Ship Canal Water Quality Project

Preliminary Engineering Report

BALLARD CONVEYANCE WORK PACKAGE

AUGUST 30, 2018

This Preliminary Engineering Report has been prepared under the direction of the following Registered Professional Engineer

Eset Alemu, P.E. License No. 49621

Ship Canal Water Quality Project Division Seattle Public Utilities Seattle Municipal Tower, Suite 4900 700 Fifth Avenue Seattle, Washington 98124-4018

Table of Contents

Sect	ion 1 S	ection 1	1-1		
1.1	•	Description			
1.2	Hydraulic Modeling				
1.3	Preliminary Geotechnical Explorations				
1.4 1.5					
		nended Option			
Sect		ection 2.			
2.1	Existing	System Description	2-1		
	2.1.1	Diversion Structures			
	2.1.2	Pump Station			
	2.1.3	Outfalls			
2.2		ory Requirement			
2.3	Existing	Combined Sewer Overflow Performance	2-6		
Sect	ion 3 S	ection 3.	3-1		
3.1	Option 1				
	3.1.1	Basin 150/151 Conveyance			
	3.1.2	Basin 152 Conveyance – NW 56 th Street			
3.2	Option 2)			
	3.2.1	Basin 150/151 Conveyance			
	3.2.2	Basin 152 Conveyance – NW Market Street			
3.3 Option 3					
	3.3.1	Basin 150/151 Conveyance			
	3.3.2	Basin 152 Conveyance – NW 54 th Street	3-12		
3.4	Hydrauli	c Modeling	3-13		
3.5	Prelimin	ary Geotechnical Explorations	3-14		
3.6	Options	Overview	3-17		
Sect	ion 4 S	ection 4.	4-1		
4.1	Short Te	erm Community Impact			
	4.1.1	Option 1 – Basin 152 - NW 56 th Street			
	4.1.2	Option 2 - Basin 152 - W Market Street	4-3		
	4.1.3	Option 3 – Basin 152 - NW 54 th Street	4-3		

4.2	Long Te	rm Community Impact	4-3		
	4.2.1	Option 1 – Basin 152 - NW 56 th Street	4-4		
	4.2.2	Option 2 - Basin 152 - NW Market Street	4-4		
	4.2.3	Option 3 – Basin 152 - NW 54 th Street	4-4		
4.3	Constru	ction Risk	4-4		
	4.3.1	Option 1 – Basin 152- NW 56 th Street	4-5		
	4.3.2	Option 2 – Basin 152 - NW Market Street	4-5		
	4.3.3	Option 3 – Basin 152 - NW 54 th Street	4-5		
4.4 Construction Complexity					
	4.4.1	Option 1 – Basin 152 - NW 56 th Street	4-6		
	4.4.2	Option 2 - Basin 152 - NW Market Street	4-6		
	4.4.3	Option 3 - Basin 152 - NW 54 th Street	4-6		
4.5 Ease of Maintenance					
	4.5.1	Option 1 – Basin 152 - NW 56 th Street	4-7		
	4.5.2	Option 2 - Basin 152 - NW Market Street	4-7		
	4.5.3	Option 3 - Basin 152 - NW 54 th Street	4-7		
Sec	tion 5 S	ection 5	5-1		
5.1	Identific	ation of Evaluation Criteria	5-1		
5.2					
5.3	-				
5.4 Scoring of Evaluation Criteria					
5.5 Calculation of Option's Value					
5.6	Pairing	of Option's Value and Cost	5-5		
Sec	Section 6 Section 6				

List of Appendices

Appendix A: Ballard Conveyance Options Analysis Work Package: Project Requirements Memorandum, June 1, 2018

Appendix B: Ballard Conveyance Options Analysis Work Package: Project Constraints Memorandum, June 12, 2017

Appendix C: Ballard Conveyance Options Analysis Work Package: Construction Impacts Memorandum, October 27, 2017

Appendix D: Preliminary Plan and Profile of Conveyance Pipes

Appendix E: Cost Estimate and Basis of Estimate

Appendix F Ballard Conveyance Hydraulic Modeling Report

Appendix G: Ballard Conveyance Preliminary Geotechnical Investigation Report

Appendix H: Value Modeling Technical Memorandum.

List of Figures

1-3
2-2
2-3
2-4
3-3
3-5
3-8
. 3-11
. 3-16
5-4
5-5

List of Tables

Table 2-1. Summary of Sewer Pipe in the Ballard CSO Area	2-1
Table 2-2. Ballard Basins CSO Frequency and Volumes	2-6
Table 3-1. Summary of Options Parameters	3-17
Table 5-1. Qualitative Performance Measures	5-2
Table 5-2. Short-term Community Impact Scores	5-3
Table 5-3. Qualitative Evaluation Criteria Scores	5-4
Table 5-4. Total Life-Cycle Cost of Options	5-5

List of Abbreviations

AACE Association for the Advancement of Cost Engineering BTRR **Ballard Terminal Railroad** combined sewer overflow CSO CSS combined sewer system DNRP Department of Natural Resources and Parks HDPE high density polyethylene KC King County MH maintenance hole NAVD88 North American Vertical Datum of 1988 NPDES National Pollutant Discharge Elimination System RCW Revised Code of Washington SCWQP Ship Canal Water Quality Project SDOT Seattle Deaprtment of Transportation SIP Street Improvement Permit SPU Seattle Public Utilities SSO Sanitary Sewer Overflow TEP **Tunnel Effluent Pump Station** WAC Washintgon Administrative Code WTD Waste Treatment Division

Section 1. Executive Summary

The purpose of the Ship Canal Water Quality Project (SCWQP) is to provide offline storage for the combined sewer overflow (CSO) flows from five Seattle Public Utilities (SPU) and two King County Department of Natural Resources and Parks (DNRP) CSO basins to meet regulatory requirements, Section S.8 of SPU's National Pollutant Discharge Elimination System (NPDES) permit (WA0031682), Section V.B.14 of the City of Seattle's Consent Decree (Civil Action No. 2:13-cv-678; United States of America, 2013a), and Section V.B.15 of King County's Consent Decree (Civil Action No. 2:13-cv-677; United States of America, 2013b). The SCWQP storage is a deep tunnel constructed under the Ballard, Fremont and Wallingford neighborhoods, on the north side of the Ship Canal. It will control the Ballard CSO Basins 150/151 and 152, Fremont Basin 174 and Wallingford Basin 147; and DNRP 3rd Avenue W Basin, and 11th Avenue NW Basin. The main components of the Ship Canal Water Quality Project are the 18-foot 10-inch diameter storage tunnel, drop shafts, appurtenances, conveyance facilities, and pump station.

One of the work packages of SCWQP is Ballard Conveyance which collects CSOs from SPU Ballard Basins 150/151 and 152 and routes it to the storage tunnel. The purpose of this project is to collect basin flows that would be released through Outfall 152 and Outfall 151 (Outfall 150 will be removed prior to the construction of Ballard conveyance project) and bring these CSO Basins into regulatory compliance by reducing the frequency of overflow to an average of one overflow per year per outfall on a rolling 20-year average.

1.1 Project Description

The scope of the Ballard Conveyance project includes the planning, design and construction of a conveyance system to capture flows from Ballard Basins and transport it to the storage tunnel. The main components of the project include diversion structures that divert flows from basins, conveyance pipes that transport flows to Tunnel Effluent Pump Station (TEPS) site, gate vaults that regulate flows going to the tunnel and maintenance holes used for accessing and maintaining conveyance pipes.

The SCWQP Facility Plan (SPU, March 2017) had identified three options to route flows from Ballard Basins to the storage tunnel. These options pertain to three alignments within the Ballard neighborhood: NW 56th Street, NW Market Street and NW 54th Street for placement of conveyance pipes for Basin 152 flows. These options were evaluated in combination with one alignment identified for routing Basin 150/151 flows. Options Analysis further developed and evaluated these three options to recommend an alignment to move forward into design and construction. The options evaluated were:

- Option 1: NW 56th Street and 24th Avenue NW alignment for Basin 152 conveyance with 2,230 feet of 60-inch diameter pipe, and 24th Avenue NW alignment for Basin 150/151 conveyance with 150 feet of 48-inch diameter pipes
- Option 2: NW Market Street and 24th Avenue NW alignment for Basin 152 conveyance with 2,050 feet of 60-inch diameter pipe, and 24th Avenue NW alignment for Basin 150/151 conveyance with 150 feet of 48-inch diameter pipes
- Option 3: NW 54th Street and 24th Avenue NW alignment for Basin 152 conveyance with 1,530 feet of 60-inch diameter pipe, and 24th Avenue NW alignment for Basin 150/151 conveyance with 150 feet of 48-inch diameter pipes

1.2 Hydraulic Modeling

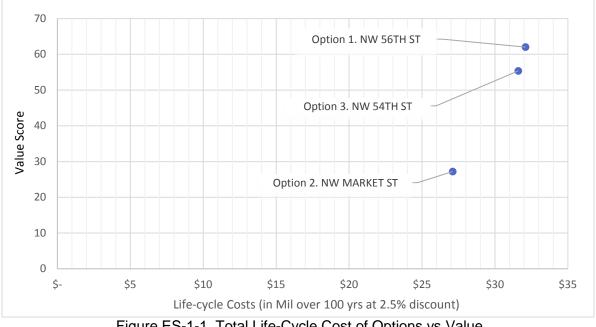
Hydrologic and hydraulic modeling was conducted for Ballard Basins to support Option Analysis and help inform design parameters including diversion structure weir lengths; diameter of conveyance pipes; measures to control flow leaving the diversion structure; and potentials for sanitary sewer overflows (SSO) in the normal flow system. The Ballard hydraulic model was used to simulate hydraulic performance of wet weather events from 1978 through 2015 and conduct evaluations. The findings include:

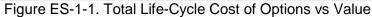
- For Ballard 152 conveyance, initial long-term computer modeling simulations (1978 through 2015) adjusted for climate change factors showed that the project performance criteria outlined in Appendix A, can still be met by reducing the proposed 60-inch diameter conveyance to 48-inch diameter pipe. The reduction of pipe diameter adds two more CSO events while meeting the CSO frequency regulatory compliance requirement. During design, the project team will further analyze reducing pipe diameter to 48-inch.
- System surcharge evaluations on the normal flow path along NW Market Street, showed that a fixed orifice opening of 13.5 inches in diameter upstream of the combined sewer pipe along NW Market Street can mitigate possible surcharging to the surface (SSOs) during extreme wet weather events
- Diversion structure design dimension evaluations showed that weir crest lengths can be optimized between 10 to 20 feet with a combination of different weir elevations.

1.3 Preliminary Geotechnical Explorations

Preliminary geotechnical evaluations were conducted at four locations along NW 56th Street and NW Market Street with bore holes, and observation wells which were screened for contamination. One of the test locations along NW Market Street showed the soil to be lead contaminated between 5 and 15 feet below ground surface.

1.4 Triple Bottom Line Analysis


The impacts of the three proposed options were evaluated in five major areas:


- 1. Short Term Community Impact (during construction)
- 2. Long Term Community Impacts
- 3. Construction Risk
- 4. Construction Complexity
- 5. Ease of Maintenance

Triple Bottom Line analysis was conducted based on the above evaluation criteria. This process quantified the values of options based on several evaluation criteria and identified the tradeoffs between competing objectives from multiple stakeholders. The project team made up of representatives from the design team, operation, maintenance, asset management, communication, construction management, and instrumentation and control conducted the value modeling process which had the following steps:

- 1) Identification of evaluation criteria
- 2) Development of performance measure scales
- 3) Assignment of weights to the evaluation criteria
- 4) Scoring of evaluation criteria (based on 2 and 3)
- 5) Calculation of option's values
- Pairing of option's values with life cycle costs

The results of the value modeling process showed the cumulative values of each of the options and compared it to the respective life-cycle costs as shown in *Figure* ES-1-1.

1.5 Recommended Option

The Tripe Bottom Line analysis and subsequent value modeling process showed that Option 1 and Option 3 have the highest and second highest values. Evaluation of the proposed alternatives shows that Option 1 along NW 56th Street and 24th Avenue NW offers the most economic value of all the options evaluated. This option was selected as the recommended alternative to construct the Ballard Conveyance system.

Option 3 was shown to have more risks in terms of impacts to truck traffic which is integral to businesses along NW 54th Street and carries a larger risk in terms of encountering contaminated material and contaminated groundwater during construction. The impacts to traffic and associated risks with environmental contamination results in higher risk to project schedule and budget.

The recommended alternative, Option 1 along NW 56th Street, was presented to the Asset Management Committee (AMC) on August 8, 2018 for Stage Gate 2 approval and was aaccepted.

Section 2. Existing System

2.1 Existing System Description

The Ballard CSO Area comprises approximately 1,170 acres in northwest Seattle bounded by 30th Avenue NW to the west, 15th Avenue NW to the east, NW 85th Street to the north, and Ship Canal to the south (*Figure 2-1*). The area is divided into Basins 150/151 (401 acres), and Basin 152 (769 acres) which drain from north to south toward Ship Canal and Salmon Bay. The wastewater generated in Ballard Basins flows by gravity through the SPU combined sewer system on Shilshole Avenue NW to DNRP's Ballard Regulator and into the Ballard Siphon for conveyance to the West Point Treatment Plant. Basins 152 and 150/151 contain permitted CSO outfalls, NPDES 150, NPDES 151, and NPDES 152, which discharge overflows to Salmon Bay during wet weather events when the capacity of the combined sewer system is exceeded.

The Ballard CSO Basins contain combined sewer system that conveys both sanitary and stormwater flow. The combined sewer system in Ballard have areas that are fully combined, and others partially separated. Fully combined systems are systems in which sanitary sewer and stormwater runoff flows are combined and conveyed in the same pipe. While partially separated systems are systems in which stormwater from roof and foundation drains combine with sanitary sewer and are conveyed in the same pipe; and stormwater from roadways is conveyed in a separate drainage pipe.

Within the Ballard basins, the area to the north of NW 65th Street (about two-thirds of the total area) is fully combined. The area south of NW 65th Street is partially separated. The combined sewer and drainage systems are shown in *Figure 2-1*. The wastewater collection system in the Ballard CSO area is summarized in *Table 2-1*.

Infrastructure	Description
Length of pipe (feet)	186,000
Pipe diameter range (inches)	6 to 48
Number of connecting structures	750+
City pump stations	1 (PS84)

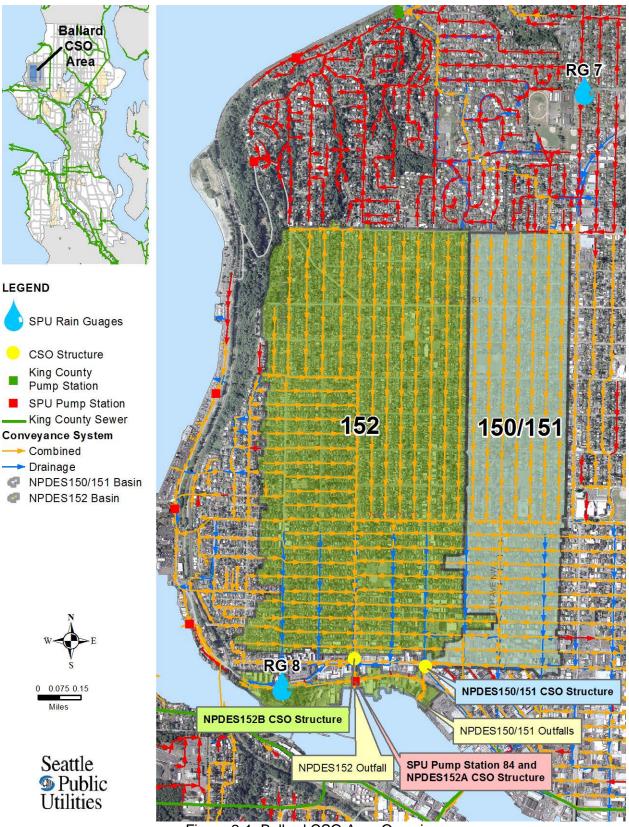


Figure 2-1. Ballard CSO Area Overview

2.1.1 Diversion Structures

Flows from Ballard Basin 150/151 are routed through overflow maintenance hole (MH) 011-184 which is located just south of the intersection of NW Market Street and 24th Avenue Northwest. During wet weather events, flow rises in MH 011-184 until it eventually crests over the overflow weir elevation of 38.31 feet North American Vertical Datum of 1988 (NAVD88) and is conveyed through a 30-inch combined sewer pipe to MH 011-236 that splits the flow to discharge to Salmon Bay through Outfalls 150 (30-inch diameter) and 151 (18-inch diameter). The existing flow diversion system for the basin is shown in *Figure 2-2*.

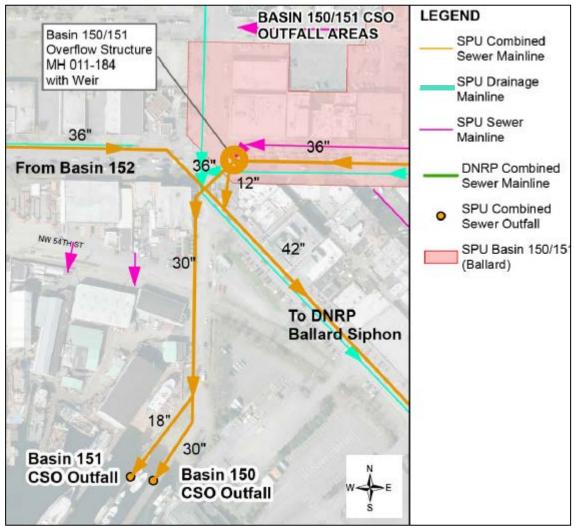
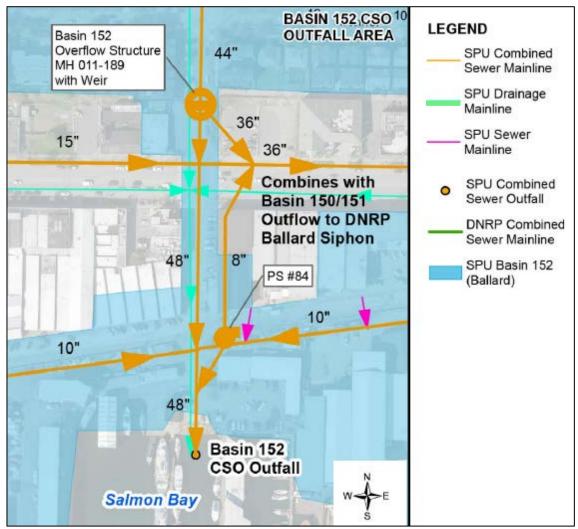



Figure 2-2. Basin 150/151 Flow Diversion Structures

Similarly, existing combined sewer flows for Basin 152 are routed through existing overflow MH 011-189 on 28th Avenue NW just north of NW Market Street. During wet weather events, flow rises in MH 011-189 until it eventually crests over the overflow weir elevation of 23.82 feet (NAVD88) and head downstream to discharge into Salmon Bay via NPDES 152

outfall (48-inch diameter). The existing flow diversion system for this basin is shown in *Figure 2-3*.

Figure 2-3. Basin 152 Flow Diversion Structures

2.1.2 Pump Station

Basin 152 contains a pump station, Pump Station 84, at the intersection of 28th Avenue NW and NW 54th Street. Pump Station 84 is a duplex pump station with constant-speed pumps and a maximum pumping capacity of 1.25 MGD. Pump Station 84 collects wastewater from a 38-acre area in the lower portion of Basin 152 and lifts flow towards the SPU combined sewer system along NW Market Street. When the maximum pumping capacity is reached and level within the wet well continues to rise, an overflow occurs at elevation 18.02 feet (NAVD88) via 10-inch diameter overflow pipe that discharges to Outfall 152 pipe.

2.1.3 Outfalls

CSO Basins 150/151 and 152 have permitted CSO outfalls that discharge overflows to Salmon Bay during wet weather events when the capacity of the combined sewer system is exceeded.

The overflow pipe downstream of Basin 150/151 splits into two separate outfalls, NPDES 150 and 151, at MH 011-236. Both outfalls are located south of the intersection of 24th Avenue NW and NW 54th Street. Outfall 151 is an 18-inch wood-stave pipe in poor condition while Outfall 150 is a new 30-inch high density polyethylene (HDPE) outfall installed along the west side of the existing pier on 24h Avenue NW. SPU plans to replace both the existing Outfall 150 and 151 with a single 48-inch diameter outfall with the SCWQP Ballard Early Works Package currently in construction with expected completion in 2019.

The Outfall for Basin 152 is located south of the NW 28th Avenue and 54th Street NW intersection. This pipe is a 48-inch wood-stave pipe that is in good condition. There are currently no plans to replace or repair this outfall.

2.2 Regulatory Requirement

Seattle is served by a combined sewer system (CSS) that handles both stormwater and wastewater generated by businesses and residents. Heavy rains can overwhelm combined sewer pipes and cause combined sewer overflows. These overflow discharge events can contribute pollutants to surrounding water bodies and impact their quality and uses.

The United States District Court Consent Decree number 2:13-cv-678 has mandated the City of Seattle to control sewer discharges to protect public health and the environment, in compliance with the Clean Water Act. The following laws and regulations require that the City and King County limit CSOs to a 20-year moving average of no more than one untreated discharge per year per permitted outfall:

Revised Code of Washington (RCW) 90.48.480—This law requires "the greatest reasonable reduction of combined sewer overflows."

Washington Administrative Code (WAC) 173-245-020 (22)—"'The greatest reasonable reduction' means control of each CSO in such a way that an average of one untreated discharge may occur per year."

City of Seattle and King County's National Pollutant Discharge Elimination System (NPDES) Permits and Consent Decrees—These direct that a moving 20-year period be used for long-term averaging of the overflow frequency (United States of America, 2013a and 2013b).

2.3 Existing Combined Sewer Overflow Performance

During wet weather events, the combined sewer system experiences overflows where combined sewage is released into the Ship Canal through NPDES 150,151, and 152 outfalls. SPU operates and maintains permanent monitoring equipment to track overflow frequency and estimate discharge volumes at each CSO outfall. *Table 2-2* lists the Ballard Basins CSO discharge volumes and frequencies recorded from 2013 through 2017.

Outfall	Total Number of CSO Events	Average Number of CSO Events Per Year	Average Annual CSO Volume (MG)
150/151	136	27.2	2.9
152	244	48.8	37.7
TOTAL	380	76.0	40.6

Note: Data from Wastewater Collection System: 2017 Annual Report, March 2018

Section 3. Proposed Project

The Ballard Conveyance project proposes to construct a conveyance system that collects flows during wet weather events when capacity of existing combined sewer is reached. The overflows from existing Basins 150/151 and 152 will be routed to the storage tunnel at the Tunnel Effluent Pump Station (TEPS) site located at 24th Avenue NW and Shilshole Avenue NW. The main components of the project include diversion structures that divert flows from existing combined sewer system, conveyance pipes that transport flows from diversion structures to storage tunnel (TEPS site), gate valves that regulate flows to the tunnel and maintenance holes used for accessing and maintaining conveyance pipes.

The SCWQP Final Facility Plan (March 2017) identified three options for routing flows from Ballard Basins to the storage tunnel. The project team conducted options analysis to further develop these three options. To inform each option, the team developed project planning tools such as project requirements, project constraints, preliminary geotechnical assessment, hydraulic modeling, major utility conflicts, construction impacts, property acquisition, risk identification and project costs. For more information, refer to the following in the Appendix:

- <u>Project Requirements</u>: Guidelines to be used for further development of options, such as SPU design standards, permitting, health and safety, water quality requirements, hydraulic and operational performances, and maintenance; are documented in Appendix A: Ballard Conveyance Options Analysis Work Package: Project Requirement Memorandum (SPU, June 2018).
- <u>Project Constraints</u>: Summary of project constraints that the project options must meet are documented in Appendix B: Ballard Conveyance Options Analysis Work Package: Project Constraints Memorandum (SPU, June 2017).
- <u>Construction Impacts</u>: Construction related impacts and issues for each of the three proposed options are documented in Appendix C: Ballard Conveyance Options Analysis Work Package: Construction Impacts Memorandum (SPU, October 2017)
- <u>Preliminary Plans and Profiles</u>: Pipe layout, placement, and locations of hydraulic structures, maintenance holes and preliminary locations for pipe driving pits are shown in Appendix D
- <u>Project Cost Estimate</u>: Each option's total project cost estimate are documented in Appendix E: Cost Estimate and Basis of Estimate.
- <u>Hydraulic Modeling Report</u>: Evaluation of hydraulic performance of option and associated hydraulic structures are documented in Appendix F and Section 3.4

- <u>Preliminary Geotechnical Investigation Report</u>: Investigations into subsurface conditions along the proposed conveyance pipe alignments are documented in Appendix G and Section 3.5
- <u>Value Modeling Summary</u>: Triple Bottom Line analysis steps and process of calculating the value of each option are summarized in Appendix H: Value Modeling Technical Memorandum.

Due to the close proximity to the TEPS site, only one alignment was developed for routing flows from existing combined sewer system of Basin 150/151 to the storage tunnel. The proposed conveyance system for the basin diverts flows from the existing 30-inch diameter overflow pipe 150 feet south of the intersection of 24th Avenue NW and NW 54th Street and then routed to TEPS site along 24th Avenue NW. Once storage tunnel is full, overflows are routed back to the existing 48-inch overflow pipe along 24th Avenue NW to discharge through Outfall 151. Ballard Early Work Package will construct 48-inch diameter pipe and Outfall 151 in 2018 and 2019.

The flows from Basin 152 flows can be routed along three different streets within the Ballard neighborhood based upon the geographical distance from where the flows are diverted to the TEPS site. The following three alignments were identified in the SCWQP Facility Plan (March 2017) for routing flows refer to *Figure 3-1*:

Alignment 1: Basin 152 conveyance along NW 56th Street and 24th Avenue NW Alignment 2: Basin 152 conveyance along NW Market Street and 24th Avenue NW Alignment 3: Basin 152 conveyance along NW 54th Street and 24th Avenue NW

The conveyance pipes for Basin 150/151 and Basin 152 come together at a maintenance hole before connecting to the TEPS structure. This most downstream maintenance hole then connects to the TEPS structure with a 72-inch pipe that routes the flows from both basins.

Figure 3-1. Basins 150/151 and 152 Conveyance Pipes Alignments Conceptual Layout

3.1 Option 1

3.1.1 Basin 150/151 Conveyance

A design flow rate of 60 million gallons per day (MGD) was used to size Basin 150/151 conveyance pipe to 48-inch diameter. These conveyance pipes were also designed to maintain a slope of 0.5% along the alignment with invert elevations ranging from 18.1 feet (NAVD 88) at proposed MH 2D to 17.5 feet (NAVD 88) invert at the maintenance hole upstream of the TEPS structure.

At the upstream end of the proposed conveyance system, overflows from Basin 150/151 will be diverted from the existing 30-inch combined sewer overflow flow pipe on 24th Avenue NW downstream of the basin's existing diversion structure at MH 011-233. The new 48-inch diameter conveyance pipe will then convey the basin's overflows from the existing 30-inch overflow pipe to the tunnel via a new diversion structure that will transfer flows to the tunnel first and then to the outfalls. The diversion structure will be housed within a new maintenance hole.

A gate valve vault will be placed 40 feet downstream of the new diversion structure to close off the flow routed to the tunnel when storage capacity is met within the tunnel. Flows will rise in new diversion structure MH 2D to the weir crest elevation of 23.06 feet (NAVD 88) and then overflow to the new Outfall 151 via a 48-inch pipe. Figure 3-2 shows the flow diversion and conveyance system for this basin.

The conveyance system for Basin 150/151 comes with three new maintenance holes; at the connection to the overflow line, at the proposed diversion structure, and at the connection to the outfall pipe. The conveyance system is located within the right of way adjacent to the TEPS site. The proposed construction method for installing these pipes is open trench construction. Power and backup power for the gate vault will be located within the TEPS facility. Refer to Appendix D for plan and profile.

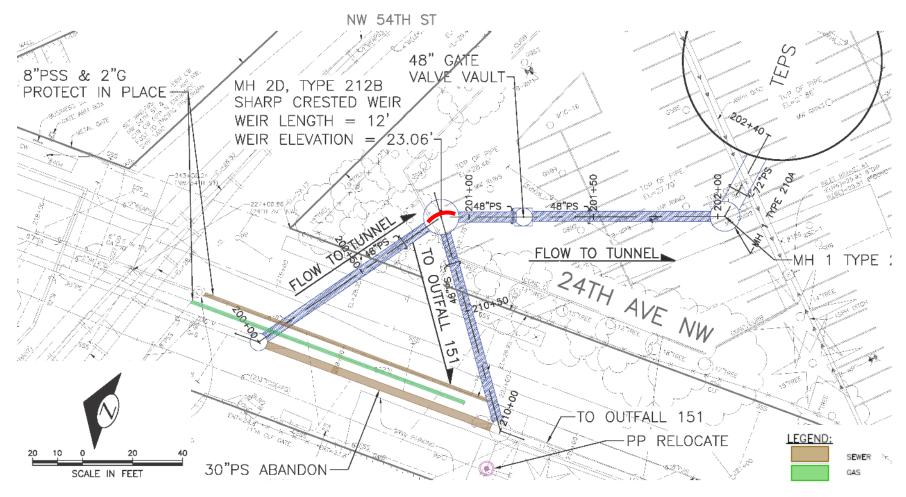


Figure 3-2. Basin 150/151 Conveyance System Layout

3.1.2 Basin 152 Conveyance – NW 56th Street

This option runs along NW 56th Street between 28th Avenue NW and 24th Avenue NW; and along 24th Avenue NW between NW 56th Street and NW 54th Street. NW 56th Street is two lane residential street with no public transit traffic.

A design flow rate of 125 million gallons per day (MGD) was used to size the Basin 152 conveyance pipe to 60-inch. The conveyance pipes maintain a slope of 0.5% along the alignment with invert elevations ranging from 18 feet (NAVD 88) at the diversion structure to 7.4 feet invert at the maintenance hole upstream of the TEPS structure.

This first option for conveyance pipe alignment will divert Basin 152 normal flows from the existing 42-inch brick combined sewer pipe via a new 48-inch pipe and route it to a new diversion structure south of the intersection of 28th Avenue NW and NW 56th Street. The diversion structure will be placed upstream of the existing diversion structure at the intersection of NW Market Street and 28th Avenue NW as shown in *Figure 3-3*.

This structure will first route flows to the new 48-inch normal combined sewer path that runs south along 28th Avenue NW. During wet weather events, flow depth will rise in the diversion structure until it reaches the transfer weir elevation of 27.3 feet (NAVD88) and flows will then proceed to the tunnel through the proposed 60-inch conveyance pipe. Once the tunnel is full, the gate vault downstream of the diversion structure closes and the flow depth continues to rise until it reaches the overflow weir elevation of 29.33 feet NAVD88. Flows will then be diverted to the 48-inch pipe leading to Outfall 152. Refer to Appendix D for plan and profile.

The 60-inch diameter conveyance pipe will start from the diversion structure just south of the intersection of 28th Avenue NW and NW 56th Street, run north along 28th Avenue NW, turn east along NW 56th Street to 24th Avenue NW, south along 24th Ave NW and turn east at NW 54th Street into the West Portal TEPS site. To minimize direct conflicts with existing utilities, the pipes will be placed south of the centerline of NW 56th Street and east of the centerline on 24th Avenue NW. The conveyance pipe for this option has the longest length and the deepest pipe inverts.

Given the depth of the conveyance pipes, a combination of open trench excavation and trenchless installation is proposed for pipe installation. Open trench construction is proposed for the diversion structure as well as the 48-inch normal flow combined sewer connecting to the existing combined sewer system; the 48-inch overflow pipe connecting to NPDES 152; and the 60-inch conveyance pipes upstream of the gate valve vault.

Downstream of the gate valve vault, trenchless installation method is proposed for the conveyance pipe that spans about 1900 feet to the south end of 24th Avenue NW. As the

conveyance pipes enter the TEPS site, about 100 feet of the 60-inch pipe will be installed with open trench excavation.

The trenchless construction method also comes with four pipe installation launch/retrieval pits which are used to house equipment for pipe driving and receiving the driven pipe. The launch pits are located at the gate valve vault on NW 56th Street (approximately 47 by 23 feet); at the east end of the NW 56th Street alignment (approximately 47 by 23 feet); at the intersection of 24th Avenue NW and NW 56th Street (L-shaped approximately 47 by 47 feet); and at the south end of 24th Avenue NW (approximately 47 by 23 feet). The locations and sizes for launch pits are preliminary and will be refined during design and construction.

This option includes seven maintenance holes along the conveyance pipe with depths below ground surface ranging from 18 feet downstream of the diversion structure, 40 feet at the intersection of 24th Avenue and NW 56th Street, to 15 feet at the TEPS site. Other hydraulic structures along the alignment include a gate valve vault, downstream of the diversion structure at about 50 feet east of the intersection of 24th Avenue NW and NW 56th Street.

The total project cost of Option 1 is \$31,717,000 (Association for the Advancement of Cost Engineering [AACE] Class 4 estimate). This includes the cost of pipe; maintenance holes; pipe driving and installation pits; surface restoration; electrical equipment; utility relocations; and hydraulic structures and associated equipment. Other project costs include soft costs, and risk contingencies which were calculated from risk register analysis. For more information on costs, refer to the Basis of Estimate and breakdown of costs in Appendix E.

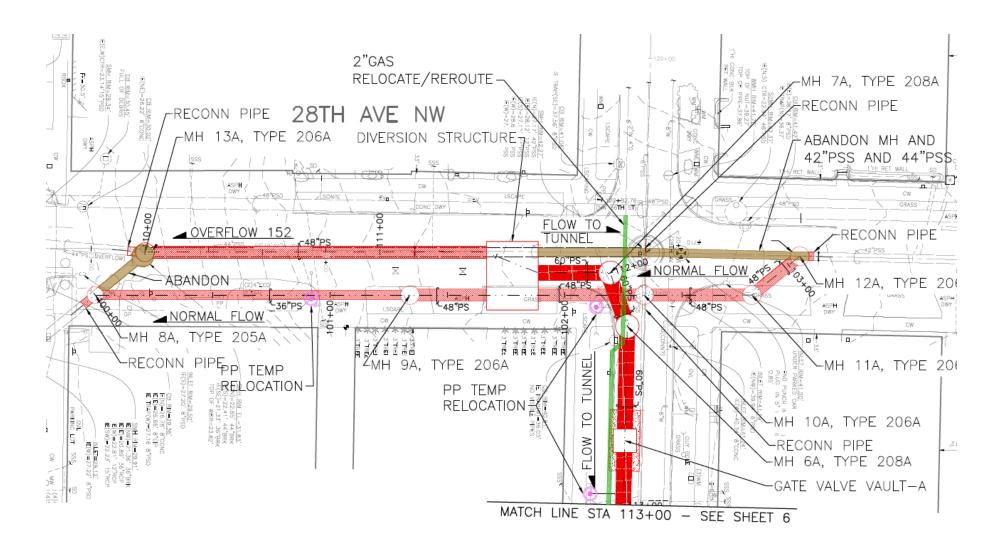


Figure 3-3. Pipes Connecting to Option 1 Diversion Structure

3.2 **Option 2**

3.2.1 Basin 150/151 Conveyance

A design flow rate of 60 million gallons per day (MGD) was used to size the Basin 150/151 conveyance pipe to 48-inch diameter. These conveyance pipes were also designed to maintain a slope of 0.5% along the alignment with invert elevations ranging from 18.1 feet (NAVD 88) at proposed MH 2D to 17.5 feet (NAVD 88) invert at the maintenance hole upstream of the TEPS structure.

At the upstream end of the proposed conveyance system, overflows from Basin 150/151 will be diverted from the existing 30-inch combined sewer overflow flow pipe on 24th Avenue NW downstream of the basin's existing diversion structure at MH 011-233. The new 48-inch diameter conveyance pipe will then convey the basin's overflows from the existing 30-inch overflow pipe to the tunnel via a new diversion structure that will transfer flows to the tunnel first and then to the outfalls. The diversion structure will be housed within a new maintenance hole.

A gate valve vault will be placed 40 feet downstream of the new diversion structure to close off the flow routed to the tunnel when storage capacity is met within the tunnel. Flows will rise in new diversion structure MH 2D to the weir crest elevation of 23.06 feet (NAVD 88) and then overflow to the new Outfall 151 via a 48-inch pipe. Figure 3-2 shows the flow diversion and conveyance system for this basin.

The conveyance system for Basin 150/151 comes with three new maintenance holes; at the connection to the overflow line, at the proposed diversion structure, and at the connection to the outfall pipe. The conveyance system is located within the right of way adjacent to the TEPS site. The proposed construction method for installing these pipes is open trench construction. Power and backup power for the gate vault will be located within the TEPS facility. Refer to Appendix D for plan and profile.

3.2.2 Basin 152 Conveyance – NW Market Street

This option runs along NW Market Street between 28th Avenue NW and 24th Avenue NW; and along 24th Avenue NW between NW Market Street and the NW 54th Street. NW Market Street is a 4 - Iane arterial with commercial use. The street accommodates three public transit buses and is also the proposed route for the Burke Gilman Trail.

The second option for Basin 152 conveyance pipe alignment will also divert normal flows from the existing 42-inch brick combined sewer pipe via a new 48-inch pipe and route it to the proposed diversion structure south of the intersection of 28th Avenue NW and NW 56th Street. Within the diversion structure, the normal flow will be directed first to the normal combined sewer path and to the tunnel through the 60-inch conveyance line during wet weather flows (*Figure 3-4*). The diversion structure has transfer weir elevation of 27.5 feet

(NAVD88) and overflow weir elevation of 29.33 feet (NAVD88), same as the weir elevation in Option 1.

The 60-inch diameter conveyance pipe will start from the diversion structure just south of the intersection of 28th Avenue NW and NW 56th Street, run south along 28th Avenue NW, turn east on NW Market Street, south on 24th Avenue NW and then east to connect to TEPS (Appendix D). The conveyance pipes will be placed south of the centerline on NW Market Street and east of the centerline on 24th Avenue NW and 28th Avenue NW to minimize conflict with existing utilities.

This option comes with four maintenance holes along the conveyance line with depths below ground surface ranging from 10 feet near the diversion structure, 35 feet at the intersection of 24th Avenue and NW Market Street, to 15 feet at the TEPS site. Other hydraulic structures include a gate valve vault to be located 100 feet east of the intersection of 28th Avenue NW and NW Market Street, which closes when the tunnel is at capacity.

The proposed method of construction for this option is a combination of open trench and trenchless installation. Similar to Option 1, all the upstream facilities including the new diversion structure, connection to normal combined sewer and overflow pipe as well as the downstream end facilities in the TEPS site are proposed to be installed with open trench construction.

The conveyance pipe along NW Market Street and NW 24th Avenue which spans approximately 1600 feet will be installed with trenchless construction. This construction method also comes with three trenchless pipe installation launch/retrieval pits; one by the gate valve vault on NW Market Street (approximately 47 by 23 feet), another L-shaped pit in the intersection of 24th Avenue NW and NW Market Street (47 feet on the long side) and a third one at the south end of 24th Avenue NW (approximately 47 by 23 feet). The locations and sizes for launch pits are preliminary and will be refined during design.

The total project cost of Option 2 is \$26,666,000 (AACE Class 4 estimate). This includes the cost of pipe; maintenance holes; pipe driving and installation pits; surface restoration; electrical equipment; utility relocations; and hydraulic structures and associated equipment. Other project costs include soft costs, and risk contingencies calculated as a percentage of construction costs. Associated project costs were calculated in a comparable manner to Option 1. For more information on costs, refer to the Basis of Estimate and breakdown of costs in Appendix E.

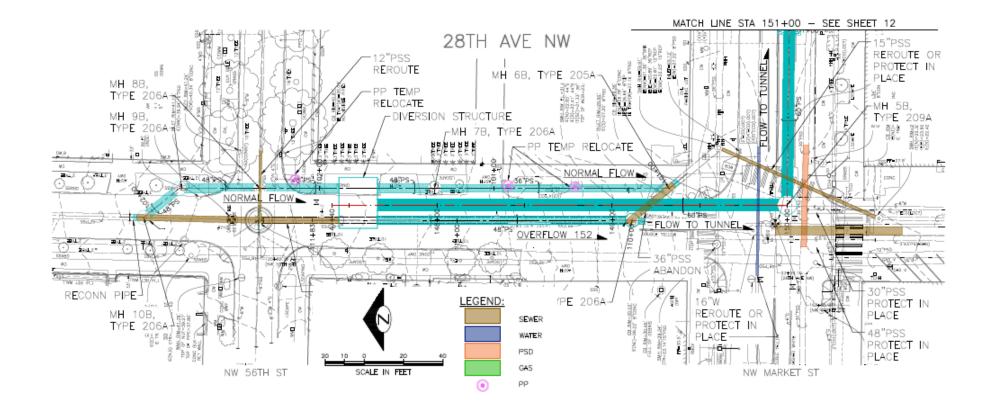


Figure 3-4. Pipes Connecting to Option 2 Diversion Structure

3.3 Option 3

3.3.1 Basin 150/151 Conveyance

A design flow rate of 60 million gallons per day (MGD) was used to size the Basin 150/151 conveyance pipe to 48-inch diameter. These conveyance pipes were also designed to maintain a slope of 0.5% along the alignment with invert elevations ranging from 18.1 feet (NAVD 88) at proposed MH 2D to 17.5 feet (NAVD 88) invert at the maintenance hole upstream of the TEPS structure.

At the upstream end of the proposed conveyance system, overflows from Basin 150/151 will be diverted from the existing 30-inch combined sewer overflow flow pipe on 24th Avenue NW downstream of the basin's existing diversion structure at MH 011-233. The new 48-inch diameter conveyance pipe will then convey the basin's overflows from the existing 30-inch overflow pipe to the tunnel via a new diversion structure that will transfer flows to the tunnel first and then to the outfalls. The diversion structure will be housed within a new maintenance hole.

A gate valve vault will be placed 40 feet downstream of the new diversion structure to close off the flow routed to the tunnel when storage capacity is met within the tunnel. Flows will rise in new diversion structure MH 2D to the weir crest elevation of 23.06 feet (NAVD 88) and then overflow to the new Outfall 151 via a 48-inch pipe. Figure 3-2 shows the flow diversion and conveyance system for this basin.

The conveyance system for Basin 150/151 comes with three new maintenance holes; at the connection to the overflow line, at the proposed diversion structure, and at the connection to the outfall pipe. The conveyance system is located within the right of way adjacent to the TEPS site. The proposed construction method for installing these pipes is open trench construction. Power and backup power for the gate vault will be located within the TEPS facility. Refer to Appendix D for plan and profile.

3.3.2 Basin 152 Conveyance – NW 54th Street

This option runs along NW 54th Street between 28th Avenue NW and 24th Avenue NW. NW 54th Street is an industrial 2 – lane local access street with no sidewalks or street parking. The street narrows to one lane west of 26th Avenue NW and turns into a spilt level road. This street also hosts the Ballard Terminal Railroad Line.

The stretch of NW 54th Street between 28th Avenue NW and 24th Avenue NW is not City of Seattle street right of way. One portion is owned by the Nordic Museum and the remainder is owned by Seattle Department of Transportation's (SDOT). This option requires the acquisition of a permanent easement from the Nordic Museum; and SDOT's permission for use of their fee-owned property. SDOT can grant permission either through their Street Improvement Permit (SIP) process or through their Council Committee ordinance. Temporary construction easements will also be required.

The third option for conveyance pipe alignment will divert overflows from the existing 48inch overflow line and route it to the proposed diversion structure near the intersection of NW 54th Street and 28th Avenue NW. The diversion structure will first transfer all flows to the tunnel conveyance line and secondly to the outfall pipe over an overflow weir elevation of 19.4 feet (NAVD88) when the tunnel capacity is met. This option is different from the other two options in that the basin flows are diverted from the overflow line instead of the normal flow line; and that the diversion structure is smaller because flows are diverted from the outfall pipe. This option also has the shallowest pipe depths and the shortest pipe length.

The route of the conveyance line is east along NW 54th Street, between 28th Avenue NW and 24th Avenue NW, south on 24th Avenue NW and east into the TEPS site. The pipes will be placed on the north side of the curved alignment along NW 54th Street. This alignment comes with five maintenance holes ranging in depth below ground surface from 6 feet near the diversion structure to 15 feet as the alignment turns south on 24th Avenue NW. This option also includes a gate valve vault about 20 feet downstream of the diversion structure. Refer to Appendix D for plan and profile.

The method of construction for this option is a combination of open trench installation for the upstream end, the diversion structure and conveyance pipe upstream of the gate valve vault; as well as the downstream end of the conveyance system within the TEPS site. The conveyance pipe running along NW 54th Street for about 1400 feet and south along 24th Avenue NW will be installed with a trenchless method. This installation method comes with four trenchless pipe construction launch/retrieval pits. These launch pits are located at the diversion structure, at the intersection of 26th Avenue NW and NW 54th Street, at the intersection between 24th Avenue NW and NW 54th Street and at the south end of 24th Avenue NW. The locations and sizes for launch pits are preliminary and will be refined during design.

The total project cost for Option 3 is \$31,292,000 (AACE Class 4 estimate). This includes the cost of pipe; maintenance holes; pipe driving and installation pits; surface restoration; electrical equipment; utility relocations; and hydraulic structures and associated equipment. Other project costs include soft costs, property acquisition costs and risk contingencies which were calculated from risk register analysis. Associated project costs were calculated in a comparable manner to Option 1. For more information on costs, refer to the Basis of Estimate and breakdown of costs in Appendix E.

3.4 Hydraulic Modeling

Hydrologic and hydraulic models were developed for the Ballard Basins' 150/151 and 152 Combined Sewer System (CSS). These models were calibrated by King County Wastewater Treatment Division (WTD) in the municipal wastewater modeling software MIKE URBAN. The area modeled included three SPU combined sewer overflow (CSO) outfall points (NPDES 150, NPDES 151 and NPDES 152) that discharge into Salmon Bay, Ballard basins combined sewer tributary areas and the downstream connection to King County's Ballard Regulating Station. For the development of the Long-Term Control Plan (SPU, December 2010), flow meters were installed in the flow contributing areas, and gathered data from September 2008 to March 2010. These flow records were used to calibrate the hydrologic parameters for each sub-basin, a process automated using the calibration program PEST.

The Ballard hydraulic model was used to simulate hydraulic performance of wet weather events from 1978 through 2015 with climate change factors. Weir lengths and elevations for Basin 152 diversion structure, Basin 152 conveyance pipe sizes, and potential sanitary sewer overflows (SSO) associated with flow control structures were evaluated.

System surcharge in the normal flow path along NW Market Street was evaluated to ensure that no SSOs occur. Evaluations showed that installation of a fixed orifice in the combined sewer upstream of NW Market Street will mitigate surcharging of flows to surface during extreme wet weather events. An orifice size of 13.5-inches in diameter installed on the 48-inch combined sewer pipe normal flow path just south of the intersection of 28th Avenue NW and NW 56th Street was shown to prevent SSOs from occurring along NW Market Street.

For Basin 152, a smaller conveyance pipe diameter of 48-inch pipe was also simulated as an option to the proposed 60-inch pipe to determine if the regulatory overflow frequency can still be met with a smaller diameter pipe. Initial long-term modeling simulations showed that two additional CSOs will occur due to the reduced pipe diameter which is still well within regulatory compliance. Further analysis will be performed during design to potentially reduce the pipe diameter to 48-inches.

Other refinements, such as shortening the weir lengths that control flow to the SCWQP tunnel and the CSO outfall were explored and showed that a weir length of 20 feet would work in meeting overflow frequencies. Further modeling will be performed during design phase to optimize the weir length. The results of the modeling effort are documented in Appendix F: Ballard Conveyance Hydraulic Modeling Report.

3.5 Preliminary Geotechnical Explorations

Geotechnical explorations were conducted as part of Options Analysis to investigate the subsurface conditions along the proposed conveyance pipe alignments. A preliminary geotechnical evaluation was conducted by Shannon and Wilson with a scope to review existing geotechnical exploration logs and perform geotechnical borings in the project area. The findings of these evaluations are documented in Appendix G.

The geotechnical evaluations were conducted along NW 56th Street and NW Market Street (*Figure 3-5*). NW 54th Street was not included in the scope for preliminary evaluations as it was assumed to have some environmental contamination due to the findings of contamination within the TEPS site.

The four bore holes used for sampling were located at:

- 1. BCT 1: 20 feet east from NW 56th Street and 28th Avenue NW intersection
- 2. BCT 2: 20 feet west from NW 56th Street and 24th Avenue NW intersection
- 3. BCT 3: 120 feet east from NW Market Street and 28th Avenue NW intersection
- 4. BCT 4: 120 feet south from NW Market Street and 24th Avenue NW intersection

These borings were drilled and sampled to depths from 35 to 55 feet below ground surface to characterize the subsurface conditions. Observation wells were developed at these locations for additional evaluations. Soil samples from these boreholes were field screened for contamination using a combination of visual and olfactory observations, photoionization detector measurements, olfactory observations, and sheen tests. Environmental testing on a soil sample from boring BCT-4, along NW Market Street exhibited lead-contaminated between 5 and 15 feet below ground level.

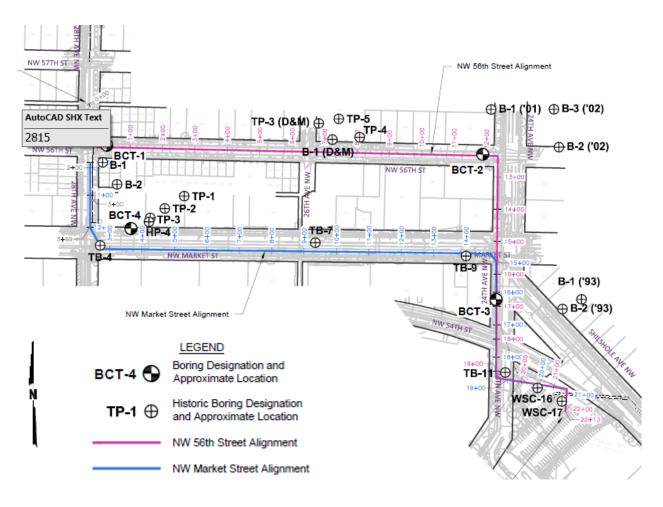


Figure 3-5. Borehole Testing Locations

3.6 Options Overview

The various parameters of the three options are summarized in *Table 3-1*.

Parameter		Option 1- NW 56 th St	Option 2 – NW Market St	Option 3 – NW 54 th St
Design Flow for Basin 150/151 Conveyance (MGD)		60	60	60
Design Flow for	Basin 152 Conveyance (MGD)	125	125	125
Basin 150/151 C	conveyance Pipe Diameter (inches)	48	48	48
Basin 152 Conve	eyance Pipe Diameter (inches)	60	60	60
Length of Pipe (I	Basin 150/151) (feet)	150	150	150
Length of Pipe (I	Basin 152) (feet)	2230	2050	1530
Length of Trench	nless Installation (Basin 152) (feet)	1930	1630	1410
Depth of Lowest	Basin 152 Diversion Structure	22	23	10
Pipe Invert below Ground	MH 3 on 24 th Ave NW Crossing	40	35	15
Surface (feet)	MH 1 on TEPS Site	16	16	16
Number of Maintenance Holes in Basin 150/151 Conveyance System		4	4	4
Number of Maintenance Holes in Basin 152 Conveyance System		8	5	6
Launch Pits		4	3	4
Outside Dimensions of Basin 152 Diversion Structure (feet)		22 X 30	22 X 30	10 X 10
Basin 152 Diversion Structure Tunnel Transfer Weir Crest Elevation (feet NAVD 88)		27.5	27.5	N/A
Basin 152 Diversion Structure Overflow Weir to Outfall Weir Crest Elevation (feet NAVD 88)		29.33	29.33	19.4
Basin 150/151 Diversion Structure Overflow Weir to Outfall Weir Crest Elevation (feet NAVD 88)		23.06	23.06	23.06
Length of Overflow Weir for Basin 152 Diversion Structure (feet)		20	20	10
Length of Transfer Weir for Basin 150/151 Diversion Structure (feet)		12	12	12
Diameter of orifice to control flows along NW Market Street (inches)		13.5	13.5	13.5
Contaminated Soil Disposal (ton)		52	787	4277
Easement Requ	ired	No	No	Yes
Total Project Co	sts (\$)	\$31,717,000	\$26,666,000	\$31,292,000

Table 3-1 . Summary of Options Parameters	Table 3-1	-1. Summar	of Options	Parameters
---	-----------	------------	------------	------------

King County

Section 4. Options Analysis

Options Analysis is the process in which the proposed Ballard Conveyance pipe alignments and associated infrastructure placements were evaluated; and the cost impacts and risks associated with each option were calculated. This process included the evaluation of short and long-term community impacts; consideration of operation and maintenance allowances and construction impacts review.

Evaluation of the three options focused on the Basin 152 conveyance, as there was only one alignment considered for Basin 150/151 conveyance pipes. The analysis took the following factors into consideration when evaluating alignments for the Basin 152 conveyance system and locations for hydraulic structures such as a diversion structure, gate valve vault and maintenance holes:

- Impacts to residential neighborhoods and businesses
- Avoidance of construction on private property
- Ease of construction
- Impacts on existing utilities
- Ease of access of maintenance

Preliminary plan and profile drawings were also prepared as part of Option Analysis. These drawings shown in Appendix D, identified the locations of the pipes in the ROW, the pipe inverts and the placement of hydraulic structures and maintenance holes. They capture current planning assumptions and were used to identify utility conflicts, find optimal locations for launch/retrieval pits for trenchless pipe installations and provide material quantities to calculate construction cost.

These drawings were also used for the basis of constructability review to evaluate construction related impacts for each of the three proposed options. A construction impacts review was conducted to identify the various impacts to property access, traffic and parking for the three alignments considered. Refer to Construction Impacts Memorandum (SPU, October 2017).

This project is in the economically diverse Ballard neighborhood that contains commercial, residential, and industrial areas in close proximity. Only one alignment was developed for conveying Basin 150/151 flows and will primarily be constructed at the TEPS site. On the other hand, three different alignments are under evaluation for conveying Basin 152 flows. The construction of the proposed project is expected to impact the three alignments differently while the impacts within TEPS site will be identical.

The following criteria were used to assess the magnitude of impact and identify the differential values of each of the alignments:

- 1. Short Term Community Impact (during construction)
- 2. Long Term Community Impacts
- 3. Construction Risk
- 4. Construction Complexity
- 5. Ease of Maintenance

4.1 Short Term Community Impact

This metric evaluates the community impacts during the construction phase of the project from the perspective of disruptions to traffic and public transportation; access to parking spaces, business or residences; and impacts to business activities. Possible transportation impacts include interference to public transit lines; traffic lane closures; and disruption to vehicular and non-vehicular transportation such as railroad use on NW 54th Street and bicycle traffic on the proposed Burke Gilman Trail on NW Market Street. Community impacts also extends to impact to business activities from street closures, impacts to pedestrians and construction noise.

4.1.1 Option 1 – Basin 152 - NW 56th Street

The first option along NW 56th Street is on a residential access street and a commercial street along 24th Avenue NW. The residents and commuters along NW 56th Street, 28th Avenue NW and 24th Avenue NW will experience impact during construction hours due to temporary removal of street parking spaces and partial street lane closures from construction staging; open cut trenching; installation of pipes; and launch/retrieval pit excavations.

The method of construction along this alignment is mostly trenchless resulting in less open cut area in the right of way. This option has the deepest pipes that will require deeper pipe driving launch/retrieval pits and a longer duration of construction activities at those pits. The placement of two launch/retrieval pits on the northwest and southeast side of the intersection of 24th Avenue NW and NW 56th Street will result in at least one lane closure on 24th Avenue NW and NW 56th Street, restricting traffic flow along both streets. The businesses and mass transit lines along 24th Avenue NW will be further impacted by construction activity and staging for the launch pit on the south west side of the intersection. Residents of 28th Avenue NW would also be impacted from the open cut construction of pipes and the diversion structure on that street. Deep excavation to install maintenance holes approximately every 500 feet also adds impacts along NW 56th Street and 24th Avenue NW.

4.1.2 Option 2 - Basin 152 - W Market Street

The second option along NW Market Street is on an arterial through a commercial zone in the Ballard Neighborhood. The construction phase of this option will result in impacts to the 28th Avenue NW, NW Market Street and 24th Avenue NW right of way in terms of disruption to traffic flow, road closure, obstruction to access to local businesses; and additional truck traffic to haul excavation material and bring in construction material. This alignment will also impact bicycle traffic along NW Market Street which is the proposed bike route for the Burke Gilman Trail extension.

The method of construction along NW Market Street is mostly trenchless installation resulting in less open cut area in right of way. This option also has the second deepest pipes and maintenance holes that will require deeper pipe driving launch/retrieval pits and a longer duration of construction activities at those pits. The placement of a launch/retrieval pit at the intersection of 24th Avenue NW and NW Market Street will result in at least one lane closure on 24th Avenue NW and NW Market Street, restricting traffic flow along the two arterials. The construction activity and staging for this launch pit will impact mass transit lines and traffic flow on the two arterials. In addition, open cut trenching for pipes and diversion structure along 28th Avenue NW will impact traffic along that street.

4.1.3 Option 3 – Basin 152 - NW 54th Street

The third option for conveyance system along NW 54th Street is in an industrial area. This alignment is along a street with a split-level section between 28th Avenue NW and 26th Avenue NW. This street accommodates business access, parking, truck traffic and Ballard Terminal Railroad (BTRR) tracks. The construction phase of this option will impact NW 54th Street truck traffic flow.

The method of construction along NW 54th Street is primarily trenchless installation, with three launch/retrieval pits along that street. The proposed placement of a launch/retrieval pit on the intersection of 28th Avenue NW and NW 54th Street and 26th Avenue NW and NW 54th Street will impact truck access to the industries from 28th Avenue NW and 26th Avenue NW. The excavation of these launch and retrieval pits may interfere with operations on the (BTRR) tracks and maritime businesses along the street.

4.2 Long Term Community Impact

Long term community impacts accounts for impacts from maintenance activities on elements of the conveyance system such as diversion structures, gate valve vaults and conveyance pipes. Maintenance activities include the following: annual inspection of diversion structures and possible cleaning; inspecting and exercising gate valves quarterly; and inspecting conveyance pipes every 10 years. These maintenance activities impact the neighborhood when maintenance crew trucks take up parking spaces in the right of way or close a lane for staging equipment. The maintenance crew indicated a preference for alignments with parking spaces along the right of way and streets with sufficient width for parking trucks.

4.2.1 Option 1 – Basin 152 - NW 56th Street

The alignment along NW 56th Street is primarily located in a multifamily residential area. Maintenance of the diversion structure near the intersection of 28th Avenue NW and NW 56th Street may block off a traffic lane on 28th Avenue NW, take up parking spaces in the right of way and affect traffic flow in the roundabout at the intersection. Maintenance of the gate vault on the east side of the intersection may block off a traffic lane and take up parking spaces in the NW 56th Street right of way. Due to the low volume of traffic along NW 56th Street, maintenance of gate vault may not have as high an impact as NW Market Street.

4.2.2 Option 2 - Basin 152 - NW Market Street

The alignment along NW Market Street is primarily located in a commercial area. Similarly, maintenance of the diversion structure near the intersection of 28th Avenue NW and NW 56th Street may block off a traffic lane on 28th Avenue NW, take up parking spaces in the right of way and affect traffic flow in the roundabout at the intersection. Maintenance of the gate vault on the NW Market Street right east of the intersection to 28th Avenue NW may also block off a traffic lane and take up parking spaces in the right of way. Given that NW Market Street is an arterial that accommodates a lot of traffic and businesses, maintenance activities on the gate vault will impact customers parking access and may cause traffic disruption.

4.2.3 Option 3 – Basin 152 - NW 54th Street

The alignment along NW 54th Street is primarily located in an industrial area. Maintenance of the diversion structure near the intersection of 28th Avenue NW and NW 54th Street and the gate valve vault nearby may block off a traffic lane on 28th Avenue NW or take up parking spaces along NW 54th Street and 28th Avenue NW. Maintenance activities in this location is not expected to cause traffic disruption due to the low volume of traffic at that intersection and the intersection has sufficient parking spaces for trucks and maintenance vehicles.

4.3 Construction Risk

The proposed method of construction is a combination of trenchless and open trench installation. For open cut excavations, construction risks stem from the existence of environmental contamination and the associated disposal of contaminated materials.

Construction risks for trenchless installation come from pipe driving encountering obstructions such as boulders and unknown obstructions; and tunnel drilling machine

getting stuck. Additional geotechnical investigations will be carried out along the selected alignment to inform design and mitigate risks.

Construction risks also come from the process of acquiring easement for construction along an alignment that is not a street right of way.

4.3.1 Option 1 – Basin 152- NW 56th Street

This option poses a low construction risk since preliminary geotechnical investigations not finding any environmental contamination in samples taken along NW 56th Street. Additional findings also show that the dense nature of soil stratification poses less geotechnical risks.

On the other hand, there are two newly constructed large residential developments, including an assisted living center on the northwest corner of the intersection. Initial research has shown that the tiebacks from these buildings does not conflict with the conveyance pipes. But there is a possibility that there are some soil nails that can potentially impede excavation or trenchless pipe driving in this corridor.

4.3.2 Option 2 – Basin 152 - NW Market Street

This option poses a high construction risk since preliminary geotechnical evaluations had identified some environmental contamination along NW Market Street. This discovery adds risk of encountering contaminated soil and groundwater during pipe driving and excavation.

4.3.3 Option 3 – Basin 152 - NW 54th Street

The construction risks along for this option comes from high groundwater levels, environmental contamination, and type of underground material. Based on the nature of the industries that have historically operated along NW 54th Street, this alignment is assumed to be environmentally contaminated. Given the industrial nature of land use, there is a possibility of running into underground obstructions. This option is also the closest alignment to the Ship Canal waterway which would be associated with high groundwater levels. Any open cut excavation for launch/retrieval pit and pipe driving is assumed to encounter contaminated soil and high groundwater that will need to be disposed appropriately.

In addition, NW 54th Street is not a ROW and will require permanent easements and temporary construction easements to install conveyance pipes along the street. The process of acquiring easements can take up to 18 months. In addition, any temporarily closed businesses may need to be compensated for the loss of income. Construction on the private parcel also requires additional permitting. This alignment will also require coordination and agreement with BTRR for working near the railroad lines.

4.4 Construction Complexity

The three options come with several construction complexities. The factors that contribute to construction complexity include protection of existing utilities, limited work spaces, working near a railroad line, groundwater intrusion into excavation pits, depth of open cut trenches and launch/retrieval pits, soil conditions and high groundwater.

Trenchless installation method involves pipe driving over 500 feet stretches of pipe. The construction complexities associated with this method of construction come from recovering tunneling equipment and pipe driving.

4.4.1 Option 1 – Basin 152 - NW 56th Street

The construction complexities for this alignment come from the depth of excavations near the intersection of NW 56th Street and 24th Avenue NW. This option has the deepest conveyance pipes ranging from 16 to 40 feet below ground which come with deep maintenance holes. The installation of launch and retrieval pits as well as construction of maintenance holes at that depth comes with the added complexity of increased groundwater control and dewatering.

There are a few utility conflicts for this option which include a watermain along 24th Avenue NW, gas lines, water services, and power poles.

4.4.2 Option 2 - Basin 152 - NW Market Street

The construction complexity with this option come from handling contaminated soil and groundwater intrusion during excavation of the launch/retrieval pit at the corner of NW Market Street and 24th Avenue NW; and installation of deep maintenance holes. These conditions create some complexity in handling and disposing of materials from the deep pits as well as increased groundwater control and dewatering. The volume of traffic near this intersection, also requires extensive traffic control and working hour restrictions.

There are a few utility conflicts that will need to be relocated such as gas lines and power poles. There is a section of 30-inch combined sewer pipe that will need to be protected near the intersection of 28th Avenue NW and NW Market Street. This introduces some complexity to construction activities that can be managed.

4.4.3 Option 3 - Basin 152 - NW 54th Street

The construction complexities for this option stem from working near the BTRR railroad line, and the narrow nature of the street along 54th Avenue NW. The proposed placement of the launch pit on 26th Avenue NW and NW 54th Street will take up space on the intersection that will limit access of trucks and vehicles to the businesses along that street. The resulting limited space will introduce construction complexity in terms of construction equipment staging and traffic control and detouring around the street.

The section of NW 54th Street between 26th Avenue NW and 24th Avenue NW is curved. A launch pit is placed at the intersection of 26th Avenue NW to facilitate driving pipe. Two maintenance holes are also placed between 26th Avenue NW and 24th Avenue NW to address this. This factor will introduce some complexity in pipe and maintenance hole installation.

This alignment is also located closest to the Ship Canal shoreline and is expected to have higher groundwater level compared to the other two options, contaminated soil and possible subsurface obstructions. This results in additional construction complexity of disposing of contaminated materials, dewatering during excavation and encountering obstructions. Furthermore, there is an existing 12-inch watermain that will need to be relocated out of the way of the conveyance pipe.

4.5 Ease of Maintenance

This criterion evaluates the accessibility of hydraulic structures and maintenance holes in the conveyance system; and safety of crew for inspection and maintenance activities. Accessibility is dependent on the availability of parking spaces along the alignment, and the nature of land use along the streets. Safety of crew depends on the depth of maintenance holes and need for additional equipment to access these facilities.

4.5.1 Option 1 – Basin 152 - NW 56th Street

The alignment along NW 56th Street was not favorable for ease of maintenance due to the depth of the conveyance pipes along the alignment. The depth of the maintenance holes range from 20 to 44 feet below ground surface, may require additional equipment (that SPU currently does not own) for maintenance and inspection. The alignment also crosses several existing utilities for future repairs of the conveyance pipe may be exposed or in the way.

4.5.2 Option 2 - Basin 152 - NW Market Street

The alignment along NW Market Street was not favorable for ease of maintenance due to the depth of the conveyance pipes and the high traffic volume along the alignment. This option also has the second deepest pipe installations and maintenance hole depths ranging from 15 to 42 feet below ground surface, which may necessitate additional equipment for maintenance and inspection. The maintenance crew may need to block off a lane during deployment, which will impact access to businesses on the street.

4.5.3 Option 3 - Basin 152 - NW 54th Street

The alignment along NW 54th Street is the most favorable option for the maintenance crew mainly due to the shallow depth of conveyance pipes that range from 5 to 15 feet below ground surface. Potential future conveyance pipe replacement will be constrained due to the narrow width of the alignment.

Section 5.Triple Bottom Line Analysis

Triple Bottom Line analysis was conducted for the three options under consideration. This process quantified the values of options under review and provided input data for value modeling. Value Modeling is a tool that SPU uses to evaluate project options based on quantifiable and non-quantifiable project objectives. It is used to identify and communicate tradeoffs between competing objectives from multiple stakeholders. It is also used to document the process of choosing a recommended option. The Value Modeling conducted for evaluation of options is documented in Appendix H: Value Modeling Technical Memorandum.

