movement.

References Reviewed

CHANNEL CHANGES

Most changes are made for the purpose of increasing the water discharge capacity of stream beds. The two principal methods used are the elimination of bends to increase gradient, or the widening or deepening of a stream section to reduce frictional components. In many cases, because of the increased velocities created by these methods, bank revetment is required to prevent bends from reforming.

It may be assumed that channel changes occur at bankfull or the average discharge level. This is shown in reference No. 3. Only flows less than bankfull are suitable for salmonoid production. Ephemeral wetting of bed areas is not productive of food organisms or spawning conditions.

The primary concern in channel changes is the loss of spawning and rearing areas. See chapter “Spawning Criteria”. The first year’s loss by a completely disturbed channel may be 50 pounds of salmonoid migrants per acre changed.

The simplest measurement of changes is by the application of Chezy’s formula:

\[V = C \sqrt{RS} \]

\[R = A \frac{(wetted \ area \ in \ square \ feet)}{(wetted \ section \ of \ the \ river)} \]

\[S = \text{slope} \]

Data from a number of cross sections taken in State of Washington streams indicate that the roughness coefficient averaged over a section approaches .05, giving a Chezy value of 30 or less in the stream bed areas most productive for spawning and conditions and food generation. At low flows the wetted perimeter (P) approaches the width of the stream. As stream bed pavement consists of various grades of rock (up to six inches in diameter), an assumption can be made that the wetted perimeter is 1.2 times the stream width unless paved with large boulders. With the same slope and using this assumption, the average velocity is reduced by approximately 15 per cent when the wetted perimeter varies between .8 and 1.

A natural fish-productive stream bed generally consists of a series of pools and riffles. A reach of a river one mile long with approximately the same hydraulic radius throughout, containing both pool and riffles, can have three times the average velocities in the chute sections, depending on the number of pools in the reach (from two to ten per mile). In the latter case, the chute section would contain velocities in excess of those accepted for salmonoid spawning. Under these conditions, it would be expected that spawning would be limited primarily to the upper parts of the chutes leading out of the pools. The effect of pools is to stabilize a reach as the full velocity head is lost in a pool area at flows less than bankfull. In reach-controlled sections, the energy is dissipated reasonably uniformly throughout the length of the reach.

It may be assumed that the most productive parts of the river for salmonoid production have drops from 10 to 60 feet per mile.

At bankfull flows and above the bed roughness has minimal effect and at high flows the pools may be completely drowned out, requiring reach control.

Under natural conditions bank and bed pavements are of the size that resist movement. For example, one-inch gravel is stable in velocities up to two feet per second, two-inch gravel in velocities up to approximately three feet per second, and four-inch gravel in velocities up to approximately four feet per second.

As R increases, the stream roughness coefficient under bankfull flows and above will change from .05 to .025 or less, which gives a Chezy number varying up to 90. The average velocities will therefore increase two to three times those occurring with conditions of productive flows.

As spawning and food production criteria call for velocities up to two feet per second, it is evident that such areas are stable under productive flow levels. If bends are eliminated, the increased slope must be compensated for by heavier bed pavement, commensurate with the new velocities. This will result in the decreased spawning capability of the stream. Larger materials result in increased wetted perimeters and frictional components under less than bankfull flow conditions.

Rock hurdles or dykes may be provided, which form steep chutes and pools, thus dissipating the energy by lessening the velocity head in a pool. This type of configuration normally results in the heavier rock hurdles being displaced and random type configurations formed. The subsequent filling above the hurdles ultimately will provide spawning and food producing areas. Unless carefully engineered, such channel changes may remain unstable, requiring ten or more flood flows to produce a relatively stable channel. Normal deepening and widening usually results in removal of coarser pavement, with less head loss at all flows, thus disturbing the spawning and food production capabilities of the stream.

A suggested method for compensation would be the artificial development of riffles and pools, as normal reach control stability cannot be satisfied, resulting in digging and filling at flood stages in a random manner. The return of heavy materials up to six inches is recommended in all chute sections.

The stability of the bed may be computed from a number of formulae available, related to particle size, depth of flows and velocities of stream bed levels.
THE NEGATIVE EFFECTS OF LOG JAMS ON THE PROPAGATION OF MIGRATORY FISH
References Reviewed

Chapter 33
Locks & Mechanical Handling
LOCKS AND MECHANICAL HANDLING

There are two general types of fish locks: the surface type (open to the atmosphere as a ship lock) and the pressure type, which has a closed connection between the river and the upper pool. Both require the attraction of fish into the lock by the addition of water to the lock chamber, the holding of fish throughout the cycle, and a current pattern that attracts the fish away from the lock.

The operation of an open fish lock is similar to that of a navigation lock. Beginning with the fishing period, a part of the attraction water is discharged from the lock chamber. At the cessation of the fishing cycle, a part or all of the fish in the holding area are moved into the chamber and the lower lock entrance is closed. Filling begins with the transfer of the attraction water to the entrance bay, so that there is only minor variation in the attraction outflow. As the filling of the lock is completed, the upper gate opens and the water is brought into the lock by cracking the discharge valve. Once the fish have left the lock (and a brail may be needed to accomplish this), the upper gate is closed, the lock is drained to operating level, and the cycle is reestablished.

Round locks are preferable to rectangular locks, as fish tend to jump at corners. Fish are normally held within the lock by means of a finger or V trap, both of which require mechanical adjustment because of changing tail water. Maximum velocities over finger traps are 8 feet per second, and a minimum of 4 feet per second is recommended through V traps.

Experience has shown that there is some retention of fish in both surface and pressure-type lock chambers, unless the fish are mechanically swept from the chamber. Pressure alone is not always sufficient to lead fish from a pressure lock or to cause them to rise to the surface of an open lock. Without a mechanical sweep, the locking cycle time is materially increased. For the purpose of rapid attraction into the lock, the fish, as they approach the lock chamber, must be held at or near the entrance.

Figure A shows an idealized lock system that uses an entrance bay with a V-trap entrance to hold the fish and a movable sweep, or crowder, to move them into the lock chamber. This is a gravity (or open) lock and it can be automated, although such automation has not been proven to be trouble-free. This system offers a great advantage in that it can move small fish, or fish with weak motivation or weak swimming characteristics.

The most effective method of introducing attraction water to a lock is through a bottom diffusing area, reducing the jumping of fish to a minimum.

Unless a crowder is provided, locks appear to be more successful when used with a short fishway system that allows the fish to become accustomed to the new environment and they appear to enter a lock more readily with this provision. Such a fishway should operate at least between minimum and normal tailwater levels. A fishway complicates the mechanical balance of water surfaces but lessens the disadvantages to the fish by a delayed entrance.

Some species refuse to surface or jump and must be accommodated by underwater ports. Conversely, certain species prefer surface passage.

The use of light for attracting fish from locks has been investigated but has not been proven to be of great aid in decreasing passage time.

Locks, as now installed, have between 300 and 400 square feet of surface area. This is a space room provision. In principle, locks can be operated successfully but, in actual operation, they have not been shown to have any advantages over conventional fish passage systems for many species.

Fish may be lifted in a bucket and transported by mechanical means to a position in the forebay above a dam or discharged into a hauling tank for delivery at any distance above the operation. The design of buckets should follow the design of holding tanks as to supplies of oxygen and space room. It has been found that fish respond to a bucket's vertical movement by ceasing their general movement but that, if they are kept in captivity, they will again begin jumping. To discourage this, covers over tanks are provided.

Fish may be delivered by chutes at the unloading position, but the preferred method of discharge from the lifting bucket to a hauling tank is by the principle of lowering and locking, thus delivering the fish from a full bucket into a full tank and valving out the water volume of the delivery tank and, thereby, lowering the fish into the hauling tank without shocking them. In lowering into the forebay, the bucket is discharged below the water surface.

In the design of lifts, none has been fully automated and they generally require 7-day operation and 16-hour days, thereby introducing mechanical and human problems. The attraction of possibly reduced capitall costs of lifts must be measured against increased operational costs.

Generally, in the design of a lock it should be assumed that 80 per cent of the fish will position themselves between depths of 3 and 6 feet and that a minimum of 20 cubic feet should be supplied for each large adult fish (10 pounds plus) held if the holding period is from 30 minutes to 1 hour, and 30 cubic feet if the holding period is 8 hours or more.

Figure B shows an idealized fish lift with a V-trap entrance to hold the fish and a movable sweep, or crowder, to move them into the bucket.

Hauling tanks, which must be supplied with oxygen, can generally accommodate 1 pound of adult for each gallon of water. If the fish average over 20 pounds in weight, the amount of fish should be reduced by one-half. When hauling salmon, if the water temperature is above 60°F, the volume of fish carried must be reduced by approximately 10 per cent for each degree of increased temperature. Other species have different temperature requirements.

Experience with lifts or locks where fish are not immediately introduced into the bucket or chamber and are subjected to a number of recycling operations, has shown that fish may be discouraged and may remain in the collection system or approach area.
A

FISH LOCK

<table>
<thead>
<tr>
<th></th>
<th>Pool Length</th>
<th>8'</th>
<th>12'</th>
<th>16'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>8'</td>
<td>12'</td>
<td>16'</td>
</tr>
<tr>
<td>B</td>
<td>Pool Width</td>
<td>4'</td>
<td>6'</td>
<td>8'</td>
</tr>
<tr>
<td>C</td>
<td>Water Depth (Min)</td>
<td>3'</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>D</td>
<td>Lock Chamber</td>
<td>24</td>
<td>36</td>
<td>64</td>
</tr>
</tbody>
</table>

Discharge Variable (Min) | 30 | 30 | 30 |
<table>
<thead>
<tr>
<th></th>
<th>Pool Length</th>
<th>8'</th>
<th>12'</th>
<th>16'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pool Width</td>
<td>4'</td>
<td>6'</td>
<td>8'</td>
</tr>
<tr>
<td>B</td>
<td>Water Depth (Min)</td>
<td>3'</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>C</td>
<td>Hopper Size (Gal)</td>
<td>250</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>D</td>
<td>Discharge Variable (Min)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
References Reviewed

Chapter 34
Fishway Structures at Dams & Natural Obstructions
Fishways, fish passes and fish ladders are all terms used to describe methods of passing fish upstream at dams and natural obstructions. With some types of configurations, limited fish passage may be possible when the head is less than 8 feet; however, fishways are recommended when there are head differences as low as 2 feet, as blocks may be formed by insufficient water depth for swimming. (See chapter, “Swimming Speeds of Adult and Juvenile Fish”.)

