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Abstract 

I investigated available prey items and the diet characteristics of juvenile fishes in three seasonally 

inundated tributaries to Ross Lake, Washington from March through June, 2013. Native fishes include Rainbow 

Trout (Oncorhynchus mykiss), Bull Trout (Salvelinus confluentus), and Dolly Varden (Salvelinus malma). 

Cutthroat Trout (Oncorhynchus clarkii), Brook Trout (Salvelinus fontinalis) and Redside Shiner (Richardsonious 

balteatus) comprise the introduced fishes in the lake. Both Cutthroat Trout and Redside Shiner are native to 

Washington, but not Ross Lake. Juvenile Bull Trout, Rainbow Trout, and Brook Trout are known to feed on items 

along the bottom of lakes or streams, such as larval and adult insects as well as items floating or drifting in the 

water column. Diet composition can be altered by the benthic macroinvertebrate community, season, and 

habitat type as well as anthropogenic interferences such as dams.  

During each sampling event the stream was electrofished, benthic macroinvertebrate samples were collected, 

all captured fish over 50 mm were lavaged, and during the initial visit to each site, a habitat assessment 

occurred. Three fifty-meter reaches were selected for each stream to have representative sites at low, medium, 

high, and full pool elevations. Rapid habitat assessment was completed following USFS Stream Inventory 

Handbook for Region 6 on each of the streams during the first site visit, benthic macroinvertebrate sampling 

followed a modified version of the Environmental Protection Agency’s Rapid Bioassessment Protocols for Use in 

Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, electrofishing followed 

American Fisheries Society and National Marine Fisheries Service Guidelines, and diet evaluation was completed 

using non-lethal gastric lavage of stomach contents mm following the modified protocols of Giles (1980),  

Strange and Kennedy (1981), Hartleb and Moring (1995).  

My study suggests adequate food, in the form of benthic macroinvertebrates, is present based on the presence 

of few fish with empty stomachs in the system.  The benthic macroinvertebrates found in the tributaries to Ross 
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Lake reflect those commonly found in Pacific Northwest Streams. A total of 3,645 individuals in 31 families were 

collected. Ephemeroptera was the most abundant and frequently occurring insect order across all samples, but 

not uniformly the most abundant at all sites, dates, or months. Abundance of families by date differed, but not 

site or reach. 

Diets varied by sites, months, and most pool elevations, but not species. Sixty-five of the seventy-three fish 

collected had at least one diet item in their stomach (89% off all fish). Including those taxa that were identifiable 

only to terrestrial origin or class Insecta and those unrecognizable even at the class level, there were sixteen 

categories for analysis, seven of which were considered major and included in all analyses. Using Index of 

Relative Importance, I determined Diptera was the most important prey item overall, followed by 

Ephemeroptera. Stomach fullness, calculated by Instantaneous Ration, was correlated to the number of prey 

found in individual fish stomachs. As expected, stomach fullness followed benthos abundance trends. 

Many studies are completed on adult feeding strategies, especially in comparisons between species or 

environments, but research on juvenile diets is less available, and to the best of my knowledge research on prey 

availability and selectivity on seasonally inundated streams is non-existent. Further research on Ross Lake 

juvenile trout diet, the most important prey taxa, and the benthic community they rely on will result in a better 

understanding of fish stock dynamics and Ross Lake ecology and perhaps influence management of the fish 

stocks and lake levels in the future.  
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Introduction 

Juvenile trout and char rely on streams during their early life history. Juveniles in the Pacific Northwest 

have adapted to the flow, temperature, and channel complexity in the streams found there. Trout and char have 

different habitat requirements and preferences, which allows for a variety of species to inhabit the same stream 

but different microhabitats based on substrate, depth, flow, temperature, and gradient (Quinn, 2005). Recently 

emerged trout and char fry school along streambanks while larger fry become territorial and require adequate 

space and forage. Specifically, juveniles of Bull Trout (Salvelinus confluentus), Rainbow Trout (Oncorhynchus 

mykiss), and Brook Trout (Salvelinus fontinalis) feed on aquatic prey found in streams, typically in the form of 

larval or adult insects, floating or drifting in the water column as well as prey found along the bottom (Wydoski 

and Whitney, 2003; Quinn, 2005; White and Harvey, 2007). Prey composition can be affected by the benthic 

macroinvertebrate community, season of the year, and habitat conditions (Hilderbrand and Kershner, 2004; 

Quinn, 2005). In addition to affecting prey composition, alterations to available habitat, canopy, flow, sediment 

rates, and primary productivity can adversely affect juvenile populations by over-crowding, altering temperature 

outside the suitable range, and reducing available forage (Anderson, 1971; Davis and Hughes, 1971; Korn and 

Smith, 1971; Quinn, 2005).  

Reservoirs found on rivers often create habitat that is very different than both a natural lake and the previously 

existing stream habitat (Baxter, 1977). Water-level management of a reservoir can cause seasonally periodic 

inundation and exposure of former streams; new barriers may be created as well as access enabled to previously 

inaccessible habitat, primary productivity, the benthic community, and the littoral region altered, and fish and 

other vertebrates adversely affected (Isom, 1971; Korn and Smith, 1971; Taylor, 1971; Baxter, 1977; Scrimgeour 

et al, 2008; Northcote, 2010).  
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The purpose of this study is to characterize diet amongst the juvenile fish species during exposure of periodically 

inundated streams found in a reservoir with seasonally changing water levels. I hypothesized that the seasonally 

inundated streams would lack benthic macroinvertebrates and would therefore be unable to support fish life. If I 

was able to determine that fish were able to rear in the streams, I theorized that diet and benthos composition 

would differ with changing pool elevations, among stream reaches, and among sites. I projected that the upper 

stream reaches, those that had been exposed longer, would have a different diet composition than the lower 

reaches that spend more time lacustrine than riverine. Additionally, the tributaries to Ross Lake vary in size, 

location, and fish stocking history so I hypothesized a difference in benthos and diet characteristics would be 

seen among them.  I tested these hypotheses by sampling the benthic invertebrate community, characterizing 

available habitat, and analyzing diets of juvenile trout and char in three tributaries to examine the relationship 

of habitat, fish, and food and to document changes in the existing prey community and diet characteristics by 

resident juvenile fishes. 

Study Site 

Ross Lake, a 37-km long reservoir created by the installation of Ross Dam on the upper section of the 

Skagit River, is surrounded by steep, rocky shorelines and is within the North Cascades National Park Complex 

(NOCA) (Figure 1). Ross Lake extends into Canada during summer months, but the majority of the lake is located 

within the United States. The North Cascade mountains rise from the Skagit River canyon to almost 1,525 

meters at a nearly vertical pitch. Ross Dam, located at the southern end of the lake, is 165 meters high, and was 

constructed in two phases beginning in 1937 with final completion in 1949 (UWCFR, 1971; Johnston, 1989; 

NWDA, 2003). The installation of the dam inundated approximately 4,727 hectares of riparian habitat over 46 

square kilometers and decreased primary productivity in the aquatic habitat to a point lower than naturally 

existed (Figure 2; Johnston, 1989; Brondi, 2006). Water levels are managed seasonally to provide hydropower, 

recreation, flood control, and fish habitat. About 20% of Seattle’s total usage comes from the three Skagit River 
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dams, of which Ross Dam is the largest (SCL, 2014). The lake is deepest near the dam and varies in depth from 

450 meters during the winter, when the lake is drawn down to provide storage for spring runoff and flood 

control, to 488 meters in the summer to allow recreation and power generation (Figure 3; Johnston, 1989). The 

lake is oligotrophic and monomictic; very little aquatic vegetation is found along the shorelines, dissolved 

oxygen is near saturation from surface to bottom, and during the summer the lake is thermally stratified 

(Johnston, 1989; Looff, 1995; Brondi, 2006; USGS, 2013). 

Ross Lake exhibits several features that create a unique environment for fish. The water level regime of the lake 

is opposite that of natural lakes in the Pacific Northwest; the water level is high in the summer, when little 

precipitation occurs, and low during winter, when natural lakes are at their highest level from rainfall (Brondi, 

2006). Ross Lake exists nearly entirely within the North Cascades National Park Complex and has only one 

unimproved access road via British Columbia. It is therefore largely unaffected by anthropogenic sources of 

pollution and disturbance, but it is still subject to human disturbances. Hydroelectric production is a major 

concern because operations are outside the jurisdiction of the National Park yet may have adverse impacts on 

the native trout. For example, although Seattle City Light manages the water levels to avoid spilling water over 

the top of the dam, occasional spilling does occur and has resulted in fish loss from Ross Lake. A spill in 1972 

lasting 60 days resulted in the loss of an estimated 16,000 fish over the dam, with a mortality of 99.64% induced 

by the fall (Woodin, 1974; Johnston, 1989). 

The reservoir is located within the Ross Lake National Recreation Area, created simultaneously with the North 

Cascades National Park in 1968, and together making up the North Cascades National Park Complex (UWCFR, 

1971; Figure 1). This designation reduced activities in the watershed that were allowed when it was national 

forest land, particularly logging and mining (Luxenberg, 1986; Louter, 1998). Alterations to the reservoir have 

also been prevented. A request in 1970 to raise the dam and increase the water level 121 feet at full pool from 

1602’ AMSL to 1725’ AMSL was denied, but resulted in a plethora of scientific and photographic evidence of 
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conditions at the time (Figure 2, SCL, 1970; UWCFR, 1971; Woodin, 1974; Johnston, 1989). The Ross High Treaty 

was signed in 1984, which in part provides for an international commission to facilitate research, education, 

protection and protection of the watershed. 

The lake is fed by a number of tributaries that channel snow melt directly and indirectly into the reservoir. The 

Skagit River upstream of the dam is the largest tributary to the Lake, delivering an annual mean flow of 32 m3/s 

and draining 100,751 hectares in Canada (Johnston, 1989; Murray and Gaboury, 2005; Welch, 2012). Other 

prominent but smaller tributaries to the Lake include Hozomeen Creek, Silver Creek, Little Beaver Creek, 

Lightning Creek, Dry Creek, Big Beaver Creek, Skymo Creek, No Name Creek, Roland Creek, and Ruby Creek. All 

of these tributaries occur on the U.S. side of the border and combined drain approximately 160,579 hectares 

(Johnston, 1989). Aside the direct effects from the dam, the tributaries remain in a natural state, protected from 

anthropogenic impacts such as overuse, logging, and mining.  

Among the recreational opportunities on the lake and tributaries, fishing is one of the most popular. Regulations 

open the fishery on July 1st allowing harvest of Rainbow Trout and Brook Trout, but requiring all Native Char to 

be immediately released.  

Macroinvertebrate Community 

Aquatic macroinvertebrates are extremely important in the food webs of the aquatic environment 

because they are responsible for converting plant material and detritus into energy useable by higher trophic-

level organisms and thus are a main food source for fish (Waters, 1969; Brusven and Trihey, 1978; McCafferty, 

1998; Pavluk et el, 2000). Terrestrial invertebrates, in addition to aquatic forms, are often found in the water 

column and are believed to be required to support fish communities (Laudon et al, 2005). Juvenile fishes will eat 

aquatic and terrestrial organisms at all stages of life but most often insects in the pupae, larvae, or nymph forms 
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(Wydoski and Whiney, 2003; Laudon et al, 2005). The most commonly found macroinvertebrates are in the form 

of benthos, which reside in, on, or near the bottom of the water body.  

Macroinvertebrates are those organisms that are captured with a 200-µm mesh sieve, and those that may 

provide food for fish are the focus of this study (Thorp and Rogers, 2001). Aquatic insects (Phylum Arthropoda, 

Class Insecta) are the most commonly found macroinvertebrates. Of the ten taxonomic orders of insects that 

contain an aquatic life stage, five orders (Ephemeroptera, Plecoptera, Trichoptera, Megaloptera, and Odonata) 

have entirely aquatic larva while the remaining five orders (Diptera, Coleoptera, Lepidoptera, Hemiptera, and 

Neuroptera) are mainly terrestrial but have an aquatic stage in most families (Lehmkuhl, 1979; Hilsenhoff, 1991; 

McCafferty, 1998). Insects at all stages of life may be eaten by fish. After hatching from an egg, aquatic insects 

undergo metamorphosis as either incomplete, such as Plecoptera and Ephemeroptera, or complete, which 

includes a pupa stage, such as Trichoptera and Diptera (Lehmkuhl, 1979). Ephemeroptera, Plecoptera, 

Trichoptera, Lepidoptera, and Diptera, have larval forms that are exclusively submergent, meaning within or 

underwater, but no submergent adult representation (Hilsenhoff, 1991; Thorp and Rogers, 2001; McCafferty, 

1998).   

In addition to insects, other macroinvertebrates of various sizes that are eaten by fish include segmented 

worms, crustaceans, flatworms, mollusks, and spiders and mites. These taxa are often found in habitats that are 

lentic, dominated by fine sediments, or degraded. Freshwater Annelida (excludes Polychaeta, “segmented 

worms”) are mostly composed of species in classes Oligochaeta and Hirudinea and are among the largest 

potential food items for juvenile fish in streams. Both water-dwelling terrestrial and aquatic Oligochaeta can be 

found in fish diets and terrestrial earthworms are often found in stream sediments (Northcote et al, 2007). 

Amphipods (“crustaceans [scuds]”, Phylum Arthropoda, Class Malacostraca) can encompass a substantial 

amount of the biomass in lakes and streams, may be extremely abundant having been documented to exceed 

10,000 per m2, and may be found in fish stomachs in high number (Pennak, 1978; Covich and Thorp, 1991). 
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Terrestrial mollusks (Phylum Mollusca, Class Gastropoda) are more common as prey for fish, but aquatic species 

are found in high number in Ross Lake, especially near Hozomeen Creek. Flatworms (Phylum Platyhelminthes) 

are smaller in size than the above, and are infrequently found in fish diets (Northcote et al, 2007). Water mites 

(Phylum Arthropoda, Class Arachnida) are among the smallest organisms and are the most commonly found 

aquatic arachnid although semi-aquatic spiders can also be found.  Although they are consumed by juveniles, 

they are in low abundance and provide small energy gains so are not commonly found (Smith and Cook, 1991; 

Thorp and Rogers, 2001; Northcote et al, 2007).  

The operations of Ross Dam provide unique challenges to the benthic community. Dams alter the flow of organic 

matter and sediment both above and below the structure, shifting the benthic structure to match the new 

environment (Baxter, 1977; Pavluk et al, 2000; Vallania and Del Carmen Corigliano, 2007). When dams are 

initially installed on rivers, it is expected that the lotic organisms will be replaced by lentic organisms more 

adapted to the lake-type habitat created behind the dam. Additionally, increased sedimentation, changes in 

temperature and oxygen availability due to the decrease of horizontal and vertical circulation, and draw-downs 

may trap, strand, suffocate, or drown organisms. Physical and chemical gradients unsuitable to the existing 

community may also alter the benthic composition (Baxter, 1977; Welch, 2012). Baxter (1977) found that 

initially following the installation of natural and man-made dams Ephemeroptera, Plecoptera, and Trichoptera 

decreased in abundance while chironomids (order Diptera) greatly increased. Brusven and Trihey (1978) found 

that rapid de-watering resulted in large scale stranding of benthos with the affects seen in the higher trophic 

levels. This is important in this study because the management of Ross Lake causes great annual variability in 

pool elevation and may be expected to have impacts on the benthic community in some habitats that would 

result from the annual cycle of transformation from a lotic to a lentic environment.  
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Fish Community 

The operations of Ross Dam to control water levels may be problematic for resident fish as food 

availability and physical habitat in streams are decreased as the reservoir fills, providing potentially inadequate 

habitat for rearing and possibly forcing some juveniles to enter the lake before they would naturally do so. All of 

the native fishes, composed of Bull Trout, Dolly Varden (Salvelinus malma), and Rainbow Trout, and two of the 

three introduced species, Brook Trout and Cutthroat Trout (Oncorhynchus clarkii) utilize stream habitat for 

spawning and rearing of juveniles.  

Among the various life history patterns that Bull Trout demonstrate, in Ross Lake they are adfluvial, spawning 

and rearing in streams before migrating to the lake for their adult life (Wydoski and Whitney, 2003; USFWS, 

2004; Quinn, 2005). Juvenile Bull Trout diets consist mainly of aquatic insects and scuds, terrestrial insects, and 

fish, primarily sculpin, when available (Wydoski and Whitney, 2003). Ross Lake Bull Trout spawn in Big Beaver, 

Ruby, Lightning, Silver, and Roland Creeks in the fall, when the reservoir is still full (Downen, 2004; Welch, 2012). 

Because Bull Trout tend to be more sensitive to stream flow patterns and elevated temperatures than other 

trout species and also require complex in-stream channel features including cover, large woody debris, and 

pools, they are a sensitive indicator of conditions in the stream environment (Wydoski and Whitney, 2003; 

Quinn, 2005). Bull Trout were listed as Threatened in the coterminous 48 states under the Federal Endangered 

Species Act in 1999 (USFWS, 1999). Ross Lake Bull Trout have been shown to be genetically distinct from other 

Skagit River Bull Trout downstream of the dam; genetic analysis is ongoing to determine their origin (A. 