The project team made up of representatives from design, operation, maintenance, asset management, communication, construction management, and instrumentation and control conducted the value modeling process which had the following steps:

- 1) Identification of evaluation criteria
- 2) Development of performance measure scales
- 3) Assignment of weights to the evaluation criteria
- 4) Scoring of evaluation criteria (based on 2 and 3)
- 5) Calculation of option's values
- 6) Pairing of option's values with life cycle costs

5.1 Identification of Evaluation Criteria

Evaluation criteria were developed to identify the important objectives the project needs to meet during the construction phase and long-term maintenance. A workshop was held to solicit input from project members and define the objectives of the different project stakeholders. The project team members developed the following evaluation criteria:

- I. Short-term community impacts
 - a. Access to residents, businesses, and industrial facilities
 - b. Impact to transit traffic
 - c. Impact on vehicular and truck traffic
 - d. Impact to railroad use
 - e. Impact on future Burke Gilman Trail Link
 - f. Impact on business activities

- II. Long-Term community impact from maintenance
- III. Construction risk
- IV. Construction complexity
- V. Ease of maintenance

5.2 Development of Performance Measure Scales

Evaluation criteria performance metrics were developed to measure impacts to specific resources and quantify how the criteria addresses the project objective. The performance measure scales were quantitative (measurements) or qualitative (1 - 5 scale) based on the nature of evaluation criteria. The first criteria for short-term community impact was measured quantitatively while the remaining four criteria were measured qualitatively. The performance measure scale for the first evaluation criteria focused on short term community impacts measured the impact on community access and modes of transportation as shown in *Table 5-1*.

The performance measure scales for the remaining four evaluation criteria focused on long term impacts, construction risks, ease of maintenance and construction complexity were qualitative. Qualitative performance scales were developed to establish the most and least favorable outcomes for an objective which were then scaled from 1 to 5, where 1 was the least-value while 5 was the highest-value.

Evaluation Criteria	Performance Metric	Location
Access to Residences, Business and Industrial Facilities	Impacted or Obstructed Access to Residences/Businesses (number of days)	24th Avenue NW NW 56 th Street NW Market Street NW 54 th Street
Impact to Transit Riders	Number of Buses (count per week)	24th Avenue NW + NW Market Street
Impact to Vehicular and Truck Traffic	Number of Vehicles (count per week)	24th Avenue NW NW 56 th Street NW Market Street NW 54 th Street
Impact Railroad loss of use	Number of Trips (count per week)	NW 54 th Street
Impact on Future Burke Gilman	Cyclists and Pedestrians (count per week)	Burke Gilman Trail (NW Market Street)
Impact on Business Activities	Number of businesses (count)	24th Avenue NW and NW Market Street NW 54 th Street

Table 5-1. Qualitative Performance Measures

5.3 Assignment of Weights to Evaluation Criteria

The next step in the analysis was to assign the relative importance of each evaluation criteria. Each project team member assigned weights to the evaluation criteria. These different individual weights provided were averaged to represent the relative importance of each criterion.

The workshop provided the following averaged weights:

I. Short-Term Community Impacts		30%
II. Long-Term Community Impacts		11%
III. Construction Risk		19%
IV. Construction Complexity		14%
V. Ease of Maintenance		<u>26%</u>
	Total	100%

5.4 Scoring of Evaluation Criteria

For each option, the project team scored the evaluation criteria based on the qualitative or quantitative performance metric using information obtained during option analysis. The first evaluation criteria, short term community impact (*Table 5-2*), was scored based on magnitude of impact to access to residences and businesses as shown in *Table 5-3*.

For the remaining criteria, performance measures were measured qualitatively on a performance scale of 1 to 5, where 1 was the lowest score, and 5 was the best possible score. The project team scores the evaluation criteria as shown in the legend in *Figure 5-1*.

Criteria	Option 1. NW 56th St	Option 2. NW Market St	Option 3. NW 54th St
Access to Residences/Business (Impacted/Obstructed days)	58,320	72,000	48,900
Impact on Transit Riders (Bus trips / week)	1,110	1610	0
Impact on Vehicular and Truck Traffic (Vehicles/ week)	12,920	18,630	1,200
Impact on Railroad Use	0	0	1
Impact on Future Burke Gilman ¹ (Cyclists/ week)	0	2,659	0
Impact on Business Activities (Number of Businesses)	7	24	10

Table 5-2. Short-term Community Impact Scores

¹ Values are projected for trail opening in 2022

Evaluation Criteria Long-term Community Impact		Option 1 NW 56th St	Option 2 NW Market St	Option 3 NW 54th St
		3	2	4.5
Construction	Environmental Contamination	5	1	1
Risk	Property Acquisition	5	5	1
Construction Complexity		3	2	2
Ease of	Ease of Future Replacement	3	2	4
Maintenance	Accessibility	3	2	5

Table 5-3. Qualitative Evaluation Criteria Scores

5.5 Calculation of Option's Value

A Value Model spreadsheet was used to calculate the cumulative value of the objectives as shown in *Figure 5-1*. To compare the qualitative and quantitative scores on the same gage, all performance measures were standardized to a scale of zero-to-one. For the quantitative performance measures of short-term community impact, the highest impact (lowest value) was pegged to 0 and the lowest impact (highest value) was pegged to 1. On the other hand, for the qualitative evaluation criteria, the lowest value (1) was pegged to 0 and the highest value (5) was pegged to 1. All the values in between were calculated as ratios between 0 and 1. The performance metric scores were then converted to values by multiplying the average weight of the criteria with the normalized scores.

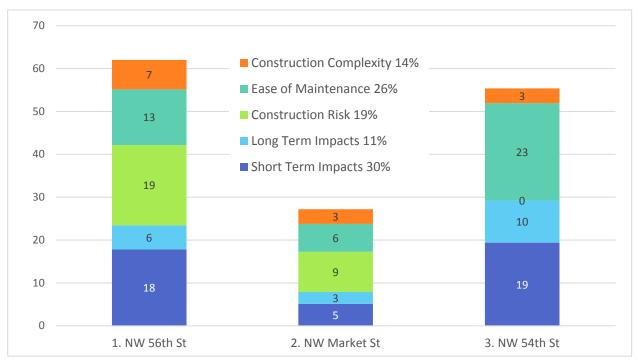
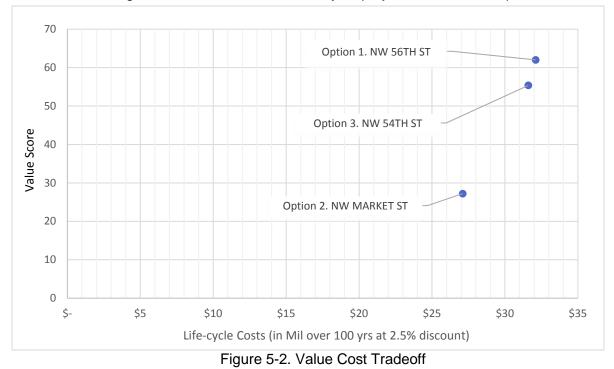


Figure 5-1. Cumulative Values of Options

5.6 Pairing of Option's Value and Cost


The cost of the options was captured with life cycle costs that include capital costs and operational and maintenance costs over the 100-year design life of the project. The total capital costs include soft costs, and construction cost with project contingencies (Appendix E). The total life cycle costs are shown in *Table 5-4*.

Costs	Option 1 – NW 56th St	Option 2 – NW Market St	Option 3 - NW 54th St
Hard Cost	\$16,605,000	\$14,913,000	\$13,190,000
Soft Cost	\$8,137,000	\$7,308,000	\$6,464,000
Property Acquisition	-	-	\$1,588,000
Reserves	\$6,975,000	\$4,444,200	\$10,050,000
Maintenance ¹	\$404,000	\$398,000	\$348,000
Total Life-Cycle Cost	\$32,121,000	\$27,063,200	\$31,640,000

Table 5-4.	Total Life-C	vcle Cost	of Options
10010 0 11		,	

¹ Maintenance Cost over 100 years at 2.5%

Value Modeling is a tool used to pair the cumulative values and life-cycle cost of each option. The previous steps provided the input data for this exercise by identifying, scoring and quantifying the values and costs of the options. *Figure* 5-2 shows the comparison of the value modeling score with the estimated life-cycle project cost for each option.

5-5 SCWQP Ballard Conveyance Work Package – Preliminary Engineering Report

Overall, the value modeling process showed the following results

- Option 1 highest value and highest cost
- Option 2 lowest value and lowest cost
- Option 3 second highest value and second highest cost

Ship Canal Water Quality Project

Section 6.Recommended Option

The results of the Value Modeling analysis in Section 5 showed that Option $1 - NW 56^{th}$ Avenue and Option $3 - NW 54^{th}$ Street had the highest and second highest values with a cost difference of about \$481,000. Given the similarity of prices of the two options, the selection of a recommended option mainly relied on the value offered by the two options. Evaluation of the proposed alternatives shows that Option 1 along NW 56th Street and 24th Avenue NW offers the most value of all the options evaluated. This option was selected as the recommended alternative to construct the Ballard Conveyance system.

Option 1 lies along NW 56th Street, a two-lane residential street and a commercial street along 24th Avenue NW. The conveyance system starts at the diversion structure at the intersection of NW 56th Street and 28th Avenue NW and is routed east along NW 56th Street, turn south on 24th Avenue NW and turn east south of NW 54th Street to enter the TEPS site. This option also comes with the deepest pipe elevations ranging from 16 to 40 feet between the diversion structure and TEPS.

This option offers the most value for constructing the project due to its low construction complexity. Preliminary geotechnical evaluations have not uncovered any environmental contaminations that were present in borings along Option 2 along NW Market Street and assumed to exist along Option 3 on NW 54th Street. The soil stratification for this option is denser than the other two options s which reduces any additional construction complexity.

This option poses some difficulty in ease of maintenance due to the depth of pipes. This issue will be further investigated during design by raising depth of pipes where possible, providing self-cleaning flow velocities within pipes and working closely with SPU operations and maintenance crew to incorporate their needs. Other measures to be investigated include moving the gate vault to the TEPS site to avoid impacting the residential street along NW 56th Street; eliminating the grit removal structures from the conveyance system facilities; and reducing conveyance pipe for 152 from 60 to 48 inches in diameter. These issues will be further explored during design of the project.

The recommended option of Option 1 along NW 56th Street was presented to the AMC for Stage Gate 2 approval and was accepted.

References

- SPU, 2010. Combined Sewer Overflow Program, Long-Term Control Plan, Volume 1 Flow Monitoring Summary Report 2008–2010, December 2010.
- Seattle Public Utilities, 2017. Ship Canal Water Quality Project: Final Facility Plan, March 2017.

APPENDIX A:

BALLARD CONVEYANCE OPTIONS ANALYSIS WORK PACKAGE: PROJECTS REQUIREMENTS MEMORANDUM, JUNE 1, 2018

Ballard Conveyance Options Analysis Work Package: Project Requirement Memorandum

PREPARED FOR:	Richard Fernandez, Ballard Conveyance Project Manager
COPY TO:	Eleanor Jackson, SCWQP Design Manager Alan Lord, SCWQP Program Manager Cynthia Blazina, SCWQP Construction Manager Alexander Mockos, CSO Program Manager
PREPARED BY:	Eset Alemu, Ballard Conveyance Project Engineer
DATE:	June 1, 2018

1. Introduction

The proposed Ship Canal Water Quality Project (Ship Canal Project) is designed to provide offline storage for the combined sewer overflow (CSO) flows from five Seattle Public Utilities (SPU) and two King County Department of Natural Resources and Parks, Wastewater Treatment Division (DNRP) CSO basins to meet regulatory standards. The Ship Canal Project storage is a deep tunnel to be constructed in the Ballard, Fremont and Wallingford neighborhoods, on the north side of the Ship Canal. The tunnel will control the Ballard CSO basins (Outfalls 150,151 and 152), Fremont (Outfall 174) and Wallingford (Outfall 147) CSO basins, DNRP 3rd Avenue W Overflow Structure (DSN008), and 11th Avenue NW Overflow Structure (DSN004).

The components of the Ship Canal Project include storage tunnel; appurtenances; conveyance facilities to transport SPU and DNRP CSO flows into the tunnel; and a pump station and force main to drain flows from the tunnel to King County's treatment facility. One of the elements of the Ship Canal Project is the Ballard Conveyance Project which collects combined sewer overflows from SPU basins 150, 151 and 152 and routes flows to the proposed Ship Canal storage tunnel. The purpose of this conveyance system is to bring the CSO Basins into regulatory compliance by reducing the frequency of overflows to an average of one overflow per year on a rolling 20-year average per outfall. The conveyance system spans from an upstream proposed diversion structure for Basin 150/151 and Basin 152 to the proposed West Portal located at the Old Yankee Diner property.

The Ballard Conveyance work package covers the conveyance pipes and infrastructure to the storage tunnel, including associated hydraulic structures. The design process is preceded by Options Analysis of conveyance alternatives which includes hydraulic modeling; identifying major utility conflicts, preliminary geotechnical assessment; permit identification, property acquisition identification, coordination and support for communications and outreach.

This technical memorandum documents the project requirements for the Options Analysis of the Ballard Conveyance work package. The project requirements provide guidelines for the evaluation of conveyance alternatives; and help to identify costs and risks associated with each of the alternatives. These requirements include consideration regarding design standards, health and safety, operation and maintenance, water quality, hydraulic and operational performances, and permitting.

2. Design Criterion and Standards

All alternatives identified during Option Analysis must conform to the following design standards, codes, and guidelines:

- 1. Seattle Public Utilities Design Standards and Guidelines (2016)
- 2. Seattle Building Code (2015)
- 3. City of Seattle Standard Plans for Municipal Construction (2017)
- 4. City of Seattle Standard Specifications for Road, Bridge and Municipal Construction (2017)
- 5. Washington State Department of Ecology Criteria for Sewage Works Design (2008)
- 6. Seattle Department of Transportation (SDOT) Right of Way Improvements Manual (2012)
- 7. Seattle Department of Transportation Right-of-Way Opening and Restoration Rule (ROWORR), (2017)
- 8. Washington Administrative Code Chapter 296-24, Department of Labor and Industries, General Safety and Health Standards

3. Regulatory Compliance Requirements

Regulatory compliance requirements pertain to adherence to relevant Federal, State and City Permits. The general environmental impacts of the Ballard Conveyance projects are covered under the program wide Supplemental Environmental Impact Statement (SEIS), which provides the Environmental Impacts Statement for the overall Ship Canal Water Quality program.

The permits required for the proposed alternatives are the following:

- SDOT Street Improvements Permit
- Shoreline Substantial Development Master Use Permit
- Grading Permit
- King County Industrial Waste Permit or National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit (depending on where discharge is for dewatering water, if needed)

4. Health and Safety Requirements

Health and safety requirements ensure that the alternatives evaluation process addresses health risks and safety concerns during construction and operation. Requirements mainly address two major aspects of the project; the first one being the depth of installation with the conveyance pipes to be laid at depths ranging from 15 to 50 feet below grade. The second aspect is the risk of encountering contaminated soil material during construction. Ballard neighborhood was a historically industrial area where a lot of shipping related activities took place. The discovery of any contaminated materials along the proposed alignments would help to inform alternatives analysis about the added cost of handling, testing, and disposal of material.

Health requirements include the safe disposition of any contaminated underground material. Safety requirements include adhering to Occupational Safety and Health Administration (OSHA) requirements for crew safety.

5. Water Quality Requirements

Water quality requirements for the Ballard Conveyance system alternative elevations fall under the City of Seattle Stormwater Code (SMC 22.800 - 808) which addresses runoff control and treatment during construction and operation; and also provides guidelines for selecting, designing, constructing, and maintaining stormwater flow control and water quality treatment best management practices (BMPs). Under the code, water quality requirements ensure that measures are in place to protect water quality, set guidelines to control surface water runoff from the project site, prevent erosion and sedimentation during construction, and manage activities and potential pollutant sources.

6. Hydraulic and Operational Performance Requirements

In addition to the operational performance goal of the Ballard Conveyance work package requirement of one combined overflow per year on a rolling 20-year average per CSO outfall, Drainage and Wastewater Line of Business identified the following hydraulic and operational performance requirements:

- flows within the conveyance system to be conveyed to the tunnel by gravity.
- flow conveyance into a vortex structure or level based control to have a Froude number of 0.5 or less.
- no sanitary sewer overflows (SSOs) in conveyance pipe to the tunnel or the normal flow system downstream of diversion to tunnel.
- not raising existing hydraulic grade line upstream of diversion to tunnel.
- elevations of the diversion weirs to either equal or exceed the elevation of the overflow weir at 3rd
 Avenue West and 11th Avenue Northwest conveyance diversion structures. These overflow weirs are the lowest relief points for the Ship Canal Water Quality tunnel.
- conveyance capacity to be based upon peak flows identified in the SCWQP Final Facility Plan dated March 2017 with peak flow of 60 MGD for Basin 150/151 and 80 MGD for Basin 152. Peak flows may change with the additional modeling for the SCWQP Integrated Model based upon SPU's updated CSO sizing approach and climate change due out in October 2017.
- redundancy of automated gate for Basin 152 used for conveying flows to the tunnel. This requirement can be waived only if the diversion weir to CSO Outfall 152 is set at an elevation equivalent to the weir elevation of the 3rd Avenue West and 11th Avenue Northwest diversion structures. (Technical Memorandum: Draft Redundant Gate Evaluation, McMillen Jacobs and Associates, December 16, 2016)
- automated gate for Basin 150/151 conveying flow to tunnel does not require a redundant gate (Technical Memorandum: Draft Redundant Gate Evaluation, McMillen Jacobs and Associates, December 16, 2016)
- backup power to be provided for automated gates for both Basins 150/151 and 152 diversion structures.
- all monitoring instrumentation equipment to be redundant. Alternatives are required to identify monitoring locations and provide access to location of monitoring equipment.
- grit removal structure to be placed upstream of Basin 152 diversion to the tunnel. (Technical Memorandum: Ship Canal Tunnel: System-wide Grit/Debris Management Strategy, McMillen Jacobs and Associates, May 2016)

7. Maintenance Requirements

SPU maintenance requirements are meant to ensure adequate vertical and horizontal clearance inside infrastructure for crews to maintain and inspect. Some of operational requirements for the Ballard

Conveyance system will be coordinated with the Ship Canal Program under the Instrumentation and Control Program. Maintenance and operation requirements specific to the Ballard Conveyance package include:

- maximum spacing of maintenance holes of 500 feet to ensure that length of pipes is within the limits of cleaning equipment
- design accommodations for placements of ladders and platforms for inspection and maintenance activities
- minimum of 10 feet of vertical clearance inside vaults
- a fire hydrant along the same side of the street and within 20 feet of grit removal structure
- parking access for maintenance vehicles near diversion structures, grit removal structure, motor operated gates, and maintenance holes.

8. References

City of Seattle Stormwater Manual, Seattle Municipal Code Chapters 22.800 - 22.808- Volumes 1-5 and Appendices, Directors' Rules Seattle DCI 21-2015/SPU DWW 200, (http://www.seattle.gov/dpd/vault/cs/groups/pan/@pan/documents/web_informational/p2358283.pdf)

Seattle Department of Transportation (SDOT) Right of Way Improvements Manual (2012) <u>http://www.seattle.gov/transportation/rowmanual/manual/</u>

Seattle Department of Transportation Right-of-Way Opening and Restoration Rule (ROWORR), (2017) <u>http://www.seattle.gov/transportation/docs/ROWORR_Manual.pdf</u>

Ship Canal Water Quality Project Final Facility Plan, March 2017, CH2MHill

Technical Memorandum: Draft Redundant Gate Evaluation, McMillen Jacobs and Associates, December 16, 2016 (<u>https://seattlegov.sharepoint.com/sites/SPU-</u> <u>T1/C314056/C314056SCWQP/20161216_Redundant%20Gate%20TM%20Draft.pdf</u>)

Technical Memorandum: Ship Canal Tunnel System-Wide Grit/Debris Management Strategy, McMillen Jacobs and Associates, May 19, 2016, (<u>https://seattlegov.sharepoint.com/sites/SPU-T1/C314056/C314056SCWQP/20160519%20ShipCanal-GritManagementStrategy_FinalTM.pdf</u>)

APPENDIX B:

BALLARD CONVEYANCE OPTIONS ANALYSIS WORK PACKAGE: PROJECTS CONSTRAINTS MEMORANDUM, JUNE 12, 2017

Memorandum

Date:	June 12, 2017
То:	Richard Fernandez, PE, Project Manager Alex Mockos, PE, Drainage and Wastewater Line of Business Representative
From:	Eset Alemu, PE, Project Engineer
Subject:	Project Constraints

The purpose of this memo to provide a summary of the project constraints for the Ballard Conveyance Work Package that is part of the Ship Canal Water Quality (SCWQ) Project. All proposed alternatives must meet the project constraints identified as follows:

a. Schedule

The largest schedule constraints on the project include the consent decree milestones listed below. The design milestones for review and approval by the US Environmental Protection Agency and the Washington Department of Ecology is the nearest milestone the project needs to meet.

Submit Draft (90%) Plans and Specifications for review	3/31/2020
Submit Final Plans and Specifications for approval	12/31/2020
Construction Completion	12/31/2025
Achieve Controlled Status	12/31/2026

b. Community Activity Schedules

A schedule of events in the community is limiting factor in the number of working days and construction days. These events include street fairs, Sunday markets, festivals that are hosted seasonally or annually. These events may limit construction activities during certain periods of the week or year. These community activities will be further identified early in design to inform construction.

c. Non-exceedance of Normal Flow Rates to Downstream System

The Ballard Basins normal flows are directed to the King County system while combined flows during some wet weather events will be sent to the storage tunnel. Normal flow shall not increase downstream of the diversion structure due to proposed Ballard conveyance alternatives. This is a project constraint that shall be analyzed and met for each proposed alternative.

APPENDIX C:

BALLARD CONVEYANCE OPTIONS ANALYSIS WORK PACKAGE: CONSTRUCTION IMPACTS MEMORANDUM, OCTOBER 27, 2017

Ballard Conveyance Options Analysis Work Package: Construction Impacts Memorandum

PREPARED FOR:	Richard Fernandez, Ballard Conveyance Project Manager
COPY TO:	Eleanor Jackson, SCWQP Design Manager Eset Alemu, Ballard Conveyance Project Engineer
PREPARED BY:	Cynthia Blazina, SCWQP Construction Manager
DATE:	October 27, 2017

The purpose of this memo is to document the construction related impacts and issues for each of the three proposed alternatives for the Ballard Conveyance Work Package which is part of the Ship Canal Water Quality (SCWQ) Project. The three alignment options are depicted in Figures 1 through 3. All proposed alternatives have some similarities; therefore, this memo focuses on the different impacts and issues for each of the alternatives.

The similarities include construction methods for the upstream end of the conveyance system where a set of normal flow pipes, Overflow 152 and conveyance pipes connecting at the Diversion Structure will be installed with open pit construction along 28th Avenue NW between NW 56 Street and NW Market St. This construction approach applies for both Alternative 1 and Alternative 2 (Figure 1 and Figure 2) and assumes the partial closure of 28th Avenue NW with construction activities extending from NW 56th Street to south into NW Market Street. Open cut construction also applies to installation of conveyance pipe from the Diversion Structure to the Gate Vault about 50 feet from the intersection of 28th Avenue NW and NW 56th St. The length of Conveyance pipes running east-west along the three chosen alignments are installed by trenchless methods (microtunnelling). This is applicable for all three alternatives. The trenchless installation of conveyance pipes is conducted through launch and retrieval pits that are about 15 x 30 feet.

For instance, all alternatives have nearly the same impacts for installation of vaults for mag meters & valves, diversion structure and grit removal structures, so those are not addressed in this memo. Similarly, the impacts for the work on 24th Avenue NW, south of NW 54th Street, to connect the conveyance to the Tunnel Effluent Pump Station (TEPS), are not discussed in this memo. The usual impacts of noise and dust would also be a factor for all three options. Below is an evaluation of each of the three alternatives with respect to impacts to property access, traffic and parking. A comparison summary follows the evaluations.

<u>Alternative 1 (NW 56th Street</u>): Alternative alignment is mainly composed of residential buildings including single family and multi-family residences along NW 56th Avenue and businesses and mixed development along 24th Avenue NW. The largest multi-family building is a retirement living facility on NW 56th Street and 24th Avenue NW.

• Property access impacts

Vehicular and pedestrian access must be maintained at all times to the retirement facility at the corner of NW 56th Street and 24th Avenue NW. The microtunnel pits near, and within that intersection would likely prevent vehicular access to the building from 24th Avenue NW onto NW 56th Street, however traffic could access NW 56th Street via 26th Avenue NW. Microtunnelling method of pipe installation limits construction excavations to larger pits at the intersections of NW 56th Street and 28th Avenue NW and NW 56th Street and 24th Avenue NW, thereby allowing access to properties along NW 56th Street via 26th Avenue NW.

• <u>Traffic impacts</u>

28th Avenue NW between NW Market Street and NW 56th Street would need to be closed for the duration of installation of pipes and structures on that street. 28th Avenue NW is a residential street; access to properties would be limited to other routes and a detour would be in place for several weeks.

The pits at the intersections of NW 56th Street and 28th Avenue NW; and at NW 56th Street and 24th Avenue NW would be in place for the duration of microtunnelling in the area, and would prevent vehicular traffic from accessing NW 56th Street via 24th Avenue NW or 28th. Traffic would need to access 56th via 26th Avenue NW for several weeks.

Bus routes along NW Market Street and 24th Avenue NW would also be impacted by the microtunnelling pit and supporting equipment in 24th Avenue NW at NW 56th St. Bus routes may not need to be rerouted; however, periodic delays are possible. Traffic lanes on 24th Avenue NW near NW 56th Street will be reduced and reconfigured for several weeks while the microtunnel pit and support equipment are in place.

Parking Impacts

Parking along NW 56th Street will be restricted to allow for staging of equipment. No parking will be allowed on 28th Avenue NW between Market and NW 56th Street for the duration of the closure, in addition to periodic parking restrictions for the duration of the project. Parking along 24th Avenue NW would be restricted near NW 56th St.

Alternative 2 (NW Market Street):

The land use along the alignment of the conveyance pipes, NW Market Street and 24th Avenue NW, is composed of commercial and business use. Both streets are minor arterials with high traffic volumes. In addition, NW Market Street is selected for the Burke Gilman Missing Link project alignment and SDOT proposes to add a bicycle lane.

• <u>Property access impacts</u>:

The properties affected by Alternative 2 are mainly commercial businesses which rely on customer access to their facilities. Vehicular and pedestrian access on NW Market Street would be impacted during open cut construction on NW Market Street near 28th Avenue NW and

installation of Maintenance Hole at the intersection of 26th Avenue NW and NW Market Street. The microtunnel pits near the intersection of NW Market Street and 28th Avenue NW; and within the intersection of NW Market St and 24th Avenue NW would greatly impact vehicular access to businesses in those areas.

• <u>Traffic impacts</u>:

Similar to Alternative 1, 28th Avenue NW between NW Market Street and NW 56^{thtu} Street would need to be closed for the duration of installation of pipe and structures in that area. 28th is a residential street; access to properties would be limited to other routes and a detour would be in place for several weeks. The open-cut excavations in Market at 28th Avenue NW would cause major re-routing of vehicle (and possible bicycle) lanes, and possibly periodic detours of traffic on Market.

There are trolley bus routes on Market which would need to be re-routed and/or work requiring re-route of trolley buses would be restricted to weekends, thereby increasing the duration of the construction in that area. These same impacts apply to the microtunneling pits on Market, just East of 28th and at the intersection of 24th Avenue NW & Market. Further complicating the traffic control the intersection of Market & 24th is the fact that several bus routes use both streets. The pit would be large enough at that intersection to potentially require reroute of buses for several weeks while the microtunnel pits and support equipment are in place.

• Parking Impacts:

Parking along NW Market Street would be severely restricted to allow for staging of equipment, and construction operations for the duration of construction (months). No parking will be allowed on 28th between Market and 56th for the duration of the closure of that block, in addition to periodic parking restrictions for the duration of the project.

Alternative 3 (NW 54th Street):

The Alternative 3 alignment along NW 54th Avenue is mainly industrial businesses. The existing "road" is extremely narrow, has a split-level section and is not a City right-of-way. This alignment also houses railroad tracks and a 12" watermain that would need to be replaced between 26th Avenue NW and 24th Avenue NW along NW 54th Street requiring extensive shoring adjacent to the existing railroad

• Property access impacts:

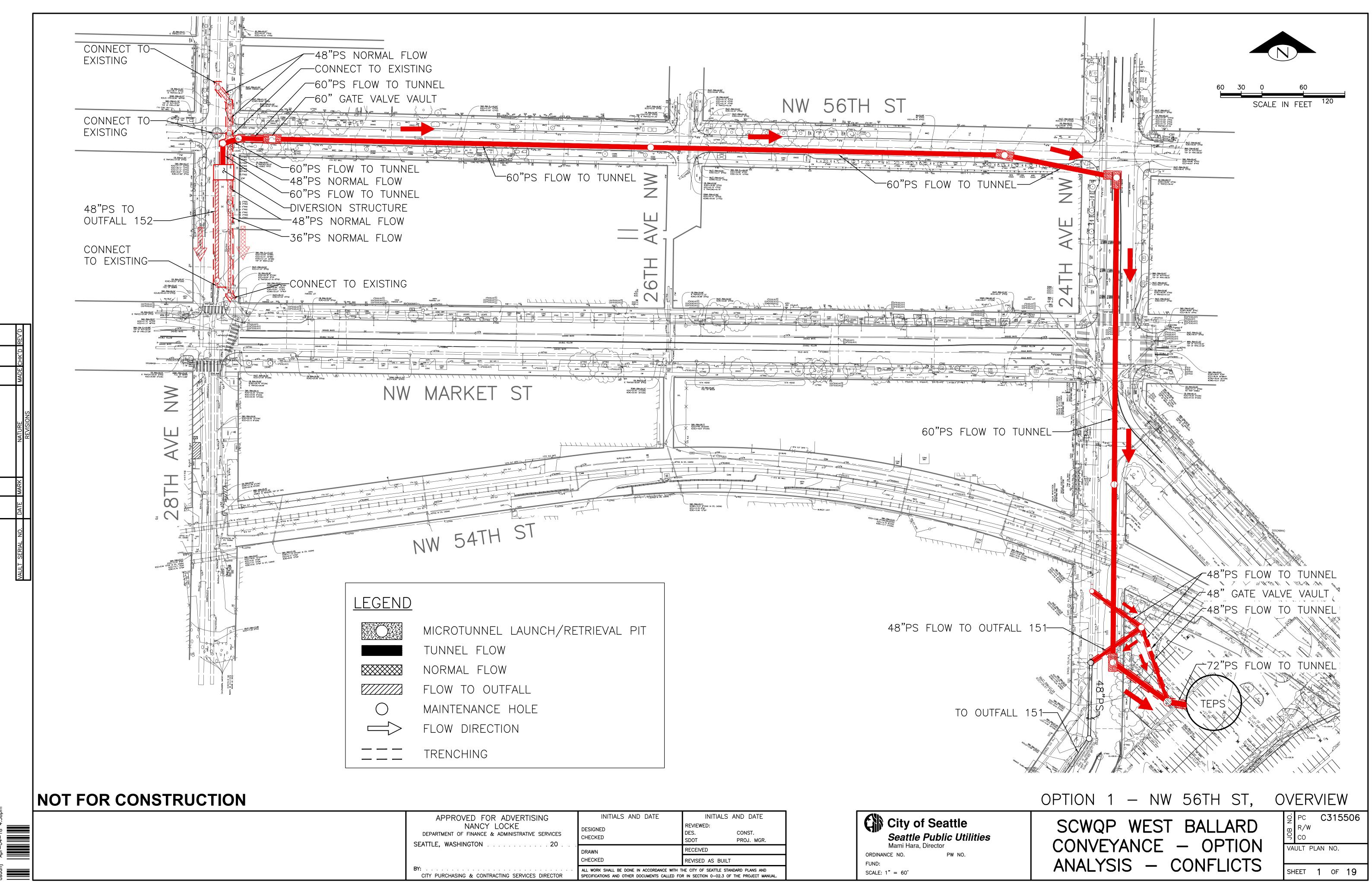
The nature of the businesses along NW 54th Street rely on customer and truck & vehicle access to their facilities for material delivery & pick up. Vehicular and pedestrian access on NW 54th Street between 28th Avenue NW and 24th Avenue NW would be severely impacted during trenching to replace the watermain, as well as the presence of microtunnelling pits on NW 54th Street at 28th, 26th and 24th Avenue NW streets. The microtunnel pits would likely block vehicular access to the properties on the south side of 54th for the duration of trenchless construction. Thus, even if trenchless methods were used for the conveyance piping, the microtunnel launch & retrieval pits and the trenching for watermain replacement would still impact access to businesses along 54th.

• <u>Traffic impacts</u>:

This alternative would require detours of industrial truck traffic, and would prevent trucks from accessing industrial properties, loading docks, etc. There is no way to estimate the cost of impacting businesses; however, there would be a cost to impacting or blocking access.

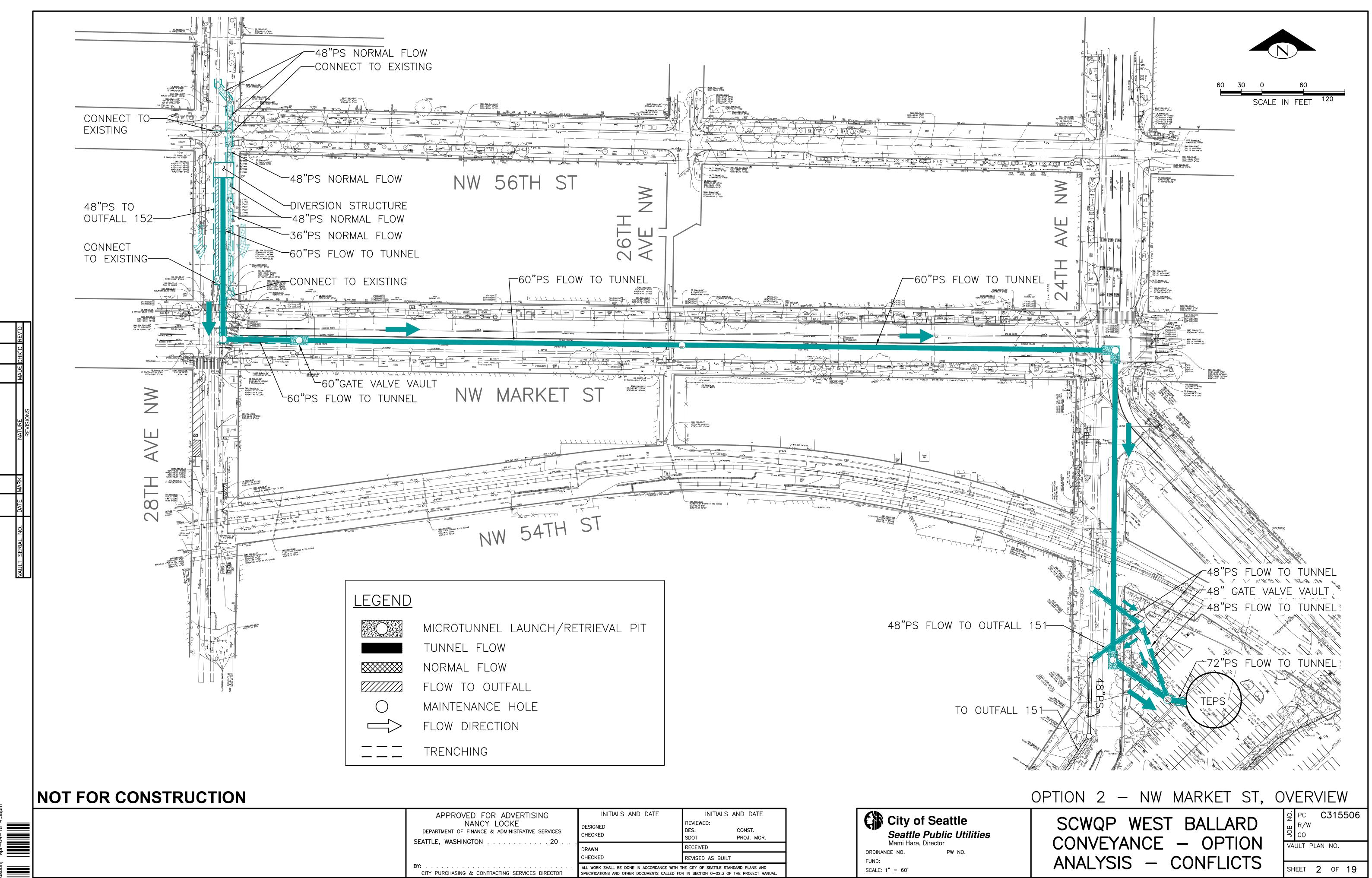
<u>Parking Impacts</u> (staging, construction foot print, etc.)
 Parking along NW 54th Street between 28th & 24th Avenues would be severely restricted to allow for construction operations and staging of equipment for the duration of construction (months).

SUMMARY / COMPARISON OF ALTERNATIVES

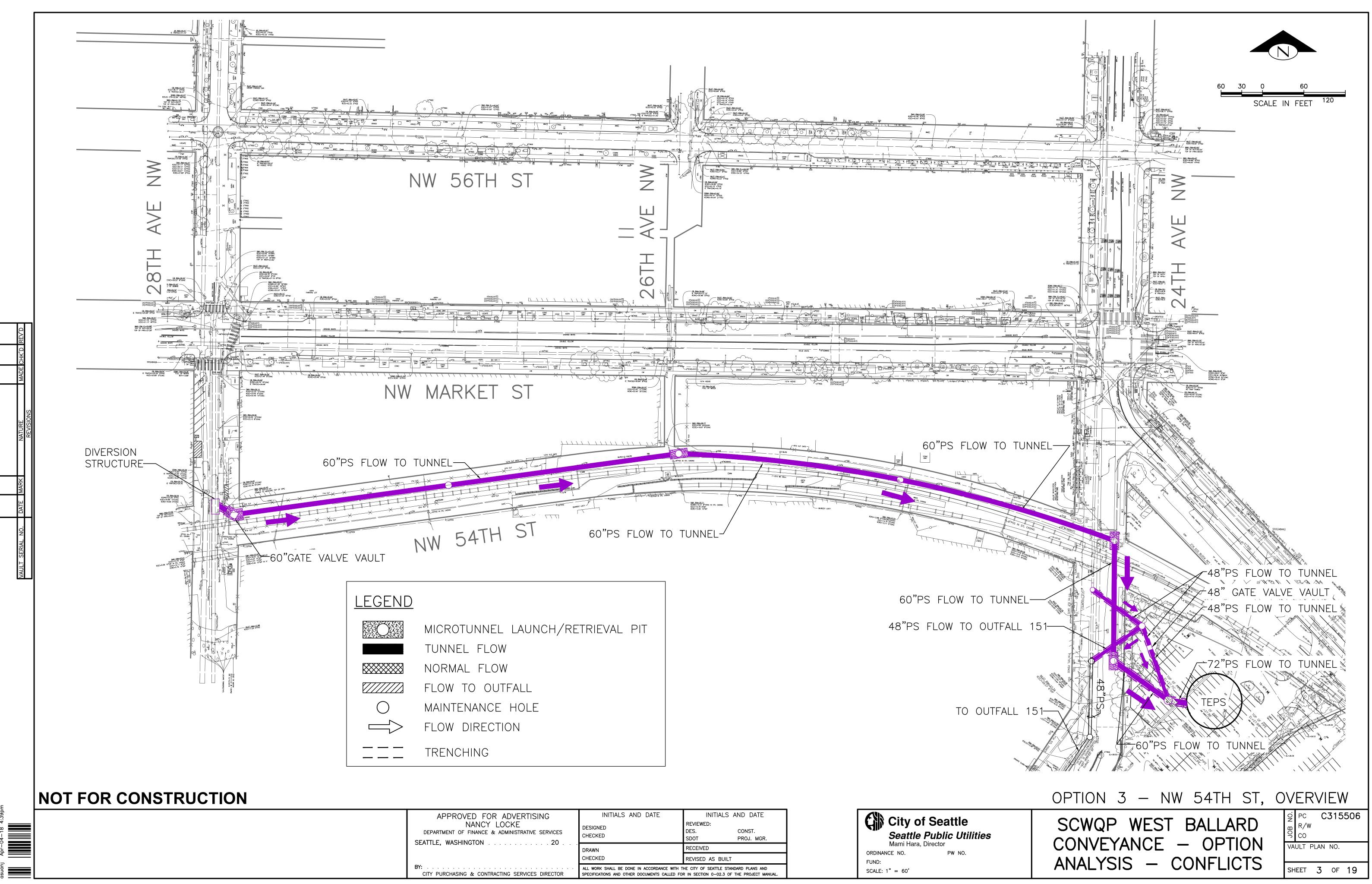

This section summarizes the above and includes relative durations of construction. Alternative 1 would mainly impact residential properties; however, access could be maintained. Alternative 2 would impact commercial businesses, including pedestrian and vehicular access to the businesses. It also would have the biggest impact on traffic in the area and bus routes (including trolleys). Alternative 3 would greatly impact the industrial businesses which have access needs along 54th Avenue NW. There is a possibility that access to several businesses on the south side of NW 54th Street would be cut off from vehicles & trucks for several weeks to a few months.

In general, it is anticipated construction duration would be the longest for Alternative 2 due to the traffic restrictions for work along Market Street. Alternatives 1 is the longest alignment, so it would likely have a longer duration than Alternative 3; however, Alternative 3 is more challenging and risky from a constructability standpoint. Also, Alternative 3 requires replacement of the existing 12" watermain and coordination with the Ballard Terminal Railroad for the entire alignment. Therefore, Alternative 3 is not likely to be much shorter duration than Alternative 1.

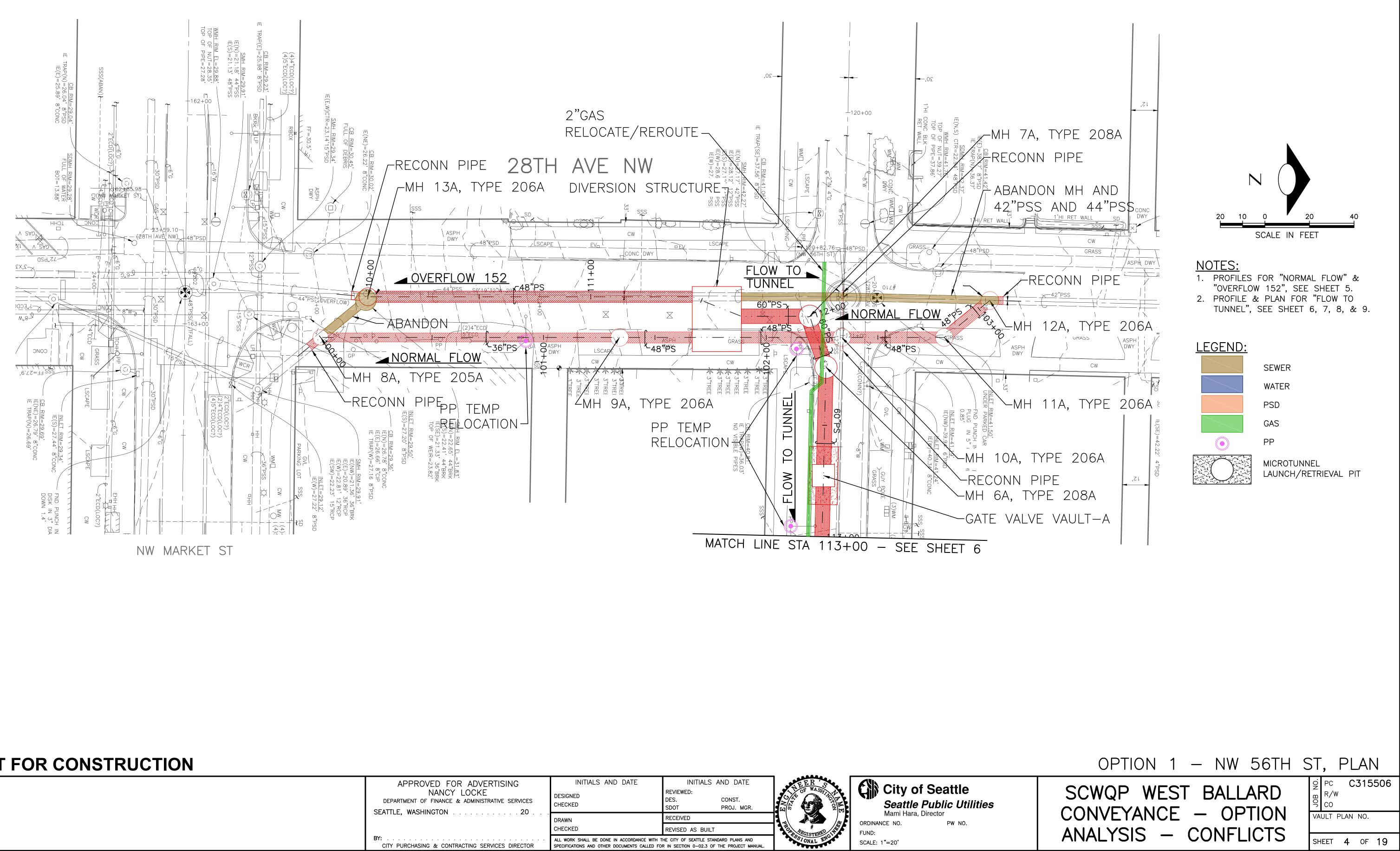
All three Alternatives would include some relocation and/or protection in place of existing utilities. The relocation & replacement of the existing 12" watermain along NW 54th Street required by Alternative 3 would be the most difficult due to the narrow road area and the proximity to the existing BTRR, as well as contaminated soil removal and dewatering treatment.


APPENDIX D:

PRELIMINARY PLANS AND PROFILES OF CONVEYANCE PIPES

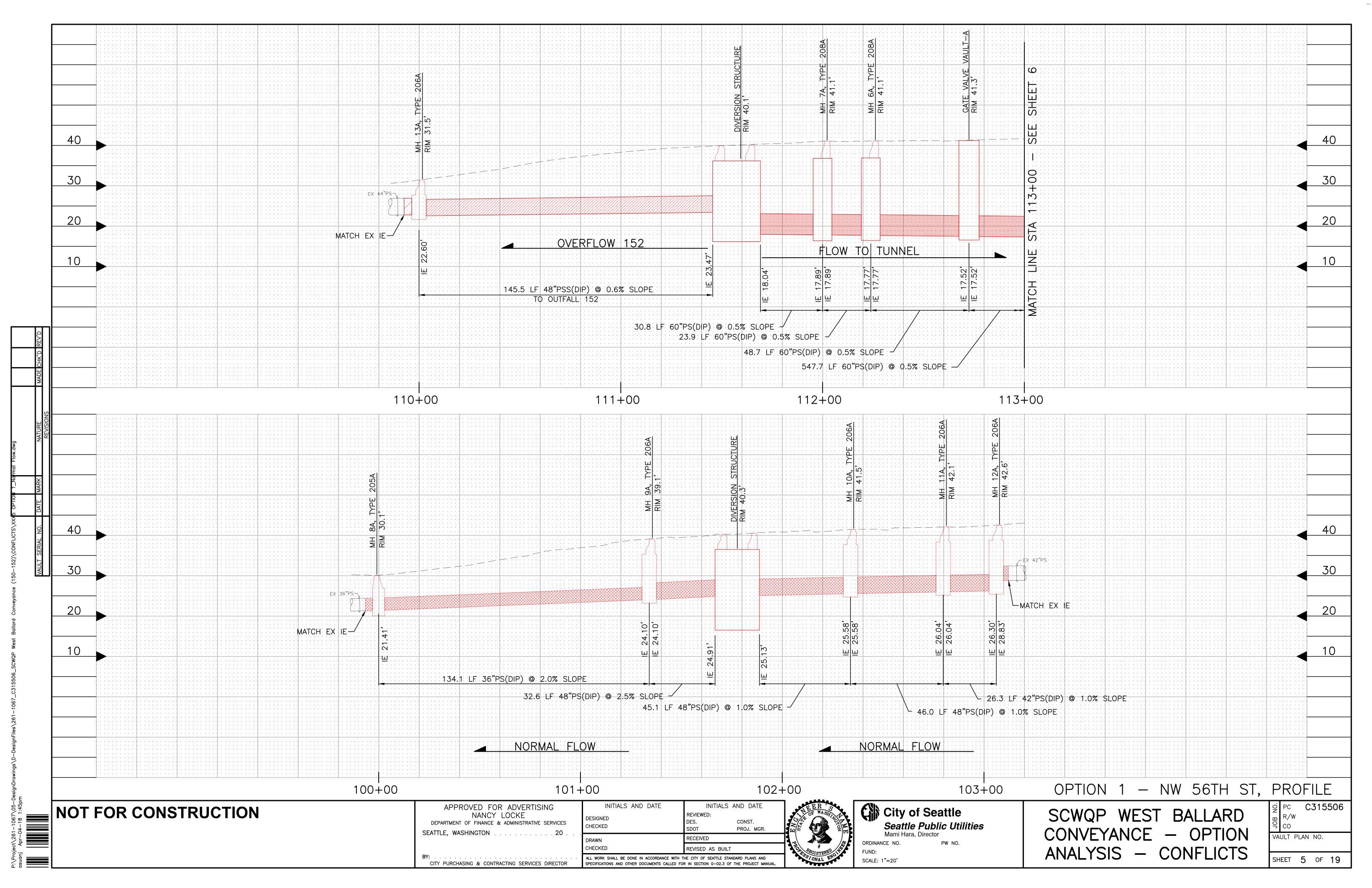

ADVERTISING	INITIALS AND DATE	INITIALS AND DATE
_OCKE ADMINISTRATIVE SERVICES	DESIGNED CHECKED	REVIEWED: DES. CONST. SDOT PROJ. MGR.
	DRAWN	RECEIVED
	CHECKED	REVISED AS BUILT
CTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH THE CITY OF SEATTLE STANDARD PLANS AND SPECIFICATIONS AND OTHER DOCUMENTS CALLED FOR IN SECTION $0-02.3$ of the project manual.	

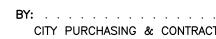
City of Seattle F Mami Hara, Di	Public Utilities
ORDINANCE NO.	PW NO.
FUND:	
SCALE: 1" = 60'	

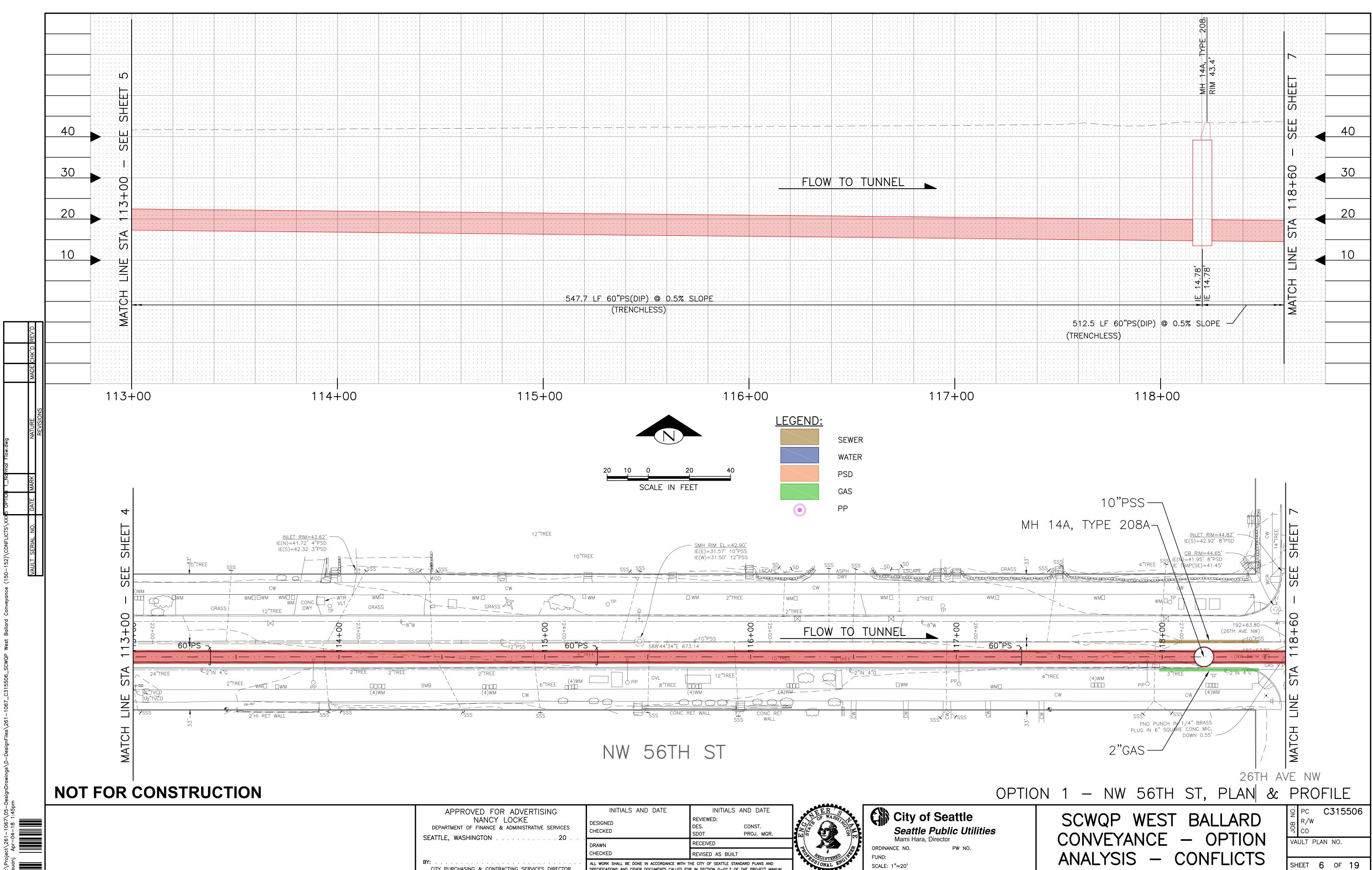

ADVERTISING	INITIALS AND DATE	INITIALS AND DATE
LOCKE ADMINISTRATIVE SERVICES 20	DESIGNED CHECKED	REVIEWED: DES. CONST. SDOT PROJ. MGR.
20	DRAWN	RECEIVED
	CHECKED	REVISED AS BUILT
CTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO	

City of Seattle P Mami Hara, Dir	ublic Utilities
ORDINANCE NO.	PW NO.
FUND:	
SCALE: 1" = 60'	

R ADVERTISING	INITIALS AND DATE	INITIALS AND DATE
LOCKE & ADMINISTRATIVE SERVICES	DESIGNED CHECKED	REVIEWED: DES. CONST. SDOT PROJ. MGR.
	DRAWN	RECEIVED
	CHECKED	REVISED AS BUILT
ACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO	

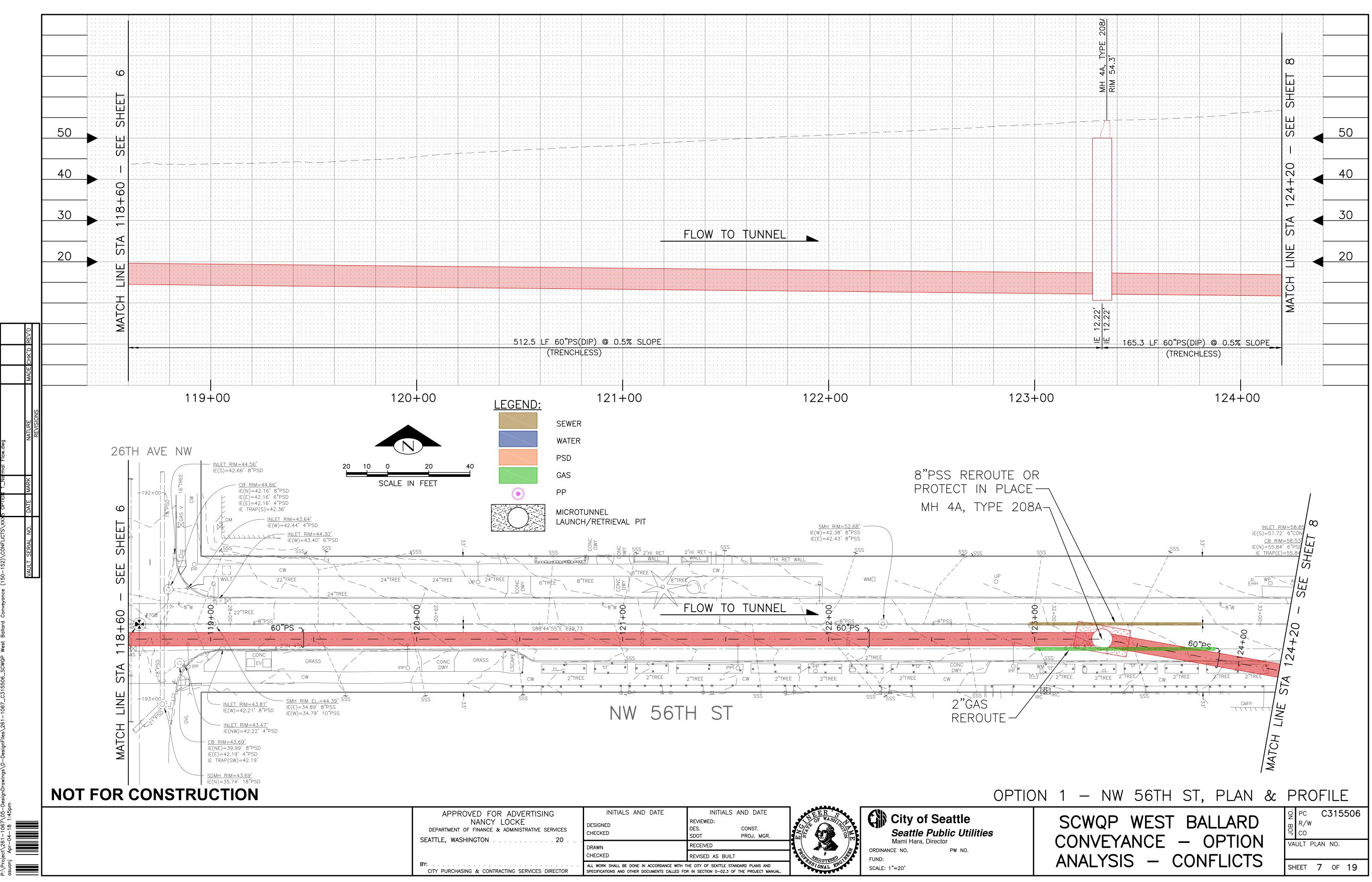

City of Seattle P Mami Hara, Dir	ublic Utilities
ORDINANCE NO.	PW NO.
FUND:	
SCALE: 1" = 60'	

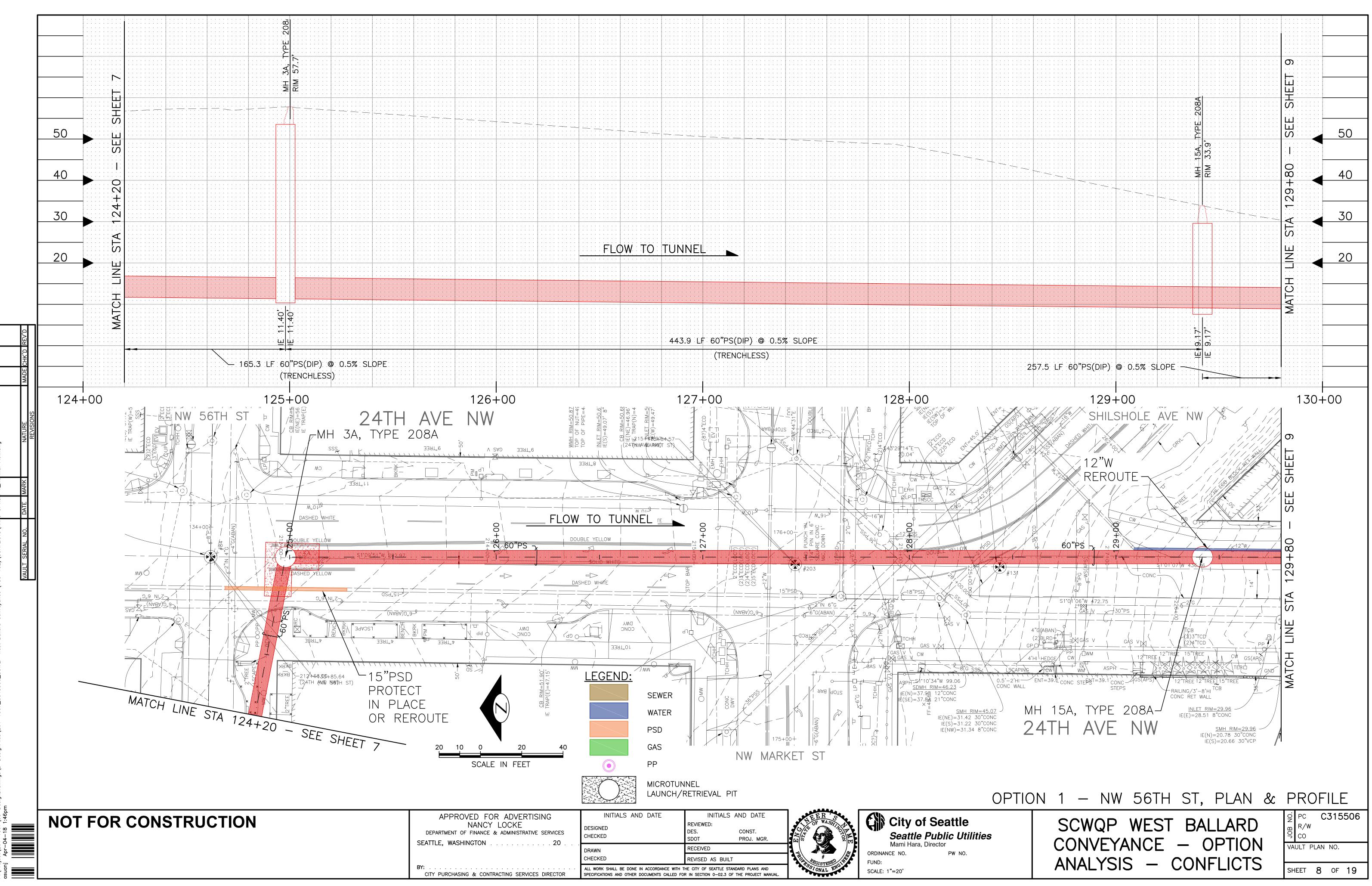


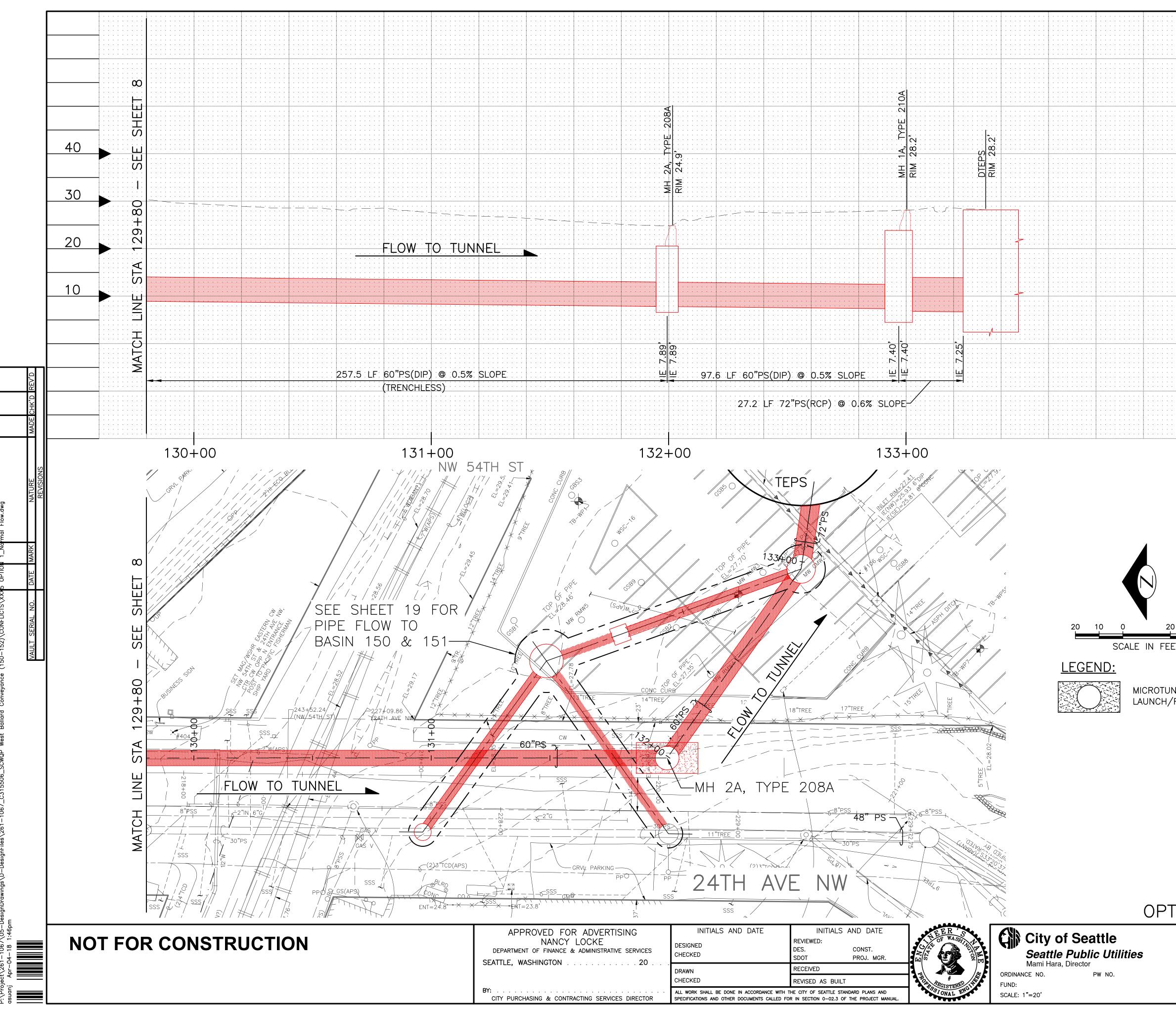


VAULT

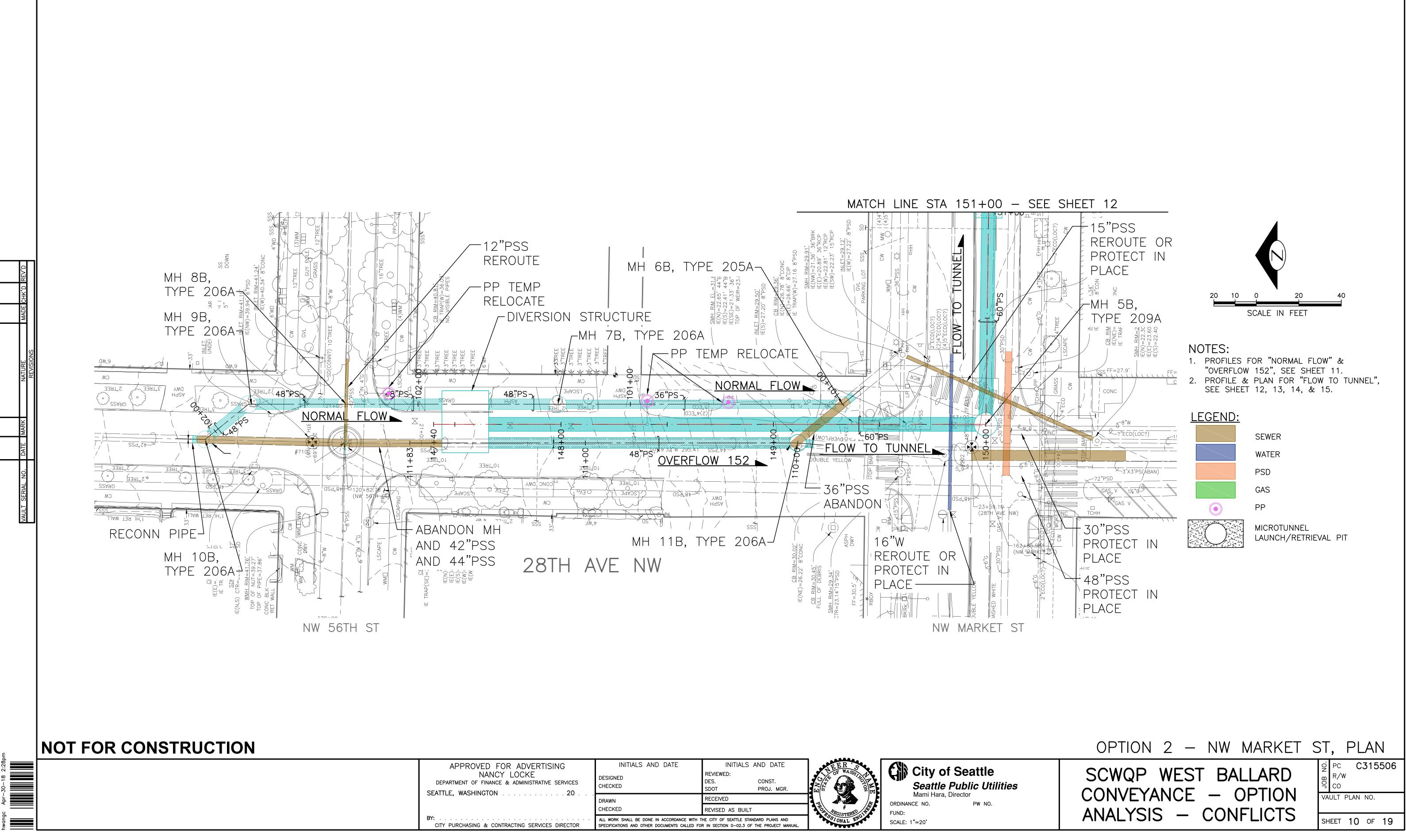
DR ADVERTISING / LOCKE & ADMINISTRATIVE SERVICES 20	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	N E E R 'SS N WA SHIT HA S N WA SHIT HA N SS N SS N SS N SS N N SS N SS	City of Seattle Seattle Public Utilities
	DRAWN	RECEIVED		Mami Hara, Director
	CHECKED	REVISED AS BUILT	TO A RECTONNERED	ORDINANCE NO. PW NO. FUND:
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FOR		SSIONAL ENG	SCALE: 1"=20'



