## APPENDIX A – FACILITIES EVALUATED BY REID MIDDLETON

**Building and Other Structures** 

- August Pump Station and Gatehouse
- Boulevard Park Well and Chlorination Building
- Broadway Pump Station and Chlorination Building
- Burien Pump Station
- First Hill Pump Station
- Highland Park Pump Station
- Lake Youngs Pump Station (new)
- Lake Youngs Treatment Plant
  - Operations Building
  - Lake Youngs Intake and Raw Water Pump Station
  - o Lake Youngs Ozone Generation and Injection Building
  - o UV and Chemical Building
- Landsburg Tunnel Gatehouse
- Maple Leaf P.S. and Gatehouse
- Operations and Control Center
  - Administration Building (OCC)
  - Warehouse (OCC)
  - Flammable Liquid Storage (OCC)
  - Pipe Carpentry Shop (OCC)
  - Vehicle Maintenance Bldg (OCC)
  - Meter Shop (OCC)
- Riverton Well and Chlorination Building
- Tolt Filtration Plant:
  - o Administration Building
  - Filter Gallery
  - Ozone Room/Contact Tank
- Warren Avenue Pump Station
- West Seattle Pump Station

### Concrete and Earthen Reservoirs

- Eastside
- Lake Forest Park
- Lake Youngs Clearwells (North and South)
- Lincoln Reservoir
- Magnolia Reservoir
- Riverton Heights
- Soos North
- Soos South
- Tolt Clearwell
- View Ridge

Ground-Supported and Elevated Steel Tanks

- Charleston Standpipe
- Control Works Tanks (North and South)
- Foy Standpipe
- Richmond Highland #2 Elevated Tank
- Trenton Tanks (North and South)
- Trenton Tank South

# **APPENDIX B – HYDRAULIC MODELING RESULTS**

## M7.0 Seattle Fault Zone Base Case (No Improvements) Hydraulic Modeling Results



#### Seattle Fault Seismic Event

Base No system modifications

#### Model Results

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 250,512                      | 230,344               | 20,168                    | 71%                             | 232.1                            |
| 3             | 228,115                      | 211,496               | 16,619                    | 62%                             | 186.3                            |
| 12            | 178,256                      | 164,131               | 14,126                    | 45%                             | 77.7                             |
| 16            | 54,565                       | 50,885                | 3,680                     | 7%                              | 40.8                             |
| 22            | 24,329                       | 23,595                | 734                       | 4%                              | 15.4                             |
| 32            | 21,286                       | 21,286                | -                         | 3%                              | 3.7                              |
| 48            | -                            | -                     | -                         | 2%                              | 0.5                              |

#### Model Regions Forced Out of Service During Simulation

**S**1

S2

S3

S4

Time Region

3

15

21

32

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

2. System Positive Pressure based on number of junctions above 0 psi

3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm

4. Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

| del Results Figur | re Index     |               |               |               |
|-------------------|--------------|---------------|---------------|---------------|
| Fig. 1 Hr O       | Fig. 5 Hr 8  | Fig. 9 Hr 16  | Fig. 13 Hr 24 | Fig. 17 Hr 40 |
| Fig. 2 Hr 2       | Fig. 6 Hr 10 | Fig. 10 Hr 18 | Fig. 14 Hr 28 | Fig. 18 Hr 44 |
| Fig. 3 Hr 4       | Fig. 7 Hr 12 | Fig. 11 Hr 20 | Fig. 15 Hr 32 | Fig. 19 Hr 48 |
| Fig. 4 Hr 6       | Fig. 8 Hr 14 | Fig. 12 Hr 22 | Fig. 16 Hr 36 |               |



Areas Map Original.mxd 2/1/2018 2:28:31 PM







































# M9.0 Cascadia Subduction Zone Base Case (No Improvements) Hydraulic Modeling Results



#### **Cascadia Seismic Event**

Base No system modifications

#### **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Satisfied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|----------------------------|---------------------------------|----------------------------------|
| 0             | 236,361                      | 214,034               | 22,326                     | 77%                             | 270.8                            |
| 3             | 228,503                      | 206,337               | 22,166                     | 76%                             | 228.4                            |
| 12            | 182,743                      | 164,714               | 18,029                     | 60%                             | 118.7                            |
| 17            | 106,508                      | 94,253                | 12,255                     | 31%                             | 61.1                             |
| 22            | 20,590                       | 20,590                | -                          | 2%                              | 39.5                             |
| 32            | -                            | -                     | -                          | 2%                              | 38.6                             |
| 48            | -                            | -                     | -                          | 2%                              | 38.6                             |

#### Model Regions Forced Out of Service During Simulation

| Service During Simul |        |  |  |
|----------------------|--------|--|--|
| Time                 | Region |  |  |
| 16                   | C1     |  |  |
| 17                   | C3     |  |  |
| 20                   | C2     |  |  |

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

- 2. System Positive Pressure based on number of junctions above 0 psi
- 3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

| Fig. 1 | Hr O | Fig. 5 | H <b>r 8</b>  | Fig. 9  | Hr 16 |
|--------|------|--------|---------------|---------|-------|
| Fig. 2 | Hr 2 | Fig. 6 | Hr 10         | Fig. 10 | Hr 18 |
| Fig. 3 | Hr 4 | Fig. 7 | Hr 12         | Fig. 11 | Hr 20 |
| Fig. 4 | Hr 6 | Fig. 8 | H <b>r</b> 14 | Fig. 12 | Hr 22 |

Fig. 13 Hr 24



Sacrificial Areas Map.mxd 2/14/2018 1:03:37 PM Varcadis-us e. Mapmvln City: Seattle, VA Created By: bchenevey Service Laver Credits: Esri, HERE, DeLorm



dia\SSRA Cascadia Min Day 168hrs 092817 gpm res.mxd 2/14/2018 12:50:26 PM Cay: Seattle, WA Created By: Luhanevey G: PROJECTS:13338-SeattlePublicUtilities Service Layer Credits: Earl, HERE, DeLome, MapmyIndia, @ OpenStreetMap contribu



lia\SSRA\_Cascadia\_Min\_Day\_168hrs\_092817\_gpm\_res.mxd 2/14/2018 12:50:26 PM City: Seattle, WA Created By: bohenevey G:VPROJECTSV13338-SeattlePublicUti Service Laver Credits: Estri. HERE: DoLorne. MapmvIndia. @ OpenStreetMap.con



Ony Search, W. Chrand By Lehonevy. 01990;EC181323:6arth-DairUMBins, WWOY-SciencisUnMode0301 Character SSRA, Caracter, Mar. Day. 168/nr, 062/817, gpm. rax.mud 21/4/2018 15 5026 PM Service Layer Clearls: Early FERE, Deloner: Marry Victit, O. Ope-StimeRollo contribution, and the GS to second a



Chysteadia, W. Created By Lehonevy. 01960.6C181323.6amLPaix.04Billion. WWOF.55Amlock03018.Caacadia.SSAM\_Caacadia, J.M., Day\_1681vr\_2621817.3pm\_ran.mud.214.2018.12.502.6 PM Service Layer Cleadis, Early FERE, Deloneve, Marphyridia, D.Ope-Shreadibo, sont Doloneve, and New Science 2014



Chysteadia, W. Created By Lehonevy. 01960.6C181323.6amLPaix.04Billion. WWOF.55Amlock03018.Caacadia.SSAM\_Caacadia, J.M., Day\_1681vr\_2621817.3pm\_ran.mud.214.2018.12.502.6 PM Service Layer Cleadis, Early FERE, Deloneve, Marphyridia, D.Ope-Shreadibo, sont Doloneve, and New Science 2014



Chysteadia, W. Created By Lehonevy. 01960.6C181323.6amLPaix.04Billion. WWOF.55Amlock03018.Caacadia.SSAM\_Caacadia, J.M., Day\_1681vr\_2621817.3pm\_ran.mud.214.2018.12.502.6 PM Service Layer Cleadis, Early FERE, Deloneve, Marphyridia, D.Ope-Shreadibo, sont Doloneve, and New Science 2014



SSRA\_Cascadia\_Min\_Day\_168hrs\_092817\_gpm\_res.mxd 2/14/2018 12:50:26 PM City: Seattle, WA Created By: bchenevey G: PROJECTS:13338-SeattlePublik. Service Layer Credits: Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap co



SSRA\_Cascadia\_Min\_Day\_168hrs\_092817\_gpm\_res.mxd 2/14/2018 12:50:26 PM City: Seattle, WA Created By: bohenevey G: PROJECTS113335.5eartlePublicU Service Layer Credits: Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap co



ISSRA\_Cascadia\_Min\_Day\_168/ns\_092817\_gpm\_ras.rmd 2/14/2018 12:50:26 PM City South, W. Croated Br. tohonevey. G/PROJECT513338 South-UniteDitities\_UW001 Service Layer Oreclas: Emi, HERE, DeLorner, Magny-India, D.Ope-SheetMap contributos, and



ISSRA\_Cascadia\_Min\_Day\_168/ns\_092817\_gpm\_ras.rmd 2/14/2018 12:50:26 PM City South, W. Croated Br. tohonevey. G/PROJECT513338 South-UniteDitities\_UW001 Service Layer Oreclas: Emi, HERE, DeLorner, Magny-India, D.Ope-SheetMap contributos, and


Cascadia\_Min\_Day\_168hrs\_092817\_gpm\_ros.mxd 2/14/2018 12:50:26 PM ARA City: Soattle, WA Created By: behanevery G:/PROJECTS/13338-Seattlef Service Layer-Credits: Esrl, HERE, DeLorme, MapmyIndia, & OpenStreet



adia/SSRA\_Cascadia\_Min\_Day\_168hrs\_092817\_gpm\_res.mxd 2/14/2018 12:50:26 PM City: Seattle, WA Created By: Lochenevey G:PROJECTS:13338-SeattlePublicUtilities\_WA/001-Seismi Service Layer Credits: Exit, HERE, DeLorme, MapmyIndia; © OpenStreeMlep contributors, and the GIS



adia/SSRA\_Cascadia\_Min\_Day\_168hrs\_092817\_gpm\_res.mxd 2/14/2018 12:50:26 PM City: Seattle, WA Created By: Lochenevey G:PROJECTS:13338-SeattlePublicUtilities\_WA/001-Seismi Service Layer Credits: Exit, HERE, DeLorme, MapmyIndia; © OpenStreeMlep contributors, and the GIS

# M7.0 Seattle Fault Zone Case 1 (20 Year Improvements) Hydraulic Modeling Results



1/26/2018

# Seattle Fault Seismic Event

 $\textbf{Case 1} \hspace{0.1 cm} \textbf{Isolation and Control and Most-Critical Facility Upgrades}$ 

Some facilities shown below are now functional Assume that certain emitters are now zero and that certain areas are automatically isolated to prevent leakage