Rawhouser, North Cascades National Park, personal communication). Historically, upstream movement by the 

lower Skagit River Bull Trout population was likely naturally constrained by waterfalls in what is now the Diablo 

Lake reservoir below Ross Lake, thus they have remained geographically isolated and genetically unique (A. 

Rawhouser, North Cascades National Park, personal communication). The Ross Lake Bull Trout population has 

been increasing in number and size of individual fish (Welch, 2012; Anthony et al, in draft).  
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Dolly Varden closely resemble Bull Trout, but are difficult to physically distinguish and require genetic analysis to 

be certain (Quinn, 2005). Like Bull Trout, Dolly Varden spawn and rear in streams and over-winter and feed in 

lakes. They are opportunistic feeders consuming all stages of aquatic insects and other macroinvertebrates 

including leeches and snails (Wydoski and Whitney, 2003). Ross Lake is the only location in North America 

known to hold co-existing populations of Bull Trout and Dolly Varden in lacustrine habitat (E. Connor, Seattle 

City Light, personal communication). Although Bull Trout and Dolly Varden hybridize in the Ross Lake watershed, 

both species “maintain themselves as distinct and separate entities” (McPhail and Taylor, 1995; Smith and 

Naish, 2010; Anthony et al, in draft). McPhail and Taylor (1995) concluded that natural selection against hybrids 

and general differences in life histories must aid in keeping these two species from becoming a single gene pool. 

Rainbow Trout are native to the Ross Lake area with the population occasionally supplemented with hatchery-

reared offspring from adults collected from the lake (A. Rawhouser, North Cascades National Park, personal 

communication). Rainbow Trout diet can change seasonally, but they are opportunistic and utilize the entire 

water column for forage. Past diet studies have found aquatic insects, amphipods, and aquatic worms among 

other items in the stomach contents of collected fish (Wydoski and Whitney, 2003). Similar to Bull Trout and 

Dolly Varden, many Rainbow Trout display an adfluvial life history in Ross Lake, spawning in the tributaries in 

May and June, and eventually migrating to the lake, although some remain residents in the tributaries (Woodin, 

1974; Welch, 2012). Research in the 1970s found two populations within the Lake complex; a stream resident 

population that remained in the stream year round and a migratory population that occupied the Lake and 

returned to a specific tributary or stream mouth to spawn (Woodin, 1974). The timing of spawning by adfluvial 

fish is affected by lake levels as there are many barriers to access when the lake levels are low (Johnston, 1989; 

Welch, 2012). The growth rate for juvenile Rainbow Trout depends on water chemistry and food availability. A 

1974 study found that juvenile Rainbow Trout grew more slowly when rearing in the tributaries to Ross Lake 

compared to those who moved into the lake, which is true of most stream-dwelling trout compared to their 
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migrating counterparts. However this is likely balanced by reduced predation for tributary rearing fish (Woodin, 

1974; Wydoski and Whitney, 2003; Quinn, 2005). Rainbow Trout from the lake were stocked in Big Beaver 

Creek, which was isolated from the then Skagit River by a waterfall, in 1919 and continue to be planted at 

various sites to present (Johnston, 1989; CENR, 2014; A. Rawhouser, North Cascades National Park, personal 

communication). The population is larger than Bull Trout, Dolly Varden, and Brook Trout, but recent evidence 

indicates that the population in the lake is declining in number (Anthony et al, in draft). Potential causes are 

competition by juveniles for food with Redside Shiners, and predation on all life stages by adult Bull Trout 

(Johnston, 1989; Looff, 1995; Welch, 2012). Unlike Bull Trout and Dolly Varden, which cannot be harvested due 

to their Threatened status, Rainbow Trout are a sought-after food fish in the lake.  

In the early 1900s, Brook Trout from Pennsylvania were stocked throughout the sub-alpine lakes found around 

Ross Lake and are now thriving in Hozomeen and Big Beaver Creeks. Brook Trout occur in smaller proportions 

than Rainbow Trout, Bull Trout, and Dolly Varden in lake samples, but have been increasing in number in recent 

samples (Johnston, 1989; Downen, 2004; Anthony et al, in draft). Juvenile Brook Trout are in streams in early 

spring following spawning in the late fall when the water temperature decreases (Wydoski and Whitney, 2003). 

Brook Trout are known to have a negative effect on Bull Trout by spawning earlier, displacing them via 

hybridization and sterile offspring, or predation as juveniles and Cutthroat Trout populations by forcing them 

upstream to less suitable habitat and competing for forage (Griffith, 1988; Leary et al, 1993; USFWS, 1999, 

Gunkel et al, 2002; Wydoski and Whitney, 2003; Rieman et al, 2006). Juveniles feed extensively on aquatic 

insects while rearing in streams and on zooplankton when in lakes (Wydoski and Whitney, 2003). Brook Trout 

populations appear to be increasing rapidly within the lake (Welch, 2012).  

Much less is known about Ross Lake Cutthroat Trout than other species but they are believed to have been 

stocked in the early 20th century by anglers, County governments, and the US Forest Service (Downen, 2004). 

The first recorded planting occurred in Big Beaver Creek in 1916 and included 47,000 Cutthroat Trout (Johnston, 
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1989; Welch, 2012). There have been at least 170,000 cutthroat stocked in the Ross Lake area since that original 

planting in 1916 (Johnston, 1989). Cutthroat Trout are native to Washington State, but not Ross Lake. Cutthroat 

Trout show adfluvial or resident life history patterns; both groups spawn in tributaries and adfluvial fish migrate 

to the lake. Juveniles remain nearly stationary in their feeding location in a stream eating aquatic and terrestrial 

insects and other invertebrates for up to four years before migrating to the Lake. They will consume prey from 

any location in the water column. Cutthroat Trout have a small, self-sustaining population in the lake and are 

not expected to increase in number (Anthony et al, in draft). Bull Trout and Cutthroat Trout are believed to have 

evolved together, allowing for limited competition for food and space (Griffith, 1988). Studies on cohabitation 

with Rainbow Trout or Dolly Varden have shown they will naturally segregate themselves by forage and habitat 

preferences and have been successfully doing so since the last glacial epoch (Griffith, 1988; Wydoski and 

Whitney, 2003).  

Redside Shiner (Richardsonius balteatus), believed to be introduced in Ross Lake around 2000 but first noted in 

abundance in 2004, is a minnow (family Cyprinidae) that occurs in the region but was not previously found in the 

Upper Skagit watershed. Snorkel surveys of Redside Shiner completed within the lake have shown densities of 

hundreds per cubic meter in some places (Welch, 2012). In contrast to most lake populations of Redside Shiner 

which tend to school around the shore during cooler months, and head to the deep water during summer, the 

Ross Lake population appears to migrate to very deep water in the winter, returning to the nearshore habitat 

around May as temperatures increase (Wydoski and Whitney, 2003; Welch, 2012). Redside Shiners mature 

around 2 years of age and live to around 5 years. Redside Shiner were not a focus of my study because they 

prefer slower velocities and warmer temperatures than trout and char and are consequently not found in 

streams (Wydoski and Whitney, 2003; Welch, 2012).   
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Methods 

Site Location and Description 

I based site selection on accessibility, discharge, and available habitat. The streams needed to be 

perennial, wadeable, and provide appropriate habitat for fish and macroinvertebrates. Four sites were found to 

meet these criteria: Roland Creek, Dry Creek, Silver Creek, and Hozomeen Creek (Figure 4). Because of its 

location on the northwest side of the watershed and associated lack of accessibility by boat or foot at low pool 

elevations, I removed Silver Creek from the study and was unable to find a suitable replacement site. I  

proceeded using only Roland, Dry, and Hozomeen Creeks. Roland Creek is the shortest and most southern site 

(Figure 5). The headwaters of Roland Creek are at 2657.8 meters of elevation. There are four tributaries that 

feed into Roland Creek. The whole watershed is approximately 518.00 hectares with 54.1% in forested canopy 

and 88.6% over 30% slope (USGS, 2012). Roland Creek is 4.18 kilometers long and is generally steep with rapids 

and waterfalls (Johnston, 1989). Dry Creek, the next largest, is located between Dry Creek campground to the 

north and Tenmile Island Campground to the south (Figure 6). The Dry Creek watershed, above full pool, is 

approximately 1,072.25 hectares with 1719 meters of relief from the headwaters to Ross Lake. The watershed is 

approximately 71.5% forested and has a similar gradient as Roland Creek with 88.7% of the watershed over 30% 

slope (USGS, 2012). Dry Creek is 6.10 kilometers long, has two forks, and is generally steep with rapids, falls, and 

step pools (Johnston, 1989). Hozomeen Creek, the most northern site, flows adjacent to the Hozomeen Creek 

Campground and is 7.0 kilometers long (Johnston 1989; Figure 7). The watershed is 1,914.00 hectares and 

contains two lakes: Hozomeen Lake and Ridley Lake. There is 1950.7 meters of elevation change within the 

watershed and 75.5% has a slope greater than 30% (USGS, 2012). Silver Creek, the only site located on the west 

of Ross Lake and just south of Hozomeen Creek, has the largest watershed at 4,252.76 hectares and flows from 

Silver Lake (Figure 8). The mean slope of Silver Creek is 67.2% and over 94% of the watershed has greater than 

30% slope (USGS, 2012). The creek is 9.98 kilometers long and has rapids and falls throughout (Johnston, 1989). 
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During the first sampling event it became clear that Hozomeen Creek would have to be accessed via the logging 

road from Hope, BC. 

Sampling Periods 

By using NPS’s Snow Telemetry (Snotel) stations, which monitors snow-pack, and the expertise of their 

staff, I was able to determine low pool would occur in late March, which is when stream lengths would be at the 

maximum. Sampling for my project began March 29 and continued through June 21, 2013. Soon after this last 

sampling event, NPS staff alerted me to Rainbow Trout spawning and asked that further sampling events be 

cancelled to avoid potential negative impacts to adults. The reservoir reached full pool over a month later, on 

July 25th, at 1601.98. 

 Each site was sampled three times at varying water levels ranging from a low of 1513.6 feet AMSL on March 
29th to a high of 1588.90 feet AMSL on June 21st (USGS, 2013;   
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Table 1 and Figure 9). At the lowest pool elevation relative to full pool, an additional 416.0 meters of Roland 

Creek was available, 448.7 meters at Dry Creek, and 1972.7 meters at Hozomeen Creek (Figure 10). The 

reservoir began filling the first week of April and was at 1520.0 feet AMSL when I completed my first round of 

sampling at Hozomeen Creek on April 11, 2013.  

Sample Collection and Field Techniques 

During each sampling event fish and macroinvertebrate samples were collected, and the stomach 

contents of fish were non-lethally removed. During the initial visit to each site, a habitat assessment occurred. 

Three fifty-meter reaches were selected within each stream to have representative sites at low, medium, high, 

and full pool elevations. The downstream reach was as close to the confluence with the Skagit River or Ross Lake 

as possible. The most upstream end of the upstream reservoir reach was approximately 20 meters downstream 

from the full-pool shoreline. The remaining reach was located in the middle of these two reaches. The second 

sampling event at Roland and Dry Creeks required the lower reach to shift upstream as the reservoir had filled 

beyond the reach. For the final sampling event at all sites, both of the lower reaches were underwater. The most 

upstream reach was shortened, and an additional reach upstream of the full-pool level was added to compare 

reaches above full pool with those inundated during the summer months below full pool. 

Habitat Assessment 

Rapid habitat assessment was completed following U.S. Forest Service Stream Inventory Handbook for 

Region 6 on each of the streams during the first site visit (USFS, 2012). Locations of pools, riffles, large wood, 

sediment type, and other notable habitat structures were recorded in an effort to quantify quality of habitat for 

juvenile fish utilizing the system. I used The Aquatic Habitat Assessment: Common Methods (1999) and data 

collected from the Rapid Assessment to compare habitat conditions among the three sites.  
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Bank Stability 

Bank stability was not quantified but was visually assessed below and above full-pool. Noting the 

stability of the streambank is important because it quantifies the erodibility, complexity, and available fish 

habitat, found in the form of undercut banks, along the creek. Stable banks have low erosion while unstable 

banks are highly erodible. Heterogeneous plant communities provide roots of various depths which aid in 

reducing erosion (Stevenson and Mills, 1999). 

Substrate 

By measuring substrate, it is possible to determine the channel roughness and associated complexity of 

the reach. Substrate can also be used to explain local influences on habitat quality based on land disturbances 

such as logging or mass wasting in the system (Bain, 1999). Dominant substrate and the second-most common 

substrate are used to describe variability within the system and compare to other systems. Bottom substrate 

was classified as a percentage of total reach and separated into the five following size classes: 

SA – Sand, silt and clay  <0.08 inches 

GR – Gravel   0.08 – 2.5 inches 

CO – Cobble   2.5 – 10 inches 

BO – Boulder   10.0 – 160 inches 

BR – Bedrock   >160 inches 

Large Woody Debris 

Large woody debris was counted at each site to quantify amount of cover and channel complexity for 

refuge from physical conditions such as high flow and sunlight or from predation. Additionally, many 

macroinvertebrates attach to large woody debris or decompose it, increasing the prey diversity and abundance 
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of the site (Bain, 1999). Large woody debris was counted and classified into the following size classes using 

USFWS Region 6 protocols: 

Size Class  Diameter  At length 

Small   >12 inches  25 feet from large end 

Medium  >24 inches  50 feet from large end 

Large   >36 inches  50 feet from large end 

Rootwad  No definable trunk 

Wood was only counted if a portion was below the bankfull channel and met the size class requirements or had 

a length at least twice the bankfull width. 

Canopy Coverage and Riparian Vegetation 

Canopy coverage over the stream and riparian vegetation are important habitat factors for a variety of 

reasons including shade to reduce solar radiation and the associated increase in stream temperature, as a 

source for nutrient and organic matter and large woody debris, habitat for organisms that will eventually 

become fish food, and reduced scour during high flow events (Bain, 1999). Canopy coverage and riparian 

vegetation were subjectively noted in the lower reaches of the three streams because they were absent. The 

reach located above full pool was examined to determine general make-up of trees and shrubs and approximate 

amount of overhead coverage associated with intact vegetation.  

Benthic Macroinvertebrate Community Composition 

Benthic macroinvertebrates were collected from each reach to confirm their presence and ensuing 

potential food base for fish. Sampling of benthic macroinvertebrates followed a modified version of the 

Environmental Protection Agency’s Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: 

Periphyton, Benthic Macroinvertebrates, and Fish (Barbour et al, 1999). Using a D-frame kick net with 500-µm 
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mesh I sampled three 2-ft2 sections in each 50-m reach, in riffled, gravelly habitat. This resulted in a total of 6-ft2 

per reach and 18-ft2 per stream per sampling event. This net size was selected to target organisms most useful in 

bioassessment metrics. A trowel was used to disturb sediment and substratum upstream of the kick net and to 

remove clinging invertebrates and suspend those in the sediment. The area was disturbed for approximately 

one minute after which the material captured in the kick-net was transferred to a bucket. The three individual 

samples were composited into a single sample representative of the reach. This sample was preliminarily 

processed in the field by removing large stones and organic material by hand sorting and straining through a 

125-µm mesh sieve. Two samples at Dry Creek were sorted in the field while all remaining samples were 

strained in a 125-µm sieve, preserved in 70% formalin or 95% ethyl alcohol in Nasco WhirlPacs®, and transferred 

to the Fish Ecology Lab at Huxley College for identification and counting. The two field-sorted samples were not 

used in reach-level analysis due to the potential bias caused by loss of small organisms. All of Dry Creek 

(3/29/2013) was removed from site-level and month-level analyses to eliminate potential bias caused by 

comparing one reach to the other samples with three. 

Fish Collection 

Juvenile fish were collected from each reach to identify the species, size distributions, and relative 

abundances of fishes inhabiting each stream. I sampled each reach using a backpack electrofisher following 

American Fisheries Society and National Marine Fisheries Service Guidelines (NMFS, 2000; Reynolds and Kolz, 

2012). All sampling at Roland Creek and Dry Creek and the June 21, 2013 sampling at Hozomeen Creek used an 

Appalachian Aquatics AA-24 backpack electrofisher while the other two samples in Hozomeen Creek used a 

Smith Root LR-20B electrofisher. A team of three walked the reach from the downstream end working 

upstream. The output of the electro-fisher was adjusted to ensure stunning of small fish. The voltage was 

adjusted to produce less than 8 amperes on the AA-24 and 3 to 6 amperes on the LR-20B. Captured fish from 

each reach recovered in a container of stream water until stomach contents were removed by gastric lavage and 
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they were released. Because Bull Trout is a federally protected species I took extra care to avoid loss of life by 

monitoring my backpack electrofisher settings and ensuring adequate recovery time before fish were released. 

Electrofishing effectiveness and capture success of stunned fish appeared to vary depending on stream size and 

discharge. In particular, my success rate at Hozomeen seemed adversely affected by the larger width, discharge, 

depth, and the occurrence of isolated pockets with low-conductivity groundwater upwellings. However, all of 

my collections appeared to be representative of the kinds of fish that were present.  