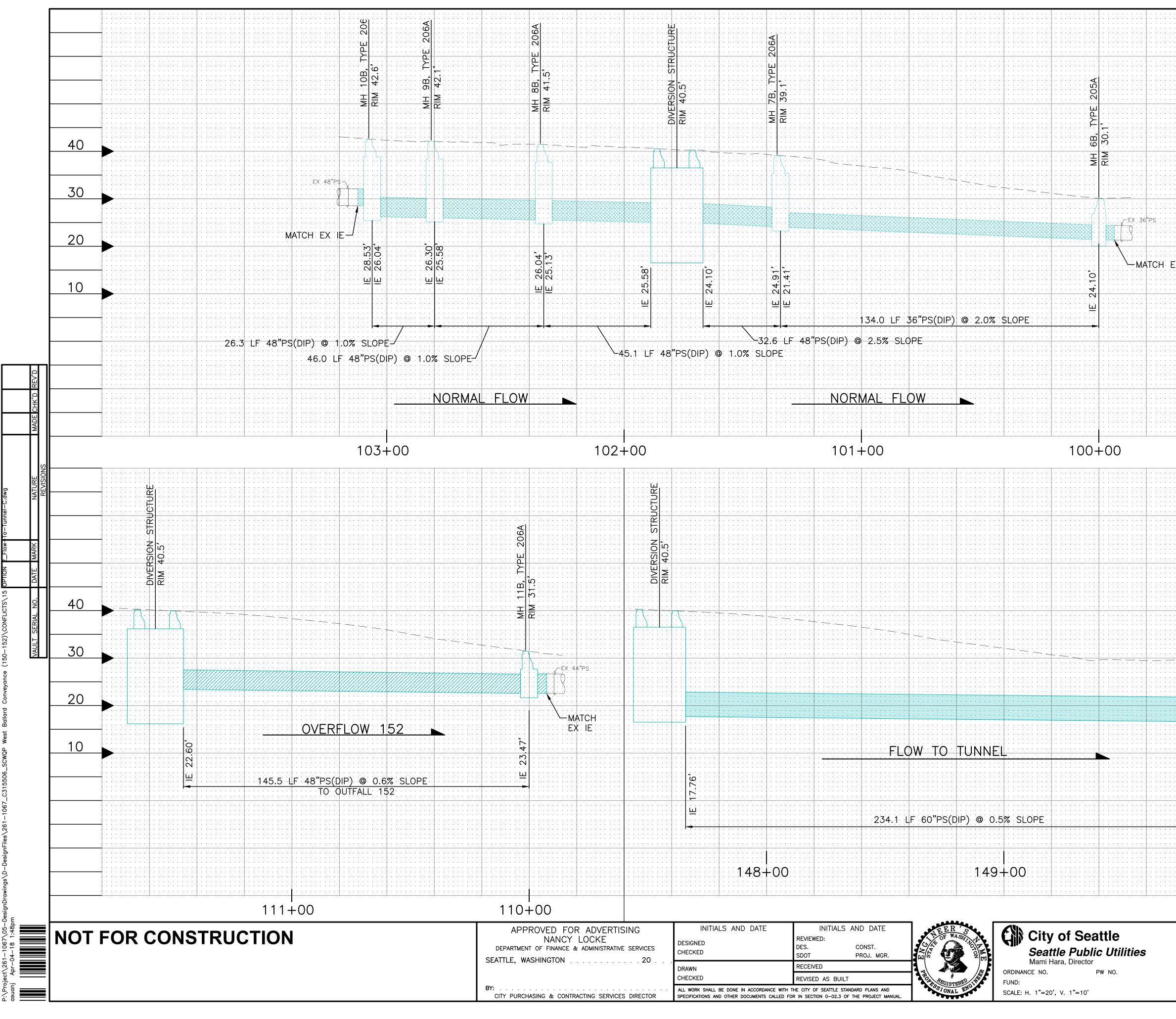


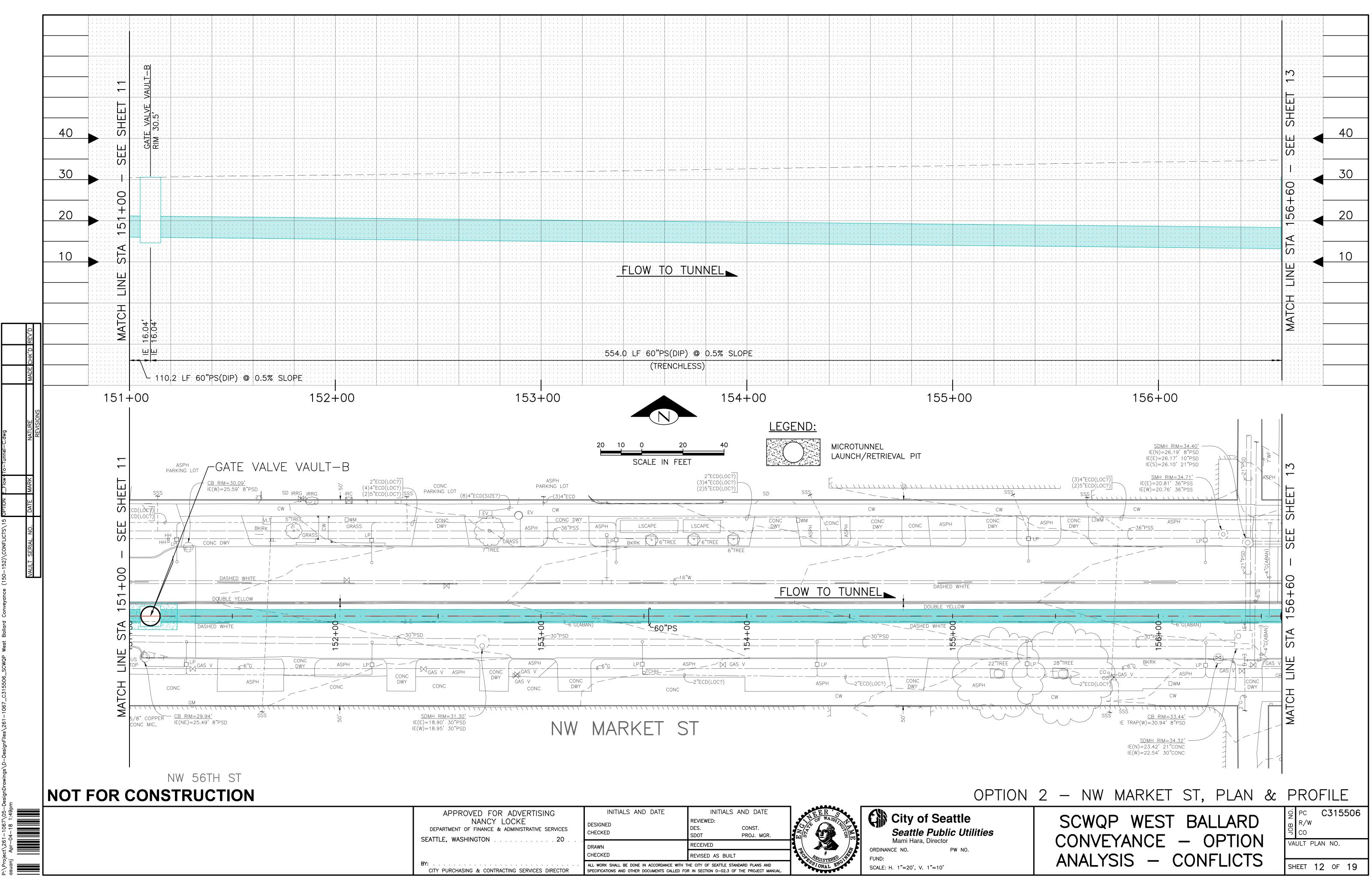

R ADVERTISING LOCKE & administrative services 20	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	THEER THEW WAS
	DRAWN	RECEIVED	
	CHECKED	REVISED AS BUILT	POR PEGIOTER
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO		SSIONAL

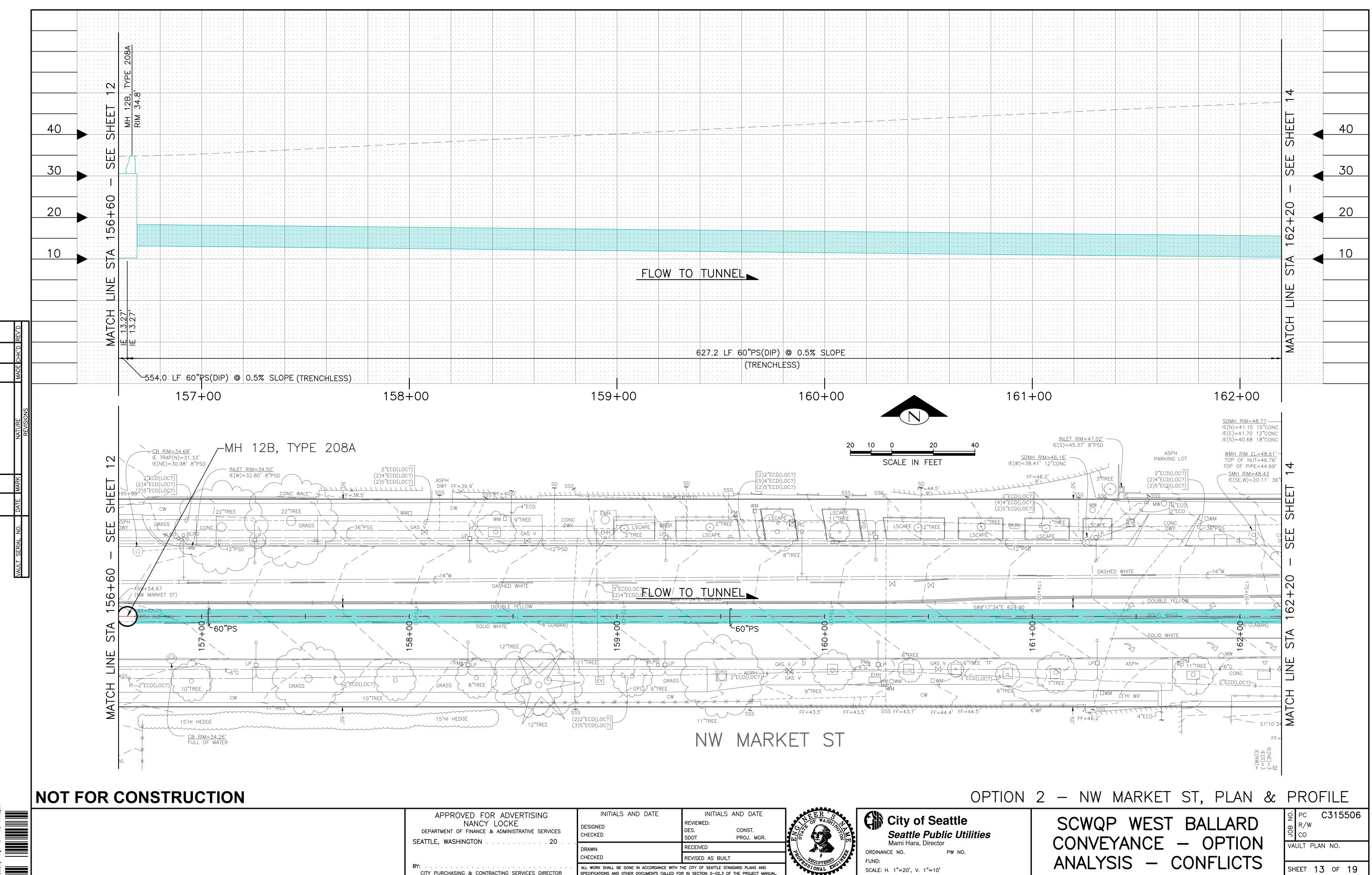
SCALE: 1"=20'

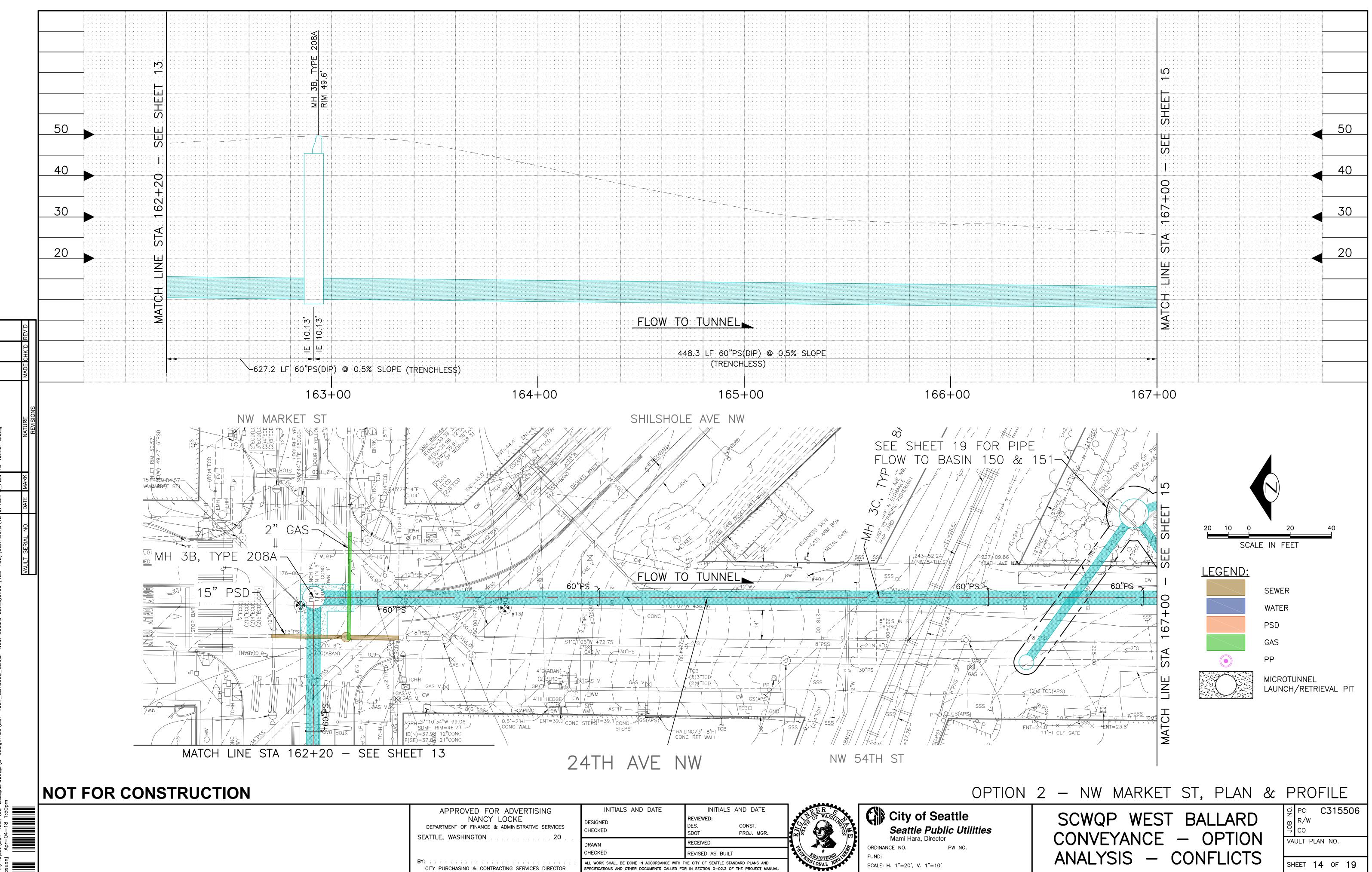


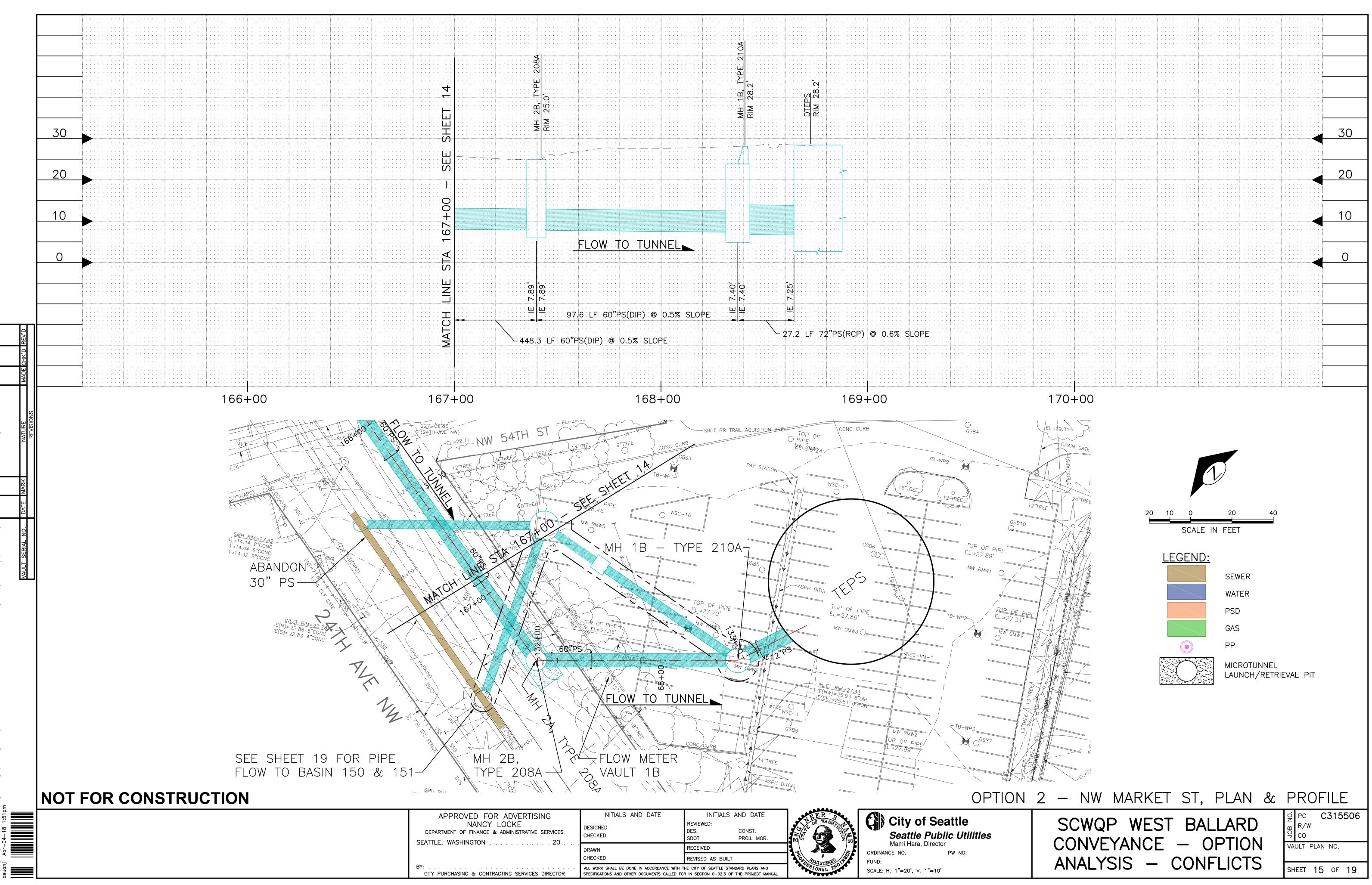
R ADVERTISING LOCKE & ADMINISTRATIVE SERVICES	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	N LE C Y WASHINGTON	City of Seattle Seattle Public Utilities	
	DRAWN	RECEIVED		Mami Hara, Director ORDINANCE NO. PW NO.	
	CHECKED	REVISED AS BUILT	# RECLEMENTED	ORDINANCE NO. PW NO. FUND:	
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO		Sosional ENG	SCALE: 1"=20'	

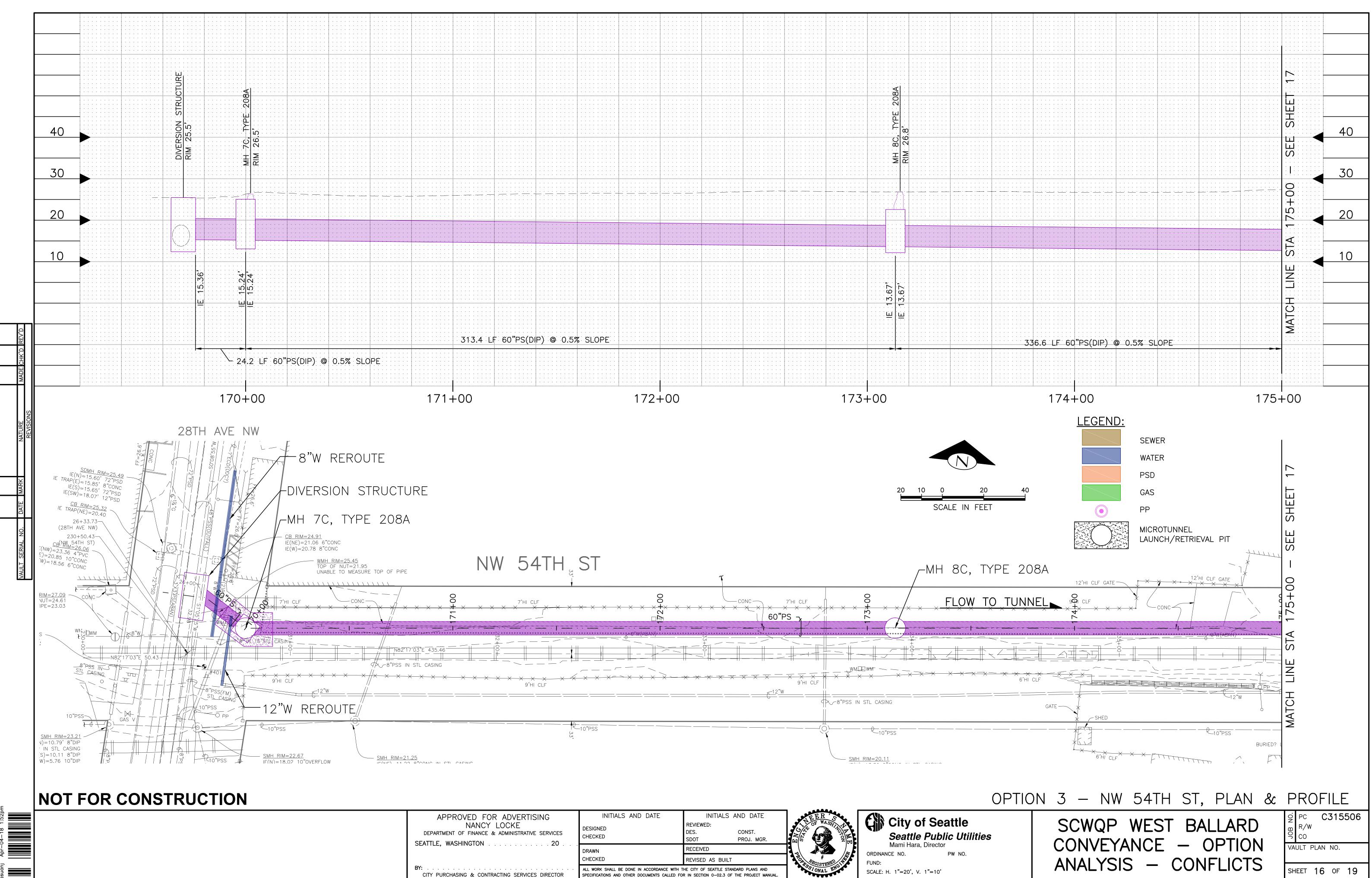



40					
VAL PIT					
		ст	PLA	 	

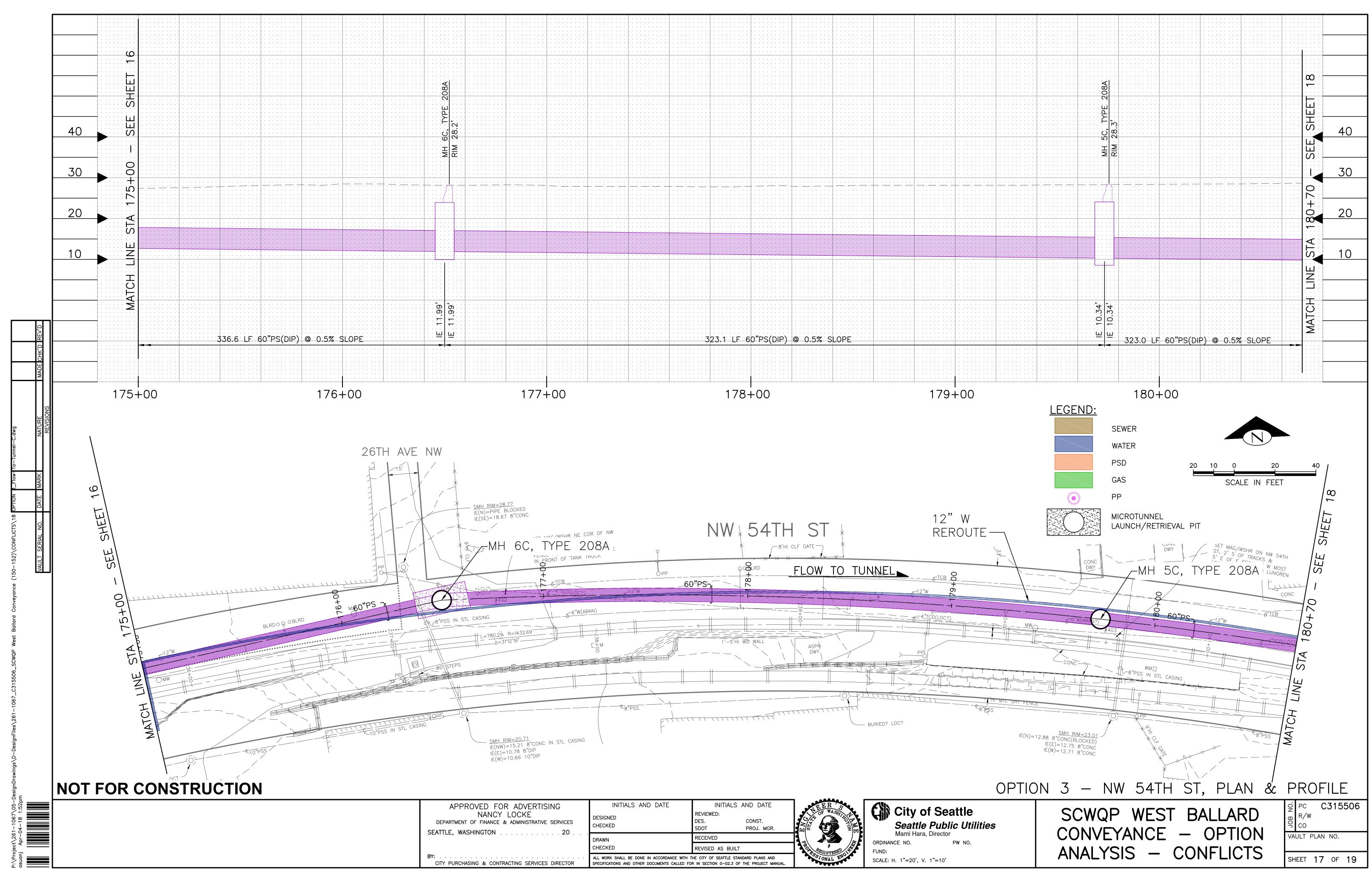

D FOR ADVERTISING NCY LOCKE JANCE & ADMINISTRATIVE SERVICES	INITIALS AND DATE DESIGNED CHECKED	INITIALS / REVIEWED: DES. SDOT	AND DATE CONST. PROJ. MGR.	THER'SS THEFT WASHINGTON	Se	ty of Seatt attle Public
011	DRAWN	RECEIVED			ORDINANCE N	ni Hara, Director o. PW
	CHECKED	REVISED AS BUILT		PECLORERED	FUND:	0. PW
CONTRACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FOR			SS IONAL ENGI	SCALE: 1"=20	,


X:1 40 30 20 10 10 11 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
X # 30 30 20 20 10 10 10 <th> </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
X # 30 30 20 20 10 10 10 <th>· · · · ·</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	· · · · ·								
X # 30 30 20 20 10 10 10 <th>· · · · ·</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th>	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
X # 30 30 20 20 10 10 10 <th>· · · · ·</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	· · · · ·								
x IIE 20 20 10 10 10 10 10 10 10 10 10 1	· · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		40
x IIE 20 20 10 10 10 10 10 10 10 10 10 1	· · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·		
x IIE 20 20 10 10 10 10 10 10 10 10 10 1	· · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		30
x = 10 10 10 <th>· · · · ·</th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · ·</th> <th>· · · · · · · · · · · ·</th> <th></th> <th></th> <th></th>	· · · · ·				· · · · · · · · · · ·	· · · · · · · · · · · ·			
x = 10 10 10 <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th> <th></th> <th>20</th>	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				20
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••••	20
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	EX IE								
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	10
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·				· · · · · · · · · · · · · · · · · · ·				
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · ·			· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·				· · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·		
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·		· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·		· ·	
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.		<u> </u>	<u> </u>						
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.									
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·				· · · · · · · · · · · · · · · · · · ·				
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
Image: Stress of the second	· · · · ·		\mathcal{D}		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Image: State of the state	· · · · ·				· · · · · · · · · · · ·		· · · · · · · · · · · ·	N N H	
Image: Second state sta	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	29.8						40
FLOW TO TUNNEL I Image: Second state of the se	· · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·		- 0
FLOW TO TUNNEL I Image: Second state of the se	· · · · ·							$\overline{\mathbf{O}}$	70
FLOW TO TUNNEL 10 Image: Stress of the stress of					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Ŏ +	
FLOW TO TUNNEL I Image: Second state of the se	· · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · ·		
FLOW TO TUNNEL Image: Constraint of the second	· · · · ·								20
PLOW TO TUNNEL TO PLOW TO TUNNEL PLOW PLOW PLOW	· · · · ·			· · · · · · · · · · · · · · · · · · ·				ГО П	
Image: Second state Image: Second state<	· · · · ·	· · · · · · · · · · · ·		FLOV	Ι ΤΟ ΤΙ	JNNEL	· · · · · · · · · · · · · · · · · · ·	Z.	10
Image: Second state Image: Second state<	· · · · ·	້	ົດ		· · · · · · · · · · · ·	 		T	
Image: style in the style	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	F_	
OPTION 2 – NW MARKET ST, PROFILE SCWQP WEST BALLARD CONVEYANCE – OPTION	· · · · ·	Ц	<u>ш</u> 1	10.2 LF 6	0"PS(DIP)	@ 0.5% S	LOPE		
OPTION 2 – NW MARKET ST, PROFILE SCWQP WEST BALLARD CONVEYANCE – OPTION	· · · · ·								
OPTION 2 – NW MARKET ST, PROFILE SCWQP WEST BALLARD CONVEYANCE – OPTION	· · · ·	150-			· · · · · · · · · · · · · · · · · · ·		151-	-00	
SCWQP WEST BALLARD CONVEYANCE – OPTION	· · · · ·				· · · · · · · · · · · · · · · · · · ·				
CONVEYANCE – OPTION		OPT	ION 2	<u> </u>	JW M/	ARKET	ST,	PROF	ILE
CONVEYANCE – OPTION VAULT PLAN NO.		S	CWQF	WES	ST B	ALLAF	RD		2315506
									NO.
ANALYSIS - CONFLICTS SHEET 11 OF 19								SHEET 11	OF 19

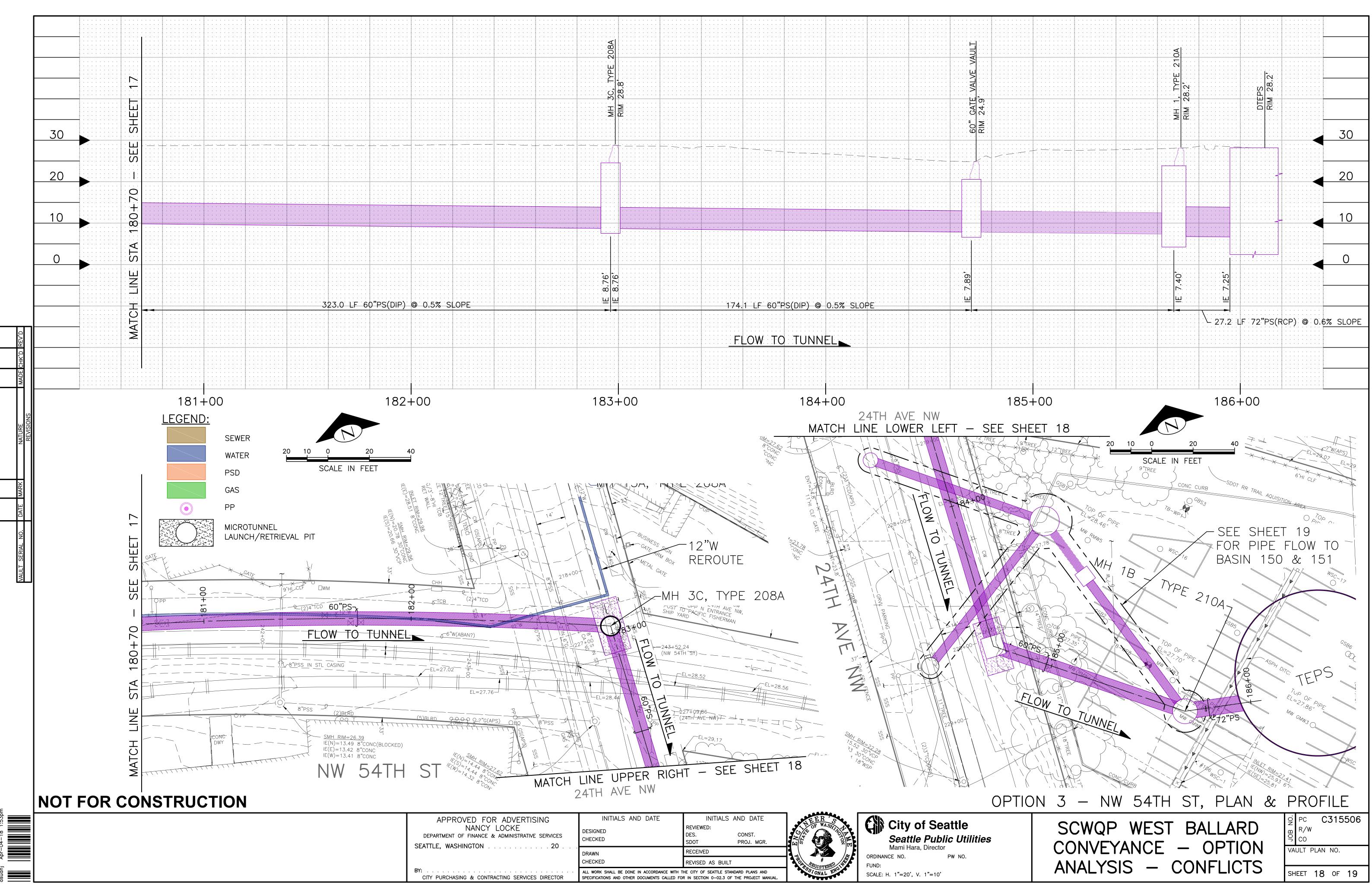

OR ADVERTISING ´LOCKE & administrative services 20	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	NEER 'S	City of Seattle Seattle Public Utilities
	DRAWN	RECEIVED		Mami Hara, Director
	CHECKED	REVISED AS BUILT	PRO #	ORDINANCE NO. PW NO. FUND:
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FOR		SSSIONAL ENG	SCALE: H. 1"=20', V. 1"=10'



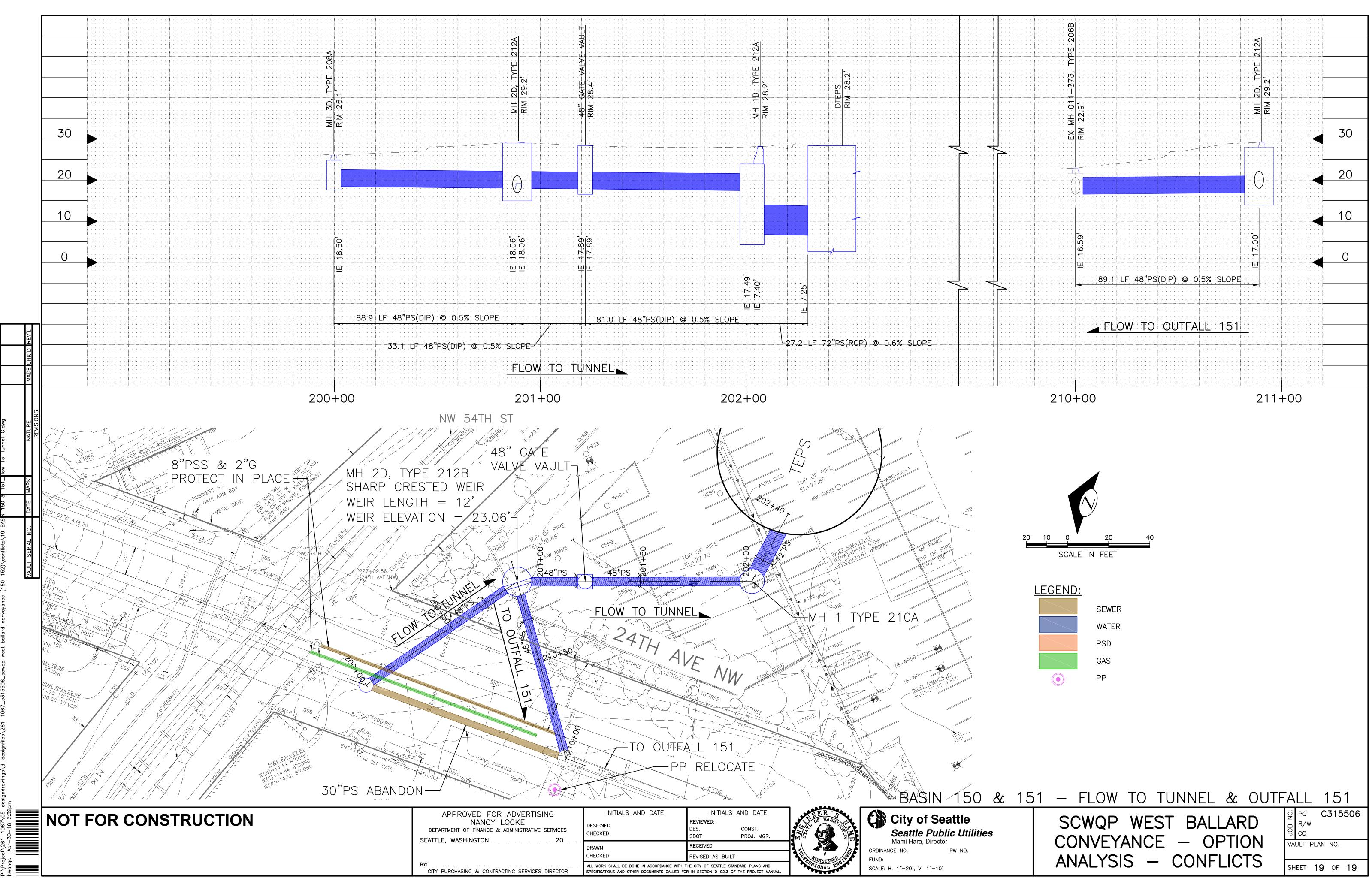
				••••
DR ADVERTISING LOCKE & administrative services	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	THE ER'S	City of Seattle Seattle Public Utilities
	DRAWN	RECEIVED		Mami Hara, Director
	CHECKED	REVISED AS BUILT	PROF #	ORDINANCE NO. PW NO. FUND:
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO		SSIONAL ENG	SCALE: H. 1"=20', V. 1"=10'



OR ADVERTISING LOCKE & administrative services	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	NEER'S	City of Seattle Seattle Public Utilities Mami Hara, Director				
	DRAWN	RECEIVED						
	CHECKED	REVISED AS BUILT	PEGISTERED	ORDINANCE NO. PW NO. FUND:				
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FOR		SSIONAL ENG	SCALE: H. 1"=20', V. 1"=10'				



R ADVERTISING LOCKE & administrative services 20	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	THEER'SS THEER'SS THE ER'SS THE FILL THE FILL TH	City of Seattle Seattle Public Utilities Mami Hara, Director					
	DRAWN	RECEIVED		ORDINANCE NO. PW NO.					
	CHECKED	REVISED AS BUILT	PECISMERED	FUND:					
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FOR		SPSIONAL ENG	SCALE: H. 1"=20', V. 1"=10'					



R ADVERTISING LOCKE & ADMINISTRATIVE SERVICES	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	CURE ER SS	City of Seattle Seattle Public Utilities
	DRAWN	RECEIVED		Mami Hara, Director ORDINANCE NO. PW NO.
	CHECKED	REVISED AS BUILT	PEGISTERED CITY	FUND:
RACTING SERVICES DIRECTOR	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO		ONAL ENG	SCALE: H. 1"=20', V. 1"=10'

RIM=20.71 =15.21 8"CONC IN STL CASING :10.78 8"DIP =10.66 10"DIP					
				(CPC
R ADVERTISING LOCKE & ADMINISTRATIVE SERVICES	INITIALS AND DATE DESIGNED CHECKED	INITIALS AND DATE REVIEWED: DES. CONST. SDOT PROJ. MGR.	THE ER 'S'	City of Seattle Seattle Public Utilities	
	DRAWN CHECKED	RECEIVED REVISED AS BUILT		Mami Hara, Director ORDINANCE NO. PW NO.	

	CHECKED	REVISED AS BUILT
	ALL WORK SHALL BE DONE IN ACCORDANCE WITH T	HE CITY OF SEATTLE STANDARD PLANS AND
SERVICES DIRECTOR	SPECIFICATIONS AND OTHER DOCUMENTS CALLED FO	R IN SECTION 0-02.3 OF THE PROJECT MANUAL

APPENDIX E:

COST ESTIMATE AND BASIS OF ESTIMATE

Con	struction C	Contract Amount Spreadsheet						
Proiec	t Name:	SCWQP: Ballard Conveyance- Options Analysis - NW 56th St						
Projec		C315506						
	t Phase:	Options Analysis						
	Estimator(s):	Eset Alemu						
	eviewer(s)	Eleanor Jackson						
Date:		1-Jun-18						
Item	Bid Item	Bid Item Description	Quantity	Unit		Unit Price	Unit	Price Extension
1	109005	MOBILIZATION-CSI(REF)	1	LS	\$	1,208,000	\$	1,208,000
2	107005	SAFETY AND HEALTH PROGRAM-CSI(REF)	12	Month	\$	1,725	\$	20,700
3	110005	MAINTENANCE & PROTECTION OF TRAFFIC CONTROL INC	240	Day	\$	895	\$	214,800
4	717985	TEMPORARY SEWER BYPASS	1	LS	\$	100,000	\$	100,000
5	801001	CONSTRUCTION STORMWATER EROSION CONTROL PLAN	1	LS	\$	100,000	\$	100,000
6	717990	TELEVISION INSPECTION { QTY >200FT 1 MOB}	2,876	LF	\$	5	\$	14,379
7	SPECIAL	VIBRATION AND SETTLEMENT MONITORING	1	LS	\$	500,000	\$	500,000
8	SPECIAL	Electrical Elements	. 1	LS	\$	123,500	\$	123,500
	0. 20. 2	Trenching and Backfill 2" Schedl 40 PVC Conduit Direct Burial,			Ť	0,000	Ť	0,000
		Saw Cutting, Pavement Removal, Excavation, Pavement						
9	SPECIAL	Repair	1,850	LF	\$	250	\$	462,500
10	705010	MAINTENANCE HOLE, Type 205A{QTY<=5 EA}	1	EA	\$	10,250	\$	10,250
11	705012	MAINTENANCE HOLE, Type 206A{QTY>5 EA}	6	EA	\$	11,250	\$	67,500
12	705112	EXTRA Depth, Type 206A Maintenance Hole	6	VF	\$	310	\$	1,860
13	705016	MAINTENANCE HOLE, Type 208A{QTY<=5 EA}	8	EA	\$	15,500	\$	124.000
14	705116	EXTRA DEPTH, Type 208A Maintenance Hole	100	VF	\$	615	\$	61,500
15	705020	MAINTENANCE HOLE, Type 210A{QTY<=5 EA}	1	EA	\$	20,500	\$	20,500
16	705120	EXTRA Depth, Type 210A Maintenance Hole	5	VF	\$	920	\$	4,600
17	705024	MAINTENANCE HOLE, Type 212A{QTY<=5 EA}	1	EA	\$	30,750	\$	30,750
18	SPECIAL	Grit Removal Structure	1	LS	\$	489,600	\$	489,600
19	SPECIAL	Diversion Structure	1	LS	\$	393,400	\$	393,400
20	SPECIAL	60"Gate Valve Vault	1	LS	\$	159,700	\$	159,700
21	SPECIAL	48"Gate Valve Vault	1	LS	\$	112,800	\$	112,800
22	705300	RECHANNEL Maintenance Hole	2	EA	\$	1,250	\$	2,500
23	202850	ABANDON AND FILL PIPE {QTY >100}	236	LF	\$	36	\$	8,496
24	717236	PIPE, PS, Conc C76 CLIII, 36 IN { QTY>20FT}	134	LF	\$	155	\$	20,770
25	717036	BEDDING, CL B, 36 IN Pipe { QTY >50LF}	134	LF	\$	33	\$	4,422
26	SPECIAL	PIPE, PS, Conc C76 CLIII, 48 IN { QTY>20FT}	587	LF	\$	370	\$	217,042
27	717048	BEDDING, CL B, 48 IN Pipe { QTY >50LF}	587	LF	\$	32	\$	18,771
28	SPECIAL	PIPE, PS, Conc C76 CLIII, 60 IN	201	LF	\$	490	\$	98,490
29	717060	BEDDING, CL B, 60 IN Pipe { QTY >50LF}	201	LF	\$	62	\$	12,462
30	SPECIAL	PIPE, PS, Conc C76 CLIII, 72 IN	27	LF	\$	820	\$	22,304
31	717072	BEDDING, CL B,72 IN Pipe { QTY <=50LF}	27	LF	\$	77	\$	2,094
32	210110	Contaminated soils Disposal	52	TN	\$	135	\$	6,965
		Dewatering- Pumping Water(6" Pump) to Baker Tank Large	180					
33	208013	Water Flow Capacity		DAY	\$	2,075	\$	373,500
34	SPECIAL	CONTAMINATED WATER TREATMENT	1,440	HR	\$	17	\$	24,480
35	SPECIAL	SURFACE RESTORATION	1	LS	\$	201,785		201,785
36	SPECIAL	LANDSCAPING	1	LS	\$	20,038	\$	20,038
37	SPECIAL	UTILITY RELOCATIONS	1	LS	\$	321,500	\$	321,500
38	SPECIAL	MICROTUNNEL 60" PS DIP	1,927	LF	\$	4,000	\$	7,708,000
			Const	ruction L	ine	Item Pricing	\$	13,283,959
						determinates		25%
			C	Construct	ion	Bid Amount	\$	16,604,949
						Sales Tax %		0.0%
			Const	ruction C	ontr	act Amount	\$	16,604,949
				_	1			. , .
							1	

Cons	struction C	ontract Amount Spreadsheet						
Project	Name:	SCWQP: Ballard Conveyance- Options Analysis - NW Market St						
Project		C315506						
	Phase:	Options Analysis						
	stimator(s):	Eset Alemu						
	viewer(s)	Eleanor Jackson						
Date:	viewei(5)	1-Jun-18						
Date.		1-5011-10						
Item	Bid Item	Bid Item Description	Quantity	Unit	lln	it Price	Init I	Price Extension
1	109005	MOBILIZATION-CSI(REF)	Quantity 1	LS	\$	1,085,000	\$	1,085,000
2	103005	SAFETY AND HEALTH PROGRAM-CSI(REF)	12	Month	\$	1,725	\$	20,700
3	110005	MAINTENANCE & PROTECTION OF TRAFFIC CONTROL INCLU	240	Day	\$	895		214,800
4	717985	TEMPORARY SEWER BYPASS	1	LS	\$	100,000	\$	100,000
5	801001	CONSTRUCTION STORMWATER EROSION CONTROL PLAN	1	LS	\$	100,000	э \$	100,000
6	SPECIAL	VIBRATION AND SETTLEMENT MONITORING	1	LS	\$	500,000	\$	500,000
7	717990	TELEVISION INSPECTION { QTY >200FT 1 MOB}	2,556	LF	\$	5	\$	12,778
8	SPECIAL	Electrical Elements	1	LS	\$	123,500	\$	123,500
		Trenching and Backfill 2" Schedl 40 PVC Conduit Direct Burial,						
9	SPECIAL	Saw Cutting, Pavement Removal, Excavation, Pavement Repair	1,580	LF	\$	250	\$	395,000
10	705010	MAINTENANCE HOLE, Type 205A{QTY<=5 EA}	1	EA	\$	10,000	\$	10,000
11	705012	MAINTENANCE HOLE, Type 206A{QTY>5 EA}	6	EA	\$	8,175		49,050
12	705112	EXTRA Depth, Type 206A Maintenance Hole	8	VF	\$	310		2,480
13	705016	MAINTENANCE HOLE, Type 208A{QTY<=5 EA}	4	EA	\$	15,500	\$	62,000
14	705116	EXTRA DEPTH, Type 208A Maintenance Hole	33	VF	\$	615	\$	20,295
15	705018	MAINTENANCE HOLE, Type 209A{QTY<=5 EA}	1	EA	\$	18,500	\$	18,500
16	705020	MAINTENANCE HOLE , Type 210A{QTY<=5 EA}	1	EA	\$	20,500	\$	20,500
17	705120	EXTRA Depth, Type 210A Maintenance Hole	6	VF	\$	920	\$	5,520
18	705024	MAINTENANCE HOLE, Type 212A{QTY<=5 EA}	1	EA	\$	30,750	\$	30,750
19	SPECIAL	Grit Removal Structure	1	LS	\$	489,600	\$	489,600
20	SPECIAL	Diversion Structure	1	LS	\$	393,400	\$	393,400
21	SPECIAL	60"Gate Valve Vault	1	LS	\$	109,800	\$	109,800
22	SPECIAL	48"Gate Valve Vault	1	LS	\$	112,800	\$	112,800
23	705300	RECHANNEL Maintenance Hole	2	EA	\$	1,250	\$	2,500
24	202850	ABANDON AND FILL PIPE {QTY >100}	344	LF	\$	36	\$	12,384
25	717236	PIPE, PS, Conc C76 CLIII, 36 IN { QTY>20FT}	134	LF	\$	155	\$	20,770
26	717036	BEDDING, CL B, 36 IN Pipe { QTY >50LF}	134	LF	\$	33	\$	4,422
27	SPECIAL	PIPE, PS, Conc C76 CLIII, 48 IN { QTY>20FT}	296	LF	\$	370	\$	109,335
28	717048	BEDDING, CL B, 48 IN Pipe { QTY >50LF}	296	LF	\$	32	\$	9,456
29	SPECIAL	PIPE, PS, Conc C76 CLIII, 48 IN { QTY>20FT}	469	LF	\$	490	\$	229,859
30	717048	BEDDING, CL B, 48 IN Pipe { QTY >50LF}	469	LF	\$	62	\$	29,084
31	SPECIAL	PIPE, PS, Conc C76 CLIII, 60 IN	27	LF	\$	820		22,140
32	717072	BEDDING, CL B,72 IN Pipe { QTY <=50LF}	27	LF	\$	77	\$	2,094
33	210110	Contaminated soils Disposal	787		\$	135	\$	106,281
00	210110	Dewatering- Pumping Water(6" Pump) to Baker Tank Large			Ψ	100	Ψ	100,201
34	208013	Water Flow Capacity	180	DAY	\$	2,075	\$	373,500
35	SPECIAL		4,320	HR	э \$	2,075		73,440
36	SPECIAL	SURFACE RESTORATION	4,320	LS	э \$	232,800		232,800
30	SPECIAL	LANDSCAPING	1	LS	٦ \$	41,600	φ	41,600
38	SPECIAL	UTILITY RELOCATIONS	1	LS	5 \$	264,000		264,000
39	SPECIAL	MICROTUNNEL 60" PS DIP	1,630	LS LF	э \$			
28	SFECIAL		,			4,000	\$ ¢	6,520,000
					-	tem Pricing	\$	11,930,138
					-	determinates	•	25%
			(onstruct		Bid Amount	\$	14,912,673
						Sales Tax %		0.0%
			Const	ruction C	ontr	act Amount	\$	14,912,673
					1		1	

Project Project Cost E Est. Re Date:	Name: ID: Phase: stimator(s):	SCWQP: Ballard Conveyance- Options Analysis - NW 54th St C315506						
Project Project Cost E Est. Re Date:	ID: Phase:							
Project Cost E Est. Re Date:	Phase:							
Cost E Est. Re Date:		Options Analysis						
Est. Re Date:		Eset Alemu						
Date:	viewer(s)	Eleanor Jackson						
	101101(0)	1-Jun-18						
-								
ltem	Bid Item	Bid Item Description	Quantity	Unit	Uni	t Price	Unit F	Price Extension
1	109005	MOBILIZATION-CSI(REF)	1	LS	\$	960.000	\$	960,000
2	107005	SAFETY AND HEALTH PROGRAM-CSI(REF)	12	Month	\$	1,725	\$	20,700
3	110005	MAINTENANCE & PROTECTION OF TRAFFIC CONTROL INC		Day	\$	895	\$	214.800
4	717985	TEMPORARY SEWER BYPASS	1	LS	\$	100,000	\$	100,000
5	801001	CONSTRUCTION STORMWATER EROSION CONTROL PLAN	1	LS	\$	100,000	\$	100,000
6	717990	TELEVISION INSPECTION { QTY >200FT 1 MOB}	1,754	LF	\$	5	\$	8,768
7				LS	\$			
<u>/</u> 8	SPECIAL SPECIAL	VIBRATION AND SETTLEMENT MONITORING	1	LS		500,000	\$	500,000
8	SPECIAL	Electrical Elements	1	LS	\$	123,500	\$	123,500
		Tranships and Dealy(ill Of Cabad) 40 DVC Canduit Direct Duriel	4 4 4 0					
0		Trenching and Backfill 2" Schedl 40 PVC Conduit Direct Burial,	1,440		<u>م</u>	050	^	000 000
9	SPECIAL	Saw Cutting, Pavement Removal, Excavation, Pavement Repair		LF	\$	250	\$	360,000
10	705012	MAINTENANCE HOLE, Type 206A{QTY>5 EA}	1	EA	\$	8,175		8,175
11	705016	MAINTENANCE HOLE, Type 208A{QTY<=5 EA}	5	EA	\$	15,500		77,500
12	705116	EXTRA DEPTH, Type 208A Maintenance Hole	8	VF	\$	615		4,613
13	705020	MAINTENANCE HOLE , Type 210A{QTY<=5 EA}	1	EA	\$	20,500	\$	20,500
14	705120	EXTRA Depth, Type 210A Maintenance Hole	4	VF	\$	920	\$	3,680
15	705024	MAINTENANCE HOLE, Type 212A{QTY<=5 EA}	1	EA	\$	30,750	\$	30,750
16	SPECIAL	Grit Removal Structure	1	LS	\$	489,600	\$	489,600
17	SPECIAL	Diversion Structure	1	LS	\$	142,700	\$	142,700
18	SPECIAL	60"Gate Valve Vault	1	LS	\$	94,200	\$	94,200
19	SPECIAL	48"Gate Valve Vault	1	LS	\$	112,800	\$	112,800
20	705300	RECHANNEL Maintenance Hole	1	EA	\$	1,250	\$	1,250
21	202850	ABANDON AND FILL PIPE {QTY >100}	100	LF	\$	36	\$	3,600
22	SPECIAL	PIPE, PS, Conc C76 CLIII, 48 IN { QTY>20FT}	292	LF	\$	370	\$	108,077
23	717048	BEDDING, CL B, 48 IN Pipe { QTY >50LF}	292	LF	\$	32	\$	9,347
24	SPECIAL	PIPE, PS, DI CL 52, 60 IN	24	LF	\$	615	\$	14,883
25	717060	BEDDING, CL B, 60 IN Pipe { QTY >50LF}	24	LF	\$	62	\$	1,500
26	SPECIAL	PIPE, PS, Conc C76 CLIII, 72 IN	27	LF	\$	820	\$	22,304
27	717072	BEDDING, CL B,72 IN Pipe { QTY <=50LF}	27	LF	\$	77	\$	2,094
28	210110	Contaminated soils Disposal	4,277	ΤN	\$	135	\$	577,462
		Dewatering- Pumping Water(6" Pump) to Baker Tank Large	180		•		•	
29	208013	Water Flow Capacity		DAY	\$	2,075	\$	373,500
30	SPECIAL	CONTAMINATED WATER TREATMENT	4,320	HR	\$	17	\$	73,440
31	SPECIAL	SURFACE RESTORATION	1	LS	\$	114,200	\$	114,200
32	SPECIAL	LANDSCAPING	1	LS	\$	20,000	\$	20,000
33	SPECIAL		1	LS	\$	217,370	\$	217,370
34	SPECIAL	MICROTUNNEL 60" PS DIP	1,410	LF	\$	4,000	\$	5,640,000
						em Pricing	\$	10,551,313
					-	eterminates		25%
			C	onstruct	1	id Amount	\$	13,189,142
						ales Tax %	•	0.0%
			Const	uction Co	ontra	ct Amount	\$	13,189,142

		Option 1		Option 2		Option 3	
	Est	imated Cost	E	stimated Cost	E	Estimated Cost	
	\$	16,604,949		14,912,673	\$	13,189,142	
Construction Bid Amount	\$	16,605,000	\$	14,913,000	\$	13,190,000	
Sales Tax %		0.00%		0.00%		0.00%	See Appendix B
Construction Contract Amount	\$	16,605,000	\$	14,913,000	\$	13,190,000	
Crew Construction Costs	\$	-	\$	-	\$	-	
Miscellaneous Hard Costs	\$	-	\$	-	\$	-	See Appendix A
Construction Cost Total	\$	16,605,000	\$	14,913,000	\$	13,190,000	
Soft Cost %		49%		49%		49%	See Section 3.4.1
Soft Cost	\$	8,137,000	\$	7,308,000	\$	6,464,000	
Property Acquisition Costs		-	\$	-	\$	1,588,000	Do not include Labor
Base Cost Total	\$	24,742,000	\$	22,221,000	\$	21,242,000	
Contingency Reserve %				20%			See Section 4.2
Contingency Reserve	\$	6,975,000	\$	4,445,000.00	\$	10,050,000	Based on Risk Register Analysis for Option 1 and 3
Management Reserve %		20%		20%		20%	See Section 4.1
Management Reserve							Reserve managed at the Program level
Project Reserves	\$	6,975,000	\$	4,445,000	\$	10,050,000	
Total Cost	\$	31,717,000	\$	26,666,000	\$	31,292,000	
Inflation Cost Projection							To be calculated for the recommended option
Escalation Adjustment Cost Projection							To be calculated for the recommended option
,							Sumation of Total Cost, Inflation &
Total Cost Projection							Escalation Adjustment = Total Cost
· · · · · · · · · · · · · · · · · · ·							Projection
-20%	\$	25,373,600	\$	21,332,800	\$	25,033,600	Class IV Cost Estimate Range
30%	\$	41,232,100	\$	34,665,800	\$	40,679,600	

		fore or at Stage Gate 2 nating the Total Cost Projection		
Title	SCWQP: Ballard Conveyance- Options Analysis - Calss IV - 06/01/2018			
1. Project	* Activity Name/Number	C315506		
Information:	* LOB Representative and Project Manager	Alex Mockos / Richard Fernandez		
C SIS	* Cost estimator	Eset Alemu		
	* Estimate Reviewer(s)	Eleanor Jackson		
2. Project		is to bring the Ballard CSO Basins 150, 151 and		
Objectives	152 into regulatory compliance by reducing the overflow per year on a rolling 20-year average p			
3. Project Scope	The Ballard Conveyance System includes conveyance pipes, and infrastructure to the storage tunnel, including associated hydraulic structures. The Options Analysis phase of this project evaluates alternatives to route flows from Ballard Basins 150, 151 and 152 to the Storage Tunnel. This work package includes hydraulic modeling; identifying major utility conflicts; preliminary geotechnical assessment; permit identification; property acquisition identification; and coordination and support for communications and outreach.			
4. Location		and industrial areas in close proximity. The bipe starting at a proposed diversion structure near al site on 24th Ave NW and Shilshole Ave NW. The e system are: NW 56th St and south on 24th Ave NW NW Market St and south on 24th Ave NW		
5. Schedule	See attached schedule			
6. Labor Resourcing	SPU will perform Options Analysis to select the	preferred alignment for the Ballard Conveyance		
Strategy	project. The design of the preferred alternative v			
7. Construction	SPU currently plans to employ design bid build of	contracting approach		
Contracting Strategy				
8. Conceptual Design	* Design Assumptions	Refer to Item 20		
	* Conceptual drawing/sketch	See attached conceptual drawings		
9. Basis of Quantity:	* Specifications (if applicable)	City of Seattle Standard Specifications for 2017		
9. Dasis of Quality.	* Take-off by LOB			
	* Take-off by Engineering			
	* Take-off by SPU Consultant	*Please explain if more than 2 boxes checked		
10. Basis of Labor,		Flease explain il more than 2 boxes checked		
Materials & Equipment	* Historical unit costs (aka Cost Model)			
Pricing (aka Unit Price)	* Similar completed project	SCWQP Fremont Conveyance Project 60% CH2M Hill Facility Plan -Cost Estimates - August 2015		
	* Engineering Judgment			
	* Semi-detailed unit costs	• SPU APWA 2017 and CSI 2017		
11. Allowance For Indeterminates:	An Allowance for Indeterminates of 25 percent v			
12. Sales Tax	* Sales Tax Applicable	10.10%		
	* Sales Tax Not Applicable	1		
13. SPU Field Crew Costs/Misc Hard Costs	SPU crews are assumed to be used for the connection to existing watermains which is incorporated in the cost estimate.			
14. Soft Cost	* From SPU CEG	49% of project construction cost was used per SCWQP options analysis guidelines		
	* Not from SPU CEG			
15. Property Acquisition Cost	Property acquisition costs were calculated by Real Properties for Alternative 3 alignment along NW 54th St alignment between 28th Ave NW and 24th Ave NW			
16. Contingency Reserve	* From SPU CEG Recommended Range	Option 1 and Option 3 -Risk Register Analysis was used to calculate contingency reserve. Option 2 Contingency reserve was 20% s Base		
	* Not from SPU CEG	Cost		
17 Managamant Deserve	* From SPU CEG	Management Deserve will be hold and managed		
17. Management Reserve		Managament Reserve will be held and managed at the Program level.		

18. Inflation	* Yes	Inflation costs wil be calcuated for the	
		recommended alternative based on construction	
10 Feedletion Adjustment	* No	timeline. Escalation costs wil be calcuated for the	
19. Escalation Adjustment	* Yes	recommended alternative based on construction	
	* No	timeline.	
20. Other Assumptions:	TEPS site are assumed to be contaminated base conducted in the Options Analysis phase. The co- spoils for the following alternatives: • Alternative 1: Excavation 150/151 Basin conver- site • Alternative 2: Excavation for the installation of the Basin conveyance pipes along 24th Ave NW and • Alternative 3: Excavation for the installation of the Basin conveyance pipes along 24th Ave NW and • Alternative 3: Due to location near the shoreline potentially contaminated groundwater and cost of taken from the Fremont 60% design. • The volume of contaminated soil for Alternative microtunneling; excavation of launch and retrieva • Microtunneling unit cost is based on 3rd Ave W assembly and disassembly of jacking station, and backfill of launch and retrieval pits • Disposal of soil material for launch and retrieval • Unit prices for 48" normal and overflow pipes we • The conveyance pipes for Basin 150/151 pipes structure will be installed to meet minimum pipe • Costs for hydraulic structures such as Diversion construction material, excavation, shoring and ha • Electrical equipment such as backup generator • The cost of utility conflict relocations was consis poles, gas lines, sewer lines, water mains and rad with a 12" Ductile Iron water main that may need conveyance pipes. • Since Alternative 3 alignment falls mainly along incorporated in the construction cost. This line itte • Due to the open cut nature of construction alon consider the restoration of the whole width of the • Surface restoration for basin 150/151 conveyar assumed to be included in the TEPS package ar • The cost of grit removal structure was sources estimate completed in August 2015. The estimate adjusted for 2017 dollars. • The cost of compliance to City of Seattle Storm • Risk register analysis was used to calculate the Alternative 3, while Alternative 2 used 20% of the	Alignment, NW 54th St alignment, 24th Ave NW and ed on the results of the geotechnical investigation obst estimate assumed presence of contaminated yance pipes along 24th Ave NW and in the TEPS the diversion structure and gate vault, and 150/151 d in the TEPS site e, includes monitoring wells for dewatering of treating contaminated water. These costs were e 3 also includes material removed during al pits; and maintenance holes. // microtunneling costs for a 94" pipe and includes d installation of electrical conduits, cost of pipes & e based on 54" PS pipes re based on 54" PS pipes re based on 54"? Detention pipes and combined 72" pipe connecting to TEPS cover requirements in Structures, and Gate Vaults include cost of auling of material can be installed at the site. dered for all alternatives. This included electric ilroad. The alignment of Alternative 3 is parallel to be relocated due to proximity to the tunnel gene was not included in the mobilization cost. g 28th Ave NW, Alternative 1 and Alternativ2 both e street. nee pipes and connecting pipe to TEPS are nd not in Ballard Conveyance. from the Ballard Conveyance Facility Plan cost te was adjusted for escalation and inflation and water Code is not included. e management reserve costs for Alternative 1 and	
	There are no variances to SPU's cost estimating deliverables normally required for the current pro		
22. Risks	The "Key Risks & Issues" section of the Stage Gate 2 is not available. Excavation, shoring, and dewatering are not well defined and comprise a large part of the project and, therefore, there is significant risk associated with those items in terms of both cost and schedule.		
23. Basis of Estimate	* How/Why Estimate Has Changed * Benchmarking	Mag Meter costs were taken out Last Upodate was 06-01-2018	
Reviews and Bechmarking	Ũ	Ballard Conveyance Alternatives Class IV Cost	
	* Attachments	Estimate_20180828.xlsx	

APPENDIX F:

BALLARD CONVEYANCE HYDRAULIC MODELING REPORT

Technical Memorandum

То:	Dylan Menes (SPU) Eleanor Jackson (SPU) Eset Alemu (SPU)	Project:	Ship Canal Water Quality Project, Ballard Conveyance Modeling
From:	Dr. Steve Merrill (BC) Andrew Henson (Aqualyze)	CC:	Jeremy Johnson (MJA) Pat Tangora (BC) Richard Fernandez (SPU)
Date:	March 20, 2018 Job No.: 5426.0		
Subject:	Ballard Conveyance Modeling for Ship Canal Water Quality Project		

1.0 Introduction and Purpose

Seattle Public Utilities (SPU) is designing facilities that will convey combined sewage from the SPU Ballard Basin 152 to the proposed Ship Canal Water Quality project (SCWQP) tunnel. These facilities will consist of a new diversion structure as well as a piped conveyance system connecting the diversion structure to the SCWQP storage tunnel. The new diversion structure will replace the existing National Pollutant Discharge Elimination System (NPDES) 152 CSO structure that is currently located near the intersection of 28th Avenue NW and NW Market Street. The new diversion structure will perform the following actions:

- Control flows to the combined sewer line along NW Market Street to reduce the risk of a sanitary sewer overflow (SSO) in that line.
- Direct high flows to the SCWQP tunnel through a new conveyance pipe.
- Direct excess flows to the NPDES 152 combined sewer overflow (CSO) outfall during large events when the tunnel full set point is reached.