The size of the structures, their location and the flows through them, whether at natural or man-made obstructions, should be based on the same criteria. As site conditions vary, special consideration in design is almost always required.

Of many fishway patterns, the two most commonly used are the pool and weir type and the vertical slot type.

The pool and weir fishway is the oldest of the designs and is generally used at man-made structures where the head pool levels can be closely regulated. Its operation is deficient mainly in its lack of capability to operate under fluctuating operational pool levels, unless a special regulating section is provided at the upper, or discharge, end of the fishway system. (Exhibit H-A shows a pool and weir fishway.)

The vertical slot fishway is in common use on the Pacific Coast. It repeats a constant flow pattern at all operating depths and is best adapted to conditions where head pool regulation is not possible. Its design is less simple than the pool and weir fishway, but its advantage is that it is self-regulating. (Exhibit H-B shows a vertical slot fishway.)

The Denil fishway and its variations, such as the Alaska steep pass fishway, have been found to have selected application as they must be carefully engineered for width and depth relationships to provide the low velocity required in their design. They must be kept completely free from debris, as this can alter the flow characteristics of the baffles. The relationship of the baffle to the open area is critical and these systems require more supervision than do the other two systems described. The customary slope in a Denil fishway is one to six, and an individual run is approximately 30 feet long. Resting pools between runs are required. (Exhibit H-C shows a Denil fishway.)

To aid the designer, a check list of pertinent fishway data follows.

Fishway Design Data

- **Pool sizes and shapes.** See Exhibits F, G, and H-A, H-B, and H-C.
- **Maximum flows in fishways** Based on energy dissipation of 4 foot pounds per second per cubic foot of water in pool, or a maximum velocity of 4 fps in Denil type.
- **Resting areas.** Assumed to be velocities of 1 fps or less in pools, or 0.1 or normal swimming speed. Denil requires special resting pools.
- **Orifices (number and size).** One to two per pool may be used.
- **Discharge volume through a vertical slot or per square foot of orifice.**
- **Drop between pools.** 12 inches, but should be tailored to requirements of species to be passed, or sloped for Denil type.
- **Average maximum velocities over weirs or through orifices.** 8 fps maximum, or based on drop per pool. Maximum of 4 fps in Denil.
- **Entrance velocities.** 4 to 8 fps.
- **Water depth as a weir measurement over a pool weir.** 6 inches minimum and 12 inches maximum.
- **Transportation or direction of flow velocities in flat areas or drowned-out areas of fishways.**
- **Exit locations.** See Exhibits A, B, C, D, M, P, and AA.
- **Travel time through fishway.** Assume 2.5 to 4 minutes per pool, or 15 seconds in a Denil swim section. Denil should provide equivalent time in resting pools.
- **Space for fish in pool.** .2 cubic foot per pound of fish.
- **Space in trapping or holding area.** 1.5 cubic foot per 5 pounds of fish.
- **Peaking of salmonoid fish during passage.** Assume 60% from daylight to 1 PM and 40% from 1 PM to darkness. Night passage may equal 3 to 5% of day’s total.
- **Entrance eddies.** Recommended that cross velocity not exceed 2 fps at zero fishway discharge. Less if small fish are to be passed.
- **Auxiliary water introduction into fishway for entrance attraction or transportation velocities.** Velocities over diffusion area-.25 to 1.0 fps.
- **Grated openings.** Usually 1/4 inch less than minimum fish head width of species to be passed, with 50% of area assumed to pass flow.
- **Counting stations.** Described in text.
Control section to match forebay regulations for pool type fishway.

Collection system.

Temporary fishways during construction.

Source of auxiliary water supply.

Fish locks and lifts. See Exhibits S and T and description in text.

If shad are involved, surface and wall side passageway must be provided. This species generally rejects orifice openings at depths as low as six feet, and may become trapped in square corners.

Sturgeon have not been passed successfully in pool type fishways, but lock passage is possible.

Light and shadow patterns may determine the movement of various species in a fishway system regardless of the velocity pattern.

Fish accumulate when pool hydraulic patterns are altered. If the design includes turn pools, fish will accumulate at that point. In entrance bays and transportation channels, any break in flow continuity must be avoided.

Square corners, particularly in turn pools, should be avoided as fish jump at the upwellings so created.

At sites where bed load will be encountered, either the orifice or vertical slot baffle fishway is recommended.

Trash racks may be required. If so, the clear opening must be adapted to the width of the largest fish to be passed (usually 12 inches for large salmon). There is no evidence to indicate that fish refuse to pass through trash racks at normal trash rack velocities (two feet per second or less).

Fish jumping usually is avoided by the provision of adequate swimming depth, orifices or slots. Jumping still may occur as the phenomenon is not fully understood, although it is known to be triggered by shadow patterns or upwelling. See Exhibits BB and CC. Protective fencing may be required to prevent the fish from leaving the fishway. In narrow fishways a screened arch may be provided. Darkened fishways do not prevent movement of fish and tunnel fishways may be used. These should not be pressure conduits and head room should be provided.

Hydraulic instability occurs between the upper range of plunging flow and the lower range of shooting flow. Typical weir crests are shown on Exhibit J., with the shaped weir crest the most stable. Bottom orifices are a stabilizing influence and must be of a size capable of passing fish. The Ice Harbor weir (see Exhibit G) was developed to provide pool stability in weir type fishways. Exhibit Y shows hydraulic instability forming.

Fixed weir and orifice type fishways have limited capabilities for adjusting to pool elevation changes and can be either starved or drowned. There are a number of special pool regulating sections in use, such as orifice controls or those that depend on the addition or subtraction of pools by the use of telescopic or tilting weirs or stop logs. A regulating section has been developed to accommodate rapid pool changes. Hydraulically satisfactory designs for automatic control systems with vertical slot nonoverflow walls, bleed-off and add-in diffusers, auxiliary water supply, and movable-board underwater counting station and for revised overflow weirls downstream have been developed by models. See Exhibit FF. This section was prototype model tested and field constructed and operated. It was designed specifically for the passage of shad, but also demonstrates excellent performance for salmon passage.

A special control weir is needed if fish are to be trapped or held. This can be a V-trap arrangement, a finger trap, or a jump-over weir. A V-trap works as does a tunnel in a fyke net. A finger trap is shown on Exhibit J, and one design for a jump-over weir is shown on Exhibit K. The finger trap and jump-over weir both require close water regulation. The jump-over weir is particularly useful where fish are to be sorted or delivered into an anaesthetizing tank where dilution must be held to a minimum. When using finger traps, an escape area must be provided at both ends to prevent fish from being held against the fingers and killed.

The movement of the fish throughout the day is not uniform and it may be expected that between daylight and 1 p.m. as much as 60 per cent of the day's run may pass, and between 1 p.m. and darkness, 40 per cent. Twenty per cent of a day's run has appeared in a single hour. Night counts indicate low passage (3 to 5 per cent) and the early daylight hours show good passage.

Large fish (above 20 pounds) may hesitate to use shallow over-flow entrances.

Fishway capacity normally is not a design problem, as the hydraulic criteria usually control design. (See list of pertinent fishway data.)

Adult fish approaching the base of a dam or obstruction are usually within the top 12 feet, with the most between the two and six foot depth levels. Fishway entrances should be positioned to take advantage of this distribution. Horizontal or vertical orifices or slots should be adjustable to tail water changes. Methods of regulation include mechanically adjusted gates or buoyant gates.

Orifices with darkened backgrounds are not entered by the fish as readily as those with the backgrounds lighted (either naturally or artificially). The light source may be by penetration through the water from either downstream or above the orifice with the latter, under the natural conditions of daylight, producing better and longer entrance attraction.

Exhibits A, B, C and D indicate the pattern of spillway operations to maintain effective conditions at a fishway entrance. In Exhibit A all of the spillway gates are in operation, giving a crowning effect in the center of the river, and using a high velocity to guide the fish to the fishway entrances. As the flows in the river diminish and fewer open spillway gates are required, the center gates are closed first. This is shown on Exhibit B. As the flows diminish further, the gate closure is extended toward the ends of the spillway, as shown on Exhibit C. The use of center gates only for minimum spills results in attraction of fish to that area and generally this type of regulation should be avoided.

Depending on the type of energy dissipator, a submerged or surface type jump may be created. (See Exhibit E.) Fishway entrances are generally placed at or near the crest of this jump at a predetermined flood flow level. The crest position moves upstream as flow diminishes and side en-
trances are used to match the upstream positions. Exhibit E also shows the shortened training walls required. A leading velocity is created and picketed leads or gate manipulation is utilized to bring the fish to the bay adjacent to the fishway structure and thence into the fishway proper.

As the operation of a multiunit powerhouse is not predictable as to time of operation of specific units, a collection system may be provided which extends across the powerhouse, generally with openings over each unit. End entrances also should be provided. Typical arrangements are shown on Exhibit Q, U and V. Usually each opening over the turbines is supplied with 60 cubic feet of water per second or more. Uneven levels in the tail race may require the use of cantilevered leaf gates in the collection system for the control of the water level.

Shore located entrances are preferred as the shore line provides a lead. Eddy control is required. Fish are attracted to the discharges by both spillways and turbines, and move away from these influences during darkness hours when they may seek velocities of one foot per second or less for resting. The early morning movement of the returning fish to the obstruction appears to produce the greatest activity in the fishway. Casual discharges at any time may attract fish, and they may remain in the general vicinity for hours after the flow is cut off. Intermittent spills can be used to attract fish to desired locations.

Flows from the fishway entrances may be augmented by auxiliary water introduced either into an entrance bay or a collection system, in which case an entrance discharge can be made up, thus permitting continuation of the transportation flow. Exhibits O, P and U show typical arrangements for bottom diffusers. Side diffusers may be used but it is more difficult to provide uniform velocities through them, and they require special directional vanes. Gratings over the diffusers are utilized to prevent the fish from entering the large discharge area, with subsequent delay in movement.

Transportation flows are required in flat runs, such as collection systems and drowned-out portions of a fishway, because of rising tail water. Auxiliary water is introduced into the drowned-out pools as shown in Exhibit E, section B-B. Designs have been developed to supply or reduce the flows automatically as the tail water rises and falls.

Fishway exits are customarily placed well above any possible drawdown effect, or away from strong currents. A slight positive downstream current for leading is advantageous. Under the most favorable conditions, some fish are still found to drop downstream through fishways or turbines (perhaps up to 4 per cent of a day's run). This wandering phenomenon is not understood; however, drop backs may include fish that have moved above their home streams.