Diet Collection 

Diets were evaluated based on analysis of stomach contents. Stomach contents were collected by using 

non-lethal gastric lavage on fish between 50 mm and 152 mm following protocols modified from Giles (1980), 

Strange and Kennedy (1981), and Hartleb and Moring (1995) (E. Morgan, University of Washington Wetland 

Ecosystem Team, personal communication). Fish smaller than 50 mm were not lavaged because they have been 

reported to have poor survival following lavage and those greater than 152 mm were precluded from being 

anesthetized because Tricaine Methanesulfonate (MS 222) has a 21-day withdrawal time and this size of fish 

could potentially be caught and eaten by an angler (Ross and Ross, 2008; AVMA,2013).  

All fish within the appropriate size range were placed in a container of stream water containing a moderate 

amount (~100 mg/L) of the anesthetic MS 222 for 30-60 seconds to make handling easier and reduce stressing 

of the fish (Ross and Ross, 2008). Anesthesia and euthanasia, when required, were reached following guidelines 

from the 2013 American Veterinary Medical Association and Ross and Ross (2008). During my sampling, 

measurement of total length (mm), weight (g), and identification of species were completed for each of the 

captured fish before release. Dolly Varden and Bull Trout were recorded as Native Char because they are 

indistinguishable in the field.  
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Stream water used for lavaging was strained through a 125-µm mesh sieve to reduce the possibility of accidently 

collecting suspended material that could later be confused as diet items. Based on the recommendations of the 

University of Washington’s Wetland Ecosystem Team, a modified garden pump sprayer for larger fish, as 

described in Hartleb and Moring (1995), or a syringe of either 60 cc or 25 cc for smaller fish, depending on gape, 

was utilized to lavage. The lavage devices used brass tips for insertion into the stomach. I created the brass tips 

by cutting a hypodermic needle and securing a curved brass sleeve on the tip in an effort to mimic the natural 

path into the stomach and reduce injury. I made three sizes of tips in order to have the most appropriate size for 

gape. To collect stomach samples, fish were held in the hand with the head pointed down and towards the sieve 

while the brass tip was carefully inserted into the mouth to the depth of the stomach. The fish was slowly 

moved back and forth along the tip while water was gently squirted into its gut. Typically, stomach contents 

flowed out of the mouth and were caught in the 125-µm mesh sieve. When stomach contents appeared to be 

exhausted, the mouth was checked to ensure no items were lodged. If not, the fish was transferred to a 

container of stream water for recovery (approximately 3-5 minutes) and eventual release. All Brook Trout were 

euthanized following the recommendation of USPS staff on site. In one case a Native Char was fatally injured 

during capture and was euthanized using MS 222. Stomach contents were placed into Nasco WhirlPacs® and 

preserved with either 70% isopropyl alcohol or 90% ethyl alcohol. Samples were transported back to Western 

Washington University’s Fish Ecology lab for later analysis. 

Laboratory Techniques 

All benthic macroinvertebrate and fish stomach samples that were collected in the field were analyzed 

in Huxley College of the Environment’s Fish Ecology Lab between June and December, 2013. Prey items were 

identified to the lowest possible taxon; benthic macroinvertebrate samples were distinguished to family and 

diet samples generally to order or class due to digestion and mastication making higher level identification 

difficult. Items that I was able to identify as class Insecta but not to the order level were recorded as 
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Unidentified. Items that I was unable to identify even to class level were recorded as Unknown. Order, or lowest 

identifiable taxa if lower than order, was used in all diet analyses but lower taxa were utilized in discussion. 

Benthic Macroinvertebrate Samples 

Benthic samples were sorted to separate individuals from other material such as organic matter and 

sediment (Carter and Resh, 2001). I identified all individual specimens using an Olympus SZ51 dissecting scope; 

no subsampling occurred. I examined all samples twice to ensure that I removed all individuals collected in the 

field. All insects, which were the dominant benthic taxa, were identified to the Order or Family level using a 

variety of dichotomous keys (Pennak, 1978; Lehmkuhl, 1979; Voshell, 2002; Thorp and Rogers, 2011; Adams and 

Vaughan, 2003; Clapp, 2006; Edwards, 2008; Merritt et al, 2008). Other specimens collected during kick-net 

sampling were identified to lowest possible taxonomic level, generally class or subclass. Terrestrial organisms 

were recorded as such, snails and clams were identified to class, and leeches and worms were identified to 

subclass. Although family is ideally the highest taxonomic level used in analysis, this study was focused on fish 

diet and food availability so this level of taxonomic distinction was appropriate because diet items could not be 

consistently identified below order (Lenat and Resh, 2001; Marshall et al., 2006). Family-level identifications 

have been found to be suitable for detecting differences in these situations. 

I sent examples of each family that I identified to Bob Wisseman at Aquatic Biology Associates Inc. for quality 

assurance purposes. Results indicated that I needed to re-evaluate my identifications within Trichoptera and 

Plecoptera. With assistance from my committee and the correctly identified samples from Bob Wisseman, I re-

examined each individual Trichoptera and Plecoptera and corrected my identification if indicated. Members of 

other taxa were correctly identified the first time. 
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Diet Samples 

The diet of each fish was identified to the lowest possible taxon, weighed, and counted. I estimated 

individual count of prey items by the number of heads as this body part is the least digestible so it persists in the 

stomach the longest. The diet of each fish had been preserved in either 95% ethanol or 70% isopropyl alcohol in 

the field and then transferred to 95% ethanol at the lab. The sensitivity of the balance along with the high rate 

of evaporation of ethanol required diet items to be soaked in tap water for 15 minutes and then blotted on 

tissue paper to remove excess water before weighing to the nearest 0.00001 g (Garvey and Chipps, 2012; 

Hyslop, 1980; Windell and Bowen, 1978). Without this step the scale would not equilibrate. Any diet items that 

did not register at 0.00001 g were recorded as 0.000009 g and used in analysis. The total wet mass and wet 

mass for each category of stomach contents for each fish were measured using a Mettler Toledo AB135-S 

analytical balance.  

Data Analysis 

Multivariate analyses were used to compare within and among group variation as determined by 

relative abundance and presence/absence of different taxa but also test the contribution of specific taxa or 

individuals to further explain differences.  I used non-metric multidimensional scaling (MDS) and PRIMER v6.1 

software to determine general similarity between points (Clarke and Gorely, 2006). The MDS uses Bray-Curtis to 

construct a plot and associated stress value of rank-order distances between samples. A stress value of less than 

0.1 suggests representation of actual conditions. A stress greater than 0.3 suggests points are not related and 

could be arbitrarily placed.  

For those results that had a less than 0.25 stress value, I utilized analysis of similarities (ANOSIM) to examine 

difference between abundance of available prey items, as identified from benthic macroinvertebrate sampling 

and captured prey items. ANOSIM is an available function in PRIMER v6.1 (Clark and Gorely, 2006) and is useful 

in determining whether a significant difference between two groups exists, analogous to a parametric t-test, but 
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more useful with unbalanced data such as mine. If ANOSIM resulted in a significant model (p≤0.05), I used the 

similarity percentage test (SIMPER) to breakdown the contribution of each species to the similarity, or 

dissimilarity. Both ANOSIM and SIMPER are multivariate analyses and are based on the Bray-Curtis measure of 

similarity which compares each sample in group 1 to each sample in group 2.  

Benthic Macroinvertebrates Community Analysis 

Mean density of macroinvertebrates was calculated based on number of individuals collected in a 2 ft2 

area per reach (8 ft2 per stream). This was calculated at the order and family levels. I compared relative 

abundance of different taxa among sites, months, reaches, and pool elevations with ANOSIM and SIMPER. Bray-

Curtis clustering was used to explore relationships among sites, pool elevations, and reaches. 

Diet Analysis and Description 

I quantified the diet of each fish to compare among sites, months, species of fish, and pool elevations. 

Following standard techniques for analyzing fish diets, I calculated percent by weight (%Gi, Equation 1) and 

percent by number (%Ni, Equation 2) for each diet item.  I also used frequency of occurrence (%Oi, Equation 3) 

to characterize diet (Garvey and Chipps, 2012). Mean percent by weight was used to evaluate the importance of 

a given prey item at various pool elevations, locations, and within species of fish. Mean percent by number was 

calculated solely for inclusion in the index of relative importance (IRIi. Equation 4). Frequency of occurrence was 

utilized to determine if frequency of a given prey item, or overall breadth of diet changed by location, fish 

species, or pool elevation. Frequency of occurrence on its own cannot explain importance to overall diet 

because regardless of how often a given taxa occurs in stomachs, it may represent a minimal percentage of the 

actual diet by number or weight as compared to other taxa (Garvey and Chipps, 2012). Index of relative 

importance, a metric which includes %O, %N, and %V, was used to evaluate the relationship of prey taxa while 

addressing the sensitivity of sampling error found in frequency of occurrence and prey size bias created in %O 

and %N. Index of relative importance provides a more accurate and balanced description of prey importance 
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(Pianka et al., 1971; Fraley and Shepard, 1989; Liao et al, 2001). Because it has been suggested the IRI be 

reported on a percent basis for each prey taxa so that comparisons among various food taxa are less difficult, I 

included this factor in my analyses (Equation 5; Liao et al, 2001; Merz, 2001; Ahlbeck et al, 2012). Percent IRI 

was calculated for various factors including site, month, species of fish, and pool elevation; those taxa that had 

an average % IRI greater than 5% for a given factor were considered “major taxa” and included in further 

analysis. 

Equation 1: Mean percent by weight  (%𝐺𝑖) =  
1

𝑝
∑ (

𝑊𝑖𝑗

∑ 𝑊𝑖𝑗
𝑄
𝑖=1

) × 100 
𝑝
𝑗=1  

Equation 2: Mean percent by number (%𝑁𝑖) =  
1

𝑝
∑ (

𝑁𝑖𝑗

∑ 𝑁𝑖𝑗
𝑄
𝑖=1

) × 100 
𝑝
𝑗=1  

Equation 3: Frequency of occurrence (%𝑂𝑖) =  
𝐽𝑖

𝑃
× 100 

Equation 4: Index of relative importance (𝐼𝑅𝐼𝑖) = (%𝑁𝑖 + %𝐺𝑖)%𝑂𝑖 

Equation 5: Percent Index of relative importance (%𝐼𝑅𝐼𝑖) =
100𝐼𝑅𝐼𝑖

∑ 𝐼𝑅𝐼𝑖
𝑛
𝑖=1

 

Where 𝑄 is the number of prey categories found, 𝑝 is the total number of fish 

with a diet sample, 𝑊𝑖𝑗and 𝑁𝑖𝑗  are the weight and the number of prey item 𝑗 in 

𝑖 fish respectively, and 𝐽𝑖 is the number of fish with prey 𝑖.  

I also used a cluster analysis to analyze diet composition. The Bray-Curtis index of similarity assesses degrees of 

similarity among prey taxa. Diet composition analysis did not include individual fish with empty stomachs or 

incidental non-nutritional items such as cases associates with Trichoptera or debris. 

Instantaneous Ration, a relative measure of feeding intensity used to compare stomach fullness among different 

sized fish, was calculated by taking the total wet weight of an individual’s stomach contents divided by the total 
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weight of that fish. This allows for diet overlap as well as relative fullness and stomach content quantity 

comparisons (Olegario, 2006; Spilseth, 2008; Cordell et al, 2012). A one-way analysis of variance (ANOVA), with 

type III sum of squares to account for the unbalanced data, was completed on pool elevation, site, month, 

reservoir reaches, reservoir reaches compared to full-pool reaches, and species of fish to detect differences. To 

compare stream with month I used a two-way ANOVA with both factors fixed. Spearman’s correlation 

coefficient is non-parametric and does not require the assumption of normality allowing it to be used to 

examine the relationship between the number of prey found in a fish stomach, the number of prey in the 

environment, and the fullness of the stomach.  

Multi-dimensional scaling (MDS) used prey composition to compare relationships among a variety of factors. 

This technique uses Bray-Curtis similarities to relate diet composition among factors such as site, date, and pool 

elevation. To assess the differences by factor ANOSIM and SIMPER were applied to the Bray-Curtis similarity 

matrix. Abundances were compared between the following factors: month, site, reach, fish species, pool 

elevation, reservoir/creek, and northern/southern relative location. Two-way analyses were completed for 

month and site. All analyses were performed using the PRIMER v6.1 statistical package (Clarke and Gorely, 

2006). 
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Results 

A total of sixty-five fish had stomach contents; thirty-six Rainbow Trout, eighteen Native Char, ten Brook 

Trout, and one Cutthroat Trout were collected.  

Habitat 

Riparian vegetation, canopy coverage, and bank stability were similar among the three sites while 

substrate, large woody debris, and overall length of habitat varied. Hozomeen Creek, the longest of the three 

creeks, was 1,807 meters in length at lowest pool. We began sampling 300 meters upstream of the confluence 

because the water was too deep and the flow too large to effectively sample at the confluence. Hozomeen 

Creek had a mean width of 9.56 meters and a mean depth of 0.65 meters. Dry Creek, the next longest at 610 

meters in length, had a mean width of 4.79 meters and mean depth of 0.26 meters. Roland Creek, the shortest 

of the three, was 578 meters at low pool and had a mean width of 1.67 meters and mean depth of 0.20 meters.  

In general the sediment size was much larger at Dry Creek than Hozomeen or Roland Creeks. Twenty-four 
percent of reaches at Dry Creek had boulders as the dominant sediment type and four percent as the 
subdominant type while no reaches in Hozomeen or Roland Creeks contained boulders (  
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Table 2). Roland Creek was mainly gravel and cobbles. Hozomeen Creek was predominantly sand and silt with 

only 2% of the dominant sediment in a class larger than gravel and often no subdominant size class was present. 

Wood with a diameter of at least 12 inches at a length of 25 feet from the large end was assessed in all three 

creeks. Wood outside of the bankfull channel and the length and diameter requirements were not included. 

Hozomeen Creek, due to its large size and higher flow, was more difficult to assess than Roland or Dry Creeks. 

Wood at Hozomeen Creek was counted the first 1,198 meters downstream and resulted in 44 pieces of small 

wood (diameter between 12” and 24”) and seven pieces of medium wood (diameter between 24” and 36”). In 

total, fourteen pieces of small wood and seven rootwads were counted at Dry Creek. No measurable wood was 

found within the bankfull channel of Roland Creek. Rootwads were present throughout the banks of all three 

creek channels and could become part of the active channel from year to year depending on channel migration, 

sediment loads in the creek, and the rate of lowering or raising reservoir.  

There was no woody vegetation downstream of the full-pool level at any of the three creeks resulting in no 

assessable canopy coverage or riparian vegetation. A grassy mat grew at Hozomeen Creek during May and June; 

Roland and Dry Creeks remained bare. Although no systematic riparian assessment occurred upstream of full 

pool, the area consisted of generally intact, native riparian vegetation dominated by coniferous trees with an 

understory of ferns and native shrubs.  

The banks at the lower reaches of all three creeks were unstable, meaning easily erodible, in comparison to the 

upstream (above full-pool) reaches. Bank stability can be affected by plant roots and hardened or rocky banks, 

which increase the erosion resistance of the bank (Stevenson and Mills, 1999). The lack of woody vegetation 

found below full-pool at the three creeks likely contributed to the instability found there. 
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Benthic Macroinvertebrates 

A total of 3,645 individuals in 31 families were collected and identified from the useable samples. 

Specimens included pupae, nymph, larvae, and adult forms of aquatic and terrestrial insect species.  

Ephemeroptera was the most abundant and frequently occurring insect order across all samples, but not 

uniformly the most abundant (Figure 11). The overall mean density of Ephemeroptera was 188.13 individuals 

per sample, and they comprised 41.3% of the 3,645 total individuals (Table 3). Ephemeroptera was the most 

abundant order at Roland Creek and Dry Creek during all three sample periods, but only during the pool 

elevation of 1520’ AMSL at Hozomeen Creek. Interestingly, although the geographic location of sample reaches 

at 1520’ AMSL and 1561.3’ AMSL were the same and the three dominant taxa across all events remained 

unchanged, the percent composition of macroinvertebrates changed. During the April sample, Ephemeroptera 

comprised 59% of the total sample, Oligochaeta 27%, and Diptera only 1%. The May sample shifted to 

Oligochaeta becoming the most dominant (35%), followed by Diptera (33%), and then Ephemeroptera (18%). By 

June, Diptera had become the overwhelmingly dominant taxa at 68%, Ephemeroptera dropped to 14%, and 

Oligochaeta to 8%. Oligochaeta was the most abundant macroinvertebrate in the lowest Dry Creek site on the 

second sampling (45% of total), the lowest reach during the first sample at Roland Creek (36%) and both 

samples in the second reach in Hozomeen Creek (1520’ AMSL: 56%; 1561.3’ AMSL: 85%). I did not identify 

Oligochaeta beyond the subclass level but I believe a majority of these worms were terrestrial, coming from the 

streambank as the channel migrated and expanded.  