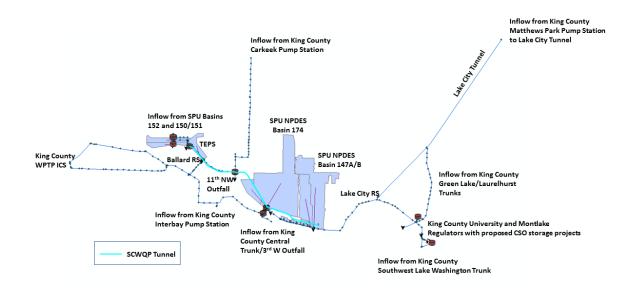
To support the analysis of options and inform final design, a task "Additional Ballard Basins Modeling" was added to Consultant Contract 14-213-S in Amendment 3. The goal of this task was to identify and examine solutions to potential Sanitary Sewer Overflows (SSO) projected in previous modeling studies (McMillen Jacobs Associates [MJA] 2016). This work included refinement of the existing Mike Urban model developed and calibrated for the Ballard basins by King County, and integration of that model with a model including the SCWQP tunnel (SPU 2018).

The hydraulic modeling effort supports options analysis and helps inform design parameters including the weir lengths at the diversion structure, diameter of conveyance pipe; measures to control flow leaving the diversion structure; and investigates other conditions that may contribute to SSOs. This technical memorandum presents the process, methodology, and results of using the model to support the Ballard 152 Conveyance Option Analysis.

2.0 Hydrologic/Hydraulic (H/H) Modeling

The following sections provide details regarding the modeling platform, and model development.

2.1 Modeling Platform


All modeling for this work was conducted using the 2016 version of DHI's MOdel for Urban SEwers (MOUSE) H/H engine running under the MIKE URBAN interface software platform (DHI 2016). This is consistent with all other H/H modeling analysis conducted for the SCWQP.

2.2 Model Development

An Integrated Model was created in MIKE URBAN (SPU 2018) that included the following:

- Hydraulics and hydrology for the Ballard CSO Basins 150/151 and 152 were created by King County modeling staff and calibrated against flow monitoring data. Inflows were used to represent upper basin flows from NPDES 152 and NPDES 150/151, which were generated in separate model runs using calibrated models with desired rainfall inputs.
- The proposed SCWQP tunnel hydraulics and all additional tributary areas (in the form of inflow timeseries). This version of the model relied on tunnel level only to dictate CSO diversion gate operation.
- King County North Interceptor (KCNI) hydraulics.
- SPU's Pump Station 84 (PS84) and associated hydraulic structures.
- Rainfall input representative of the perturbed climate for the year 2035, including rainfall scaling factors to represent model uncertainty for the 95th confidence interval.
- Inflow time series from the following basins applied upstream of the facilities included in the model:
 - ° SPU Ballard 150/151
 - ° SPU Ballard 152
 - ° King County Interbay Pump Station
 - ° King County Carkeek Pump Station
 - ° King County Central Trunk
 - ° King County Green Lake and Laurelhurst Trunks
 - ° King County Southwest Lake Washington Trunk
 - ° King County Matthews Park Pump Station
 - SPU basins along the King County North Interceptor and areas tributary to the King County 11th Ave NW overflow and Ballard Regulator Station

This model provided the appropriate flows and downstream conditions to properly evaluate the proposed Ballard conveyance concept under a variety of storm events. Figure 2-1 shows the overall model components.

Figure 2-1. SCWQP tunnel model components

The model was modified to represent Ballard Basin 152 alignment along NW 56th Street with the various components of the proposed Ballard conveyance configuration. The SPU Ballard Option Analysis is considering 3 options for conveyance of flow to the tunnel. For this H/H analysis, SPU chose to model an alignment along NW 56th Street which will also provide information to inform the remaining options. The NW 56th Street option includes a new diversion structure near the intersection of 28th Avenue NW and NW 56th Street that would replace the existing CSO diversion structure. The proposed structure has three flow paths:

- Normal low flow is directed along 28th Avenue NW to the mainline in NW Market Street in a new pipe paralleling the existing line.
- If the capacity of the normal flow path is exceeded, high flows are first directed to the east where a nearly 2,200-foot-long conduit conveys flows to the Tunnel Effluent Pump Station (TEPS).
 Flows in this direction must first crest a weir then travel through a gate, which is opened or closed depending on the water level in the SCWQP tunnel.
- If the flows are too excessive for the normal and TEPS flow paths, a CSO weir will allow flow to spill into the CSO outfall pipe and drain into the Ship Canal.

Figure 2-2 shows the location of the Ballard conveyance hydraulics and related structures leading to the TEPS and the Ballard Regulator Station (RS). Figure 2-3 shows the layout of the diversion structure adopted for modeling, and Figure 2-4 shows the model layout of the diversion structure.

Figure 2-2. Ballard conveyance site map

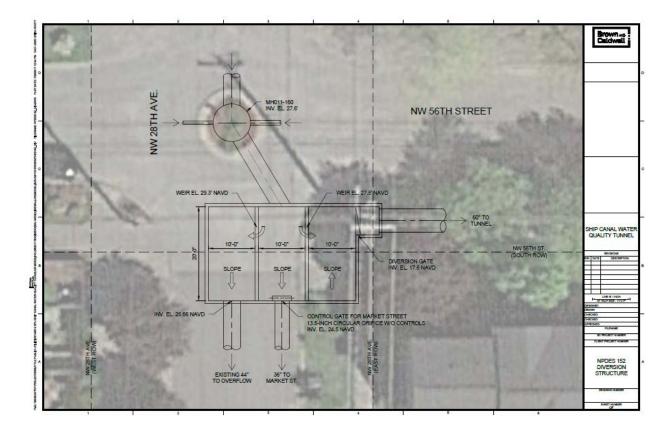
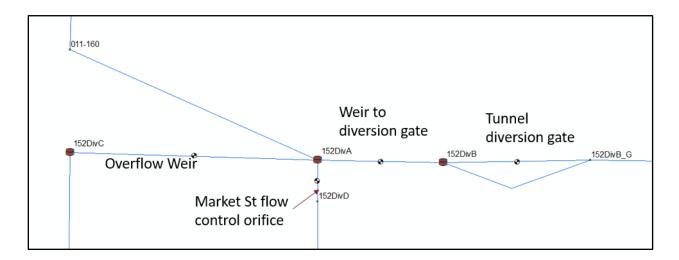
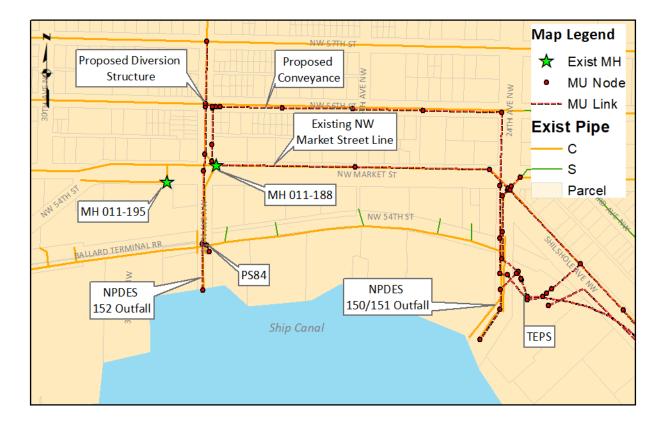



Figure 2-3. Diversion structure layout adopted for modeling

Figure 2-4. Model layout of diversion structure

The initial concept was modified to represent refinements to improve system performance. The configurations considered are discussed in Section 3.

3.0 Alternatives Considered

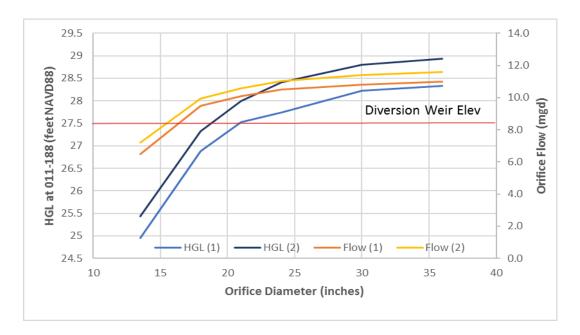

The original concept for the diversion settings and dimensions were developed as part of the SPU Long-Term-Control Plan (LTCP) alternatives modeling (SPU 2015a). These initial concepts were modified in development of the SCWQP Facility Plan (SPU 2015b) and were further modified in the initial SCWQP design contract modeling (MJA 2016). Alternative configurations for the Ballard conveyance considered in this work are presented in Table 3-1 and discussed below. The performance of each alternative was evaluated for hydraulic grade line (HGL) impacts at key locations, as well as CSO frequency.

Alternative Description	Remarks
Revise outlet control to NW Market Street	A revised concept for the diversion in the preliminary SCWQP design modeling included a modulated control gate to prevent excessive surcharge in the mainline sewer in NW Market Street at MH011-188 ^a . This would have required a level sensor in the MH as well as a proportional-integral-derivative controller for the gate. At the request of SPU, this concept was removed from consideration in favor of a fixed orifice to control the low flows to NW Market Street.
Replace the 60-inch- diameter diversion conveyance pipe with a 48- inch-diameter pipe	The original concept includes a nearly 2,200-foot-long, 60-inch-diameter pipe to divert flows from Outfall 152 to the TEPS. The alternative of downsizing this pipe to 48 inches diameter was analyzed.
Shorten overflow weir lengths in new diversion structure	The proposed diversion structure contains a weir for discharge to CSO outfall 152, and a weir for diversion of flow to the tunnel. The length of these weirs was analyzed.

^a MJA 2016

3.1 Fixed Orifice for Control of Flow to NW Market Street

The SCWQP *Draft Facilities Plan* did not include any mechanism at the Outfall 152 diversion to control the maximum water surface elevation that might be reached at the intersection of NW Market Street and 28th Avenue NW at maintenance hole (MH) 011-188. Subsequent design work moved the diversion structure north to NW 56th Street, placing the overflow weir near the rim elevation of MH011-188, which could force more flow into the NW Market Street sewer than the existing overflow structure can produce. The existing overflow structure also limits the maximum HGL than can occur in the NW Market Street sewer. Further, MH011-195 is upstream on NW Market Street with a rim that is 1-foot lower than MH011-188 per the SPU geographic information system (GIS). Figure 3-1 shows the location of MH011-188 and MH011-195.


Figure 3-1. Location map showing MH011-188 and MH011-195 in relation to analyzed facilities

With the higher overflow weir elevation and head loss terms in the King County model in the mainline sewer in NW Market Street, there is concern that flooding might arise at MH011-188 or MH011-195 during extreme storm events. The HGL at these MHs is a function of the flow rate from the diversion structure and the head loss in the mainline sewer. As a result, a preliminary model constructed for design analysis in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model 5 (SWMM5) platform included a modulating gate at the diversion structure for normal flow with opening controlled by the measured head at MH011-188 (MJA 2016). This would introduce significant complexity as well as capital and operations and maintenance cost for the facility. As a result, SPU requested examination of an alternative to use a fixed orifice in place of the modulating gate.

A series of model simulations were conducted with various sizes of fixed orifice plates on the normal flow line running from the diversion structure to NW Market Street at MH011-188. The results of these simulations are shown in Figure 3-2 and Figure 3-3.

Figure 3-2 presents the maximum HGL elevation at MH011-188 and the flow through the control orifice plotted as functions of the assumed orifice diameter for two cases: (1) when there is no overflow to the CSO 152 outfall from the diversion structure, and (2) when there is overflow to the CSO 152 outfall. The overflow weir in the model is set at an elevation about 1.8 feet higher than the weir diverting flow to the tunnel, thus increasing the orifice flow when overflows are occurring by increasing the HGL. The model includes a 13.5-inch-diameter orifice controlling flow to MH011-188. As Figure 3-2 shows, increasing

the orifice to the 36-inch-diameter size of pipe leading to MH011-188 increases flow from about 7 million gallons per day (mgd) to about 11 mgd, and increases the HGL elevation at MH011-188 by about 3.5 feet. Orifice diameters greater than 18 to 21 inches increase the HGL at MH011-188 to about the elevation of the weir in the diversion structure that is sending flow to the tunnel.

Figure 3-2. HGL elevation at MH011-188 and control orifice flow vs. orifice diameter; Case 1 no overflow to CSO 152 outfall, Case 2 overflow to CSO 152 outfall

Figure 3-3 presents the surcharge (i.e., distance the HGL is above the crown of the pipe) at MH011-188 and the freeboard (i.e., distance the HGL is below the rim) at MH011-195 as functions of orifice diameter. The rim elevation at MH011-188 is 31-feet NAVD and is one foot lower at MH011-195. As indicated, an orifice diameter of 13.5 inches provides a minimum freeboard of 4.5 to 5.0 feet below the rim at MH011-195, and a surcharge at MH011-188 less than 1.5 feet. The freeboard diminishes rapidly, and surcharge increases with increasing orifice diameter.

Simulations with the Integrated Model have been performed with an orifice diameter of 13.5 inches as a conservative approach to limit the HGL on NW Market Street. The modeled profile of the pipe between MH011-160 immediately upstream of the diversion structure and MH011-188 on NW Market Street, together with the maximum HGL reached in the model simulations, are shown in Figure 3-4. A larger orifice diameter is expected to decrease diversion flow volume to the tunnel, and overflow volumes to some small extent. Larger diameters are not expected to decrease the frequency of overflow, however.

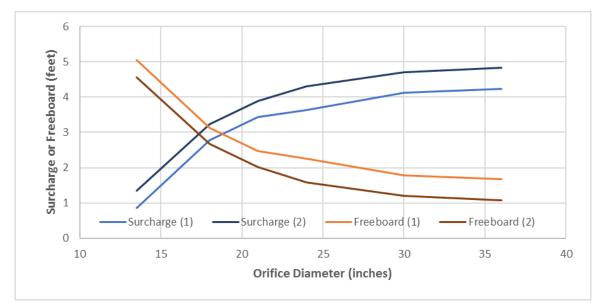


Figure 3-3. Surcharge at MH011-188 and freeboard at MH011-195 vs. control orifice diameter; Case 1 no overflow to CSO 152 outfall, Case 2 overflow to CSO 152 outfall

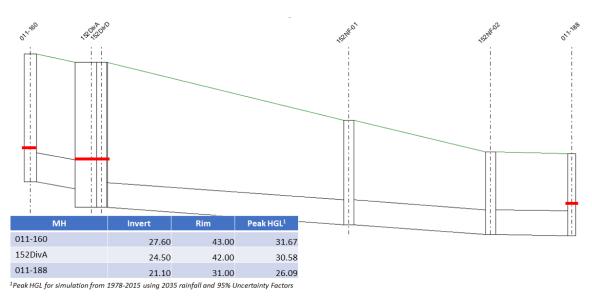


Figure 3-4. Pipe profile and maximum simulated HGL between MH-11-160 and MH011-188

The surcharge that occurs at MH011-188 is a function of losses (Manning's friction factor of 0.04) in the conduit (011-188_011-187) immediately downstream in the NW Market Street mainline sewer. These were introduced by King County in the MIKE URBAN model calibration to help match reported overflows at the existing overflow structure. Post-construction monitoring may find that this loss is excessive, which would permit installing a somewhat larger control orifice at the diversion structure. The diversion structure design should thus allow for changing the orifice plate to modify the diameter.

3.2 Alternative Sizing of Conveyance to the Tunnel

The *Final Facility Plan* included 2,200 feet of 60-inch-diameter conveyance pipe leading from the Outfall 152 diversion structure to the TEPS (SPU 2017). The cost of the conveyance pipe can be significantly reduced if the diameter is reduced. A 48-inch-diameter pipe can transport approximately 80 mgd of flow while the 60-inch-diameter pipe can transport approximately 125 mgd.

Integrated Model runs were conducted with alternative diameters of 60 and 48 inches. The 38-year simulation, using the SPU 2035 perturbed rainfall (CH2M 2017) and a 95 percent uncertainty scaling factor with a 48-inch-diameter conveyance, resulted in two additional overflows compared to that with the 60-inch-diameter conveyance (12 versus 10). Both occurred in the first 20 years of the simulation. Total overflow volumes were also slightly increased. The total of the overflow volumes simulated with the 48-inch-diameter conveyance were about 2 percent higher than the 38-year simulation compared to the 60-inch-diameter conveyance. One of the additional overflows occurred before the tunnel was filled due to the restriction of the 48-inch-diameter conveyance pipe. Table 3-2 compares the alternative simulation results. Overflows occur in events when peak inflow rates are less than the transfer capacity of the conveyance pipe because the tunnel has filled and the control gate has closed.

Event Date	Maximum Inflow to 152 Diversion (mgd)	48-inch Overflow (MG)	60-inch Overflow (MG)
11/3/1978	98.7	0.15	No Overflow
12/18/1979	39.9	3.08	2.89
10/6/1981	74.8	4.58	4.55
12/4/1982	40.3	< 0.01	No Overflow
1/18/1986	41.5	7.51	7.36
9/23/1992	140.2	0.37	< 0.01
12/29/1996	40.1	11.64	11.54
3/19/1997	33.4	0.78	0.65
10/20/2003	40.0	4.23	4.21
12/3/2007	60.4	19.16	19.13
12/12/2010	42.4	9.59	9.59
11/19/2012	51.8	9.29	9.28

Table 3 2. Overflow Results for 60- and 48-inch-diameter Ballard Conveyance Simulation

MG = million gallons, mgd = million gallons per day

Examination of the relative results indicates that downsizing the Ballard conveyance from 60 to 48 inches diameter has a minor impact on overflow frequency and volume for the 2035 condition.

The HGL differences along the proposed conveyance between the 60- and 48-inch-diameter conveyance lines were also analyzed using the Integrated Model for surcharge over the 38-year simulation. The 60-inch-diameter pipe surcharges once during the simulation, while the 48-inch-diameter pipe surcharges six times. Table 3-3 shows the surcharge events for the 48-inch-diameter conveyance options with the corresponding depths simulated in the 60-inch-diameter option. These results are sampled at model node 152DivB_G, which is sealed and just downstream of the diversion gate controlling flow to the SCWQP

tunnel (see Figure 2-4). The actual ground surface elevation at node 152DivB_G is approximately 42-feet and the MH has a depth of approximately 24-feet from invert to rim.

	Maximum Inflow to		60-inch-diameter
Event Date	152 Diversion (mgd)	48-inch-diameter Depth (feet)	Depth (feet)
9/23/1992	140.2	11.19	7.89
11/3/1978	98.7	10.72	3.64
9/5/2015	88.2	7.74	3.16
9/4/1995	87.5	6.62	3.08
8/17/1980	83.0	6.12	3.14
10/15/1996	74.7	4.67	2.91

Table 3-1.	Surcharge	Events
1 4 6 1 6 11	o al olla go	

Similarly, the recurrence interval of the peak annual flow that each conveyance option would convey was compiled. Figure 3-5 presents the expected recurrence frequency of peak flows in both conduit diameters.

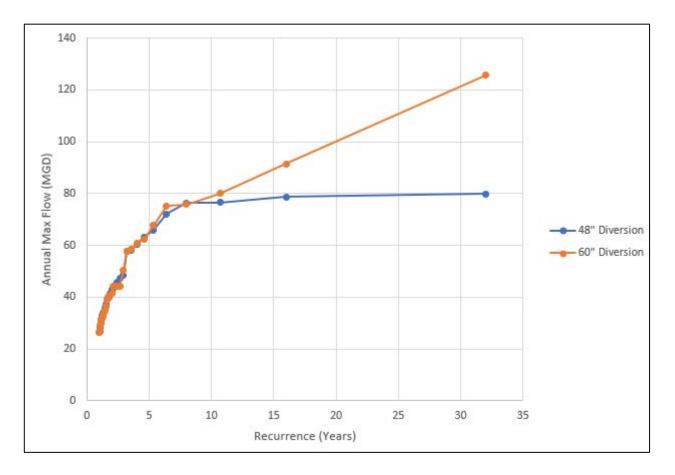
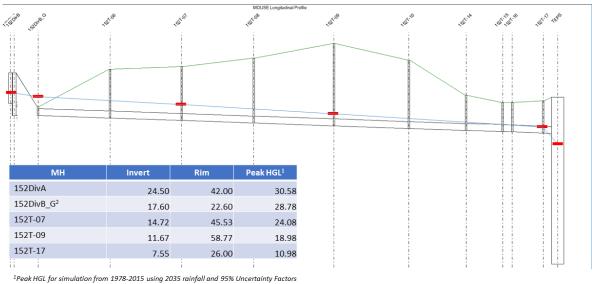
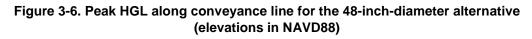




Figure 3-5. Peak annual flow recurrence intervals

Figure 3-6 shows the peak HGL along the conveyance alignment for the 38-year Integrated Model simulation for the 48-inch conveyance pipe. The peak for the conveyance pipe occurs during the September 23, 1992, storm event when the inflow to the diversion structure was about 140 mgd. The peak elevation at node 152DivA occurred during the October 6, 1981, event, which is 0.3 foot higher than the September 23, 1992, event. The tunnel was not full and the diversion gate was open during the September 23, 1992, event, whereas the gate was closed in the October 1981 event and an overflow to CSO outfall 152 was occurring.

-Peak HGL for simulation from 1978-2015 using 2035 rainfall and 95% Uncertainty Factors
²Sealed MH, allowed to surcharge in model. Actual MH Rim will be 42.00 to match 152DivA.

3.3 Weir Length in Diversion Structure

The current Integrated Model includes Ballard Conveyance system diversion structure weirs diverting flow to the tunnel and to the outfall that each have a total length of 20 feet. The weir crest elevations are set at 27.50 feet North American Vertical Datum of 1988 (NAVD88) for the weir diverting flow to the tunnel (i.e., crown of the pipe leading to MH011-188), and 29.33 feet NAVD88 for the overflow weir (i.e., crown of the overflow pipe).

A simulation was made assuming that the weir crest lengths were reduced to 10 feet long with the same crest elevations, a 13.5-inch-diameter control orifice as discussed above, and a 60.0-inch-diameter conveyance to the tunnel. The simulation revealed that the shortened weir length in combination with the weir crest elevations and control orifice diameter resulted in overflows in some events that did not occur with the 20-foot-long weir lengths.

There may be an opportunity to optimize weir crest lengths in combination with the crest elevations, the control orifice diameter, and the diameter of the conveyance conduit diverting flow to the tunnel. This optimization should be preceded by a decision regarding the diameter of the conveyance conduit, as

discussed above. The weir crest elevations should be adjustable over a range of ± 1 foot to accommodate adjustment based on future observations.

3.4 SPU Pump Station 84

Models used during development of the LTCP for this area were uncalibrated. Basin parameters from other Ballard areas were used because flow data from the local PS84 area were considered of low quality (SPU 2010). The LTCP model and subsequent models derived therefrom predicted a single overflow from PS84, and a potential overflow from the sewer system east of the pump station where rim elevations are lower, during the rain event that occurred on December 3, 2007. That event is unprecedented in the record. The prediction of an overflow in that event is subject to question because the hydrological parameters used in the LTCP model were not directly correlated with the actual basin. Additional study of this area is discussed below.

The recent King County model development and calibration for PS84 was reviewed as a part of this effort. The King County calibration for this portion of the Ballard 152 model used flow data collected during the long-term control plan monitoring effort at MH011-218 immediately upstream of the wet well. The calibration was relatively good, but for the final model, rainfall-derived infiltration parameters taken from another basin were substituted. The basin boundaries used in the King County model were reviewed and found to adequately represent the area for the purposes of assigning hydrologic parameters (see Figure 3-7).

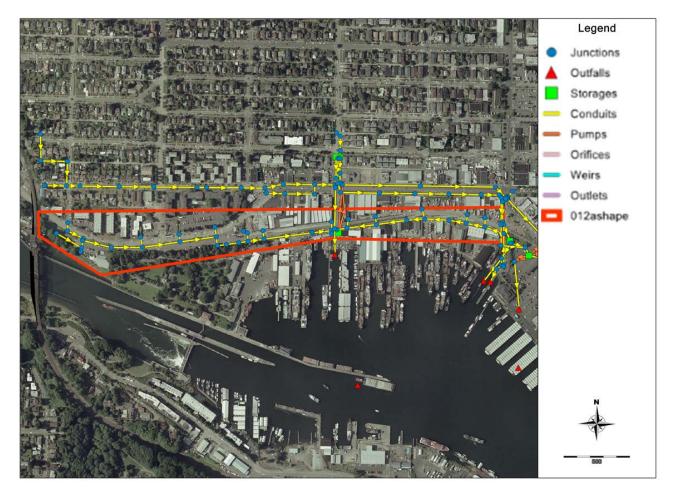


Figure 3-7. PS84 area

For confirmation of the model, supervisory control and data acquisition (SCADA) data were obtained from SPU's data historian for November 2012, March 2014, and January 2016 through February 2017. These data allow estimates of inflow to the pump station and pump output using the time and wet well depth in the same manner as adopted for estimating pump capacity in 2009 (ADS 2010). Review of these data as well as previous estimates yielded the following observations:

- 1. The drawdown tests conducted in December 2009 reported individual pump capacities of 0.76 and 0.79 mgd, and a combined capacity with both pumps running of 1.25 mgd.
- 2. The SPU *Facility Operations Plan* (FOP) for this station indicates an individual pump capacity of 0.47 mgd each (SPU unknown date).
- 3. PumpTech, Inc. reported individual pump capacities of 0.41 and 0.55 mgd (RH2 Engineering 2004).
- 4. Review of the SCADA data indicates that the station capacity is variable, but generally reports an average individual pump capacity of 0.65 mgd (range of 0.59 to 0.69) and a combined capacity of about 1.08 mgd.

- 5. There is indication that the pumps may become clogged at certain times, particularly in larger rain events. For example:
 - a. On May 17, 2016, in the absence of rain, SCADA indicated both pumps running for a period of about 10 hours at low wet well depths as shown in Figure 3-8. It is possible that this is a SCADA error, but the wet well depth never quite reached the pump shutdown level during this period. Similar behavior was exhibited in the days immediately preceding and following this period.
 - b. On November 19, 2012, (the largest recent storm), the wet well rose to more than 7 feet while both pumps were running, roughly double the depth at which both pumps will turn on. Various estimates of the potential inflow in this period suggest that it should not have exceeded the capacity of a single pump, and certainly not both pumps assuming the capacities given in item 4. Further discussion of this event is given below.

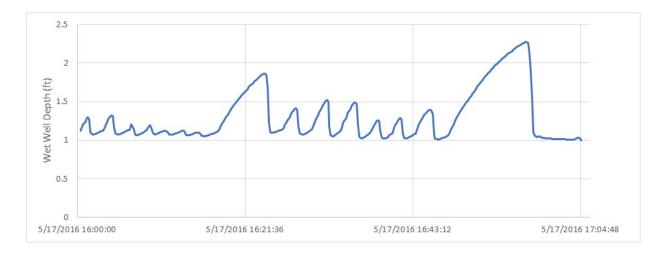


Figure 3-8. Plot of PS84 wet well depth during May 17, 2016, period with 2 pumps running

The November 19, 2012, event resulted in 2.39 inches of rainfall between 5:00 a.m. and 3:00 p.m. About 0.64 inch of rain was reported at SPU RG08 in the first 3 hours of the event. The wet well depth rose rapidly beginning about 8:08 a.m. rising to 7 feet at about 8:16 a.m., with two pumps running. The wet well level was subsequently reduced to the pump shutoff level by about 8:30 a.m. Leading up to the rise at about 8:00 a.m., the flow was handled by a single pump. Inflows were estimated from SCADA readings to be less than 0.6 mgd during this period. Review of the model behavior and the rainfall hyetograph (RG08) suggest that the peak inflow to the station should have occurred around Noon when two pumps were capably handling the flow.

In the subsequent 3 hours (8:00–11:00 AM), about 0.82 inch of rain fell with peak intensities similar to those during the first 3 hours. In the next 3 hours (11:00 a.m. to 2:00 p.m.) about 0.88 inch of rain fell with the highest peak 5-minute intensity for the event (0.6 inch per hour). Two pumps were sufficient to handle flows during these subsequent periods. A hydrologic model roughly calibrated to SCADA estimated flows in February 2017, and verified by comparison to the sum of flows from the long-term

control plan meters at MH012-218 and MH012-222, suggests peak inflows to the station of about 0.7 to 0.8 mgd between 11:00 a.m. and 1:00 p.m. that would require two pumps but not exceed the estimated combined capacity. It is concluded that the high wet well observed in this event was due to a temporary restriction in pump capacity.

These observations show that the pumps likely have less consistent capacity than indicated in the 2009 drawdown tests, but more than indicated in the FOP or PumpTech, Inc. findings. Further, the pumps may be subject to short-term fouling. Further review of the station may be warranted.

PS84 does not have a history of overflows. Using the pump capacities estimated from the SCADA data, neither the King County model nor the revised model show overflows at PS84 in the 38-year model simulations with existing or 2035 rainfall.

4.0 Conclusions

H/H modeling has been used to assess the performance of the proposed Ballard conveyance concept. Models were used to simulate hydraulic performance for large storm events and for a long period of record to determine if the facility will meet project goals. Through this work, several alternatives that may improve facility performance and lower project cost were shown to be viable.

System surcharge downstream of the proposed diversion structure in the normal flow path along NW Market Street was evaluated to ensure that no unintended SSOs occur with the design. A fixed orifice opening of 13.5 inches in diameter will restrict flows to the downstream system enough to avoid excessive surcharging in that line. We recommend that the orifice opening be adjustable so that it can be refined during commissioning due to some model uncertainty with hydraulic conditions near MH011-188.

The conveyance line that conveys flow from the diversion structure to the tunnel was specified as 60 inches diameter in the original concept. The project objectives can still be met if this line is reduced to 48 inches diameter. The 48-inch-diameter pipe surcharges six times during model simulations, but this line is sufficiently deep and there will be no side connections—so some surcharging is likely acceptable. The smaller-diameter pipe results in two more CSO events in the 1978-2015 simulation period, and the modeling still shows the CSO frequency to be well within CSO regulatory compliance.

Other refinements, such as shortening the weirs that control flow to the SCWQP tunnel and the CSO outfall, can be explored during design. This will likely result in a need to optimize the normal flow orifice in conjunction with shortening the weirs.

Table 4-1 summarizes the findings for the design elements of the CSO 152 diversion structure investigated.

Design Element	Based Upon Modeling Results	Comment
Orifice Plate to limit flow to existing combined sewer along NW Market Street to avoid future SSOs	13.5 inches diameter Range 12 to 24 inches	Make orifice plate adjustable and refine size during design
Diversion weir to tunnel - elevation and length	27.50 feet (NAVD88) Length 10 to 20 feet Elevation +/- one-foot	Refine elevation and weir length during design
Diversion weir to CSO 152 outfall and length	29.33 feet (NAVD88) Length 10 to 20 feet Elevation +/- one-foot	Refine elevation and weir length during design
Conveyance pipe diameter from diversion structure to TEPS	48-inch diameter	Refine weir elevations and weir lengths based upon 48-inch diameter pipe

Table 4-1 Summary of find	lings for CSO 152 Diversion Structure
---------------------------	---------------------------------------

Examination of SCADA data for PS84 suggested that the actual capacity of the pumps may be less than found during the 2009 drawdown test, but is larger than indicated in the SPU FOP or previous PumpTech, Inc. tests. It was also noted that the station is periodically subject to temporary instances of fouling, which reduces capacity. Overflows at PS84 are not expected, but better flow data and further review of the station may be warranted.

5.0 References

- ADS. 2010. "PS84 Drawdown Test Review," Excel file PS84 Drawdown Test Review 02092010.xlsx, Received from SPU, February.
- CH2M, 2017. Combined Sewer Overflow Sizing Approach Implementation: Perturbing Precipitation Time Series to Future Climatic Conditions. Technical Memorandum prepared for Seattle Public Utilities, November 21.
- DHI. 2016. "MIKE URBAN," accessed online at: https://www.mikepoweredbydhi.com/products/mike-urban

McMillen Jacobs Associates (MJA). 2016. Final SWMM5 SCWQP Design Model Report, June 13.

- MGS Engineering Consultants. 2003. Analysis of Precipitation-Frequency and Storm Characteristics for the City of Seattle, December.
- RH2 Engineering. 2004. PumpTech, Inc data collected as part of a study conducted by RH2 Engineering. Received from SPU September 2006.
- Seattle Public Utilities (SPU), unknown date. *PS84 Facility Operations Plan.* Word file WWPS84-N152-FOP.docx, Received from SPU April 2017.
- SPU, 2010. Combined Sewer Overflow Program, Long-Term Control Plan, Volume 1 Flow Monitoring Summary Report 2008–2010, December.
- SPU, 2015a. Protecting Seattle's Waterways Plan, Volume 2 Long-Term Control Plan; Appendix L, Final LTCP CSO Control Measures Performance Modeling Report, May 29.
- SPU, 2015b. CSO Program Management Services WSC CSO Reduction Project, Design Transition Document, Volume 1, Appendix B: Combined Sewer Overflow Storage Hydraulic Model, September 24.

- SPU. 2016. "Ballard Conveyance and Diversion," Portable Document Format file Ballard Conveyance and Diversion_7-29-2016.pdf, Received from SPU October.
- SPU. 2017. Ship Canal Water Quality Project Final Facility Plan. March.
- SPU. 2018. Ship Canal Water Quality Project Integrated Modeling Report. January.

APPENDIX G:

BALLARD CONVEYANCE PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT

Preliminary Geotechnical Report Ship Canal Water Quality Project Ballard Conveyance Seattle, Washington

July 19, 2017

SHANNON & WILSON, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

Excellence. Innovation. Service. Value. Since 1954.

Submitted To: Seattle Public Utilities Seattle Municipal Tower, Suite 4900 700 Fifth Avenue Seattle, Washington 98124-4018

> By: Shannon & Wilson, Inc. 400 North 34th Street, Suite 100 Seattle, Washington 98103

> > 21-1-22329-004

TABLE OF CONTENTS

Page

1.0	INTRODUCTION1		
2.0	PROJECT AND SITE DESCRIPTION		
3.0	PURPOSE AND SCOPE		
4.0	BASIS OF REPORT		
5.0	SUBSURFACE EXPLORATION PROGRAM2		
6.0	GEOTECHNICAL LABORATORY TESTING		
7.0	GEOLOGY AND SUBSURFACE CONDITIONS37.1Site Geology7.2Site Subsurface Conditions47.37.3Environmental Findings557.4Seismic Hazards		
8.0	ENGINEERING STUDIES AND RECOMMENDATIONS78.1Trenchless Methods.78.1.1Pipe Ramming.78.1.2Auger Boring98.1.3Pipe Jacking108.1.4Microtunneling.118.2Direction of Trenchless Excavation128.3Shaft Locations.128.4Groundwater Control.138.5Obstructions148.6Preliminary Preferred Alignment148.7Geotechnical Instrumentation158.8Other Risks16		
9.0	CLOSURE17		
10.0	0 REFERENCES		

TABLE OF CONTENTS (cont.)

FIGURES

- 1 Vicinity Map
- 2 Site and Exploration Plan
- 3 NW 56th Street Alignment Subsurface Profile
- 4 NW Market Street Alignment Subsurface Profile

APPENDICES

- A Project Subsurface Explorations
- B Existing Exploration Data
- C Geotechnical Laboratory Testing
- D Analytical Laboratory Testing
- E Important Information About Your Geotechnical/Environmental Report

PRELIMINARY GEOTECHNICAL REPORT SHIP CANAL WATER QUALITY PROJECT BALLARD CONVEYANCE SEATTLE, WASHINGTON

1.0 INTRODUCTION

The Ship Canal Water Quality Project has been broken out into a number of work packages, one of which is the Ballard Conveyance work. This report summarizes our geotechnical studies for the Ballard Conveyance project (Project) in the Ballard neighborhood of Seattle, Washington (Figure 1). The purpose of our geotechnical studies was to evaluate the subsurface conditions related to the geotechnical feasibility and geotechnical risk associated with constructing the conveyance pipeline using trenchless methods. This geotechnical report was prepared for the exclusive use of HDR Engineering, Inc. and Seattle Public Utilities (SPU) for planning-level purposes. Our conclusions are based on limited explorations and testing and a literature search and should not be used for final design of the Project. Additional explorations, testing, and analyses are required to develop final design recommendations for this Project.

2.0 PROJECT AND SITE DESCRIPTION

The purpose of the Project is to collect flows from Basin 152 and convey them to the Tunnel Effluent Pump Station (TEPS) to be located near the intersection of Shilshole Avenue NW and 24th Avenue NW. This report covers two alignments that are currently being considered for the proposed 60-inch-diameter conveyance pipeline. Both proposed alignments start near the intersection of NW 56th Street and 28th Avenue NW. The NW 56th Street alignment follows NW 56th Street east to 24th Avenue NW where it turns south and follows 24th Avenue NW to the TEPS site. The alternative NW Market Street alignment follows 28th Avenue NW. At 24th Avenue NW, it turns south and extends to the TEPS site. The approximate locations of these two alignments are shown in Figure 2.

The site is in an urban neighborhood that includes residential, commercial, and industrial land use. The proposed alignments are primarily located within public right-of-way and under paved roads. The site topography generally slopes from north to south, with the surface elevation varying from about 42 feet to 28 feet, respectively.

3.0 PURPOSE AND SCOPE

We understand this geotechnical report will be used for planning-level purposes only. This report should not be used for other purposes without Shannon & Wilson, Inc.'s (Shannon & Wilson's) review. Our geotechnical scope of services included:

- Collecting and reviewing existing geotechnical exploration logs.
- Developing a geotechnical exploration plan.
- Performing geotechnical explorations at four locations.
- Performing geotechnical laboratory testing on selected samples obtained from the explorations.
- Evaluating the feasibility of trenchless construction for two alignments.
- Preparing this preliminary geotechnical report.

If a service is not specifically indicated in this report, do not assume that it was performed.

4.0 BASIS OF REPORT

Our conclusions and considerations presented in this report are based on:

- The limitations of our approved scope, schedule, and budget described in the executed Amendment 01 to Task Order 0005 for the Project.
- Our understanding of the Project and information provided by SPU during the development of our scope of services included in the aforementioned amended task order and our February 3, 2017, kick-off meeting with SPU and HDR Engineering, Inc.
- Subsurface conditions we observed in the borings as they existed during drilling between April 3 and 6, 2017.
- The results of testing performed in the borings and on samples we collected from the borings.

5.0 SUBSURFACE EXPLORATION PROGRAM

Our subsurface exploration program consisted of collecting and reviewing existing geotechnical exploration logs along the proposed alignments, preparing a site exploration plan (Shannon & Wilson, 2017), and performing four geotechnical borings in accordance with the approved site exploration plan.

We performed a search of the Department of Natural Resources database (Washington State Division of Geology and Earth Resources [DGER], 2012) and our project files to identify and

collect existing geotechnical exploration logs along the proposed alignments. The approximate locations of the explorations are presented in Figure 2 and the exploration logs are included in Appendix B, Existing Exploration Data.

In addition to collecting existing geotechnical exploration logs, our scope of services included drilling and sampling four borings, designated BCT-1 through BCT-4. These borings were drilled and sampled to depths of 35 to 55 feet to characterize the subsurface conditions. The site and exploration plan (Figure 2) shows the approximate boring locations. Observation wells were installed in all four borings. Descriptions of the methodologies and procedures used for drilling and sampling the borings and constructing the observation wells are included in Appendix A, Project Subsurface Explorations. The boring logs are presented in Appendix A as Figures A-2 through A-5 and a soil description and log key is included as Figure A-1.

6.0 GEOTECHNICAL LABORATORY TESTING

Geotechnical laboratory tests were performed on selected samples retrieved from the borings. The geotechnical laboratory testing was performed in the Shannon & Wilson laboratory in Seattle, Washington, and included visual classification, water content determinations, grain size analyses, and hydrometer analyses. A description of the methodology and testing procedures is discussed in Appendix C, Geotechnical Laboratory Testing.

7.0 GEOLOGY AND SUBSURFACE CONDITIONS

The geology and subsurface conditions along the proposed alignments were evaluated based on:

- Conditions encountered in the subsurface explorations performed for this study,
- A review of borings previously completed at the site, and
- The Geologic Map of Northwest Seattle (Booth and others, 2005).

The geotechnical explorations were performed to evaluate the subsurface soil and groundwater conditions along the proposed alignments. Our observations are specific to the locations and depths noted on the boring logs and may not be applicable to all areas of the alignments. No number of explorations or testing can precisely predict the characteristics, quality, or distribution of subsurface and site conditions. Potential variations include, but are not limited to:

- The conditions between and below explorations and testing may be different;
- The passage of time or intervening causes (natural and manmade) may result in changes to site and subsurface conditions;
- Groundwater levels and flow directions may fluctuate due to seasonal variations;

- Groundwater flow between different aquifers can occur. No soil layer should be assumed to be continuous and/or watertight;
- Standard penetration test results in gravelly soils may be unrealistic. Actual soil density may be lower than estimated if the test was performed on a gravel or cobble; and
- Obstructions such as boulders, fill debris (rubble), and wood may be present in the subsurface.

The following sections present a description of the site geology and the subsurface conditions encountered in our borings.

7.1 Site Geology

The Project is in the central portion of the Puget Lowland, an elongated topographic and structural depression filled with a complex sequence of glacial and nonglacial sediments that overlie bedrock. The area has been glaciated six or more times in the past 2 million years. The distribution of the sediments is complex, because each glacial advance deposited new sediments and partially eroded previous sediments. Between glacial episodes, the complete or partial erosion or the reworking of deposits, as well as the local deposition of other sediments, took place. During the Vashon Stade of the Fraser Glaciation, about 15,000 to 13,000 years before present, the lobe of the Cordilleran Ice Sheet that covered the Puget Lowland was locally over 3,000 feet thick. When the glacial ice sheet receded from the area about 13,500 years ago, it left behind topography characterized by low-rolling relief about 500 feet above sea level with some deeply cut ravines and broad valleys. Since then, present-day geologic processes, such as erosion and deposition by streams and landsliding, as well as human activity, have modified the ground surface and further complicated the geology.

7.2 Site Subsurface Conditions

The subsurface conditions along the NW 56th Street and NW Market Street alignments are presented in Figures 3 and 4, respectively. The subsurface profiles are interpreted from materials observed in the explorations and existing geotechnical exploration logs. Variations between the interpretations shown and actual conditions will exist.

Along the NW 56th Street alignment between 28th Avenue NW and 26th Avenue NW, the subsurface conditions consist of fill over recessional deposits. The fill is about 12 feet thick consisting of loose, silty sand. The recessional deposits are not glacially overridden and consist primarily of medium dense to dense, silty sand. Groundwater was measured at 9 feet below ground surface (bgs) at BCT-1.

Between 26th Avenue NW and 24th Avenue NW, the subsurface conditions consist of shallow fill over glacial till and till-like deposits. The depth to glacial till is about 14 feet bgs at existing boring B-1 (Station [Sta.] 7+24) and becomes shallower to the east along the alignment, about 5 feet bgs in boring BCT-2 (Sta. 11+90). The till and till-like deposits are glacially overridden and consist of very dense, silty sand and silty sand with gravel. Cobbles and boulders may be present within the glacial till and till-like deposits. Groundwater was measured at 22 feet bgs at BCT-2.

From NW 56th Street to 24th Avenue NW along the NW Market Street alignment, the subsurface conditions consist of fill over recessional deposits and glacial till and till-like deposits. The thickness of the fill ranges between 10 and 20 feet and consists of very loose to medium dense, silty sand, and sand with silt and gravel. Along the NW Market Street portion of this alignment, the glacial till and till-like deposits were observed about 15 to 25 feet bgs and consist of very dense, silty sand. Groundwater was measured at 7 feet bgs at BCT-4.

Along 24th Avenue NW between NW 56th Street and NW 54th Street, the subsurface conditions consist of fill over recessional deposits and glacial till and till-like deposits. Near NW 54th Street, the recessional deposits become thicker. Till-like deposits are also observed near NW 54th Street; however, they do not display the typical density characteristics of glacially overconsolidated till and may be weathered, disturbed, or an ablation till deposit.

Groundwater is encountered at an elevation of about 35 feet along NW 56th Street and about 25 feet along NW Market Street. The elevation will vary by season and rainfall quantities.

7.3 Environmental Findings

Field screening of soil samples were performed for worker protection and to assist with the proper disposal of investigation-derived waste. Soil samples were field screened by the field representative for contamination using a combination of: (a) visual observations, (b) photoionization detector measurements, (c) olfactory observations, and/or (d) sheen tests.

One soil sample was collected for environmental testing from boring BCT-4 based on the field screening. The results of the environmental testing show the soil to be lead-contaminated between 5 and 15 feet bgs. The test results are presented in Appendix D.

7.4 Seismic Hazards

The Project is located in a region where numerous small to moderate earthquakes and occasional strong shocks have occurred in recorded history. Much of this seismicity is the result of ongoing

relative movement and collision between the tectonic plates that underlie North America and the Pacific Ocean. These tectonic plates include the Juan de Fuca Plate and the North American Plate, and the intersection of these two plates is called the Cascadia Subduction Zone (CSZ). As these two plates collide, the Juan de Fuca Plate is being driven northeast (subducted), beneath the North American Plate.

Within the present understanding of the regional tectonic framework and historical seismicity, three broad earthquake source zones are identified. These include a shallow crustal source zone, a deep source zone within the portion of the Juan de Fuca Plate subducted beneath the North American Plate (deep subcrustal zone), and an interplate zone where the Juan de Fuca and North American Plates are in contact in the CSZ. The anticipated earthquakes related to these sources are summarized below:

- Shallow Crustal Zone: Geophysical lineaments in Western Washington are believed to be capable of producing earthquakes with magnitudes up to 7.5. The closest of these geophysical lineaments to the site is the Seattle Fault (or Seattle Fault Zone). Geologic studies suggest that this is an active fault with an estimated magnitude 7.0 event occurring approximately 1,100 years ago. Historical shallow crustal seismicity has also been observed between a depth of 1 and 10 miles. Based on the U.S. Geological Survey (USGS) Interactive Fault Map (USGS, 2017), the Project alignment is located about 5 miles north of the nearest mapped fault splay of the Seattle Fault.
- Deep Subcrustal Zone: The largest historical earthquakes (magnitudes up to 7.1) to affect the site were in the subducted Juan de Fuca Plate (deep subcrustal zone) at depths of 32 miles or greater. The depth of this zone is estimated at about 34 miles below the Project alignment.
- Interplate Zone (CSZ): The CSZ has produced, and remains capable of producing, strong earthquakes. Work to date suggests that earthquake magnitudes may range from 8.0 to 9.0 and may occur at time intervals ranging from about 400 to 1,000 years. The Project alignment is located about 60 miles east of this zone. Based on work by Goldfinger and others (2012), the last earthquake produced by the CSZ was about 315 years ago.

Based on our review, the site is located north of the generally accepted limits of the Seattle Fault Zone. Consistent with accepted local engineering practice, we did not consider conjectural lineaments.

We note that risk of fault rupture, liquefaction, and lateral spreading is all low along the two currently identified trenchless alignments. We also note that the hazards are the same for either open-cut or trenchless construction.

8.0 ENGINEERING STUDIES AND RECOMMENDATIONS

Based on the subsurface conditions encountered in field explorations and our current understanding of the proposed Project, we performed engineering studies to develop conclusions and recommendations regarding our opinion of soil engineering parameters and recommendations related to the proposed pipeline. Our conclusions and recommendations are presented in the following sections.

For purposes of our analyses, recommendations, and conclusions, it was necessary for us to assume that the results of the explorations, testing, and monitoring are representative of conditions throughout the Project site. However, as stated in Section 7.2, subsurface conditions should be expected to vary. We may need to revise our recommendations during future design phases if different conditions are encountered.

8.1 Trenchless Methods

All the trenchless methods discussed in this preliminary geotechnical report are suitable for the likely depths required to provide gravity conveyance from the Ballard 152 Conveyance Structure to the TEPS site. The methods have different degrees of inherent risks, but are generally suitable for the construction of 60-inch-diameter, gravity conveyance pipeline.

All the trenchless methods discussed require the construction of shafts. The entry shaft for each method is typically 20 feet wide by 40 feet long. The receiving or exit shaft for each method is typically about 15 feet wide by 15 feet long. The location of the shafts will depend on the trenchless method selected since the length that can be excavated between shafts varies by method. Section 8.3 discusses the potential shaft locations and spacing in more detail.

8.1.1 Pipe Ramming

Pipe ramming utilizes a double-acting pneumatic hammer to drive an open-ended steel casing between two shafts. Pipe ramming is typically limited to lengths of about 300 feet. For line- and grade-sensitive utilities, lengths of 100 to 200 feet are more common. Some or all of the soil can be left in the pipe during driving to limit ground loss and control groundwater. When possible, the soil is removed from the pipe after the drive is completed, but more commonly, at least some soil is removed during drilling to reduce the weight of the pipe and decrease drag. Pipe ramming is a non-steerable method, which is a source of risk on a gravity pipeline project. Although some preliminary methods have been established to analyze pipe ramming feasibility, the prediction of constructability is more commonly based on previous experience in similar ground than on engineering analyses or design.

A stiffening ring is typically welded to the leading edge of the casing to help prevent deformation of the pipe and provide some overcut to reduce the friction on the outside of the pipe. Bullet teeth bits can also be welded to the leading edge to assist with pipe ramming in denser soil and where cobbles and boulders are present.

Bentonite slurry can also be injected through regularly spaced ports around the circumference of the pipe to fill the overcut annular space. The injected bentonite slurry around the pipe helps reduce settlement and friction between the soil and the pipe.

As discussed, pipe ramming lengths are typically limited to about 300 feet. Longer alignments can be facilitated by telescoping the casing. This process involves ramming a larger diameter casing, clearing out the soil, and then ramming a smaller diameter casing within the larger casing.

Pipe ramming below the groundwater table requires special considerations, including mechanical seals in both shafts and a stable soil plug within the pipe to reduce potential groundwater inflow into the pipe and entry shaft. Removal of soil from within the casing or telescoping the casing is more difficult when ramming below the groundwater table. Removing the soil can result in loss of ground support in the pipe and water and soil flowing into the pipe and entry shaft. Also, because pipe ramming is a non-steerable method, deviations in the alignment and profile can make it difficult to anticipate where the pipe will breach the receiving shaft. This complicates the construction of the receiving shaft and could require modifications to the receiving shaft geometry or the groundwater control methods prior to the pipe entering the receiving shaft.

Vibrations generated at the cutting shoe during ramming can damage adjacent structures and utilities. Additional analysis of potential vibration impacts would be required during final design.

For gravity pipelines, oversizing the casing to facilitate adjustment to the carrier pipe grade using shims or spacers can be used to mitigate some of the steerability risk.

Pipe ramming can accommodate some obstructions. Large wood debris and buried logs can be difficult to pipe ram through. The wood tends to absorb energy and reduce the ability of the pipe to cut through the ground. However, pipe ramming is commonly selected for use on projects with gravels, cobbles, and boulders, since these potential obstructions can commonly be ingested by the open-ended pipe.

For purposes of this Project, pipe ramming is only considered to be marginally applicable in the ground conditions anticipated along the alignments. In our opinion, given the lack of steerability and construction vibrations, pipe ramming does not provide a significant advantage over the other methods described in this report.

8.1.2 Auger Boring

Auger boring uses an auger slightly smaller than the shoe or shield diameter to perform the excavation. Auger boring is typically limited to lengths of about 300 to 400 feet. As the pipe is jacked into the ground, the auger excavates the soil and transports it back to the driving shaft for removal. An oversized cutting shoe or shield is normally attached to the leading edge of the pipe string to stiffen the end of the pipe and to provide some steerability. The auger can be positioned in advance of the cutting shoe, flush with the cutting shoe, or within the casing to facilitate construction and manage overexcavation. To avoid overexcavation, such as can occur with the auger in advance of the cutting shoe, the auger can be withdrawn approximately one diameter inside the casing so that a soil plug forms at the entrance of the casing pipe. The soil plug helps maintain a stable heading and reduces the likelihood of ground loss. Flowing or running ground, if encountered, could result in excessive ground loss and could cause settlement or sink holes to develop at the ground surface.

The cutting shoe or leading edge of the shield is typically larger in diameter than the pipe, creating an annular space between the pipe and the surrounding ground. This annular space in combination with the injection of bentonite slurry reduces the friction and jacking forces along the pipe. The injection of the bentonite slurry into the annular space reduces the potential for ground loss and associated settlement and allows some steering and adjustments to the pipe alignment.

Auger boring is generally not suitable in granular soils below the water table unless the alignment is dewatered or the ground is modified by grouting or freezing. Flowing or running ground, if encountered, could result in excessive ground loss and settlement or sink holes at the ground surface.

Auger boring can accommodate some obstructions. Based on a 60-inch-diameter pipe, the auger bore can handle gravels, cobbles, and boulders up to one-third of the pipe diameter (20-inch-diameter boulder). For boulders larger than one-third of the pipe diameter, and where groundwater is not present or it is controlled, the auger can be removed and the boulder mechanically broken and removed from within the pipe.

For purposes of this Project, auger boring is considered to be marginally applicable in ground conditions anticipated along the alignments. In our opinion, given the limited bore lengths of 300 to 400 feet and the need for more shafts and dewatering, auger boring does not provide a significant advantage over microtunneling, as discussed below.

8.1.3 Pipe Jacking

Pipe jacking consists of installing a continuous string of pipes by hydraulic jacking from a driving shaft located at one side of the crossing to a receiving shaft located at the opposite end. Pipe jacking is typically limited to lengths of about 600 to 700 feet. For trenchless construction in the Pacific Northwest, a rotating cutter face is commonly located at the leading edge of the shield. Openings on the cutter face (wheel) can be partially closed to allow for some control of running or flowing ground. The shield may be articulated to provide limited steering corrections in the vertical and horizontal direction. In unsaturated or dewatered soils, sand decks or doors can be used to limit the amount of material excavated as the pipe is jacked into place. Soils are typically excavated by hand or excavator and removed from within the pipe by auger, conveyor, muck bucket, or similar manner.

The cutting shoe or leading edge of the tunneling shield is typically only about 1½ to 2 inches larger in diameter than the jacking pipe itself. During pipe jacking, bentonite slurry can be pumped through regularly spaced ports around the circumference of the pipe to fill this annular space, which reduces the friction and jacking forces along the pipe. The injection of the bentonite slurry into the overcut annulus also reduces the potential for ground loss and associated settlement and allows some steering and adjustments to the pipe alignment.

Pipe jacking is generally not suited for alignments in granular soils below the groundwater table unless the alignment is dewatered or the ground is modified by grouting and freezing. Flowing or running ground, if encountered, could result in excessive ground loss, settlement at the ground surface, and could endanger personnel working within the shield, casing, or jacking shaft.

For purposes of this Project, pipe jacking is considered to be marginally applicable in the ground conditions anticipated along the alignments. In our opinion, given the limited bore lengths and the need for more shafts and dewatering, pipe jacking does not provide a significant advantage over microtunneling, as discussed below.

8.1.4 Microtunneling

Microtunneling consists of installing a continuous string of pipes by hydraulic jacking from a driving shaft located at one side of the crossing to a receiving shaft located at the opposite end. Microtunneling is typically limited to lengths of about 1,250 to 1,500 feet in length. A tunneling shield attached to the leading edge of the pipe string is used to cut through the ground, support the face of the excavation, and control the amount of material excavated as the pipe is jacked into place. The shield is articulated to provide limited steering corrections in the vertical and horizontal direction. Typically, microtunneling utilizes a closed-face slurry shield, which is designed to maintain pressure on the excavated soil face and prevent soil and water from flowing into the shield, pipe string, and driving shaft.

The leading edge of the tunneling shield is typically only about 1½ to 2 inches larger in diameter than the jacking pipe itself. This small annulus reduces the potential for ground loss and associated surface settlement while allowing some steering and alignment control. During microtunneling, bentonite slurry is commonly pumped through regularly spaced ports around the circumference of the pipe to fill this annular space, which reduces settlement and the friction between the soil and the pipe.

A closed-face microtunneling machine does not require personnel working within the machine and is usually used for tunneling below the groundwater level to mitigate the risk of the groundwater and flowing ground. The flowing ground would create a hazard for personnel working within an open-face and could lead to significant loss of ground, sinkholes, and flooding of the shafts. Microtunneling below the groundwater table requires special considerations, including mechanical seals in the shafts and grouting or other ground improvement outside the entrance and exit location of the shafts to reduce groundwater and soil inflow into the shaft.

The microtunneling machine circulates slurry through the mixing chamber located behind the rotating cutter head. The slurry mixed with the soil cuttings is pumped to the ground surface where it is then processed in a slurry separation plant to remove the soil cuttings from the slurry. A slurry balanced tunneling machine can control groundwater and prevent flowing ground from entering the tunnel excavation.

For purposes of this Project, microtunneling is considered to be the most applicable method for the ground conditions anticipated along the alignments. Microtunnel reduces the number of required shafts and the groundwater control requirements. While it does not mitigate the risk of encountering an obstruction to the degree of the other methods discussed in this

report, microtunneling has been successfully used in similar soils such as the recently completed King County Fremont Siphon project.

8.2 Direction of Trenchless Excavation

We anticipate that the direction of the trenchless pipeline excavation for either alignment would generally be from south to north and east to west. The reason for this is two-fold; first, based on the anticipated soils and second based on the proposed grade of pipeline.

Where contacts between relatively loose and very dense materials are encountered, it is advantageous for trenchless systems to excavate in a direction that approaches the looser soils. Trenchless systems tend to follow the path of least resistance. So, if the direction of excavation were reversed, it would increase the risk of alignment and grade deviation, since the advancing pipe could deflect upward along the very dense till and follow the contact between the loose and very dense deposits. Therefore, based on the expected subsurface conditions, we anticipate that both the NW Market Street and NW 56th Street alignments would be excavated from east to west between 24th Avenue NW and 28th Avenue NW.

For the north-south portions of both the NW Market Street and NW 56th Street alignments, the anticipated soils are relatively consistent, so the decision on which direction to excavate is not expected to be made based on subsurface conditions. Instead, the general preference to excavate upgrade to allow any groundwater, process water or slurry in the pipe to drain by gravity will likely result in the excavation being performed from south to north.

8.3 Shaft Locations

The discussion in this section assumes that microtunneling is the preferred method to construct the conveyance pipelines. Methods other than microtunneling would require additional shafts to those discussed below. Pipe jacking would require shafts about every 600 to 700 feet, while auger boring would require shafts about every 300 to 400 feet. Pipe ramming drive lengths are generally limited to about 300 feet in length or less. Note that the 300-foot spacing for pipe ramming would carry some additional risk regarding line and grade control.

The trenchless methods discussed in this report require shafts at the beginning and ends of the drive and at any bends in the alignment. For the NW 56th Street alignment, the microtunneling alternative would require a minimum of three shafts. These shafts would be located at the start and end of the alignment and at the bend in the alignment at the NW 56th Street/24th Avenue NW intersection. In our opinion, a combination of two driving shafts and a single receiving would likely be used. One driving shaft would be located at the southern end of the alignment, a

combination driving/receiving shaft would be located at the bend in the alignment and a receiving shaft would be located at the western end of the alignment. Alternatively, consideration could be given to a single larger driving shaft located at the bend in the alignment with receiving shafts at the western and southern ends of the Project. This arrangement would have a longer duration of surface impact at a single location and a larger driving shaft footprint.

For the NW Market Street alignment, the microtunneling alternative would require a minimum of four shafts. One shaft at each end and shafts at the turn points in the alignment at the intersections of 28th Avenue NW/NW Market Street and 24th Avenue NW/NW Market Street. The driving operation would need to be performed from three shafts, most likely the southern shaft near the TEPS site and at the two intersections discussed above. Consideration could be given for larger driving shafts at the bends in the alignment at 28th Avenue NW/NW Market Street and 24th Avenue NW/NW Market Street with receiving shafts at the northern and southern ends of the Project. This would reduce the number of driving shafts from three to two. However, this arrangement would have a longer duration of surface impact at a two locations and larger driving shaft footprints.

8.4 Groundwater Control

Groundwater levels are between 10 and 25 feet above the invert of the pipe. Dewatering along the alignment would be required for pipe jacking and auger boring methods to reduce risks associate with excavating below the groundwater table. Without dewatering, there is a risk that saturated sand layers could result in localized flowing ground conditions, ground loss, and resulting surface settlement. Pipe ramming might require dewatering if excavation of the soil plug is required or a sufficient soil plug is not formed. Microtunneling is best suited for excavating below the groundwater table as it can provide face stabilization by applying a pressurized slurry at the face, as discussed in Section 8.1.4. This ability would reduce the risk of ground loss associated with the other methods.

Dewatering or some sort of watertight shoring will likely be required at the shaft locations. Where dewatering and associated drawdown occurs solely within glacially overconsolidated soil, the potential for groundwater-drawdown induced settlement is low. Where overlying recessional and fill soils are actively dewatered or where a hydraulic connection exists between the soil being dewatering and these looser and soft soils, there is an increased risk for inducing settlement. While additional testing and analysis will be required during final design, for planning purposes, we recommend assuming that wells are required to control the groundwater. If the additional testing and analysis indicates an unacceptable risk for settlement, then watertight shoring for the pits, tremied base seals, and microtunneling could be selected to reduce the risk.

8.5 Obstructions

There is a moderate risk of encountering obstructions or ground conditions that could impact the trenchless feasibility. These areas of moderate risk include:

- The presence of glacial till at shallow depths at multiple points along both alignments increases the likelihood of encountering cobbles and boulders that could obstruct the advancement or impede the steerability of some trenchless methods.
- Buried erosional contacts (e.g., where the recessional outwash overlies the glacial till) are also areas where there is an increased likelihood of encountering cobbles and boulders.
- Wood debris is commonly encountered in non-engineered fill deposits. Like cobbles and boulders, depending on the size, concentration, and location, the presence of wood debris can be an obstruction for some trenchless methods.

Abundant cobbles and scattered boulders should be anticipated in all of the soils along the alignments. Boulders encountered in glacial soils generally range from 1 to 10 feet in diameter, with the most common size being between about 1 and 3 feet. Concentrations of cobbles and boulders are often found near contacts between geologic units.

While it is difficult to determine if a boulder is encountered during microtunneling, boulders can be measured and counted if pipe jacking, pipe ramming, or auger boring is used. During final design, an estimated boulder quantity should be developed to assist with characterizing the risks and associated design and contractual mitigation.

Pipe jacking provides the easiest access to the excavation face for removal of obstructions. For pipe ramming and auger boring methods, the removal of obstructions will require the removal of the soil plug or removal of the auger, respectively. Microtunneling machines typically do not provide any access to the excavation face for removal of obstructions. If a boulder is encountered that is large enough to impede the progress of the microtunneling machine, a rescue shaft will be required.

8.6 Preliminary Preferred Alignment

Based on the completed explorations and available geotechnical data reviewed, for the two alignments included in the scope of this geotechnical study, the NW 56th Street alignment, in our opinion, has less geotechnical and environmental risk. The NW Market Street alignment requires one more pit than the NW 56th Street alignment. This increases the project risk for claims associated with groundwater control and associated dewatering impacts. In addition, the contamination encountered in BCT-4, combined with the more permeable soils encountered in

BCT-4 compared to the other borings, also suggests additional project risk and cost with the NW Market Street alignment.

8.7 Geotechnical Instrumentation

Prior to the start of construction, we recommend that a preconstruction survey be conducted to document the existing condition of nearby structures and utilities. In addition, geotechnical instrumentation should be installed to monitor the response of the ground and adjacent structures, utilities, and pavement to the construction activities.

In general, preconstruction surveys should be conducted on existing surface structures located within a horizontal distance equal to 1.5 times the open-cut and trenchless excavation depth. In addition, preconstruction surveys should also be conducted on existing gravity pipelines located within a horizontal distance equal to the open-cut and trenchless excavation depth. For structures, the preconstruction survey should include diagrams, sketches, and photographs. These records should include, but not be limited to, the number, locations, and length and width of existing cracks, etc. The surveys should be conducted by a Professional Engineer registered in the state of Washington and should be completed with the owner, Contractor, and resident engineer present. A formal report should then be developed and signed by each member of the group. For accessible gravity pipelines, they should be made to compare the original documented condition to the current condition.

Geotechnical instrumentation should be installed to monitor the response of the ground and adjacent structures, utilities, and pavement to the construction of the pipeline, manholes, and appurtenant structures. Data collected from the monitoring program would be used to assess:

- The validity of any claims.
- Effectiveness of remedial measures.
- Performance of the shoring.
- Performance of the dewatering system.

The construction of the Project will require relatively deep shored excavations, dewatering, and trenchless construction. Each of these construction activities could result in deformations or ground losses that may lead to vertical settlements adjacent to excavations, which may affect adjacent structures, utilities, and pavements. Each of these and other related elements should be monitored prior to construction and during construction, as required. For preliminary design, we recommend assuming the following geotechnical instrumentation systems:

- Surface settlement points for monitoring curbs, sidewalks, and roadways that will remain after construction that are within a distance equal to 1.5 times the excavation depth or within an area that could be influenced by construction vibrations.
- Utility settlement points should be established on settlement-sensitive utilities such as sewers and water mains that cross above and/or parallel to the pipe excavations and are within a distance equal to 1.5 times the excavation depth or within an area that could be influenced by construction vibrations.
- Structure settlement points should be established on all residences where preconstruction surveys were conducted, structures within 100 feet of pipe ramming operations, and structures within a distance equal to 1.5 times the excavation depth.
- Vibration monitors for measuring vibration levels at adjacent structures and utilities within 100 feet of where pipe ramming is conducted.
- Groundwater monitoring wells located at property boundaries adjacent to dewatering activities.