Barrier dams, specially constructed to divert fish to a fishway system, are now being used under certain project conditions, as restricted spillway areas, widely fluctuating tail water levels, economics, and at projects where collecting, sorting and hauling are necessary. Exhibit AA shows a barrier connected with a fishway at a natural falls. Special hydraulic conditions are created to lead the fish to the entrances. (See chapter “Artificial Guidance of Fish,” Exhibits I and J.)

High dams have complicated the designs for fishways as fish have rejected fishway systems that use surface flows and with the principal discharge of the river supplied from deep outlets. This phenomenon is not fully understood. Temperature and water quality (including taste and odor) are considered to be principal factors.

Counting stations may be required. The most simple type counts fish over a weir. Fish may be more readily seen against a white painted counting board. A V-lead to an adjustable counting board has been in general use; more recent advances in design use an underwater station at which fish are directed to pass near a glass window. Back panel lighting may be provided in addition to surface lighting. Television counting is possible at such stations, with the fish activating the camera as they pass through a resistance tunnel. The presence of people at these underwater stations appears to have no influence on the movement of fish and public view windows are provided at some dams.

Counting stations may be located within the fishway system or at the outlet or exit end. Because of the changing hydraulic patterns, fish tend to linger above a counting station area and frequently move back and forth. Counting stations at the exit end minimize this movement. White areas also appear to alarm fish, with some turning back before they have completely crossed the painted area.

The closure of counting stations results in accumulation of fish below the stations. It is recommended that an extra large pool be provided below any counting station. Most counting stations provide for an adjustable distance between the fish and the observer to compensate for water clarity where species identification is desired.

Many designs for counting stations are available.

There are no fish locks in operation on the Pacific Coast. Those that were constructed in the past were operated in conjunction with fishways. All lock operations have been discontinued in favor of fishway passage. (See chapter “Locks and Mechanical Handling”.)

Exhibits O, P, S and T show the general configuration of locks in relation to the total fishway systems and a progression of development. Exhibit P shows a paired set of locks with entrances at entrance bay level and with no holding pool. Exhibits O, S and T show fish locks located above the entrance by level which provides a short run of fishway to an entrance pool. The McNary Dam lock chamber shown on Exhibit O was used during construction for transporting fish by bucket into the lock chamber, which demonstrated the fact that this system was capable of collecting and holding fish. Present day entrance pools would have a crowder, for which there are several designs, such as a sweep moving along a track. In principle, they insure the movement of the fish out of the entrance pool without a time delay.

Deep reservoirs in river areas cause problems to fish migration, both adults and juveniles, through the slack waters. Temperature is a factor in migration and salmonoid type fish will leave a warmed surface to seek cooler depths. In many of the reservoirs south of the 45th parallel and east of the modifying coastal conditions, areas of low oxygen level have formed below the thermocline. The environmental conditions, therefore, in such half lakes are such that either the temperature or the oxygen level may inhibit the migration or residence of cold water fish. The lack of leading velocities in reservoirs to fish that are accustomed to river conditions has caused wandering, both up and downstream, in search of an exit from the reservoir. This behavior pattern at this time is not understood, as certain of the salmonoid species accustomed to passing through lake areas continue to home without the apparent problems of wandering demonstrated by the river-acclimated fish. Delay by wandering can be fatal because of the energy utilization. (See pages 21 and 22 of chapter “Useful Factors in Life History of Most Common Species,” and pages 62 and 61 of chapter “Spawn-
ing Criteria." It is recommended that all factors pertaining to fish passage at high dams be completely explored before considering any upstream passage system. Attempts to move downstream migrants from reservoirs have not met with universal success. Floating surface type collectors have been successful in two reservoirs. In one, a variable depth collector, as shown on Exhibit L, has been successful in capturing migrants. Experiments indicate that fish will pass under surface collectors when following their desired temperature gradient. Multilevel or adjustable depth entrances make possible attraction at varying temperature levels. (See chapters "Avoidance", "Artificial Guidance of Fish", "Temperature-Effects on Fish", and "Downstream Migrants - Movement of ")

Special downstream passage is not usually provided at low head dams (100 feet or less). (See chapter "Passage of Fish Through Turbines, Spillways and Conduits").

Models may be used to predetermine many project conditions and to permit design alterations to favor fish passage. (See Exhibits DD and EE.) The location of the jump crest for various river flows can be determined by models such as shown on Exhibit EE.

Nitrogen entrainment may occur under many spillway conditions. This factor requires special consideration as the depth of water in the stilling basin is a major factor in concentrating entrained nitrogen.

The same criteria should be applied in the design of temporary fishways that are used during periods of construction as for permanent structures, although the structural materials used may be less durable. In lieu of fishways, a diversion tunnel or open by-pass may be used to pass fish, if suitable swimming velocities can be maintained. (See chapter "Swimming Speeds of Adult and Juvenile Fish"). As construction procedures vary, each project must be evaluated as to potential blocking conditions that may be created during construction. Temporary trapping and hauling have been used as a means of passing fish during construction periods. Such facilities should be designed in accordance with the criteria in the chapter "Locks and Mechanical Handling."
TYPICAL LAYOUT FOR FISHWAY AT POWER DAMS
All Gates Open with Crowned Operation - By Restricted End Gate Openings
TYPICAL LAYOUT FOR FISHWAY AT POWER DAMS
Limited Spill Regulation - Expanded as Flow Increases

- Diversion Tunnel
- Right Bank Fishway
- Exit
- Access Road
- T.W. or River Level
- H.W. or Pool Level
- Left Bank or Powerhouse Fishway
- Junction Pool
- Flow

Powerhouse
TYPICAL LAYOUT FOR FISHWAY AT POWER DAMS
Limited Spill Regulation - Side Gates Open Only
TYPICAL LAYOUT FOR FISHWAY AT POWER DAMS
No Spill
TYPICAL SPILLWAY FISHWAY ENTRANCE

Plan

Section A-A

Section B-B

4 F.P.S. Medium Velocity
Up to 2 F.P.S. Average Velocity
Auxiliary Water Added

Max. T.W.
Automatic Telescope Weir
Min. T.W.
F

A Pool Length 6-20 Ft.
B Pool Width 6-20 Ft.
C Orifice Height 18”
D Orifice Width 15”-18”
E Position of Orifice Vertically 4.25 Ft.
F Weir Height 6 Ft.

Drop Per Pool 12” Maximum
ICE HARBOR WEIR CREST

A Pool Length 8-20 Ft.
B Pool Width 6-20 Ft.
C Orifice Height 18 In.
D Orifice Width 15 In.
E Position of Orifice Vertically 4.25 Ft.
F Weir Height 6 Ft.
G Wing Baffle Height 8 Ft.
H Position of Wing Baffle 1.5-5 Ft.
I Width 1/2 of B
H-A
POOL AND WEIR
FISHWAY

<table>
<thead>
<tr>
<th></th>
<th>6'</th>
<th>8'</th>
<th>10'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pool Length</td>
<td>6'</td>
<td>8'</td>
</tr>
<tr>
<td>B</td>
<td>Pool Width</td>
<td>4'</td>
<td>6'</td>
</tr>
<tr>
<td>C</td>
<td>Water Depth</td>
<td>3'</td>
<td>4'</td>
</tr>
<tr>
<td>D</td>
<td>Slot Width</td>
<td>.5'</td>
<td>.5'</td>
</tr>
<tr>
<td>E</td>
<td>Slot Depth</td>
<td>.5'</td>
<td>.5'</td>
</tr>
<tr>
<td>F</td>
<td>Baffle Height</td>
<td>2.5'</td>
<td>3.5'</td>
</tr>
<tr>
<td></td>
<td>Water Depth in Notch</td>
<td>12''</td>
<td>12''</td>
</tr>
<tr>
<td></td>
<td>Discharge in CFS</td>
<td>Min 1.65</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>5.0</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>24.0</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>Drop Per Pool</td>
<td>1'</td>
<td>1'</td>
</tr>
</tbody>
</table>
H-B

VERTICAL SLOT FISHWAY

<table>
<thead>
<tr>
<th></th>
<th>Pool Length</th>
<th>B Pool Width</th>
<th>C Water depth (Min)</th>
<th>D Slot Width</th>
<th>E Wing Baffle Length</th>
<th>F Wing Baffle Distance</th>
<th>G Displacement of Baffle</th>
<th>Discharge Per Foot of Depth Above Block in CFS</th>
<th>Drop Per Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6'</td>
<td>4'</td>
<td>2'</td>
<td>.5*</td>
<td>9"</td>
<td>2'</td>
<td>4'</td>
<td>3.2</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>8'</td>
<td>6'</td>
<td>3'</td>
<td>.75*</td>
<td>1'-.36"</td>
<td>3'-.1"</td>
<td>5'-.5"</td>
<td>4.8</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>8'</td>
<td>3'</td>
<td>1.0*</td>
<td>1'-.36"</td>
<td>3'-.7"</td>
<td>5'-.5"</td>
<td>6.4</td>
<td>1'</td>
</tr>
</tbody>
</table>

Sill Block in Place
H-C
DENIL FISHWAY

A Pool Length 2'
B Pool Width 3'
C Water Depth 3'
D Baffle Width 7.5"
E Slot Width 1.75"
F Bottom Baffle Notch Ht. 7"
Discharge Variable CFS — 21
Av. Vel. 4 FPS
DISCHARGE FOR SINGLE SLOT FISHWAY

\[\text{Cd} = 0.75, \text{Slot 12" Wide} \]

For Other Conditions

\[Q = \frac{\text{Cd}}{0.75} \cdot \frac{W}{12} \cdot \frac{Q_0}{\sqrt{2gh}} \]

Computed from

\[Q = \text{Cd} (Dh) \cdot \frac{W}{12} \cdot \sqrt{2gh} \]

Approx. Formulas For Discharge

<table>
<thead>
<tr>
<th>Head (h)</th>
<th>Q = \frac{W}{12} \cdot \frac{Cd}{0.75}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>[4.3 D = 2]</td>
</tr>
<tr>
<td>0.60</td>
<td>[4.6 D = 3]</td>
</tr>
<tr>
<td>0.70</td>
<td>[5.0 D = 3.5]</td>
</tr>
<tr>
<td>0.75</td>
<td>[5.2 D = 4.0]</td>
</tr>
<tr>
<td>0.80</td>
<td>[5.4 D = 4.3]</td>
</tr>
<tr>
<td>0.90</td>
<td>[5.7 D = 5.2]</td>
</tr>
<tr>
<td>1.00</td>
<td>[6.0 D = 6.0]</td>
</tr>
</tbody>
</table>