At the family level, Chironomidae (Order Diptera) was the most frequently occurring across all samples, 

contributing 25% of the collected individuals (Figure 12). Heptageniidae and Baetidae (Order Ephemeroptera) 

were tied as the second most commonly occurring family across all samples, and often were the most 

abundanct during specific sampling events (Table 3). Heptageniidae at Roland Creek in particular was the most 

abundant. These flat-head mayflies comprised 47% of the 888 total macroinvertebrates collected there. They 
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increased from 24% of the sample in March to 47% in May and finally peaked during the June sample when they 

were responsible for 66% of the total 229 specimens sampled. The most abundant family at Hozomeen Creek 

varied depending on the sampling month. Baetidae (Order Ephemeroptera; 39%) was dominant during the April 

sampling event and Chironomidae during the June sampling event (68%). This included taxa that I identified to 

the lowest possible level, even if that level was higher than family. In May the class of Oligochaeta was most 

common (35%); the most frequently occurring family in May was Chironomidae (Order Diptera; 32%). Baetidae 

was the most abundant family at Dry Creek across all sample periods comprising 22% of the total of the 907 

collected individuals. Baetidae was the most abundant family in March at 25% of the 408 collected individuals. 

In May Chironomidae was the most abundant family at 31%. Abundance shifted to Heptageniidae in June with 

26% of the collected individuals. Terrestrial organisms were the least common across all samples with a density 

of 2.13 individuals/sample. Non-insects were generally identified to class and were included in the Order level 

analysis. 

Abundance of families by date differed (ANOSIM, p=0.006, Global R: 0.311, Table 4). Dry Creek was not included 

in the March samples because they were field sorted rather than sorted in the lab, likely insufficiently 

representing the actual abundance of benthos found at the time. Pair-wise comparisons show the 3/29/2013 

(1513.6’ AMSL) and the 5/5/2013 (1521.3’ AMSL) samples to be different (ANOSIM, p=0.036, R: 0.477) because 

Baetidae, Heptageniidae, and Chironomidae were in greater abundance during the 5/5/2013 sample than the 

3/29/2013 sample (SIMPER, mean dissimilarity: 80.8; Table 5). The 5/5/2013 sampling and the 6/2/2013 

(1572.3’ AMSL) sampling at Dry and Roland Creeks differed (ANOSIM, p=0.032, R: 0.438) due to increased 

abundance of Baetidae, Chironomidae, and Oligochaeta during the 5/5/2013 sampling (SIMPER, mean 

dissimilarity: 68.0; Table 5). The 5/19/2013 (1561.3’ AMSL) sample at Hozomeen Creek was different from the 

6/2/2013 sampling at Dry and Roland (ANOSIM, p=0.029, R: 0.685) due to the increased abundance of 
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Oligochaeta and Chironomidae during the 5/19/2013 event and the increased abundance of Heptageniidae on 

6/2/2013 (SIMPER, mean dissimilarity: 76.3; Table 5). 

Family abundance differed by sample month (ANOSIM, p=0.01, Global R: 0.248). Pair-wise comparisons show March and 
March and May (p=0.024, R: 0.53) and May and June (p=0.048, R: 0.222) to be the only months different from one another.  
one another.  The difference between March and May is further explained by the increased abundance of all families except 
families except for Taeniopterygidae and unidentified insects during the May sample however the ecological importance of 
importance of this comparison is limited because the March sample was made up solely of Roland Creek while the May and 
the May and June contained all three sites (SIMPER, average dissimilarity = 81.72;  
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Table 6). Greater abundance of Chironomidae and Heptageniidae in June accounted for 47% of the difference between the 
sites (SIMPER, average dissimilarity = 71.33;  
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Table 6). May had a greater abundance of Oligochaeta and Baetidae contributing 27% of the difference between 

the sites.  Chironomidae, Heptageniidae, Oligochaeta, and Baetidae account for over 75% of the difference 

between the two months. 

Ross Lake sites did not differ by benthos at the family level (ANOSIM, p=0.052, Global R: 0.144; Figure 13), 

however as anticipated, each of the creek samples generally clustered within one another, demonstrating that a 

change in location can cause alterations, albeit sometimes minimal, on the composition and abundance of 

available prey. Dry and Roland Creeks appear more similar to one another than to Hozomeen Creek when 

clustering by presence/absence at the family level (Figure 14). This is further explained using SIMPER (Table 7). 

Roland and Hozomeen Creeks were the most dissimilar with a mean dissimilarity of 76.63. This was mainly 

explained by the abundance of Heptageniidae at Roland Creek and the Chironomidae and Oligochaeta at 

Hozomeen Creek. Roland and Dry Creeks had a mean dissimilarity of 72.17 again due to the increased 

abundance of Heptageniidae at Roland Creek and Chironomidae at Dry Creeks. This compared to a dissimilarity 

of 71.16 between Dry and Hozomeen Creeks. Chironomidae, Oligochaeta, and Baetidae were all much more 

abundant at Hozomeen Creek than Dry Creek. 

The reach, independent of the stream, did not affect the abundance of benthos (ANOSIM, Global R: 0.154, 

p=0.084). The ecological importance of this comparison is limited because the reaches were sampled at different 

frequencies; therefore no further analysis was conducted. The lowest reach (Reach 1) was underwater during 

the second sampling at Roland and Dry Creeks so only one sample was obtained. During the second visit, a 

newly established low reach (Reach 1.5) was sampled at those creeks, allowing for only one sample at that 

location as well. The lower reach (Reach 1) at Hozomeen Creek and the middle reach (Reach 2) at all three sites 

were able to be sampled during the first two visits but were underwater during the last sampling event. The 

upper reach (Reach 3) located below full pool was sampled at all three visits at each site. The above pool reach 

(Reach 4) was sampled only on the last visit to each site. Using a Bray-Curtis cluster it was possible to determine 
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that reaches did not cluster together and the low reach at the second sample was not closely related to reach 1 

or 2 at either site (Figure 15). 

Hozomeen Creek, located in the northern part of Ross Lake, had a different composition of benthos than Dry 

and Roland Creeks, located in the southern part of Ross Lake (ANOSIM, p=0.031, R: 0.199). Hozomeen Creek had 

a greater composition of Chironomidae, Baetidae, and Oligochaeta while Dry and Roland Creeks had more 

Heptageniidae (SIMPER, mean dissimilarity: 71.61). Hozomeen Creek is a much larger system than either Dry or 

Roland Creeks, with more exposed creek bottom for a longer period of time and much smaller sediments. This 

likely contributes greatly to the different composition found there.  

Although the streams by pool elevation are not different from one another (ANOSIM, Creek within pool 

elevation; Global R: 0.51, p= 0.05) their examination is interesting (Figure 16). When the pool elevation was the 

lowest, Roland Creek clustered most closely to the highest pool elevation at Dry Creek. As expected, the two 

Hozomeen Creek samples at the low and middle pool elevations clustered closely together. The middle Dry 

Creek sample clustered with the three Hozomeen Creek samples, rather than the other Dry Creek sample or 

Roland Creek samples. 

Diet 

Sixty-five of the seventy-three fish collected had something in their stomach (89% off all fish). Juvenile 

salmonids ranged from 41 mm to 238 mm in total length, weighed between 0.50 g and 124.30 g and consumed 

prey from a variety of taxonomic groups. These included insects, snails, clams, leeches, amphipods, and various 

worms, segmented and not. A total of fourteen Orders were identified. Many of the organisms were too 

masticated or digested to identify beyond Order, but it was possible to identify some Chironomidae (Order 

Diptera), Simullidae (Sub-class Collembola), Sminthuridae (Order Symphypleona), Blephariceridae (Order 

Diptera), and a variety of families within Trichoptera, Ephemeroptera, and Plecoptera. Including those taxa that 
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were identifiable only to terrestrial origin or class Insecta and those unrecognizable even at the class level, there 

were sixteen categories for analysis.  

 Diptera and Ephemeroptera were the most commonly collected diet items. Diptera was the most frequently 

occurring diet item and the most important numerically at the order level across all samples. Ephemeroptera 

was the most abundant by percent by weight across all samples and Diptera was the second. Unidentified 

insects, those diet items unidentifiable even to the class level, were the second most abundant diet item found. 

This highlights the level of mastication and digestion found in many of the samples. Amphipods were abundant 

in the lower two reaches of all sites, but absent from the upper reach in early spring in both the benthic samples 

and diet. Amphipods were absent from both diet and benthic samples in late spring when the lower reaches 

were inundated. Plecoptera in the diet were found in low numbers at Hozomeen Creek, with none collected 

during the April sample there, compared to Roland and Dry Creeks.  

Although it was not possible to identify all prey taxa to family, I did find a variety of identifiable taxa in stomachs 

that were not sampled in the kick-nets. For example, two Blephariceridae were found fully intact in a single fish 

stomach, and numerous Sminthuridae were found in fish stomachs from all sites. Blephariceridae are strong 

clingers and are unlikely to be dislodged easily during kick-net sampling. Sminthuridae are very small organisms 

that are terrestrially dominated and unlikely to be found in benthos. Items categorized as incidental included 

cases of Trichoptera and other debris. These items were weighed but where not used in analysis except for 

graphical representation or frequency of occurrence.  

Importance of prey species to diet differed between sites (% IRI; ANOSIM, p=0.001; R: 0.327), dates (%IRI; 

ANOSIM, p=0.001; R: 0.357), and months (% IRI; ANOSIM, p=0.005; R: 0.136) but above-pool reaches compared 

to below-pool reaches did not differ (% IRI; ANOSIM, p=0.478, R: -0.001).  
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A summary of results from percent by number, percent by weight, and frequency of occurrence follow. Percent 

index of relative importance was used to test differences between metrics. 

Percent by Number 

Percent of diet by number was calculated by order for each of the sixty-five fish for all prey items, 

excluding Trichoptera cases and other incidental items (Table 8). Numerically, Diptera was the most common 

food item across all sample dates composing 31.38% of the total number of food items found in all stomachs. 

Ephemeroptera was the second most abundant food item by percent by number composing 25.66% of the total 

food items. This is in contrast to the benthic abundance where Ephemeroptera were most abundant and Diptera 

second. 

Percent by number was calculated for use in determining index of relative importance and comparing 

instantaneous ration. Percent by number is not believed to accurately reflect the significance of each food item 

yet in all but four individuals the most abundant food item as calculated by percent by number was also the 

most abundant food item as calculated by percent by weight (Table 8). Incidental items were always recorded as 

zero because it was unrealistic to determine how the incidental items were collected and to accurately count 

them; one Trichoptera case could equate to numerous particles making it appear that incidentals were the most 

abundant stomach item by percent by number, when in reality they were incidentally collected or a by-product 

of feeding. 

Percent by Weight 

At the order level, Ephemeroptera was the most abundant food item by percent by weight of all 

samples, composing 25.2% of the total weight of all stomach contents (Table 8). Diptera was the second most 

important food item gravimetrically composing 21.6%. This reflects the findings of the benthic abundance 

sampling but differs from percent by number findings. Percent of diet by weight was calculated for the order (or 
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origin in the case of terrestrial insects) of each of the sixty-five fish for all prey items, excluding whole 

Trichoptera cases and incidental items because it was not possible to differentiate between gravel arbitrarily 

collected and that from a masticated casing. I do acknowledge that using wet weight after prey items have been 

preserved and comparing it to “fresh” weight of the fish can result in errors, however Hyslop (1980) argues if the 

practice is held constant throughout the study it is acceptable. 

Gravimetrically, the most important diet by site varied (Table 8). Ephemeroptera was the most important taxa 

gravimetrically at Roland Creek composing 74.1% of the total weight of stomach contents collected at the site. 

Diptera composed 38.54% of the stomach content mass collected at Dry Creek. Hozomeen Creek had more 

amphipods by percent by weight (27.7%) than any other taxa, even though amphipods were not present in the 

upper reaches or during the June sample. 

Ephermeroptera was the most gravimetrically important diet item during the May (32.1%) and June (33.6%) 

samples but not March or April (Table 8). The April event was dominated by amphipod mass at 43.4% of the 

total sample. During the March sample at Dry Creek amphipods only accounted for 10.1% of the total weight, in 

May amphipods were the second most important prey item gravimetrically (17.6%) but by June, when the lower 

reaches were inundated, they had disappeared from the diet completely. This emphasis is based almost solely 

on Hozomeen Creek; by May Dry Creek had no amphipods and percent by weight accounted for only 0.005% in 

Roland Creek. Comparatively amphipods accounted for 44.9% in Hozomeen during the month of May. 

Ephemeroptera was the most commonly consumed diet item by weight in Rainbow Trout and Brook Trout and 

was the second most common by weight in Cutthroat Trout (Table 8). The most consumed diet item in Cutthroat 

Trout were unidentifiable insects with 32.0% of the total mass. Native Char were the only species in which 

Diptera (24.4%) was the most consumed diet item by weight but they were the second most consumed in 

Rainbow Trout at 24.6%. The lone Cutthroat Trout consumed 12.5% Diptera by weight. Of all Brook Trout 
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collected, Diptera only accounted for 6.7% of the total diet mass while Unidentified Insects (16.9%) and 

Plecoptera (12.2%) were more common. 

Gravimetrically, Trichoptera was the most consumed diet item in only one sample (Table 8). Trichoptera 

composed 14.7% of the total diet items by weight during the June 21 sample when the pool elevation was at 

1588.9 AMSL. Aside from this one variation, Ephemeroptera, Diptera, and Amphipoda were the most common 

by weight. Ephemeroptera was most common in the May 5th sample (43.3%) when the pool elevation was at 

1521.3 AMSL and the June 2nd sample (45.0%) when the pool elevation was at 1572.3 AMSL. Diptera was the 

main diet item by weight during the first sample on March 29th when the pool elevation was at 1516.3 AMSL 

(63.2%). Diptera composed more of this sample by weight than any other taxa during any other sampling event. 

During the May 19 sample, when pool elevations were at 1561.3 AMSL, amphipods were again the most 

common at 44.9%. 

Frequency of occurrence  

Diptera are the most frequently occurring forage for the juvenile trout and char in Ross Lake across all 

pooled samples (Table 8; Figure 17 and Figure 18). Seventy-five percent (75.4%) of stomachs contained Diptera 

as pupa, larvae, or both. Insects that were unidentifiable to any taxa level were the second most occurring 

stomach item occurring in 55.38% of all samples. Ephemeroptera was the third most frequently occurring item 

at 52.31%.  

Diptera was the most frequently occurring prey item across all months (March: 100%; April: 66.7% [along with 

Ephemeroptera]; May: 65.22% [along with Ephemeroptera]; June: 76.92%) and most dates (3/29: 100%; 4/11: 

66.7% [along with Amphipoda]; 5/19: 66.7%; 6/2: 82.4%; 6/21: 66.7%), sites (Dry: 89.29%; Hozomeen: 66.7%), 

and species (Native Char: 66.7%; Rainbow Trout: 86.11%; Cutthroat: 100%)(Table 8). Ephemeroptera was the 

most common forage in fish from Roland Creek (100%), on 5/5 at Dry Creek (85.71%), and in Brook Trout 
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(80.0%). Roland Creek was the only site to have a frequency of occurrence equal to 100% for any taxa across all 

samples (Figure 18). Ephemeroptera was present in every fish collected from Roland Creek.  

Frequency of occurrence also shows the decline in Amphipoda abundance over time (Figure 18). Although 

Amphipoda was collected in the diets during the earlier sampling events, by June it was not consumed even 

once. 

Index of Relative Importance 

The Index of Relative Importance allowed for ranking importance of prey by pool elevation, site, month, 

and species of fish and was the primary focus of this study. To emphasize the most important taxa overall, I 

identified major prey taxa as those with an average % IRI ≥5% in any factor and only considered these taxa in my 

analysis. It could be that a particular prey item was important to an individual fish, but to be considered major 

taxa the prey item had to retain importance for the given factor (month, date, species, etc.)   Seven of seventeen 

taxa were considered major in at least one instance: Amphipoda, Diptera, Ephemeroptera, Plecoptera, 

Terrestrial Insects, Trichoptera, and Unidentified Insects. Sixty-three of the sixty-five fish sampled contained 

these major taxa. The two fish that did not contain any major taxa were removed from this analysis. 

Distribution of % IRI differs across all major prey taxa (Kruskal-Wallis; p=0.0001, alpha=0.05). The % IRI was 

highest for Diptera (41.34%) followed by Ephemeroptera (27.53%) and Unidentified Insects (11.03%). Diptera 

was always an important taxon, exceeding 10% importance for all months. Diptera, Ephemeroptera, Terrestrial 

organisms, and unidentifiable organisms were major prey items in all four species of fish sampled (Table 9 and 

Table 10).  

The most important prey items did not differ among fish species (% IRI, ANOSIM, p=0.689, Global R: -0.029; 

(Table 9 and Table 10; Figure 19). Diptera was the most important prey item for Native Char and Rainbow Trout, 

constituting nearly half of the diet. Ephemeroptera was the most important prey item for Brook Trout and the 
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single Cutthroat Trout sampled, representing about a third of each of their diets. Native Char had three prey 

taxa with %IRI greater than 5%, Rainbow Trout had four taxa, Brook Trout had five taxa, and the Cutthroat Trout 

had six taxa. This suggests that the introduced species of fishes are eating more of the important prey items 

than the native fishes. 