The design and related specifications and drawings for the geotechnical instrumentation should be developed as part of final design.

Assuming microtunneling is the selected trenchless alternative, in our opinion and for planning-level costing purposes only, we recommend assuming that the cost of monitoring ground movements, vibrations, and groundwater for either alignment will be \$70,000.

8.8 Other Risks

Methane has been identified by exploration programs and encountered during tunneling on several projects in the Seattle area, including the Lake City Trunk Sewer, Mercer Street Tunnel, Alki CSO Tunnel, and West Point Sewer Tunnel. Hydrogen sulfide associated with bacterial anaerobic decay can also be encountered in glacial soil. However, testing in this area performed as part of the Ship Canal Water Quality Project suggests methane and hydrogen sulfide are unlikely to be encountered in concentrations that would require changes to typical construction means and methods. Therefore, for planning purposes, it is our opinion that the risk of encountering methane or hydrogen sulfide at levels that would require special consideration during excavation is low.

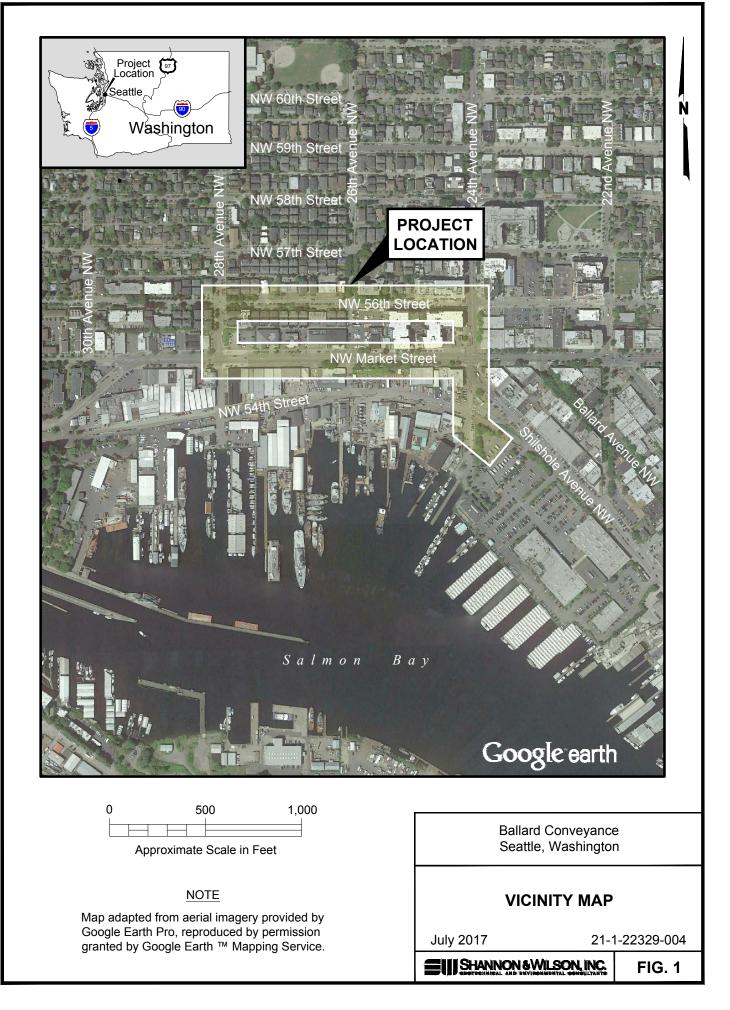
The current NW Market Street alignment is within the zone of lead contamination encountered in BCT-4. There is a moderate to high risk that this highly contaminated soil will also be encountered in excavations through this area. The presence of lead contamination does not necessarily preclude the selection of a trenchless method, but rather any contaminated soils

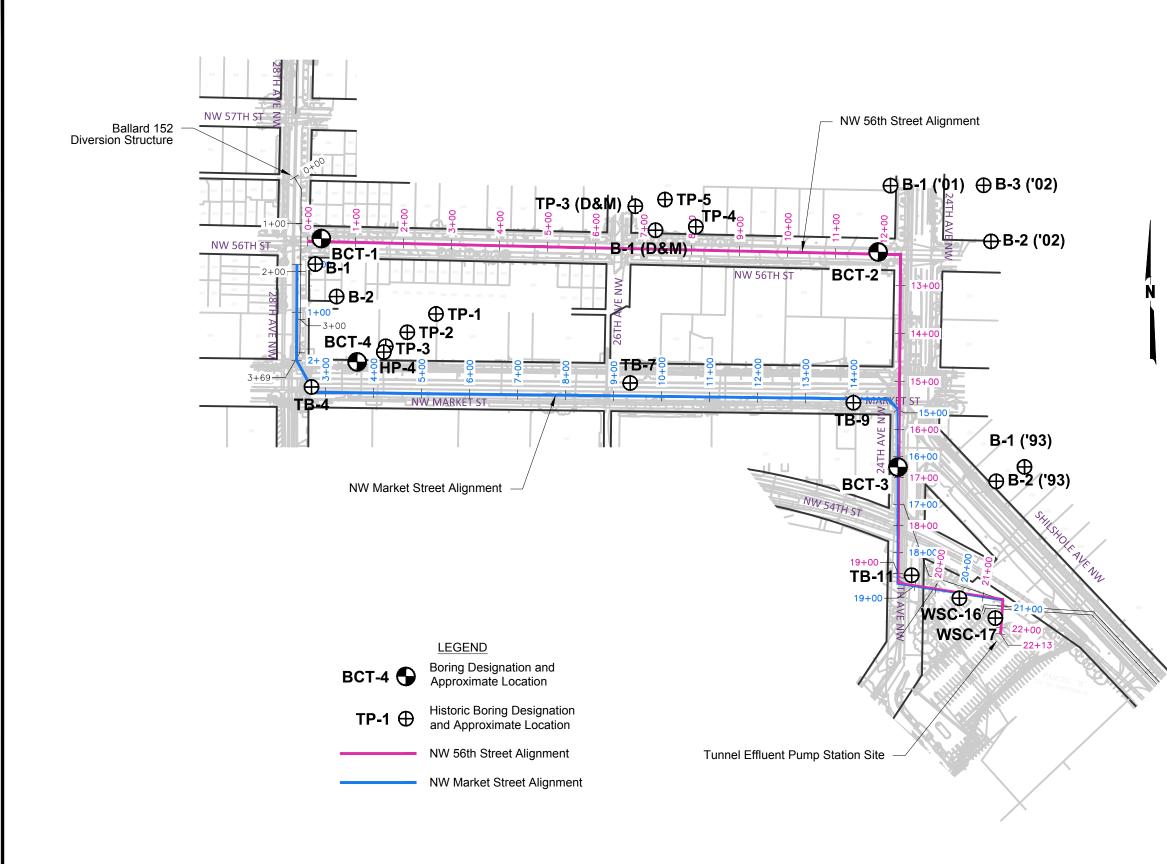
encountered would require special handling and disposal, which would increase the project costs and could risk the safety of workers in the excavation.

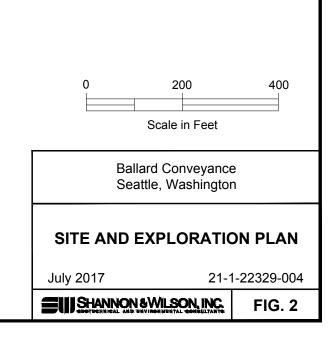
9.0 CLOSURE

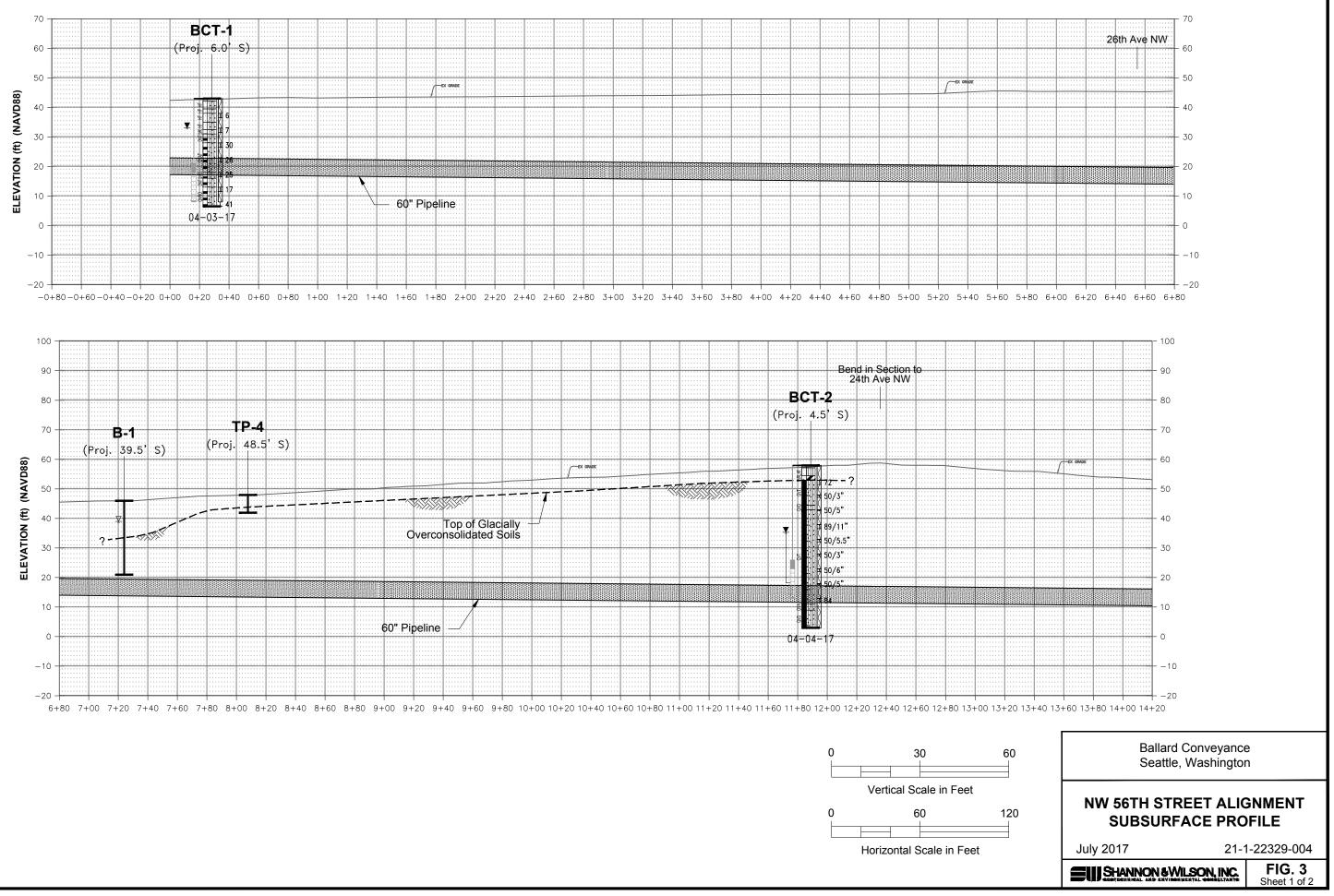
We have prepared the document "Important Information About Your Geotechnical Report/Environmental Report" (Appendix E) to assist you and others in understanding the use and limitations of this report. Please read this document to learn how you can lower your risks for this Project.

SHANNON & WILSON, INC.

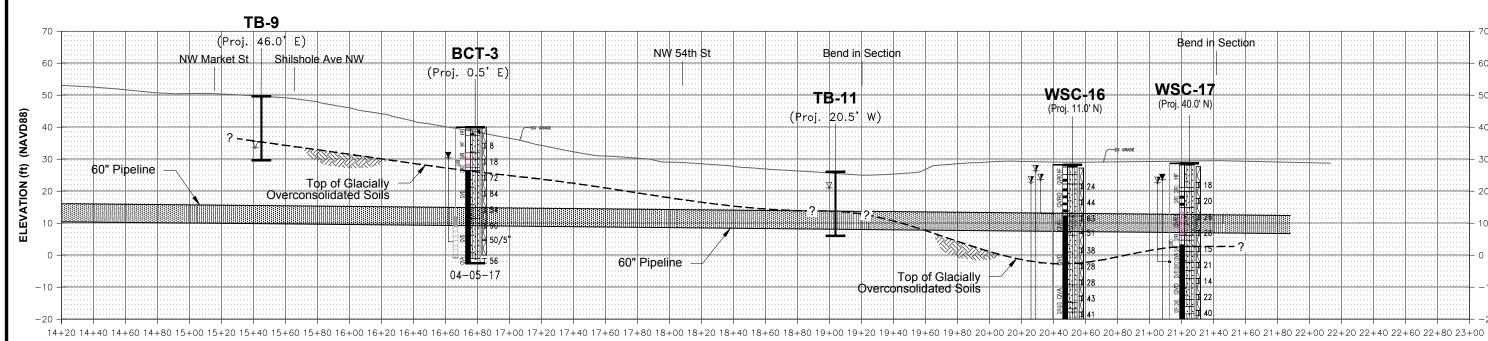


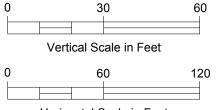

Michael D. Harney, PE Associate

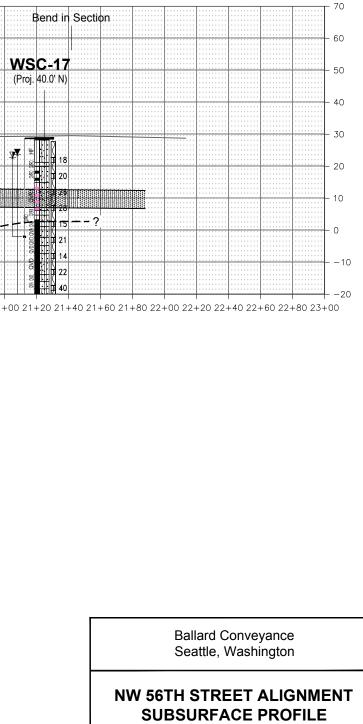

JCS:DCW:MDH:MSK/dcw

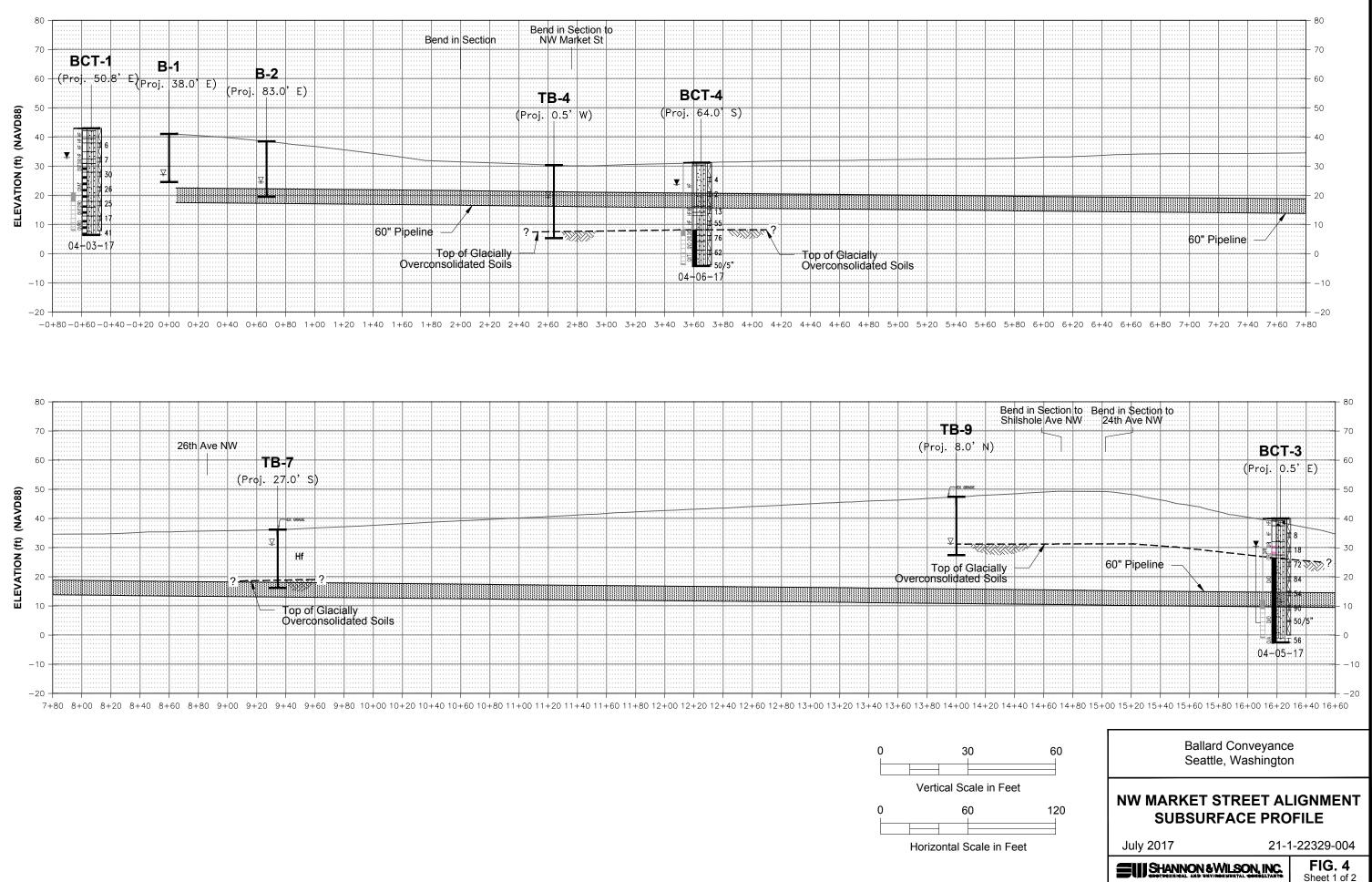

10.0 REFERENCES

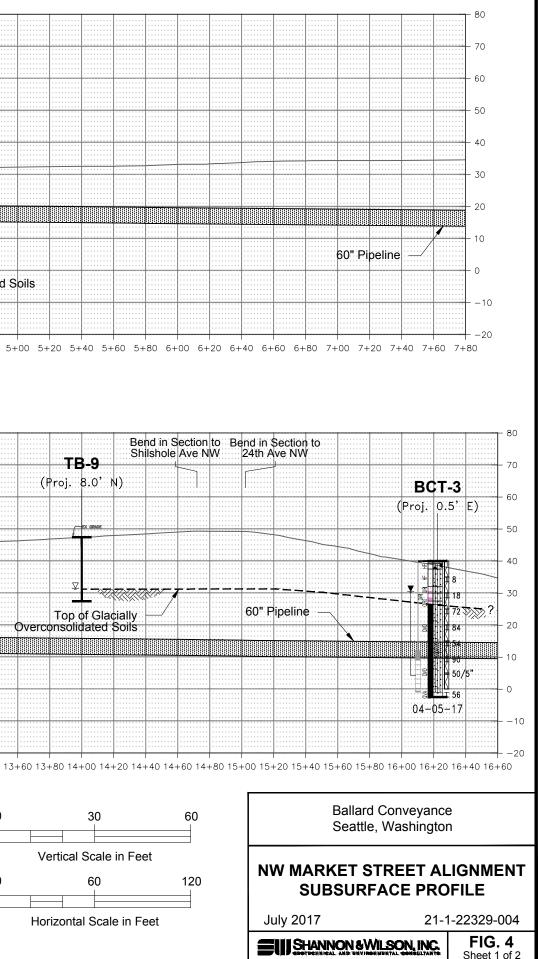
- Booth, D. B.; Troost, K. G.; and Shimel, S. A., 2005, Geologic map of Northwest Seattle (Part of the Seattle 7.5' x 15' quadrangle), King County, Washington: U.S. Geological Survey Scientific Investigation Map 2903, scale 1:12,000.
- Goldfinger, C.; Nelson, C.H.; Morey, A.E.; Johnson, J.E.; Patton, J.R.; Karabanov, E.; Gutiérrez-Pastor, J.; Eriksson, A.T.; Gràcia, E.; Dunhill, G.; Enkin, R.J.; Dallimore, A.; and Vallier, T., 2012, Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone: U.S. Geological Survey Professional Paper 1661–F, 170 p. (Available at http://pubs.usgs.gov/pp/pp1661f/).
- Shannon & Wilson, Inc. (Shannon & Wilson), 2017, Ballard conveyance geotechnical investigation plan, Ship Canal Water Quality project, Seattle, Washington: Plan prepared by Shannon & Wilson, Seattle, Wash., job no. 21-1-22329-001, dated February 10.
- U.S. Geological Survey (USGS), 2017, http://earthquake.usgs.gov/hazards/qfaults/map/, accessed May 11, 2017.
- Washington State Division of Geology and Earth Resources (DGER), 2012, Subsurface geology information system: Available: https://fortress.wa.gov/dnr/protectiongis/geology, accessed January 2017.

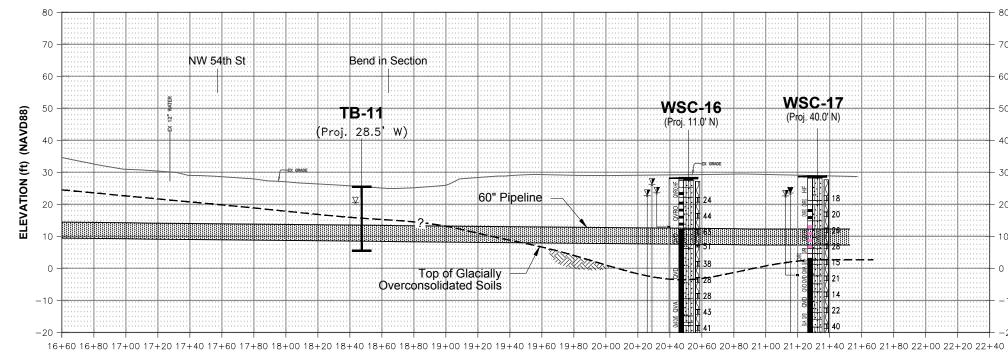







Horizontal Scale in Feet




21-1-22329-004

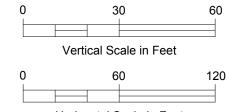
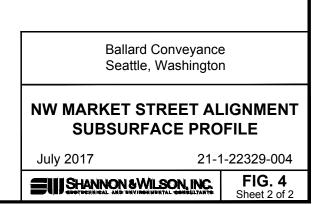
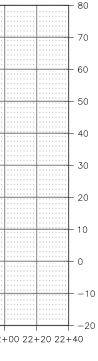

July 2017

FIG. 3 Sheet 2 of 2 **EUSHANNON & WILSON, INC.**





Horizontal Scale in Feet

APPENDIX A

PROJECT SUBSURFACE EXPLORATIONS

SHANNON & WILSON, INC.

APPENDIX A

PROJECT SUBSURFACE EXPLORATIONS

TABLE OF CONTENTS

Page

A.1	GENERAL	A-1
A.2	DRILLING PROCEDURES	A-1
A.3	SOIL SAMPLINGA.3.1Split-Spoon SamplingA.3.2Sonic Core Sampling	A-1
A.4	BORING LOGS	A-2

FIGURES

A-1	Soil Description and Log Key (3 sheets)
-----	---

- A-2 Log of Boring BCT-1 (2 sheets)
- A-3 Log of Boring BCT-2 (3 sheets)
- A-4 Log of Boring BCT-3 (3 sheets)
- A-5 Log of Boring BCT-4 (2 sheets)

APPENDIX A

PROJECT SUBSURFACE EXPLORATIONS

A.1 GENERAL

Subsurface explorations we performed for this project consist of drilling and sampling three soil borings. The approximate locations of the borings are shown in Figure 2.

A.2 DRILLING PROCEDURES

Four borings, designated BCT-1 through BCT-4, were drilled during the period of April 3 and 6, 2017. Cascade Drilling, under subcontract to Shannon & Wilson, Inc. (Shannon & Wilson) drilled the borings using a rubber tracked-mounted drill. The borings were advanced to various depths indicated in Table A-1 using the sonic core drilling method. This method uses high-frequency vibratory motion applied to the top of the drill column, along with down-pressure and rotation, to obtain nearly continuous core samples in soil. Soil samples were obtained using a 4.5-inch-outside-diameter (O.D.) core barrel. The core barrel was advanced into the ground a specific distance (termed a core "run") and then retrieved for extraction of the sample core. Following retrieval of the core barrel, a temporary casing was advanced to the bottom of the sampled interval. The casing was then cleared of slough, and the next core sample was collected, starting at the bottom of the temporary casing. The soil cuttings were placed into a 55-gallon drum and disposed of by the driller.

A.3 SOIL SAMPLING

A Shannon & Wilson field representative was present to observe drilling, collect samples for subsequent laboratory testing, and prepare descriptive fields logs of the borings. Soil samples were collected from each current exploration for purposes of engineering classification, geologic evaluation, and geotechnical testing. Two different sampling methods were used in each boring, split-spoon sampling and sonic core sampling. The sampling methods are indicated in the exploration logs included in this appendix and are described in the following sections.

A.3.1 Split-Spoon Sampling

Split-spoon samples were collected in conjunction with Standard Penetration Tests (SPTs) at approximately 5-foot intervals in each of the borings. The SPTs were performed in general accordance with the ASTM International Designation: D1586-11, Test Method for

²¹⁻¹⁻²²³²⁹⁻⁰⁰⁴⁻R1-AA/wp/lkn

Penetration Test and Split-Barrel Sampling of Soils. For the SPT, a 2-inch-O.D., 1.375-inch-inside-diameter (I.D.), split-spoon sampler is driven with a 140-pound hammer falling 30 inches. The number of blows required to achieve each of three 6-inch increments of sampler penetration is recorded. The number of blows required to achieve the last 12 inches of penetration is termed the Standard Penetration Resistance (N-value). When penetration resistances exceeded 50 blows for 6 inches or less of penetration, the test was terminated, and the number of blows along with the penetration distance was recorded on the boring log. The SPT N-value is a useful parameter for determining the relative density or consistency of the soils. Density or consistency as it is related to the SPT N-value is shown in Figure A-1. The recorded N-values are included in the boring logs in Figures A-2 through A-5.

After each split-spoon sampler was removed from the borehole, a Shannon & Wilson field representative opened the sampler and visually examined the soil sample. The field representative then described and classified the sample, removed it from the split-spoon sampler, and sealed the sample in a jar. The jars were stored in boxes and returned to the Shannon & Wilson laboratory for further examination and testing.

A.3.2 Sonic Core Sampling

For the borings drilled using sonic core drilling methods, soil core samples were extracted from the core barrel using a combination of gravity and vibration to extrude the soil into flexible plastic bags. The plastic bags were then placed into wooden core boxes that were marked for the appropriate boring designation, core run number, and depths. Cohesive, hard soils were difficult to extract and occasionally required the use of pressurized air to force the soil out of the core barrel. Disturbance of the core samples (e.g., fragmented cobbles and gravel and distorted bedding planes) result from the coring and extraction process.

Once in the warehouse, the soil cores were opened, photographed, and logged by a Shannon & Wilson geologist. The geologist also obtained grab samples of the soil at depth intervals of about 5 feet; however, additional grab samples were obtained where variable soil conditions were encountered in the core. The sonic core photographs are provided in a separate electronic format.

A.4 BORING LOGS

The boring logs for this project are presented as Figures A-2 through A-5. A boring log is a written record of the subsurface conditions encountered. It describes the geologic units (layers) encountered in the boring and the Unified Soil Classification System symbol of each geologic

layer. It also includes the natural water content (where tested), groundwater level observations, approximate surface elevation, types and depths of sampling, and SPT blow counts.

Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹	
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴	
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: <i>Silty</i> or <i>Clayey</i> ³	
Minor	15% to 30% coarse-grained: <i>with Sand</i> or <i>with Gravel</i> ⁴	5% to 12% fine-grained: <i>with Silt</i> or <i>with Clay</i> ³	
Follows major constituent	30% or more total coarse-grained and lesser coarse- grained constituent is 15% or more: with Sand or with Gravel ⁵	15% or more of a second coarse- grained constituent: <i>with Sand</i> or <i>with Gravel</i> ⁵	
¹ All percentages are by weight of total specimen passing a 3-inch sieve. ² The order of terms is: <i>Modifying Major with Minor</i> . ³ Determined based on behavior.			

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
W/ot	Visible free water from below

Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm	
	NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.	
Sampler:	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches	
N-Value:	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.	
NOTE: Penetration resistances (N-values) shown on boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.		

PARTICLE SIZE DEFINITIONS			
DESCRIPTION		AND/OR APPROX	IMATE SIZE
FINES	< #200 (0.075 r	mm = 0.003 in.)	
SAND Fine Medium Coarse	#40 to #10 (0.4	075 to 0.4 mm; 0 to 2 mm; 0.02 to 4.75 mm; 0.08 to	0.08 in.)
GRAVEL Fine Coarse	#4 to 3/4 in. (4. 3/4 to 3 in. (19	75 to 19 mm; 0.1 to 76 mm)	87 to 0.75 in.)
COBBLES	3 to 12 in. (76 t	o 305 mm)	
BOULDERS	> 12 in. (305 m	m)	
RE	ELATIVE DENSIT	Y / CONSISTEN	СҮ
COHESION	LESS SOILS	COHESI	VE SOILS
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY		RELATIVE CONSISTENCY
< 4	Very loose	< 2	Very soft
4 - 10 10 - 30	Loose Medium dense	2 - 4 4 - 8	Soft Medium stiff
30 - 50	Dense	4 - 8 8 - 15	Stiff
> 50	Very dense	15 - 30	Very stiff
	· • • • • • • • •	> 30	Hard
WELL AND BACKFILL SYMBOLS			
	onite ent Grout	Surface Seal	e Cement

	Piezometer			
PERCENTAGES TERMS ^{1, 2}				
Trace	< 5%			
Few	5 to 10%			
Little	15 to 25%			
Some	30 to 45%			
Mostly	50 to 100%			

Slough

Inclinometer or Non-perforated Casing

Vibrating Wire

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

Ballard Conveyance Seattle, Washington

SOIL DESCRIPTION AND LOG KEY

July 2017

Bentonite Chips

Silica Sand

Perforated or

Screened Casing

21-1-22329-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 1 of 3

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) (Modified From USACE Tech Memo 3-357, ASTM D2487, and ASTM D2488)					
	MAJOR DIVISIONS			GRAPHIC IBOL	TYPICAL IDENTIFICATIONS
	Gravels (more than 50%	Gravel (less than 5% fines)	GW		Well-Graded Gravel; Well-Graded Gravel with Sand
			GP		Poorly Graded Gravel; Poorly Graded Gravel with Sand
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand
(more than 50% retained on No. 200 sieve)	Sands (50% or more of coarse fraction passes the No. 4 sieve)	Sand	sw		Well-Graded Sand; Well-Graded Sand with Gravel
		(less than 5% fines)	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel
		Silty or Clayey Sand (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel
			SC		Clayey Sand; Clayey Sand with Gravel
	Silts and Clays (liquid limit less than 50)	Inorganic	ML		Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt
			CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay
FINE-GRAINED SOILS		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
(50% or more passes the No. 200 sieve)	Silts and Clays (liquid limit 50 or more)	Inorganic	МН		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravely Elastic Silt
			СН		Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay
		Organic	ОН		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
HIGHLY- ORGANIC SOILS	Primarily organi color, and c	c matter, dark in organic odor	PT		Peat or other highly organic soils (see ASTM D4427)

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

<u>NOTES</u>

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).
- 2. Borderline symbols (*symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand*) indicate that the soil properties are close to the defining boundary between two groups.

Ballard Conveyance Seattle, Washington

SOIL DESCRIPTION AND LOG KEY

July 2017

21-1-22329-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 3

	GRADATION TERMS			
Poorly Graded Well-Graded	Narrow range of grain sizes present or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets criteria in ASTM D2487, if tested. Full range and even distribution of grain sizes present. Meets criteria in ASTM D2487, if tested.			
	CEMENTATION TERMS ¹			
Weak				
Moderate	finger pressure. Crumbles or breaks with considerable finger			
Strong	pressure.			
	PLASTICITY ²			
	APPROX.			
DESCRIPTION				
Nonplastic	RANGE A 1/8-in. thread cannot be rolled at < 4			
Low	any water content. A thread can barely be rolled and 4 to 10			
Medium	a lump cannot be formed when drier than the plastic limit. A thread is easy to roll and not 10 to 20			
High	much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. A lump crumbles when drier than the plastic limit. It takes considerable time rolling and kneading to reach the plastic > 20 limit. A thread can be rerolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.			
	ADDITIONAL TERMS			
Mottled	Irregular patches of different colors.			
Bioturbated	Soil disturbance or mixing by plants or animals.			
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.			
Cuttings	Material brought to surface by drilling.			
Slough	Material that caved from sides of borehole.			
Sheared	Disturbed texture, mix of strengths.	:		
PARTICLE ANGULARITY AND SHAPE TERMS ¹				
Angular	Sharp edges and unpolished planar surfaces.			
Subangular	Similar to angular, but with rounded edges.			
Subrounded	Nearly planar sides with well-rounded edges.	Ho		
Rounded	Smoothly curved sides with no edges.			
Flat	Width/thickness ratio > 3.			
Elongated	Length/width ratio > 3.			

¹Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

²Adapted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

ACRONYMS AND ABBREVIATIONS ATD At Time of Drilling Diam. Diameter Elev. Elevation ft. Feet FeO Iron Oxide gal. Gallons Horiz. Horizontal HSA Hollow Stem Auger I.D. Inside Diameter in. Inches lbs. Pounds MgO Magnesium Oxide mm Millimeter MnO Manganese Oxide NA Not Applicable or Not Available NP Nonplastic O.D. Outside Diameter OW Observation Well pcf Pounds per Cubic Foot PID Photo-Ionization Detector PMT Pressuremeter Test ppm Parts per Million psi Pounds per Square Inch PVC Polyvinyl Chloride rpm Rotations per Minute SPT Standard Penetration Test USCS Unified Soil Classification System q_u Unconfined Compressive Strength VWP Vibrating Wire Piezometer Vert. Vertical WOH Weight of Hammer WOR Weight of Rods Wt. Weight STRUCTURE TERMS¹

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick;
Laminated	singular: bed. Alternating layers of varying material or color with layers less than 1/4-inch thick; singular: lamination.
Fissured	Breaks along definite planes or fractures with little resistance.
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown
Lensed	
Homogeneous	Same color and appearance throughout.

Ballard Conveyance Seattle, Washington

SOIL DESCRIPTION AND LOG KEY

July 2017

21-1-22329-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 3 of 3

CLASS_KEY_PG3_21-22329.GPJ_SHAN_WIL.GDT 7/19/17

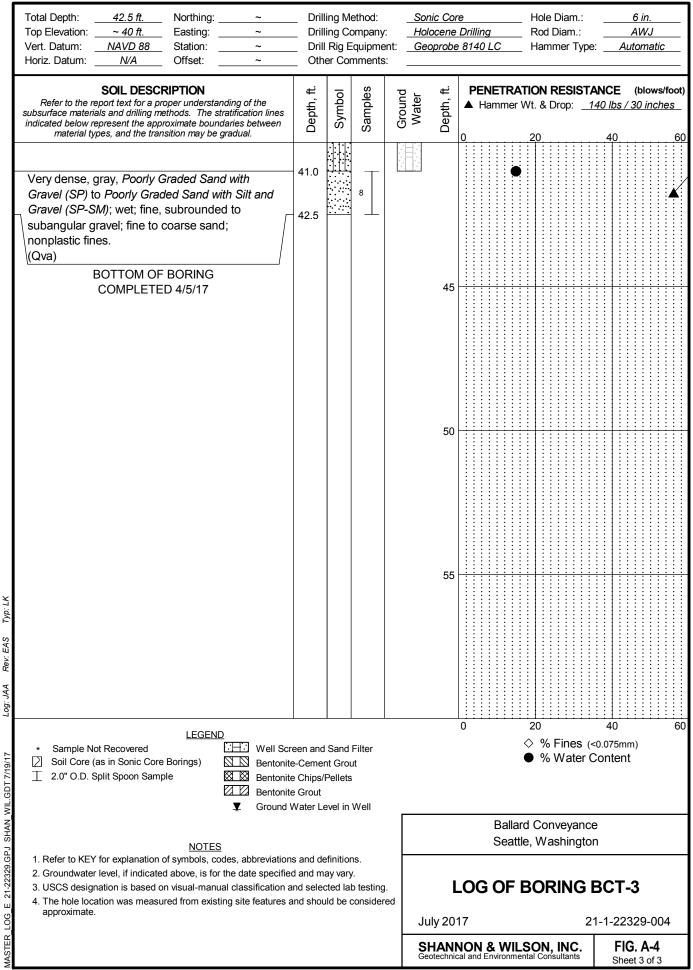
T EL 11 10 10 10 1	Northing:	~		-	ethod:		Sonic						ole D		-		6 in.	
Top Elevation: <u>~ 43 ft</u> .	0	~		-	ompany:		Holoc					-	od Di		-		AWJ	
Vert. Datum: <u>NAVD 8</u> Horiz. Datum: <u>N/A</u>	<u>8</u> Station: Offset:	~		•	iquipmen nments:	t: _	Geop	robe	814	0 LC	;	_ Н	amm	er Ty	/pe: _	A	utoma	atic
	SCRIPTION a proper understance ang methods. The stra	ling of the atification lines	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.							TAN 140		•	ws/foo ches
material types, and the				0	ο Ο Π		×4	Ō	0	:::		() : : :			40		
Concrete.				A 4 4	S	A P P	No.											
Gray and gray-brown, (<i>SM</i>); moist; fine to coa subangular gravel; fine nonplastic fines; diamic iron-oxide staining. (Hf) Gray, <i>Silty Sand (SM</i>); subrounded to subang sand; nonplastic to low trace iron-oxide stainin (Hf)	arse, subrounded to coarse sand; ct; trace organics moist; few fine to gular gravel; fine <i>i</i> plasticity fines; g.	d to s; trace o coarse, to coarse diamict;	- 0.8 - 3.5 - 5.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			5			•							
Loose, brown, <i>Silty Sa</i> subrounded to subang sand; nonplastic to low organics; diamict. (Hf) Loose, brown to dark <i>Gravel (SM</i>); moist; fin subangular gravel; fine nonplastic to low plasti and wood fragments; fi	ular gravel; fine plasticity fines; prown, <i>Silty San</i> e, subrounded to to coarse sand; city fines; few or	to coarse trace	- 8.0				Ž	10				•						
(Hf) Loose, gray-brown, <i>Si</i> , wet; fine, subrounded to coarse sand; nonpla (Qvro/Hf)	to subagular gra astic fines.	vel; fine	15.0				During Drilling	15										
Gray-brown to orange Gravel (SM); moist to v subrounded to subang sand; nonplastic to low pockets with iron-oxide (Qvat/Qvri) Medium dense to dens moist to wet; trace to f	vet; fine to coars gular gravel; fine / plasticity fines; e staining; diamic se, gray, <i>Silty Sa</i> ew fine, subroun	e, to coarse few ct. <i>nd (SM)</i> ;			R4 E													
* Sample Not Recovere Soil Core (as in Sonic	Core Borings)	 ₩ell Sci Bentonit Bentonit Bentonit Bentonit Ground 	e-Ceme e Chips/ e Grout	nt Grou Pellets	ut				0				% F		(<0.0			6
	NOTES	⊈ Ground	Water L	evel in	Well								Conv Wasl	-				
 Refer to KEY for explana Groundwater level, if ind USCS designation is bas The hole location was m approximate 	icated above, is for the sed on visual-manual	he date specifie I classification a	d and m and sele	ay vary	/. b testing.	d		L	-00	GC	OF	BC	DRI	NG	6 B(СТ	·1	
approximate.							Luby	201	17						21 4	1 22	329-0	004
							July	20	17						21-	1-22	523-0	-00

Total Depth: <u>36.5 ft.</u> Northing: ~			ethod:		nic Cor		Hole Diam		6 in.
Top Elevation: ~ 43 ft. Easting: ~ Vert. Datum: NAVD 88 Station: ~		-	ompany: Equipment			Drilling 8140 LC	Rod Diam Hammer ⁻	-	AWJ
Horiz. Datum: <u>N/A</u> Offset: <u>~</u>		-	Equipment mments:			0140 LC		тур с . <u>А</u>	utomatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer		-	(blows/fo / 30 inches
material types, and the transition may be gradual. subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvat/Qvd) - Wet from 20 to 20.5 feet.			K ² 4			0	20	<u>40</u>	
Medium dense, gray, <i>Silty Sand (SM</i>); wet; trace fine, subrounded gravel; fine to coarse sand; nonplastic fines. (Qvro/Qva)	25.0 27.0		5		25	•		- 0	
Medium dense, gray, <i>Silty Sand (SM)</i> ; moist; trace to few fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvat/Qvd)	30.0		R6		30				
Medium dense to dense, gray, <i>Silty Sand (SM</i>); wet; trace fine to coarse, subrounded gravel; fine to coarse sand; nonplastic fines. (Qvro/Qva)					35	•			
BOTTOM OF BORING COMPLETED 4/3/17	36.5					0	20	40	
LEGEND Sample Not Recovered Soil Core (as in Sonic Core Borings) Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample Z Bentonite Ground V	e-Cemer e Chips/ e Grout	nt Gro Pellets	ut			-	◇ % Fine		
 Ground V <u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations 							d Conveya e, Washin		
 Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification and The hole location was measured from existing site features a approximate. 	d and m nd selee	ay vary cted la	y. b testing.				BORIN		
					uly 201	17		21-1-22	329-004

REV 3 - Approved for Submittal

	<u>5 ft.</u> Northing: 58 ftEasting:	~		-	ethod: ompany:		nic Cor ocene	re Drilling	Hole Diam.: Rod Diam.:	<u> </u>	_
Vert. Datum: NA	<u>VD 88</u> Station: <u>VA</u> Offset:	~	Dril	I Rig E	Equipment mments:			e 8140 LC	Hammer Type:	Automatic	_
Refer to the report te subsurface materials and indicated below represer	DESCRIPTION xt for a proper understand drilling methods. The str at the approximate bounda d the transition may be g	atification lines aries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTAN Wt. & Drop: <u>14</u>	、	es
Concrete.										_40 : : : : : : : : :	<u>6</u>
Sand (SM); moist; gravel; fine to coar iron-oxide staining; (Hf)	-	led ty fines;	0.8		R1						•••••••••••••••••••••••••••••••••••••••
with few brick fra	own, silty sand with g gments from 2.5 to countered at 3 feet.		5.0				5				
(CH); moist; trace f subangular gravel;	d gray, <i>Fat Clay with</i> fine, subrounded to fine to coarse sand les; iron-oxide stainin	; medium					-				72
<i>Gravel (SM)</i> ; moist to subangular grav	o gray-brown, <i>Silty S</i> ; fine to coarse, sub rel; fine to coarse sa amict; trace iron-oxio	rounded nd;			2		10			50)/3
	prown, <i>Silty Sand (Si</i>	<i>M</i>); moist;	13.5		R3			•			
	ubrounded to suban se sand; nonplastic	•	15.0		3 NAV 3		15			.50)/5
Very dense, gray, with Gravel (SM); r	Silty Sand (SM) to S noist; fine, subround fine to coarse sand; amict.	led to			R4						
C								0	20	40	6
 * Sample Not Recc [2] Soil Core (as in S ☐ 2.0" O.D. Split Sp 	onic Core Borings)	Well Scree Bentonite Bentonite Bentonite	-Ceme Chips/ Grout	nt Grou Pellets	ut ;				 ◇ % Fines (<0 ● % Water Co 		
	<u>NOTES</u>								rd Conveyance e, Washington		
 2. Groundwater level, 3. USCS designation i 4. The hole location w 	blanation of symbols, cod if indicated above, is for th s based on visual-manua as measured from existin	he date specified I classification ar	l and m nd sele	ay vary cted la	/. b testing.		L	OG OF	BORING B	CT-2	
approximate.										1-22329-004 FIG. A-3	+
						Ge	otechnic	NON & WIL cal and Environme	ntal Consultants	FIG. A-3 Sheet 1 of 3	

REV 3 - Approved for Submittal


Total Depth:	55 ft.	_ Northing:	~			ethod:		Sonic C				Hole [6 ir	
Top Elevation: _	~ <u>58 ft.</u>	_ Easting:	~			ompany		Holocer				Rod D			AW	
Vert. Datum: _ Horiz. Datum:	<u>NAVD 88</u> N/A	_ Station: Offset:	~			Equipme mments		Geopro	be 8	140 LC		Hamn	ner Ty	pe:	Auton	atic
nonz. Datum.	/ w/A			_ 011			· _									
	SOIL DESC	RIPTION		÷		S	σ	نے _	:	PENE	TRAT	ION R	ESIS	TANCE	(bl	ows/foo
	port text for a p	oroper understandi	ing of the	, Ę	du	hple	ůn.	th.						140 lb:		nches
indicated below rep	present the app	proximate boundai	ries between	Depth,	Symbol	Samples	Ground	Water Depth.	$\frac{1}{2}$							
material typ	es, and the trai	nsition may be gra	adual.		1.1.1.1				0	.		20		40		(
						₄≶		×								: : : : : 89/1:1
] ∑ _		×								
						Ś		×								$\begin{array}{c} \vdots \end{array}$
						R5	_ 🕅									
						"<	₹ 🕅									
						5	0/20									
						$ \langle \rangle $	21									
						5			_							
						5		≥ ∠	5							50/5
						₹										
						$ \langle $										
						2 S		×								
						Ľ₿		×								
						S										
						S										
						S		× ,								
- Few wet sea	ams below 3	30 feet.				6 🖇		3								50/
						2										
						$ \zeta $										
						~ 5		~								
						S S										
						<u></u>		3	5	<u></u>						<u></u>
						7									\diamond	50/
						R				::::	::::		• • • •			::::
						5										
						88		· · ·								
						<u></u>										
						$ \langle $										
	CONTINUE					2										
	CONTINUEL	D NEXT SHEET LEGEND							0			20	-1	40		
* Sample Not											<			<0.075 (<0.075 r Conte		
	is in Sonic Core olit Spoon Sam		Bentonite									/01	, ale			
<u> </u>		_	Bentonite		renets	•										
			⊈ Ground V		evel in	Well	_									
							Γ			В	allard	l Con	veyar	nce		
		NOTES										, Was				
	-	of symbols, code														
		ed above, is for th	-												т ^	
 USCS designation 		on visual-manual				-			L			OR	ING	BC	1-2	
4 The hole local				ື່ມນັບສາມປະ												
 The hole locat approximate. 								luk <i>i</i> O	017					21 4 0	00000	004
								July 2	017					21-1-2	2329 FIG. A	

Total Depth: 55 ft. Northing: ~ Top Elevation: ~ 58 ft. Easting: ~ Vert. Datum: NAVD 88 Station: ~	Dril	ling C	ethod: ompany:	Hol		Drilling	Hole Diam.: Rod Diam.:	<u> </u>
Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: N/A Offset: ~		•	Equipmen mments:	t: <u>Ge</u>	oprope	8140 LC	Hammer Type:	Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTA Wt. & Drop: <u>1</u>	NCE (blows/foo 40 lbs / 30 inches 40 6
Gray, <i>Silty Sand (SM)</i> ; wet; trace fine, subrounded gravel; fine to coarse sand; nonplastic fines. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd)	- 47.0 - 49.0		R10 ° R9 ° C		45		\$.50/5
BOTTOM OF BORING COMPLETED 4/6/17 - BCT-2 was completed to a depth of 45 feet. A second BCT-2 was drilled adjacent to the original boring to a depth of 55 feet. Samples were not collected from the second BCT-2 from the surface to 45 feet. Both borings are compiled on the same BCT-2 boring log.	- 55.0				55			
⊥ 2.0" O.D. Split Spoon Sample Image: Split Spoon Sample Image: Split Spl	te-Ceme te-Ceme te Chips/ te Grout Water L	nt Gro Pellets	ut s				20	Content
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specifie 3. USCS designation is based on visual-manual classification 4. The hole location was measured from existing site features approximate.	ed and m and sele	ay var	/. b testing.			Seattl	e, Washingtor	BCT-2
- F F				Ju	ly 20	17	21	1-1-22329-004

REV 3 - Approved for Submittal

Total Depth: _	42.5 ft. ~ 40 ft.	_ Northing: _	~ ~		ling M			Sonic Co	re Drilling	_ Hole Diam.: Rod Diam.:		6 in. AWJ
Top Elevation: _ Vert. Datum: _	~ 40 π. NAVD 88	_ Easting: _ _ Station: _	~		-	ompan <u>y</u> Equipm			e Drilling e 8140 LC	_ Rod Diam.: _ Hammer Type	: _ A	AVVJ Automatic
Horiz. Datum:	N/A	Offset:	~		-	nment						
Refer to the rep subsurface material indicated below rep	ls and drilling n present the app	roper understand nethods. The stra	atification lines aries between	Depth, ft.	Symbol	Samples	Ground	Depth, ft.		ATION RESISTA		
Asphalt.		nonion may be g		0.3		S	a de la			20	40 	
Concrete.				0.8		S	P. A. X.	17. V.				
Dark brown, S	Silty Gravel v	with Sand (Gl	M); moist;					8				
fine to coarse,		-	-			-5		8				
fine to coarse fines; diamict; (Hf)	-	-	plasticity	2.5		R						
Loose, brown	Silty Sand	(SM) to Sand	ly Silt			S						
(ML); moist; fe	-		-			$\left \right\rangle$		5				· · · · · · · · ·
subangular gr						1\$						
nonplastic to le fragments; tra												
staining.	ce pockets		C			2						
(Hf)						83		8				
- Layer of dar		ty gravel with	sand /	8.0								
from 5 to 5.								8				
Loose, gray, S						$ \langle \rangle $	Y	8				
coarse, subro		• •		10.0		}	/2017	10	•)	$\Rightarrow \Rightarrow$	
diamict; trace	-		- /			2₿	5/11	8				
(Qvri/Hf)	-					<u></u> ≸		8				
Medium dense						$\left \right $						
wet; trace fine				12.5		82					\sim	
fine to coarse fines; diamict.	sanu; nonp	IASUC IO IOW F		13.5								
(Qvri/Hf)						$ \zeta $						
Medium dense	e, brown, S	ilty Sand (SM); wet;			5		15				
trace fine, sub		avel; fine to c	oarse			_ \$]		10				
sand; nonplas	tic fines.					3						
(Qvro/Qvri)		whrower Oth	(Sand			S						
Very dense, b (SM); moist; fe						<u>≯</u> >		8				
gravel; fine to			•			<u></u>		8				
plasticity fines						$ \langle \rangle $		8				
(Qvd)						S						
- Layer of wet		from 19.5 to 2	20 feet.			15		8		20	<u>: : :</u> 40	
		LEGEND							U	20 ◇ % Fines (<		um)
 ★ Sample Not ∑ Soil Core (a) 	t Recovered s in Sonic Cor		↔ Well Scr N Bentonite							 % I mes (% Water (,
	olit Spoon Sam		Bentonite									
		E	Bentonite									
			⊈ Ground \	Vater L	evel in	Well						
										ard Conveyance		
1 Refer to KEV	for evolution	NOTES	es abbraviation	e and d	ofinition	ne			Seat	ttle, Washingto	11	
1. Refer to KEY 1 2. Groundwater	-	-										
3. USCS designation							g.	I	LOG OF	BORING	вст	-3
 The hole locat approximate. 	tion was meas	ured from existir	g site features a	ind shoi	uld be o	conside						
-pprovintato.								July 20	17	2	1-1-22	2329-004
								SHAN	NON & WI	LSON. INC.	FI	G. A-4
								Geotechni	cal and Environm	LSON, INC.		eet 1 of 3

Total Depth: 42.5 ft. Northing:Top Elevation: $\sim 40 \text{ ft.}$ Easting:	~		-	ethod: ompany:		nic Cor	re Drilling	_ Hole Dian Rod Diam		6 in. AWJ
Vert. Datum: <u>NAVD 88</u> Station:	~	_ Dril	Rig E	Equipment			e 8140 LC	_ Hammer		utomatic
Horiz. Datum: <u>N/A</u> Offset: SOIL DESCRIPTION Refer to the report text for a proper understa subsurface materials and drilling methods. The indicated below represent the approximate boun material types, and the transition may be	stratification lines ndaries between	Depth, ft.	Symbol Q	nments: Samples S	Ground Water	Depth, ft.	PENETRA ▲ Hammer	TION RES	140 lbs .	
- Few wet, silty sand seams from 21				R5 b			<u>U</u>		40	
 Layer of wet, poorly graded sand v iron-oxide staining at 24.5 feet. Few pockets with iron-oxide staining feet. 				R6 G		25	•			K
Very dense, gray, <i>Silty Sand (SM)</i> ; m trace to few fine, subrounded to sub- gravel; fine to coarse sand; nonplast diamict. (Qvd)	angular	28.5		<u>к</u> , [∞] www. <mark>www</mark>		30	-			¢
				R8 2		35	•		\$	5D/:
CONTINUED NEXT SHEET LEGEN * Sample Not Recovered Discrete Source (as in Sonic Core Borings)							0	20 ◇ % Fine ● % Wat	40 es (<0.075m er Conter	
	Bentonite Bentonite	e Chips/ e Grout	Pellets	3				rd Conveya		
 Refer to KEY for explanation of symbols, c Groundwater level, if indicated above, is fo USCS designation is based on visual-man The hole location was measured from exis approximate. 	odes, abbreviations or the date specified ual classification a	d and m nd sele	ay vary cted la	/. b testing.		L uly 20 [.]	-OG OF	BORIN		-3 2329-004

REV 3 - Approved for Submittal

	Total Depth: 35.4 ft. Northing: ~ Top Elevation: 31 ft. Easting: Vert. Datum: 088 Station:	Drill	ing C	lethod: ompany Equipme		Hole		re Drilling e 8140 LC	Hole Diam.: Rod Diam.: Hammer Type	<u> </u>
	Horiz. Datum: <u>N/A</u> Offset: ~			mments				1		
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Croind	Water	Depth, ft.		TION RESISTA Vt. & Drop: <u>1</u> 20	NCE (blows/foot) 40 lbs / 30 inches 40 60
	Concrete. Very loose to loose, brown, <i>Poorly Graded Sand</i> <i>with SIIt and Gravel (SP-SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few silty sand seams. (Hf) - Contaminated from 5 to 15 feet.	0.8			5/10/2017 i		5		20	
Log: JAA Rev: EAS Typ: LK	Medium dense, gray-brown, <i>Poorly Graded</i> <i>Sand with Silt and Gravel (SP-SM)</i> ; wet; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few organics and wood fragments. (Hf) Brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; wet; fine to medium sand; nonplastic fines. (Hf)	15.0 17.0 18.0		\mathbb{R}^{4}			15			
	CONTINUED NEXT SHEET <u>LEGEND</u> * Sample Not Recovered ☐ Soil Core (as in Sonic Core Borings) ☐ 2.0" O.D. Split Spoon Sample ☐ Bentonite ☐ Ground V	e-Cemer e Chips/ e Grout	nt Gro Pellets	ut s				0	20 ◇ % Fines (< ● % Water C	
MASTER_LOG_E_21-22329.GPJ_SHAN_WIL.GDT 7/19/17	NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and 4. The hole location was measured from existing site features a approximate.	d and mand mand mand select	ay var cted la	y. Ib testing			ly 20	Seattle	21	n BCT-4 1-1-22329-004
MASTE						SI Geo	HAN otechni	NON & WIL	SON, INC. Ital Consultants	FIG. A-5 Sheet 1 of 2

REV 3 - Approved for Submittal

		•	ethod:		nic Cor		_ Hole Diar		<u>6 in.</u>
Top Elevation: <u>~ 31 ft.</u> Easting: <u>~</u> Vert Datum: NAVD 88 Station: ~		-	ompany:			Drilling	_ Rod Diam		AWJ
Vert. Datum: <u>NAVD 88</u> Station: <u>~</u> Horiz. Datum: <u>N/A</u> Offset: <u>~</u>		•	Equipment mments:		oprope	e 8140 LC	_ Hammer	туре. <u>А</u>	utomatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between		Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer	ATION RES Wt. & Drop:	-	(blows/foo / 30 inches
material types, and the transition may be gradual. Very dense, gray, <i>Silty Sand (SM</i>); moist; few				\otimes \otimes		0	20 ::::::::	40	6
fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; few wood fragments. (Hf)			R5 M						
- Contaminated from 20 to 23 feet. Very dense, gray, <i>Silty Sand (SM)</i> ; moist; trace fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines;	23.0				25				
diamict; odor. \(Qvd) Very dense, gray, <i>Silty Sand with Gravel (SM</i>);	25.0		5		25				7
moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict; slight odor. (Qvd)	27.0								
Very dense, gray, <i>Silty Sand (SM)</i> ; moist; trace fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd)	30.0				30				6.
Very dense, gray, <i>Silty Sand with Gravel (SM)</i> ; moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvt)			R7		25				
BOTTOM OF BORING COMPLETED 4/6/17	35.4		7		35				50/5
☑ Soil Core (as in Sonic Core Borings) ☑ Bentor ☑ 2.0" O.D. Split Spoon Sample ☑ ☑ Bentor ☑ ☑ Ø.D. Split Spoon Sample ☑ Ø.D. Split Spoon Sample	Screen and hite-Ceme hite Chips.	ent Grou /Pellets	ut S			0		<u>+ + + + + + + + + + + + + + + + + + + </u>	
⊈ Groun <u>NOTES</u>	d Water L	evel in	Well				ird Convey tle, Washir		
 Refer to KEY for explanation of symbols, codes, abbreviation Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification 	fied and m n and sele	nay vary ected la	y. b testing.		L	_OG OF	BORIN	G BCT	-4
4. The hole location was measured from existing site features	s and sho	uiu be	CONSIDERED	·					
 The hole location was measured from existing site features approximate. 	s and sho		considered		uly 20 ⁻	17		21-1-22	329-004

REV 3 - Approved for Submittal

SHANNON & WILSON, INC.

APPENDIX B

EXISTING EXPLORATION DATA

APPENDIX B

EXISTING EXPLORATION DATA

TABLE OF CONTENTS

FIGURES

- B-1 Log of Existing Boring B-1
- B-2 Log of Existing Boring B-2
- B-3 Log of Existing Boring B-1('01)
- B-4 Log of Existing Boring B-2('02)
- B-5 Log of Existing Boring B-3('02)
- B-6 Log of Existing Boring B-1('93)
- B-7 Log of Existing Boring B-2('93)
- B-8 Log of Existing Boring B-1(D&M)
- B-9 Log of Existing Test Pit TP-3(D&M)
- B-10 Logs of Existing Test Pit TP-4 and Test Pit TP-5
- B-11 Log of Existing Boring TB-4
- B-12 Log of Existing Boring TB-7
- B-13 Log of Existing Boring TB-9
- B-14 Log of Existing Boring TB-11
- B-15 Log of Existing Boring HB-4
- B-16 Logs of Existing Test Pit TP-1 and Existing Test Pit TP-2
- B-17 Log of Existing Test Pit TP-3
- B-18 Log of Existing Boring WSC-16
- B-19 Log of Existing Boring WSC-17

21-1-22329-004-R1-AB/wp/lkn

SOIL AND BORING COMPLETION LOG

PROJECT NUMBER : JN 23073

BORING NUMBER : B-1

PROJECT : Noland Ballard Development

LOGGER : Mark K. Dodds, P.E.

٩

LOCATION : 13' E & 10' S of NWC GROUND SURFACE ELEVATION (ft msl) : Street WATER LEVEL AND DATE (ft bgs) : 14' ATD

			SAMPLE			SAMPLE DESCRIPTION	
DEPTH BELOW SURFACE (FT)	WATER LEVEL	NUMBER	STANDARD PENETRATION 6"-6"- (N)	SYMBOL	USCS SYMBOL		COMMENTS
					Fill	Light brown to brown Gravelly Sandy Silt Fill to Gravelly Silty Sandy Fill, slightly moist to moist, loose to medium-dense.	
4		1	22				
8		2	7				
12- 13- 14-	I					Gray Gravelly Silty Sand, wet, very dense.	
15-		3	82		SM		
17						Stopped at 16.5 feet. GWT at 14.0 feet ATD.	

SOIL AND BORING COMPLETION LOG

PROJECT NUMBER : JN 23073

BORING NUMBER : B-2

PROJECT : Noland Ballard Development

LOGGER : Mark K. Dodds, P.E.

LOCATION : 11' W & 15' N of SEC GROUND SURFACE ELEVATION (ft msi) : Alley WATER LEVEL AND DATE (ft bgs) : 14' ATD

			SAMPLE			SAMPLE DESCRIPTION	
DEPTH BELOW SURFACE (FT)	WATER LEVEL	NUMBER	STANDARD PENETRATION 6"-6"-6"- (N)	SYMBOL	USCS SYMBOL		COMMENTS
1- 2-		-			Fill	Light brown to brown Gravelly Sandy Silt Fill to Gravelly Silty Sandy Fill, slightly moist to moist, loose to medium-dense.	
3		4	6				
5- 6-							
7 8 9		2	7				
12-		3	49				On rock? No recovery.
14-					ŚM	Gray Gravelly Silty Sand, wet, very dense.	,
16- - 17-							
18- - 19-		4	+100			Stopped at 19.0 feet. GWT at 14.0 feet ATD.	
20-							

03/22/2001 11:31 4258289443

Hole No. B-1

.

PROJECT: SWC NW57th & 24th NW DRILL RIG: Trailer Rig HOLE DIA: 8 in. INITIAL WATER DEPTH: 13.5 ft. FINAL WATER DEPTH: ft. DATE DRILLED: 02/22/01 LOGGED BY: MKD SAMPLER: SPT HOLE ELEV: ± Road TOTAL DEPTH: 24.0 ft.

DESCRIPTION	SOIL Type		SANPLES	BLOWS /FT.	REMARKS
" Asphalt Concrete Brown to gray Silty Sandy Fill with Clayier a	zones Fill	17-31)		
nd pieces at brick and glass, wet, loose.		555	4		
		555-2	2 -		
		757	1		
				7	Maisture Cantent = 10.5%
		55-6	3-1		
		1353-			
		×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3-1		
		آ ہے تر ا	π		
		535 -	0-1	2	Moisture Content = 15.8%
		15 3 ET	- F		•
		5 5 - 1	2		
		\$ 5 5	4		
iray Silty Sand with layers of Gravelly Silty Sand, wet, very der (Glacial Till)	nse. SM	1//-1	4-╁		
			-41	74	Moisture Content = 15.5%
		1	6 -		
		1	8 -		
			$\frac{1}{4}$		
		///-2	0-	+100	Moisture Content = 7.8%
			4		
		-2	2-		
			\downarrow		
		Y/A		+100	Moisture Content = 9.9%

B-3

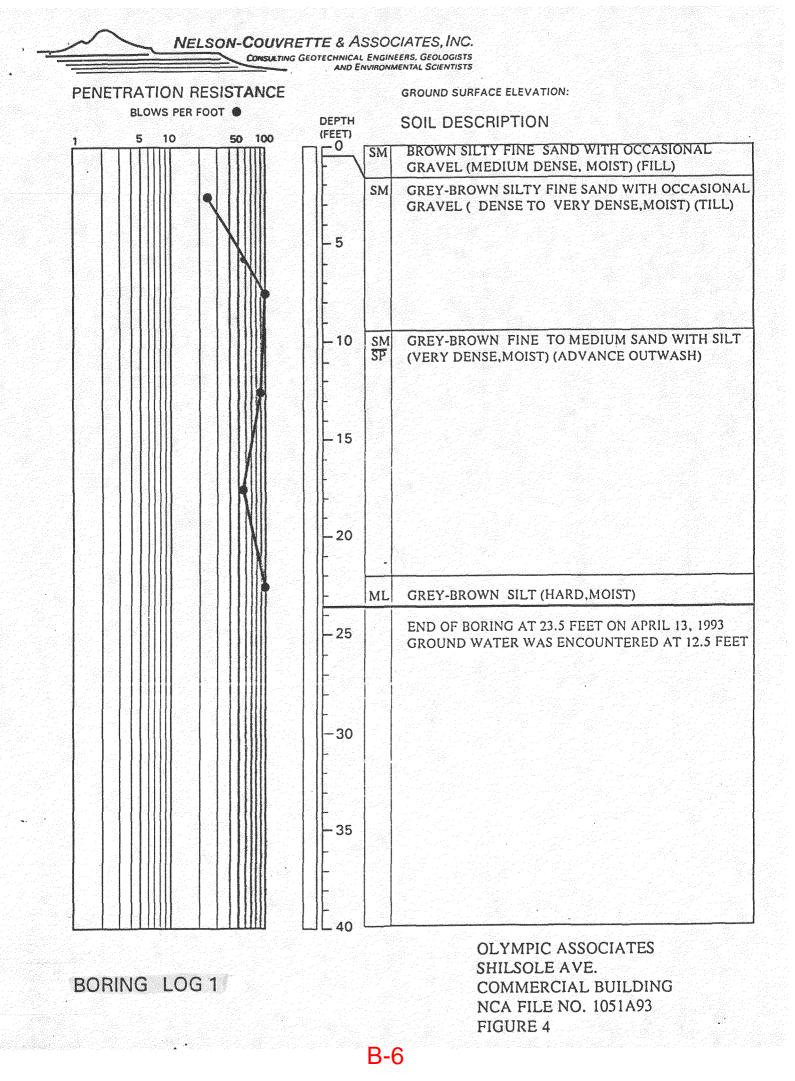
DODDS GEOSCIENCES INC.

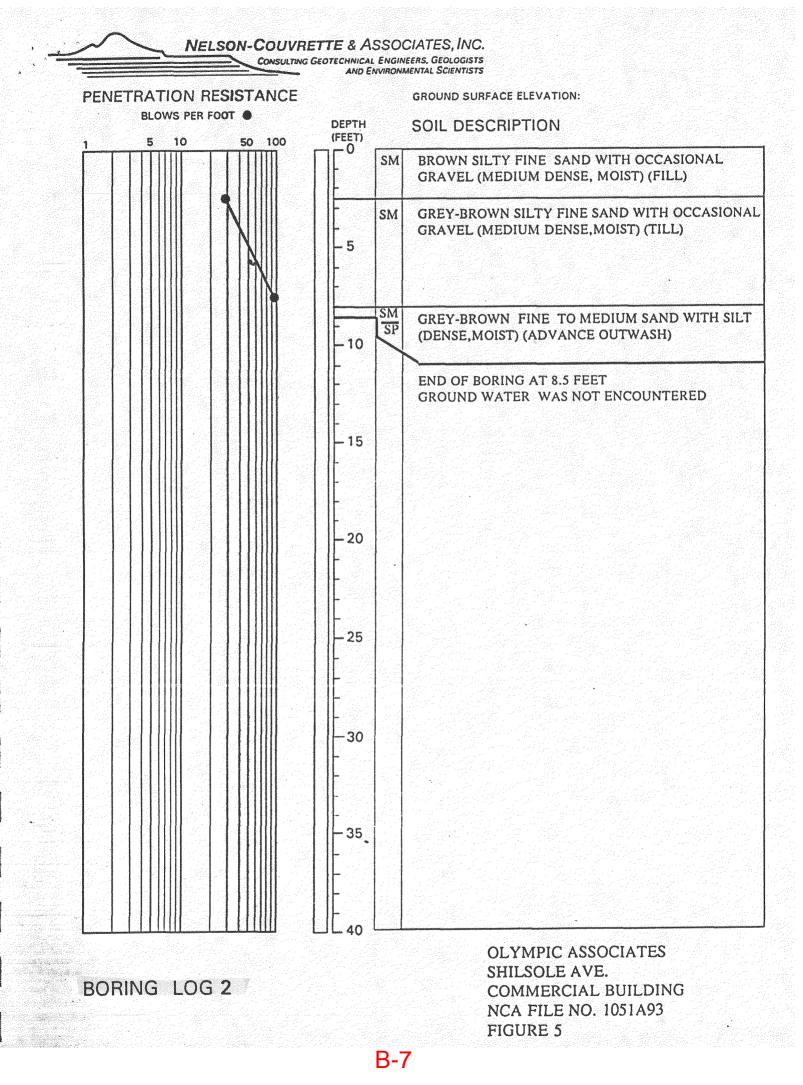
j.