Washington Department of Fisheries
FINGER TRAP

Isometric View

Varies from 2" to 6"
(Depending on Species)

Sectional View

Flat Weir Crest

Shaped Weir Crest

Rounded Weir Crest
K
CROSS SECTION THROUGH FALSE WEIR

SUPPORTING FRAMEWORK AND HOISTING MECHANISM OMITTED

Corps of Engineers, Portland District
THE DALLES DAM
Corps of Engineers, Portland District
DEXTER DAM
Corps of Engineers, Portland District
McNARY DAM - WASHINGTON SHORE FISH LADDER - LOWER SECTION
Corps of Engineers, Walla Walla District
BONNEVILLE DAM - FISH PASSING FACILITIES
Corps of Engineers, Portland District
FISHWAY TURBINE PUMP
Chelon County Public Utility District - Rocky Beach Project
THE DALLES DAM - FISH LOCK
Corps of Engineers, Portland District

THE DALLES DAM
COLUMBIA RIVER
FISH LOCK
CORPS OF ENGINEERS, U.S. ARMY
PORTLAND DISTRICT

ERIC GUSTAVUS MICHELSON 1955
THE DALLES DAM - POWERHOUSE FISH FACILITY
Corps of Engineers, Portland District
HELL'S GATE FISHWAYS, FRASER RIVER
International Pacific Salmon Fisheries Commission
References Reviewed

5. Francis, Francis, “Reports on salmon ladders with original drawings, plans and sections.” Horace Cox, London. 1870.

69. Canada Department of Fisheries and International Pacific Salmon Fisheries Commission, "A report on the fish facilities and fisheries problems related to the Fraser and Thompson River dam site investigation." Prepared in collaboration with the British Columbia Department of Fisheries and British Columbia Game Commission, Vancouver, B.C. November, 1955.

Chapter 35
Oxygen
OXYGEN

The amount of dissolved oxygen in water is important to the well-being of fish and aquatic food organisms. (See also chapters “Miscellaneous Information”, “Food Producing Areas and Their Requirements”, “Temperature - Effects on Fish”, “Silt and Turbidity”, “Fish Toxicants”, and “Hatcheries”.)

In dealing with the transfer of oxygen from the atmosphere (dry air at sea level), the percent of oxygen in relation to other gases is as follows (by volume): oxygen 20.95%, nitrogen 78.09%, argon .93%, and carbon dioxide .03%.

The mechanism by which oxygen is transferred from the atmosphere into still water (i.e., rearing ponds, small lakes, etc., without surface movement) is diffusion. In flowing water (exposed to the atmosphere) it comes about, in addition to diffusion, by entrainment combined with turbulence which mixes rich, oxygenated surface waters with less oxygenated waters from depths. The effects of winds, which produce mixing, can be an important factor.

The literature suggests two approaches that can be useful to investigators: the Streeter-Phelps steady state model for stream reaeration and the Phelps method for pond reaeration by diffusion. In using either approach, the amount of oxygen in the incoming water must be known, including the demands for oxygen contained in such water. It also should be stated that the methods shown here are simplified and, for this reason, may result in errors if applied to complicated programs with many demands for oxygen. A single point source with a high oxygen demand may deplete a stretch of water.

The oxygen sag curve, as defined by Streeter-Phelps, is the basic model used.

The total effect of deoxygenation and reaeration can be resolved from the two curves which form the sag curve.
When the measurement of X_t involves observations of BOD at the upstream point (station a) and the downstream point (station b), the following equation can be used if there is no inflow between the stations, but it must be adjusted if there is.

$$k_1 = -\frac{1}{t} \log \left[\frac{L_b}{L_b + X_t} \right]$$

Determine k_2 by the following:

$$k_2 = \frac{r_m}{2.3 \ D_m}$$

where $r_m = \text{amount of reaeration between two points in a stream}$

$$r_m = X_t + (D_a - D_b)$$

$D_b = \text{dissolved oxygen deficit at the lower point (b) in the stream stretch considered}$

$$D_m = \text{mean dissolved oxygen deficiency}$$

$$D_m = \frac{D_a + D_b}{2}$$

An indirect method of calculating k_2 can be determined graphically from the oxygen sag relationship when all terms except k_2 are known.

For comparison, k_1 and k_2 values are usually reduced to a standardized temperature value ($20^\circ C$). If coefficient values are collected from field data at a different temperature, they can be adjusted to the standard temperature.
coefficient value by:

\[k_{1T} = k_{120} \times 1.047^{(T-20)} \]

\[k_{2T} = k_{220} \times 1.047^{(T-20)} \]

where

\(T = \) stream temperature \(^{\circ}C\)

\(k_{1T}, k_{2T} = \) coefficient value at stream temperature

\(k_{120}, k_{220} = \) coefficient value at standard temperature

The following problem demonstrates the use of the oxygen sag curve relationship by determining the effect of large numbers of spawning fish in a confined channel and the reaeration of the channel.

Assume a 5,280 foot long spawning channel, 20 feet wide, with a depth of 1.5 feet and a flow of 45 cubic feet per second. The water is at 12.8\(^{\circ}C\) and its exchange time is 0.4 days. The channel is stocked with adult salmon at the rate of 2,667 fish/1,000 feet of channel.

Assume

\(L_a = 4 \text{ ppm} \)
\(L_o = 2 \text{ ppm} \)
\(D_a = 2 \text{ ppm} \)
\(D_b = 0\)

Demand of adult fish averaging 7 lbs in weight

\(X_t = 2667 \text{ fish/1000 ft} \times 7 \text{ lbs/fish} \times 40 \times 10^{-4} \text{ oz O}_2/\text{lb fish/hr} \)
\(5280 \text{ ft} \times 0.4 \text{ day} \times 24 \text{ hr/day} = 3785.18 \text{ oz O}_2 \)

\(X_t (\text{ppm}) = 3785.18 \text{ oz} \times 1/5280 \text{ ft} \times 1/1.5 \text{ ft} \times 1/20 \text{ ft} \times 1 \text{ cu ft}/10^{-6} \text{ oz} = 23.90 \text{ ppm} \)

\[k_1 = -\frac{1}{0.4} \log \frac{2}{4} = 0.75 \]

\[r_m = 23.90 + 2 - 0 = 25.90 \]

\[D_m = \frac{2 + 0}{2} = 1 \]

\[k_2 = \frac{25.90}{(2.3)(1)} = 11.26 \]

With these values computed

\(D_t = 0.14 \text{ ppm} \)

Therefore, DO leaving channel is 10.6(Sat) - 0.14 = 10.46 ppm. To reduce \(k \) value to standard temperature

\[k_{20}^{12.8} = \frac{k_{220}^{12.8}}{1.047^{(12.8-20)}} = 1.04 \]

\[k_{20}^{12.8} = \frac{k_{220}^{12.8}}{1.047^{(12.8-20)}} = 15.67 \]

Using this short period of time for recovery results in a high value for \(k_1 \) and \(k_2 \). A higher value is needed if complete recovery results or is assumed as all activity is compressed to a short time period. Field readings are necessary to determine a particular coefficient for a channel of the shape and slope to be used.
In dealing with static bodies of water, the Phelps method is suggested, as it describes the computation of the reaeration coefficient (R). The first step is the calculation of the oxygen diffusion coefficient for the desired temperature. The diffusion coefficient \(a \) is determined in relation to the diffusion coefficient at 20°C \((a_{20}) \) by the following formula:

\[
a = a_{20} \times 1.1^{(T-20)}/T
\]

where

\[
a_{20} = 0.00153
\]

\(T \) = desired temperature (C.)

After the diffusion coefficient is calculated for the desired temperature, the absorption coefficient \((K) \) is then computed as follows:

\[
K = \frac{\pi^2 \cdot a}{4L^2}
\]

where

\(\pi \) = (constant)

\(a \) = diffusion coefficient

\(t \) = time in hours required in mixing

\(L \) = depth of the pond (average)

The reaeration or decrease in oxygen deficit per mix \((R) \) may then be determined from the following equation:

\[
\log R_0 = 1.85 + 0.5 \log K
\]

where

\(R_0 \) = percent reaeration (of saturated value) at zero DO

The percent reaeration of any deficit \((R) \) above zero may then be computed from the following relationship:

\[
R = R_0 \frac{D_a}{100}
\]

where

\(D_a \) = the deficit in percent

By multiplying \(R \) by the saturated oxygen value for the given temperature the reaeration in ppm per mix may be obtained. This value may then be multiplied by 8.34 to obtain pounds per million gallons (mil gal) of water per mix. This figure may be used with the volume of the pond to obtain the reaeration in pounds of oxygen per mix for the pond and with the oxygen consumption of the fish to determine the loading factor for the pond.

The following problem demonstrates the use of this approach in determining the carrying capacities of large rearing ponds with minimal incoming flows for replacement of evaporation-seepage losses.

Assume a pond of 4.6 surface acres, averaging 10 feet in depth. The water is at 4.4°C. and the saturation level of dissolved oxygen is 13.0 ppm.

Diffusion coefficient for pond:

\[
a_{4.4} = 0.00153 \times 1.1^{(4.4-20)}
\]

\[
= 3.426 \times 10^{-4}
\]

Absorption coefficient for pond, assuming 1-hour mixing time:

\[
K = (3.1416)^2 \frac{3.426 \times 10^{-4}}{(1 \text{ hr})/(4 \times 10^2)}
\]

\[
= 8.4533 \times 10^{-6}
\]

Reaeration coefficient for pond:

\[
\log R_0 = 1.85 + 0.5 \log 8.4533 \times 10^{-6}
\]

Assume that DO is reduced to 5.0 ppm, then at 4.4°C. the oxygen deficit \((D_a) \) is:

\[
\frac{(13-5)}{13} = 61.54\%
\]
R = 0.2058 x 0.6154

= 0.1266 percent saturation per hour (mix)

= 13.0 x 0.001266 = 0.0165 ppm per hour (mix)

= 0.0165 x 8.34 = 0.1372 lbs O₂ per mil gal per hour (mix)

Oxygen Consumption

Under normal activity 1 pound of fish uses 24.0×10^{-4} ounces oxygen per hour ($10^\circ C$). $2.0564 \times 16/24 \times 10^{-4} = 13,709.33$ lbs of fish.