Importance of major prey items was different at all three sites and cluster together using MDS (ANOSIM, 

p=0.001, Global R: 0.327; Figure 20 and Figure 21; Table 11 and Table 12). Dry Creek was different from 

Hozomeen Creek (p=0.001, R: 0.146) due to a higher importance of Diptera in the diets at Dry Creek and 

Amphipoda at Hozomeen Creek. Those two taxa contributed over 50% of the difference between the two sites 

(SIMPER, avg. dissimilarity: 74.83). Dry Creek differed from Roland Creek (p=0.001, R: 0.629) because juveniles at 

Roland Creek placed much more importance on Ephemeroptera than those at Dry Creek. Diptera were more 

important to juveniles at Dry Creek than Roland Creek. Ephemeroptera, Diptera, and the increased importance 

of unidentified insects at Dry Creek accounted for over 90% of the difference between the two sites (SIMPER, 

avg. dissimilarity: 82.97). Hozomeen and Roland Creeks also differed (p=0.001, R: 0.32). Ephemeroptera was 

much more important at Roland Creek than Hozomeen Creek while Diptera and Amphipoda were more 

important at Hozomeen Creek; the three taxa accounting for over 90% of the differences (SIMPER, avg. 

dissimilarity: 87.29). Ephemeroptera was the only taxa that exceeded 5% importance at Roland Creek (87.52%, 

Figure 21). Diptera was the second-most important at 4.48%. The % IRI at Dry Creek was highest for Diptera 

(61.12%) with unidentified insecta (11.08%) the second most important prey item. The prey items at Hozomeen 

Creek were closer in importance with Diptera the most important (31.65%) and Amphipoda the second 

(25.24%). In all cases Diptera accounted for differences in comparisons with Dry Creek while Ephemeroptera 

accounted for differences between Roland Creek and other sites, and Amphipoda explained differences with 

Hozomeen Creek. 
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Importance of prey differed by month (% IRI; ANOSIM, p=0.001, Global R: 0.217; Table 13 and Table 14; Figure 

22). March and May (p=0.002, R: 0.265), March and June (p=0.001, R: 0.348), March and April (p=0.001, R: 

0.594), May and April (p=0.011, R: 0.311), and June and April (p=0.002, R: 0.479) were different from one 

another. March had three taxa which exceeded 5% importance while April, May, and June each had five. June 

and April had the greatest dissimilarity of prey importance (IRI; SIMPER, avg. dissimilarity: 89.82; Table 15). This 

was due to the lack of Amphipods in the June samples, the importance of unidentified insects in the April 

samples, and the low importance of Ephemeroptera in the April sampling. Those two taxa accounted for over 

55% of the difference between the two months. May and April were the second most dissimilar (IRI; SIMPER, 

avg. dissimilarity: 89.11; Table 15). Over 50% of the difference was accounted for in Amphipoda and unidentified 

insects. Both Amphipoda and unidentified insects were more abundant during the April sampling. May and June 

were the only two months that did not differ (p=0.191, R: 0.021). In all cases Diptera was responsible for 

differences during comparisons with March samples, Amphipoda during comparisions with April samples, and 

Ephemeroptera during comparisons with May samples. No taxa uniformly explained differences between June 

and other months. 

Diet selection differed in all but two pair-wise tests on pool elevations (ANOSIM: p=0.001, Global R: 0.362; Table 

16, and Table 17; Figure 23). I pooled dates to look for any effects related to the elevation of the reservoir. As 

the reservoir fills, the available stream habitat decreases. I expected to see the % IRI differ between pool 

elevations as fish had to become more opportunistic due to less available food and more competition. The 

sampling at Dry and Roland Creeks on May 5th at a pool elevation of 1521.3’ compared to the June 2nd pool 

elevation of 1572.3’ sample at the same locations and the 1520.0’ pool elevation on April 11th at Hozomeen 

Creek compared to the May 19th Hozomeen Creek sample (1561.3) were the only two samples not statistically 

different from one another. The Hozomeen Creek sampling events would have been expected to be similar 

because the reservoir had not changed enough to alter the Hozomeen Creek sampling site in any way. I had 
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predicted the May and June samples at Dry and Roland to differ because almost the entire available stream 

habitat below full-pool had shifted to lacustrine by June. 

Seasonality at Ross Lake affected prey importance as well (% IRI, ANOSIM; Global R: 0.352, p=0.001). Diptera and 

Amphipoda were more important prey items during the early season. This is as expected since Amphipods were 

not collected during any June samples and the importance of Diptera dropped from 43.2% during the early 

period to 23% in the late samples. Both of these species prefer slower moving water and were likely flushed out 

of the higher gradient reaches during the later sampling. 

Reaches within the reservoir compared to those above did not differ (ANOSIM; Global R: -0.133, p-value=0.126). 

The habitat, substrate, and canopy cover above full pool visually differed from the lower reaches but neither 

benthic composition (ANOSIM; Global R: -0.13, p=0.752) or prey importance did. 

Instantaneous Ration 

Stomach fullness, calculated by instantaneous ration (IR), was correlated to mean number of benthic 

macroinvertebrates collected (Spearman’s 2-tailed; α=0.01: r=0.544; p<0.001, n=65) but did not follow the 

number of prey found in individual fish stomachs (Figure 24 and Figure 25). Brook Trout had the highest IR and 

the most items in their stomach. Native Char had the fewest items in their stomach by count, but the second 

highest IR echoing the trends at Hozomeen Creek where they had eaten fewer items weighing more and likely 

providing more caloric gains. As expected, stomach fullness followed benthos abundance trends with an 

increase from March to April and then a decrease during subsequent months (Figure 26, Figure 27, and Figure 

28). Mean stomach fullness during different months did not follow trends for prey abundance in the diet (Figure 

28 and Figure 29). Though not statistically significant (ANOVA, log transformed, p=0.749), April had the highest 

IR of all months sampled, directly related to the abundance of amphipods, while March had the lowest. In 

comparison, number of prey in the diet was highest in March, decreased in April, increased in May, and 
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decreased again in June. This high abundance of amphipods in April also explain some of why Brook Trout had 

the highest IR of all species of fish. 

Stomach fullness was log transformed to meet assumptions of homogeneity of variances. It did not differ among 

sites (ANOVA, p=0.628), species (ANOVA, p=0.073), pool elevations (ANOVA, p=0.877), or reaches above full 

pool compared to those below full pool elevation (ANOVA, p=0.292).  The instantaneous ration between reaches 

was unable to be transformed to meet ANOVA assumptions so analysis was unable to be completed.  Stomach 

fullness again followed available benthos trends where Hozomeen Creek had the greatest number of prey items 

per fish stomach and Dry Creek had the smallest (Figure 30 and Figure 31). Trends for stomach fullness deviated 

greatly from the mean number of prey items per stomach at each site (Figure 31 and Figure 32). Hozomeen 

Creek had the least number of prey items per stomach than either of the two creeks. This means that fish 

captured at Hozomeen Creek had fewer organisms by number in their stomachs then those at Roland Creek, 

which had the most, but that those prey items accounted for more of the fish’s overall weight, signifying a fuller 

stomach. I believe that this is intensified by the increased abundance of Amphipoda at Hozomeen Creek. 

Although the instantaneous ration for species did not have differ, Brook Trout had the fullest stomachs in April 

and decreased feeding intensity over time while native Char increased and Rainbow Trout maintained feeding 

rates. This is likely due to the high abundance of Gammaridae (order Amphipoda) for Brook Trout to feed on 

during the April sample when the %IRI was over 50%, driving the April sampling instantaneous ration to high 

levels (Figure 24).  

Instantaneous ration did not differ by site and month but some trends were present (ANOVA, fourth-root 

transformed, p=0.236,Figure 33). Hozomeen had the highest overall IR in April and decreased overtime. This 

decrease was the most dramatic across all sites because the IR was again the highest at Hozomeen in April, but 

had the largest variability, and was then the lowest of all samples in June. Dry Creek had the opposite trend with 
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the lowest IR occurring during the March sample and then a slight increase during subsequent months. Fish at 

Dry Creek had the fullest stomachs in June compared to other sites. Roland Creek, with only two samples, 

decreased from May to June. 

Graphical Analysis of Stomach Contents 

Diet variability at each site, as determined in this study, is further supported by using the Costello (1990) 

graph, as modified in Amundensun et al (1996; Figure 34). Costello graphs have been used to two-dimensionally 

demonstrate prey importance and the feeding strategy of the predator, be it generalist or specialist. 

Amundensun et al (1996) modified the original Costello graph to include prey-specific abundance creating a 

visual representation of prey importance, feeding strategy, and niche width. A literature search shows Costello 

graphs, and those modified by Amundensun et al (1996), have been used to evaluate stomach content data of 

fish, including trout and char, throughout the world. By graphically representing feeding strategies, it is possible 

to see that predation on Amphipoda, although still rare taxa, were more selected for at Hozomeen Creek than 

Dry or Roland Creeks (Figure 35). The Costello graph illustrates that Diptera had a higher within phenotype 

component (WPC) than other prey taxon at Dry Creek. A high WPC indicates that Diptera are only occasionally 

consumed, but are eaten by many individual fish (Amundensen et al, 1996). This reinforces the results of the 

index of relative importance, which highlights Diptera as an important diet item, and also shows the benefits of 

graphically analyzing the data. The modified Costello (1990) graph allows determination of what makes it an 

important item; in this case it is consumed by numerous fish (Costello, 1990 cited by Amundensun et al, 1996). 

The differences in diet preference among months can also be visualized in the Costello graphs, supporting the 

index of relative importance results (Figure 36). Most of the prey items were generalized for and had no 

preferred niches, meaning fish did not actively seek out a given taxon and not all species of fish ate that prey 

item. The April Hozomeen Creek sample was unique because no Plecoptera or Trichoptera were present in any 

diets and Amphipoda was present in high numbers but because I did not sample each site during the same time 
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period, it is difficult to discern if the differences are from natural changes on the seasonal level or driven by 

changes in the pool elevation. Hirudinea and terrestrial organisms were more abundant in fish diets than the 

environment.  

Based on trophic interactions, prey in the benthic community is expected to have a greater mean abundance 

than consumed abundance of the same taxon, and consumption of the more abundant forage is anticipated. 

Viewing the relative benthic abundance and diet abundance together shows that in most cases, juvenile trout 

are eating the abundant prey items. In all but two cases in the major taxa, the total abundance of benthic fauna 

exceeded taxa found in the diet (Figure 37). Terrestrial organisms were more abundant in fish diets than the 

environment. Terrestrial organisms are eaten while drifting and only organisms that have entered the channel 

drift would be in benthic samples, so it is expected that these would not be collected. Hirudinea had a much 

greater abundance in the diet than benthic sampling, which suggests it is either rare in the environment or 

selected for. Hirundinea did have an IRI of 10.7% during the April sampling at Hozomeen, but was not collected 

during any other samplings so was not considered a major taxa and was therefore not included in any further 

analysis. 

Bray-Curtis hierarchical clustering using presence/absence of prey taxa at the Order level separates diet and 

benthos by the site level as well month and pool elevation (Figure 38, Figure 39, and Figure 40). This clustering 

shows taxa found in benthic samples are more similar to one another than to diets except in the case of April 

sampling (Figure 39). The April diet samples clustered more loosely with the benthos samples.  

 

  



43 

 

Discussion 

Numerous studies have focused on dams and their effects both upstream and downstream, and a few 

studies have looked at daily fluctuations of reservoir levels associated with dams, but to the best of my 

knowledge no studies have examined effects related to inundation on the seasonal scale (Hall, 1971; Baxter, 

1977; Stanton, 1977; Johnston, 1989; SCL, 1989; Brondi, 2006). Similar to the findings of others, juvenile trout 

and char diets were composed almost entirely of aquatic insects (Nakano et al, 1998; Gunkel et al, 2002; 

Wydoski and Whitney, 2003; Baxter et al, 2004; Quinn, 2005). The benthic macroinvertebrates found in the 

tributaries to Ross Lake reflect those commonly found in Pacific Northwest streams, and all four species of 

juvenile trout and char found in Ross Lake are known to eat the benthic macroinvertebrates that I found both in 

their environments and in their diets (Adams and Vaughn, 2003; Clapp, 2006; Edwards, 2008; and Cordell et al, 

2012). Contrary to my original hypothesis that the seasonally inundated streams would be devoid of benthos 

and not suitable for the rearing of juvenile fish, my study suggests that the seasonally inundated reaches of 

streams in Ross Lake provide adequate habitat and forage for rearing and refuge for four species of trout and 

char. Additionally, composition of benthos and diet can differ with varying pool elevations, suggesting 

management of the reservoir could impact juvenile fish and forage. The benthic composition appears to be 

similar across sites, however the composition of prey consumed differed among sites. Neither benthic 

composition nor diet contents appear to be affected by reach location. 

A survey of Ross Lake tributaries at low pool was concluded by Seattle City Light in 1989 to determine how 

seasonal fluctuations in lake level impact available spawning habitat for Rainbow Trout (SCL, 1989). This 

included Dry Creek, Roland Creek, and Hozomeen Creek. Seattle City Light postulated that the construction of 

Ross Dam inundated nearly all of the adequate spawning habitat for trout because these creeks above full pool 

have excessive gradient and inappropriate substrate. The presence of juvenile fish in my study indicates 

successful rearing in these streams. This suggests that adults are spawning in the upstream reaches and 
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juveniles are migrating down, or the juveniles are moving among streams via the lake and using non-natal 

streams for rearing. Because there are thriving populations of adults in the lake that present threats of 

predation, I believe that most of the juveniles rearing in a given stream emerged upstream and migrated down.  

Based on photographic evidence and field recordings from SCL’s assessment, Dry Creek appeared to have more 

active wood in the channel below full-pool, with two documented wood structures. These were determined to 

be no barrier to adults, but one total barrier to fish was present at elevation 1594’ AMSL, 8’ below full pool 

elevation (Figure 41; SCL, 1989). These wood structures and the barrier must have since washed out or been 

removed because there were no barriers or notable accumulations of wood during my study. Among the three 

creeks I sampled, juvenile trout and char appeared to most successfully rear below full pool in Dry Creek. 

In the 24 years between the SCL assessment and my study, minor changes were evident in some habitat 

features. In Hozomeen Creek the results of my habitat survey of Hozomeen Creek below full pool appear to be 

very similar to SCL’s 1989 assessment. Areas of large pools with large, medium, and small woody debris and silty 

sediments were present then as they are now. Two drops, determined not to be barriers to fish passage, were 

documented in 1989 that were not present during my 2013 site visits (Figure 42). Seattle City Light found that 

the alluvial fan at the mouth of the creek historically provided much of the spawning gravel in Hozomeen Creek, 

and the reservoir formed by Ross Dam greatly depleted spawning potential of this tributary. 

Photographic documentation of Roland Creek suggests the substrate was composed of fewer fines in 1989 than 

2013, with a similar lack of large woody debris in the channel and numerous stumps on the easily erodible banks 

(Ross Dam Construction Photographs, 1938-1948; SCL, 1989). Seattle City Light (1989) did not document any 

passage barriers during their survey and my findings agree with this (Figure 43). Available spawning sediment in 

Roland Creek was documented to be minimally affected by construction of the dam (SCL, 1989). However, based 
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on my fish collections potential rearing habitat in Roland Creek seemed to be less preferred than at the other 

sites sampled.  

Juvenile trout and char require sufficient food supply for successful rearing and seasonal inundation of the 

streams could influence this. My study suggests adequate food, in the form of benthic macroinvertebrates, is 

present based on the presence of few fish with empty stomachs in the system. Stanton (1977) found that most 

aquatic insects were able to re-colonize habitat above a dam that alternated between lotic, lentic, and dry 

conditions in two to three weeks. Time available for re-colonization when the lotic habitat was available was the 

single most important factor in benthic composition near a fluctuating reservoir. Re-colonization by 

invertebrates can occur from downstream drift, upstream movement, random movement along and across the 

bottom, aerial dispersal (oviposition), or persistence in both environments (migration from within sediments; 

Lyman, 1955; Waters, 1965; Williams and Hynes, 1976; Lancaster, 1990; Williams and Williams, 1993; 

Winterbourn and Crowe, 2001; Jähnig et al, 2009; Anderson and Ferrington, 2013). Recolonization by 

downstream drift has been shown to be an important source of colonizers, providing for over 40% of new 

organisms to an area (Williams and Hynes, 1976). The yearly maximum for downstream drift density is often 

reached during winter high flows (White and Harvey, 2007). The lake level in Ross Lake decreases throughout 

the winter months, allowing for increased downstream drift facilitated by winter rains into the newly exposed 

stream segments. Oviposition from aerial migration can provide for almost 30% during the spring and autumn 

months in temperate regions, while upstream migration and movement from within the substrate have 

accounted for approximately 18.5% (Williams and Hynes, 1976). Downstream drift can be both active and 

passive and has been documented in such high densities that past research focused on how populations were 

able to maintain a source population in headwater streams in the face of it (Hynes, 1970; Townsend and 

Hildrew, 1976; Williams and Hynes, 1976; Williams and Williams, 1993). Behavioral drift, or active drift, driven 



46 

 

by organism characteristics and behaviors, is responsible for upstream migrations as well as downstream drift 

(Waters, 1965; Townsend and Hildrew, 1976; Walton Jr., 1980).  