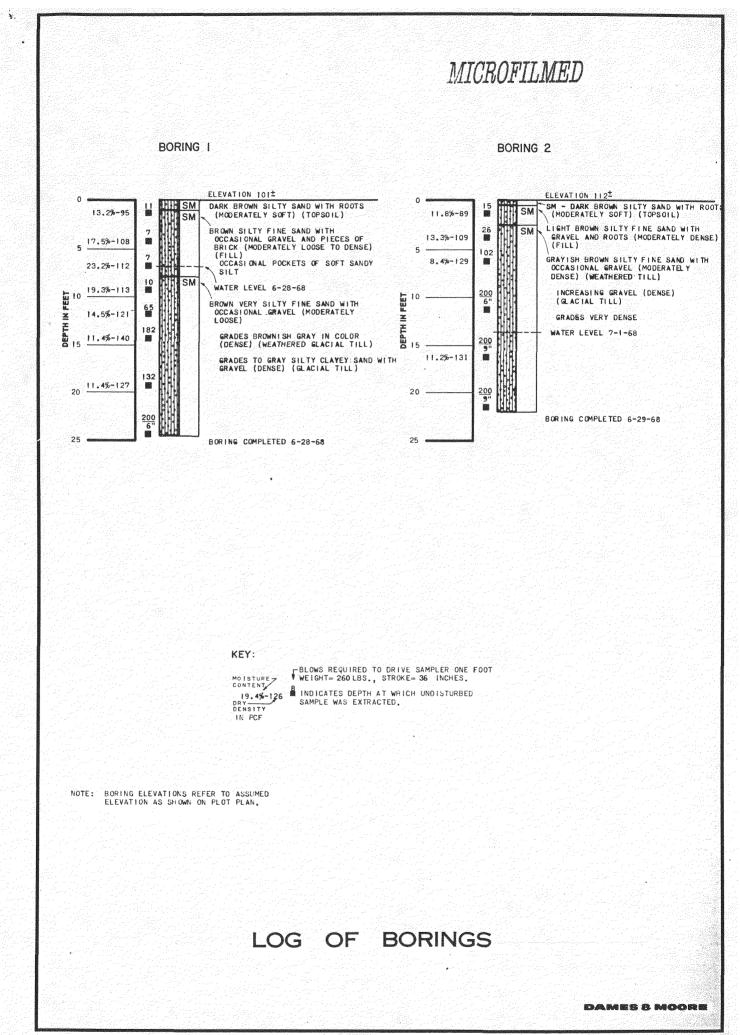
BORING LOG

Boring No. B-2

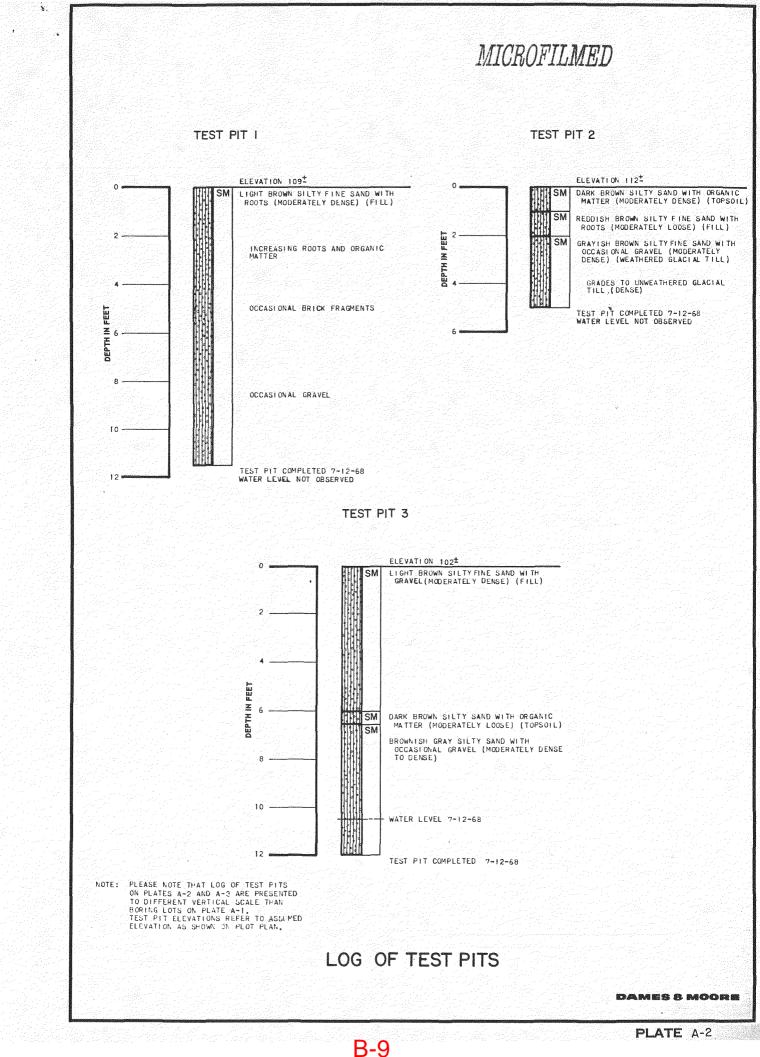
Logged by: CRL


Approximate Elev. 62+/-Date: 12/12/02 Sample Consistency/ (N) Blows/ Moisture Relative Content Soil Description Depth Density (ft.) (%) ft. (6 inches CONCRETE) 50/4" 8 5 50/6" 10 Gray silty SAND with gravel, moist. (Glacial till) With zones of silty fine SAND. 10 Very Dense 50/5* 10 - 15 50/5" \square 9 20 50/5" 13 25 T 50/4" 10 -1-Boring terminated at 28.5 feet. Groundwater seepage encountered at 28 feet.

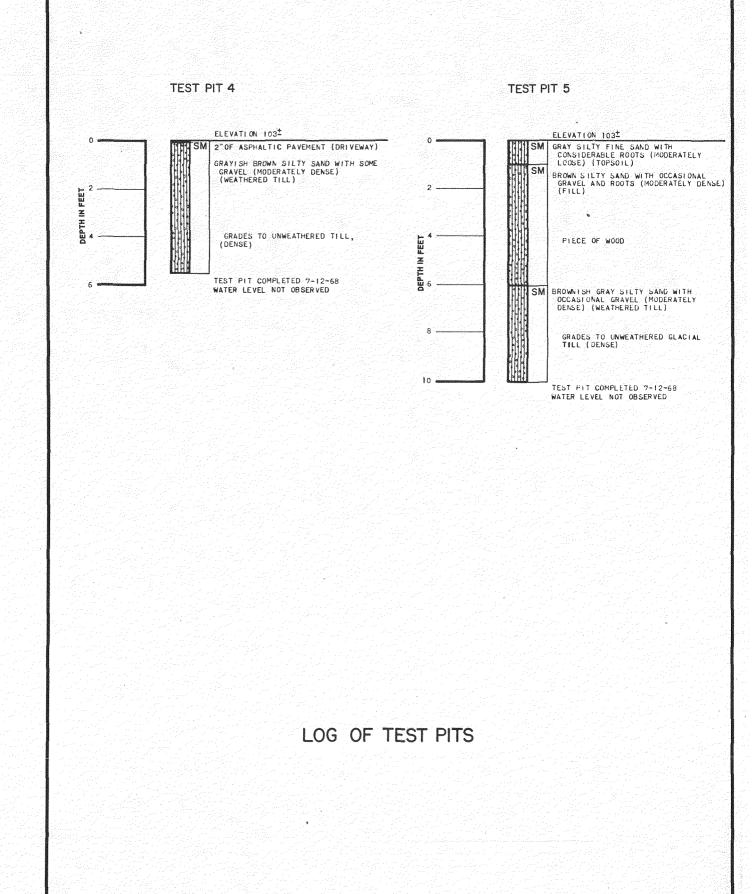

			· · · · · · · · · · · · · · · · · · ·
Terra Associates, Inc. Consultants in Geotechnical Engineering	BALLAF	oring log RD Eagles Sit .e, Washingto	
Geology and Environmental Earth Sciences	Proj. No. T-5299	Date FEB 2003	Figure A-3


B-4

Boring	No. B-3				
Logged by: CRL	. · · ·				
Date: 12/12/02			Appr	oximate	Elev. 67-
Soil Description	Consistency/ Relative Density	Depth (ft.)	Sample	(N) Blows/ ft.	Moistur Conter (%)
(2 inches ASPHALT CONCRETE)		-	- 07		
		- - - 5		50/6"	8
Gray silty SAND with gravel, moist. (Glacial till)				50/6"	8
		- 10 			
	Very	- 15 -		50/6"	10
	Dense	- 15 - 1/15/03		50/6"	8
		20 			
		- - 25		50/5* 50/5"	8
] •		=	50/6"	11
Becomes wet below 32.5 feet.		30 		50/5"	9
		_ 35		50/3	
		-		50/5"	10
Boring terminated at 38.5 feet. Groundwater seepage encountered at 32.5 feet. 2-inch diameter PVC monitoring well installed with screen	n set from 27 to 37 fe	eet and sand	p ack 1	to 12 feet.	• • •
Terra Associates, Inc.	BA SE	BORIN LLARD E ATTLE, V	AGL	ES SITE	
Consultants in Geotechnical Engineering Geology and	Proj. No. T-5	299 Dat			


B-5

SEATLE HOUS AVEN - 11-68 BY D'AK BY DATE 7-11-68 CHECKED BY DATE


DATE

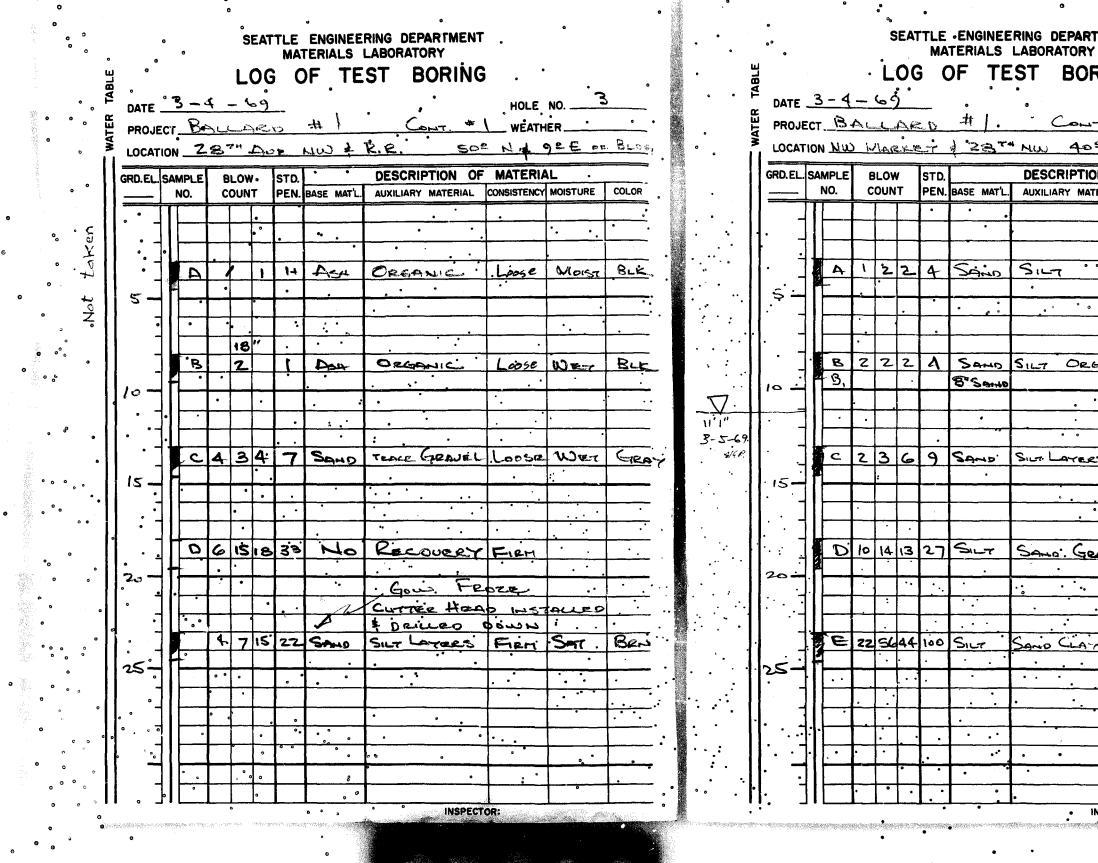
DATE 7-17-68

BY D'LY ArNOLO 7087-003 CHECKED BY.

DATE

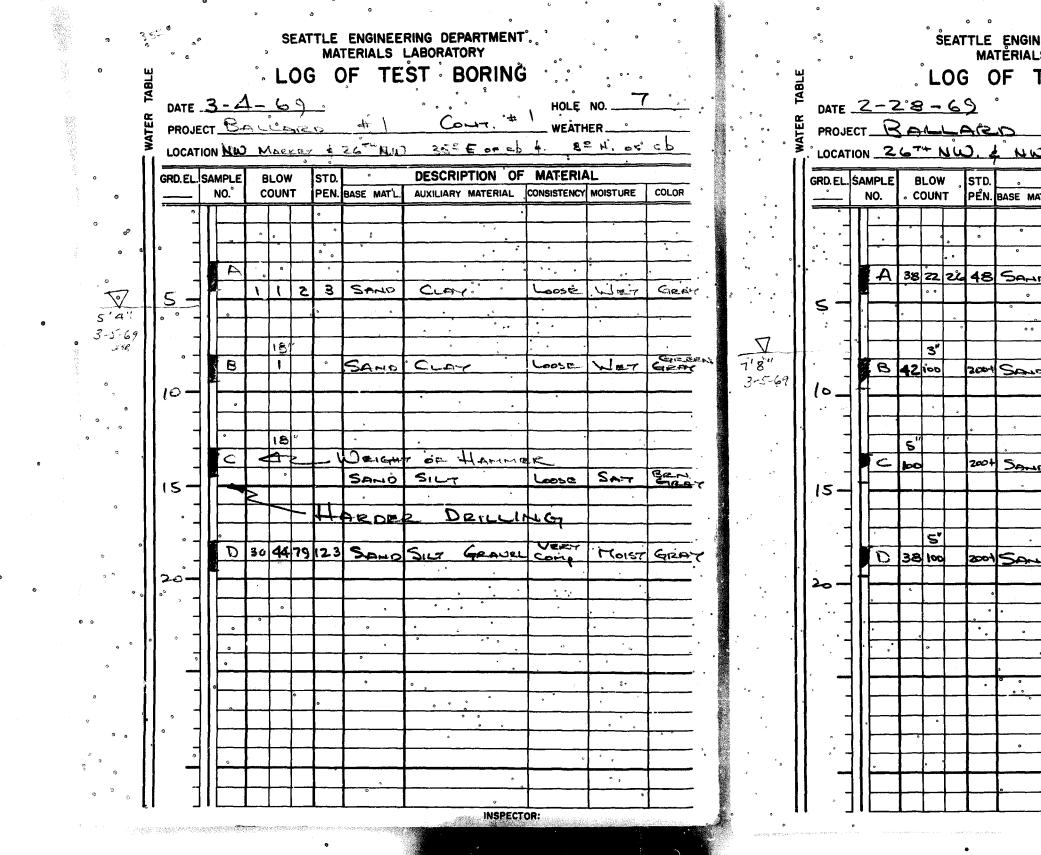
Υ.

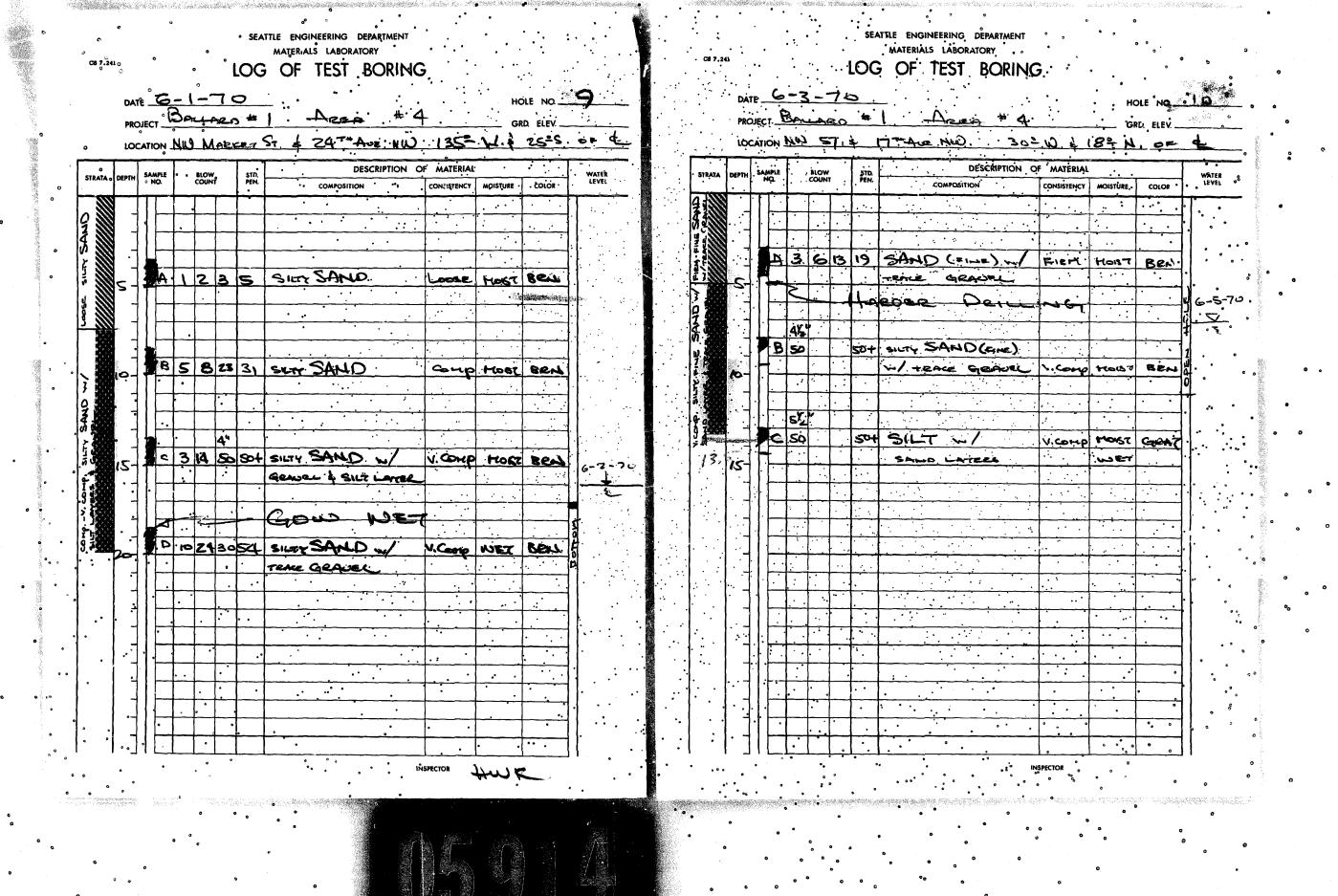
DATE


DATE 7-17-68

W DICK Arnold CHECKED BY ÷ Al

DAMES & MOORE




B-11

RTMENT		9 6		0		
RY	¢		<u>ہ</u>			0
DRING	0			0	.,	0
•		. <	L 。			њ. [.]
	HOLE	NO				
	WEATH	IER				
0° E .		S OF	ch o			
		8				
ION OF			•°			
ATERIAL	CONSISTENC	MOISTURE	COLOR			
•	•					
8						
	•					
• •	LODSE	Moist	BRA	0		0
	•		60	•	9	· 0
0				-		
	•			3	٥	
	0	°				
	•		BLE			
2.GANK	Loose	Hois-			0	
		Moist	Ben			
•				•		
				49 14		
	•			day V		
es_	Loose	Sar	BEN	9 		
					0	
					0	
•			0	0		
•	•					
RANEL	Fien	WET	Giza	-		0
		•				o
•	······			• •		
	•	0	•		. 0	
	······································	• •	•. •	•	0	0
1-7.	Very	Moisr	<u> </u>		A .	
<u>, , , , , , , , , , , , , , , , , , , </u>	Comp	1 COLST	GRA		Ф	o
	·			_	. 0	
			•	8		0
			•	9	•	
				•		
				° 0	0	
•		• •			c)
	Ļ		•	0 . 9	° 0	
	L	•	° 0			
INSPECTO)R: .	e	*	••••*	, o	
an a	and a second	i i shekara na selati <u>Bili</u> sa kati	u un ne numero d'Alto De			
	• •	0			0	
•	-					
ø						

.

		0	ଁଡ	v	
		NT °L	AUN	2	¢
		IG			
•		õ			2
	, íc	HOLE			
8 7.				- 4	
DESC					
			the second statement of the	COLOR	8
	° 0	0			
	°		0		
	Ve	(22.)			
5167	- GEAVE	L Comp	Moist	BRN	
	0 0	o			O
0			0		0
° • •	 A.		<u>-</u>	0	
Sic	۲	Comp	Moisz	BRN	G
					0
	" <u> </u>			•	
<u> </u>	° •	Very	Maren	Beil	
		omp	°	Unit	8 4
	o				
<u></u>			ļ		
		c	<u> </u>	°	
SIL	T-GRADI	el comp	MOIST	Gent	e
•	o		<u> </u>		
		• •	•		
•	°	0 4 f 0	3	• • •	0
			·		0 ¶3
		°		<u> </u>	-9
		••	{		
		<u>0</u>		•	ø
			1		
 0					
0 0		°.			
		ABORATORY	NG DEPARTMENT ABORATORY T BORING HOLE	NG DEPARTMENT ABORATORY T BORING HOLE NO HOLE NO HOLE NO HOLE NO HOLE NO HOLE NO HOLE NO MEATHER MOST NO F MATERIAL AUXILIARY MATERIAL CONSISTENCY MOISTURE COMP MOIST COMP MOIST	NG DEPARTMENT ABORATORY ST BORING HOLE NO HOLE NO DESCRIPTION OF MATERIAL ALXILIARY MATERIAL CONSISTENCY MOISTURE COLOR COLOR FREACTILRIR COLOR NOIST BIEN COLOR NOIST BIEN COLOR COLOR NOIST BIEN COLOR COLOR NOIST BIEN COLOR CO

B-13

SEATTLE ENGINEERING DEPARTMENT MATERIALS LABORATORY

CS 7.24	1						LOG	, OF	TES	T BO	RING	,			
	DA		_	<u>η</u>		12		_					нс	DLE NO.	
	PRC		T X	Jus).	54	+-244	5	By prode .	Seu	see	• .			
												2E. G			
[I I						1	t					· · · · · · · · · · · · · · · · · · ·		
STRATA	DEPTH		APLE IO.		BLOW		STD. PEN.				HON O		MOISTURE	COLOR	WATER LEVEL
	_						Ber	Sum	1000	MARC .					
1 🕅				· · ·											1-17-72
5					<u> </u>		<u> </u>			<u></u>					+1-13-72
+))))			A	3	10	11	21	SILTY	5446	SANU	2	FIRM	MOK-7	BENI	
;	5-									ATERS					
	_								<u></u>	· · · ·			· · ·		
	_					. 									1-11-72-
	_					ļ							WET		THE REAL
	10-	4	в	7	10	13	23			e SAt	41)	Firm	MOLST	BRAI	2
	_									<u></u>					
	_							4 4	sut L	aters	<u></u>				
			C	13	29	27	5	SILTY	FLE	SAM	<u> </u>	Vicorijo		BEN	
	15-						0		1018 C	ine more					
FIRM- V. COMP.														-	
÷)))		4												BRN	SAND
	20		D	9	20	32	56	SILT	Y Mine	e SAN	トロ	xcorp	were	Elery	
	_				ļ			~/	GRA	بعد		.			
										For barrow		, 		-	-72
	_														1
		,					·		,					· · · · · · · · · · · · · · · · · · ·	
	_								,						
	_			<u></u>											
	_												· · · · · · · · · · · · · · · · · · ·		orthe sh
	_		┝╍╌┤					 							
	-														
•	•		_		.		۰	<u> </u>	························				L	h	

INSPECTOR H w Kocza

-

10

B-14

۰.

7111

ħ.					LOG OF BORING	Sł	ieet :	l of	1
Date	drille	ed.	4/1	/93	Sampler and Driving Weight R,3001b El	evation	(ft)	2	5
Depth, ft	55 Elevation	Samples	Blows/6"	Observation Well	Dry density pcf	Moisture Content, X	Other tests		
	23	1	1 1 3		FILL SILTY SAND WITH GRAVEL; brown, fine to coarse, fine gravel, wood debris, silt chunks, very loose, moist to very moist			15	
		2	1 1 1		SILTY SAND WITH GRAVEL; brown to dark brown, fine to medium, trace coarse sand, silt chunks, root structures; very loose, moist to very moist				
5-	20-	3	3 1 3		SILTY SAND; dark brown to black, fine to medium, trace fine gravel, silt chunks, some iron oxidation staining, wood debris; loose, very moist to wet				
-		4	4 8 10		WEATHERED GLACIAL TILL SILTY SAND WITH GRAVEL; brown, fine to coarse sand; loose to medium dense, very moist to wet				
10-	15-	5	[17 51/5'		UNWEATHERED GLACIAL TILL SILTY SAND; gray to brown, fine sand, few medium to coarse sand; very dense, wet			14	
- 15-	10-				Bottom of boring at depth 13.5 feet. Boring backfilled with bentonite chips and cuttings. Groundwater encountered at depth 10.23 feet.				
				,					
	5						Proi	ect No	

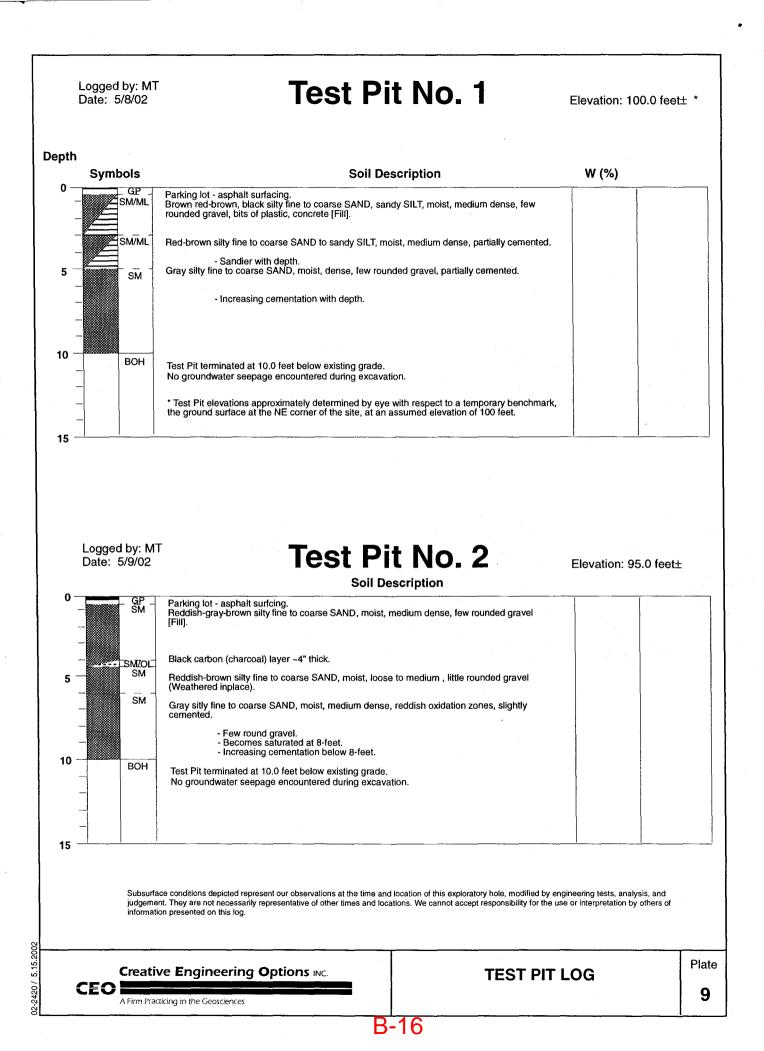
OFF THE WALL MARKET STREET SITES

Seattle, Washington

OFF THE WALL

であっています

Converse Consultants NW


Geotechnical Engineering and Applied Earth Sciences i oject no

93-35508-02

Figure No.

A-4

B-15

Logged by: MT Date: 5/8/02

Test Pit No. 3

Elevation: 93.5 feet±

Symbols	Soil Description	W (%)
- GP - SM -	 Parking lot - asphalt surfacing. Brown-gray silty fine to coarse SAND, moist, medium dense, few rounded gravel [Fill]. 	
 SM	Black & brown silty fine to coarse SAND, moist, loose to medium dense, little wood debris (stake), very slight organic - 1/2" dia. root [Fill].	
SM	Reddish-gray silty fine to coarse SAND, moist, medium dense, few round gravel oxidized.	
SM	Gray silty fine to coarse SAND, moist, medium dense to dense, partially, cemented - increases with depth.	
ВОН	Test Pit terminated at 10.0 feet below existing grade. No groundwater seepage encountered during excavation.	
-		
-		

Subsurface conditions depicted represent our observations at the time and location of this exploratory hole, modified by engineering tests, analysis, and judgement. They are not necessarily representative of other times and locations. We cannot accept responsibility for the use or interpretation by others of information presented on this log.

B-17

Creative Engineering Options INC.

TEST	PIT	LOG
------	-----	-----

Plate

10

02-2420 / 5.15.2002

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,696 Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	<u>6 ft.</u> 	Drillin Drillin Drill R Other	g Co lig E	ompai quipr	ny: nent:	Cas Truc	:k-Mo	Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ <i>liners at 61 fee</i>	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples		Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Asphalt. Brown, <i>Silty Sand with Gravel (SM</i>); moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace to few organics. (Hf)	0.7				00 AM I≰∾ XXXXXXX 44 44 44 44					
Gray-brown, <i>Silty Sand (SM)</i> ; moist; less than 5% fine, subrounded gravel; fine to medium sand; nonplastic fines; few pockets with iron-oxide staining. (Qvro) Medium dense, gray-brown, <i>Silty Sand</i>	6.0		۵ د د		10/31/2016 7:30:00	D AM K	5		•	
 (SM); wet; less than 5% fine, subrounded to angular gravel; fine to medium sand; nonplastic fines; trace iron-oxide staining. (Qvro) Few seams with iron-oxide staining below 8 feet. 			0.9			10/31/201612039/200449/10/20049/10/2004				
			15.3			101	10		•	
	16.0						15			
Very dense, gray-brown, <i>Silty Sand (SM)</i> to <i>Silty Sand with Gravel (SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict; few wet, silty sand seams; trace pockets with iron-oxide staining.	10.0		3.2					•		63
pockets with iron-oxide staining. (Qvd) CONTINUED NEXT SHEET LEGEND I Sample Recovery ▼ Grout * Sample Not Recovered ③ ② Sonic Core Sample ☐ 1 2.0" O.D. Split Spoon Sample 1. Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date special 3. USCS designation is based on visual-manual classification	und Wate	er Leve	l in V	WP				Plastic Li	20 ♦ % Fines (~ ● % Water (imit ● Natural Water (Content Liquid Limit
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviati	ions and (definiti	ons.					-	Vater Quality e, Washingto	-
 Refer to KET for explanation of symbols, codes, abbreviating Groundwater level, if indicated above, is for the date special USCS designation is based on visual-manual classification 	fied and r	may va	ary.	sting.				OF SON ber 2016		E WSC-16
								NON & WIL		FIG. A-17 Sheet 1 of 11

MASTER LOG BFW 21-21979.GPJ SHAN WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

Total Depth: 201 ft. Northing: 575,438 Tax Elevation: 00.7 ft. Faction: 1.505.00			-	lethod:		onic Co		Hole Diam.:	<u> </u>
Top Elevation: 28.7 ft. Easting: 1,585,690 Vert. Datum: NAVD 88 Station: -	<u>6 ft.</u>		•	Company Equipme			Drilling Dunted Sonic	Rod Diam.: Hammer Type	2.625" Automatic
Horiz. Datum: <u>Project</u> Offset:			-	omments				liners at 61 feet	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.			NCE (blows/foot 40 lbs / 30 inches 40 61
Medium dense to very dense, gray, <i>Silty</i> <i>Sand (SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict; few silt seams. (Qvd) - Moist to wet below 24 feet.	- 22.0		3.9	$\frac{R.5}{5.5}$		25			
 Layer of silty gravel with sand from 30 to 30.5 feet. Layer of wet, silty sand from 31.5 to 32.3 feet. 				.7 R.6 WWWWWW S.6		30	•		
- Layer of silty sand with gravel from 34.3 to 35 feet.						35	•		
Medium dense to dense, gray, <i>Silty Sand</i> (<i>SM</i>) to <i>Silty Sand with Gravel (SM</i>); wet; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few	- 37.5			R-8			•		
CONTINUED NEXT SHEET <u>LEGEND</u> I Sample Recovery ¥ Gro Sample Not Recovered O Sonic Core Sample 2.0" O.D. Split Spoon Sample	ound Wa	ter Lev	el in	VWP			Plastic L	20 ◇ % Fines (⊲ ● % Water C imit	Content Liquid Limit
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbrevial	tions and	d defini	itions	i.			-	Water Quality e, Washingtor	-
 Croundwater level, if indicated above, is for the date spec USCS designation is based on visual-manual classification 	ified and	d may v	vary.				6 OF SON		-1-22176-003
							NON & WIL		FIG. A-17
					1 2	Seotechnic	cal and Environmen	tal Consultants	Sheet 2 of 11

MASTER_LOG_BFW 21-21979.GPJ SHAN_WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

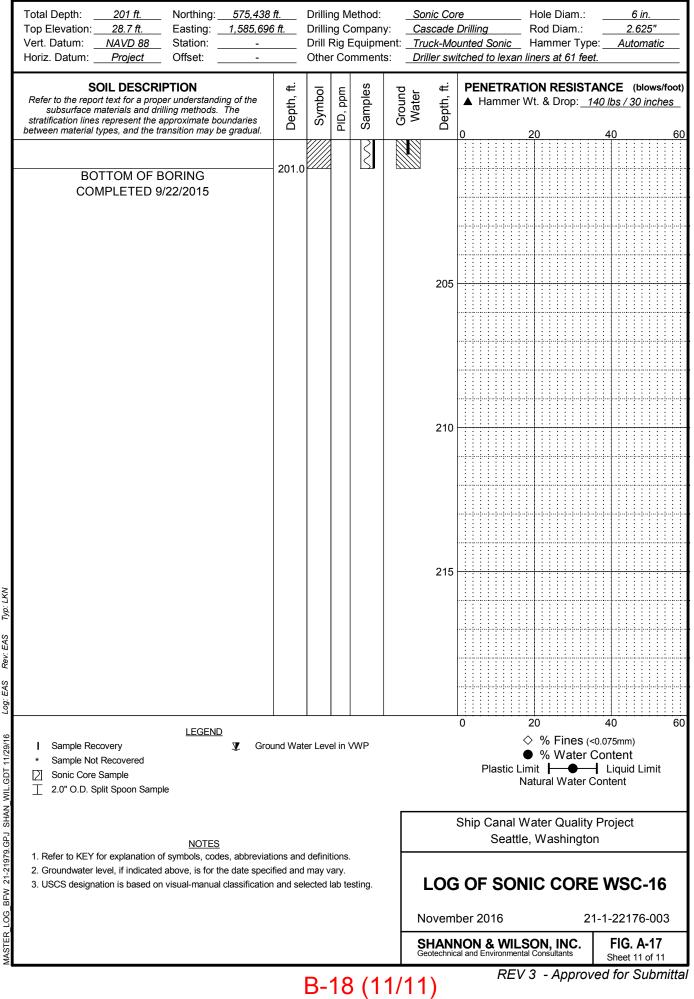
	p Elevation: <u>28.7 ft.</u> Easting: <u>1,585,696 ft.</u> Drilling Compar rt. Datum: <u>NAVD 88</u> Station: Drill Rig Equipm							ed So		F F	_ Hole Diam.: _ Rod Diam.: _ Hammer Typ <u>n liners at 61 fee</u>							
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.		E NE Har		er W			-	<u>140</u>		•		
diamict pockets. (Qva)				<u>8-8</u>				•										
Dense, gray, <i>Silty Sand with Gravel (SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd) Dense, gray, <i>Poorly Graded Sand with Silt</i> (<i>SP-SM</i>); wet; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines.	- 43.0 - 45.0 - 46.0					45			•									
(Qva) Dense, gray, <i>Silty Sand (SM)</i> to <i>Silty Sand</i> <i>with Gravel (SM)</i> ; wet; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few diamict pockets. (Qvd) - 5 feet of heave at 51 feet.			ç	<u>үүүүүүүүүүүүүүүүү S-10</u>		50			•									
Dense, gray, <i>Silty Sand (SM)</i> to <i>Silty Sand</i> <i>with Gravel (SM)</i> ; moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd)	- 53.5		Ē			55			•									
Medium dense, gray, <i>Silty Sand (SM)</i> ; moist to wet; less than 10% fine to coarse, subrounded to subangular gravel; fine to coarse sand; low plasticity fines. (Qva) - Blow counts at 56 feet may be artificially low due to slough in boring.			Ċ	R-12					•									
ČONTINUED NEXT SHEET LEGEND I Sample Recovery	ound Wa	ater Leve	el in V	WP			0	Pla	astic	♦ € Lim		Wa	ter	<0.0 Coi	nter Liqu	nt iid Li	mit	6
NOTES 1. Refer to KEY for explanation of symbols, codes, abbrevia 2. Groundwater level, if indicated above, is for the date spec 3. USCS designation is based on visual-manual classification	cified an	d may va	ary.	sting.		LOC	G 0)F \$	Seat	ttle,	Wa	Ishii	ngto DR	on E \	NS			
						SHAN Geotechnic		N & d Envi	WI	LS(ental	ON, Consi	IN	Ç.			G. A		

	op Elevation: <u>28.7 ft.</u> Easting: <u>1,585,696 ft.</u> ert. Datum: <u>NAVD 88</u> Station:							Hole Diam.: Rod Diam.: Hammer Typ <i>liners at 61 fee</i>	-	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm Samples		Water	Depth, ft.			ANCE (blows/fr 40 lbs / 30 inche 40	
Gray, <i>Silty Sand with Gravel (SM</i>); wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines. (Qva) - Layer of silt at 64.3 feet.	61.0		R13 R13 P > > > > > > > > > > > > > > > > > > >			65				
- Layer of wet, sandy silt from 66.5 to 67 feet.	- 71.0		R-14 R-14			70	•			
Gray, <i>Silty Sand with Gravel (SM)</i> ; moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd) Gray, <i>Silty Sand (SM)</i> to <i>Silty Sand with</i> <i>Gravel (SM)</i> ; wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines. (Qva)	- 73.0 - 74.3		R15			75	•			
Coarse sand; nonplastic tines. (Qva) Gray, Silty Sand with Gravel (SM); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; low plasticity fines; diamict. (Qvd) CONTINUED NEXT SHEET LEGEND I Sample Recovery ★ Sample Not Recovered ② Sonic Core Sample ☐ 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification			R-16				0	20 ♦ % Fines (·	40 <0.075mm)	60
I Sample Recovery ⊈ Groute Sample Not Recovered Sonic Core Sample <u></u> 2.0" O.D. Split Spoon Sample	und Wa	ater Lev	el in VWP			;	Plastic Li N	% Water	Content	
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	ified and	d may v	ary.] .	No	.OG	Seattle	e, Washingto	n E WSC-16 1-1-22176-003	
		B-	18 (4/1		HANN Ditechnic	NON & WIL al and Environment REV		FIG. A-17 Sheet 4 of 11 red for Submi	itta

MASTER_LOG_BFW 21-21979.GPJ SHAN_WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,69		-				nic Col Iscade	_ Hole Diam.: Rod Diam.:			<u> </u>					
Vert. Datum: NAVD 88 Horiz. Datum: Project	Station: _ Offset: _		<u>o n.</u>	Drill I	Rig E		nt: <u><i>Tri</i></u>	uck-Mo	bunted Sonic itched to lexar	Har	nmer ⁻	Туре:	-	2.625 utomai	
SOIL DESCRII Refer to the report text for a prope subsurface materials and drii stratification lines represent the a between material types, and the tra	er understandii ling methods. pproximate bo	The undaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer						
Gray, <i>Poorly Graded Sand</i> <i>Gravel (SP-SM)</i> ; wet; fine subrounded to subangular coarse sand; nonplastic fir (Qva) No recovery from 87.8 to 9	<i>d with Silt a</i> to coarse, r gravel; fin nes.	nd	- 86.0			$\frac{R.19^{\circ}}{2}$		85							
- Driller switched to bag s to 111 feet. Gray to green-gray, <i>Silty S</i> less than 15% fine, subrous subangular gravel; fine to nonplastic fines; iron-oxide (Qva) Gray, <i>Silty Sand (SM</i>); we fine, subrounded to suban CONTINUED	Sand (SM); unded to coarse sar e staining. t; less than	wet; hd; 10%	- 96.0 - 96.8			R-20		95	•						
Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample	<u>LEGEND</u>		und Wa	ter Leve	el in \	VWP			0 Plastic L	• % .imit	o Fine o Wat I● al Wat	er Co	onter Liqu	nt Iid Lim	iit
 Refer to KEY for explanation of Groundwater level, if indicated USCS designation is based on 	above, is for th	e date spec	ified and	d may v	ary.		N	LOG	Ship Canal Seattl S OF SOI ber 2016 NON & WIL	le, W	ashin CO	gton RE 21-	WS 1-22		03

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,690		-			Sonic Core Cascade Drilling			_ Hole Diam.: Rod Diam.:			<u>6 in.</u> 2.625"		
Vert. Datum: <u>NAVD 88</u> Station:	<i>o n.</i>		•				ounted Sonic	-	nmer T	_		tomat	
Horiz. Datum: <u>Project</u> Offset:		Othe	r Cor	mments	: Dri	ller sw	vitched to lexa	n liner	s at 61	feet.			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hamme	Wt. a	-	140	lbs /	•	hes
to medium sand; nonplastic to low plasticity				15			0	20			<u>40</u>		(
fines. (Qva)				$\frac{2}{5}$									
- Layer of wet, poorly graded, fine to medium sand from 99.8 to 101.4 feet.	102.0	о <mark>:::::::</mark>		Ş									
Gray, Sandy Silt (ML) to Silt with Sand (ML); moist; less than 5% fine, subrounded to subangular gravel; fine to coarse sand; low plasticity fines.				R-21				•					
(Qpgl)				Ş		105							
	- 107.0			$\left \right\rangle$									
Gray, <i>Lean Clay (CL)</i> to <i>Silt (ML)</i> ; moist; less than 5% fine, subrounded to										•			
subangular gravel; less than 10% fine to coarse sand; low to medium plasticity fines; few silty sand seams and pockets,				R-2.									
trace fine clay seams with slickensides. (Qpgl)				Ş		110							
- Slightly diced to blocky texture below 111				2									
feet.				$\left \right\rangle$									
				R-23					•				
				Ş		115							
Gray, Silty Sand (SM); moist; less than 5%	- 116.0			$\left \sum_{i=1}^{n} \right $									
fine, subrounded to subangular gravel; fine sand; nonplastic fines.				Š									
(Qpgo)				R-24			•						
	- 119.	5		Ś									
* Sample Not Recovered	ound Wa	ter Lev	el in V	/WP			0 Plastic	• %	6 Fine 6 Wat	s (<0.0 er Co	nten	t	it
 Sonic Core Sample 2.0" O.D. Split Spoon Sample 									al Wat				
NOTES							Ship Canal Seatt		er Qua /ashin		ojec	t	
 Refer to KEY for explanation of symbols, codes, abbrevia Groundwater level, if indicated above, is for the date spec USCS designation is based on visual-manual classificatio 	ified and	d may v	ary.	sting.			G OF SO			RE			
							ber 2016	SON	I, INC		FIG	76-0	7
					Ge	eotechnic	cal and Environme	ntal Cor	sultants			t 6 of 1	


Total Depth: 201 ft. Northing: 575,438 ft. Top Elevation: 28.7 ft. Easting: 1,585,696 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:	Sonic Core Cascade Drilling Truck-Mounted Sonic Driller switched to lexa		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Symbol PID, ppm Samples	· 뉴		ANCE (blows/foo 40 lbs / 30 inches 40 6
Gray, Silty Sand (SM); moist; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; low plasticity fines; diamict. (Qpgt)121.0Gray, Silty Sand with Gravel (SM); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qpgt)124.6Gray, Silty Sand (SM); moist; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qpgd)124.6Gray, Silty Sand (SM); moist; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qpgd)126.0Gray, Silty Sand with Gravel (SM); fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qpgt)131.0Gray, Poorly Graded Sand with Silt (SP-SM); wet; less than 5% fine, subrounded gravel; fine to medium sand; nonplastic fines. (Qpnf)132.0Gray to gray-brown, Silty Sand (SM); wet; fine to medium sand; nonplastic fines; few organics. (Qpnf)136.6	R.27 R.26 R.26 R.26			
Gray-brown <i>Silt with Sand (ML)</i> ; moist; fine sand; low plasticity fines; trace to few organics. (Qpnl) Gray-brown <i>Silt (ML)</i> to <i>Lean Clay (CL)</i> ; moist; less than 10% fine sand; low to CONTINUED NEXT SHEET LEGEND	d definitions.	Ship Canal Seat LOG OF SO November 2016 SHANNON & WI Geotechnical and Environme	2 LSON, INC. ental Consultants	Content Liquid Limit Content Project n

Total Depth: <u>201 ft.</u> Northing: <u>575,438</u>				ethod:		nic Col		Hole Diam :		<u>6 in.</u> 2.625"	
Top Elevation: <u>28.7 ft.</u> Easting: <u>1,585,69</u> Vert. Datum: <u>NAVD 88</u> Station: -	ט ת			ompany: Equipmer			Drilling	Rod Diam.: Hammer Ty	-	<u>2.625"</u> utomatic	
Horiz. Datum: <u>Project</u> Offset:				mments:			itched to lexan			atomatic	_
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.		TION RESIS Wt. & Drop: _			
between material types, and the transition may be gradual.			₫				0	20	40		
medium plasticity fines; trace to few organics. \(QpnI)	- 141.()		$\left \right\rangle$							
Gray to gray-brown, <i>Silty Sand (SM)</i> ; moist to wet; fine to medium sand; nonplastic				Ş							
fines; trace to few organics; trace shell fragments. (Qpnf)			•	R-29				•			
			•	$\left \right\rangle$		145					
- Layer of wet, poorly graded sand with silt from 146.5 to 147 feet.	- 147.0		•	$\frac{1}{2}$							
Gray, <i>Poorly Graded Sand (SP)</i> ; wet; fine to medium sand; less than 5% nonplastic			•	R-30			•				
fines. (Qpnf)	- 150.2	2		$\left \right\rangle$		150					
Gray, <i>Silty Sand (SM)</i> ; wet; fine to medium sand; nonplastic fines; trace to few organics; few sandy silt seams.	100.2			$\left \frac{1}{2} \right $							
(Qpnf)Seam with little organics at 150.5 feet.Wood fragments at 151.7 feet.			•	$\left \right\rangle$				•		\diamond	
-				R-31							
Gray-brown, <i>Sandy Silt (ML)</i> to <i>Silty Sand</i> (<i>SM</i>); moist to wet; fine sand; nonplastic	- 155.2	2		$\left \right\rangle$		155					
fines; trace to few organics; slightly blocky texture. (QpnI)				$\left \right\rangle$							
	- 159.3	3		R-32							
CONTINUED NEXT SHEET		V////	1	IST			0	20	40		
LEGEND I Sample Recovery ▼ Growstand * Sample Not Recovered ② Sonic Core Sample 1 2.0" O.D. Split Spoon Sample	ound Wa	ter Lev	el in V	/WP			Plastic L	 ◇ % Fines ● % Water imit	(<0.075m Conter	nt iid Limit	
NOTES							Ship Canal \ Seattl	Nater Qualit e, Washingt		ct	
 Refer to KEY for explanation of symbols, codes, abbrevia Groundwater level, if indicated above, is for the date special USCS designation is based on visual-manual classification 	cified and	d may v	ary.	esting.			G of Son				
							ber 2016		-	176-003 5. A-17	3
					Ge	eotechnic	NON & WIL	tal Consultants		et 8 of 11	

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,696 Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -		Drillir Drill F	ng C Rig	/lethod: Company: Equipmer omments:	nt:	Cas Truc	ck-Mol	Drilling	Hole Diam.: Rod Diam.: Hammer Typ <u>ners at 61 fee</u>	e: <u>A</u>	<u>6 in.</u> 2.625" .tomatio	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water	Depth, ft.	PENETRATI			•	'
Gray-brown, <i>Lean Clay (CL)</i> to <i>Silt (ML)</i> ; moist; less than 10% fine sand; low to medium plastlcity fines; trace organics; slight blocky texture. (Qpnl) Gray, <i>Lean Clay (CL)</i> to <i>Fat Clay (CH)</i> ; moist; less than 5% fine sand; medium to high plasticity fines; trace organics; trace shell fragments; blocky texture; trace slickensides. (Qpnl) - Diced texture from 163.2 to 163.5 feet. Gray-brown <i>Silt with Sand (ML)</i> to <i>Lean Clay with Sand (CL)</i> ; moist; fine sand; low to medium plasticity fines; trace organics. (Qpnl) Gray to gray-brown, <i>Elastic Silt (MH)</i> to <i>Silt (ML)</i> ; moist; less than 10% fine sand; low to medium plasticity fines; blocky texture; trace organics. (Qpnl) - Trace silty sand seams from 167.5 to 168 feet.	- 161.0 - 164.6 - 166.0	5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			165					
Gray, <i>Lean Clay (CL)</i> ; moist; less than 5% fine, subrounded to subangular gravel; less than 5% fine to coarse sand; medium plasticity fines; trace to few shell fragments; blocky to diced texture. (QpnI)	· 176.0			R-36					•			6
LEGEND	und Wat	ter Leve	el in	VWP				Contraction Co	20 % Fines (% Water (nit atural Water (Conter I Liqu	it	60
I Sample Recovery ▼ Grout * Sample Not Recovered □ Sonic Core Sample □ 2.0" O.D. Split Spoon Sample □ 2.0" O.D. Split Spoon Sample 1 Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	fied and	d may v	ary.			No	. OG	Ship Canal W Seattle, OF SON ber 2016 NON & WILS al and Environmental	Washingto	n E WS		3
		B -'	18	3 (9/ [,]	1 ·		itechnica		3 - Approv		et 9 of 11 Subr	

MASTER LOG BFW 21-21979.GPJ SHAN WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

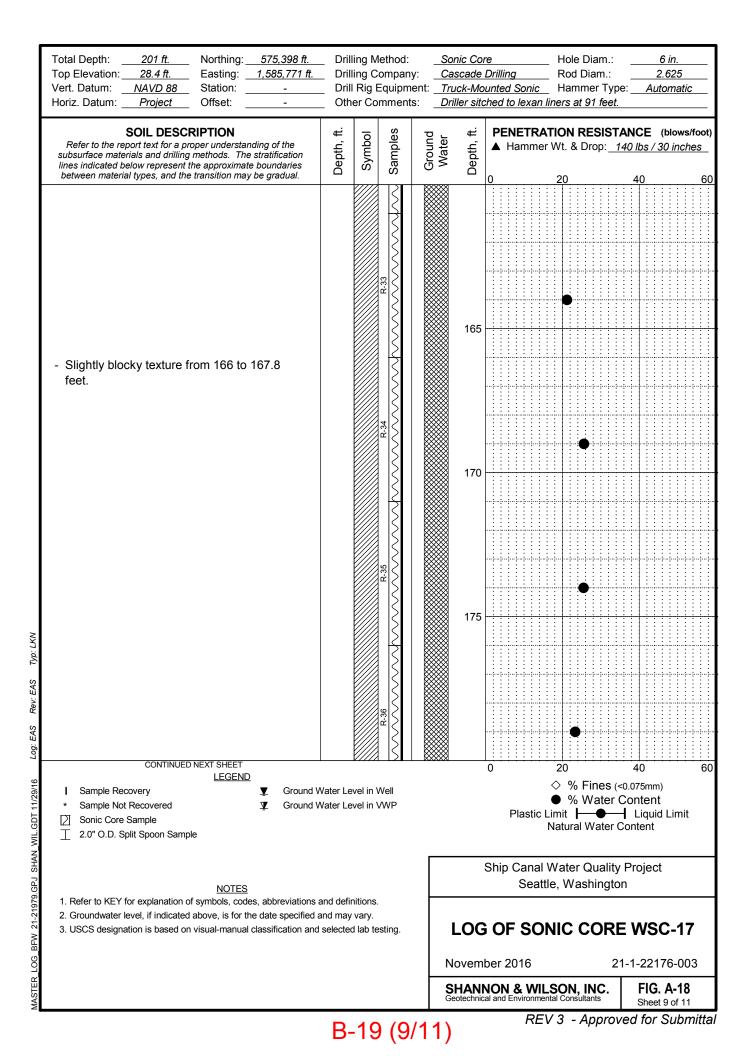
Total Depth: 201 ft. Northing: Top Elevation: 28.7 ft. Easting: Vert. Datum: NAVD 88 Station: Horiz. Datum: Project Offset:	575,438 ft. 1,585,696 ft. - -	Drillir Drill F	ng Method: ng Company: Rig Equipmen r Comments:	<u>Ca</u> t: <u>Tri</u>	uck-Mo	Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ	
SOIL DESCRIPTION Refer to the report text for a proper understand subsurface materials and drilling methods stratification lines represent the approximate b between material types, and the transition may	The doundaries do	Symbol	PID, ppm Samples	Ground Water	Depth, ft.			ANCE (blows/foo 140 lbs / 30 inches 40 6
 Layer of wet, silty, fine to medium from 196.6 to 196.9 feet. Layer of moist, sandy, lean clay fr 196.9 to 197.6 feet. 4-inch cobble at 197.6 feet. Sample Recovery 	om	Pater Level			185 190 195	0	20	
 * Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample 							Natural Water	- Liquid Limit Content
NOTES 1. Refer to KEY for explanation of symbols, cor 2. Groundwater level, if indicated above, is for 3. USCS designation is based on visual-manual	des, abbreviations a the date specified a	nd may v	ary.	N	LOG	Seattl	2	

Rev: EAS EAS Log: 11/29/16 BFW 21-21979.GPJ SHAN WIL.GDT LOG

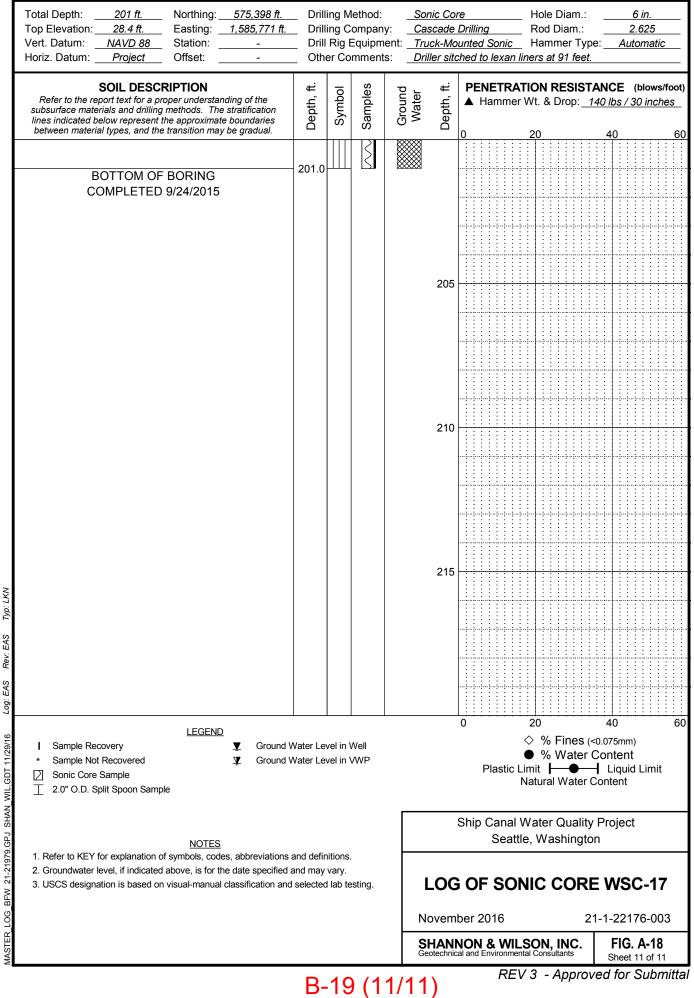
Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	_ Dri _ Dri	illing Method: illing Compan ill Rig Equipm her Comment	ent:		Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ iners at 91 feet.	<u>6 in.</u> <u>2.625</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol Samples	Croind	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Asphalt. Medium dense, brown, <i>Silty Sand with Gravel</i> <i>(SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace pockets with iron-oxide staining; slight diamict texture. (Hf)	0.5	$\frac{1}{2}$	5 9:51:00 AM 帧	11/16/2016 9:51:00 AM i▲- 5			
Medium dense, brown, <i>Poorly Graded Sand</i> <i>with Silt (SP-SM)</i> to <i>Silty Sand (SM)</i> ; wet; fine to medium sand; nonplastic fines. (Qvro) Medium dense, brown, <i>Silty Sand (SM)</i> ; wet; less than 5% fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few seams with iron-oxide staining above 10 feet. (Qvro)	- 7.5	Normalize Normalize <t< td=""><td>11/16/2016</td><td>11/16/20</td><td>•</td><td></td><td>•</td></t<>	11/16/2016	11/16/20	•		•
Medium dense, gray-brown, <i>Silty Sand with</i> <i>Gravel (SM)</i> ; moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict; trace pockets of poorly graded sand. (Qvri)	- 13.8	10000000000000000000000000000000000000		15	•		
- Few wet, silty sand seams below 19 feet.					•		
		evel in Well evel in VWP				20 ♦ % Fines (● % Water (.imit ↓ ● Natural Water (Content Liquid Limit
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and	and ma	y vary.		LOG	Seattl		-
				SHAN Geotechnic	NON & WIL		FIG. A-18 Sheet 1 of 11 red for Submitta

Total Depth: Top Elevation Vert. Datum: Horiz. Datum:	NAVD 88	Northing: _ Easting: _ Station: _ Offset: _	575,398 ft. 1,585,771 ft. - -	_ Dri _ Dri	illing Method: illing Company: ill Rig Equipment her Comments:	<u> </u>	uck-Mo	Drilling unted Sonic	Hole Diam.: Rod Diam.: Hammer Typ iners at 91 feet.	e: Au	6 in. 2.625 Itomatic
subsurface ma lines indicated	SOIL DESC report text for a p terials and drilling below represent rial types, and th	roper understan g methods. The the approximate	stratification boundaries	Depth, ft.	Symbol Samples	Water	Depth, ft.		TION RESIST Wt. & Drop: 20		
Medium der Silty Sand w coarse, subito under Medium der Poorly Gradies than 5% subangular nonplastic fit (Qvro) Medium der Gravel (SM) subrounded coarse sand texture. (Qvd) Medium der Isubangular nonplastic fit (Qva) Medium der less than 15 subangular nonplastic fit (Qvd) Medium der less than 15 subangular nonplastic fit (Qvd) Medium der less than 10 gravel; fine * Sample R * Sample N Sonic Cor 2.0" O.D.	rial types, and the rise, gray-brow <i>vith Gravel (S</i> rounded to su and; nonplast led Sand with 6 fine to coar gravel; fine to nes. 1 to Silty Sand to subangula b; nonplastic f nse, gray, Silt ne to coarse, gravel; fine to nes. 1 to silty Sand to subangula b; nonplastic f nse, gray, Silt ne to coarse, gravel; fine to nes. 1 to coarse, gravel; fine to nes; diamict. 1 to nse, gray, Silt % fine to coarse gravel; fine to nes; diamict. 1 to nse, gray, Silt % fine, subro to coarse sar 1 contrivuer ecovery ot Recovered	wn, Silty Sar Wn, Silty Sar M); wet; fine Jbangular gr ic fines; few Wn, Silty Sar Silt (SP-SM se, subround coarse san Wn, Silty Sar d (SM); mois ar gravel; fin- fines; slight of y Sand with subrounded o coarse san y Sand (SM, arse, subroun o coarse san y Sand (SM, bunded to su to coarse san y Sand (SM, bunded to su	be gradual.	 22.5 24.0 26.0 27.5 31.0 33.5 36.0 	evel in Well		25 30 35	Plastic L I Ship Canal \	20 20 20 20 20 20 3 % Fines (9 % Water imit ↓ ● Natural Water (Water Quality e, Washingto	40 <0.075mr Conter H Liqu Content	60 n) it id Limit
2. Groundwate 3. USCS desig	r level, if indicated nation is based of		-			N	lovem	GOF SON ber 2016 NON & WIL		1-1-22 ⁻	C-17 176-003
CHM				R	-19 (2/1				tal Consultants	Shee	et 2 of 11

Total Depth: 201 ft. Northing: 575,398 Top Elevation: 28.4 ft. Easting: 1,585,771				ethod: ompan			<u>iic Coi</u> scade	re Drilling	Hole Diam.: Rod Diam.:		<u>6 in.</u> 2.625
Vert. Datum: <u>NAVD 88</u> Station:	п.	_ Dril	l Rig E	Equipm	ent:			ounted Sonic	Hammer Typ	e: <u>A</u>	utomatic
Horiz. Datum: <u>Project</u> Offset:		_ Oth	er Co	mment	s:	Dril	ler sito	ched to lexan lii	ners at 91 feet.		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratificatior lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	5	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.		TION RESIST	40 lbs .	-
slight diamict texture.				3						40	
(Qvd) Medium dense, gray, <i>Silty Sand (SM)</i> to <i>Silty</i>				₹				•	\mathbb{O}		
Sand with Gravel (SM); moist to wet; fine to				Ş %							
coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict.	ſ	42.5		Š							
(Qvd)				6-2 2							
- Layer of wet, poorly graded sand with silt at				\leq							
38.9 feet.Layer of wet, poorly graded sand with silt	1	44.7		ξ			45				
from 41 to 41.7 feet.				5							
Medium dense, gray, <i>Silty Sand with Gravel</i>				ې							
<i>(SM)</i> ; wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand;	1	47.0		Ś						/	
nonplastic fines; slight diamict texture.				\mathbb{R}							· · · · · · · · · · · ·
(Qvd)				<u>-</u>							
Medium dense to dense, gray, <i>Poorly Graded</i> Sand with Silt (SP-SM) to Silty Sand (SM);				ξ							
wet; less than 10% fine to coarse, subrounded	1			ξ			50				
to subangular gravel; fine to coarse sand; nonplastic fines.				Ş				•	\downarrow		
(Qva)				S-10					/		
Medium dense to dense, gray, Silty Sand with				ξ					\mathbb{N}		
<i>Gravel (SM)</i> ; moist to wet; fine to coarse, subrounded to subangular gravel; fine to	_	53.5		÷							
coarse sand; nonplastic fines; diamict pockets	.			≝ ≶				•			
(Qvd)				3			55				· · · · · · · · ·
 Few wet, poorly graded sand with silt seams from 51 to 53.5 feet. 	'			3			00				
Medium dense, gray, Silty Sand (SM) to Silty				۲. ۲							
Sand with Gravel (SM); moist; fine to coarse, subrounded to subangular gravel; fine to				Ś					/		
coarse sand; nonplastic fines; diamict.	\int	57.5		$\left \right\rangle$					<u> </u>		
(Qvd)				₽ <u>1</u> 2							
Medium dense to dense, gray, <i>Silty Sand</i> (<i>SM</i>); wet; less than 10% fine to coarse,				3							
CONTINUED NEXT SHEET				\square				0	<u>: : : : /: : : :</u> 20	40	<u></u>
		Vater Le Vater Le						Plastic Li	 ◇ % Fines (◆ % Water (mit ↓ ◆ Jatural Water (Contei - Liqu	nt uid Limit
					ſ			Ship Canal V Seattle	Vater Quality e, Washingto	-	ct
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	fied a	and may	vary.	sting.		L	_OG	G OF SON			SC-17
						No	ovem	ber 2016	2	1-1-22	2176-003
						Şł	IAN	NON & WIL	SON, INC.	FIC	G. A-18


Total Depth: 201 ft. Top Elevation: 28.4 ft.	Northing: _ Easting: _	575,398 ft. 1,585,771 ft.		ling Me lina Ca	ethod: mpany	-	onic Col ascade		a		Hole D Rod D				<u>6 in.</u> .625	
Vert. Datum: NAVD 88	Station:	-	_ Dril	l Rig E	quipme	nt: <u></u>	uck-Mo	ounted	Soni	c ł	lamm	er Typ			omat	ic
Horiz. Datum: <u>Project</u>	Offset: _	-	_ Oth	er Con	nments	: <u>D</u>	riller sito	ched to	o lexa	an line	rs at 9	91 feet				
SOIL DESCF Refer to the report text for a pro subsurface materials and drilling lines indicated below represent th between material types, and the	pper understan methods. The he approximate	stratification boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ner W		ESIST rop:		<u>bs / 3</u>	-	
subrounded to subangular coarse sand; nonplastic fir plasticity silt seams. (Qva)	•		61.0		<u>S-12</u>						, ,	/		<u>,</u>		
Medium dense, gray, <i>Silty</i> <i>Sand with Gravel (SM)</i> ; m subrounded to subangular coarse sand; nonplastic to diamict. (Qvd)	oist; fine to r gravel; fin o low plastic	coarse, e to city fines;					65		•	/						
 Wet, poorly graded sand feet. Wet, poorly graded grav seam at 62 feet. Medium dense, gray, Silty 	el with silt	and sand	66.5											>		
wet; less than 10% fine, subangular gravel; fine to plasticity fines. (Qvd) - Layer of wet, poorly grad from 67.5 to 68 feet.	coarse san	d; low	69.0				70					\				
Medium dense, gray, <i>Silty</i> (<i>SM</i>); moist; fine to coarse subangular gravel; fine to nonplastic to low plasticity (Qvd) - Layer of wet, poorly grad and gravel from 70.5 to	e, subround coarse san r fines; dian ded sand w	ed to d; nict.	72.5				75		•)				
Medium dense, gray, <i>Silty</i> less than 15% fine to coar subangular gravel; fine to nonplastic to low plasticity (Qva) - Silt seam at 75 feet. Medium dense, gray, <i>Silty</i>	r Sand (SM, rse, subrou coarse san fines. r Sand (SM,	nded to d;); moist;	77.5											÷\$		
less than 15% fine to coar		nded to			3			0			0		4			
Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample	<u>LEGEND</u>	♥ Ground V ♥ Ground V						-	Plast	⇔ ● ic Lim	% F % V it ┣─	ines (Vater Mater	(<0.07 Con L	5mm) tent iquid		
1. Refer to KEY for explanation of	NOTES symbols, code	s, abbreviations a	and defi	nitions.				Ship				Quality	-	ject		
 Groundwater level, if indicated USCS designation is based on 	above, is for th	e date specified a	and may	vary.	sting.		LOG			ONI	сс		E V 21-1-1			
							SHANI Beotechnic			/ILS(ON, I			FIG.	A-18	8
						1 `							1 5	sneet	4 of 1	1

Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	_ Dri _ Dri	Iling Method: Iling Company: Il Rig Equipment: her Comments:		Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.		Depth, ft.	PENETRA	TION RESIST	ANCE (blows/foo 140 lbs / 30 inches 40 6
subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd)		$\underbrace{ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	85	•	•	
Very dense, gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd)	87.0	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	90			74/1
Gray, <i>Silty Sand (SM</i>); wet; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict.	93.6 94.6 96.0 97.0					
(Qvd) Gray, Silty Sand with Gravel (SM) to Poorly Graded Sand with Silt and Gravel (SP-SM); wet; fine to coarse, subrounded to subangular				0	20	40 6
		evel in Well evel in VWP			 ◇ % Fines (● % Water .imit ↓ ● Natural Water (Content – Liquid Limit
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	y vary.	LOG	Seattl		
		·	SHANI Geotechnic	NON & WIL	SON, INC.	FIG. A-18 Sheet 5 of 11


Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	Drill Drill	ling C I Rig I	/lethod: Company Equipme omments	:: ent:	<u>Sonic C</u> Cascad Truck-N Driller s	le E Nou	orillin nted	l Sc			Roo Hai	d Di mm	iam am. er T <u>1 fe</u>	: ype	:	2	<u>6 ir</u> 2.62 torr	25	c
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Denth ft		PEI ▲ ト			er V	-					<u>s/:</u>	•		
gravel; fine to coarse sand; nonplastic fines. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd) - Wet from 100.5 to 101 feet. Gray, <i>Poorly Graded Sand (SP</i>); wet; fine to medium sand; less than 5% nonplastic fines; few low plasticity silt seams. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd) Gray <i>Silt (ML)</i> ; moist; less than 5% fine, rounded to subangular gravel; less than 10% fine to coarse sand; nonplastic to low plasticity fines; trace light gray silt partings. (QpgI)	- 101.0 - 102.7 - 104.5		$\sim \sim $		10														
Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qpgt)	- 117.4				11	5													
CONTINUED NEXT SHEET LEGEND I Sample Recovery ▼ Ground V * Sample Not Recovered ▼ Ground V [2] Sonic Core Sample 2.0" O.D. Split Spoon Sample				 Г	×) Ship			< Lir	nit atur	% ₩ ┣── al V	ines /ate Vate	er C I er Co	ont Li	omm ent quic ent	t d Li	mit	6
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	vary.			LO Nove	G	OF er 2	S = (201	беа 5С	ttle	, w IC	C	OF	21-	N -1-2	/S	C- 76	-00)3
	B-	.10	9 (8/	/ 11	SHAI Geotech	nica	and E						nts opr		S	hee	t 6 c	of 11	1

Vert. Datum:	Total Depth: <u>201 ft.</u> Northing: <u>575,398 ft.</u>	_	ing Method		Sonic (~		-		Dia					6 in		
Hortz: Datur: Project Offset Other Comments: Driller statulet to leava lines at 21 feet. Soll: DESCRIPTION Soll: Description Project Project <th></th> <th>_</th> <th>• •</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>nic</th> <th></th> <th></th> <th></th> <th></th> <th>pe:</th> <th></th> <th></th> <th></th> <th>-</th> <th>;</th>		_	• •						nic					pe:				-	;
Refer to be majoritist for a sprage understanding at the substring methods and aling methods. The shall close is the sprage of the sprage understanding by the sprage of the sprage o			- · ·							_				•					
Gray to dark gray-brown. Silty Sand (SM); moist to wet; less than 5% subrounded gravel; fine to coarse sand; nonplastic to low plasticity fines. (ew organics. and wood debris. (Qpnf) 121.5 126.8 126.8 Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines. (Qpnf) 128.8 128.8 126.8 Dark gray-brown, Silty Sand (SM); wet; tees than 5% subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) 128.8 128.8 126.8 Tark gray-brown, Silty Sand (SM); wet; tees than 5% subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) 131.0 131.0 131.0 Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) 131.0 132.0 132.0 Gray to gray-brown, Silty Sand (SM); wet; fine to medium sand; nonplastic fines; trace organics. (Qpnf) 132.0 132.0 132.0 Gray to gray-brown, Silty Sand (SM); wet; fine to correstore smeter 132.0 132.0 132.0 132.0 I Sample Nat Rocoverg I Ground Water Level in WWI 132.0 132.0 132.0 132.0 132.0 I Sample Nat Rocoverg I Ground Water Level in WWI I Ground Water Level in WWI 132.0 132.0 132.0 132.0 132.0 132.0 132.0 </th <th>Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries</th> <th>Depth, ft.</th> <th>Symbol Samples</th> <th>Ground</th> <th>Water</th> <th></th> <th></th> <th></th> <th></th> <th>r W</th> <th>t. &</th> <th></th> <th></th> <th></th> <th>0 lb</th> <th>s/</th> <th>•</th> <th></th> <th>es</th>	Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries	Depth, ft.	Symbol Samples	Ground	Water					r W	t. &				0 lb	s/	•		es
(Qpnf) 135 Gray, Poorly Graded Sand with Silt (SP-SM); 137.2 wet; fine to medium sand; nonplastic fines. 137.2 (Qpnf) 137.2 Gray-brown, Silty Sand (SM); wet; fine to medium sand; nonplastic fines; few organics; trace wood fragments. 137.2 (Qpnf) 137.2 CONTINUED NEXT SHEET 0 LEGEND 139.8 * Sample Recovery Cound Water Level in Well * Sample Not Recoverd ✓ Ground Water Level in WWP Sonic Core Sample ✓ Ground Water Level in WWP 2 Sonic Core Sample ✓ Ground Water Level in WWP 2 Sonic Core Sample ✓ Ground Water Level in WWP 2 Sonic Core Sample ✓ Ship Canal Water Quality Project Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Ship Canal Water Quality Project Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Ship Canal Water Quality Project Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. LOG OF SONIC CORE WSC-17 3. USCS designation is based on visual-manual classification and selected lab testing. LOG OF SONIC CORE WSC-17	between material types, and the transition may be gradual. Gray to dark gray-brown, Silty Sand (SM); moist to wet; less than 5% subrounded gravel; fine to coarse sand; nonplastic to low plasticity fines; few organics and wood debris. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines. (Qpnf) Dark gray-brown, Silty Sand (SM); wet; less than 5% subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines. (Qpnf) Gray to gray-brown, Silty Sand (SM); wet; fine	121.5 126.8 128.8 131.0	$\frac{\left \left(\frac{1}{2}\right)\left(1$		8	25					•				_4C				
CONTINUED NEXT SHEET 139.8 0 20 40 LEGEND 0 20 40 * Sample Recovery Image: Ground Water Level in Well 0 % Fines (<0.075mm)	(Qpnf) Gray, <i>Poorly Graded Sand with Silt (SP-SM</i>); wet; fine to medium sand; nonplastic fines. (Qpnf) Gray-brown, <i>Silty Sand (SM</i>); wet; fine to medium sand; nonplastic fines; few organics; trace wood fragments.	137.2	R 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	35 -													
NOTES Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Seattle, Washington 2. Groundwater level, if indicated above, is for the date specified and may vary. LOG OF SONIC CORE WSC-17 3. USCS designation is based on visual-manual classification and selected lab testing. LOG OF SONIC CORE WSC-17	CONTINUED NEXT SHEET LEGEND I Sample Recovery	Vater Le						Plas		♦ ● Lim	% % it 	Wa	ater	- Co	.075 ont Li	5mn en qui	t	mit	
SHANNON & WILSON, INC. FIG. A-18 Geotechnical and Environmental Consultants Short 7 of 11	 Refer to KEY for explanation of symbols, codes, abbreviations a Groundwater level, if indicated above, is for the date specified a 	and may	vary.		Nove)G	OF	Se S 016	o S	ile, NI	Wa	nshi	ngt	ion RE	W 1-2	/S 221	C -	-00	3

Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	_ Drill _ Drill	ling Method: ling Company: l Rig Equipme ler Comments:	<u> </u>	onic Cor ascade uck-Mo iller sito	Drilling unted S	Soni	с	Hole Rod Ham <u>ers a</u>	Diar	n.: [.] Typ		2	<u>6 in.</u> 2.625 toma	5
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol Samples	Ground Water	Depth, ft.	PEN ▲ Ha		ner V					<u>bs/3</u>	•	
 Gray, <i>Poorly Graded Sand with Silt (SP-SM)</i>; wet; fine to medium sand; nonplastic fines. (Qpnf) Gray, <i>Silty Sand (SM)</i>; wet; fine to medium sand; nonplastic fines; trace organics. (Qpnf) Layer of moist, brown, sandy silt from 143 to 143.8 feet. 	141.4			145			•							
Gray-brown and brown, <i>Silty Sand (SM)</i> and <i>Sandy Silt (ML)</i> ; moist; fine sand; nonplastic fines; few organics; trace seams with mostly organics; interbedded. (Qpnf)	146.0)					
Gray-brown <i>Silt (ML)</i> to <i>Lean Clay (CL)</i> ; moist; less than 10% fine sand; low to medium plasticity fines; trace organics; trace silty, fine sand partings.	151.6	R31		150										
(Qpnl) - Layer of wet, silty sand from 154.5 to 154.8 feet. Gray, <i>Lean Clay (CL)</i> to <i>Silt (ML)</i> ; moist; less than 5% subrounded to subangular gravel; less than 5% fine to coarse sand; low to medium plasticity fines; trace silty sand	154.8			155										
continued Next Sheet		R-32			0			20 > %	Fin	es (-	4	-	· · · · · · · · · · · · · · · · · · ·	
		evel in Well		;	P Ship C		ic Lin Na	● % nit atura	Wa I Wa	ater (Con – L Conte	tent iquic ent	: d Lim	1it
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	vary.		LOG	OF	Sea S(attle	, Wa	ashii	ngto DRE	on	VS	C- 1	
				HAN			/ILS	ON,	IN			FIG.	A-1	18

Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft.	_ Dril	ling C	ethod: ompan	y: Ca	onic Cor ascade	Drilling	_ Ro	le Diar d Dian			6 in. 2.625	
Vert. Datum: <u>NAVD 88</u> Station: <u>-</u> Horiz. Datum: <u>Project</u> Offset: <u>-</u>		-	Equipm mment			unted Sonic ched to lexan	_	mmer <i>at 91 f</i>		A	utomat	ic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hamme	-	-	-		•	
- Slightly blocky texture from 181 to 182.2 feet.			R-37		185			•				
- Diced texture from 185.4 to 186 feet.			R-38									
Gray, <i>Fat Clay (CH)</i> ; moist; less than 5% fine, subrounded to subangular gravel; less than 5% fine to coarse sand; high plasticity fines;	- 191.0				190			•				
few slickensides. (QpnI) Gray <i>Silt (ML)</i> ; moist; less than 5% fine,	196.0		R-39		195			•				
subrounded gravel; less than 5% fine to coarse sand; nonplastic to low plasticity fines; trace silty, fine sand partings. (QpnI)			R-40									
CONTINUED NEXT SHEET <u>LEGEND</u> Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample						0 Plastic	ہ ک Limit	% Fine % Wa ∦€ ral Wa	ter C	onter Liqu	nt id Limi	it
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and	and may	vary.			LOG	GOF SO	tle, W	ashir	RE	ws	6C-1	
						ber 2016 NON & WI	SON	JINC			176-0 6. A-1	

11/29/16 BFW 21-21979.GPJ SHAN WIL.GDT LOG

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

SHANNON & WILSON, INC.

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

TABLE OF CONTENTS

Page

C.1	GENERAL	C-1
C.2	NATURAL WATER CONTENTS	C-1
C.3	GRAIN SIZE ANALYSES	C-1

FIGURE

C-1 Grain Size Distributio	n
----------------------------	---

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

C.1 GENERAL

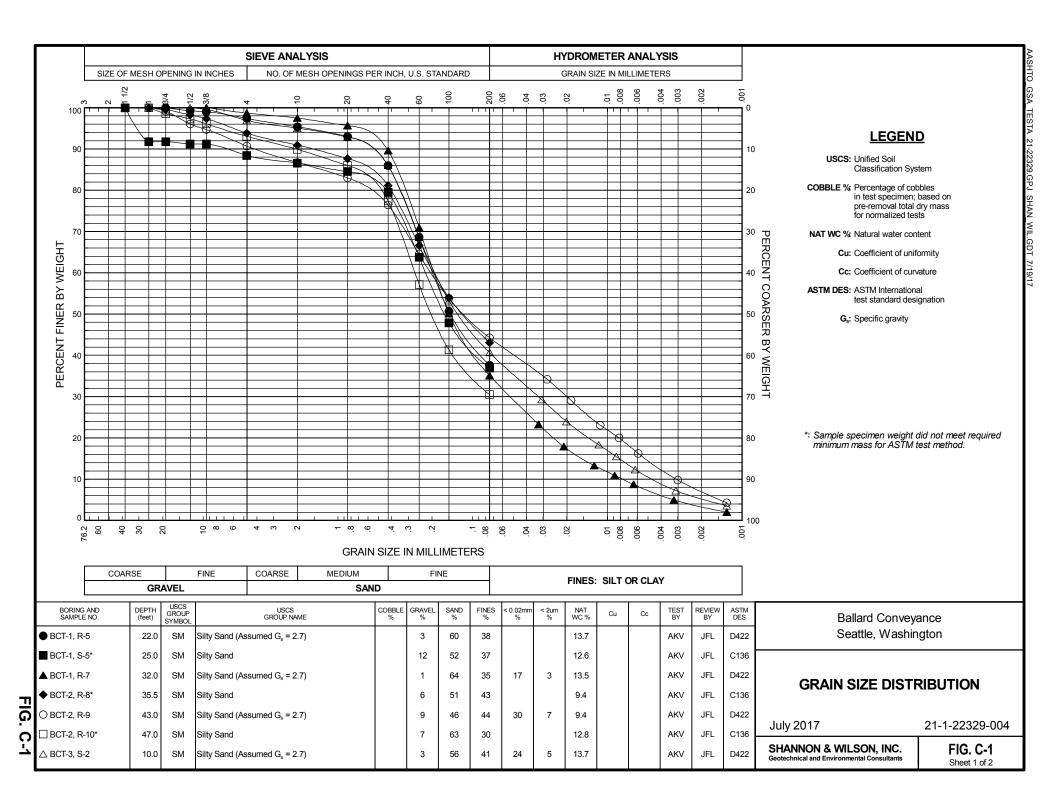
Laboratory tests were performed on selected soil samples retrieved from the geotechnical borings. The laboratory testing program included tests to classify the soils and to provide data for engineering studies.

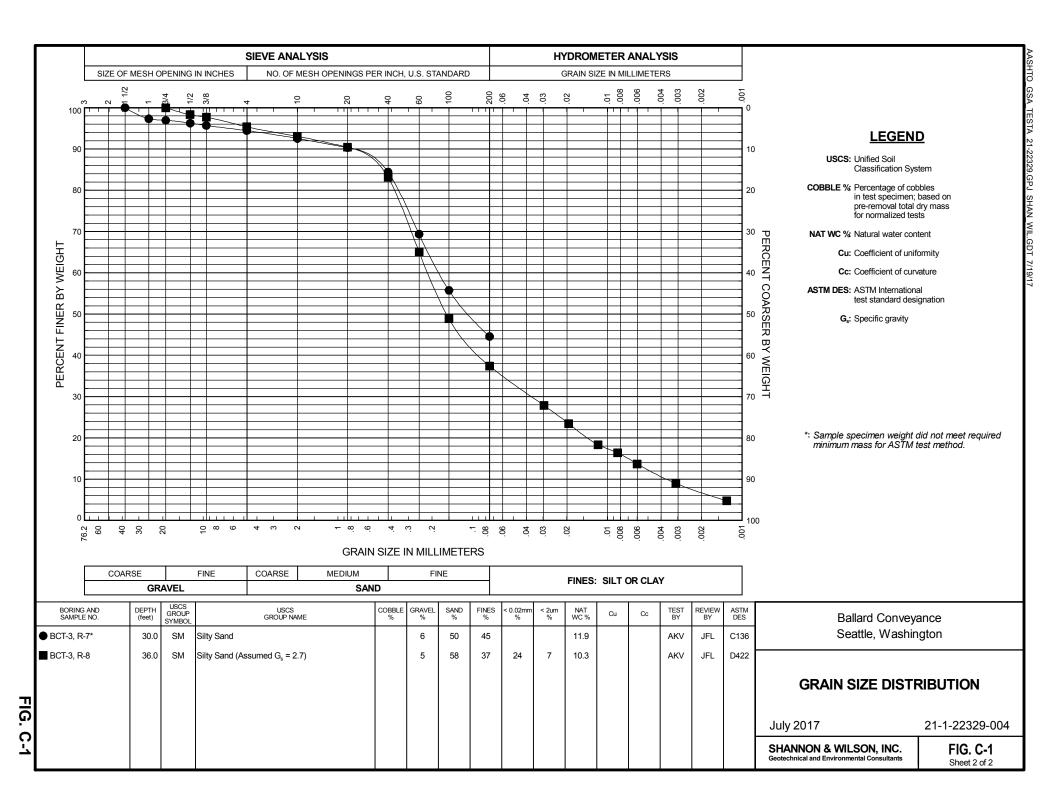
Soil samples recovered from the borings were visually reclassified in our laboratory using a system based on ASTM International (ASTM) Designation: D2487, Standard Test Method for Classification of Soil for Engineering Purposes, and ASTM Designation: D2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). This visual classification method allows for convenient and consistent comparison of soils from widespread geographic areas. Using this method, the soils are classified using the Unified Soil Classification System (USCS). The individual sample classifications have been incorporated into the boring logs presented in Appendix A.

Due to high levels of lead contamination in BCT-4, no geotechnical laboratory tests were performed on samples from this boring.

C.2 NATURAL WATER CONTENTS

The natural water content of select soil samples recovered from the field exploration was determined in general accordance with ASTM Designation: D2216, Standard Method of Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Comparison of water content of a soil with its index properties can be useful in characterizing soil unit weight, consistency, compressibility, and strength. Water content, where tested, is plotted on each of the boring logs presented in Appendix A.


C.3 GRAIN SIZE ANALYSES


Grain size distribution analyses were performed on two samples in general accordance with ASTM Designation: D422, Standard Method for Particle-Size Analysis of Soils or D1140, Standard Test Methods for Amount of Material in Soils Finer than No. 200 (75-microgram) Sieve. The general procedures to determine the grain size distribution of a soil sample include

21-1-22329-004-R1-AC/wp/lkn

sieve analysis, hydrometer analysis, combined analysis, and percentage of fines passing the No. 200 sieve.

Grain size distributions are used to assist in classifying soils and to provide correlation with soil properties, including permeability, behavior when excavated, capillary action, and sensitivity to moisture. Results of the grain size analyses are shown on grain size distribution curves shown in Figure C-1. Along with each grain size distribution is a tabulated summary containing the group symbol according to the USCS, the sample description, percentage of fines passing the No. 200 sieve, and the natural water content.

APPENDIX D

ANALYTICAL LABORATORY TESTING

APPENDIX D

ANALYTICAL LABORATORY TESTING

REPORT

Report to Shannon & Wilson, Inc., from Fremont Analytical, 4/20/2017 (32 pages). Samples included: BCT-04-ENV.

21-1-22329-004-R1-AD/wp/lkn

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Shannon & Wilson Dave Randall 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Ballard Conveyance Work Order Number: 1704169

April 20, 2017

Attention Dave Randall:

Fremont Analytical, Inc. received 1 sample(s) on 4/13/2017 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Gasoline by NWTPH-Gx Mercury by EPA Method 7471 Sample Moisture (Percent Moisture) Total Metals by EPA Method 6020 Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

phil c. Rady

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Shannon & Wilson Ballard Conveyance 1704169	Work Order Sample Summary							
Lab Sample ID 1704169-001	Client Sample ID BCT-04-ENV	Date/Time Collected 04/13/2017 11:30 AM	Date/Time Received 04/13/2017 11:52 AM						

Case Narrative

WO#: **1704169** Date: **4/20/2017**

CLIENT:Shannon & WilsonProject:Ballard Conveyance

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1704169** Date Reported: **4/20/2017**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1704169

 Date Reported:
 4/20/2017

Client: Shannon & Wilson				Collection	Dat	e: 4/13/20)17 11:30:00 AI
Project: Ballard Conveyance							
.ab ID: 1704169-001				Matrix: So	sil		
Client Sample ID: BCT-04-ENV							
analyses	Result	RL	Qual	Units Di		Da	ate Analyzed
-							-
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batch	ID:	16783	Analyst: SB
Diesel (Fuel Oil)	ND	23.6		mg/Kg-dry	1	4/15	/2017 9:14:33 AM
Heavy Oil	1,330	59.1		mg/Kg-dry	1	4/15	/2017 9:14:33 AM
Surr: 2-Fluorobiphenyl	50.4	50-150		%Rec	1	4/15	/2017 9:14:33 AM
Surr: o-Terphenyl	53.0	50-150		%Rec	1	4/15	/2017 9:14:33 AM
Gasoline by NWTPH-Gx				Batch	ID:	16767	Analyst: NG
Gasoline	ND	5.37		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
Surr: Toluene-d8	102	65-135		%Rec	1		/2017 9:10:49 PM
Surr: 4-Bromofluorobenzene	99.8	65-135		%Rec	1		/2017 9:10:49 PM
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	ID:	16767	Analyst: NG
		0.0045	•				10047 0 40 40 D M
Dichlorodifluoromethane (CFC-12)	ND	0.0645	Q	mg/Kg-dry	1		/2017 9:10:49 PM
Chloromethane	0.0688	0.0645		mg/Kg-dry	1		/2017 9:10:49 PM
Vinyl chloride	ND	0.00215		mg/Kg-dry	1		/2017 9:10:49 PM
Bromomethane	ND	0.0967		mg/Kg-dry	1		/2017 9:10:49 PM
Trichlorofluoromethane (CFC-11)	ND	0.0537		mg/Kg-dry	1		/2017 9:10:49 PM
Chloroethane	ND	0.0645		mg/Kg-dry	1		/2017 9:10:49 PM
1,1-Dichloroethene	ND	0.0537		mg/Kg-dry	1		/2017 9:10:49 PM
Methylene chloride	ND	0.0215		mg/Kg-dry	1		/2017 9:10:49 PM
trans-1,2-Dichloroethene	ND	0.0215		mg/Kg-dry	1		/2017 9:10:49 PM
Methyl tert-butyl ether (MTBE)	ND	0.0537		mg/Kg-dry	1		/2017 9:10:49 PM
1,1-Dichloroethane	ND	0.0215		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
2,2-Dichloropropane	ND	0.0537		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
cis-1,2-Dichloroethene	ND	0.0215		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
Chloroform	ne -						
	ND	0.0215		mg/Kg-dry	1		/2017 9:10:49 PM
1,1,1-Trichloroethane (TCA)					1 1		/2017 9:10:49 PM /2017 9:10:49 PM
	ND ND ND	0.0215		mg/Kg-dry		4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA)	ND ND ND ND	0.0215 0.0215		mg/Kg-dry mg/Kg-dry	1	4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene	ND ND ND	0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1	4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride	ND ND ND ND	0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1	4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC)	ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene	ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE)	ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE) 1,2-Dichloropropane	ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE) 1,2-Dichloropropane Bromodichloromethane	ND ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE) 1,2-Dichloropropane Bromodichloromethane Dibromomethane	ND ND ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0225 0.0225 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM

Analytical Report

Work Order: **1704169** Date Reported: **4/20/2017**

Client: Shannon & Wilson Project: Ballard Conveyance				Collection	Date: 4/	13/2017 11:30:00 AM	
Lab ID: 1704169-001 Client Sample ID: BCT-04-ENV				Matrix: So	bil		
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Volatile Organic Compounds by	EPA Method 8	<u>3260C</u>		Batch	n ID: 1676	67 Analyst: NG	
1,1,2-Trichloroethane	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,3-Dichloropropane	ND	0.0537		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Tetrachloroethene (PCE)	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Dibromochloromethane	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2-Dibromoethane (EDB)	ND	0.00537		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Chlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,1,1,2-Tetrachloroethane	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Ethylbenzene	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
m,p-Xylene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
o-Xylene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Styrene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Isopropylbenzene	ND	0.0860		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Bromoform	ND	0.0215	Q	mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,1,2,2-Tetrachloroethane	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
n-Propylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Bromobenzene	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,3,5-Trimethylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
2-Chlorotoluene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
4-Chlorotoluene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
tert-Butylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2,3-Trichloropropane	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2,4-Trichlorobenzene	ND	0.0537		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
sec-Butylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
4-Isopropyltoluene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,3-Dichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,4-Dichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
n-Butylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2-Dichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2-Dibromo-3-chloropropane	ND	0.537		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2,4-Trimethylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Hexachlorobutadiene	ND	0.107		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Naphthalene	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
1,2,3-Trichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM	
Surr: Dibromofluoromethane	90.3	56.5-129		%Rec	1	4/13/2017 9:10:49 PM	
Surr: Toluene-d8	96.1	64.5-151		%Rec	1	4/13/2017 9:10:49 PM	
Surr: 1-Bromo-4-fluorobenzene	97.3	63.1-141		%Rec	1	4/13/2017 9:10:49 PM	
NOTES:							

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Analytical Report

 Work Order:
 1704169

 Date Reported:
 4/20/2017

Client: Shannon & Wilson Project: Ballard Conveyance				Collection	Date: 4	I/13/2017 11:30:00 AM
Lab ID: 1704169-001 Client Sample ID: BCT-04-ENV				Matrix: So	bil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by EPA Method 7471				Batch	1D: 167	786 Analyst: WF
Mercury	0.553	0.316		mg/Kg-dry	1	4/14/2017 1:09:38 PM
Total Metals by EPA Method 6020				Batch	1D: 167	779 Analyst: TN
Arsenic	18.2	0.101		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Barium	123	0.506		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Cadmium	1.68	0.202		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Chromium	23.2	0.101		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Lead	10,700	20.2	D	mg/Kg-dry	100	4/17/2017 12:02:46 PM
Selenium	0.803	0.506		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Silver	0.569	0.101		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID: R3	5537 Analyst: BB
Percent Moisture	26.8			wt%	1	4/14/2017 9:45:32 AM

Work Order: 1704169								QCS	SUMMA	RY REF	POR
CLIENT: Shannon	& Wilson						Diacol	and Heavy			
Project: Ballard C	onveyance						Diesei	апи пеачу			
Sample ID MB-16783	SampType: MBLK			Units: mg/K	g	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: MBLKS	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 681	1244	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	22.3		20.00		112	50	150				
Surr: o-Terphenyl	22.1		20.00		110	50	150				
Sample ID LCS-16783	SampType: LCS			Units: mg/K	g	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: LCSS	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 68	1011	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	414	20.0	500.0	0	82.8	65	135				
Surr: 2-Fluorobiphenyl	22.2		20.00		111	50	150				
Surr: o-Terphenyl	23.2		20.00		116	50	150				
Sample ID 1704174-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: BATCH	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 68	1607	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	19.1						0		30	
Heavy Oil	ND	47.9						0		30	
Surr: 2-Fluorobiphenyl	20.7		19.15		108	50	150		0		
Surr: o-Terphenyl	20.7		19.15		108	50	150		0		
Sample ID 1704174-001AMS	SampType: MS			Units: mg/K	g-dry	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: BATCH	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 681	1608	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
		18.3	457.4	0	76.7	65	135				
Diesel (Fuel Oil)	351	10.5	407.4	Ŭ	10.1						
Diesel (Fuel Oil) Surr: 2-Fluorobiphenyl	351 14.8	10.5	18.30	0	80.7	50	150				

Work Order:	1704169									2.00	SUMMAI	RY RFF	ORT
CLIENT:	Shannon &	Wilson								• - ·			-
Project:	Ballard Con	veyance							Diesel	and Heavy	Oil by NW	/TPH-Dx/	Dx Ext
Sample ID 1704174	-001AMS	SampType	: MS			Units: mg/H	(g-dry	Prep Da	ite: 4/14/20)17	RunNo: 35	552	
Client ID: BATCH		Batch ID:	16783					Analysis Da	ite: 4/14/20	017	SeqNo: 68	1608	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID 1704174	-001AMSD	SampType	: MSD			Units: mg/ł	(g-dry	Prep Da	ite: 4/14/20)17	RunNo: 35	552	
Client ID: BATCH		Batch ID:	16783					Analysis Da	ite: 4/14/20)17	SeqNo: 68	1609	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			504	18.9	473.3	0	106	65	135	350.6	35.9	30	R
Surr: 2-Fluorobiph	enyl		17.4		18.93		92.0	50	150		0		
Surr: o-Terphenyl			18.8		18.93		99.2	50	150		0		
NOTES:													
R - High RPD obse	erved, spike re	ecoveries are v	vithin range.										
Sample ID 1704172	-008ADUP	SampType	: DUP			Units: mg/ł	Kg-dry	Prep Da	ite: 4/14/20)17	RunNo: 35	552	
Client ID: BATCH		Batch ID:	16783					Analysis Da	ite: 4/15/20)17	SeqNo: 68	1606	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	20.3						0		30	
Heavy Oil			ND	50.7						72.60	53.6	30	
Surr: 2-Fluorobiph	enyl		20.6		20.27		102	50	150		0		
Surr: o-Terphenyl			21.0		20.27		104	50	150		0		

Work Order: CLIENT: Project:	1704169 Shannon & Ballard Cor									QC S	SUMMAI Gasoline	RY REF e by NW ⁻	_
Sample ID LCS-16	6767	SampType:	LCS			Units: mg/Kg	I	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: LCSS		Batch ID:	16767					Analysis Dat	te: 4/13/20	17	SeqNo: 680	808	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			23.7	5.00	25.00	0	94.9	65	135				
Surr: Toluene-d8			1.24		1.250		99.3	65	135				
Surr: 4-Bromofluc	orobenzene		1.31		1.250		105	65	135				
Sample ID MB-167	767	SampType:	MBLK			Units: mg/Kg	J	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: MBLKS	6	Batch ID:	16767					Analysis Dat	te: 4/13/20	17	SeqNo: 680	0809	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	5.00									
Surr: Toluene-d8			1.24		1.250		99.1	65	135				
Surr: 4-Bromofluc	orobenzene		1.26		1.250		101	65	135				
Sample ID 170414	7-001BDUP	SampType:	DUP			Units: mg/Kg	J-dry	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: BATCH	ł	Batch ID:	16767					Analysis Dat	te: 4/13/20	17	SeqNo: 680	0800	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	2.23						0		30	
Surr: Toluene-d8		C).561		0.5566		101	65	135		0		
Surr: 4-Bromofluc	orobenzene	C).544		0.5566		97.7	65	135		0		
Sample ID 170414	7-008BMS	SampType:	MS			Units: mg/Kg	J-dry	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: BATCH	I	Batch ID:	16767					Analysis Dat	te: 4/14/20	17	SeqNo: 680	0802	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			10.0	2.43	12.17	0	82.2	65	135				
Surr: Toluene-d8		C).617		0.6087		101	65	135				
Surr: 4-Bromofluc	orobenzene	C).610		0.6087		100	65	135				

Work Order: CLIENT: Project:	1704169 Shannon & Ballard Con								QC S	SUMMAI Gasolin	RY REF e by NW	_	
Sample ID 170414 Client ID: BATCI		SampType: MSD Batch ID: 16767			Units: mg/	/Kg-dry	Prep Da Analysis Da	te: 4/13/20 te: 4/14/20		RunNo: 35539 SeqNo: 680803			
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Gasoline		10.2	2.43	12.17	0	83.5	65	135	10.00	1.63	30		
Surr: Toluene-d8	В	0.616		0.6087		101	65	135		0			
Surr: 4-Bromoflu	uorobenzene	0.615		0.6087		101	65	135		0			

Work Order:									QC S	SUMMAR	RY REF	POR
CLIENT:	Shannon &								Mer	cury by El	PA Metho	od 747
Project:	Ballard Cor											
Sample ID MB-		SampType: MBLK			Units: mg/Kg			4/14/2017		RunNo: 355		
Client ID: MBI	LKS	Batch ID: 16786					Analysis Date:			SeqNo: 680)921	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250									
Sample ID LCS	5-16786	SampType: LCS			Units: mg/Kg		Prep Date:	4/14/2017		RunNo: 355	543	
Client ID: LCS	S	Batch ID: 16786					Analysis Date:	4/14/2017		SeqNo: 680)922	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.518	0.250	0.5000	0	104	80	120				
Sample ID 170	4169-001ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date:	4/14/2017		RunNo: 355	543	
Client ID: BC	Γ-04-ENV	Batch ID: 16786					Analysis Date:	4/14/2017		SeqNo: 680	0924	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.623	0.311						0.5530	11.8	20	
Sample ID 170	4169-001AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date:	4/14/2017		RunNo: 35	543	
Client ID: BC	Γ-04-ENV	Batch ID: 16786					Analysis Date:	4/14/2017		SeqNo: 680	0925	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:		1.29	0.316	0.6328	0.5530	117	70	130				E
		nt exceeds the linear workin	ig range of	ine instrumen								
Sample ID 170		SampType: MSD			Units: mg/Kg ·	-dry		4/14/2017		RunNo: 355		
Client ID: BC1	-04-ENV	Batch ID: 16786	5.	001/			Analysis Date:			SeqNo: 680		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ıgnLımit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:		1.02	0.316	0.6328	0.5530	74.0	70	130	1.291	23.3	20	E

Original

Work Order:	1704169									00.5	SUMMA		ORT
CLIENT:	Shannon & W	Vilson											
Project:	Ballard Conv	eyance								Sample Mo	oisture (Pe	ercent Mo	oisture)
Sample ID 17041	66-002ADUP	SampType	DUP			Units: wt%		Prep Da	te: 4/14/20	017	RunNo: 355	537	
Client ID: BATCH	н	Batch ID:	R35537					Analysis Da	te: 4/14/20	017	SeqNo: 680	0754	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture			19.3	0.500						16.07	18.2	20	

Fremont
Analytical

CLIENT: Shannon & Wilson Project: Ballard Conveyance Sample ID MB-16779 SampType: MBLK Units: mg/Kg Prep Date: 4/14/2017	QC SUMMARY REPORT
riojeci. Dallalu Conveyance	
Sample ID MB-16779 SampType: MBLK Units: mg/Kg Prep Date: 4/14/2017	Total Metals by EPA Method 6020
	RunNo: 35557
Client ID: MBLKS Batch ID: 16779 Analysis Date: 4/14/2017	SeqNo: 681091
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPE	D Ref Val %RPD RPDLimit Qual
Arsenic ND 0.0719	
Barium ND 0.360	
Cadmium ND 0.144	
Chromium ND 0.0719	
Lead ND 0.144	
Selenium ND 0.360	
Silver ND 0.0719	
Sample ID 1704161-001ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 4/14/2017	RunNo: 35557
Client ID: BATCH Batch ID: 16779 Analysis Date: 4/14/2017	SeqNo: 681094
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPE	D Ref Val %RPD RPDLimit Qual
Arsenic 23.1 0.0949	20.31 12.8 20
Barium 195 0.475	152.6 24.2 20 R
	0.1538 34.1 20
Cadmium 0.217 0.190	27.77 21.4 20 R
Cadmium 0.217 0.190 Chromium 34.4 0.0949	21.11 21.4 20 K
	27.77 21.4 20 R 2.766 12.8 20
Chromium 34.4 0.0949 Selenium 3.14 0.475	
Chromium 34.4 0.0949 Selenium 3.14 0.475 Silver 0.0954 0.0949 NOTES: Image: Comparison of the second s	2.766 12.8 20
Chromium 34.4 0.0949 Selenium 3.14 0.475 Silver 0.0954 0.0949	2.766 12.8 20
Chromium 34.4 0.0949 Selenium 3.14 0.475 Silver 0.0954 0.0949 NOTES: Image: Comparison of the second s	2.766 12.8 20
Chromium34.40.0949Selenium3.140.475Silver0.09540.0949NOTES: R - High RPD observed. The method is in control as indicated by the LCS.	2.766 12.8 20 0.07518 23.8 20

20.31

152.6

0.1538

27.77

80.56

2.766

107

202

125

137

-8.04

114

75

75

75

75

75

75

125

125

125

125

125 125

0.0949

0.475

0.190

0.0949

0.190

0.475

47.46

47.46

2.373

47.46

23.73

4.746

71.0

248

3.11

92.9

78.6

8.17

Lead

Arsenic

Barium

Cadmium

Chromium

Selenium

S

s

s

Work Order: CLIENT: Project:	1704169 Shannon & W Ballard Conve	Conveyance QC SUMMARY REPO										
Sample ID 17041 Client ID: BATC		SampType: MS Batch ID: 16779			Units: mg	/Kg-dry	Prep Dat Analysis Dat	e: 4/14/20 e: 4/14/20		RunNo: 35 SeqNo: 68		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		1.90	0.0949	2.373	0.07518	77.0	75	125				

NOTES:

S - Outlying spike recovery(ies) observed for Barium and Lead. A duplicate analysis was performed with similar results indicating a possible matrix effect.

S - Outlying spike recovery observed for Chromium. A duplicate analysis was performed and recovered within range.

Sample ID 1704161-001AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Da	te: 4/14/20)17	RunNo: 35			
Client ID: BATCH	Batch ID: 16779			Analysis Date: 4/14/2017					SeqNo: 681	SeqNo: 681099		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	67.0	0.0942	47.11	20.31	99.2	75	125	70.98	5.72	20		
Barium	219	0.471	47.11	152.6	140	75	125	248.2	12.7	20	S	
Cadmium	2.81	0.188	2.355	0.1538	113	75	125	3.111	10.3	20		
Chromium	83.2	0.0942	47.11	27.77	118	75	125	92.91	11.1	20		
Lead	84.4	0.188	23.55	80.56	16.5	75	125	78.65	7.11	20	S	
Selenium	7.26	0.471	4.711	2.766	95.4	75	125	8.172	11.8	20		
Silver	1.55	0.0942	2.355	0.07518	62.6	75	125	1.901	20.5	20	RS	

NOTES:

S - Outlying spike recovery(ies) observed for Barium and Lead. A duplicate analysis was performed with similar results indicating a possible matrix effect.

S/R - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample ID LCS-16779	SampType: LCS			Units: mg/Kg		Prep Da	te: 4/14/20	017	RunNo: 35		
Client ID: LCSS	Batch ID: 16779				Analysis Date: 4/14/2017			SeqNo: 681161			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	37.3	0.0725	36.23	0	103	80	120				
Barium	37.2	0.362	36.23	0	103	80	120				
Cadmium	1.83	0.145	1.812	0	101	80	120				
Chromium	33.8	0.0725	36.23	0	93.2	80	120				
Lead	18.8	0.145	18.12	0	104	80	120				
Selenium	3.44	0.362	3.623	0	94.9	80	120				
Silver	1.45	0.0725	1.812	0	79.9	80	120				

Work Order:	1704169								00.5	SUMMAF		ORT
CLIENT:	Shannon &	Wilson							•			-
Project:	Ballard Con	iveyance							lotal Me	etals by EF	A Metho	od 6020
Sample ID 1704	161-001ADUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Da	te: 4/14/201	7	RunNo: 355	57	
Client ID: BAT	СН	Batch ID: 16779					Analysis Da	te: 4/17/201	7	SeqNo: 681	402	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		73.1	0.190						80.56	9.65	20	
Sample ID CCV	-16779F	SampType: CCV			Units: µg/L		Prep Da	te: 4/17/201	7	RunNo: 355	57	
Client ID: CCV	,	Batch ID: 16779					Analysis Da	te: 4/17/201	7	SeqNo: 681	405	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		52.9	2.00	50.00	0	106	90	110				

Ballard Conveyance

Work Order: 1704169

Project:

CLIENT: Shannon & Wilson

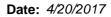
QC SUMMARY REPORT

Sample ID LCS-16767	SampType: LCS			Units: mg/Kg		Prep Dat	te: 4/13/20)17	RunNo: 35538		
Client ID: LCSS	Batch ID: 16767					Analysis Dat	te: 4/13/20	017	SeqNo: 680)795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.770	0.0600	1.000	0	77.0	14.3	167				
Chloromethane	0.907	0.0600	1.000	0	90.7	46	144				
Vinyl chloride	0.947	0.00200	1.000	0	94.7	44	142				
Bromomethane	0.979	0.0900	1.000	0	97.9	40.9	157				
Trichlorofluoromethane (CFC-11)	0.955	0.0500	1.000	0	95.5	36.9	156				
Chloroethane	0.936	0.0600	1.000	0	93.6	33.4	155				
1,1-Dichloroethene	0.942	0.0500	1.000	0	94.2	49.7	142				
Methylene chloride	0.927	0.0200	1.000	0	92.7	46.3	140				
trans-1,2-Dichloroethene	0.946	0.0200	1.000	0	94.6	68	130				
Methyl tert-butyl ether (MTBE)	0.983	0.0500	1.000	0	98.3	66.3	145				
1,1-Dichloroethane	0.979	0.0200	1.000	0	97.9	61.9	137				
2,2-Dichloropropane	1.29	0.0500	1.000	0	129	35.5	186				
cis-1,2-Dichloroethene	0.960	0.0200	1.000	0	96.0	71.3	135				
Chloroform	0.959	0.0200	1.000	0	95.9	69	145				
1,1,1-Trichloroethane (TCA)	0.960	0.0200	1.000	0	96.0	69	132				
1,1-Dichloropropene	0.967	0.0200	1.000	0	96.7	72.7	131				
Carbon tetrachloride	0.954	0.0200	1.000	0	95.4	63.4	137				
1,2-Dichloroethane (EDC)	0.959	0.0300	1.000	0	95.9	61.9	136				
Benzene	1.03	0.0200	1.000	0	103	64.3	133				
Trichloroethene (TCE)	0.951	0.0200	1.000	0	95.1	65.5	137				
1,2-Dichloropropane	1.01	0.0200	1.000	0	101	63.2	142				
Bromodichloromethane	0.950	0.0200	1.000	0	95.0	73.2	131				
Dibromomethane	0.955	0.0400	1.000	0	95.5	70	130				
cis-1,3-Dichloropropene	1.07	0.0200	1.000	0	107	59.1	143				
Toluene	1.06	0.0200	1.000	0	106	67.3	138				
trans-1,3-Dichloropropylene	1.04	0.0300	1.000	0	104	49.2	149				
1,1,2-Trichloroethane	0.937	0.0300	1.000	0	93.7	74.5	129				
1,3-Dichloropropane	0.955	0.0500	1.000	0	95.5	70	130				
Tetrachloroethene (PCE)	1.00	0.0200	1.000	0	100	52.7	150				
Dibromochloromethane	0.975	0.0300	1.000	0	97.5	70.6	144				
1,2-Dibromoethane (EDB)	0.931	0.00500	1.000	0	93.1	70	130				

Ballard Conveyance

Work Order: 1704169

Project:


CLIENT: Shannon & Wilson

QC SUMMARY REPORT

Sample ID LCS-16767	SampType: LCS			Units: mg/Kg		Prep Da	te: 4/13/20	17	RunNo: 35538		
Client ID: LCSS	Batch ID: 16767					Analysis Da	te: 4/13/20	17	SeqNo: 68	0795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	0.990	0.0200	1.000	0	99.0	76.1	123				
1,1,1,2-Tetrachloroethane	0.976	0.0300	1.000	0	97.6	65.9	141				
Ethylbenzene	1.07	0.0300	1.000	0	107	74	129				
m,p-Xylene	2.15	0.0200	2.000	0	107	70	124				
o-Xylene	1.07	0.0200	1.000	0	107	68.1	139				
Styrene	0.979	0.0200	1.000	0	97.9	76.8	130				
Isopropylbenzene	0.990	0.0800	1.000	0	99.0	70	130				
Bromoform	0.818	0.0200	1.000	0	81.8	67	154				
1,1,2,2-Tetrachloroethane	0.923	0.0200	1.000	0	92.3	60	130				
n-Propylbenzene	0.998	0.0200	1.000	0	99.8	74.8	125				
Bromobenzene	0.985	0.0300	1.000	0	98.5	49.2	144				
1,3,5-Trimethylbenzene	1.00	0.0200	1.000	0	100	74.6	123				
2-Chlorotoluene	0.997	0.0200	1.000	0	99.7	76.7	129				
4-Chlorotoluene	0.993	0.0200	1.000	0	99.3	77.5	125				
tert-Butylbenzene	1.01	0.0200	1.000	0	101	66.2	130				
1,2,3-Trichloropropane	0.915	0.0200	1.000	0	91.5	67.9	136				
1,2,4-Trichlorobenzene	0.991	0.0500	1.000	0	99.1	62.6	143				
sec-Butylbenzene	1.06	0.0200	1.000	0	106	75.6	133				
4-Isopropyltoluene	1.10	0.0200	1.000	0	110	76.8	131				
1,3-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.8	128				
1,4-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.6	126				
n-Butylbenzene	1.18	0.0200	1.000	0	118	65.3	136				
1,2-Dichlorobenzene	1.03	0.0200	1.000	0	103	72.8	126				
1,2-Dibromo-3-chloropropane	0.864	0.500	1.000	0	86.4	61.2	139				
1,2,4-Trimethylbenzene	1.03	0.0200	1.000	0	103	77.5	129				
Hexachlorobutadiene	1.11	0.100	1.000	0	111	42	151				
Naphthalene	0.956	0.0300	1.000	0	95.6	62.3	134				
1,2,3-Trichlorobenzene	0.905	0.0200	1.000	0	90.5	54.8	143				
Surr: Dibromofluoromethane	1.24		1.250		99.2	56.5	129				
Surr: Toluene-d8	1.27		1.250		102	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.31		1.250		105	63.1	141				

Work Order: 1704169								2.00	SUMMAR		PORT
CLIENT: Shannon & V	Vilson							• - ·			-
Project: Ballard Conv	reyance					Volatile 0	Organi	c Compour	nds by EPA	A Method	8260C
Sample ID LCS-16767	SampType: LCS			Units: mg/Kg		Prep Date:	4/13/20)17	RunNo: 355	538	
Client ID: LCSS	Batch ID: 16767					Analysis Date:	4/13/20	017	SeqNo: 680)795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
							5				
Sample ID MB-16767	SampType: MBLK			Units: mg/Kg		Prep Date:	4/13/20)17	RunNo: 355	538	
Client ID: MBLKS	Batch ID: 16767			00		Analysis Date:			SeqNo: 680)796	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									Q
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									

Fremont
Analytical

Work Order:	1704169								QCS	SUMMAI	RY REF	POR
CLIENT:	Shannon &	Wilson						. .	-			
Project:	Ballard Con	veyance					Volatile	Organi	c Compour	nds by EP/	A Method	8260
Sample ID MB-167	767	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 4/13/2	017	RunNo: 35	538	
Client ID: MBLKS	6	Batch ID: 16767					Analysis Dat	e: 4/13/2	017	SeqNo: 68	0796	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropr	ropylene	ND	0.0300									
1,1,2-Trichloroethar	ne	ND	0.0300									
1,3-Dichloropropane	e	ND	0.0500									
Tetrachloroethene ((PCE)	ND	0.0200									
Dibromochlorometh	ane	ND	0.0300									
1,2-Dibromoethane	(EDB)	ND	0.00500									
Chlorobenzene		ND	0.0200									
1,1,1,2-Tetrachloroe	ethane	ND	0.0300									
Ethylbenzene		ND	0.0300									
m,p-Xylene		ND	0.0200									
o-Xylene		ND	0.0200									
Styrene		ND	0.0200									
Isopropylbenzene		ND	0.0800									
Bromoform		ND	0.0200									Q
1,1,2,2-Tetrachloroe	ethane	ND	0.0200									
n-Propylbenzene		ND	0.0200									
Bromobenzene		ND	0.0300									
1,3,5-Trimethylbenz	zene	ND	0.0200									
2-Chlorotoluene		ND	0.0200									
4-Chlorotoluene		ND	0.0200									
tert-Butylbenzene		ND	0.0200									
1,2,3-Trichloropropa	ane	ND	0.0200									
1,2,4-Trichlorobenze		ND	0.0500									
sec-Butylbenzene		ND	0.0200									
4-Isopropyltoluene		ND	0.0200									
1,3-Dichlorobenzen	е	ND	0.0200									
1,4-Dichlorobenzen		ND	0.0200									
n-Butylbenzene		ND	0.0200									
1,2-Dichlorobenzen	е	ND	0.0200									
1,2-Dibromo-3-chlor		ND	0.500									
1,2,4-Trimethylbenz		ND	0.0200									

Ballard Conveyance

Work Order: 1704169

Project:

CLIENT: Shannon & Wilson

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-16767	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/13/2017	RunNo: 35	538	
Client ID: MBLKS	Batch ID: 16767					Analysis Date	e: 4/13/2017	SeqNo: 680796		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	0.100								
Naphthalene	ND	0.0300								
1,2,3-Trichlorobenzene	ND	0.0200								
Surr: Dibromofluoromethane	1.19		1.250		95.2	56.5	129			
Surr: Toluene-d8	1.22		1.250		97.7	64.5	151			
Surr: 1-Bromo-4-fluorobenzene NOTES:	1.22		1.250		97.4	63.1	141			

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1704147-001BDUP	SampType:	DUP			Units: mg/	Kg-dry	Prep Da	te: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID:	16767					Analysis Da	te: 4/13/2	017	SeqNo: 68)775	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		ND	0.0267						0		30	Q
Chloromethane	0.0	0318	0.0267						0.02936	8.00	30	
Vinyl chloride		ND	0.000891						0		30	
Bromomethane		ND	0.0401						0		30	
Trichlorofluoromethane (CFC-11)		ND	0.0223						0		30	
Chloroethane		ND	0.0267						0		30	
1,1-Dichloroethene		ND	0.0223						0		30	
Methylene chloride		ND	0.00891						0		30	
trans-1,2-Dichloroethene		ND	0.00891						0		30	
Methyl tert-butyl ether (MTBE)		ND	0.0223						0		30	
1,1-Dichloroethane		ND	0.00891						0		30	
2,2-Dichloropropane		ND	0.0223						0		30	
cis-1,2-Dichloroethene		ND	0.00891						0		30	
Chloroform		ND	0.00891						0		30	
1,1,1-Trichloroethane (TCA)		ND	0.00891						0		30	
1,1-Dichloropropene		ND	0.00891						0		30	
Carbon tetrachloride		ND	0.00891						0		30	
1,2-Dichloroethane (EDC)		ND	0.0134						0		30	

Work Order:	1704169
CLIENT:	Shannon & Wilson
Project:	Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-001BDUP	SampType: DUP			Units: mg/ł	Kg-dry	Prep Date	e: 4/13/2 0)17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Date	e: 4/13/2 0	017	SeqNo: 68	0775	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.00891						0		30	
Trichloroethene (TCE)	ND	0.00891						0		30	
1,2-Dichloropropane	ND	0.00891						0		30	
Bromodichloromethane	ND	0.00891						0		30	
Dibromomethane	ND	0.0178						0		30	
cis-1,3-Dichloropropene	ND	0.00891						0		30	
Toluene	ND	0.00891						0		30	
trans-1,3-Dichloropropylene	ND	0.0134						0		30	
1,1,2-Trichloroethane	ND	0.0134						0		30	
1,3-Dichloropropane	ND	0.0223						0		30	
Tetrachloroethene (PCE)	ND	0.00891						0		30	
Dibromochloromethane	ND	0.0134						0		30	
1,2-Dibromoethane (EDB)	ND	0.00223						0		30	
Chlorobenzene	ND	0.00891						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0134						0		30	
Ethylbenzene	ND	0.0134						0		30	
m,p-Xylene	ND	0.00891						0		30	
o-Xylene	ND	0.00891						0		30	
Styrene	ND	0.00891						0		30	
Isopropylbenzene	ND	0.0356						0		30	
Bromoform	ND	0.00891						0		30	Q
1,1,2,2-Tetrachloroethane	ND	0.00891						0		30	
n-Propylbenzene	ND	0.00891						0		30	
Bromobenzene	ND	0.0134						0		30	
1,3,5-Trimethylbenzene	ND	0.00891						0		30	
2-Chlorotoluene	ND	0.00891						0		30	
4-Chlorotoluene	ND	0.00891						0		30	
tert-Butylbenzene	ND	0.00891						0		30	
1,2,3-Trichloropropane	ND	0.00891						0		30	
1,2,4-Trichlorobenzene	ND	0.0223						0		30	
sec-Butylbenzene	ND	0.00891						0		30	
										Dog	

Work Order:	1704169
CLIENT:	Shannon & Wilson

QC SUMMARY REPORT

Project: Ballard Conveyance

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1704147-001BDUP	SampType: DUP			Units: mg/ I	Kg-dry	Prep Dat	e: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Dat	e: 4/13/2	017	SeqNo: 68	0775	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Isopropyltoluene	ND	0.00891						0		30	
1,3-Dichlorobenzene	ND	0.00891						0		30	
1,4-Dichlorobenzene	ND	0.00891						0		30	
n-Butylbenzene	ND	0.00891						0		30	
1,2-Dichlorobenzene	ND	0.00891						0		30	
1,2-Dibromo-3-chloropropane	ND	0.223						0		30	
1,2,4-Trimethylbenzene	ND	0.00891						0		30	
Hexachlorobutadiene	ND	0.0445						0		30	
Naphthalene	ND	0.0134						0		30	
1,2,3-Trichlorobenzene	ND	0.00891						0		30	
Surr: Dibromofluoromethane	0.497		0.5566		89.2	56.5	129		0		
Surr: Toluene-d8	0.533		0.5566		95.8	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.530		0.5566		95.1	63.1	141		0		

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1704147-005BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 4/13/20)17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20)17	SeqNo: 680	0780	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.442	0.0321	0.5357	0	82.4	43.5	121				
Chloromethane	0.569	0.0321	0.5357	0.03912	98.9	45	130				
Vinyl chloride	0.518	0.00107	0.5357	0	96.6	51.2	146				
Bromomethane	0.371	0.0482	0.5357	0.02986	63.7	21.3	120				
Trichlorofluoromethane (CFC-11)	0.408	0.0268	0.5357	0	76.1	35	131				
Chloroethane	0.468	0.0321	0.5357	0	87.3	31.9	123				
1,1-Dichloroethene	0.506	0.0268	0.5357	0	94.4	61.9	141				
Methylene chloride	0.531	0.0107	0.5357	0	99.1	54.7	142				
trans-1,2-Dichloroethene	0.528	0.0107	0.5357	0	98.5	52	136				
Methyl tert-butyl ether (MTBE)	0.613	0.0268	0.5357	0.01279	112	54.4	132				
1,1-Dichloroethane	0.531	0.0107	0.5357	0	99.1	51.8	141				

Project:

CLIENT: Shannon & Wilson

Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-005BMS						Prep Da	te: 4/13/20)17	RunNo: 35538				
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20)17	SeqNo: 68	0780			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
2,2-Dichloropropane	0.535	0.0268	0.5357	0	99.8	36	123						
cis-1,2-Dichloroethene	0.521	0.0107	0.5357	0	97.2	58.6	136						
Chloroform	0.512	0.0107	0.5357	0	95.6	53.2	129						
1,1,1-Trichloroethane (TCA)	0.496	0.0107	0.5357	0	92.5	58.3	145						
1,1-Dichloropropene	0.548	0.0107	0.5357	0	102	55.1	138						
Carbon tetrachloride	0.471	0.0107	0.5357	0	87.9	53.3	144						
1,2-Dichloroethane (EDC)	0.549	0.0161	0.5357	0	102	51.3	139						
Benzene	0.543	0.0107	0.5357	0.02096	97.4	63.5	133						
Trichloroethene (TCE)	0.508	0.0107	0.5357	0	94.8	68.6	132						
1,2-Dichloropropane	0.544	0.0107	0.5357	0	101	59	136						
Bromodichloromethane	0.418	0.0107	0.5357	0	78.0	50.7	141						
Dibromomethane	0.501	0.0214	0.5357	0	93.4	50.6	137						
cis-1,3-Dichloropropene	0.542	0.0107	0.5357	0	101	50.4	138						
Toluene	0.551	0.0107	0.5357	0.02369	98.4	63.4	132						
trans-1,3-Dichloropropylene	0.541	0.0161	0.5357	0	101	44.1	147						
1,1,2-Trichloroethane	0.524	0.0161	0.5357	0	97.8	51.6	137						
1,3-Dichloropropane	0.539	0.0268	0.5357	0	101	53.1	134						
Tetrachloroethene (PCE)	0.543	0.0107	0.5357	0	101	35.6	158						
Dibromochloromethane	0.440	0.0161	0.5357	0	82.2	55.3	140						
1,2-Dibromoethane (EDB)	0.518	0.00268	0.5357	0	96.7	50.4	136						
Chlorobenzene	0.542	0.0107	0.5357	0	101	60	133						
1,1,1,2-Tetrachloroethane	0.484	0.0161	0.5357	0	90.4	53.1	142						
Ethylbenzene	0.568	0.0161	0.5357	0.02044	102	54.5	134						
m,p-Xylene	1.14	0.0107	1.071	0.04232	102	53.1	132						
o-Xylene	0.578	0.0107	0.5357	0.02144	104	53.3	139						
Styrene	0.555	0.0107	0.5357	0	104	51.1	132						
Isopropylbenzene	0.562	0.0429	0.5357	0	105	58.9	138						
Bromoform	0.352	0.0107	0.5357	0	65.7	57.9	130						
1,1,2,2-Tetrachloroethane	0.521	0.0107	0.5357	0	97.2	51.9	131						
n-Propylbenzene	0.573	0.0107	0.5357	0	107	53.6	140						
Bromobenzene	0.559	0.0161	0.5357	0	104	54.2	140						

Work Order: 1	704169
---------------	--------

Project:

CLIENT: Shannon & Wilson

Ballard Conveyance

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1704147-005BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Dat	e: 4/13/20	17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Dat	e: 4/14/20	17	SeqNo: 680	0780	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	0.564	0.0107	0.5357	0	105	51.8	136				
2-Chlorotoluene	0.548	0.0107	0.5357	0	102	51.6	136				
4-Chlorotoluene	0.560	0.0107	0.5357	0	104	50.1	139				
tert-Butylbenzene	0.569	0.0107	0.5357	0	106	50.5	135				
1,2,3-Trichloropropane	0.550	0.0107	0.5357	0	103	50.5	131				
1,2,4-Trichlorobenzene	0.694	0.0268	0.5357	0	129	50.8	130				
sec-Butylbenzene	0.619	0.0107	0.5357	0	116	52.6	141				
4-Isopropyltoluene	0.634	0.0107	0.5357	0	118	52.9	134				
1,3-Dichlorobenzene	0.563	0.0107	0.5357	0	105	52.6	131				
1,4-Dichlorobenzene	0.575	0.0107	0.5357	0	107	52.9	129				
n-Butylbenzene	0.670	0.0107	0.5357	0	125	52.6	130				
1,2-Dichlorobenzene	0.567	0.0107	0.5357	0	106	55.8	129				
1,2-Dibromo-3-chloropropane	0.429	0.268	0.5357	0	80.0	40.5	131				
1,2,4-Trimethylbenzene	0.613	0.0107	0.5357	0	114	50.6	137				
Hexachlorobutadiene	0.693	0.0536	0.5357	0	129	40.6	158				
Naphthalene	0.744	0.0161	0.5357	0	139	52.3	124				S
1,2,3-Trichlorobenzene	0.651	0.0107	0.5357	0	121	54.4	124				
Surr: Dibromofluoromethane	0.579		0.6696		86.4	56.5	129				
Surr: Toluene-d8	0.663		0.6696		99.0	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	0.725		0.6696		108	63.1	141				
NOTES:											

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample ID 1704147-005BMSD	SampType: MSD			Units: mg/ł	Kg-dry	Prep Da	te: 4/13/20	17	RunNo: 35538		
Client ID: BATCH	Batch ID: 16767	ch ID: 16767				Analysis Da	te: 4/14/20	17	SeqNo: 680	0781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.442	0.0321	0.5357	0	82.6	43.5	121	0.4416	0.155	30	
Chloromethane	0.558	0.0321	0.5357	0.03912	96.9	45	130	0.5688	1.90	30	
Vinyl chloride	0.504	0.00107	0.5357	0	94.1	51.2	146	0.5177	2.72	30	
Bromomethane	0.381	0.0482	0.5357	0.02986	65.6	21.3	120	0.3710	2.78	30	

Work Order: 1704169

CLIENT: Shannon & Wilson

QC SUMMARY REPORT

Project: Ballard Conveyance

Sample ID 1704147-005BMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 4/13/20)17	RunNo: 35538		
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20	017	SeqNo: 680	0781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichlorofluoromethane (CFC-11)	0.462	0.0268	0.5357	0	86.3	35	131	0.4079	12.5	30	
Chloroethane	0.482	0.0321	0.5357	0	89.9	31.9	123	0.4679	2.91	30	
1,1-Dichloroethene	0.515	0.0268	0.5357	0	96.2	61.9	141	0.5057	1.83	30	
Methylene chloride	0.511	0.0107	0.5357	0	95.3	54.7	142	0.5308	3.86	30	
trans-1,2-Dichloroethene	0.528	0.0107	0.5357	0	98.6	52	136	0.5277	0.124	30	
Methyl tert-butyl ether (MTBE)	0.570	0.0268	0.5357	0.01279	104	54.4	132	0.6125	7.15	30	
1,1-Dichloroethane	0.533	0.0107	0.5357	0	99.5	51.8	141	0.5309	0.397	30	
2,2-Dichloropropane	0.539	0.0268	0.5357	0	101	36	123	0.5346	0.739	30	
cis-1,2-Dichloroethene	0.516	0.0107	0.5357	0	96.4	58.6	136	0.5208	0.850	30	
Chloroform	0.508	0.0107	0.5357	0	94.9	53.2	129	0.5124	0.804	30	
1,1,1-Trichloroethane (TCA)	0.505	0.0107	0.5357	0	94.3	58.3	145	0.4955	1.95	30	
,1-Dichloropropene	0.547	0.0107	0.5357	0	102	55.1	138	0.5477	0.134	30	
Carbon tetrachloride	0.515	0.0107	0.5357	0	96.1	53.3	144	0.4709	8.93	30	
I,2-Dichloroethane (EDC)	0.507	0.0161	0.5357	0	94.6	51.3	139	0.5488	7.98	30	
Benzene	0.537	0.0107	0.5357	0.02096	96.3	63.5	133	0.5428	1.11	30	
Trichloroethene (TCE)	0.514	0.0107	0.5357	0	95.9	68.6	132	0.5081	1.12	30	
I,2-Dichloropropane	0.530	0.0107	0.5357	0	99.0	59	136	0.5436	2.51	30	
Bromodichloromethane	0.422	0.0107	0.5357	0	78.8	50.7	141	0.4180	0.992	30	
Dibromomethane	0.480	0.0214	0.5357	0	89.7	50.6	137	0.5005	4.13	30	
cis-1,3-Dichloropropene	0.535	0.0107	0.5357	0	99.8	50.4	138	0.5425	1.47	30	
Toluene	0.550	0.0107	0.5357	0.02369	98.3	63.4	132	0.5510	0.108	30	
rans-1,3-Dichloropropylene	0.529	0.0161	0.5357	0	98.8	44.1	147	0.5410	2.23	30	
1,1,2-Trichloroethane	0.489	0.0161	0.5357	0	91.2	51.6	137	0.5241	7.03	30	
1,3-Dichloropropane	0.503	0.0268	0.5357	0	94.0	53.1	134	0.5386	6.73	30	
Tetrachloroethene (PCE)	0.544	0.0107	0.5357	0	102	35.6	158	0.5434	0.175	30	
Dibromochloromethane	0.430	0.0161	0.5357	0	80.2	55.3	140	0.4401	2.39	30	
I,2-Dibromoethane (EDB)	0.482	0.00268	0.5357	0	89.9	50.4	136	0.5182	7.30	30	
Chlorobenzene	0.530	0.0107	0.5357	0	98.8	60	133	0.5420	2.32	30	
1,1,1,2-Tetrachloroethane	0.482	0.0161	0.5357	0	90.0	53.1	142	0.4844	0.461	30	
Ethylbenzene	0.554	0.0161	0.5357	0.02044	99.6	54.5	134	0.5677	2.41	30	
m,p-Xylene	1.11	0.0107	1.071	0.04232	99.2	53.1	132	1.136	2.76	30	

Work Order: 1704169

Project:

CLIENT: Shannon & Wilson

Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-005BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Da	te: 4/13/20)17	RunNo: 355	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20)17	SeqNo: 680	0781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	0.555	0.0107	0.5357	0.02144	99.6	53.3	139	0.5780	4.07	30	
Styrene	0.529	0.0107	0.5357	0	98.8	51.1	132	0.5554	4.80	30	
Isopropylbenzene	0.546	0.0429	0.5357	0	102	58.9	138	0.5616	2.80	30	
Bromoform	0.341	0.0107	0.5357	0	63.6	57.9	130	0.3521	3.26	30	
1,1,2,2-Tetrachloroethane	0.463	0.0107	0.5357	0	86.5	51.9	131	0.5207	11.7	30	
n-Propylbenzene	0.544	0.0107	0.5357	0	102	53.6	140	0.5730	5.09	30	
Bromobenzene	0.519	0.0161	0.5357	0	96.8	54.2	140	0.5591	7.51	30	
1,3,5-Trimethylbenzene	0.537	0.0107	0.5357	0	100	51.8	136	0.5640	4.90	30	
2-Chlorotoluene	0.531	0.0107	0.5357	0	99.1	51.6	136	0.5485	3.24	30	
4-Chlorotoluene	0.532	0.0107	0.5357	0	99.3	50.1	139	0.5596	5.05	30	
tert-Butylbenzene	0.550	0.0107	0.5357	0	103	50.5	135	0.5690	3.32	30	
1,2,3-Trichloropropane	0.466	0.0107	0.5357	0	87.0	50.5	131	0.5504	16.6	30	
1,2,4-Trichlorobenzene	0.626	0.0268	0.5357	0	117	50.8	130	0.6935	10.3	30	
sec-Butylbenzene	0.584	0.0107	0.5357	0	109	52.6	141	0.6188	5.79	30	
4-Isopropyltoluene	0.593	0.0107	0.5357	0	111	52.9	134	0.6342	6.65	30	
1,3-Dichlorobenzene	0.566	0.0107	0.5357	0	106	52.6	131	0.5631	0.492	30	
1,4-Dichlorobenzene	0.570	0.0107	0.5357	0	106	52.9	129	0.5750	0.915	30	
n-Butylbenzene	0.671	0.0107	0.5357	0	125	52.6	130	0.6697	0.243	30	
1,2-Dichlorobenzene	0.562	0.0107	0.5357	0	105	55.8	129	0.5675	1.03	30	
1,2-Dibromo-3-chloropropane	0.383	0.268	0.5357	0	71.5	40.5	131	0.4288	11.3	30	
1,2,4-Trimethylbenzene	0.560	0.0107	0.5357	0	105	50.6	137	0.6134	9.04	30	
Hexachlorobutadiene	0.684	0.0536	0.5357	0	128	40.6	158	0.6932	1.31	30	
Naphthalene	0.633	0.0161	0.5357	0	118	52.3	124	0.7442	16.1	30	
1,2,3-Trichlorobenzene	0.577	0.0107	0.5357	0	108	54.4	124	0.6505	12.0	30	
Surr: Dibromofluoromethane	0.620		0.6696		92.5	56.5	129		0		
Surr: Toluene-d8	0.659		0.6696		98.4	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.699		0.6696		104	63.1	141		0		

Work Order:	1704169
CLIENT:	Shannon & Wilson

QC SUMMARY REPORT

Project: Ballard Conveyance

Sample ID 1704147-012BDUP	SampType: DUP			Units: mg/k	lg-dry	Prep Da	te: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/2	017	SeqNo: 680	0789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0284						0		30	Q
Chloromethane	0.0363	0.0284						0.03933	8.01	30	
Vinyl chloride	ND	0.000946						0		30	
Bromomethane	ND	0.0426						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0236						0		30	
Chloroethane	ND	0.0284						0		30	
1,1-Dichloroethene	ND	0.0236						0		30	
Methylene chloride	ND	0.00946						0		30	
trans-1,2-Dichloroethene	ND	0.00946						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0236						0		30	
1,1-Dichloroethane	ND	0.00946						0		30	
2,2-Dichloropropane	ND	0.0236						0		30	
cis-1,2-Dichloroethene	ND	0.00946						0		30	
Chloroform	ND	0.00946						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.00946						0		30	
1,1-Dichloropropene	ND	0.00946						0		30	
Carbon tetrachloride	ND	0.00946						0		30	
1,2-Dichloroethane (EDC)	ND	0.0142						0		30	
Benzene	ND	0.00946						0		30	
Trichloroethene (TCE)	ND	0.00946						0		30	
1,2-Dichloropropane	ND	0.00946						0		30	
Bromodichloromethane	ND	0.00946						0		30	
Dibromomethane	ND	0.0189						0		30	
cis-1,3-Dichloropropene	ND	0.00946						0		30	
Toluene	ND	0.00946						0		30	
trans-1,3-Dichloropropylene	ND	0.0142						0		30	
1,1,2-Trichloroethane	ND	0.0142						0		30	
1,3-Dichloropropane	ND	0.0236						0		30	
Tetrachloroethene (PCE)	ND	0.00946						0		30	
Dibromochloromethane	ND	0.0142						0		30	
1,2-Dibromoethane (EDB)	ND	0.00236						0		30	

Work Order:	1704169
CLIENT:	Shannon & Wilson
Project:	Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-012BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/2	017	SeqNo: 68	0789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.00946						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0142						0		30	
Ethylbenzene	ND	0.0142						0		30	
m,p-Xylene	ND	0.00946						0		30	
o-Xylene	ND	0.00946						0		30	
Styrene	ND	0.00946						0		30	
Isopropylbenzene	ND	0.0378						0		30	
Bromoform	ND	0.00946						0		30	Q
1,1,2,2-Tetrachloroethane	ND	0.00946						0		30	
n-Propylbenzene	ND	0.00946						0		30	
Bromobenzene	ND	0.0142						0		30	
1,3,5-Trimethylbenzene	ND	0.00946						0		30	
2-Chlorotoluene	ND	0.00946						0		30	
4-Chlorotoluene	ND	0.00946						0		30	
tert-Butylbenzene	ND	0.00946						0		30	
1,2,3-Trichloropropane	ND	0.00946						0		30	
1,2,4-Trichlorobenzene	ND	0.0236						0		30	
sec-Butylbenzene	ND	0.00946						0		30	
4-Isopropyltoluene	ND	0.00946						0		30	
1,3-Dichlorobenzene	ND	0.00946						0		30	
1,4-Dichlorobenzene	ND	0.00946						0		30	
n-Butylbenzene	ND	0.00946						0		30	
1,2-Dichlorobenzene	ND	0.00946						0		30	
1,2-Dibromo-3-chloropropane	ND	0.236						0		30	
1,2,4-Trimethylbenzene	ND	0.00946						0		30	
Hexachlorobutadiene	ND	0.0473						0		30	
Naphthalene	ND	0.0142						0		30	
1,2,3-Trichlorobenzene	ND	0.00946						0		30	
Surr: Dibromofluoromethane	0.500		0.5912		84.5	56.5	129		0		
Surr: Toluene-d8	0.568		0.5912		96.2	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.569		0.5912		96.2	63.1	141		0		

Work Order:	1704169						00	SUMMARY REPORT
CLIENT:	Shannon & Wi	lson						
Project:	Ballard Conve	yance					Volatile Organic Compo	Inds by EPA Method 8260C
Sample ID 17041	47-012BDUP	SampType: DUP			Units: mg/	′Kg-dry	Prep Date: 4/13/2017	RunNo: 35538
Client ID: BATC	H	Batch ID: 16767					Analysis Date: 4/14/2017	SeqNo: 680789
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Va	%RPD RPDLimit Qual

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample Log-In Check List

Cli	ent Name:	sw	Work Order Num	ber: 1704169	
Lo	gged by:	Clare Griggs	Date Received:	4/13/2017	11:52:00 AM
<u>Cha</u>	in of Custe	<u>ody</u>			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
<u>Log</u>	In				
-	 Coolers are p	resent?	Yes 🖌	No 🗌	NA 🗌
4.	Shipping cont	tainer/cooler in good condition?	Yes 🖌	No 🗌	_
		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes 🖌	No 🗌	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	No 🔽	
		Sample	e received straigh	t from field	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserva	ative added to bottles?	Yes 🖌	No 🗌	NA 🗌
			_	_	MeOH
12.	Is there head	space in the VOA vials?	Yes 🗌	No 🗌	NA 🗹
-		es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗔	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🔽	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🖌	No 🗌	
Spe	cial Handli	ing (if applicable)			
-		tified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
	Person	Notified: Date			
	By Who	m: Via:	eMail Pr	none 🗌 Fax 🛛	In Person
	Regardi	ng:			
	Client In	structions:			
19.	Additional rer	narks:			

Item Information

Item #	Temp ⁰C
Cooler	6.4
Sample	13.5
Temp Blank	9.9

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

5
0
270
0
-
0

×
¥
.fre
emo
ont
ana
Yti
cal.
COT
3

00	
1.2	
- 2.22	
17	

	3600 Fremont Ave N.	Chain of Custody Record & Labo	Laboratory Services Agreement
Fremont	Seattle, WA 98103 Tel: 206-352-3790	of:	1041109
Analytical	Fax: 206-352-7178	NAME: BALLARD CONVEYANCE	Special Remarks:
client: Stw		Project No: 21-1-22329 - 002	ıge 3
Address: 400 N. 34 St			Pa
City, state, Zip: SKATTUR / WA		Location: BALLARD	
Telephone: 206 - 224 PG95 -	6118	Shan DAVID RANDALL	Sample Disposal: CReturn to client Disposal by lab (after 30 days)
Fax:		dir @ shanwi	
Traiti en la construction de la construcción de	Sanno		
Sample Name Date	Time (Matrix)*	2011, 100 0 00 00 00 00 00 00	Comments
1 BCT-04-ENU 4/13/20	17 1/2	×	1999년 1997년 1월 19
Sector State and the sector s sector sector sec			मान्यपुरू जगभ्य एक्टर इस बर्ग के मिल्लाव्या है। में विद्यापुर के किंगा के किंगा के बिंग के किंगा के बिंग के कि
3			
		e lite stel to 10.00 m k the second file of the to	with most registration restance the standard from a standard to the standard stand Standard standard stand
7 a fill of the fi	and the second second		Her cits for the result and of your sector is the sector of the sector and the sector is the sector
offer own and and showing the subscription of a 8	SAME TO STREET		Brus longbetolgenber zum "chan, torrecht als enoch som nite
6	144 Million		the date of frequencies of county or advances we wanted
10 1010-101 101 101 101			
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other, P	P = Product, S = Soil, SD = Se	SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water, SW = Sto	SW = Storm Water, WW = Waste Water Turn-ground Time:
**Metals (Circle): MTCA-5 (RCRA-8) Priority Pollutants	stants TAL Individual:	Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb	Se Sr Sn Ti Ti U V Zn
***Anions (Circle): Nitrate Nitrite Chloride	2 Sulfate Bromide	O-Phosphate Fluoride Nitrate+Nitrite	
I represent that I am authorized to enter into this Agreement v each of the terms on the front and backside of this Agreement.	o this Agreement with of this Agreement.	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	
Relinguistigd × Jorge Willing Date/Time	4/13/17	11:55 × MANNAN (Date/Time)	A I SZ O Next Day
Refinquished Date/Time	Time	Received CCC gate/Time	Same Day (specify)
and an analysister 1. During had a long		unum fromontanalutical com	[[fordet

APPENDIX E

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Date: July 19, 2017

To: Seattle Public Utilities Seattle, Washington

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimation always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

APPENDIX H:

VALUE MODELING TECHNICAL MEMORANDUM.