In Service Storage Eastside Reservoir Magnolia Bluff Elevated Tank Magnolia Reservoir Riverton Heights Reservoir

| In Service Facilities |
|-----------------------|
| Lincoln PS            |
| Broadway PS           |
| Spokane Street PS     |
| West Seattle PS       |

## Model Results

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 139,011                      | 112,189               | 26,823                    | 80%                             | 287.2                            |
| 3             | 125,861                      | 99,889                | 25, <del>9</del> 72       | 78%                             | 264.3                            |
| 12            | 114,374                      | 89,685                | 24,689                    | 73%                             | 201.1                            |
| 22            | 39,026                       | 31,588                | 7,437                     | 15%                             | 140.0                            |
| 32            | 38,730                       | 31,292                | 7,437                     | 15%                             | 108.0                            |
| 48            | 14,716                       | 10,501                | 4,215                     | 11%                             | 66.8                             |

# Model Regions Forced Out of Service During Simulation

| Time | Region |
|------|--------|
| 1    | S10    |
| 16   | S6     |
| 22   | S2     |
| 45   | S8     |
| 47   | S4     |

## Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

2. System Positive Pressure based on number of junctions above 0 psi

3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm

 Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

### Model Results Figure Index

| Fig. 1.1 Hr 0 | Fig. 1.5 Hr 8  | Fig. 1.9 Hr 16  | Fig. 1.13 Hr 24 | Fig. 1.17 Hr 40 |
|---------------|----------------|-----------------|-----------------|-----------------|
| Fig. 1.2 Hr 2 | Fig. 1.6 Hr 10 | Fig. 1.10 Hr 18 | Fig. 1.14 Hr 28 | Fig. 1.18 Hr 44 |
| Fig. 1.3 Hr 4 | Fig. 1.7 Hr 12 | Fig. 1.11 Hr 20 | Fig. 1.15 Hr 32 | Fig. 1.19 Hr 48 |



Areas Map.mvd 1/25/2018 4:30:20 PM /ey\_GNPROJECTS/ orme\_MapmyIndia bchener DC Do













Chr. Stentle, UM. Oreated By: bohenerery. C: Ubers/DMann/Deskrop/Sentle/SSRA, SFZ, Min. Day, 188hrs. 011118. gpm\_ner.md 11122018 12:09:46 PM Service Layer Credits: Est, HERE, DeLorme, Magmyinda, & OpenStreeMap.com/bullors. and the GIS test community.







nr/Desktop/Seartile/SSRA\_SF2\_Min\_Dey\_168Nrs\_011118\_gpm\_res.mxd 1/12/2018 12:09:46 PM , © OpenStreetMap contributions, and the GIS user community























is/SSRA\_SFZ\_Min\_Day\_168hrs\_011118\_gpm\_res.mxd 1/22/2018 8:38:19 AM Varce City: Seattle, V/A Created By: bchenevey Service Laver Credits: Esri: HERE. DeLom

# M7.0 Seattle Fault Zone Case 2 (50 Year Improvements) Hydraulic Modeling Results



# Seattle Fault Seismic Event

Case 2 Isolation and Control and All Critical Facility Upgrades

Cedar River Pipeline #2 Functional and West Seattle Pipeline Functional

Assume that certain emitters are now zero and

that certain areas are automatically isolated to

prevent leakage

All facilities shown below are now functional

| In Service Storage           |
|------------------------------|
| Eastside Reservoir           |
| Magnolia Bluff Elevated Tank |
| Magnolia Reservoir           |
| Riverton Heights Reservoir   |
| Beverly Park Elevated Tank   |
| Charlestown Standpipe        |
| Foy Standpipe                |
| View Ridge Reservoir         |
| Volunteer Park Standpipe     |

| In Service Facilities |
|-----------------------|
| Lincoln PS            |
| Broadway PS           |
| Spokane Street PS     |
| West Seattle PS       |
| Trenton PS            |
| Augusta PS            |
| Fairwood PS           |

### Model Results

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 166,493                      | 135,655               | 30,838                    | 90%                             | 294.3                            |
| 3             | 153,225                      | 122,708               | 30,517                    | 90%                             | 273.6                            |
| 12            | 139,924                      | 109,922               | 30,002                    | 86%                             | 219.7                            |
| 22            | 133,403                      | 104,028               | 29,375                    | 83%                             | 162.6                            |
| 32            | 89,645                       | 69,424                | 20,222                    | 56%                             | 119.8                            |
| 48            | 50,748                       | 34,795                | 15,954                    | 48%                             | 87.0                             |

## Model Regions Forced Out of

Service During Simulation

| Time | Region     |
|------|------------|
| 22   | S7         |
| 24   | S11        |
| 27   | S6         |
| 47   | S4         |
| 47   | <b>S</b> 8 |

### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

2. System Positive Pressure based on number of junctions above 0 psi

3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm

 Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

## Model Results Figure Index

| Fig. 2.1 | Hr 0 Fig. 2.5 | Hr 8 Fig. 2               | 2.9 Hr 16 Fi  | ig. 2.13 Hr 24 | Fig. 2.17 Hr 40 |
|----------|---------------|---------------------------|---------------|----------------|-----------------|
| Fig. 2.2 | Hr 2 Fig. 2.6 | Hr 10 <sup>;</sup> ig. 2. | 10 Hr 18 🛛 Fi | ig. 2.14 Hr 28 | Fig. 2.18 Hr 44 |
| Fig. 2.3 | Hr 4 Fig. 2.7 | Hr 12 <sup>;</sup> ig. 2. | 11 Hr 20 🛛 Fi | ig. 2.15 Hr 32 | Fig. 2.19 Hr 48 |
| Fig. 2.4 | Hr 6 Fig. 2.8 | Hr 14 <sup>;</sup> ig. 2. | 12 Hr 22 Fi   | ig. 2.16 Hr 36 |                 |



Seis as/001 City: Seattle, WA. Created By: bchenevey. G:VPROJECTSN13335.Seattlef Service Layer Credits: Esri, HERE, DeLorme, Macmylindia, @ OpenStreett
































































# M7.0 Seattle Fault Zone Case 3 (20 Year Improvements Plus Roosevelt and Volunteer Park Reservoirs Online) Hydraulic Modeling Results



## Seattle Fault Seismic Event

Case 3 Same as Case 1

Roosevelt and Volunteer Park Reservoir are Functional

| In Service Storage           |
|------------------------------|
| Eastside Reservoir           |
| Magnolia Bluff Elevated Tank |
| Magnolia Reservoir           |
| Riverton Heights Reservoir   |
| Roosevelt Reservoir          |
| Volunteer Park Reservoir     |

In Service Facilities Lincoln PS Broadway PS Spokane Street PS West Seattle PS

### **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 149,899                      | 121,992               | 27,907                    | 90%                             | 340.7                            |
| 3             | 149,243                      | 121,992               | 27,251                    | 90%                             | 316.0                            |
| 12            | 128,219                      | 101,479               | 26,740                    | 86%                             | 248.1                            |
| 22            | 91,632                       | 72,635                | 18,997                    | 66%                             | 181.3                            |
| 32            | 59,312                       | 45,916                | 13,397                    | 45%                             | 125.0                            |
| 48            | 18,994                       | 12,378                | 6,616                     | 17%                             | 80.1                             |

## Model Regions Forced Out of Service During Simulation

| Time | Region |
|------|--------|
| 1    | S10    |
| 16   | S6     |
| 31   | S2     |
| 38   | 58     |

### Model Simulation Notes

- 1. Satisfied Demands assume junction pressure greater than 0 psi
- 2. System Positive Pressure based on number of junctions above 0 psi
- 3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

## Model Results Figure Index

| Fig. 3.1 | Hr O         | Fig. 3.5 | Hr 8          |
|----------|--------------|----------|---------------|
| Fig. 3.2 | Hr 2         | Fig. 3.6 | Hr 10         |
| Fig. 3.3 | H <b>r</b> 4 | Fig. 3.7 | Hr 12         |
| Fig. 3.4 | Hr 6         | Fig. 3.8 | H <b>r</b> 14 |

| Fig. 3.9  | Hr 16 | Fig. 3.13 | Hr 24 | Fig. 3.17 | Hr 40 |
|-----------|-------|-----------|-------|-----------|-------|
| Fig. 3.10 | Hr 18 | Fig. 3.14 | Hr 28 | Fig. 3.18 | Hr 44 |
| Fig. 3.11 | Hr 20 | Fig. 3.15 | Hr 32 | Fig. 3.19 | Hr 48 |
| Fig. 3.12 | Hr 22 | Fig. 3.16 | Hr 36 |           |       |



xd 1/25/2018 4:30:20 PM Seattle, WA Created By: bothenevey G:VPROJECTS13 toe Layer Credits: Esri, HERE, DeLorme, MapmyIndia, ©



Chr: Seallite, WA. Created By: buthanney: C.Ubens/Deatrub/SSRA SFZ, Min. Day. 168/us. 011918, gpm. res. mod 1:192018 8:49:51 AM Service Layer Credits: Esri HERE. DeLorme, MapmyIndia, @ OpenStreeMap contributios, and the GIS user community.











































# M7.0 Seattle Fault Zone Case 4 (50 Year Improvements Plus Roosevelt and Volunteer Park Reservoirs Online) Hydraulic Modeling Results



2/2/2018

## Seattle Fault Seismic Event

Case 4 Same as Case 2 Roosevelt and Volunteer Park Reservoir are Functional

- In Service Storage Eastside Reservoir Magnolia Bluff Elevated Tank Magnolia Reservoir Riverton Heights Reservoir Beverly Park Elevated Tank Charlestown Standpipe Foy Standpipe View Ridge Reservoir Volunteer Park Standpipe Roosevelt Reservoir Volunteer Park Reservoir
- In Service Facilities Lincoln PS Broadway PS Spokane Street PS West Seattle PS Trenton PS Augusta PS Fairwood PS

### Model Results

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 172,157                      | 141,232               | 30,926                    | 92%                             | 347.8                            |
| 3             | 159,710                      | 128,809               | 30,901                    | 91%                             | 325.8                            |
| 12            | 150,350                      | 11 <b>9</b> ,736      | 30,614                    | 89%                             | 266.9                            |
| 22            | 138,135                      | 108,736               | 29,399                    | 86%                             | 205.1                            |
| 32            | 129,636                      | 102,448               | 27,187                    | 82%                             | 149.7                            |
| 48            | 68,790                       | 48,462                | 20,328                    | 62%                             | 91.5                             |

## Model Regions Forced Out of Service Durina Simulation

| Service During Simula |        |  |  |
|-----------------------|--------|--|--|
| Time                  | Region |  |  |
| 13                    | S7     |  |  |
| 24                    | S11    |  |  |
| 27                    | S6     |  |  |
| 47                    | S4     |  |  |
| 47                    | S8     |  |  |