Environmental educators at Hope Mountain Center for Outdoor Learning, Chilliwack, British Columbia, have 

been collecting micro- and macroinvertebrate samples in the Skagit River and tributaries upstream of Ross Lake 

since 2010 (S. Denkers, Hope Mountain Centre for Outdoor Learning, personal communication). Similar to the 

Hope Mountain Center’s 2013 findings, Ephemeroptera abundance was the greatest of all orders collected in my 

study.  Hope Mountain Center found Ephemeroptera to be the most abundant benthic macroinvertebrate 

overall and also the most abundant in each of the upstream tributaries sampled by them, accounting for 48% of 

the total organisms collected (Doix, 2013). Baetidae (order Ephemeroptera) and Heptageniidae (order 

Ephemeroptera) were the two most abundant families across all sites in their study. In contrast to their findings, 

I found more Chironomidae (order Diptera) than other benthic macroinvertebrates, but Baetidae and 

Heptageniidae were the second and third most abundant, contributing to the similar order-level total of 41% 

Ephemeroptera. 

Baxter (1977) found Chironomidae to be the first species to colonize following the installation of a dam, and my 

findings support that expectation. Davies (1976) reports Chironomidae to be the first to colonize new areas as 

well as successfully oviposit in lakes and along shorelines. Turner (2009) found Chironomidae to be the most 

abundant taxon in alpine lake outlets in the North Cascades. Numerous studies outside the park have found 

Chironomidae to be broadly dispersed in a variety of life stages throughout freshwater environments, including 

deep lakes and mountain streams. Of the over 15,000 known species, overall tolerance to environmental factors 

such as temperature, dissolved oxygen, and flow are documented to range from very sensitive to very tolerant, 

further ensuring their presence in Ross Lake tributaries (Merritt et al, 2008; McCafferty, 1998; Buffagni and 

Comin, 2000; Petts, 2000; Spilseth, 2008). Hope Mountain Center’s 2013 sampling occurred in tributaries 

upstream of Ross Lake and they collected 4% Chironomidae compared to the 25% in my samples (Doix, 2013).  
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Buffagni and Comin (2000) found that although Chironomidae are widely distributed in fresh water, the relative 

abundance is greater in pool habitats compared to bedrock, riffle, and transitional zones so it may be that 

proximity to the lake along with the available pool habitat within the creeks provided preferred habitat for 

Chironomidae compared to those sites upstream of the lake. I surmise Chironomidae colonized the area from 

newly hatched larvae, retention in the area after the lake receded, and downstream drift based on the range of 

sizes from very small to pupae. The small-sized ones suggest they may have hatched in the immediate area 

(Davies, 1976; Waters, 1969).  

Ephemeroptera are known to recolonize areas by passive downstream drift and by active drift both upstream 

and downstream (Pearson and Franklin, 1968; Madsen et al, 1977). The majority of Ephemeroptera recolonizing 

the stream channel likely comes from passive downstream drift from upstream habitats to the recently exposed 

stream area segments, but they may move upstream depending on habitat availability and density of 

individuals. Species in some families tend to actively drift more than others. Behavioral drift, which has been 

shown to provide the majority of downstream drift, is impacted by standing crop and has been documented as 

an important re-colonization tactic by Ephemeroptera (Pearson and Franklin, 1968; Madsen et al, 1977). 

Pearson and Franklin (1968) monitored movement of one species of Baetidae during a sudden decrease in water 

level. They reported seeing the organisms both swimming and crawling to deeper areas and found low mortality 

in the area.  Baetidae, a very strong swimmer, is likely able to react to the changing water levels and actively 

migrate as the lake level changes to maintain suitable habitat (McCafferty, 1998). This is less likely for 

Heptageniidae as they are poor swimmers. However, Heptageniidae are found along lake shorelines and 

streams and are clingers so they may remain in the exposed stream channel as the lake recedes (Williams and 

Williams, 1993; McCafferty, 1998). Baetidae and Heptageniidae, the two most abundant families of 

Ephemeroptera in my study, are less tolerant of environmental stressors and less ubiquitous than 

Chironomidae, and are therefore likely more affected by changing water levels (McCafferty, 1998).  This 
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supports my hypothesis that families within Ephemeroptera are not as able to adapt to the changing 

environment as Chironomidae and thus are found in smaller relative abundances.   

Hope Mountain Center’s sampling, which generally occurs in August or September, has not resulted in collection 

of any Amphipoda (Dolecki, 2010; Doix, 2011; Doix, 2012; Doix, 2013). This agrees with my findings that 

Amphipoda abundance in the creeks decreases as the reservoir fills. This may be due to habitat preferences.  

Amphipoda prefer slow moving water and may be able to persist in the lower gradient reaches near and in the 

lake but are flushed out of the higher gradient segments of stream. Amphipoda are probably not capable of 

recolonizing the lower reaches by migrating upstream from the lake during the winter months because they are 

poor swimmers (Pennak, 1978; Covich and Thorp, 1991; McCafferty, 1998).  

Benthic composition did not differ according to pool elevation or reach location with respect to the full pool 

shoreline. Stanton’s (1977) study of benthos in streams with daily inundation and exposure due to fluctuations 

in an adjacent reservoir, and Johnston’s (1989) study of Ross Lake and its tributaries both found that reaches 

closest to the creek mouth had higher production and abundance of benthic macroinvertebrates than both the 

upstream reaches and areas within the lake adjacent to the creek mouth, but my study did not support those 

findings. It did support the notion that recolonization of benthic organisms can happen quickly (Williams and 

Hynes, 1976; Stanton, 1977; Brusven and Trihey, 1978). Stanton (1977) dealt with daily inundation which likely 

did not provide adequate time for re-colonization in areas further from the lake. Expanding the sampling 

timeline to include collection from full pool to low pool would allow for determination of the re-colonization 

direction, assuming the exposed channel is determined to be denuded of benthos at some point during the 

recession. It may be that stream reaches initially differ, but by the time the reservoir has reached the seasonal 

low, re-colonization has occurred and is therefore not reflected in my study. 
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Composition and abundance of available prey has been documented to change based on location within a 

stream or watershed, and this was supported by my study as not all streams had similar benthos. Turner (2009) 

suggested that the lack or comparatively low abundance of organisms at some sites compared to others in 

proximity is influenced by selective filters such as climate change impacts, the originating water source, flow 

regime, substrate, and temperature gradient, none of which were measured as part of this study. Most of my 

samples occurred within riffles of similar substrate in the given sample reach. Buffagni and Comin’s (2000) 

findings suggest this is the most accurate location to sample and that benthic abundance is greater in riffle 

habitat than pool, bedrock, or transitional (fluctuating flows and low primary productivity) zones.   

The rank of importance for diet items to fish differed at each site. If diet reflects abundance and availability in 

the environment, then this supports the contention that location of a tributary can affect the local food web 

(Welch, 2012). Others have also reported a changing diet based on location sampled within a reach (Gunkel et 

al, 2002; Jones et al, 2008). Nakano et al (1998) found that Brook Trout, Cutthroat Trout, and Bull Trout will 

create groups of mixed species while feeding. These mixed groups can then affect the consumption of available 

prey in an area as local as a pool. These “foraging microhabitats” could translate into different feeding 

preferences among sites as the individual juveniles interact with one another differently at each site, and have 

varying effects on prey availability and composition. Predators have also been found to impact the prey 

community and associated available prey by consumption, localized extinction, and training fearful prey that 

seeks hiding and may eventually migrate (Merrick et al, 2008; Orrock et al, 2008). This may explain the variation 

in Hozomeen Creek diet preferences. Hozomeen Creek has a larger abundance of Brook Trout, which may affect 

prey composition differently than streams with fewer of this introduced species (A. Rawhouser, North Cascades 

National Park, personal communication). Differences in diets among sites was further supported by Schoby and 

Keeley (2011) who found that the diets of Bull Trout were “considerably different” between tributaries and 

mainstem sites within the same watershed and in proximity to one another. These site differences could also be 
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caused by individual fish feeding habits as well as group behavior (Nakano et al, 1998). Fish abundance could 

explain these differences between species at the reach or microhabitat level but was not determined as part of 

this study. 

Diet and stomach fullness at each site was likely impacted by the varying benthic assemblage among the sites. 

Nakano et al (1999) found that Dolly Varden will alter their feeding behavior between drifting or benthic 

invertebrates dependent on available resources. Studies have also shown that predators can significantly impact 

distribution, behavior, and demography of their prey populations (Orrock et al, 2008; Lowery, 2009). Hozomeen 

Creek had the largest group of Amphipoda of any of the creeks, reflected in both fish diets and benthic samples. 

Although they can swim, they are generally found in shallow waters and are not able to retreat to interstitial 

spaces as well as other aquatic invertebrates, making them more susceptible to capture and thus are an 

important prey item (McCafferty, 1998; Baxter et al, 2005). It is unknown if this increased abundance in April 

was unique to Hozomeen Creek since this was a single-event phenomenon and the other sites were not sampled 

again until early May.  It is clear that amphipods contributed to the high stomach fullness during April and to the 

differences in macroinvertebrate assemblages and fish diets between Hozomeen Creek and the other sites.  

Stomach fullness varied among species. Brook Trout had the highest average instantaneous ration (a measure of 

stomach fullness) among the species. This could be because Brook Trout (and the single Cutthroat Trout) fed 

mostly on the more abundant Ephemeroptera while Native Char and Rainbow Trout competed for the less 

abundant Diptera. Although Diptera ranked third in overall importance in the diet of juvenile Brook Trout in my 

study, as determined by the IRI, other studies have shown Brook Trout can rely more heavily on Diptera, 

increasing the competitive pressure for food with native juvenile trout and char in Ross Lake (Wydoski and 

Whitney, 2003). Hilderbrand and Kershner (2004) reported competition among predators to the point of local 

extinction when food limitations occur. Brook Trout have been known to out-compete native fishes in western 

streams, to the point of driving Bull Trout to locations further upstream, and are highly opportunistic feeders 
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(Wydoski and Whitney, 2003; Reiman et al, 2006). Baxter et al (2004) found that the introduction of a non-

native trout can have impacts on the stream community that can be measured four trophic levels out and can 

include the terrestrial environment.  

To compare prey availability with prey consumption I initially included Ivlev’s index of electivity (E) and 

Vanderploeg and Scavia’s realized electivity (E*) indices, but the results of these were opposite to those of IRI. In 

all cases IRI placed importance on taxa that E and E* determined to be actively avoided. The same was true for 

those taxa IRI determined to be unimportant to fish diet; E and E* determined they were actively selected for. 

One potential problem is that E can be affected by small sample size although E* is not supposed to be 

(Vanderploeg and Scavia, 1979; Lechowicz, 1982; and Strauss, 1982). Authors of recent papers tend advocate 

the use of IRI as a good measure of dietary preference, even though it does not compare prey availability to 

consumption. Since I could find no studies that compared or used both IRI and E (or E*), I removed the latter 

analysis from my study. That is not to say IRI may not be misleading. Ahlbeck et al (2012) found %IRI struggled 

with representing the true diet of benthivorous fish, routinely overestimating diets of small prey. Ahlbeck et al 

(2012) also found %IRI to be sensitive to small sample size which suggests the importance of a given prey item 

could have been overestimated in this study. 
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Conclusion 

Juveniles of Native Char, Rainbow Trout, Brook Trout, and Cutthroat Trout ate the same kinds of 

macroinvertebrates in three seasonally inundated tributaries to Ross Lake, but the composition of their diet was 

affected by location, month, and in some cases, the height of Ross Lake reservoir.  Benthic macroinvertebrate 

abundance appeared to be sufficient to support rearing of these species. Assuming benthic macroinvertebrates 

are absent in newly exposed stream reaches as the reservoir level drops, re-colonization appears to occur 

consistently enough that abundance differences are not detectable at the reach or site level.  The majority of re-

colonization likely originates in stream segments above the full pool elevation and drift downstream. Juvenile 

trout and char diets differ by site, which may be driven by channel morphology, prey abundance, and fish 

composition. Brook Trout, an introduced species in Ross Lake, was found to feed preferentially on 

Ephemeroptera, while the Native Chars and Rainbow Trout fed on the less abundant Diptera, in competition 

with one another. As Brook Trout abundance continues to increase and spread throughout the lake and into 

additional streams, benthic composition may shift and native juveniles may find increased competition for 

forage.  

Many studies have been published on adult feeding strategies, especially in comparisons between species or 

environments. However, research on juvenile diets is less available, and to the best of my knowledge, research 

on prey availability and selectivity on seasonally inundated streams is non-existent. Further research on Ross 

Lake juvenile trout diet, the most important prey taxa, and the benthic community they rely on will result in a 

better understanding of fish stock dynamics and Ross Lake ecology and perhaps influence management of the 

fish stocks and lake levels in the future.  
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Table 1. Ross Lake reservoir elevation by sample date. Lake level was calculated by taking the elevation mean of the hourly 
stages per 24 hours 

Date 
Pool Elevation  
(feet Above Mean Sea 
Level [AMSL]) 

3/29/2013 1513.6 

4/11/2013 1520 

5/5/2013 1521.3 

5/19/2013 1561.3 

6/2/2013 1572.3 

6/21/2013 1588.9 
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Table 2. Proportional substrate composition based on particle size for each creek with reaches combined. Subdominant 
sediment type was not always present at Hozomeen Creek due to the homogenous sediment of sand/silt. 

  Dry 
Creek 

Roland 
Creek 

Hozomeen 
Creek 

Dominant Boulder 24% 0% 0% 

 Cobble 36% 14% 2% 

 Gravel 40% 50% 23% 

 Sand and Silt 0% 36% 74% 

Sub-
Dominant 

Boulder 4% 0% 0% 

Cobble 52% 50% 0% 

 Gravel 24% 43% 7% 

 Sand and Silt 16% 7% 16% 
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Table 3. Most abundant benthic macroinvertebrate taxa for each creek by sampling period. Sample 1: Dry and Roland 
Creeks: 3/29/2013, Hozomeen Creek: 4/11/2013; Sample 2: Dry and Roland Creeks: 5/5/2013, Hozomeen Creek:  
5/19/2013; Sample 3: Dry and Roland Creek: 6/2/2013; Hozomeen Creek: 6/21/2014. 

Family 

 OVERALL Sample 1 Sample 2 Sample 3 

Dry Creek 22% Baetidae 25% Baetidae 31% Chironomidae 26% Heptageniidae 

Roland Creek 47% Heptageniidae 24% Heptageniidae 47% Heptageniidae 66% Heptageniidae 

Hozomeen 
Creek 

37% Chironomidae 39% Baetidae  35% Oligochaeta 68% Chironomidae 

Order 

 OVERALL Sample 1 Sample 2 Sample 3 

Dry Creek 39% Ephemeroptera 33% Ephemeroptera 40% Ephemeroptera 52% Ephemeroptera 

Roland Creek 71% Ephemeroptera 41% Ephemeroptera 80% Ephemeroptera 79% Ephemeroptera 

Hozomeen 
Creek 

37% Diptera 59% Ephemeroptera 35% Oligochaeta 68% Diptera 
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Table 4. Results from ANOSIM testing of benthic macroinvertebrate abundance at the family level during each date. (Global 
R=0.323, p-value = 0.005, alpha is 0.05). Significantly different pair-wise tests are shown in bold. Pool elevations were as 
follows: 3/29/2013: 1513.6 AMSL; 4/11/2013: 1520 AMSL; 5/5/2013: 1521.3 AMSL; 5/19/2013: 1561.3 AMSL; 6/2/2013: 
1572.3 AMSL; 6/21/2013: 1588.9 AMSL.  

Groups Global R p-value Assessment 

3/29/2013 vs. 4/11/2013  0.074 0.3 Similar 

3/29/2013  vs. 5/5/2013  0.477 0.036 Dissimilar 

3/29/2013  vs. 5/19/2013  0.296 0.2 Similar 

3/29/2013  vs. 6/2/2013  0.333 0.143 Similar 

3/29/2013  vs. 6/21/2013  0.167 0.3 Similar 

4/11/2013 vs. 5/5/2013 0.159 0.25 Similar 

4/11/2013 vs. 5/19/2013 -0.074 0.7 Similar 

4/11/2013 vs. 6/2/2013 0.278 0.086 Similar 

4/11/2013 vs. 6/21/2013 -0.083 0.6 Similar 

5/5/2013 vs. 5/19/2013 0.231 0.125 Similar 

5/5/2013 vs. 6/2/2013 0.438 0.032 Dissimilar 

5/5/2013 vs. 6/21/2013 0.309 0.238 Similar 

5/19/2013 vs. 6/2/2013 0.685 0.029 Dissimilar 

5/19/2013 vs. 6/21/2013 0.167 0.4 Similar 

6/2/2013 vs. 6/21/2013 0.643 0.067 Similar 
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Table 5. SIMPER results of overall percent dissimilarity and top five taxa contributing to differences in benthic 
macroinvertebrate composition among dates at all sites. 