To aid the investigator in determining possible oxygen demands by fish under various conditions, the following tables have been prepared. See Chapter “Hatcheries and Rearing Ponds.”

Water capacity of pond:

43,560 ft²/acre x 4.6 acre x 10 feet x 7.48 gal/ft³ = 14,988,812 gallons

Pond reaeration, assuming one mix per hour (greater mixing accompanies strong winds):

$14,988 \text{ mil gal} \times 0.1372 \text{ lbs O}_2/\text{mil gal} + 2.0564 \text{ lbs oxygen per hour}$

*The amount of oxygen used by fish varies widely, depending on the level of activity at constant temperature.

Table 1
Use of Oxygen by Fish
(after Brett and Zala)

<table>
<thead>
<tr>
<th></th>
<th>Mean O₂ consumption</th>
<th>High O₂ consumption at feeding</th>
<th>Low O₂ consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg/hr oz/lb/hr</td>
<td>mg/kg/hr oz/lb/hr</td>
<td>mg/kg/hr oz/lb/hr</td>
</tr>
<tr>
<td>Fed fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night</td>
<td>170 27x10⁻⁴</td>
<td>375 60x10⁻⁴</td>
<td>169 27x10⁻⁴</td>
</tr>
<tr>
<td>Day</td>
<td>274 44x10⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starved fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night</td>
<td>170 27x10⁻⁴</td>
<td></td>
<td>155 25x10⁻⁴</td>
</tr>
<tr>
<td>Day</td>
<td>297 48x10⁻⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Mean from day 6 through day 22 of test)

Fish used were 29-g sockeye salmon.
Table 2
Use of oxygen by fish as calculated under river migration conditions.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Minimum scope</th>
<th>Maximum scope</th>
<th>Migrating Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg/hr</td>
<td>mg/kg/hr</td>
<td>oz/lb/hr</td>
</tr>
<tr>
<td>57°F (14°C)</td>
<td>370</td>
<td>640</td>
<td>620</td>
</tr>
</tbody>
</table>

Minimum scope: 59x10^-4 oz/lb/hr
Maximum scope: 103x10^-4 oz/lb/hr

From sockeye salmon data.
Adapted from Reference No. 13.

Table 3. Adult oxygen computations (from tests).

Adult oxygen requirements are as follows:
Rest: 1 pound of fish requires 7.91 x 10^-4 ounces of oxygen per hour.
Normal Activity: 1 pound of fish requires 24 x 10^-4 ounces of oxygen per hour.
Active Swimming: 1 pound of fish requires 40 x 10^-4 ounces of oxygen per hour.
Active Feeding: 1 pound of fish requires 40 x 10^-4 ounces of oxygen per hour.

See Reference No. 12.
Table 4
Oxygen concentrations at various temperatures in freshwater.

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>°C</th>
<th>mg/l ppm</th>
<th>By weight oz/ft³</th>
<th>oz/gal</th>
<th>By volume cc/1</th>
<th>ft³/ft³</th>
<th>ft³/gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>3.9</td>
<td>13.1</td>
<td>.0131</td>
<td>.00175</td>
<td>9.24</td>
<td>.00924</td>
<td>.00124</td>
</tr>
<tr>
<td>40</td>
<td>4.4</td>
<td>13.0</td>
<td>.0130</td>
<td>.00714</td>
<td>9.09</td>
<td>.00909</td>
<td>.00122</td>
</tr>
<tr>
<td>41</td>
<td>5.0</td>
<td>12.8</td>
<td>.0128</td>
<td>.00171</td>
<td>8.94</td>
<td>.00894</td>
<td>.00120</td>
</tr>
<tr>
<td>42</td>
<td>5.5</td>
<td>12.6</td>
<td>.0126</td>
<td>.00168</td>
<td>8.84</td>
<td>.00884</td>
<td>.00118</td>
</tr>
<tr>
<td>43</td>
<td>6.1</td>
<td>12.4</td>
<td>.0124</td>
<td>.00166</td>
<td>8.74</td>
<td>.00874</td>
<td>.00117</td>
</tr>
<tr>
<td>44</td>
<td>6.6</td>
<td>12.2</td>
<td>.0122</td>
<td>.00163</td>
<td>8.59</td>
<td>.00859</td>
<td>.00115</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
<td>12.1</td>
<td>.0121</td>
<td>.00162</td>
<td>8.44</td>
<td>.00844</td>
<td>.00113</td>
</tr>
<tr>
<td>46</td>
<td>7.7</td>
<td>11.9</td>
<td>.0119</td>
<td>.00159</td>
<td>8.34</td>
<td>.00834</td>
<td>.00111</td>
</tr>
<tr>
<td>47</td>
<td>8.3</td>
<td>11.8</td>
<td>.0118</td>
<td>.00158</td>
<td>8.24</td>
<td>.00824</td>
<td>.00110</td>
</tr>
<tr>
<td>48</td>
<td>8.9</td>
<td>11.6</td>
<td>.0116</td>
<td>.00155</td>
<td>8.14</td>
<td>.00814</td>
<td>.00109</td>
</tr>
<tr>
<td>49</td>
<td>9.4</td>
<td>11.5</td>
<td>.0115</td>
<td>.00154</td>
<td>8.04</td>
<td>.00804</td>
<td>.00107</td>
</tr>
<tr>
<td>50</td>
<td>10.0</td>
<td>11.3</td>
<td>.0113</td>
<td>.00151</td>
<td>7.94</td>
<td>.00794</td>
<td>.00106</td>
</tr>
<tr>
<td>51</td>
<td>10.5</td>
<td>11.2</td>
<td>.0112</td>
<td>.00150</td>
<td>7.84</td>
<td>.00784</td>
<td>.00105</td>
</tr>
<tr>
<td>52</td>
<td>11.1</td>
<td>11.0</td>
<td>.0110</td>
<td>.00147</td>
<td>7.74</td>
<td>.00774</td>
<td>.00103</td>
</tr>
<tr>
<td>53</td>
<td>11.7</td>
<td>10.9</td>
<td>.0109</td>
<td>.00146</td>
<td>7.64</td>
<td>.00764</td>
<td>.00101</td>
</tr>
<tr>
<td>54</td>
<td>12.2</td>
<td>10.8</td>
<td>.0108</td>
<td>.00144</td>
<td>7.54</td>
<td>.00754</td>
<td>.00101</td>
</tr>
<tr>
<td>55</td>
<td>12.8</td>
<td>10.6</td>
<td>.0106</td>
<td>.00142</td>
<td>7.44</td>
<td>.00744</td>
<td>.00099</td>
</tr>
<tr>
<td>56</td>
<td>13.3</td>
<td>10.5</td>
<td>.0105</td>
<td>.00140</td>
<td>7.34</td>
<td>.00734</td>
<td>.00098</td>
</tr>
<tr>
<td>57</td>
<td>13.9</td>
<td>10.3</td>
<td>.0103</td>
<td>.00138</td>
<td>7.29</td>
<td>.00729</td>
<td>.00097</td>
</tr>
<tr>
<td>58</td>
<td>14.4</td>
<td>10.2</td>
<td>.0102</td>
<td>.00136</td>
<td>7.19</td>
<td>.00719</td>
<td>.00096</td>
</tr>
<tr>
<td>59</td>
<td>15.0</td>
<td>10.1</td>
<td>.0101</td>
<td>.00135</td>
<td>7.09</td>
<td>.00709</td>
<td>.00095</td>
</tr>
<tr>
<td>60</td>
<td>15.5</td>
<td>10.0</td>
<td>.0100</td>
<td>.00134</td>
<td>7.04</td>
<td>.00704</td>
<td>.00094</td>
</tr>
<tr>
<td>65</td>
<td>18.3</td>
<td>9.4</td>
<td>.0094</td>
<td>.00126</td>
<td>6.59</td>
<td>.00659</td>
<td>.00088</td>
</tr>
</tbody>
</table>

To adjust for altitude differences, multiply by \(\frac{B}{760^*} \) for barometric readings in millimeters, inches or millibars, respectively, at constant temperature. To adjust for salinity effects, multiply by \(1 - \frac{S(0.552)}{100} \), \(S \) is the symbol for salinity in °/00.
Under conditions where it is necessary to introduce oxygen by mechanical means to reaerate a body of water, the following experiment conducted by R.G. Piper describes some of the current methods of introducing pure oxygen into a body of water containing fish.

Reoxygenation by Mechanical Means
(R.G. Piper, Telephone communicaions, 1979)

Equipment - hatchery hauling tank, pressure oxygen bottles with regulators, stone tubes, micropore tubes and latex tubes, micropore tubes and latex tubes perforated by sewing machine needles

Fish size 7"
Total fish weight - 450 lbs
Temperature 8°C
O₂ level of 6 ppm to be maintained

Oxygen flow rates:
1.5 l/min with stones (2" dia, with combined length 18')
5.0 l/min with micropore tubes (9/16" dia, with combined length 18")
4.0 l/min with latex tubes (9/16" dia, with combined length 18"

Fish use equals .72 1/min to .9 1/min as calculated from table by J. Elliott.

The use of the above delivery rates given the following efficiencies of reoxygcnation:

Stones 48-60%
Micropore tubes 15-18%
Latex tubes 18-23%

Size and number of released bubbles are important factors in mechanical reoxygenation of water.