Fig. 4.1 Hr 0 Fig. 4.2 Hr 2 Fig. 4.3 Hr 4 Fig. 4.4 Hr 6

#### Model Simulation Notes

- 1. Satisfied Demands assume junction pressure greater than 0 psi
- 2. System Positive Pressure based on number of junctions above 0 psi
- 3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

### Model Results Figure Index

| Fig. 4.5 H | r 8 Fig. 4    | .9 Hr 16 | Fig. 4.13 | H <b>r 2</b> 4 | Fig. 4.17 | Hr 40         |
|------------|---------------|----------|-----------|----------------|-----------|---------------|
| Fig. 4.6 H | r 10 Fig. 4.1 | 0 Hr 18  | Fig. 4.14 | Hr 28          | Fig. 4.18 | Hr 44         |
| Fig. 4.7 H | r 12 Fig. 4.  | 11 Hr 20 | Fig. 4.15 | Hr 32          | Fig. 4.19 | H <b>r</b> 48 |
| Fig. 4.8 H | r 14 Fig. 4.1 | 2 Hr 22  | Fig. 4.16 | Hr 36          |           |               |



xd 1/25/2018 4:30:20 PM Seattle, WA Created By: bothenevey G:VPROJECTS13 toe Layer Credits: Esri, HERE, DeLorme, MapmyIndia, ©



Clip: Seallle, VM. Created Br. Ichinerover, C.;UleersDMann/Desktop/Seatlab/SSRA, S.FZ. Min, Day. 168lins. 01918. gpm. ins.mnd. 11/9/2018.8:45:51 AM Service Layer Creatils: Earl. HERE., DeLome, Magnifindia, & OxyenStereRap.combutions, and the GK user community.



City: Seallite, WA. Created By: bichanevey: C'Ubers/Dikarn/Desktop/SSRA, SFZ, Min, Day. 168/us. 011918, gpm. res.md 1/19/2018 8:48:51 AM Service Layer Creatist: Esti HERE, DeLorme, MatpmyIndia, @OpenStreeMap contributios, and the GIS user community



CMr: Searllo, WA Created By: buckenewy C:\Users\DMannUsektopiSearllo\SSRA SFZ Min Day 1681ns 011918 gmn ins mud 1/19/2018 8:43-51 AM Service Layer Credits: Earl, HERE, DeLorme, MapmyIndia, @ OpenStreeMap contributors, and the GIS user community



CMr: Searllo, WA Created By: buckenewy C:\Users\DMannUsektopiSearllo\SSRA SFZ Min Day 1681ns 011918 gmn ins mud 1/19/2018 8:43-51 AM Service Layer Credits: Earl, HERE, DeLorme, MapmyIndia, @ OpenStreeMap contributors, and the GIS user community


City: Seallie, VM. Created Br. behaneney. C:\UsersDMann/Desktop/Seatlay/SEAL.SFZ. Min. Day. 168Ins. 01918. gpm. ises mod. 119/2018.8:45:51 AM Service Layer Creatis: Earl HERE. DeLome. Magnifindia, © OperSteedRap contributios: and the GSI user community.

























s/DMann/Desktop/Seattle/SSRA SFZ Min Day 168hits 011918 gpm res.mxd 1/19/2018 8:48:51 AM m/india. @ OpenStreeMap contributors. and the GIS user community. City: Seattle, WA Created By: bchenevey C:User Service Layer Credits: Esri, HERE, DeLorme, Mapr



s/DMann/Desktop/Seattle/SSRA SFZ Min Day 168hits 011918 gpm res.mxd 1/19/2018 8:48:51 AM m/india. @ OpenStreeMap contributors. and the GIS user community. City: Seattle, WA Created By: bchenevey C:User Service Layer Credits: Esri, HERE, DeLorme, Mapr



City: Seallie, VM. Created Br. behaneney. C:\UsersDMann/Desktop/Seatlay/SEAL.SFZ. Min. Day. 168Ins. 01918. gpm. ises mod. 119/2018.8:45:51 AM Service Layer Creatis: Earl HERE. DeLome. Magnifindia, © OperSteedRap contributios: and the GSI user community.



City: Seallie, VM. Created Br. behaneney. C:\UsersDMann/Desktop/Seatlay/SEAL.SFZ. Min. Day. 168Ins. 01918. gpm. ises mod. 119/2018.8:45:51 AM Service Layer Creatis: Earl HERE. DeLome. Magnifindia, © OperSteedRap contributios: and the GSI user community.

# M7.0 Seattle Fault Zone Case 5 (No Improvements Except Cedar Transmission System is Assumed to be Functional) Hydraulic Modeling Results



## Seattle Fault Seismic Event

Case 5 Same as "Base" case CRPL #1, #2, #3 are Functional

### **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 329,851                      | 303,593               | 26,259                    | 92%                             | 251.1                            |
| 3             | 326,218                      | 289,682               | 36,535                    | 82%                             | 210.5                            |
| 12            | 261,364                      | 240,666               | 20,698                    | 69%                             | 123.9                            |
| 22            | 218,461                      | 200,709               | 17,752                    | 66%                             | 56.9                             |
| 32            | 214,803                      | 197,800               | 17,003                    | 64%                             | 26.1                             |
| 48            | 180,543                      | 164,584               | 15, <del>9</del> 58       | 60%                             | 16.5                             |

## Model Regions Forced Out of

**\$**5

Service During SimulationTimeRegion3\$132\$4

35

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

2. System Positive Pressure based on number of junctions above 0 psi

3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm

 Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

| Fig. 5.1 | Hr 0 Fig. 5.5 | Hr 8    | Fig. 5.9 Hr :  | 16 Fig. 5.13 | Hr 24 F | <sup>:</sup> ig. 5.17 | Hr 40         |
|----------|---------------|---------|----------------|--------------|---------|-----------------------|---------------|
| Fig. 5.2 | Hr 2 Fig. 5.6 | Hr 10 I | Fig. 5.10 Hr : | 18 Fig. 5.14 | Hr 28 F | ig. 5.18 <sup>:</sup> | H <b>r</b> 44 |
| Fig. 5.3 | Hr 4 Fig. 5.7 | Hr 12 I | Fig. 5.11 Hr : | 20 Fig. 5.15 | Hr 32 F | ig. 5.19              | Hr 48         |
| Fig. 5.4 | Hr 6 Fig. 5.8 | Hr 14 I | Fig. 5.12 Hr 3 | 22 Fig. 5.16 | Hr 36   | -                     |               |



il.mxd 2/1/2018 2:26:31 PM Man






































M7.0 Seattle Fault Zone Case 6 (No Improvements Except Cedar Transmission System is Assumed to be Functional and Damage Isolation Systems Have Been Installed) Hydraulic Modeling Results



# Seattle Fault Seismic Event

Case 6 Same as Case 5

Assume that certain emitters are now zero and that certain areas are automatically isolated to prevent leakage

### **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 145,539                      | 121,380               | 24,159                    | 88%                             | 232.1                            |
| 3             | 142,811                      | 118,735               | 24,076                    | 88%                             | 217.3                            |
| 12            | 126,254                      | 107,476               | 18,778                    | 75%                             | 182.6                            |
| 22            | 120,986                      | 102,368               | 18,618                    | 73%                             | 149.1                            |
| 32            | 120,437                      | 101,820               | 18,618                    | 73%                             | 119.2                            |
| 48            | 100,569                      | 82,773                | 17,796                    | 70%                             | 85.2                             |

Model Regions Forced Out of

| Service During Simulation |        |  |  |  |  |  |
|---------------------------|--------|--|--|--|--|--|
| Time                      | Region |  |  |  |  |  |
| 6                         | S1     |  |  |  |  |  |
| 38                        | \$8    |  |  |  |  |  |

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

- 2. System Positive Pressure based on number of junctions above 0 psi
- 3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

| Fig. 6.1 | Hr O         | Fig. 6.5 | H <b>r 8</b> | Fig. 6.9  | Hr 16         | Fig. 6.13 | Hr 24 | Fig. 6.17 | Hr 40         |
|----------|--------------|----------|--------------|-----------|---------------|-----------|-------|-----------|---------------|
| Fig. 6.2 | Hr 2         | Fig. 6.6 | Hr 10        | Fig. 6.10 | H <b>r</b> 18 | Fig. 6.14 | Hr 28 | Fig. 6.18 | H <b>r</b> 44 |
| Fig. 6.3 | H <b>r</b> 4 | Fig. 6.7 | Hr 12        | Fig. 6.11 | Hr 20         | Fig. 6.15 | Hr 32 | Fig. 6.19 | Hr 48         |
| Fig. 6.4 | Hr 6         | Fig. 6.8 | Hr 14        | Fig. 6.12 | Hr 22         | Fig. 6.16 | Hr 36 |           |               |



5 Map.mxd 1/25/2018 4:30:20 PM -Seisn and th City: Seattle, WA Created By: bohenevey G:/PROJECTS/1 Service Laver Credits: Esri, HERE, DeLorme, Macminidia, 5



































































Chy: Sealle, WA Created By: bothenevery C:USers/DMann/Destrop/Seathol/SSR4\_SF2\_Min\_Day\_168/hrs\_011918\_gpm\_res.mxd 1/19/2018 8:48:51 AM Service Layer Credits: Ear, HERE, DeLorme, Magnyindia, @ DencShoeMap contributions, and the GIS user community



Chy: Sealle, WA Created By: bothenevery C:USers/DMann/Destrop/Seathol/SSR4\_SF2\_Min\_Day\_168/hrs\_011918\_gpm\_res.mxd 1/19/2018 8:48:51 AM Service Layer Credits: Ear, HERE, DeLorme, Magnyindia, @ DencShoeMap contributions, and the GIS user community



Chy: Sealle, WA Created By: bothenevery C:USers/DMann/Destrop/Seathol/SSR4\_SF2\_Min\_Day\_168/hrs\_011918\_gpm\_res.mxd 1/19/2018 8:48:51 AM Service Layer Credits: Ear, HERE, DeLorme, Magnyindia, @ DencShoeMap contributions, and the GIS user community

# M7.0 Seattle Fault Zone Case 7 (No Improvements Except Tolt Transmission System is Assumed to be Functional) Hydraulic Modeling Results



# Seattle Fault Seismic Event

Case 7 Same as "Base" case **Tolt Pipelines are Functional** 

# **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 250,512                      | 230,344               | 20,168                    | 71%                             | 232.1                            |
| 3             | 228,068                      | 211,560               | 16,508                    | 60%                             | 188.7                            |
| 12            | 178,531                      | 164,405               | 14,126                    | 45%                             | 87.1                             |
| 22            | 53,577                       | 49,897                | 3,680                     | 7%                              | 34.4                             |
| 32            | 50,317                       | 47,371                | 2,946                     | 5%                              | 4.1                              |
| 48            | 39,050                       | 36,105                | 2,946                     | 5%                              | 1.0                              |