Taxa 
Mean 
Abundance 
First Date 

Mean 
Abundance 
Second Date 

% 
Contribution 
to Difference 

3/29/2013 vs. 5/5/2013 Mean dissimilarity = 80.80 

Baetidae 5.67 46.00 23.53 

Heptageniidae 15.67 47.80 20.65 

Chironomidae 4.33 25.80 16.65 

Oligochaeta 4.00 14.60 9.58 

Unidentifiable 
Insecta 

12.67 1.80 5.47 

5/5/2013 vs. 6/2/2013 Mean dissimilarity = 68.00 

Heptageniidae 47.80 47.25 31.26 

Baetidae 46.00 9.50 21.50 

Chironomidae 25.80 4.50 14.10 

Oligochaeta 14.60 6.25 8.10 

Ephemerellidae 2.40 6.00 3.82 

5/19/2013 vs. 6/2/2013 Mean dissimilarity = 76.33 

Oligochaeta 71.00 6.25 29.93 

Heptageniidae 21.00 47.25 20.40 

Chironomidae 66.00 4.50 18.10 

Baetidae 16.67 9.50 7.57 

Ephemerellidae 0.00 6.00 3.41 
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Table 6. SIMPER results of overall percent dissimilarity and top five taxa contributing to differences in benthic 
macroinvertebrate composition among months. 

Taxa 
Avg. Abundance 
First Month 

Avg. Abundance 
Second Month 

% Contribution to 
Difference 

March vs. May Mean dissimilarity = 81.72 

Oligochaeta 4.00 35.75 19.81 

Chironomidae 4.33 40.88 17.74 

Baetidae 5.67 35.00 17.50 

Heptageniidae 15.67 37.75 17.29 

Unidentifiable 
Insecta 

12.67 1.25 5.33 

May vs. June Mean dissimilarity = 71.33 

Chironomidae 40.88 82.83 25.57 

Heptageniidae 37.75 38.00 21.35 

Oligochaeta 35.75 13.17 14.30 

Baetidae 35.00 15.33 13.90 

Gammaridae 9.75 0.00 3.60 
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Table 7. SIMPER results by site for benthic macroinvertebrate families 

Taxa 
Mean Abundance  

Site 1 

Mean Abundance 
Site 2 

% Contribution to 
Difference 

Roland vs. Hozomeen Mean dissimilarity = 76.63 

Heptageniidae 59.57 25.38 21.79 

Oligochaeta 5.86 51.38 19.47 

Chironomidae 6.29 84.75 19.37 

Baetidae 26.29 39.13 15.62 

Roland vs. Dry Mean dissimilarity = 72.17 

Heptageniidae 59.57 11.6 28.75 

Baetidae 26.29 20.2 16.29 

Chironomidae 6.29 23.2 13.68 

Oligochaeta 5.86 13.8 8.33 

Hozomeen vs. Dry Mean dissimilarity = 71.16 

Chironomidae 84.75 23.22 26.61 

Oligochaeta 51.38 13.8 17.18 

Baetidae 39.13 20.2 15.77 

Heptageniidae 25.38 11.6 12.02 
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Table 8. Percent by number, percent by weight, and percent frequency of occurrence of most common forage item by site, 
month, pool elevation, and for all fish. An asterisk denotes when unidentified taxa were most abundant; the second-ranked 
taxon was reported in these cases. Pool elevations correspond to the following dates: 3/29/2013: 1513.6 AMSL; 4/11/2013: 
1520.0 AMSL; 5/5/2013: 1521.3 AMSL; 5/19/2013: 1561.3 AMSL; 6/2/2013: 1572.3 AMSL; 6/21/2013: 1588.9 AMSL. 

 % by Number % by Weight % Frequency of Occurrence 

All Fish (n=65) Diptera (31.38%) Ephemeroptera (25.16%) Diptera (75.38%) 

By Site   
 

Dry (n=28) Diptera (49.13%) Diptera (38.54%) Diptera (89.29%) 

Hozomeen (n=24) Diptera (23.05%) Amphipoda (27.69%) Diptera (66.67%) 

Roland (n=13) Ephemeroptera (77.06%) Ephemeroptera (74.14%) Ephemeroptera (100.00%) 

By Month 

March (n=10) Diptera (76.92%) Diptera (63.16%) Diptera (100.00%) 

April (n=6) Amphipoda (26.45%) Amphipoda (43.13%) Amphipoda (66.67%) 

May (n=23) Ephemeroptera (32.67%) Ephemeroptera (43.27%) Diptera (65.22%) 

June (n=26) Ephemeroptera (33.01%) Ephemeroptera (44.88%) Diptera (76.92%) 

By Pool Elevation (AMSL) 

1513.6 ft (n=10) Diptera (76.92%) Diptera (63.16%) Diptera (100.00%) 

1520.0 ft (n=6) Amphipoda (26.45%)  Amphipoda (43.43%) Amphipoda (66.67%) 

1521.3 ft (n=14) Ephemeroptera (46.79%) Ephemeroptera (43.27%) Ephemeroptera  (85.71%) 

1561.3 ft (n=9) Amphipoda (38.35%) Amphipoda (44.88%) Diptera (66.67%) 

1572.3 ft (n=17) Ephemeroptera (46.19%) Ephemeroptera (44.99%) Diptera (82.35%) 

1588.9 ft (n=9) Diptera (26.16%) Trichoptera* (14.73%*) Diptera (66.67%) 

By Species    

Rainbow Trout (n=36) Diptera (36.83%) Ephemeroptera (31.01%) Diptera (86.11%) 

Native Char (n=18) Diptera (33.77%) Diptera (24.40%) Diptera (66.67%) 

Brook Trout (n= 10) Ephemeroptera (28.78%) Ephemeroptera (22.33%) Ephemeroptera (80.00%) 

Cutthroat Trout (n=1) Ephemeroptera (35.71%) Ephemeroptera (28.90%) Diptera (100.00%) 
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Table 9. Prey taxa by species of fish by order of importance calculated by Index of Relative Importance (IRI). 
  Rainbow Trout (n=36)  Native Char (n=19) Brook Trout (n=12) Cutthroat Trout (n=1) 

Prey Item %Weight 
Freq of 
Occurrence IRI  % Weight 

Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI 

Diptera 24.55 86.11 5285.37  24.40 66.67 3878.12 6.73 50.00 758.57 12.51 100.00 3394.28 

Ephemeroptera 31.01 55.56 3413.82  14.84 27.78 796.18 22.33 80.00 4089.22 28.90 100.00 6461.62 

Unidentified 
Insecta 

17.24 61.11 1441.26 
 

3.83 33.33 160.89 16.92 70.00 1975.91 32.00 100.00 3199.54 

Terrestrial 7.72 50.00 868.49  6.20 22.22 321.01 0.87 30.00 123.77 14.42 100.00 2870.16 

Trichoptera 3.07 27.78 243.05  8.66 16.67 231.61 10.55 50.00 1489.61 7.41 100.00 2169.08 

Plecoptera 2.59 36.11 233.77  0.98 16.67 56.14 12.24 50.00 1092.74 2.20 100.00 1648.53 

Incidentals 4.96 30.56 180.77  2.29 22.22 51.00 5.64 50.00 291.37 2.57 100.00 256.77 

Amphipoda 6.94 13.89 140.63  23.97 33.33 1571.80 8.42 30.00 495.47 0.00 0.00 0.00 

Collembola 0.19 13.89 26.84  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Lepidoptera 0.83 8.33 9.42  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oligochaeta 0.56 5.56 4.05  0.00 0.00 0.00 5.33 20.00 184.72 0.00 0.00 0.00 

Coleoptera 0.20 8.33 3.78  0.00 0.00 0.00 0.16 10.00 18.31 0.00 0.00 0.00 

Megaloptera 0.11 5.56 3.34  0.00 0.00 0.00 2.26 20.00 65.62 0.00 0.00 0.00 

Arachnid 0.05 2.78 0.29  0.02 5.56 1.15 0.01 10.00 5.35 0.00 0.00 0.00 

Gastropoda 0.00 0.00 0.00  0.09 5.56 1.55 0.43 20.00 26.46 0.00 0.00 0.00 

Hirudinea 0.00 0.00 0.00  3.62 5.56 24.84 8.11 20.00 223.31 0.00 0.00 0.00 

Unknown 0.00 0.00 0.00  11.11 11.11 246.91 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 10.Index of relative importance and percent index of relative importance for all fish species sampled. Major prey taxa 
are those ≥5% %IRI. The most important prey item is shown in a solid box and bold font, the second most important taxa is 
shown in a solid box, and the least important present prey taxa in a dashed box with italic font. 

 

Rainbow Trout (n=36) Native Char (n=18) Brook Trout (n=10) Cutthroat Trout (n=1) 

Prey Item IRI %IRI 
%IRI 
Major IRI %IRI 

%IRI 
Major IRI IRI 

%IRI 
Major IRI %IRI 

%IRI 
Major 

Diptera 5285.37 44.58 44.58 3878.12 52.83 52.83 758.57 7.00 7.00 3394.28 16.97 16.97 

Ephemeroptera 3413.82 28.80 28.80 796.18 10.85 10.85 4089.22 37.72 37.72 6461.62 32.31 32.31 

Unidentified 
Insecta 1441.26 12.16 12.16 160.89 2.19   1975.91 18.23 18.23 3199.54 16.00 16.00 

Terrestrial 868.49 7.33 7.33 321.01 4.37   123.77 1.14   2870.16 14.35 14.35 

Trichoptera 243.05 2.05   231.61 3.15   1489.61 13.74 13.74 2169.08 10.85 10.85 

Plecoptera 233.77 1.97   56.14 0.76   1092.74 10.08 10.08 1648.53 8.24 8.24 

Incidentals 180.77 1.52   51.00 0.69   291.37 2.69   256.77 1.28  

Amphipoda 140.63 1.19   1571.80 21.41 21.41 495.47 4.57   0.00 0.00  

Collembola 26.84 0.23   0.00 0.00   0.00 0.00   0.00 0.00  

Lepidoptera 9.42 0.08   0.00 0.00   0.00 0.00   0.00 0.00  

Coleoptera 3.78 0.03   0.00 0.00   18.31 0.17   0.00 0.00   

Megaloptera 3.34 0.03   0.00 0.00   65.62 0.61   0.00 0.00   

Oligochaeta 4.05 0.03   0.00 0.00   184.72 1.70   0.00 0.00   

Arachnid 0.29 0.002   1.15 0.02   5.35 0.05   0.00 0.00   

Unknown 0.00 0.00   246.91 3.36   0.00 0.00   0.00 0.00   

Hirudinea 0.00 0.00   24.84 0.34   223.31 2.06   0.00 0.00  

Gastropoda 0.00 0.00   1.55 0.02   26.46 0.24   0.00 0.00   
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Table 11. Prey taxa by site by order of importance calculated by Index of Relative Importance (IRI). 
  Dry (n=28) Hozomeen (n=24) Roland (n=13) 

Prey Item %Weight 
Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI 

Diptera 38.54 0.89 782820.52 11.29 66.67 2289.05 4.05 61.54 773.45 

Unknown 17.93 0.61 141885.64 10.94 45.83 848.77 9.69 61.54 716.63 

Ephemeroptera 14.58 0.46 140592.60 10.98 33.33 681.00 74.14 100.00 15120.37 

Trichoptera 8.13 0.39 70060.82 5.77 16.67 242.94 1.03 30.77 84.18 

Terrestrial 6.26 0.46 62054.02 9.17 33.33 722.57 1.32 38.46 179.91 

Plecoptera 5.17 0.43 52359.94 2.35 16.67 78.12 2.64 46.15 263.19 

Incidentals 4.69 0.39 18422.89 5.98 37.50 266.29 0.31 7.69 7.93 

Collembola 0.07 0.11 772.70 0.21 8.33 17.14 0.00 0.00 0.00 

Coleoptera 0.12 0.07 323.91 0.07 4.17 3.18 0.28 7.69 2.15 

Oligochaeta 0.71 0.04 293.02 0.01 4.17 1.49 4.09 15.38 103.05 

Lepidoptera 0.07 0.07 270.53 0.00 0.00 0.00 2.15 7.69 17.82 

Megaloptera 0.06 0.04 164.35 0.94 8.33 11.39 0.17 7.69 5.20 

Amphipoda 3.60 14.29 106.01 27.69 37.50 1825.63 0.00 7.69 1.33 

Gastropoda 0.06 0.04 63.87 0.18 8.33 4.59 0.00 0.00 0.00 

Arachnid 0.01 0.04 47.72 0.00 4.17 0.93 0.13 7.69 2.25 

Hirudinea 0.00 0.00 0.00 6.09 12.50 100.07 0.00 0.00 0.00 

Unidentified Insecta 0.00 0.00 0.00 8.33 8.33 138.89 0.00 0.00 0.00 
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Table 12. Index of relative importance and percent index of relative importance for all sites sampled. Major prey taxa are 
those comprising ≥5% %IRI. The most important prey item is shown in a solid box and bold font, the second most important 
in a sold box, and the least important prey taxa in a dashed box with italicized font. 

 

Dry (n=28) Hozomeen (n=24) Roland (n=13) 

Prey Item IRI %IRI 
%IRI 
Major IRI %IRI 

%IRI 
Major IRI %IRI 

%IRI 
Major 

Diptera 7828.21 61.12 61.12 2289.05 31.65 31.65 773.45 4.48   

Unknown 1418.86 11.08 11.08 848.77 11.74 11.74 716.63 4.15   

Ephemeroptera 1405.93 10.98 10.98 681.00 9.42 9.42 15120.37 87.52 87.52 

Trichoptera 700.61 5.47 5.47 242.94 3.36   84.18 0.49   

Terrestrial 620.54 4.85   722.57 9.99 9.99 179.91 1.04   

Plecoptera 523.60 4.09   78.12 1.08   263.19 1.52   

Incidentals 184.23 1.44   266.29 3.68   7.93 0.05   

Amphipoda 106.01 0.83   1825.63 25.24 25.24 1.33 0.01   

Collembola 7.73 0.06   17.14 0.24   0.00 0.00   

Coleoptera 3.24 0.03   3.18 0.04   2.15 0.01   

Lepidoptera 2.71 0.02   0.00 0.00   17.82 0.10   

Oligochaeta 2.93 0.02   1.49 0.02   103.05 0.60   

Megaloptera 1.64 0.01   11.39 0.16   5.20 0.03   

Arachnid 0.48 0.00   0.93 0.01   2.25 0.01   

Gastropoda 0.64 0.00   4.59 0.06   0.00 0.00   

Hirudinea 0.00 0.00   100.07 1.38   0.00 0.00   

Unidentified 
Insecta 0.00 0.00   138.89 1.92   0.00 0.00   
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Table 13. Prey taxa by month by order of importance calculated by Index of Relative Importance (IRI). 
  March (n=10) April (n=6) May (n=23) June (n=26) 

Prey Item %Weight 
Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI %Weight 

Freq of 
Occurrence IRI 

Amphipoda 10.08 40.00 831.13 43.43 66.67 4658.73 17.56 26.09 852.21 0.00 0.00 0.00 

Arachnid 0.00 0.00 0.00 0.00 0.00 0.00 0.02 8.70 3.44 0.06 3.85 0.56 

Coleoptera 0.15 10.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.27 11.54 14.27 

Collembola 0.21 30.00 60.58 0.00 0.00 0.00 0.00 4.35 2.11 0.19 3.85 5.66 

Diptera 63.16 100.00 14007.47 0.49 66.67 923.79 17.11 65.22 2716.39 14.41 76.92 2960.08 

Ephemeroptera 0.16 10.00 2.52 3.61 33.33 439.23 32.09 65.22 4223.60 33.63 61.54 4101.17 

Gastropoda 0.00 0.00 0.00 0.11 16.67 12.18 0.22 8.70 5.24 0.00 0.00 0.00 

Hirudinea 0.00 0.00 0.00 13.52 33.33 620.30 2.83 4.35 15.21 0.00 0.00 0.00 

Incidentals 0.48 10.00 4.84 0.27 33.33 158.07 2.32 26.09 60.64 8.42 46.15 405.39 

Lepidoptera 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15 11.54 18.07 

Megaloptera 0.00 0.00 0.00 3.77 33.33 182.27 0.00 0.00 0.00 0.16 7.69 6.41 

Oligochaeta 0.00 0.00 0.00 0.04 16.67 23.80 3.17 8.70 40.36 0.01 3.85 0.49 

Plecoptera 3.29 20.00 100.44 0.00 0.00 0.00 3.46 47.83 455.26 4.73 34.62 345.56 

Terrestrial 9.57 40.00 524.20 0.75 16.67 79.39 6.53 39.13 592.88 6.23 46.15 793.81 

Trichoptera 0.03 10.00 1.28 0.00 0.00 0.00 6.19 34.78 435.44 9.10 38.46 880.95 

Unknown 12.88 50.00 894.37 17.34 33.33 1133.70 8.48 65.22 768.38 17.80 53.85 1234.86 

Unidentified 
Insecta 

0.00 0.00 0.00 16.67 16.67 555.56 0.00 0.00 0.00 3.85 3.85 29.59 
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Table 14. Index of relative importance (IRI) and percent index of relative importance (% IRI) for all months sampled. Major 
prey taxa are those with at least one metric ≥5% %IRI. The most important prey item is shown in a solid box and bold font, 
the second most important prey item in a solid box, and the least important prey taxa in a dashed box with italicized font. 