Capacity of O₂ cylinder (Linde Oxygen Service):
K cylinder 19 lbs or 244 cu feet or 6910 l
T cylinder 26 lbs or 330 cu feet or 9345 l

References Reviewed

INDEX

A

Abbreviations, p. 3, 4, p. 94
Acrolein (Aqualin), p. 128
Adhesive eggs p. 61
Alewife swimming speeds, p. 51
Algae control, p. 134
Algicides, see Herbicides
Ammonia nitrogen, toxic effects p. 114
Anaesthetics, see also Drugs in fisheries work, p. 169-176
Antimycin A (Fintrol), p. 127-128
Aquatic fauna (invertebrate) distribution, p. 77
Aquatic insects abundance, p. 88 exhibit L
Arsenic, toxic effects, p. 117
Artificial guidance affected by bed load p. 186
barrier dams, p. 186, exhibits I, J
by-pass outlets, p. 186
channel shaping, p. 185
corner screens, p. 186, exhibit B
effect of bubble screens, p. 185
effect of corners and angles p. 185
effect of electric screens, p. 185
effect of pressure changes, p. 185
effect of temperature, p. 185
effect of turbidity, p. 185
electric fence diagram, p. 187, exhibit A
entrance depth recommended at facilities, p. 186
fixed screen cleaning, p. 186, exhibit C
louver screens, p. 185-186, exhibit K
mesh size formula for screening devices, p. 186
problems of screening devices, p. 186, exhibit D
rack bars, p. 185
screening installations, typical configurations, p. 186, exhibits E-H
stimuli, p. 185
transitions, p. 185
use of light, p. 185, see also p. 179
use of screens p. 185, exhibits A-H; see also Ch. 3
use of visible curtains (chains or metal strips), p. 185
use of water velocity, p. 185-186
visual references, p. 185
winter conditions - icing & heating required to prevent, p. 186
wire screens, p. 186, exhibits B, C
Artificial spawning channels, bedload, need for
removing, p. 201
design criteria, p. 201
early fry emergence, p. 201
effect of temperature, oxygen pollution, p. 201
fish species (chinook, sockeye, pink & chum salmon), p. 201
layout and structures p. 204, exhibit D
percolation rates, p. 201
types, p. 201, exhibits A, B
typical use periods, p. 203, exhibit C
Avoidance behavior of downstream migrants, p. 131
behavior of upstream migrants, p. 131
chlorine (special effect), p. 131
effect of chemicals, p. 131
effect of contaminants, p. 131
effect of electric shock, p. 131
effect of nitrogen, p. 131
effect of noise, p. 131
effect of oxygen levels, p. 131
effect of siltation, p. 131
effect of stream velocity, p. 131
effect of temperature, p. 131
effect of turbulence, p. 131
exposure and constriction, p. 131
light intensity change, p. 131
movement, p. 131
odors, p. 131
pesticides, and herbicides, p. 131
pressure changes, p. 131, (by salmon and trout),

B

Barium toxic effect, p. 111
Barrier dams p. 186, exhibits I-J; p. 195, exhibit AA
Bass (striped, largemouth, smallmouth), description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Bass, striped, p. 53, swimming speeds (fingerlings), exhibit A
Bayer 73, p. 128
Beaufort scale (wind velocity), p. 6
Bed load definition, p. 103
effect on alevins, p. 103
effect on eggs, p. 103
effect on food organisms, p. 103
Bluegill, description & scientific name
Ch. 4 & 5 (see other chapters for specifics)
Boron, toxic effects, p. 111
Bottom organisms, relationship by months, temperature, flow; p. 81 exhibit P
Brood year - defined, p. 21
Bullhead (yellow, brown, black), description & scientific name,
Ch. 4 & 5 (see other chapters for specifics)
C

Cadmium, toxic effects, p. 111
Carp, description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Carp (adult), swimming speeds, p. 53, exhibit A
Carp (Cyprinus carpio) swimming speeds, p. 53
Catfish, (channel and white), description & scientific name
Channel changes Chezzy’s formula, p. 223, computation of bed stability, p. 223
effect of elimination of bends, p. 223
effect of pools & riffles, p. 223
loss of spawning & rearing areas, p. 223
need to maintain stability, p. 223
possible number of salmonoids per acre affected, p. 223
principal methods, used p. 223
relation of stream bed pavement to velocity, p. 223
resistance of banks and bed pavements, p. 223
stream roughness coefficient changes, p. 223
use of rock hurdles or dykes, p. 223
wetted perimeter calculations, p. 2
Channels, See Artificial Spawning Channels
Chars, description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Chezzy’s formula, p. 221, p. 223
Chiselmouth, description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Chlorinated hydrocarbon compounds, p. 128
Chromium, toxic effects, p. 111
Chub (peamouth), Columbia River description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Fish screens, see Artificial Guidance
Fish species, Descriptions, Ch. 4 & 5
(see other chapters for specifics)
Fish screens, see Artificial Guidance
Fish species, Descriptions, Ch. 4 & 5
(see other chapters for specifics)
Fish species, Continental United States, Common &
Scientific names, p. 44-47
Fish species, length-weight relationship for adults,
p. 49, exhibit B
Fish species, Pacific Coast
age at maturity, p. 22-43
average number of eggs (range), p. 22-43
classification--sport, commercial, predaceous, forage,
nuisance, p. 22-43
common names, p. 17
downstream migration times, p. 22-43
egg incubation, p. 22-43
identification silhouettes, p. 18-19, exhibits A - E
jacks defined, p. 21
occurrence, p. 22-43
preferred temperature, p. 22-43
scientific & common names, p. 17
spawning times, p. 22-43
time in fresh water (rearing), p. 22-43
time in ocean, p. 22-43
time of adult migration, p. 22-43
useful factors in life history, p. 22-43
weight (range), p. 22-43
Fish toxicants, p. 127-129
Fish transportation, see,
Transportation, Ch. 30, p. 215
Fish pressure, p. 89
Fish design data,
p. 231
Fishway pumps,
p. 260, exhibit R
Fishways
Alaska steep pass fishway, p. 231
auxiliary water, p. 233
auxiliary water for drowned-out pools, p. 233, exhibit E
auxiliary water pumps, p. 260, exhibit R
auxiliary water turbine pump, p. 260, exhibit R
baffle-type, design criteria,
exhibits, H - A & B, I
baffle-type, vertical slot applications,
exhibits W, X, Z, AA
baffle-type, weir & orifice design, p. 246, exhibit F
baffle-type weir & orifice discharge
barrier dams, p. 233, exhibit AA;
see also, p. 186 exhibits I-J
bed load effect, p. 4
collection systems at powerhouses,
Ch. 34, p. 8, exhibits, Q, U, V
collector systems, p. 12-13, exhibit L
counting board lighting p.
counting board closure effects, p. 233
counting station location, p. 233
counting station--need of large pool below, p. 233
counting stations, & systems, p. 233
criteria for design of temporary fishways during
construction, Ch. 34, p. 14
criteria for structure sizes, location & flows, p. 231
Denil fishway, p. 231, exhibit H - C
depth of adult fish approaching obstructions, p. 232
diffuser arrangement, p. 233, exhibits O, P, U
diversion tunnel or open bypass in lieu of temporary
fishway, p. 234
effect of dams on fish passage, p. 231
effect of deep reservoirs on fish migration, p. 233-234
effect of delay in reservoirs, p. 233
effect of high dams, p. 233
effect of light & shadow patterns on fish, p. 232
effect of operation, p. 232, exhibits A - D
effect of shallow entrances, p. 232
effect of water temperature & quality (taste and odor),
p. 233
entrance position in relation to jump or standing wave,
p. 232, exhibit E
exit locations, p. 233
fish jumping prevention, p. 233
fish lock description, p. 233
exhibits O, P, S, T, see also Locks and Mechanical
Handling, Ch. 33
fish passage nonuniform, p. 232
fish passage structure terms, p. 231
fishway capacity, p. 232
fishway design data, p. 231
fishway entrances, vertical & horizontal positions,
p. 232-233
fishway patterns--choice decided by site condition, p. 231
flow continuity break to be avoided, p. 232
hydraulic instability, p. 232, exhibit Y
Ice Harbor design, p. 247, exhibit G
laws, Ch. 3
models for project conditions, p. 234, exhibits DD, EE
nitrogen entrainment at spillways, p. 234
orifice design discussed, p. 232
orifices with lighted backgrounds preferable, p. 232
pool & weir fishway, p. 231, exhibit H - A
plunging flow, exhibit F, p. 246
prevention of fish drop backs, p. 232
shad passage requirements, p. 232
shooting flow, exhibit F, p. 246
site importance, p. 231
special control weirs described:
V trap, p. 6; finger trap, p. 232, exhibit J
jump-over weir, p. 232, exhibit K; weir crest, exhibit J
special downstream passage not usually provided at low
head dams, p. 234; see also Ch. 25
square corners to be avoided, p. 232
sturgeon passage requirements, p. 232
temporary construction, p. 234
temporary trapping & hauling of fish during construction,
p. 234
trash rack dimensions, p. 232
toxic effects, p. 233
use of darkened fishways, p. 232
use of special pool regulating devices,
orifice control, special weir control, p. 232
vertical slot fishways, p. 231, exhibit H-B
vertical slot fishways--discharge formula & graph
exhibit I, p. 251
weir & orifice flexibility limited, p. 232
weirs for hydraulic stability, exhibit G, 247
Flood flows, effect, p. 232
Fluoride,
toxic effects, p. 233
Food (fish), hydrogen ion, Ch. 8
Food and energy requirements,
p. 70
Food--trout occurrence in streams, p. 76, exhibit J
Food (live minnows & meats)
Brook trout-digestion rate at difference temperatures, p.
72-73, exhibits D-E; p. 144, exhibit H
Food consumption at temperatures & fish sizes, p.
75, exhibit H; p. 144, exhibit G
Food conversion
natural & diet (salmon) p. 72, exhibit C; p. 144, exhibit I
Food producing areas
characteristics, p. 69, exhibits, J, K, P I
effects of flood flow, p. 70
lake characteristics, p. 70
oxygen requirements, p. 70
pools & riffles, p. 70
relationship, velocity, depth, substrata, size estimate,
exhibits I & K, p. 76-77
riffles, flats & pools defined, p. 76, exhibit J
stream modelling--annual flow, p. 69
INDEX

stream flow effect, p. 70, 76, 77, 81, exhibits J, K, & P
temperature effect, p. 70; exhibits A-I
Food requirements for fish, p. 69-70, exhibits D, L, N & O
Food & energy requirements as affected by temperature, p. 70
Food organisms, p. 69-70, exhibits K-P
Food per acre, p. 69
Food-type & quantity injected (trout) p. 80, exhibit O
Foods (fish) calorific contents, p. 144, exhibit I
Formulas (basic)--hydraulic, p. 6
Free fall, p. 183
Fyke nets, p. 209, exhibit B

G

Game fish, See Fish species
Gasses, toxic effects, p. 111-117
Grayling (adult), swimming speeds, p. 51 exhibit A
Growth - effect of temperature, p. 93
Guidance
definitions, p. 185
natural guidance factors, p. 185 see also Artificial Guidance