### Model Regions Forced Out of Service During Simulation

Time Region 3 S1 15 S2 32 **\$**4 34 S3

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

2. System Positive Pressure based on number of junctions above 0 psi

3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm

4. Reported Demands & Positive Pressure ignores transmission mains

East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

# Model Results Figure Index

| odel Results Figure index |          |       |           |       |           |       |           |               |  |
|---------------------------|----------|-------|-----------|-------|-----------|-------|-----------|---------------|--|
| Fig. 7.1 Hr 0             | Fig. 7.5 | Hr 8  | Fig. 7.9  | Hr 16 | Fig. 7.13 | Hr 24 | Fig. 7.17 | Hr 40         |  |
| Fig. 7.2 Hr 2             | Fig. 7.6 | Hr 10 | Fig. 7.10 | Hr 18 | Fig. 7.14 | Hr 28 | Fig. 7.18 | H <b>r</b> 44 |  |
| Fig. 7.3 Hr 4             | Fig. 7.7 | Hr 12 | Fig. 7.11 | Hr 20 | Fig. 7.15 | Hr 32 | Fig. 7.19 | Hr 48         |  |
| Fig. 7.4 Hr 6             | Fig. 7.8 | Hr 14 | Fig. 7.12 | Hr 22 | Fig. 7.16 | Hr 36 |           |               |  |



City: Seattle, MA. Created By: bchemewy G: PROJECTS415308 Seattle-Dublichest001: SeitemicE-arMaps/Searticial Areas Map. Original mvd 2h12018.2.28.31 PM Service Layer: Creates: Ean. HEEE: Decome. Mapanyindia, 8 CoperStreeMap contributions, and the GIS user community.






































# M7.0 Seattle Fault Zone Case 8 (No Improvements But Roosevelt and Volunteer Park Reservoirs Online) Hydraulic Modeling Results



# Seattle Fault Seismic Event

Case 8 Same as "Base" case

Roosevelt and Volunteer Park Reservoir are Functional

### **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 271,913                      | 249,543               | 22,370                    | 78%                             | 285.5                            |
| 3             | 252,683                      | 233,750               | 18,933                    | 68%                             | 236.2                            |
| 12            | 186,861                      | 171,987               | 14,874                    | 50%                             | 117.5                            |
| 22            | 41,910                       | 35,431                | 6,480                     | 22%                             | 32.3                             |
| 32            | 10,741                       | 10,741                | -                         | 3%                              | 4.0                              |
| 48            | -                            | -                     | -                         | 2%                              | 0.5                              |

# Model Regions Forced Out of

Service During Simulation

|      | 5      |
|------|--------|
| Time | Region |
| 3    | S1     |
| 20   | S2     |
| 32   | S4     |
| 35   | S3     |

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

2. System Positive Pressure based on number of junctions above 0 psi

3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm

 Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

Fig. 8.1 Hr 0

Fig. 8.2 Hr 2 Fig. 8.3 Hr 4

Fig. 8.4 Hr 6

| re Index |         |           |       |           |       |           |               |
|----------|---------|-----------|-------|-----------|-------|-----------|---------------|
| Fig. 8.  | 5 Hr 8  | Fig. 8.9  | Hr 16 | Fig. 8.13 | Hr 24 | Fig. 8.17 | Hr 40         |
| Fig. 8.  | 6 Hr 10 | Fig. 8.10 | Hr 18 | Fig. 8.14 | Hr 28 | Fig. 8.18 | H <b>r</b> 44 |
| Fig. 8.  | 7 Hr 12 | Fig. 8.11 | Hr 20 | Fig. 8.15 | Hr 32 | Fig. 8.19 | Hr 48         |
| Fig. 8.  | 8 Hr 14 | Fig. 8.12 | Hr 22 | Fig. 8.16 | Hr 36 |           |               |



City: Seattle, MA. Created By: bchemewy G: PROJECTS115305 Seattle-Dubliches001: SeitemicE-arMaps/Secrificial Areas Map Original mvd 2h12018.2.28.31 PM Service Layer: Creatus: Ean. HERE: Dekome, Mapanyindia, 8 CoperSteeMap contributions, and the GIS user community







































M7.0 Seattle Fault Zone Case 9 (No Improvements Except Tolt Transmission System is Assumed to be Functional and Damage Isolation Systems Have Been Installed) Hydraulic Modeling Results



## Seattle Fault Seismic Event

Case 9 Same as Case 7

Assume that certain emitters are now zero and that certain areas are automatically isolated to prevent leakage

#### **Model Results**

| Time<br>(hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied<br>Demands (gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|---------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0             | 111,997                      | 89,802                | 22,195                    | 81%                             | 232.1                            |
| 3             | 109,109                      | 87,065                | 22,044                    | 79%                             | 213.2                            |
| 12            | 90,857                       | 74,412                | 16,445                    | 65%                             | 166.2                            |
| 22            | 83,462                       | 67,902                | 15,560                    | 60%                             | 119.1                            |
| 32            | 41,434                       | 35,937                | 5,498                     | 25%                             | 95.0                             |
| 48            | 41,137                       | 35,639                | 5,498                     | 24%                             | 61.6                             |

Model Regions Forced Out of

| Service During Simulation |        |  |  |  |  |  |
|---------------------------|--------|--|--|--|--|--|
| Time                      | Region |  |  |  |  |  |
| 6                         | S1     |  |  |  |  |  |
| 23                        | \$2    |  |  |  |  |  |

## Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

- 2. System Positive Pressure based on number of junctions above 0 psi
- 3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

| Fig. 9.1 | Hr O Fig. 1 | 9.5 Hr 8  | Fig. 9.9 Hr 16  | Fig. 9.13 | H <b>r 2</b> 4 | Fig. 9.17 | Hr 40         |
|----------|-------------|-----------|-----------------|-----------|----------------|-----------|---------------|
| Fig. 9.2 | Hr 2 Fig.   | 9.6 Hr 10 | Fig. 9.10 Hr 18 | Fig. 9.14 | Hr 28          | Fig. 9.18 | H <b>r</b> 44 |
| Fig. 9.3 | Hr 4 Fig. 1 | 9.7 Hr 12 | Fig. 9.11 Hr 20 | Fig. 9.15 | Hr 32          | Fig. 9.19 | Hr 48         |
| Fig. 9.4 | Hr6 Fig.    | 9.8 Hr 14 | Fig. 9.12 Hr 22 | Fig. 9.16 | Hr 36          |           |               |



xd 1/25/2018 4:30:20 PM Seattle, WA Created By: bothenevey G:VPROJECTS13 toe Layer Credits: Esri, HERE, DeLorme, MapmyIndia, ©






















































Chr: Seallie, WA. Created By: buhanowy. C'Uteers/DMarr/Desktop/SERA SFZ, Min. Day. 168/its, D11918, gpm. ins.mxd 1/192/D18 8:48:51 AM Service Layer Creatist: Esri HERE, DeLorme, Magnnyinda, © OpenStreeMap pontibulos, and the GIS user community.















Chr: Seallie, WA. Created By: buhanowy. C'Uteers/DMarr/Desktop/SERA SFZ, Min. Day. 168/its, D11918, gpm. ins.mxd 1/192/D18 8:48:51 AM Service Layer Creatist: Esri HERE, DeLorme, Magnnyinda, © OpenStreeMap pontibulos, and the GIS user community.





# M7.0 Seattle Fault Zone Case 10 (20 Year Improvements Plus One of the Cedar River Pipelines is Functional) Hydraulic Modeling Results



Water Distribution System Seismic Modeling 2/6/2018

# Seattle Fault Seismic Event

Case 10 Same as Case 1

CRPL #2 and West Seattle Pipelines are Functional

| In Service Storage           |
|------------------------------|
| Eastside Reservoir           |
| Magnolia Bluff Elevated Tank |
| Magnolia Reservoir           |
| Riverton Heights Reservoir   |

| In Service Facilities |
|-----------------------|
| Lincoln PS            |
| Broadway PS           |
| Spokane Street PS     |
| West Seattle PS       |

#### Model Results

| Time (hrs) | Total System<br>Demand (gpm) | Emiter Flows<br>(gpm) | Supplied Demands<br>(gpm) | System Positive<br>Pressure (%) | Available System<br>Storage (MG) |
|------------|------------------------------|-----------------------|---------------------------|---------------------------------|----------------------------------|
| 0          | 149,870                      | 121,579               | 28,291                    | 87%                             | 287.2                            |
| 3          | 136,871                      | 109,236               | 27,635                    | 86%                             | 268.3                            |
| 12         | 123,522                      | 96,801                | 26,721                    | 82%                             | 219.6                            |
| 22         | 123,458                      | 96,990                | 26,468                    | 80%                             | 166.3                            |
| 32         | 82,052                       | 63,604                | 18,447                    | 52%                             | 125.4                            |
| 48         | 45,414                       | 31,322                | 14,092                    | 44%                             | 90.7                             |

# Model Regions Forced Out of

| Service During Simulatio |        |  |  |  |  |
|--------------------------|--------|--|--|--|--|
| Time                     | Region |  |  |  |  |
| 1                        | S10    |  |  |  |  |
| 29                       | S6     |  |  |  |  |
| 45                       | S4     |  |  |  |  |
| 45                       | S8     |  |  |  |  |

#### Model Simulation Notes

1. Satisfied Demands assume junction pressure greater than 0 psi

- 2. System Positive Pressure based on number of junctions above 0 psi
- 3. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- Reported Demands & Positive Pressure ignores transmission mains East of Lake Forest Park Reservoir (Total Demand = 13,786 gpm)

#### Model Results Figure Index

| del Results Figure muex |      |           |       |            |       |            |       |            |       |
|-------------------------|------|-----------|-------|------------|-------|------------|-------|------------|-------|
| Fig. 10.1               | Hr O | Fig. 10.5 | Hr 8  | Fig. 10.9  | Hr 16 | Fig. 10.13 | Hr 24 | Fig. 10.17 | Hr 40 |
| Fig. 10.2               | Hr 2 | Fig. 10.6 | Hr 10 | Fig. 10.10 | Hr 18 | Fig. 10.14 | Hr 28 | Fig. 10.18 | Hr 44 |
| Fig. 10.3               | Hr 4 | Fig. 10.7 | Hr 12 | Fig. 10.11 | Hr 20 | Fig. 10.15 | Hr 32 | Fig. 10.19 | Hr 48 |
| Fig. 10.4               | Hr6  | Fig. 10.8 | Hr 14 | Fig. 10.12 | Hr 22 | Fig. 10.16 | Hr 36 |            |       |



5 Map.mxd 1/25/2018 4:30:20 PM -Seisn and th City: Seattle, WA Created By: bohenevey G:/PROJECTS/1 Service Laver Credits: Esri, HERE, DeLorme, Macminidia, 5











































Ctty: Scattle, WA. Created By: behenevey. C:Users/DMann/Destrop/Scattle/SSRA, SFZ. Min. Day. 168/hrs. 011118. gpm. res. mxd 1/16/2018 3:31:22 PM Service Layer Creatins: Eart. HERE: DeLormo, Maprovinda, o: O DenoShoetMap. contribution, and the GIS user community.