 

March (n=10) April (n=6) May (n=23) June (n=26) 

Prey Item IRI % IRI 
% IRI 
Major IRI % IRI 

% IRI 
Major IRI % IRI 

% IRI 
Major IRI % IRI 

% IRI 
Major 

Ephemeroptera 2.52 0.02  439.23 5.00 5.00 4223.60 41.53 41.53 4101.17 37.98 37.98 

Diptera 14007.47 85.26 85.26 923.79 10.51 10.51 2716.39 26.71 26.71 2960.08 27.42 27.42 

Unknown 894.37 5.44 5.44 1133.70 12.90 12.90 768.38 7.55 7.55 1234.86 11.44 11.44 

Trichoptera 1.28 0.01  0.00 0.00   435.44 4.28   880.95 8.16 8.16 

Terrestrial 524.20 3.19  79.39 0.90   592.88 5.83 5.83 793.81 7.35 7.35 

Incidentals 4.84 0.03  158.07 1.80   60.64 0.60   405.39 3.75   

Plecoptera 100.44 0.61  0.00 0.00   455.26 4.48   345.56 3.20   

Unidentified 
Insecta 0.00 0.00  555.56 6.32 6.32 0.00 0.00   29.59 0.27   

Lepidoptera 0.00 0.00  0.00 0.00   0.00 0.00   18.07 0.17   

Coleoptera 2.50 0.02  0.00 0.00   0.00 0.00   14.27 0.13   

Megaloptera 0.00 0.00  182.27 2.07   0.00 0.00   6.41 0.06   

Collembola 60.58 0.37  0.00 0.00   2.11 0.02   5.66 0.05   

Arachnid 0.00 0.00  0.00 0.000   3.44 0.03   0.56 0.01   

Oligochaeta 0.00 0.00  23.80 0.27   40.36 0.40   0.49 0.004   

Amphipoda 831.13 5.06 5.06 4658.73 53.02 53.02 852.21 8.38 8.38 0.00 0.00   

Gastropoda 0.00 0.00  12.18 0.14   5.24 0.05   0.00 0.00   

Hirudinea 0.00 0.00  620.30 7.06 7.06 15.21 0.15   0.00 0.00   
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Table 15. SIMPER results of overall percent dissimilarity and taxa contributing to at least 80% of the differences in diet 
composition between sample months that were determined to be dissimilar by ANOSIM. 

Taxa 
Mean 
Abundance 
First Month 

Mean 
Abundance 
Second 
Month 

% 
Contribution 
to 
Difference 

Taxa 
Mean 
Abundance 
First Month 

Mean 
Abundance 
Second Month 

% 
Contribution 
to 
Difference 

March and May Mean dissimilarity = 81.29 March and April Mean dissimilarity = 83.97 

Diptera 8.53 1.17 61.52 Diptera 8.53 1.90 38.63 

Ephemeroptera 0.00 1.81 76.85 Amphipoda 0.50 9.07 74.46 

Amphipoda 0.50 0.36 85.11 
Unidentified 
Insecta 

0.54 2.11 88.19 

March and June Mean dissimilarity = 80.33 May and April Mean dissimilarity = 89.11 

Diptera 8.53 1.09 63.98 Amphipoda 0.36 9.07 42.63 

Ephemeroptera 0.00 1.34 76.12 
Unidentified 
Insecta 

0.33 2.11 58.57 

Unidentifiable 
Insecta 

0.54 0.48 83.74 Ephemeroptera 1.81 0.82 73.65 

May and June Mean dissimilarity = 70.23 Diptera 1.17 1.90 86.74 

Ephemeroptera 1.81 1.34 34.14 June and April Mean dissimilarity = 89.82 

Diptera 1.17 1.09 59.21 Amphipoda 0.00 9.07 41.59 

Unidentified Insecta 0.33 0.48 69.03 
Unidentified 
Insecta 

0.48 2.11 59.42 

Terrestrial 0.25 0.32 77.95 Ephemeroptera 1.34 0.82 72.45 

Amphipoda 0.36 0.00 86.88 Diptera 1.09 1.90 84.99 
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Table 16. Results from ANOSIM testing of Index of Relative Importance of prey taxa found in diet samples during each date. 
Pool elevations were as follows: 3/29/2013: 1513.6 AMSL; 4/11/2013: 1520 AMSL; 5/5/2013: 1521.3 AMSL; 5/19/2013: 
1561.3 AMSL; 6/2/2013: 1572.3 AMSL; 6/21/2013: 1588.9 AMSL (Global R=0.362, p-value = 0.001, alpha is 0.05). 
Significantly different pair-wise tests are shown in bold. 

Groups R p-value Assessment 

3/29/2013  vs. 4/11/2013  0.616 0.001 Dissimilar 

3/29/2013  vs. 5/5/2013  0.604 0.001 Dissimilar 

3/29/2013 vs. 5/19/2013 0.304 0.006 Dissimilar 

3/29/2013  vs. 6/2/2013  0.533 0.001 Dissimilar 

3/29/2013  vs. 6/21/2013  0.293 0.002 Dissimilar 

4/11/2013 vs. 5/5/2013 0.600 0.001 Dissimilar 

4/11/2013 vs. 5/19/2013 -0.043 0.600 Similar 

4/11/2013 vs. 6/2/2013 0.613 0.002 Dissimilar 

4/11/2013 vs. 6/21/2013 0.235 0.033 Dissimilar 

5/5/2013 vs. 5/19/2013 0.437 0.002 Dissimilar 

5/5/2013 vs. 6/2/2013 -0.001 0.369 Similar 

5/5/2013 vs. 6/21/2013 0.309 0.003 Dissimilar 

5/19/2013 vs. 6/2/2013 0.443 0.003 Dissimilar 

5/19/2013 vs. 6/21/2013 0.207 0.021 Dissimilar 

6/2/2013 vs. 6/21/2013 0.193 0.022 Dissimilar 
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Table 17. SIMPER results of overall percent dissimilarity and top three taxa contributing to differences in diet composition 
between sample dates for dates that were determined to be dissimilar by ANOSIM. Pool elevations are as follows:  
3/29/2013: 1513.6 AMSL; 4/11/2013: 1520 AMSL; 5/5/2013: 1521.3 AMSL; 5/19/2013: 1561.3 AMSL; 6/2/2013: 1572.3 
AMSL; 6/21/2013: 1588.9 AMSL. Only pair-wise tests with significant outcomes are shown below 

Taxa 
Mean 
Abundance 
First Date 

Mean 
Abundance 
Second Date 

% Contribution 
to Difference 

Taxa 
Mean 
Abundance 
First Date 

Mean 
Abundance 
Second Date 

% Contribution 
to Difference 

3/29/2013  vs 4/11/2013 Mean dissimilarity = 84.94 3/29/2013 vs 6/21/2013 Mean dissimilarity = 72.44 

Diptera 79.04 8.77 41.36 Diptera 79.04 23.87 40.02 

Amphipoda 8.19 41.65 23.87 Terrestrial 4.13 16.06 11.33 

Unidentifiable Insecta 7.2 16.95 12.6 Trichoptera 0.01 15.65 10.81 

3/29/2013 vs 5/5/2013 Mean dissimilarity = 79.09 4/11/2013 vs 5/5/2013 Mean dissimilarity = 72.44 

Diptera 79.04 19.36 40.96 Ephemeroptera 4.17 50.7 26.62 

Ephemeroptera 0.02 50.7 32.05 Amphipoda 41.65 0.01 23.14 

Unidentifiable Insecta 7.2 9.22 7.01 Unidentifiable Insecta 16.95 9.22 12.58 

3/29/2013 vs 5/19/2013 Mean dissimilarity = 69.36 4/11/2013 vs 6/2/2013 Mean dissimilarity = 87.56 

Diptera 79.04 28.29 41.45 Ephemeroptera 4.17 48.57 26.63 

Amphipoda 8.19 44.94 32.04 Amphipoda 41.65 0 23.78 

Terrestrial 4.13 11.31 10.37 Unidentifiable Insecta 16.95 10.37 13.46 

3/29/2013 vs 6/2/2013 Mean dissimilarity = 72.37 4/11/2013 vs 6/21/2013 Mean dissimilarity = 88.16 

Diptera 79.04 25.62 38.49 Amphipoda 41.65 0 23.62 

Ephemeroptera 0.02 48.57 33.55 Unidentifiable Insecta 16.95 11.99 13.97 

Unidentifiable Insecta 7.2 10.37 9.24 Unknown 16.67 11.11 13.65 

5/5/2013 vs 5/19/2013 Mean dissimilarity = 82.74 5/19/2013 vs 6/2/2013 Mean dissimilarity = 79.64 

Ephemeroptera 50.7 10.37 28.36 Ephemeroptera 10.37 48.57 28.72 

Amphipoda 0.01 44.94 27.15 Amphipoda 44.94 0 28.21 

Diptera 19.36 28.29 19.71 Diptera 28.29 25.62 19.07 

5/5/2013 vs 6/21/2013 Mean dissimilarity = 82.74 5/19/2013 vs 6/21/2013 Mean dissimilarity = 84.39 

Ephemeroptera 50.7 10.37 28.36 Amphipoda 44.94 0 26.62 

Amphipoda 0.01 44.94 27.15 Diptera 28.29 23.87 18.73 

Diptera 19.36 28.29 19.71 Terrestrial 11.31 16.06 13.97 

5/5/2013 vs 6/21/2013 Mean dissimilarity = 76.42 6/2/2013 vs 6/21/2013 Mean dissimilarity = 74.06 

Ephemeroptera 50.7 8 30.34 Ephemeroptera 48.57 8 30.66 

Diptera 19.36 23.87 19.2 Diptera 25.62 23.87 17.47 

Trichoptera 7.05 15.65 11.88 Trichoptera 6.49 15.65 12.58 
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Figure 1. Location of North Cascades National Park in Washington State. Ross Lake National Recreation Area (NRA) shown 
on both sides of Highway 20. (Map courtesy of National Park Service [NPS]) 
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Figure 2. Comparison of the Upper Skagit before dam construction, present condition, and with 1970 proposed high dam. 
From Anders Hopperstead Maps. 
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Figure 3. Ross Lake inundation footprint and major tributaries. Solid represent full-pool elevation and dashed line 
represents the winter low of 1475 feet above mean sea level. From Johnston, 1989. 
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Figure 4. Watershed map of four tributaries to Ross Lake. White star (and only watershed on the eastern side) = Silver 
Creek; light grey star = Hozomeen Creek; dark gray star = Dry Creek; black star = Roland Creek. Map modified from 
StreamStats, 2012. 
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Figure 5. Roland Creek watershed boundary (StreamStats, 2012). 

 

Figure 6. Dry Creek watershed boundary (StreamStats, 2012). 
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Figure 7. Hozomeen Creek watershed boundary (StreamStats, 2012). 
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Figure 8. Silver Creek watershed boundary (StreamStats, 2012). 

 

 

Figure 9. Ross Lake Level during season. Sampling season began March 29, 2013 and ended June 21, 2013. 
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Figure 10. Additional creek exposed during low pool elevation periods based on GPS tracking during the initial site visit at 
each creek. 
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Figure 11. Log10+1 sum of individuals by order collected during benthic macroinvertebrate sampling (n=3,645). Ephemeroptera was most abundant at 1505 individuals 
(41% of total) across all sampling events. 
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Figure 12. Log10+1 sum of individuals by family collected during benthic macroinvertebrate sampling (n=3,645). Chironomidae (order Diptera) was most abundant at 901 
individuals across all sampling events.  
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Figure 13. Mean number of benthic macroinvertebrates by site. Vertical lines represent standard error. 

 

  

Figure 14. Bray/Curtis presence/absence of Benthic Macroinvertebrates across all sample events and sites. Sampling at Dry 
Creek and Roland Creek occurred on March 29 (except Dry Creek), May 5, and June 2. Sampling at Hozomeen Creek 
occurred on April 11, May 19, and June 21.  
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Figure 15. Bray-Curtis similarity plot for all benthos samples by stream reach. Letter indicates sample site (H= Hozomeen; 
D= Dry; R= Roland) and number denotes reach. Lowest reach: 1; lowest reach on second visit when reach 1 was inundated: 
1.5; middle reach below full-pool: 2; upper reach above full-pool: 3; above full-pool reach: 4. 

 

 

Figure 16. Bray-Curtis similarity plot for all benthos samples by stream and pool elevation. 
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Figure 17. Frequency of occurrence of prey items to the lowest possible taxa from all fish (n=65). Unidentified represents 
insects unidentified to the Class Insecta level.  Unknown represents those organisms unidentifiable even to the class level 
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Figure 18. Percent frequency of occurrence of major food items for all diets sampled by month and site to lowest taxa.  
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Figure 19. Major food items of Ross Lake juvenile trout by species. Food items are presented as percent of Index of Relative 
Importance (% IRI) for each site. Only those taxa considered major (% IRI greater than 5%) are presented so results will not 
always total 100%. 

 

Figure 20. Multi-dimensional Scaling (MDS) of mean % IRI. Light blue square represents Hozomeen Creek, right-side up 
green triangle represents Dry Creek, and upside down dark blue triangle represents Roland Creek. 
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Figure 21. Major food items of Ross Lake juvenile trout by site. Food items are presented as percent of Index of Relative 
Importance (% IRI) for each site. Only those taxa considered major (% IRI greater than 5%) are presented so results will not 
always total 100%. 
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Figure 22. Major food items of juveniles in Ross Lake by month. Food items are presented as percent of Index of Relative 
Importance (% IRI) for each month. Only those taxa considered major (% IRI greater than 5%) are presented so results will 
not always total 100%. 
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Figure 23. Major food items of Ross Lake juvenile trout by pool elevation. All elevations are reflected as feet above mean 
sea level. Food items are presented as percent of Index of Relative Importance (% IRI) for each site. Only those taxa 
considered major (% IRI greater than 5%) are presented so results will not always total 100%. 

 

Figure 24. Mean instantaneous ration per fish by species. Vertical lines represent standard error.  
BRK= Brook Trout, CHAR = Native Char, RBT = Rainbow Trout, and CUT = Cutthroat Trout. 
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Figure 25. Mean number of prey items (invertebrates) in each fish stomach by species. Vertical lines represent standard 
errors.  BRK= Brook Trout, CHAR = Native Char, RBT = Rainbow Trout, and CUT = Cutthroat Trout.  

 

 

Figure 26. Mean instantaneous ration for all species by month. Vertical lines represent standard error.  
BRK= Brook Trout, CHAR = Native Char, RBT = Rainbow Trout, and CUT = Cutthroat Trout. 
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Figure 27. Mean number of benthic macroinvertebrates from March to June 2013. Vertical lines represent standard error. 
Samples collected in March at Dry Creek were not included in this analysis. 

 

 

Figure 28. Mean instantaneous ration per individual fish by month. Vertical lines represent standard errors.  
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Figure 29. Mean number of prey items (invertebrates) in fish stomachs from March to June 2013. Vertical lines represent 
standard errors. March: n=10; April: n=6; May: n=23; June: n=26. 

 

Figure 30. Mean number of benthic macroinvertebrates at each site. Vertical lines represent standard error. Samples 
collected in March at Dry Creek were not included in this analysis. 
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Figure 31. Mean instantaneous ration per fish by site. Vertical lines represent standard error. 

 

 

Figure 32. Mean number of prey items (invertebrates) in fish stomachs at each site. Vertical lines represent standard errors. 
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Figure 33. Mean instantaneous ration for all sites by month for the sampling period March through June at Ross Lake. 
Vertical lines represent standard error. 
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Figure 34. Amundensun et al (1996) modification to the Costello graph (1990) that graphically 
explains feeding strategy and prey importance. BPC = between-phenotype; WPC = within-phenotype. 
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Figure 35. Costello graphs denoting feeding strategy of all fish sampled at a given site, according to modifications in 
Amunendson et al (1996). 
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Figure 36. Costello graphs denoting feeding strategy of all fish sampled during a given month, according to modifications in 
Amundenson et al (1996). 
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Figure 37. Total abundance of taxa collected in the diet and environment. A. Total relative abundance of major taxa (% IRI> 
5), excluding unknown invertebrates. B. Log of all orders collected. 

B 
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Figure 38. Bray-Curtis clustering on presence/absence of invertebrates found in stomach (Diet) and kick-net samples (BMI) 
for each site. 
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Figure 39. Bray-Curtis clustering on presence/absence of macroinvertebrates found in stomach (diet) and kick-net samples 
(BMI) for each month. 



99 

 

 

Figure 40. Bray-Curtis clustering on presence/absence of macroinvertebrates found in stomach (diet; D) and kick-net 
samples (BMI) for each pool elevation. Elevations are shown following a B for benthos or D for diet samples and are in feet 
above mean sea-level. 
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Figure 41. Dry Creek survey of potential barriers and spawning gravel from Ross Lake Tributary Stream Catalog (Seattle City 
Light, 1989). 

 

 

 



101 

 

 

Figure 42. Hozomeen Creek survey of potential barriers and spawning gravel from Ross Lake Tributary Stream Catalog 
(Seattle City Light, 1989). Although they note 3,294 sq. feet of spawning gravel below full pool, field notes suggest this is 
marginal at best as the majority of the area was silty with 1-2 inches of deposition in a month. 

 

Figure 43. Roland Creek survey of potential barriers and spawning gravel from Ross Lake Tributary Stream Catalog (Seattle 
City Light, 1989). 
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