H

Hatcheries
benefits, p. 133
changing requirements of fish, p. 140, exhibit D
control of algae, p. 134
design layout, p. 71-86
disease control, p. 134, see also Fish Diseases, Ch. 21
effect of high & low temperature, p. 133, 143-144
exhibits F, G, H; tables 1 & 2
effect of light, p. 134
effect of temperature on food assimilation, p. 135 exhibits F, G, H,
egg loss elimination, p. 134-135, exhibit A
eggs & fry must be protected from direct sunlight, p. 134
employees & housing, p. 136
feeding levels, exhibits D, F, p. 140-143
fire protection, p. 135
fish catch-escapement ratio, p. 133
fish disease, see Ch. 21
(Index preceding chapter text)
fish egg numbers in trap & baskets, p. 134
fish size for ponds, p. 138-139, table B-C
food conversion, exhibit I, p. 144
food for fish, p. 140, exhibits D, F-I
food (fish) storage, p. 135; table 3
fungus-inhibiting chemicals, p. 134
incubation temperature, p. 135
labor-saving devices, p. 135
laws, see Legal, Ch. 3
marketing & tagging fish, p. 136
metabolic rate, p. 136; exhibits d-I
overcrowding avoidance, p. 134
oxygen availability & effect, p. 136; exhibits B, C, E
pond design & capacity, p. 134
pond loadings, exhibits B-C, p. 138-139
pumping costs, p. 146; exhibit K
salmon species best adapted, p. 133
site selection, p. 133
temperature for incubation, p. 133
tROUT SPECIES best adapted, p. 133
use of anaesthetics, p. 169-175
use of malachite green, p. 134; 136, exhibit A
use of ultraviolet light, p. 134, 136
warm water fish, p. 133

waste disposal, p. 135
water control & distribution, p. 135
water criteria & requirements, p. 133
water purification, p. 134
water recirculation system, p. 134
water supply, p. 133-134
water temperature (optimum), p. 133-135
Hauling, see Transportation, Ch. 30
Herbicides, see also Pesticides
concentrations, p. 123-124
effect of aromatic solvents, p. 124
effect of 2, 4-D, p. 124
effect on fish, Ch. 16, p. 123-124
effect on rainbow trout, p. 123
inorganic, p. 123-124
organic, p. 123-124
synergistic effects, p. 124
toxic effects, p. 123
Herring, river p. 51
Humidity tables, p. 7
Hydraulics, definitions, p. 3
Hydrogen ion, p. 70; p. 91; p. 119; p. 134
Hydrogen sulfide toxic effects, p. 116

I

Ice Harbor fishway, see Fishways, p. 247, exhibit G
Iron, toxic effects, p. 112
Isobornyl thiocyanacetate, see Fish toxicants, p. 129
Jackson turbidity unit, see turbidity measuring, p. 103

L

Lakes
Hydrogen ion level, p. 70
rehabilitation, p. 69-70
rehabilitation stocking rates, p. 138-139,; tables B-C
Lamprey (adult), swimming speeds, p. 53, exhibit A
Larvae sizes, p. 44-47
Laws, see Legal, Ch. 3
Lead - toxic effects, p. 112
Legal Ch. 3
Locks and Mechanical Handling, Ch. 33, p. 227
attraction & holding fish, necessary, p. 227
bottom diffusing area - most effective method of introducing attraction water, p. 227
current pattern of remove fish from lock required, p. 227
fish lock cycle described, p. 227
idealized fish lift, Fig. D, p. 227
idealized lock system, p. 228
lifts-not fully automated, p. 227
light-investigated but not proved of aid in decreasing passage time, p. 227
locks-bucket design similar to holding tank, p. 227
locks-fish lifted by buckets, p. 227
locks-surface area between 300 & 400 square feet, p. 227
mechanical sweep to clear lock chamber, p. 227
method of fish discarge from lifting bucket, p. 227
necessity of quick attraction of fish into lock chamber, p. 227
operation of fish lock similar to operation of navigation lock, p. 227
operation of fish lock similar to operation of navigation lock, p. 227
position of fish in locks, 80% between depths of 3 & 6 feet, p. 227
pressure type lock, p. 227
retention of fish in locks, p. 227
round locks preferable to rectangular, p. 227
Malachite green concentration for fungus prevention, p. 165; Exhibit A
Manganese - toxic effects, p. 113
Mechanical hauling of fish see Transportation, Ch. 30
Mercury toxic effects, p. 117
Metabolic rate, p. 215; Ch. 19, exhibits D-I
Metal processing residues, toxic effects, p. 116-117
Metals, see also Plastic Materials, Ch. 15
bronze in pump propellers, etc. harmful, p. 119
copper in pipping harmful, p. 119
copper adaptation, p. 119
heavy ions may cause death, p. 114
heavy ions may inhibit plant life, p. 119
hydrogen ions, p. 119
levels recommended, (see Toxicities of Elements and
Compounds, Ch. 13)
phenol for wooden pipes harmful, p. 119
stainless steel (low numbers) harmful, p. 119
toxic effects, p. 117-117
trace amounts in waters, p. 119
use in paints, p. 119
zinc-coated pipes harmful, p. 119
Methanethiol - toxic effects, p. 116
Methyl ethyl ketone - toxic effects, p. 116
Metric to English - conversion factors, p. 1
Migrants - see Downstream Migrants, Ch. 24
Minnows, fathead effect of carbamate (Sevin), p. 123
Nitrate - toxic effects, p. 115
Nitrogen toxic effects, p. 115
Nitrogen & water temperature nomogram, p. 10
Nitrogen compound (TFM), p. 129
Nitrosalicylanilide (synergist) (DCN), p. 129
Nomograms
nitrogen & water temperature, p. 10
oxygen solubility in water, p. 9
oxygen saturation in water, p. 10
Nonchlorinated hydrocarbon, p. 129
Organisms in trout stomachs, see
stomach content—trout (by months) p. 79-80, exhibits N,
O
Oranophosphates, p. 128
Oxygen absorption coefficient for pond reaeration,
adult requirements, table 3. p.
air - gas composition of p. 1
altitude differences - formula to adjust for effects on
concentration under various temperatures, in fresh water,
p. 281, table 4—nomograph, p. 9, 10
consumption, see use diffusion coefficient for pond
reaeration, p. 278,
mechanical methods of reaeration, (stones & micropore &
latex tubes), p. 282
oxygen availability & effect, p. 138, 139, 141, 142, exhibits
B, C, E,
oxygen cylinder capacity (K cylinder & T cylinder), p.
p. 282
oxygen & growth, p. 70; exhibits E, p. 141
oxygen & growth—salmonoids, p. 20, exhibit Q;
exhibit E, p. 141
oxygen level reduction, see also Turbidity—effect on
oxygen, p. 34
oxygen sag curve, p. 280
oxygen saturation, p. 277, 278 nomograph p. 9-10
oxygen solubility, table—p. 281 nomograph, p. 9-10
oxygen use by adult fish from resting to feeding, table 3, p.
p. 280
oxygen used by fed & starved fish, p. 279, table 1
oxygen use by migrating smolts, & adults, table 2, p. 280
pond reaeration, p. 278
reaeration coefficient for ponds, p. 278
reoxygenation coefficient for stream reaeration, p. 276
salinity - formula to adjust for effects on oxygen
saturatation, table 4, p. 281
stream reaeration, p. 276
P
pH, see hydrogen ion
Passage of fish through turbines, spillways &
conduits effect of deceleration, p. 183
effect of pressure changes, p. 183
effect of shock wave pressures, p. 183
effect of spillways, p. 183
effect of temperature, p. 183
effect of temperature on swim bladder, p. 183
effect of turbines, p. 183
effect of water pressures, p. 183
flow nets, p. 183, exhibit A
formula for salmonoid swim bladder volume, p. 183
free fall, p. 183
pressure, p. 183
shear, p. 183
Perch (Sacramento & yellow)
description & scientific name, Ch. 4 & 5 (see other
chapters for specifics)
Pesticides, see also Herbicides concentration levels,
p. 123-124
effect of adjuvants, p. 123
effect of carbamate group, 124
effect of chlorinated hydrocarbons, p. 123
effect of DDT & endrin, p. 123
effect of organic phosphates, p. 123
effect of solvents, dilutents, p. 123
effect of synergists, p. 123
effect on estuarine areas, p. 124
effect on shellfish, p. 124
harmful effects, p. 123
recommended control, p. 123
toxic buildup, p. 123
Phenol - toxic effects, p. 117
Phenolic compounds - toxic effects, p. 117; p. 119
Phosphates - toxic effects, p. 115
Pipe sizes—table, p. 6
Plastic coatings, see Metals, Ch. 14
Plastic materials
ABS resins toxic, p. 121
dyes, pigments, fillers or stabilizers, p. 121
epoxy cement harmful, p. 121
fiberglass (limited testing) nontoxic, p. 121
neoprene (aged) inner tubes toxic, p. 121
neoprene (aged) sheeting toxic, p. 121
phenox resin acceptable, p. 121
polyethylene sheeting generally nontoxic, p. 121
polyethylene surgical tubing, possible toxic reaction in
man, p. 121
polyesters (pure) generally nontoxic, p. 121
poly-ethylene rope (limited testing) nontoxic, p. 121
polyvinyl-chloride piping doubtful, p. 121
polyvinyl-chloride rigid extrusions usually nontoxic, p. 121
INDEX

polyvinyl chloride sheeting generally toxic, p. 121
possible harmful effects, p. 121
Saran piping (limited testing) nontoxic, p. 121
Teflon sheeting (limited testing) nontoxic, p. 121
toxic effects vary, p. 121
Plunging flow, see Fishways, exhibit F, p. 246
Pond loading formula for length & weight relationships, p. 149
Pond loadings, exhibits B-C; p. 138-139; p. 149, p. 152, tables 4-5
Ponds, see also Rearing Ponds, Ch. 20
stocking rate for hatchery fish, p. 137-139, tables B-C
trot brood stock, p. 135, 137
Ponds, holding p. 135, Potassium toxic effects, p. 113
Predation
aquatic mammal predators, p. 207
beneficial effect of turbidity, p. 207
bird predators, p. 207
cannibalism in largemouth bass, p. 207
cannibalism in salmonoids, p. 207
cannibalism in trout, p. 207
control by changing water levels, p. 207
catalyst by changing water levels, p. 207
control measures, p. 207
effect of by-passes, p. 207
effect of fish size, p. 207
effect of fish survival, p. 207
forage fish ratio introduction, p. 207
occurrence in same species, p. 207
occurrence with salmon & steelhead trout, p. 207
sea lamprey in Great Lakes, p. 207
squawfish control, p. 207
temperature as means of separation of species, p. 207
Predators - squawfish predation on salmon & trout, p. 207
Pressure rates, see Passage of Fish through Turbines, Spillways & Conduits, p. 183
Pressures, negative p. 183
Production, salmon & trout, exhibits R-S, p. 84, 85
Pulp mill effluents - toxic effects, p. 117
Pump vane clearance, p. 183
Pumpkinseed (Lepomis macrochirus)
description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Pumps, see Fish Pumps, Fishway Pumps