Chy: Sealle, WA Created By bothenevery C:USers/DMann/Destrop/Seathol/SSR4\_SF2\_Min\_Day\_168Ins\_011118\_gpm\_res.mxd Service Layer Credits: Ear, HERE, DeLorme, Magnyindia, © DencShoeMap contributions, and the GSI user community



Chy: Sealle, WA Created By bothenevery C:USers/DMann/Destrop/Seathol/SSR4\_SF2\_Min\_Day\_168Ins\_011118\_gpm\_res.mxd Service Layer Credits: Ear, HERE, DeLorme, Magnyindia, © DencShoeMap contributions, and the GSI user community















Chy: Sealle, WA Created By bothenevery C:USers/DMann/Destrop/Seathol/SSR4\_SF2\_Min\_Day\_168Ins\_011118\_gpm\_res.mxd Service Layer Credits: Ear, HERE, DeLorme, Magnyindia, © DencShoeMap contributions, and the GSI user community

# M7.0 Seattle Fault Zone Transmission Pipeline Base Case (No Improvements) Hydraulic **Modeling Results**



# Seattle Fault Seismic Event **Transmission Pipeline Simulations**

| Base 2018 | Water from Tolt Filtration Plant cannot be conveyed west            |  |  |  |  |  |
|-----------|---------------------------------------------------------------------|--|--|--|--|--|
|           | Water from Control Works (Cedar System) cannot be conveyed into the |  |  |  |  |  |
|           | distibution system                                                  |  |  |  |  |  |
|           | Other assumptions are the same as the Base SFZ scenario             |  |  |  |  |  |

## **Model Results**

|                   |              | Emitter |                  |                 |                  |  |
|-------------------|--------------|---------|------------------|-----------------|------------------|--|
| Time Total System |              | Flows   | Supplied Demands | System Positive | Available System |  |
| (hrs)             | Demand (gpm) | (gpm)   | (gpm)            | Pressure (%)    | Storage (MG)     |  |
| 0                 | 257,089      | 226,005 | 31,084           | 64%             | 244.3            |  |
| 3                 | 239,604      | 214,223 | 25,381           | 57%             | 196.5            |  |
| 12                | 184,673      | 162,975 | 21,697           | 42%             | 85.1             |  |
| 22                | 31,108       | 23,889  | 7,219            | 6%              | 29.5             |  |
| 32                | 28,321       | 21,837  | 6,485            | 5%              | 14.4             |  |
| 48                | 6,485        | 0       | 6,485            | 5%              | 11.5             |  |

### Model Regions Forced Out of Service During Simulation

| Service During Simula |        |  |  |  |  |  |
|-----------------------|--------|--|--|--|--|--|
| Time                  | Region |  |  |  |  |  |
| 3                     | S1     |  |  |  |  |  |
| 15                    | S2     |  |  |  |  |  |
| 21                    | S3     |  |  |  |  |  |
| 21                    | S8     |  |  |  |  |  |
| 32                    | S4     |  |  |  |  |  |

Model Simulation Notes

- 1. All wholesale customers assumed to start with 1.8 multiplier (max day demands)
- 2. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- 3. Total Model Demands with elevated wholesale customers is 91,957 gpm
- 4. Satisfied Demands assume junction pressure greater than 0 psi
- 5. System Positive Pressure based on number of junctions above 0 psi out of the entire model

#### Model Results Figure Index

| woder nesures righte maex |              |           |               |            |               |            |       |            |       |
|---------------------------|--------------|-----------|---------------|------------|---------------|------------|-------|------------|-------|
| Fig. 11.1                 | Hr O         | Fig. 11.5 | Hr 8          | Fig. 11.9  | Hr 16         | Fig. 11.13 | Hr 24 | Fig. 11.17 | Hr 40 |
| Fig. 11.2                 | Hr 2         | Fig. 11.6 | H <b>r</b> 10 | Fig. 11.10 | H <b>r</b> 18 | Fig. 11.14 | Hr 28 | Fig. 11.18 | Hr 44 |
| Fig. 11.3                 | H <b>r</b> 4 | Fig. 11.7 | Hr 12         | Fig. 11.11 | Hr 20         | Fig. 11.15 | Hr 32 | Fig. 11.19 | Hr 48 |
| Fig. 11.4                 | Hr 6         | Fig. 11.8 | H <b>r</b> 14 | Fig. 11.12 | Hr 22         | Fig. 11.16 | Hr 36 |            |       |





SFZ Min Day 168hrs butors, and the GIS use SRA //Seattle/ Del orme. Created By: both dills: Esri, HERE, ≸ģ ulle.




































# M7.0 Seattle Fault Zone Transmission Pipeline Year 2045 Improvement Case Hydraulic Modeling Results



4/4/2018

## Seattle Fault Seismic Event Transmission Pipeline Simulations

Case 2045 A Water from Tolt Filtration Plant cannot be conveyed west; Eastside Supply Line is open; Tolt Eastside Pipes 7623, 7113, 7079, 7509 are closed; Facility upgrades are the same as distribution system Case 1; Water from Control Works (Cedar System) cannot be conveyed into the distibution system.

### **Model Results**

|       |              | Emitter |                  |                 |                  |  |
|-------|--------------|---------|------------------|-----------------|------------------|--|
| Time  | Total System | Flows   | Supplied Demands | System Positive | Available System |  |
| (hrs) | Demand (gpm) | (gpm)   | (gpm)            | Pressure (%)    | Storage (MG)     |  |
| 0     | 337,537      | 279,583 | 57,953           | 75%             | 299.5            |  |
| 3     | 301,701      | 247,840 | 53,862           | 73%             | 242.3            |  |
| 12    | 219,606      | 177,790 | 41,815           | 49%             | 107.2            |  |
| 22    | 68,141       | 41,920  | 26,221           | 11%             | 41.0             |  |
| 32    | 54,703       | 31,501  | 23,202           | 9%              | 14.2             |  |
| 48    | 24,771       | 17,638  | 7,133            | 6%              | 11.6             |  |

## Model Regions Forced Out of

| Service During Simulation |        |  |  |  |  |  |
|---------------------------|--------|--|--|--|--|--|
| Time                      | Region |  |  |  |  |  |
| 9                         | S6     |  |  |  |  |  |
| 15                        | S1     |  |  |  |  |  |
| 15                        | S2     |  |  |  |  |  |
| 26                        | S4     |  |  |  |  |  |
| 26                        | S3     |  |  |  |  |  |
| 26                        | S8     |  |  |  |  |  |
| 33                        | T1     |  |  |  |  |  |

#### Model Simulation Notes

- 1. All wholesale customers assumed to start with 1.8 multiplier (max day demands)
- 2. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- 3. Total Model Demands with elevated wholesale customers is 91,957 gpm
- 4. Satisfied Demands assume junction pressure greater than 0 psi
- System Positive Pressure based on number of junctions above 0 psi out of the entire model

#### Model Results Figure Index

| Fig. 12.1 | H <b>r 0</b> | Fig. 12.5 | Hr8   | Fig. 12.9  | Hr 16 | Fig. 12.13 | H <b>r 2</b> 4 | Fig. 12.17 | Hr 40         |
|-----------|--------------|-----------|-------|------------|-------|------------|----------------|------------|---------------|
| Fig. 12.2 | Hr 2         | Fig. 12.6 | Hr 10 | Fig. 12.10 | Hr 18 | Fig. 12.14 | Hr 28          | Fig. 12.18 | H <b>r</b> 44 |
| Fig. 12.3 | H <b>r</b> 4 | Fig. 12.7 | Hr 12 | Fig. 12.11 | Hr 20 | Fig. 12.15 | Hr 32          | Fig. 12.19 | H <b>r</b> 48 |
| Fig. 12.4 | Hr 6         | Fig. 12.8 | Hr 14 | Fig. 12.12 | Hr 22 | Fig. 12.16 | Hr 36          |            |               |





Min Day 168hr s, and the GIS up 멅. Created By: both dits: Earl, HERE, ¥.



Min Day 168hn s, and the GIS us 멅. Created By: both dits: Earl, HERE, ¥.



Min Day 168hn s, and the GIS us 멅. Created By: both dits: Earl, HERE, ¥.
































M7.0 Seattle Fault Zone Transmission Pipeline Year 2045 Improvement Case with Roosevelt and Volunteer Reservoirs Online Hydraulic Modeling Results



# Seattle Fault Seismic Event Transmission Pipeline Simulations

Case 2045 BWater from Tolt Filtration Plant cannot be conveyed west;<br/>Eastside Supply Line is open; Tolt Eastside Pipes 7623, 7113, 7079, 7509 are closed;<br/>Facility upgrades are the same as distribution system Case 3 (Volunteer and Roosevelt<br/>Reservoirs are) online;<br/>Water from Control Works (Cedar System) cannot be conveyed into the distibution

system.

### Model Results

|       |              | Emitter |                  |                 |                  |
|-------|--------------|---------|------------------|-----------------|------------------|
| Time  | Total System | Flows   | Supplied Demands | System Positive | Available System |
| (hrs) | Demand (gpm) | (gpm)   | (gpm)            | Pressure (%)    | Storage (MG)     |
| 0     | 359,447      | 299,262 | 60,184           | 80%             | 352.9            |
| 3     | 324,619      | 268,614 | 56,005           | 77%             | 292.1            |
| 12    | 229,304      | 186,517 | 42,788           | 54%             | 146.1            |
| 22    | 81,487       | 52,044  | 29,443           | 25%             | 53.3             |
| 32    | 62,803       | 39,601  | 23,202           | 9%              | 15.2             |
| 48    | 24,771       | 17,638  | 7,133            | 6%              | 11.6             |

### Model Regions Forced Out of Service During Simulation

| Time | Region |
|------|--------|
| 9    | S6     |
| 15   | S1     |
| 20   | S2     |
| 26   | S8     |
| 32   | S3     |
| 32   | S4     |
| 33   | T1     |

### Model Simulation Notes

- 1. All wholesale customers assumed to start with 1.8 multiplier (max day demands)
- 2. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- 3. Total Model Demands with elevated wholesale customers is 91,957 gpm
- 4. Satisfied Demands assume junction pressure greater than 0 psi
- System Positive Pressure based on number of junctions above 0 psi out of the entire model

### Model Results Figure Index

| Fig. 13.1 | Hr0 F | ig. 13.5 | H <b>r 8</b> | Fig. 13.9  | ⊣r 16 | Fig. 13.13 | H <b>r 2</b> 4 | Fig. 13.17 | H <b>r</b> 40 |
|-----------|-------|----------|--------------|------------|-------|------------|----------------|------------|---------------|
| Fig. 13.2 | Hr2 F | ig. 13.6 | Hr 10        | Fig. 13.10 | ⊣r 18 | Fig. 13.14 | Hr 28          | Fig. 13.18 | H <b>r</b> 44 |
| Fig. 13.3 | Hr4 F | ig. 13.7 | Hr 12        | Fig. 13.11 | ⊣r 20 | Fig. 13.15 | Hr 32          | Fig. 13.19 | H <b>r</b> 48 |
| Fig. 13.4 | Hr6 F | ig. 13.8 | Hr 14        | Fig. 13.12 | ⊣r 22 | Fig. 13.16 | Hr 36          | -          |               |









































# M7.0 Seattle Fault Zone Transmission Pipeline Year 2075 Improvement Case Hydraulic Modeling Results



# Seattle Fault Seismic Event Transmission Pipeline Simulations

Case 2075 ATolt Filtration Plant supplies west up to Pipe 7031, not connected to<br/>the rest of the system;<br/>From the Control Works (Cedar System), there is only a single 60-inch diameter<br/>pipeline that serves Seattle;<br/>Eastside Supply Line, West Seattle Pipeline and Cedar River Pipeline #4 are online;<br/>Facility upgrades are the same as the distribution system Case 2.

### Model Results

|       |              | Emitter |                  |                 |                  |
|-------|--------------|---------|------------------|-----------------|------------------|
| Time  | Total System | Flows   | Supplied Demands | System Positive | Available System |
| (hrs) | Demand (gpm) | (gpm)   | (gpm)            | Pressure (%)    | Storage (MG)     |
| 0     | 395,094      | 307,309 | 87,785           | 85%             | 306.6            |
| 3     | 377,182      | 289,801 | 87,381           | 84%             | 254.2            |
| 12    | 333,482      | 249,800 | 83,682           | 73%             | 130.5            |
| 22    | 228,458      | 170,381 | 58,077           | 52%             | 63.5             |
| 32    | 204,855      | 146,999 | 57,856           | 52%             | 48.9             |
| 48    | 179,129      | 121,919 | 57,210           | 49%             | 33.2             |

### Model Regions Forced Out of Service Durina Simulation

| Service During Simula |        |  |  |  |  |
|-----------------------|--------|--|--|--|--|
| Time                  | Region |  |  |  |  |
| 12                    | S7     |  |  |  |  |
| 21                    | S4     |  |  |  |  |
| 21                    | S8     |  |  |  |  |

#### Model Simulation Notes

- 1. All wholesale customers assumed to start with 1.8 multiplier (max day demands)
- 2. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- 3. Total Model Demands with elevated wholesale customers is 91,957 gpm
- 4. Satisfied Demands assume junction pressure greater than 0 psi
- System Positive Pressure based on number of junctions above 0 psi out of the entire model

### Model Results Figure Index

| Fig. 14.1 | Hr O Fig. | 14.5 Hr 8  | Fig. 14.9  | Hr 16 | Fig. 14.13 | H <b>r 2</b> 4 | Fig. 14.17 | Hr 40         |
|-----------|-----------|------------|------------|-------|------------|----------------|------------|---------------|
| Fig. 14.2 | Hr 2 Fig. | 14.6 Hr 10 | Fig. 14.10 | Hr 18 | Fig. 14.14 | Hr 28          | Fig. 14.18 | H <b>r</b> 44 |
| Fig. 14.3 | Hr4 Fig.  | 14.7 Hr 12 | Fig. 14.11 | Hr 20 | Fig. 14.15 | Hr 32          | Fig. 14.19 | H <b>r</b> 48 |
| Fig. 14.4 | Hr 6 Fig. | 14.8 Hr 14 | Fig. 14.12 | Hr 22 | Fig. 14.16 | Hr 36          |            |               |







Min Day 168hr s, and the GIS up 멅. Created By: both dits: Earl, HERE, ≸ i





Min Day 168hrs s, and the GIS use 멅. Created By: both dits: Earl, HERE, ¥.






























M7.0 Seattle Fault Zone Transmission Pipeline Year 2075 Improvement Case with Roosevelt and Volunteer Reservoirs Online Hydraulic Modeling Results



## Seattle Fault Seismic Event Transmission Pipeline Simulations

Case 2075 BTolt Filtration Plant supplies west up to Pipe 7031, not connected to<br/>the rest of the system;<br/>From the Control Works (Cedar System), there is only a single 60-inch diameter<br/>pipeline that serves Seattle;<br/>Eastside Supply Line, West Seattle Pipeline, and Cedar River Pipeline #4 are online;<br/>Facility upgrades are the same as the distribution system Case 4 (Volunteer and<br/>Roosevelt Reservoirs are online).

#### Model Results

|       |              | Emitter |                  |                 |                  |
|-------|--------------|---------|------------------|-----------------|------------------|
| Time  | Total System | Flows   | Supplied Demands | System Positive | Available System |
| (hrs) | Demand (gpm) | (gpm)   | (gpm)            | Pressure (%)    | Storage (MG)     |
| 0     | 410,689      | 321,276 | 89,413           | 92%             | 360.1            |
| 3     | 377,468      | 288,653 | 88,815           | 89%             | 304.8            |
| 12    | 341,173      | 256,650 | 84,523           | 76%             | 169.6            |
| 22    | 269,239      | 206,456 | 62,782           | 69%             | 81.1             |
| 32    | 222,613      | 161,982 | 60,632           | 62%             | 50.1             |
| 48    | 179,247      | 122,256 | 56,991           | 48%             | 33.3             |

#### Model Regions Forced Out of Service During Simulation

| Service D | uring Simula |
|-----------|--------------|
| Time      | Region       |
| 12        | S7           |
| 21        | S4           |
| 21        | S8           |

#### Model Simulation Notes

- 1. All wholesale customers assumed to have max day demands with 1.8 multiplier
- 2. Normal Systemwide Model Minimum Day Demand is 51,716 gpm
- 3. Total Model Demands with elevated wholesale customers is 91,957 gpm
- 4. Satisfied Demands assume junction pressure greater than 0 psi
- System Positive Pressure based on number of junctions above 0 psi out of the entire model

#### Model Results Figure Index

| Fig. 15.1 | Hr O         | Fig. 15.5 | H <b>r 8</b> | Fig. 15.9  | H <b>r</b> 16 | Fig. 15.13 | Hr 24 | Fig. 15.17 | Hr 40         |
|-----------|--------------|-----------|--------------|------------|---------------|------------|-------|------------|---------------|
| Fig. 15.2 | H <b>r 2</b> | Fig. 15.6 | Hr 10        | Fig. 15.10 | H <b>r</b> 18 | Fig. 15.14 | Hr 28 | Fig. 15.18 | H <b>r</b> 44 |
| Fig. 15.3 | H <b>r</b> 4 | Fig. 15.7 | Hr 12        | Fig. 15.11 | Hr 20         | Fig. 15.15 | Hr 32 | Fig. 15.19 | Hr 48         |
| Fig. 15.4 | Hr6          | Fig. 15.8 | Hr 14        | Fig. 15.12 | Hr 22         | Fig. 15.16 | Hr 36 |            |               |









































# APPENDIX C – REPRESENTATIVE WATER UTILITY PERFORMANCE GOALS

#### **KEY TO THE TABLE**

TARGET TIMEFRAME FOR RECOVERY:

Desired time to restore component to 80–90% operational Desired time to restore component to 50–60% operational Desired time to restore component to 20–30% operational Current State (90% operational)



| TARGET STATES OF RECOVERY: WATER & WASTEWATER SECTOR (COAST)                                             |                     |               |             |             |              |                           |                   |                   |                           |              |             |
|----------------------------------------------------------------------------------------------------------|---------------------|---------------|-------------|-------------|--------------|---------------------------|-------------------|-------------------|---------------------------|--------------|-------------|
|                                                                                                          | Event<br>occur<br>s | 0–24<br>hours | 1–3<br>days | 3–7<br>days | 1–2<br>weeks | 2<br>weeks<br>-1<br>month | 1–3<br>month<br>s | 3–6<br>month<br>s | 6<br>month<br>s–1<br>year | 1–3<br>years | 3+<br>years |
| Domestic Water<br>Supply                                                                                 |                     |               |             |             |              |                           |                   |                   |                           |              |             |
| Potable water<br>available at supply<br>source (WTP, wells,<br>impoundment)                              |                     |               |             | R           |              | Y                         |                   | G                 |                           | x            |             |
| Main transmission<br>facilities, pipes,<br>pump stations, and<br>reservoirs<br>(backbone)<br>operational |                     |               | R           | Y           | G            |                           |                   |                   |                           | x            |             |
| Water supply to<br>critical facilities<br>available                                                      |                     |               |             | R           |              | Y                         |                   | G                 |                           | x            |             |
| Water for fire<br>suppression—at<br>key supply points                                                    |                     |               | R           |             | Y            |                           |                   | G                 |                           | x            |             |
| Water for fire<br>suppression—at<br>fire hydrants                                                        |                     |               |             |             |              | 8                         | Y                 | G                 |                           | x            |             |
| Water available at<br>community<br>distribution<br>centers/points                                        |                     |               |             | R           | Y            | G                         | x                 |                   | 2                         | -            |             |
| Distribution system<br>operational                                                                       |                     |               |             |             | R            |                           | Y                 | G                 |                           |              | x           |

Table C-1. Oregon Resilience Plan (2013) Water System Post-Earthquake Recovery Targets for Coastal Communities (Stronger Ground Shaking than Willamette Valley)

## **KEY TO THE TABLE**

TARGET TIMEFRAME FOR RECOVERY:

Desired time to restore component to 80–90% operational Desired time to restore component to 50–60% operational

Desired time to restore component to 20-30% operational

Current state (90% operational)

| G |
|---|
| Y |
| R |
| × |

| TARGET STATES OF RECOVERY: WATER & WASTEWATER SECTOR (VALLEY)                                            |                 |               |             |             |              |                           |               |               |                        |              |              |
|----------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------|-------------|--------------|---------------------------|---------------|---------------|------------------------|--------------|--------------|
|                                                                                                          | Event<br>occurs | 0–24<br>hours | 1–3<br>days | 3–7<br>days | 1–2<br>weeks | 2<br>weeks–<br>1<br>month | 1–3<br>months | 3–6<br>months | 6<br>months<br>–1 year | 1–3<br>years | 3 +<br>years |
| Domestic Water<br>Supply                                                                                 |                 |               |             |             |              |                           |               |               |                        |              |              |
| Potable water<br>available at supply<br>source (WTP, wells,<br>impoundment)                              |                 | R             | Y           |             | G            |                           |               | x             |                        |              |              |
| Main transmission<br>facilities, pipes,<br>pump stations, and<br>reservoirs<br>(backbone)<br>operational |                 | G             |             |             |              |                           | x             |               |                        |              |              |
| Water supply to<br>critical facilities<br>available                                                      |                 | Y             | G           |             |              |                           | x             |               |                        |              |              |
| Water for fire<br>suppression—at key<br>supply points                                                    |                 | G             |             | x           |              |                           |               |               |                        |              |              |
| Water for fire<br>suppression—at fire<br>hydrants                                                        |                 |               |             | R           | Y            | G                         |               |               | x                      |              |              |
| Water available at<br>community<br>distribution<br>centers/points                                        |                 |               | Y           | G           | x            |                           |               |               |                        |              |              |
| Distribution system operational                                                                          |                 |               | R           | Y           | G            |                           |               |               | x                      |              |              |