R

Radioactive materials - toxic effects, p. 116
Rearing ponds
BOD, p. 149, exhibit, p. 155
cleaning & handling, effects & methods of, p. 149
closed circuit, p. 149
construction & care, p. 149; p. 155, exhibit B
design, p. 149; exhibit A, p. 154
drainage systems, p. 149
feeding tanks, p. 149
fish protection, p. 149
odor, p. 149
oxygen demand & metabolic rates of fish, p. 149, 152-154
pond loading p. 149, 153
types, p. 154, exhibit A, p. 149
water supply & quality p. 149, 155, exhibit B
Recovery gear
beach seines, use & operation, p. 209
electric fish collectors, p. 210
fish wheels, p. 210, exhibit A, p. 211
fyke nets, limitations & problems p. 209; p. 212 exhibit B
gill nets size & use p. 209
photo aids, p. 210
plankton nets, p. 209
traps & pound nets p. 209; 211, 212, exhibits A-B
designs, p. 209
Redd types & sizes, p. 61
Reservoirs, see also Sedimentation, reservoirs, p. 103
effect on fish migration, p. 233, 234
temperature or oxygen level effect on cold water fish, p. 233
Residualism, p. 180
Roach (Tui Chub)
description & scientific name, Ch. 4 & 5 (see other chapter for specifics)
Rotenone, p. 127
Salmon,
description & scientific names, Ch. 4 & 5 (see other chapters for specifics)
effect of water pressure, p. 183
length-weight relationship of adults, exhibit A, p. 48
redd size, p. 61
swimming speeds, p. 51, exhibits A-C, p. 53-55
Sand filters, p. 134
Scientific names of fish, p. 17
Secchi disc reading, p. 103
Sedimentation
cause, p. 103
concentration in Columbia River at Pasco, table B, p. 105
concentration in Fraser River at Hope, table B, p. 105
concentration in rivers, (California, Oregon, Washington),
table A, p. 104
effect on food organisms, p. 103
ponds, p. 104
erates, p. 103
removal from reservoirs, p. 103
reservoir flushing, p. 103
Selenium - toxic effects, p.
Shad (American)
description & scientific names, Ch 4 & 5 (see other chapters for specifics)
swimming speeds, exhibit A, p. 53
Shiner, Redside - description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Shooting flow, see Fishways, p. 246 exhibit F
Silt, see also Sedimentation, p. 103
causes, p. 103
effect on egg survival, p. 104
effect on fish, 103-104
effect on fish catch, p. 103-104
effect on fish eggs, p. 103-104
effect on fish vision, p. 104
effect on food production, p. 69, 70
effect of gills, p. 104
effect on hatcheries, p. 104
effect on red water percolation, p. 103-105
effect on respiration, p. 104
effect on salmon, p. 103-104
effect on spawning, p. 103-104
farm ponds, p. 104
fish production affected by load content, 103-104
Silver - toxic effects, p. 113
Smelt (eulachon)
description & scientific name, (Ch. 4 & 5 (see other chapters for specifics)
Sodium — toxic effects, p. 114
Sodium cyanide, p. 128
Spawning channels, see Artificial Spawning Channels
Spawning criteria, see also Fish Species, Useful Factors, Ch. 5
bed composition, p. 61

288
effect of silt, p. 61
eggs (adhesive, demersal) p. 61
eggs, number per square foot spawning bed, p. 61
eggs, sensitive during tender stage, p. 61
energy requirements, p. 62
energy requirements, computing formula, see Swimming
Spreads, p. 51
fish energy utilization table, p. 62
nest builders, p. 61
redd sizes, salmon & trout, p. 61; 65, exhibit C;
(see also Artificial Spawning Channels, Ch. 27)
redds false (Pink salmon), p. 61
redds, recommended sizes, p. 61
salmon & trout, p. 61
salmon & trout--depth of stream, p. 61
Spawning criteria
stream bed flow requirement, p. 66, exhibit D
stream depth flow velocity, importance, p. 62; exhibits A-
B, D
temperature effects, p. 62
velocity of stream, p. 61; exhibit D
spawning habits (nest builders, demersal & adhesive
eggs), p. 61
Species - description, Ch. 4 & 5, (see other chapters for
specifics)
Spillways, p. 103
Squawfish, description & scientific name, Ch. 4 & 5 (see
other chapters for specifics)
Squoxin, p. 129
Standing crops (bottom organisms), p. 79, exhibit M
Stokes Law, see Sedimentation, Rates, p 103
Stomach content--trout (by months), p. 79, 80, Exhibit
N-O
Streams - laws, Ch. 3
Sturgeon (green and white) description & scientific
name, Ch. 4 & 5 (see other chapters for specifics)
Sucker (Large scale, Bridgelip) description & scientific
name, Ch. 4 & 5 (see other chapters for specifics)
Sucker (Mountain) Scientific name, Ch. 4
Sucker (White) swimming speeds, p. 53
Suckers (adult) swimming speeds, p. 53, exhibit A
Sunfish (green) description & scientific name, Ch. 4 & 5,
(see other chapters for specifics)
Surfactants - toxic effects, see Toxicities of Elements &
Compounds, Ch. 13
Swimming depths at fishways, p. 232
Swimming speeds of adult & juvenile fish
adult fish relative swimming speeds, p. 53
Chilko Lake sockeye fry, p. 56, ex. D
cruising (swimming) speeds of fish, p. 51, 53, 54
darting (swimming) speeds of fish, p. 51, 53, 54
energy requirements, formulas for computing, p. 51-52
energy requirements in fish for swimming, p. 51-52
MacKenzie river fish - relative swimming speeds, exhibit
C p. 55
oxygen, effects of swimming speeds, p. 51, 52
swimming speeds, formulae for computing, p. 51 52
swimming speeds, formula for computing, p. 51-52
swimming speeds, formula for computing energy
requirements, p. 51
swimming speeds or adult & juvenile fish p. 51, 52;
exhibits A, B, C
swimming speeds, speed-time calculations, p. 52
sustained (swimming) speeds of fish, p. 51, 52; exhibits A,
B, C
temperature, effects on swimming speeds, p. 51, exhibit E
velocity, effects on swimming speeds, p. 51, 52
visual reference, use by fish in moving, p. 51
young fish - relative swimming speeds, p. 54
Swimming speeds of adult & juvenile fish
trot, steelhead (adult), p. 53
visual references, p. 52
water velocity, choice of, p. 51 52
water velocity effects, p. 52
whitefish (adults), p. 53
Symbols, see Definitions, p. 3
Tank Trucks, See Transportation
Temperature
acclimation, p. 93
disease effects, p. 193 (see also Fish Diseases, Ch. 21)
effect on adult fish p.
effect on digestion (trout), p. 93
effect on eggs, p. 93
effect on energy, p. 99, exhibit M
effect of fish species, p. 93-98, exhibits A-K
effect on gases in water, p. 93
effect on spawning, p. 93, see also Spawning Criteria, p. 61
effect on swimming speeds, p. 93, exhibit M
effect on young growth, p. 93; see also Food Producing
Arees, (temperature effect), p. 70 exhibits A-I
optimum ranges for Pacific Coast fish, exhibits A-K, p.
94-98
preferences, p. 93
Temporary construction, see Fishways, p. 234
Terminology & equivalents, p. 2
areas, p. 3
density, p. 3
power, p. 3
pressure (air, water) p. 3
water density, pressure, weight, p. 3
Thanite, See Fish Toxicants, p. 129
Toxaphene, p. 128
Toxicants, see Fish Toxicants
Toxicities of elements & compounds, ch. 13
Tranquilizers - use in fishes work, Ch. 22
Transportation
adult & young fish handling
in loading, p. 215
aeration for small tank, p. 216
aeration of water in tank truck, p. 215-218, exhibit C
aeration problems, p. 215
aeration to remove carbon dioxide and ammonia, p. 215
aerial planting of trout, p. 215, 216
aerial transport equipment, p. 215-216
carbon dioxide levels, p. 215
costs of distribution, p. 215, 216
feeding stopped before transportation, p. 215
loading measuring p. 219, exhibit D
loading table (Oregon Game Commission), p. 216, exhibit
A
metabolic rate of fish, p. 215
oxygen demand and level p. 215; 217, exhibit B
poundage reduction for fish, p. 215
pumping requirements, p. 215
pure oxygen for emergency, p. 215
shad haulage care, p. 215
tank truck capacities, p. 215
tank truck capacity, for young & adult fish, p. 215
tank truck costs, p. 215
tank truck design, p. 215
tank truck operation costs, p. 215
tank truck types for adult & young fish, p. 215
tank trucks, p. 215
temperature in tank trucks per fish poundage, p. 215
use of barges, p. 216
water circulation for small tank, p. 216
water filled tank for aerial p. 215
transport, p.
water tempering, p. 215
Trout
average length to weight, metric & English p. 145, exhibit J

289
INDEX

description & scientific names, Ch. 4 & 5 (see other chapters for specifics)
redd size, p. 61
swimming speeds, exhibit A, p. 53
Trucks, Fish see Transportation
Turbidity
concentration causing fish fatalities (warm water species), p. 105, table C
effect on bass, p. 103
effect on bluegill, p. 103
effect on carp, p. 104
effect on catfish (bullhead), p. 104
effect on fish, p. 104
effect on lake production, p. 104
effect on oxygen, p. 103
effect on spawning, p. 103; p. 106-108, figures 1-3
effect on trout, p. 103
levels & lake production p. 103
measuring, p. 103
meter (Jackson Turbidity Unit), p. 103
Turbines, Ch. 25

U V

Ultraviolet light, see Hatcheries, p. 134, 136

Vertical slot fishways, exhibit H-B, p. 249,

W Z

Water - measurements, p. 2-5
Water quality
acid & alkaline effects, p. 91
dissolved oxygen requirements, p. 91
hydrogen ion concentration, p. 91
hydrogen ion effect on dissolved, toxic materials, p. 91
hydrogen sulphides affected by pH, p. 91
pH see Hydrogen ion
phosphates & nitrates, p. 91
Weight gain, fall chinook, p. 74, exhibit F
Weirs, see Recovery Gear, Ch. 29
Whitefish - description & scientific name, Ch. 4 & 5 (see other chapters for specifics)
Whitefish (adult)
swimming speeds, p. 53, exhibit A
Wind velocity, see Beaufort scale p. 6

Zinc - toxic effects, p. 114