Table C-2. Oregon Resilience Plan (2013) Water System Post-Earthquake Recovery Targets for Willamette Valley Communities (Lower Ground Shaking than Oregon Coast)

## KEY TO THE TABLE

TARGET TIMEFRAME FOR RECOVERY:

| TARGET TIMEFRAME FOR RECOVERY:                                                                     |    |  |  |  |
|----------------------------------------------------------------------------------------------------|----|--|--|--|
| Operational (time it ought to take to restore component to 80–90% operational):                    |    |  |  |  |
| TIME NEEDED FOR RECOVERY TO 80-90% OPERATIONAL GIVEN CURRENT CONDITIONS:                           | ×  |  |  |  |
| TIME NEEDED FOR RECOVERY TO 80-90% OPERATIONAL IN LIQUEFACTION ZONES GIVEN CURRENT CONDITIONS:     |    |  |  |  |
| TIME NEEDED FOR RECOVERY TO 80-90% OPERATIONAL IN NON-LIQUEFACTION ZONES GIVEN CURRENT CONDITIONS: | NL |  |  |  |

| TARGET STATES OF RECOVERY: WASHINGTON'S UTILITIES SECTOR |                 |               |          |          |                    |               |                     |              |             |
|----------------------------------------------------------|-----------------|---------------|----------|----------|--------------------|---------------|---------------------|--------------|-------------|
|                                                          | Event<br>occurs | 0–24<br>hours | 1–3 days | 3–7 days | 1 week-<br>1 month | 1–3<br>months | 3 months-<br>1 year | 1–3<br>years | 3+<br>years |
| Domestic water supply                                    | T               |               |          |          |                    |               |                     |              |             |
| Supply & transmission pipes                              |                 |               |          | NL       |                    |               | L                   |              |             |
| Distribution pipes                                       |                 |               |          |          | NL                 |               | L                   |              |             |
| Wastewater systems                                       |                 |               |          |          |                    |               |                     |              |             |
| Treatment facilities                                     |                 |               |          |          |                    | NL            | L                   |              |             |
| Sewer pipes                                              |                 |               |          |          | ]                  | NL            |                     | L            |             |
| Flood control                                            | ĺ               |               |          |          |                    |               |                     | ĺ            |             |
| Dams                                                     |                 |               |          |          |                    | ×             |                     |              |             |
| Levees                                                   |                 |               |          |          |                    |               |                     | ×            |             |
| Electricity                                              |                 |               |          |          |                    |               |                     |              |             |
| Transmission                                             |                 |               |          |          |                    |               |                     | ×            |             |
| Distribution, 60% restored                               |                 |               |          |          | ×                  |               |                     |              |             |
| Distribution, 70% restored                               |                 |               |          |          |                    | ×             |                     |              |             |
| Distribution, >70% restored                              |                 |               |          |          |                    |               | ×                   |              |             |
| Natural Gas                                              |                 |               |          |          |                    |               |                     |              |             |
| Transmission                                             |                 |               | NL       |          | L                  |               |                     |              |             |
| Distribution, 40% restored                               |                 |               |          |          | ×                  |               |                     |              |             |
| Distribution, 90% restored                               |                 |               |          |          |                    | ×             |                     |              |             |
| Petroleum                                                |                 |               |          |          |                    |               |                     |              |             |
| Refineries & transmission                                |                 |               |          |          |                    |               |                     | ×            |             |
| Distribution                                             |                 |               |          |          |                    | ×             |                     |              |             |
| Information and<br>communication technology              |                 |               |          |          |                    | ×             |                     |              |             |

Table C-3. Resilient Washington State (2012) Lifeline Post-Earthquake Recovery Targets

| Service Category                             |    | Probable Earthquake                                                                                                                                                  |
|----------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General                                      | 1  | Minimal secondary damage and risk to the public                                                                                                                      |
|                                              | 2  | Limit extensive damage to system facilities                                                                                                                          |
|                                              | 3  | All water introduced into the distribution system minimally disinfected                                                                                              |
|                                              | 4  | All water introduced into the distribution system fully treated                                                                                                      |
| Fire Service                                 | 5  | Sufficient portable pumps and hose to provide limited fire service in all areas                                                                                      |
|                                              | 6  | All areas have minimal fire service (one reliable pumping plant and reservoir)                                                                                       |
|                                              | 7  | High risk areas have improved fire service (all facilities reliable, minimum fire reserves)                                                                          |
|                                              | 8  | Normal service to all hydrants within 20 days                                                                                                                        |
| Hospitals and<br>Disaster Centers            | 9  | Minimum service to affected area within 1 day (water<br>available via distribution system near each facility)                                                        |
|                                              | 10 | Impaired service to affected area within 3 days (water<br>available via distribution system to each facility, possibly<br>at reduced pressures)                      |
| Domestic Users                               | 11 | Potable water via distribution system or truck within 1 day                                                                                                          |
|                                              | 12 | Impaired service to affected area within 3 days (water<br>available via distribution system to each domestic user,<br>possibly at reduced pressures)                 |
| Commercial,<br>Industrial and Other<br>Users | 13 | Impaired service to affected area within 3 days (water<br>available via distribution system to each commercial or<br>industrial user, possibly at reduced pressures) |

Table C-4. East Bay Municipal Utility District (EBMUD) Post-Earthquake Performance Goals for A "Probable" Earthquake (e.g., M6 Hayward Fault Event within the EBMUD Service Area or Larger Event Outside the EBMUD Service Area) (Eidinger and Davis 2012)

| Service Category              |    | Maximum Earthquake                                                                                                                                                             |
|-------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General                       | 1  | Minimal secondary damage and risk to the public                                                                                                                                |
|                               | 2  | Limit extensive damage to system facilities                                                                                                                                    |
|                               | 3  | All water introduced into the distribution system minimally disinfected                                                                                                        |
|                               | 4  | All water introduced into the distribution system fully treated                                                                                                                |
| Fire Service                  | 5  | Sufficient portable pumps and hose to provide limited fire service in all areas                                                                                                |
|                               | 6  | All areas have minimal fire service (one reliable pumping plant and reservoir)                                                                                                 |
|                               | 7  | High risk areas have improved fire service (all facilities reliable, minimum fire reserves)                                                                                    |
|                               | 8  | Normal service to all hydrants within 100 days                                                                                                                                 |
| Hospitals and<br>Disaster     | 9  | Minimum service via distribution system or truck within 3 days                                                                                                                 |
| Centers                       | 10 | Minimum service within 10 days (water available via distribution system near each facility)                                                                                    |
|                               | 11 | Impaired service within 30 days (water available via distribution system to each facility, possibly at reduced pressures)                                                      |
| Domestic Users                | 12 | Potable water at central locations for pickup within 3 days                                                                                                                    |
|                               | 13 | Minimum service to 70% of customers within 10 days                                                                                                                             |
| Commercial,<br>Industrial and | 14 | Potable water at central locations for pickup within 1 week                                                                                                                    |
| Other Users                   | 15 | Minimum service to 70% of customers within 10 days                                                                                                                             |
|                               | 16 | Impaired service to 90% of customers within 30 days<br>(water available via distribution system to 90% of<br>commercial or industrial users, possibly at reduced<br>pressures) |

-

-

Table C-5. East Bay Municipal Utility District (EBMUD) Post-Earthquake Performance Goals for A "Maximum" Earthquake (e.g., A Hayward Fault Event Where the Fault Ruptures Along The Entire Length Within the EBMUD Service Area) (Eidinger and Davis 2012)
| Service Category       |    | Probable Earthquake                                                                                                                       |  |
|------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| General                | 1  | Minimal secondary damage and risk to the public                                                                                           |  |
|                        | 2  | Limit extensive damage to system facilities                                                                                               |  |
|                        | 3  | All water introduced into the distribution system minimally disinfected                                                                   |  |
| Fire Service           | 4  | Provide 100% of average winter level flows to customer meters within<br>4 hours after earthquake. (Tentative goal for large customers)    |  |
|                        | 5  | Provide 100% of average winter level flows to all customer meters<br>within 3 days after earthquake. (Tentative goal for large customers) |  |
| Domestic Water Service | 6  | 6 Potable water via truck or accessible locations within 1 day to meet<br>minimum consumption needs (1 gallon per person per day)         |  |
|                        | 7  | Impaired service within 3 days                                                                                                            |  |
|                        | 8  | Normal service within 20 days                                                                                                             |  |
| Raw Water Service      | 9  | Impaired service within 3 days                                                                                                            |  |
|                        | 10 | Normal service within 20 days                                                                                                             |  |

-

-

| Minimally Disinfected | Chlorination or better.                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------|
| Impaired Service      | Provide water (adequate to meet winter time demands), possibly at lower pressure than normal. |
| Normal service<br>co  | Provide water at the same level of reliability as under "normal" pre-earthquake nditions.     |

Figure C-6. Humboldt Bay Municipal Water District Post-Earthquake Performance Goals for a Probable Earthquake (Eidinger and Davis 2012)

| Service Category       |    | Maximum Earthquake                                                      |  |
|------------------------|----|-------------------------------------------------------------------------|--|
| General                | 1  | Minimal secondary damage and risk to the public                         |  |
|                        | 2  | Limit extensive damage to system facilities                             |  |
|                        | 3  | All water introduced into the distribution system minimally disinfected |  |
| Fire Service           | 4  | Provide 50% of average winter level flows to customer meters within 4   |  |
|                        |    | hours after earthquake. (Tentative goal for large customers)            |  |
|                        | 5  | Provide 100% of average winter level flows to all customer meters       |  |
|                        |    | within 3 days after earthquake. (Tentative goal for large customers)    |  |
| Domestic Water Service | 6  | Potable water via truck or accessible locations within 1 day to meet    |  |
|                        |    | minimum consumption needs (1 gallon per person per day)                 |  |
|                        | 7  | Impaired service within 7 days                                          |  |
|                        | 8  | Normal service within 60 days                                           |  |
|                        |    |                                                                         |  |
| Raw Water Service      | 9  | Impaired service within 7 days                                          |  |
|                        | 10 | Normal service within 60 days                                           |  |
|                        |    |                                                                         |  |

| Minimally Disinfected | Chlorination or better.                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------|
| Impaired Service      | Provide water (adequate to meet winter time demands), possibly at lower pressure than normal. |
| Normal service<br>co  | Provide water at the same level of reliability as under "normal" pre-earthquake nditions.     |

Figure C-7. Humboldt Bay Municipal Water District Post-Earthquake Performance Goals for a Maximum Earthquake (Eidinger and Davis 2012)

|       | Hazard Return           |                                                                                                                                       |
|-------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Level | Period Criteria         | Target Water System Performance                                                                                                       |
| 1     | 100 years               | Limited damage to water system, no casualties, few to no water service losses. All customer services operational within about 3 days. |
| 2     | 500 years               | Life safety and property protection. All customer services                                                                            |
|       |                         | operational within about 20 days, except water quantity; rationing                                                                    |
|       |                         | may extend up to 30 days.                                                                                                             |
| 3     | 2500 years <sup>1</sup> | Life safety and property protection. All customer services                                                                            |
|       |                         | operational within about 30 days, except water quantity; rationing                                                                    |
|       |                         | may extend up to 60 days.                                                                                                             |
| 4     | > 2500 years            | Life safety and property protection. All customer services                                                                            |
|       | up to about             | operational within about 45 days, except water quantity; rationing                                                                    |
|       | 10,000 years            | may extend up to 12 months.                                                                                                           |

1 – Highly active faults such as the San Andreas Fault have great earthquakes of  $M_w > 7.8$  within these return periods, for which the performance criteria are proposed to meet Level 4.

Table C-8. Los Angeles Department of Water and Power Preliminary/Draft Post-Earthquake Performance Criteria (Davis 2017)

# APPENDIX D – DRAFT SPU SEISMIC DESIGN STANDARDS FOR NEW PIPE

## Scope

This standard applies to new watermain construction, including new pipelines that are replacing existing pipelines. Existing watermains need not adhere to these standards unless they are rehabilitated or replaced.

## Adoption and Revisions/Updates

This draft standard will form the framework for SPU's seismic design standards for new watermains. Before these standards can be officially adopted by SPU, they will be reviewed by SPU design engineers and operations staff. The standards will be periodically updated to reflect the American Society of Civil Engineers (ASCE) Manual of Practice (MOP) on seismic design guidelines for water and wastewater pipelines that is currently being developed, seismic hazard mapping changes that occur in the SPU transmission and distribution area, and new earthquake resistant pipe systems that are being developed.

## Definitions

<u>Primary Backbone Pipelines</u>–Transmission pipelines that convey water from the Tolt Reservoir or Lake Youngs Treatment Plant to the terminal reservoirs. Primary Backbone Pipelines are identified in Figures 1 and 2.

#### Secondary Backbone Pipelines-Transmission

pipelines that convey water from the terminal reservoirs to distribution reservoirs or large service areas. Because Lake Youngs can supply the Cedar system for four weeks, the transmission pipelines from the Landsburg Diversion to Lake Young are defined as secondary backbone pipelines. Secondary Backbone Pipelines are identified in Figures 1 and 2.

<u>Hospital/Critical Facility Watermains</u>–Watermains that are needed to supply hospitals or other critical facilities that must remain operational after an earthquake. Hospital/Critical Facility Watermains are identified in Figure 2.

<u>Fire-fighting Mains</u>—Mains needed to supply water to within 2,500 feet of anywhere in the City of Seattle. Fire-fighting mains are identified in Figure 2.

<u>Ordinary Mains</u>–All watermains that are not classified as backbone, hospital/critical facility or firefighting mains.

<u>Permanent Ground Displacement (PGD)-Susceptible Area</u> – Those areas (see Figures 1 and 2 that are

1. Identified by Palmer et al. (2004) as having a high- or moderate-to-high liquefaction susceptibility or peat area, or

- 2. Defined by the Seattle Department of Construction and Inspection to be in a Known or Potential Slide Area, or
- 3. Defined as a King County Landslide Hazard Area, or
- 4. Defined as a Washington Division of Geology and Earth Resources Landslide Area.

If a geotechnical investigation shows that PGD is possible along the alignment, even though the alignment is not within one of the PGD-susceptible areas identified in Figures 1 or 2, then that pipeline shall be considered to be in a PGD-susceptible area. Alternatively, if a geotechnical investigation shows that the pipeline alignment is not susceptible to PGD, even though the alignment lies within a PGD-susceptible area identified on Figures 1 or 2, the pipeline may be designed as if it does not lie in a PGD-susceptible area.

<u>Seattle Fault Zone</u>–That area defined by Pratt et al. (2015) as adopted by Lettis Consultants International, Inc. (2016) as being in Zone A or Zone B as depicted in Figure 1.

<u>SPU Intense Ground Shaking Region</u>—The area within the SPU transmission and distribution region where the 0.02 probability of exceedance in 50-year ground motions are greater than or equal to 0.6g (see Figure 2).

## SPU Watermain Seismic Design and Construction Requirements

The level of analysis and performance required for watermain design and construction shall be in accordance with the watermain criticality and earthquake hazard exposure as defined in Table 1. Primary and secondary backbone pipelines, hospital/critical facility and firefighting mains are identified in Figures 1 and 2. For any pipeline, if a site-specific analysis shows a lesser level of design than that stipulated by Table 1 is adequate, then that pipeline need only be designed in accordance with the design indicated by the site-specific analysis.

| Table 1. Minimum    | Watermain | Design ar | d Constru | ction Analy | sis and | Performance |
|---------------------|-----------|-----------|-----------|-------------|---------|-------------|
| <u>Requirements</u> |           |           |           |             |         |             |

| Watermain<br>Class/Criticality                           | PGD Area                       | Seattle Fault Zone or<br>SPU Intense Ground<br>Shaking Region | All Other Areas                |
|----------------------------------------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------|
| Ordinary                                                 | Performance<br>Specification 1 | Performance<br>Specification 2                                | No seismic<br>requirements     |
| Hospital/Critical<br>Facility and Fire<br>Fighting Mains | Performance<br>Specification 1 | Performance<br>Specification 1                                | Performance<br>Specification 1 |
| Secondary Backbone                                       | Site-specific analysis         | Site-specific analysis                                        | Performance<br>Specification 1 |
| Primary Backbone                                         | Site-specific analysis         | Site-specific analysis                                        | Site-specific analysis         |

Performance Specification 1 Requirements

To meet the requirements for Performance Specification 1, pipelines must meet the following ductility and strength requirements:

1) Segmented Ductile Iron Pipelines

Axial Elongation: 1% Minimum Axial Elongation or Shortening.

Axial Pullout Strength: 17,130 pounds per inch diameter

<u>Deflection:</u> 5 degrees of deflection must be provided at each joint per 20-foot segment. Prorate for shorter or longer segment lengths. Maximum segment length is 30 feet.

Segmented pipeline systems that meet the Performance Specification 1 requirements include, but are not limited to

- Kubota Genex Earthquake Resistant Ductile Iron Pipe
- American Pipe Earthquake Joint Pipe

2) Continuous Pipelines

a) Welded Steel Pipelines with Butt-Welded Joints – Meet the requirements of AWWA C200 and

$$\frac{D^2}{12t} \le 537$$

Where D = the pipe diameter in inches

t = the pipe wall thickness in inches

b) HDPE Pipelines – Meet the requirements of AWWA C906 and ASTM F2620.

<u>Pipeline Backfill/Bedding:</u> Pipe backfill and bedding shall be as specified in Standard Plan 350 of Seattle Standard Plans for Municipal Construction. The use of Control Density Fill or other backfill/bedding that could restrict pipe movement is not permitted.

Performance Specification 2 Requirements

The following pipelines are permitted in Performance Specification 2 areas:

- Restrained joint ductile iron pipe that conforms to the City of Seattle Standard Specifications and Plans. Additionally, for restrained joint ductile iron pipe that is being restrained only to address seismic concerns, Series 1100 MegaLug restrained joints are acceptable.
- 2) Welded steel pipe joint with either lap or butt welds
- 3) HDPE pipe that meets the requirements of AWWA C906 and ASTM F2620

4) Restrained joint, molecularly oriented polyvinyl chloride pipe (PVC O) that meets the requirements of AWWA C909.

## Site-specific analysis:

The site-specific analysis shall meet the following minimum requirements

- 1. Geotechnical hazards shall be identified and evaluated along the pipeline alignment.
  - a. Geotechnical hazards shall be consistent with those hazards that would occur from 0.02 probability of exceedance in 50 years (2475 average return interval) ground motions.
  - b. Geotechnical hazards shall include transient seismic wave propagation/ground shaking hazards and PGD hazards.
- 2. The pipeline shall be designed and constructed to resist and accommodate the forces and ground motions/displacements along the alignment determined in Step 1. The following criteria must be met:
  - a. The pipeline shall remain operable during and after the seismic event.
  - b. Inelastic behavior, possibly requiring eventual repair or replacement, is allowable providing the pipeline can remain operable until the post-earthquake emergency conditions have passed.
  - c. The larger of either the mean or medium values of the estimated geotechnical hazards (e.g., permanent ground displacement, peak ground velocity, etc.) shall be used in the analysis.
  - d. Pipe material and system properties will be as specified by the appropriate ASTM standard with a factor of safety equal to 1.0.

<u>No seismic requirements:</u> New pipelines need only meet SPU non-seismic specific requirements.

# Hydrants

For hydrant runs in PGD areas, accommodation shall be made within 10 feet of the hydrant connected to allow for a minimum of five degrees of rotation and two inches of expansion or contraction between the main and hydrant piping. Hydrant connection piping shall be restrained joint ductile iron, welded joint welded steel or HDPE with thermally fused joints.

#### Services

Services shall be protected by a fabricated steel sleeve that is connected to a semirigid sleeve as shown in Figure 3. The sleeves shall allow the service to move 2-inches of vertical or axial direction pipe movement. If a valve box is needed, a vertical semirigid sleeve is also needed



Figure 1. SPU Water Systems Hazards Map



Figure 2. Direct Service Area Seismic Hazards and Critical Pipelines



Figure 3. Service Connection

#### **Appendix D References**

Lettis Consultants International, 2016, *Final Desktop review and Summary of the Seattle and South Whidbey Island Fault Zones for Seattle Public Utilities.* 

Palmer, Stephen P., et. Al., 2004, *Liquefaction Susceptibility and Site Class Maps of Washington State, By County*, Washington Division of Geology and Earth Resources, Open File Report 2004-20.

Pratt, T.L., Troost, K.G., Odum, J.K., and Stephenson, W.J., 2015, "Kinematics of Shallow Backthrusts in the Seattle Fault Zone," *Washington State: Geosphere* 11, No. 6, doi.10.1130/GES01179.1.