Value Modeling Technical Memorandum

Date Prepared	June 1, 2018		
Project Phase	Options Analysis/Stage Gate 2		
Prepared By	Emiko Takahashi, SPU		
Project Name	Ballard Conveyance		
Activity Number	C315506		
Fund & Business Area	ss Area Drainage & Waste Water Fund		
Sub-Budget Control Level	Ship Canal Water Quality Program		
Executive Sponsor	Madeline Goddard		
DWW LOB Representative	Alex Mockos		
Project Manager	Richard Fernandez		

1 PROJECT SCOPE

This memorandum documents the value modeling process with the overall goal of helping SPU choose an alignment for the Ballard Conveyance for the Ship Canal Water Quality Project.

Value Modeling is a tool that SPU uses to a) evaluate the project alternatives based on quantifiable and non-quantifiable project objectives, b) communicate tradeoffs between competing objectives from multiple stakeholders, and c) document the process and rationale for choosing a preferred project alternative.

The value modeling process involved six major steps

- 1) define the relevant evaluation criteria and sub-criteria,
- 2) define performance measures,
- 3) assign weight,
- 4) score each evaluation criteria,
- 5) calculate a value score, and
- 6) compare the value against project cost.

The first two steps were initiated and refined during concept development. As the team was conducting options analysis for the three proposed alignments, they convened on August 3, 2017 and September 12, 2017 to discuss and agree on the evaluation criteria, sub-criteria, and performance measures; assign weights; and assign, discuss, and agree on the final scores of the Options.

2 PROJECT BACKGROUND

The Ship Canal Project storage is a deep tunnel constructed under the Ballard, Fremont and Wallingford neighborhoods, on the north side of the Ship Canal (Figure 2-1). It will control the Ballard CSO Basins 150/151 and 152, Fremont Basin 174 and Wallingford Basin 147A and 147B; and DNRP 3rd Avenue W Basin, and 11th Avenue NW Basin. The main components of the Ship Canal Project are the 18-foot 10-inch diameter storage tunnel, appurtenances, and conveyance facilities to convey SPU and DNRP CSO flows into the tunnel and a pump station and force main to drain flows from the tunnel to King County's treatment facility.

One of the elements of the Ship Canal Project is Ballard Conveyance system that collects CSOs from SPU Ballard Basins 150/151 and 152 and routes it to the tunnel storage. The scope of the Ballard Conveyance project includes the planning, design and construction of the flow conveyance to the storage tunnel, including the piping, and diversion structures.

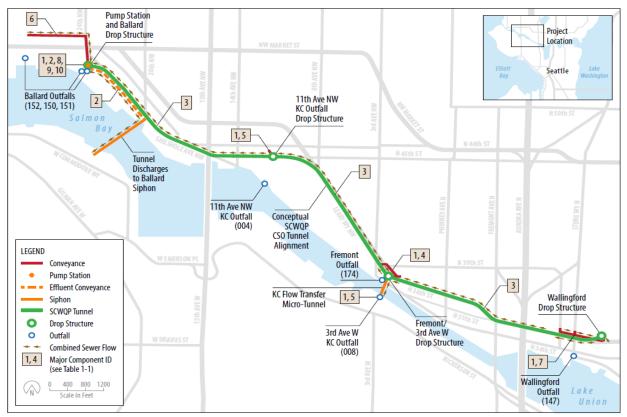


Figure 2-1. Ship Canal Water Quality Project extents

3 OPTION OVERVIEW

From the options analysis process and goals, SPU developed three options for analysis

Option 1 (NW 56th Street): The land-use of this alignment is mainly residential with single family and multi-family residences along NW 56th Street and businesses and mixed development along 24th Avenue NW. It extends from the proposed diversion structure near the intersection of NW 56th Street and 28th Avenue NW east on NW 56th Street and south on 24th Avenue NW to the Tunnel Effluent Pump Station (TEPS) site southeast of the intersection between NW 54th Street (Figure 3-1). It accommodates transit traffic on the commercial street of 24th Avenue NW.

Figure 3-1. Option 1 – NW 56th Street Alignment

Alternative 2 (NW Market Street):

The land-use along the alignment of the conveyance pipes, NW Market Street and 24th Avenue NW, is composed of commercial and business use. It extends from the proposed diversion structure near the intersection of NW 56th Street and 28th Avenue NW south on 28th Avenue NW, east on NW Market Street and south on 24th Avenue NW to the TEPS site (Figure 3-2). Both streets are minor arterials with high traffic volumes and transit traffic. In addition, NW Market Street is selected for the Burke Gilman Missing Link project alignment and is proposed to add a bicycle lane.

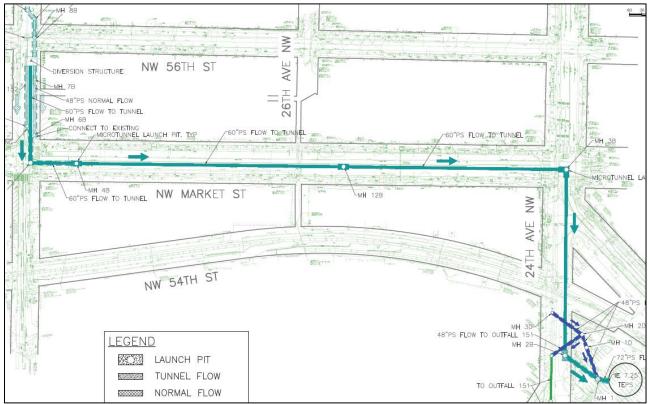


Figure 3-2. Option 2 – NW Market Street Alignment

Option 3 (NW 54th Street): The land-use for this alignment along NW 54th Street is mainly industrial. It extends from the proposed diversion structure near the intersection of NW 56th Street and 28th Avenue NW south on 28th Avenue NW, east on NW 54th Street to the TEPS site (Figure 3-3). The existing "road" is extremely narrow, has a split-level section and is not a City right-of-way. This alignment also houses railroad tracks and a 12" watermain that would need to be relocated between 26th Avenue NW and 24th Avenue NW along NW 54th Street requiring extensive shoring adjacent to the existing railroad.

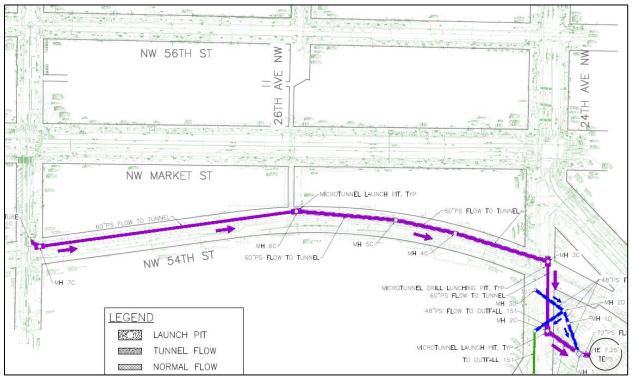


Figure 3-3. Option 3 -NW 54th Street Alignment

4 VALUE MODELING PROCESS AND EVALUATION PERFORMANCE

4.1. Define Evaluation Criteria

Evaluation criteria were developed to measure how well each Option would meet project objectives. The following Project team members Richard Fernandez (Project Manager), Eset Alemu (Project Engineer), Alex Mockos (LOB Representative), Rachel Ramey (Community Outreach), Brian Mickelson (Community Outreach), Vicky Raya (Race and Social Justice), Cynthia Blazina (Construction Management), Jonathan Batara (Maintenance) and Emiko Takahashi (Economics) developed the following 3 categories of evaluation criteria in advance of a meeting with the entire team.

- Criterion #1: Short-term Impact to Community
- Criterion #2: Long term Community Impact from Maintenance
- Criterion #3: Construction risk
- Criterion #4: Ease and Safety of Maintenance
- Criterion #5: Construction complexity

The project team wanted to capture the very different short-term construction impacts the three options would have on the community. They identified different stakeholders that would be impacted including: residents, business owners, transit riders, drivers along arterial, users of the Burke Gilman Trail, and those served by the railroad along NW 54th Street. The first criteria of Short-term Construction impact to Community was broken down into sub-criteria based on the impacted groups. The sub-criteria were:

- 2.1.1 Access to Residences, Business and Industrial Facilities
- 2.1.2 Impact on Transit Riders
- 2.1.3 Impact on Vehicular and Truck Traffic
- 2.1.4 Railroad loss of use
- 2.1.5 Impact on Business Activities
- 2.1.6 Impact on Future Burke Gilman


Sub Criteria 2.1.1 Access to Residences, Business and Industrial Facilities measures the construction impact to residents, businesses and industrial facility owners' ability to access their properties. These sub-criteria were measured with the 'number of days entries/exits/driveways were obstructed or blocked'. The term 'obstructed' was defined as construction happening on street causing delays or detours and "blocked' meant no ability to access driveway or entry. Obstructions were considered less adverse than blocked and therefore were only counted as ½ of a much as 'blocked'. To develop the measure, the number of entry/exits from residences/business/lanes of traffic that would be obstructed and/or blocked were counted and multiplied by the number of construction days as shown in Table 4-1. The impact on the ROW was measured by the access to parking spots in the ROW.

Options	Stakeholders	Number of Obstructed or Blocked Days
Ontion 1	Residences	24,140
Option 1 – NW 56 th Street	Businesses	-
NW JU Street	ROW	34,200
	Residences	-
Option 2 – NW Market Street	Businesses	25,200
NW Warker Street	ROW	46,800
	Residences	-
Option 3 – NW 54 th Street	Businesses	27,600
	ROW	21,300

Table 4-1. Loss of Access Impacts Along the Alignments

From the data above, it is apparent that Option 1 has a sizable impact on Residences while Option 2 and 3 has an impact on Businesses and on the ROW (NW Market Street and NW 54th Street).

For sub-criteria 2.1.2 impact to Transit, the number of bus trips per week were counted and was used as a proxy of the potential disruptions to transit if construction was along an alignment. Option 2's alignment includes NW Market Street, a major arterial with many buses running along trolley lines. Option 2 had the most number of trips per week with Option 3 having no transit along it's alignment. Option 1 had some impact as buses that run north/south along 24th Avenue NW. A map of the bus routes is below in Figure 4-1. Bus routes #44, and #40 run frequently whereas the other lines run only at peak hours.

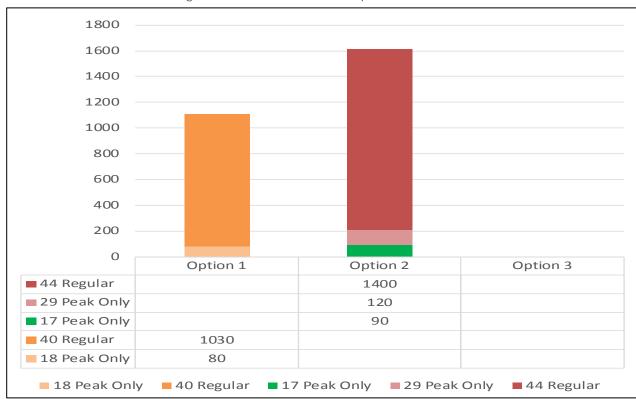


Figure 4-2. Number of Bus Trips Per Week

Table 4-1 and Figure 4-2 above show the 1610 trips/week along NW Market Street in Option 2 and the 1110 trips/week along 24th Avenue NW in Option 1.

For Sub-Criteria 2.1.5 Impact on Businesses, the number of businesses that could be impacted by construction was based Google map's street view and looking up company websites. From the research, it was determined that the Option1 alignment could affect 7 businesses and 24th Avenue NW and Option 2 would affect 24 businesses mostly on NW Market Street and Option 3 would affect 10 businesses mostly along NW 56th Street:

During first value model meeting, on August 3, 2017, two additional criteria "2.2 Longterm impacts on community" and "2.4 Ease of Maintenance" were added. SPU FOM was concerned that the land use and width of the alignments may impact the ease of future replacements.

Sub-criteria that would have an equally scored rating for all Options were excluded because they did not add to helping differentiate between options.

The performance measures for all the evaluation criteria and sub -criterion are shown in Table 4-2.

Evaluation Criteria	Sub-Criteria	Measure	
	2.1.1 Access to Residences, Business and Industrial Facilities	Impacted/Obstructed total number of days	
2.1 Short-term	2.1.2 Impact on Transit Riders	Buses per week	
Community Impacts	2.1.3 Impact on Vehicular and Truck Traffic	Average vehicle per week	
	2.1.4 Railroad loss of use	Trips per week	
	2.1.5 Impact on Business Activities	Number of business	
	2.1.6 Impact on Future Burke Gilman	Cyclists and Pedestrians per week in 2022	
2.2 Long term Comm	unity Impact	Scale 1-5	
2.3 Construction Risk	2.3.1 Reduces risk of finding contaminated soils beyond what was expected and causes increased costs and delay in schedule.	Scale 1-5	
	2.3.2 risk of property or easement acquisitions can be completed in timely manner	Scale 1-5	
2.4 Practical and	2.4.1 Ease of Future Replacement	Scale 1-5	
Safe to Maintain	2.4.2 Practicality of maintenance (e.g., access, safety)	Scale 1-5	
2.5 Construction Com	Scale 1-5		

Table 4-2 Outcome of Sub-Criteria and Performance Measures Screening

4.1 Performance Measures

The performance scale for Criterion #1 Short-term impact to the community had a high score of 0 (where there was no impact) to a low score for the highest impact to the community. For example, if an option such as Option 3, had no impact on transit, it scored 0 which meant it had no impact which is good at minimizing the impact on the community, while Option 2 scored the worst by having the potential to impact 1610 transit trips/week and scored 1610. Performance measures for other sub-criterion were qualitatively described on a performance scale of 1 to 5, where 1 was the lowest score and 5 was the best possible score.

4.2 Assign Weights

During the 1st team meeting on August 3, 2017, project team members individually assigned weights to each evaluation criteria which were then averaged to come up with a starting point for criteria weights for each evaluation criteria. The team discussed and agreed that the project team average for each evaluation criteria was a good representation of the relative importance of each criterion. The averages are show in Table 4-3 below:

Criteria	Weight
2.1 Short-term Community Impacts	30.3
2.2 Long term Community Impact from Maintenance	11.3
2.3 Construction Risk	18.8
2.4 Ease of Maintenance	25.9
2.5 Construction Complexity	13.8

Table 4-3 Weights Assigned to Evaluation Criteria

Total of weights equals 100%.

For simplicity, the sub-criteria of each evaluation criteria were initially assumed to have equal weight within the major evaluation criteria. For example, the five sub-criteria of an evaluation criterion "Short-term impact on Community" were each given an equal weight of 6 percent each, which is one-fifth of 30% as shown in Table 4-4.

	Sub-Criteria	Weight
2.1.1	Access to Residences, Business and Industrial Facilities	6.1%
2.1.2	Impact on Transit Riders	6.1%
2.1.3	Impact on Vehicular and Truck Traffic	6.1%
2.1.4	Railroad loss of use	6.1%
2.1.5	Impact on Business Activities	6.1%
2.1.6	Impact on Future Burke Gilman	6.1%

Table 4-4. Sub-Criteria Weighting Distribution for Criterion #2.1

In the second workshop, the project team reviewed, discussed and agreed to the averages of individual weights were a good representation of the relative importance of the criteria and confirmed that changes to their initial weights were not necessary.

4.3 Scoring Options against Performance Measures and Rationale

The smaller sub-team completed an initial scoring and provided rationale based on the information obtained during the options analysis and without a construction management report. During the second value modeling workshop on September 12, 2017 project team members reviewed and reconciled the performance scale value and rationale for each sub-criterion. The agreed upon project team scores and rationale are provided in Table 4-5. The green shading in the table below illustrates that the option did well relative to that criteria, whereas red shading highlights that an option scored poorly in the criteria.

	Measure	Option 1. NW 56th St	Option 2. NW Market St	Option 3. NW 54th St
2.1 Short-term Community Impacts				
2.1.1 Access to Residences, Business and Industrial Facilities	Impacted/ Obstructed total number of days	58,320	72,000	48,900
2.1.2 Impact on Transit Riders	Buses per week	1,110	1,610	0
2.1.3 Impact on Vehicular and Truck Traffic	Average vehicle per week	12,920	18,630	1,200
2.1.4 Railroad loss of use	Trips per week	0	0	1
2.1.5 Impact on Business Activities	Number of business	7	24	10
2.1.6 Impact on Future Burke Gilman	Cyclists and Pedestrians per week in 2022	0	2,659	0
2.2 Long term Community Impact				
2.2.1 Impact from Long Term Maintenance	Scale 1-5	3	2	4.5
2.3 Construction Risk				
2.3.1 Reduces risk of finding contaminated soils beyond what was expected and causes increased costs and delay in schedule.	Scale 1-5	5	1	1
2.3.2 risk of property or easement acquisitions can be completed in timely manner	Scale 1-5	5	5	1
2.4 Ease of Maintenance				
2.4.1 Ease of Future Replacement	Scale 1-5	3	2	4
2.4.2 Practicality of maintenance (e.g., access, safety)	Scale 1-5	3	2	5
2.5 Construction Complexity	Scale 1-5	3	2	2

Table 4-5 Sub-Criteria Scoring

4.4 Calculation of Total Values Scores

After scoring, each performance measure was normalized to a scale of zero-to-one by a linear transformation of each score according to its distance from the scale endpoints. The total value score for each option was calculated using a weighted averaging process, in which the total value score is the sum of the percentage-weighted, normalized scores of each sub-criterion.

Value scores were then normalized again to be between 0 and 100, where higher scores indicate that an option performed well on the evaluation criteria. The value scores of the

options, from highest to lowest, are 62 for Option 1, 55 for Option 3, and 27 for Planning Option 2. The details of the scores are shown in Figure 4-3.

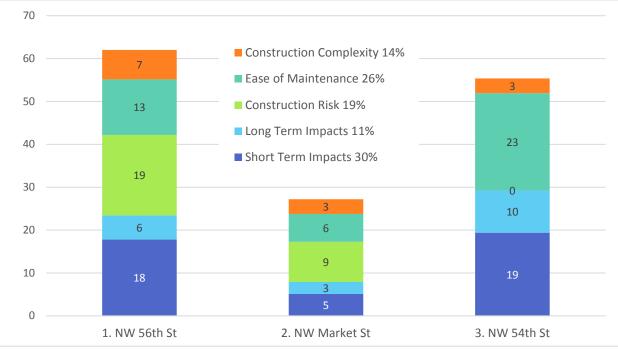


Figure 4-3. Final Value Score for Options #1, #2, and #3

	Value Hierarchy	Performance Scales	Option 1 - NW 56th St	Option 2 - NW Market St	Option 3 - NW 54th St
1. Long-run life	cycle cost	Minimal land, easement costs, permit fees to SDOT; minimal long-term operation, maintenance and replacement costs			
2.1. Short- term Community	2.1.1 Access to Residences, Business and Industrial Facilities	Lowest number of loss of access days			
	2.1.2 Impact on Transit Rider	Lowest number of bus trips detoured/week			
	2.1.3 Impact on Vehicular and Truck Traffic	No impact on users. During construction number of users can remain unchanged.			
Impacts	2.1.4 Railroad loss of use	No impact on users. During construction number of users can remain unchanged.			
	2.1.5 Impact on Business Activities	No impact on businesses during construction business remain unchanged.			
	2.1.6 Impact on Future Burke Gilman	No impact on cyclist/runners/walkers. During construction number of users can remain unchanged.			
2.2. Long -term Community Impact	2.2.1 Impact from Long Term Maintenance	Minimal impact from Maintenance activities or maintenance activity is consistent with nearby activities	Maintenance will have impact on residential street.	Maintenance on commercial street will occasionally disrupt traffic and business.	Maintenance will have little impact on street that typically has other truck traffic.
2.3. Construction Risk	2.3.1 Risk of finding contaminated soils beyond what was expected and causes increased costs and delay in schedule.	Low risk of contaminated soils based of geotechnical report and past use history	Low risk due to historical use as residential.	Moderate risk as small point with high concentrations of contamination has already been found. High ground water and seepage could help contamination to migrate	High risk as current and historical use has been industrial. High ground water and seepage could help contamination to migrate
	2.3.2 Risk of property or easement acquisitions can be completed in timely manner	No property or easements required as all construction is in City ROW.	All work in ROW	All work in ROW	Will require easements, ownership of parcels is unclear, the area is not ROW.
2.4. Ease of Maintenance	2.4.1 Ease of Future Replacement	Easy to replace components in future. There is space available to replace or repair assets as needed	Deep pipes difficult to replace	Even a temporary reduction in street parking on NW Market Street will not provide ample space for workspace	Option provides the least space and working next to Railroad is difficult. Future repair in area with railroad would be difficult
	2.4.2 Practicality of maintenance (e.g., access, safety)	Maintenance will be more convenient and safe for SPU workers because of access point location (e.g. sidewalk) and accessible at all times. Requires less frequency	Maintenance is difficult with deep maintenance holes	Maintenance will be along NW Market Street which is a busy street. Will require closure of street in case of maintenance.	Maintenance is easy on industrial street which typically has other truck traffic.
2.5. Construction Complexity	Minimal conflicts in location of workspace, staging and trenchless launch and retrieval pits with community activities	Construction locations are away from most community activities or are located where there is space to accommodate construction	Temporary parking restriction and traffic control on low traffic street. Depth of pipe difficult to access and maintain.	Even a temporary reduction in parking on NW Market Street will not provide enough space for workspace	Option provides the least space and working next to Railroad is difficult. Construction area with railroad would be difficult

Table 4-6 Criteria and Rationale for Scores

Value Modeling Summary

5 Economic Analysis

The capital cost developed for each option is documented in the Basis of Estimate and summarized below.

5.1 Capital (Total Cost¹)

The construction cost estimate for Option #1 of \$16.6 million is higher than Options 2 and 3, which are at \$14.9 million and \$13.2 million, respectively. The cost drivers for Option #1 is the microtunneling as it has the longest alignment. All options assumed the same percentage for allowance for indeterminates (25%), soft costs (49%), and management reserves (20%). Table 5-1 summarizes the breakdown of the AACE Class 4 construction cost estimate for the options. Figure 5-1 depicts the breakdown of the total capital costs.

Bid Item	Option 1	Option2	Option 3
Microtunneling	\$ 7,708,000	\$ 6,520,000	\$5,640,000
Mobilization	\$ 1,208,000	\$ 1,085,000	\$960,000
Trench/Backfill	\$ 462,500	\$ 395,000	\$360,000
Contaminated soils and water	\$ 31,445	\$ 89,860	\$650,900
Diversion Structure	\$ 393,400	\$ 393,400	\$142,700
Flow Gate Vault	\$ 272,500	\$ 222,600	\$207,000
Utility Relocate	\$ 321,500	\$ 264,000	\$217,370
Dewater	\$ 373,500	\$ 373,500	\$373,500
Vibration and Settlement Monitoring	\$ 500,000	\$ 500,000	\$500,000
All Other *	\$ 5,334,000	\$ 5,069,000	\$4,138,000
TOTAL	\$ 16,605,000	\$ 14,913,000	\$13,189,000

Table 5-1. AACE Class 4 cost estimate for Options

Notes:

2. These costs do not include the funds already spent to date on modeling and options analysis

3. "All Other" is a sum of smaller construction cost items. Those that were less than \$250,000/each.

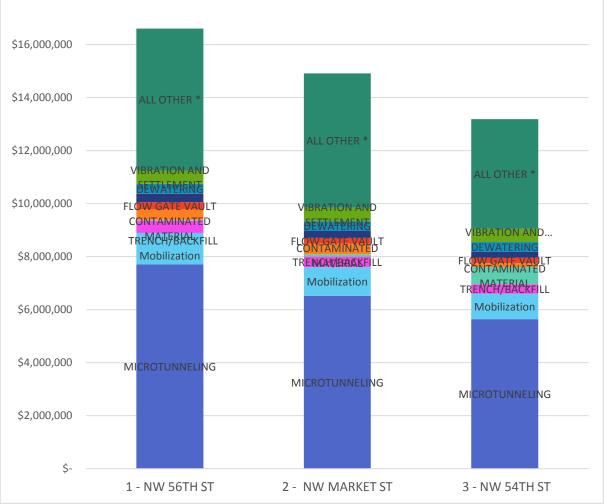
^{1.} Estimated cost of options in millions of \$2018.

\$18,000,000 \$16,000,000 \$14.000.000 \$12,000,000 **IBRATION AND** EMPERING \$10,000,000 FL TΤ **BRATION AND CONTAMINATE**D EMPREN EN VIBRATION AND... TRENCH BACKFILL Mobilization \$8,000,000 TRENACHT/BRACKFILL CONTAMINATED Mobilization TRENCH/BACKFILL Mobilization \$6,000,000 \$4,000,000 **MICROTUNNELING** MICROTUNNELING MICROTUNNELING \$2,000,000 \$-1 - NW 56TH ST 2 - NW MARKET ST 3 - NW 54TH ST

Option #2 costs were similar to those of Option#1, with lower cost of microtunneling due to it's shorter length. Option #3 cost estimate included allowances for dewatering and disposal of contaminated soils, which were not needed for Option #1 or #2. "All Other" was the sum of smaller construction cost items that were less than \$250,000/each. These were summed together for simplicity. The graphic does not show the -20% and +30% range of cost uncertainty for a Class 4 cost estimate.

5.1.1 Present Value

The present value of the capital costs is based on a 2.5% discount rate with a proposed construction start date during the first quarter of 2021 and a completion date during the 4th quarter of 2022.


5.1.2 Operation and Maintenance Costs

Operation and maintenance costs (for the options was \$6,000/year including:

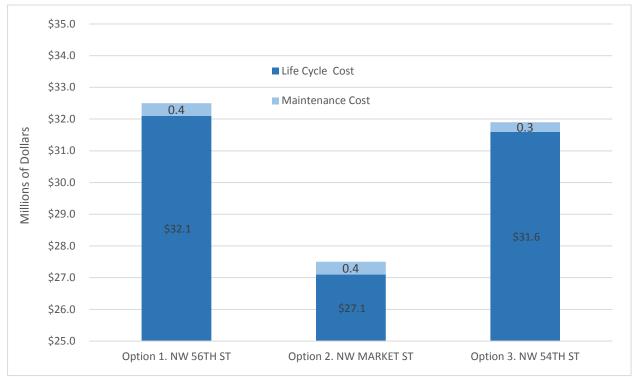
- Maintenance of Diversion Structure
- Annual Gate and Valve Maintenance
- Every 7th year CCTV of the piped system

Figure 5-1. Cost of options by Major Components

Value Modeling Summary

Value Modeling Summary

The present value cost over 100 years of the project at a 2.5% discount rate was \$403,000 to \$348,000. With NW 54th Street having the lowest cost due to having the shortest distance of pipe needing CCTV.


The O&M activities of inspecting the Diversion Structures and gate valve maintenance and CCTV every 7 years will be done by SPU Facilities, Operations and Maintenance (FOM).

Operations and Maintenance Item Option #1	Cost	Frequency
Type 3 Motorized Diversion Structure	\$ 3060	Annual
Structure Cleaning	\$650	Annual
Structure Inspection	\$876	Annual
Gate Valve Maintenance	\$1,494	Annual
CCTV	\$5760 to \$4140	Every 7 years

Table 5-2. Estimated Operations and Maintenance Costs (All Options)

5.1.3 Life-Cycle Costs

The life-cycle costs for the project (Capital Costs and O&M Costs) are shown in Figure 5-2 and Table 5-3.

Options	Capital Cost	Maintenance Cost	Life-cycle Cost
NW 56th Street	\$31.7	\$0.4	\$32.1
NW Market Street	\$26.7	\$0.4	\$27.1
NW 54th Street	\$31.3	\$0.3	\$31.6
*Present Value over 100 years at 2.5%			

 Value Modeling Summary

 Table 5-3. Life Cycle Cost for each Option in Millions (2018 costs)

5.2 Value Modeling Results and Discussion

Figure 5-3 shows the trade-off between value and cost by comparing the value modeling scores with the estimated life-cycle project costs.

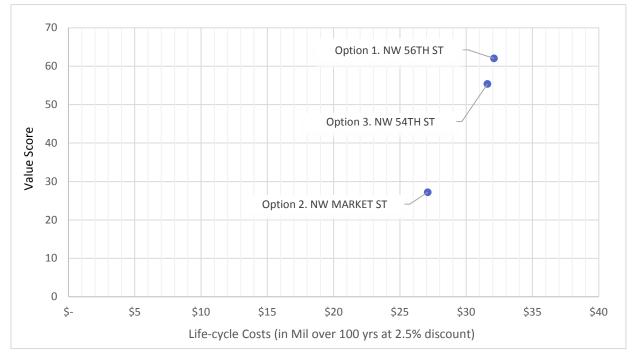


Figure 5-3. Value Score vs. Cost for Options #1, #2, and #3

Option #1 had the highest cost and highest value score (62). Option 1 did well in all criteria. It especially did better than the other options in scoring well in minimizing construction complexity and construction risk. Unfortunately, it was also the highest cost at \$32.1 Million due to the cost and length of microtunneling being the longest.

- Option #3 scored 55 and was \$0.5M less than Option #1 and had a slightly lower value score of 55. Compared to Option #1 it had higher construction risk due to the uncertainty of ownership and the potential of contaminated soils.
- Option #2 had the lowest value score of 27 and the least cost of \$27.1 Million. It was eliminated from consideration because it was outperformed by Option 1 and 3. It would be optimal for SPU to implement Option 2 and construct on NW Market Street as the other two perform better on all the evaluation criteria and also be lower cost.

The team agreed that Option2 should be dropped from consideration.

Preliminary Geotechnical Report Ship Canal Water Quality Project Ballard Conveyance Seattle, Washington

July 19, 2017

SHANNON & WILSON, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

Excellence. Innovation. Service. Value. Since 1954.

Submitted To: Seattle Public Utilities Seattle Municipal Tower, Suite 4900 700 Fifth Avenue Seattle, Washington 98124-4018

> By: Shannon & Wilson, Inc. 400 North 34th Street, Suite 100 Seattle, Washington 98103

> > 21-1-22329-004

TABLE OF CONTENTS

Page

1.0	INTRODUCTION1
2.0	PROJECT AND SITE DESCRIPTION
3.0	PURPOSE AND SCOPE
4.0	BASIS OF REPORT
5.0	SUBSURFACE EXPLORATION PROGRAM2
6.0	GEOTECHNICAL LABORATORY TESTING
7.0	GEOLOGY AND SUBSURFACE CONDITIONS37.1Site Geology47.2Site Subsurface Conditions47.3Environmental Findings57.4Seismic Hazards5
8.0	ENGINEERING STUDIES AND RECOMMENDATIONS78.1Trenchless Methods.78.1.1Pipe Ramming.78.1.2Auger Boring98.1.3Pipe Jacking108.1.4Microtunneling.118.2Direction of Trenchless Excavation128.3Shaft Locations.128.4Groundwater Control.138.5Obstructions148.6Preliminary Preferred Alignment148.7Geotechnical Instrumentation158.8Other Risks16
9.0	CLOSURE17
10.0	REFERENCES

TABLE OF CONTENTS (cont.)

FIGURES

- 1 Vicinity Map
- 2 Site and Exploration Plan
- 3 NW 56th Street Alignment Subsurface Profile
- 4 NW Market Street Alignment Subsurface Profile

APPENDICES

- A Project Subsurface Explorations
- B Existing Exploration Data
- C Geotechnical Laboratory Testing
- D Analytical Laboratory Testing
- E Important Information About Your Geotechnical/Environmental Report

PRELIMINARY GEOTECHNICAL REPORT SHIP CANAL WATER QUALITY PROJECT BALLARD CONVEYANCE SEATTLE, WASHINGTON

1.0 INTRODUCTION

The Ship Canal Water Quality Project has been broken out into a number of work packages, one of which is the Ballard Conveyance work. This report summarizes our geotechnical studies for the Ballard Conveyance project (Project) in the Ballard neighborhood of Seattle, Washington (Figure 1). The purpose of our geotechnical studies was to evaluate the subsurface conditions related to the geotechnical feasibility and geotechnical risk associated with constructing the conveyance pipeline using trenchless methods. This geotechnical report was prepared for the exclusive use of HDR Engineering, Inc. and Seattle Public Utilities (SPU) for planning-level purposes. Our conclusions are based on limited explorations and testing and a literature search and should not be used for final design of the Project. Additional explorations, testing, and analyses are required to develop final design recommendations for this Project.

2.0 PROJECT AND SITE DESCRIPTION

The purpose of the Project is to collect flows from Basin 152 and convey them to the Tunnel Effluent Pump Station (TEPS) to be located near the intersection of Shilshole Avenue NW and 24th Avenue NW. This report covers two alignments that are currently being considered for the proposed 60-inch-diameter conveyance pipeline. Both proposed alignments start near the intersection of NW 56th Street and 28th Avenue NW. The NW 56th Street alignment follows NW 56th Street east to 24th Avenue NW where it turns south and follows 24th Avenue NW to the TEPS site. The alternative NW Market Street alignment follows 28th Avenue NW. At 24th Avenue NW, it turns south and extends to the TEPS site. The approximate locations of these two alignments are shown in Figure 2.

The site is in an urban neighborhood that includes residential, commercial, and industrial land use. The proposed alignments are primarily located within public right-of-way and under paved roads. The site topography generally slopes from north to south, with the surface elevation varying from about 42 feet to 28 feet, respectively.

3.0 PURPOSE AND SCOPE

We understand this geotechnical report will be used for planning-level purposes only. This report should not be used for other purposes without Shannon & Wilson, Inc.'s (Shannon & Wilson's) review. Our geotechnical scope of services included:

- Collecting and reviewing existing geotechnical exploration logs.
- Developing a geotechnical exploration plan.
- Performing geotechnical explorations at four locations.
- Performing geotechnical laboratory testing on selected samples obtained from the explorations.
- Evaluating the feasibility of trenchless construction for two alignments.
- Preparing this preliminary geotechnical report.

If a service is not specifically indicated in this report, do not assume that it was performed.

4.0 BASIS OF REPORT

Our conclusions and considerations presented in this report are based on:

- The limitations of our approved scope, schedule, and budget described in the executed Amendment 01 to Task Order 0005 for the Project.
- Our understanding of the Project and information provided by SPU during the development of our scope of services included in the aforementioned amended task order and our February 3, 2017, kick-off meeting with SPU and HDR Engineering, Inc.
- Subsurface conditions we observed in the borings as they existed during drilling between April 3 and 6, 2017.
- The results of testing performed in the borings and on samples we collected from the borings.

5.0 SUBSURFACE EXPLORATION PROGRAM

Our subsurface exploration program consisted of collecting and reviewing existing geotechnical exploration logs along the proposed alignments, preparing a site exploration plan (Shannon & Wilson, 2017), and performing four geotechnical borings in accordance with the approved site exploration plan.

We performed a search of the Department of Natural Resources database (Washington State Division of Geology and Earth Resources [DGER], 2012) and our project files to identify and

collect existing geotechnical exploration logs along the proposed alignments. The approximate locations of the explorations are presented in Figure 2 and the exploration logs are included in Appendix B, Existing Exploration Data.

In addition to collecting existing geotechnical exploration logs, our scope of services included drilling and sampling four borings, designated BCT-1 through BCT-4. These borings were drilled and sampled to depths of 35 to 55 feet to characterize the subsurface conditions. The site and exploration plan (Figure 2) shows the approximate boring locations. Observation wells were installed in all four borings. Descriptions of the methodologies and procedures used for drilling and sampling the borings and constructing the observation wells are included in Appendix A, Project Subsurface Explorations. The boring logs are presented in Appendix A as Figures A-2 through A-5 and a soil description and log key is included as Figure A-1.

6.0 GEOTECHNICAL LABORATORY TESTING

Geotechnical laboratory tests were performed on selected samples retrieved from the borings. The geotechnical laboratory testing was performed in the Shannon & Wilson laboratory in Seattle, Washington, and included visual classification, water content determinations, grain size analyses, and hydrometer analyses. A description of the methodology and testing procedures is discussed in Appendix C, Geotechnical Laboratory Testing.

7.0 GEOLOGY AND SUBSURFACE CONDITIONS

The geology and subsurface conditions along the proposed alignments were evaluated based on:

- Conditions encountered in the subsurface explorations performed for this study,
- A review of borings previously completed at the site, and
- The Geologic Map of Northwest Seattle (Booth and others, 2005).

The geotechnical explorations were performed to evaluate the subsurface soil and groundwater conditions along the proposed alignments. Our observations are specific to the locations and depths noted on the boring logs and may not be applicable to all areas of the alignments. No number of explorations or testing can precisely predict the characteristics, quality, or distribution of subsurface and site conditions. Potential variations include, but are not limited to:

- The conditions between and below explorations and testing may be different;
- The passage of time or intervening causes (natural and manmade) may result in changes to site and subsurface conditions;
- Groundwater levels and flow directions may fluctuate due to seasonal variations;

- Groundwater flow between different aquifers can occur. No soil layer should be assumed to be continuous and/or watertight;
- Standard penetration test results in gravelly soils may be unrealistic. Actual soil density may be lower than estimated if the test was performed on a gravel or cobble; and
- Obstructions such as boulders, fill debris (rubble), and wood may be present in the subsurface.

The following sections present a description of the site geology and the subsurface conditions encountered in our borings.

7.1 Site Geology

The Project is in the central portion of the Puget Lowland, an elongated topographic and structural depression filled with a complex sequence of glacial and nonglacial sediments that overlie bedrock. The area has been glaciated six or more times in the past 2 million years. The distribution of the sediments is complex, because each glacial advance deposited new sediments and partially eroded previous sediments. Between glacial episodes, the complete or partial erosion or the reworking of deposits, as well as the local deposition of other sediments, took place. During the Vashon Stade of the Fraser Glaciation, about 15,000 to 13,000 years before present, the lobe of the Cordilleran Ice Sheet that covered the Puget Lowland was locally over 3,000 feet thick. When the glacial ice sheet receded from the area about 13,500 years ago, it left behind topography characterized by low-rolling relief about 500 feet above sea level with some deeply cut ravines and broad valleys. Since then, present-day geologic processes, such as erosion and deposition by streams and landsliding, as well as human activity, have modified the ground surface and further complicated the geology.

7.2 Site Subsurface Conditions

The subsurface conditions along the NW 56th Street and NW Market Street alignments are presented in Figures 3 and 4, respectively. The subsurface profiles are interpreted from materials observed in the explorations and existing geotechnical exploration logs. Variations between the interpretations shown and actual conditions will exist.

Along the NW 56th Street alignment between 28th Avenue NW and 26th Avenue NW, the subsurface conditions consist of fill over recessional deposits. The fill is about 12 feet thick consisting of loose, silty sand. The recessional deposits are not glacially overridden and consist primarily of medium dense to dense, silty sand. Groundwater was measured at 9 feet below ground surface (bgs) at BCT-1.

Between 26th Avenue NW and 24th Avenue NW, the subsurface conditions consist of shallow fill over glacial till and till-like deposits. The depth to glacial till is about 14 feet bgs at existing boring B-1 (Station [Sta.] 7+24) and becomes shallower to the east along the alignment, about 5 feet bgs in boring BCT-2 (Sta. 11+90). The till and till-like deposits are glacially overridden and consist of very dense, silty sand and silty sand with gravel. Cobbles and boulders may be present within the glacial till and till-like deposits. Groundwater was measured at 22 feet bgs at BCT-2.

From NW 56th Street to 24th Avenue NW along the NW Market Street alignment, the subsurface conditions consist of fill over recessional deposits and glacial till and till-like deposits. The thickness of the fill ranges between 10 and 20 feet and consists of very loose to medium dense, silty sand, and sand with silt and gravel. Along the NW Market Street portion of this alignment, the glacial till and till-like deposits were observed about 15 to 25 feet bgs and consist of very dense, silty sand. Groundwater was measured at 7 feet bgs at BCT-4.

Along 24th Avenue NW between NW 56th Street and NW 54th Street, the subsurface conditions consist of fill over recessional deposits and glacial till and till-like deposits. Near NW 54th Street, the recessional deposits become thicker. Till-like deposits are also observed near NW 54th Street; however, they do not display the typical density characteristics of glacially overconsolidated till and may be weathered, disturbed, or an ablation till deposit.

Groundwater is encountered at an elevation of about 35 feet along NW 56th Street and about 25 feet along NW Market Street. The elevation will vary by season and rainfall quantities.

7.3 Environmental Findings

Field screening of soil samples were performed for worker protection and to assist with the proper disposal of investigation-derived waste. Soil samples were field screened by the field representative for contamination using a combination of: (a) visual observations, (b) photoionization detector measurements, (c) olfactory observations, and/or (d) sheen tests.

One soil sample was collected for environmental testing from boring BCT-4 based on the field screening. The results of the environmental testing show the soil to be lead-contaminated between 5 and 15 feet bgs. The test results are presented in Appendix D.

7.4 Seismic Hazards

The Project is located in a region where numerous small to moderate earthquakes and occasional strong shocks have occurred in recorded history. Much of this seismicity is the result of ongoing

relative movement and collision between the tectonic plates that underlie North America and the Pacific Ocean. These tectonic plates include the Juan de Fuca Plate and the North American Plate, and the intersection of these two plates is called the Cascadia Subduction Zone (CSZ). As these two plates collide, the Juan de Fuca Plate is being driven northeast (subducted), beneath the North American Plate.

Within the present understanding of the regional tectonic framework and historical seismicity, three broad earthquake source zones are identified. These include a shallow crustal source zone, a deep source zone within the portion of the Juan de Fuca Plate subducted beneath the North American Plate (deep subcrustal zone), and an interplate zone where the Juan de Fuca and North American Plates are in contact in the CSZ. The anticipated earthquakes related to these sources are summarized below:

- Shallow Crustal Zone: Geophysical lineaments in Western Washington are believed to be capable of producing earthquakes with magnitudes up to 7.5. The closest of these geophysical lineaments to the site is the Seattle Fault (or Seattle Fault Zone). Geologic studies suggest that this is an active fault with an estimated magnitude 7.0 event occurring approximately 1,100 years ago. Historical shallow crustal seismicity has also been observed between a depth of 1 and 10 miles. Based on the U.S. Geological Survey (USGS) Interactive Fault Map (USGS, 2017), the Project alignment is located about 5 miles north of the nearest mapped fault splay of the Seattle Fault.
- Deep Subcrustal Zone: The largest historical earthquakes (magnitudes up to 7.1) to affect the site were in the subducted Juan de Fuca Plate (deep subcrustal zone) at depths of 32 miles or greater. The depth of this zone is estimated at about 34 miles below the Project alignment.
- Interplate Zone (CSZ): The CSZ has produced, and remains capable of producing, strong earthquakes. Work to date suggests that earthquake magnitudes may range from 8.0 to 9.0 and may occur at time intervals ranging from about 400 to 1,000 years. The Project alignment is located about 60 miles east of this zone. Based on work by Goldfinger and others (2012), the last earthquake produced by the CSZ was about 315 years ago.

Based on our review, the site is located north of the generally accepted limits of the Seattle Fault Zone. Consistent with accepted local engineering practice, we did not consider conjectural lineaments.

We note that risk of fault rupture, liquefaction, and lateral spreading is all low along the two currently identified trenchless alignments. We also note that the hazards are the same for either open-cut or trenchless construction.

8.0 ENGINEERING STUDIES AND RECOMMENDATIONS

Based on the subsurface conditions encountered in field explorations and our current understanding of the proposed Project, we performed engineering studies to develop conclusions and recommendations regarding our opinion of soil engineering parameters and recommendations related to the proposed pipeline. Our conclusions and recommendations are presented in the following sections.

For purposes of our analyses, recommendations, and conclusions, it was necessary for us to assume that the results of the explorations, testing, and monitoring are representative of conditions throughout the Project site. However, as stated in Section 7.2, subsurface conditions should be expected to vary. We may need to revise our recommendations during future design phases if different conditions are encountered.

8.1 Trenchless Methods

All the trenchless methods discussed in this preliminary geotechnical report are suitable for the likely depths required to provide gravity conveyance from the Ballard 152 Conveyance Structure to the TEPS site. The methods have different degrees of inherent risks, but are generally suitable for the construction of 60-inch-diameter, gravity conveyance pipeline.

All the trenchless methods discussed require the construction of shafts. The entry shaft for each method is typically 20 feet wide by 40 feet long. The receiving or exit shaft for each method is typically about 15 feet wide by 15 feet long. The location of the shafts will depend on the trenchless method selected since the length that can be excavated between shafts varies by method. Section 8.3 discusses the potential shaft locations and spacing in more detail.

8.1.1 Pipe Ramming

Pipe ramming utilizes a double-acting pneumatic hammer to drive an open-ended steel casing between two shafts. Pipe ramming is typically limited to lengths of about 300 feet. For line- and grade-sensitive utilities, lengths of 100 to 200 feet are more common. Some or all of the soil can be left in the pipe during driving to limit ground loss and control groundwater. When possible, the soil is removed from the pipe after the drive is completed, but more commonly, at least some soil is removed during drilling to reduce the weight of the pipe and decrease drag. Pipe ramming is a non-steerable method, which is a source of risk on a gravity pipeline project. Although some preliminary methods have been established to analyze pipe ramming feasibility, the prediction of constructability is more commonly based on previous experience in similar ground than on engineering analyses or design.

A stiffening ring is typically welded to the leading edge of the casing to help prevent deformation of the pipe and provide some overcut to reduce the friction on the outside of the pipe. Bullet teeth bits can also be welded to the leading edge to assist with pipe ramming in denser soil and where cobbles and boulders are present.

Bentonite slurry can also be injected through regularly spaced ports around the circumference of the pipe to fill the overcut annular space. The injected bentonite slurry around the pipe helps reduce settlement and friction between the soil and the pipe.

As discussed, pipe ramming lengths are typically limited to about 300 feet. Longer alignments can be facilitated by telescoping the casing. This process involves ramming a larger diameter casing, clearing out the soil, and then ramming a smaller diameter casing within the larger casing.

Pipe ramming below the groundwater table requires special considerations, including mechanical seals in both shafts and a stable soil plug within the pipe to reduce potential groundwater inflow into the pipe and entry shaft. Removal of soil from within the casing or telescoping the casing is more difficult when ramming below the groundwater table. Removing the soil can result in loss of ground support in the pipe and water and soil flowing into the pipe and entry shaft. Also, because pipe ramming is a non-steerable method, deviations in the alignment and profile can make it difficult to anticipate where the pipe will breach the receiving shaft. This complicates the construction of the receiving shaft and could require modifications to the receiving shaft geometry or the groundwater control methods prior to the pipe entering the receiving shaft.

Vibrations generated at the cutting shoe during ramming can damage adjacent structures and utilities. Additional analysis of potential vibration impacts would be required during final design.

For gravity pipelines, oversizing the casing to facilitate adjustment to the carrier pipe grade using shims or spacers can be used to mitigate some of the steerability risk.

Pipe ramming can accommodate some obstructions. Large wood debris and buried logs can be difficult to pipe ram through. The wood tends to absorb energy and reduce the ability of the pipe to cut through the ground. However, pipe ramming is commonly selected for use on projects with gravels, cobbles, and boulders, since these potential obstructions can commonly be ingested by the open-ended pipe.

For purposes of this Project, pipe ramming is only considered to be marginally applicable in the ground conditions anticipated along the alignments. In our opinion, given the lack of steerability and construction vibrations, pipe ramming does not provide a significant advantage over the other methods described in this report.

8.1.2 Auger Boring

Auger boring uses an auger slightly smaller than the shoe or shield diameter to perform the excavation. Auger boring is typically limited to lengths of about 300 to 400 feet. As the pipe is jacked into the ground, the auger excavates the soil and transports it back to the driving shaft for removal. An oversized cutting shoe or shield is normally attached to the leading edge of the pipe string to stiffen the end of the pipe and to provide some steerability. The auger can be positioned in advance of the cutting shoe, flush with the cutting shoe, or within the casing to facilitate construction and manage overexcavation. To avoid overexcavation, such as can occur with the auger in advance of the cutting shoe, the auger can be withdrawn approximately one diameter inside the casing so that a soil plug forms at the entrance of the casing pipe. The soil plug helps maintain a stable heading and reduces the likelihood of ground loss. Flowing or running ground, if encountered, could result in excessive ground loss and could cause settlement or sink holes to develop at the ground surface.

The cutting shoe or leading edge of the shield is typically larger in diameter than the pipe, creating an annular space between the pipe and the surrounding ground. This annular space in combination with the injection of bentonite slurry reduces the friction and jacking forces along the pipe. The injection of the bentonite slurry into the annular space reduces the potential for ground loss and associated settlement and allows some steering and adjustments to the pipe alignment.

Auger boring is generally not suitable in granular soils below the water table unless the alignment is dewatered or the ground is modified by grouting or freezing. Flowing or running ground, if encountered, could result in excessive ground loss and settlement or sink holes at the ground surface.

Auger boring can accommodate some obstructions. Based on a 60-inch-diameter pipe, the auger bore can handle gravels, cobbles, and boulders up to one-third of the pipe diameter (20-inch-diameter boulder). For boulders larger than one-third of the pipe diameter, and where groundwater is not present or it is controlled, the auger can be removed and the boulder mechanically broken and removed from within the pipe.

For purposes of this Project, auger boring is considered to be marginally applicable in ground conditions anticipated along the alignments. In our opinion, given the limited bore lengths of 300 to 400 feet and the need for more shafts and dewatering, auger boring does not provide a significant advantage over microtunneling, as discussed below.

8.1.3 Pipe Jacking

Pipe jacking consists of installing a continuous string of pipes by hydraulic jacking from a driving shaft located at one side of the crossing to a receiving shaft located at the opposite end. Pipe jacking is typically limited to lengths of about 600 to 700 feet. For trenchless construction in the Pacific Northwest, a rotating cutter face is commonly located at the leading edge of the shield. Openings on the cutter face (wheel) can be partially closed to allow for some control of running or flowing ground. The shield may be articulated to provide limited steering corrections in the vertical and horizontal direction. In unsaturated or dewatered soils, sand decks or doors can be used to limit the amount of material excavated as the pipe is jacked into place. Soils are typically excavated by hand or excavator and removed from within the pipe by auger, conveyor, muck bucket, or similar manner.

The cutting shoe or leading edge of the tunneling shield is typically only about 1½ to 2 inches larger in diameter than the jacking pipe itself. During pipe jacking, bentonite slurry can be pumped through regularly spaced ports around the circumference of the pipe to fill this annular space, which reduces the friction and jacking forces along the pipe. The injection of the bentonite slurry into the overcut annulus also reduces the potential for ground loss and associated settlement and allows some steering and adjustments to the pipe alignment.

Pipe jacking is generally not suited for alignments in granular soils below the groundwater table unless the alignment is dewatered or the ground is modified by grouting and freezing. Flowing or running ground, if encountered, could result in excessive ground loss, settlement at the ground surface, and could endanger personnel working within the shield, casing, or jacking shaft.

For purposes of this Project, pipe jacking is considered to be marginally applicable in the ground conditions anticipated along the alignments. In our opinion, given the limited bore lengths and the need for more shafts and dewatering, pipe jacking does not provide a significant advantage over microtunneling, as discussed below.

8.1.4 Microtunneling

Microtunneling consists of installing a continuous string of pipes by hydraulic jacking from a driving shaft located at one side of the crossing to a receiving shaft located at the opposite end. Microtunneling is typically limited to lengths of about 1,250 to 1,500 feet in length. A tunneling shield attached to the leading edge of the pipe string is used to cut through the ground, support the face of the excavation, and control the amount of material excavated as the pipe is jacked into place. The shield is articulated to provide limited steering corrections in the vertical and horizontal direction. Typically, microtunneling utilizes a closed-face slurry shield, which is designed to maintain pressure on the excavated soil face and prevent soil and water from flowing into the shield, pipe string, and driving shaft.

The leading edge of the tunneling shield is typically only about 1½ to 2 inches larger in diameter than the jacking pipe itself. This small annulus reduces the potential for ground loss and associated surface settlement while allowing some steering and alignment control. During microtunneling, bentonite slurry is commonly pumped through regularly spaced ports around the circumference of the pipe to fill this annular space, which reduces settlement and the friction between the soil and the pipe.

A closed-face microtunneling machine does not require personnel working within the machine and is usually used for tunneling below the groundwater level to mitigate the risk of the groundwater and flowing ground. The flowing ground would create a hazard for personnel working within an open-face and could lead to significant loss of ground, sinkholes, and flooding of the shafts. Microtunneling below the groundwater table requires special considerations, including mechanical seals in the shafts and grouting or other ground improvement outside the entrance and exit location of the shafts to reduce groundwater and soil inflow into the shaft.

The microtunneling machine circulates slurry through the mixing chamber located behind the rotating cutter head. The slurry mixed with the soil cuttings is pumped to the ground surface where it is then processed in a slurry separation plant to remove the soil cuttings from the slurry. A slurry balanced tunneling machine can control groundwater and prevent flowing ground from entering the tunnel excavation.

For purposes of this Project, microtunneling is considered to be the most applicable method for the ground conditions anticipated along the alignments. Microtunnel reduces the number of required shafts and the groundwater control requirements. While it does not mitigate the risk of encountering an obstruction to the degree of the other methods discussed in this

report, microtunneling has been successfully used in similar soils such as the recently completed King County Fremont Siphon project.

8.2 Direction of Trenchless Excavation

We anticipate that the direction of the trenchless pipeline excavation for either alignment would generally be from south to north and east to west. The reason for this is two-fold; first, based on the anticipated soils and second based on the proposed grade of pipeline.

Where contacts between relatively loose and very dense materials are encountered, it is advantageous for trenchless systems to excavate in a direction that approaches the looser soils. Trenchless systems tend to follow the path of least resistance. So, if the direction of excavation were reversed, it would increase the risk of alignment and grade deviation, since the advancing pipe could deflect upward along the very dense till and follow the contact between the loose and very dense deposits. Therefore, based on the expected subsurface conditions, we anticipate that both the NW Market Street and NW 56th Street alignments would be excavated from east to west between 24th Avenue NW and 28th Avenue NW.

For the north-south portions of both the NW Market Street and NW 56th Street alignments, the anticipated soils are relatively consistent, so the decision on which direction to excavate is not expected to be made based on subsurface conditions. Instead, the general preference to excavate upgrade to allow any groundwater, process water or slurry in the pipe to drain by gravity will likely result in the excavation being performed from south to north.

8.3 Shaft Locations

The discussion in this section assumes that microtunneling is the preferred method to construct the conveyance pipelines. Methods other than microtunneling would require additional shafts to those discussed below. Pipe jacking would require shafts about every 600 to 700 feet, while auger boring would require shafts about every 300 to 400 feet. Pipe ramming drive lengths are generally limited to about 300 feet in length or less. Note that the 300-foot spacing for pipe ramming would carry some additional risk regarding line and grade control.

The trenchless methods discussed in this report require shafts at the beginning and ends of the drive and at any bends in the alignment. For the NW 56th Street alignment, the microtunneling alternative would require a minimum of three shafts. These shafts would be located at the start and end of the alignment and at the bend in the alignment at the NW 56th Street/24th Avenue NW intersection. In our opinion, a combination of two driving shafts and a single receiving would likely be used. One driving shaft would be located at the southern end of the alignment, a

combination driving/receiving shaft would be located at the bend in the alignment and a receiving shaft would be located at the western end of the alignment. Alternatively, consideration could be given to a single larger driving shaft located at the bend in the alignment with receiving shafts at the western and southern ends of the Project. This arrangement would have a longer duration of surface impact at a single location and a larger driving shaft footprint.

For the NW Market Street alignment, the microtunneling alternative would require a minimum of four shafts. One shaft at each end and shafts at the turn points in the alignment at the intersections of 28th Avenue NW/NW Market Street and 24th Avenue NW/NW Market Street. The driving operation would need to be performed from three shafts, most likely the southern shaft near the TEPS site and at the two intersections discussed above. Consideration could be given for larger driving shafts at the bends in the alignment at 28th Avenue NW/NW Market Street and 24th Avenue NW/NW Market Street with receiving shafts at the northern and southern ends of the Project. This would reduce the number of driving shafts from three to two. However, this arrangement would have a longer duration of surface impact at a two locations and larger driving shaft footprints.

8.4 Groundwater Control

Groundwater levels are between 10 and 25 feet above the invert of the pipe. Dewatering along the alignment would be required for pipe jacking and auger boring methods to reduce risks associate with excavating below the groundwater table. Without dewatering, there is a risk that saturated sand layers could result in localized flowing ground conditions, ground loss, and resulting surface settlement. Pipe ramming might require dewatering if excavation of the soil plug is required or a sufficient soil plug is not formed. Microtunneling is best suited for excavating below the groundwater table as it can provide face stabilization by applying a pressurized slurry at the face, as discussed in Section 8.1.4. This ability would reduce the risk of ground loss associated with the other methods.

Dewatering or some sort of watertight shoring will likely be required at the shaft locations. Where dewatering and associated drawdown occurs solely within glacially overconsolidated soil, the potential for groundwater-drawdown induced settlement is low. Where overlying recessional and fill soils are actively dewatered or where a hydraulic connection exists between the soil being dewatering and these looser and soft soils, there is an increased risk for inducing settlement. While additional testing and analysis will be required during final design, for planning purposes, we recommend assuming that wells are required to control the groundwater. If the additional testing and analysis indicates an unacceptable risk for settlement, then watertight shoring for the pits, tremied base seals, and microtunneling could be selected to reduce the risk.

8.5 Obstructions

There is a moderate risk of encountering obstructions or ground conditions that could impact the trenchless feasibility. These areas of moderate risk include:

- The presence of glacial till at shallow depths at multiple points along both alignments increases the likelihood of encountering cobbles and boulders that could obstruct the advancement or impede the steerability of some trenchless methods.
- Buried erosional contacts (e.g., where the recessional outwash overlies the glacial till) are also areas where there is an increased likelihood of encountering cobbles and boulders.
- Wood debris is commonly encountered in non-engineered fill deposits. Like cobbles and boulders, depending on the size, concentration, and location, the presence of wood debris can be an obstruction for some trenchless methods.

Abundant cobbles and scattered boulders should be anticipated in all of the soils along the alignments. Boulders encountered in glacial soils generally range from 1 to 10 feet in diameter, with the most common size being between about 1 and 3 feet. Concentrations of cobbles and boulders are often found near contacts between geologic units.

While it is difficult to determine if a boulder is encountered during microtunneling, boulders can be measured and counted if pipe jacking, pipe ramming, or auger boring is used. During final design, an estimated boulder quantity should be developed to assist with characterizing the risks and associated design and contractual mitigation.

Pipe jacking provides the easiest access to the excavation face for removal of obstructions. For pipe ramming and auger boring methods, the removal of obstructions will require the removal of the soil plug or removal of the auger, respectively. Microtunneling machines typically do not provide any access to the excavation face for removal of obstructions. If a boulder is encountered that is large enough to impede the progress of the microtunneling machine, a rescue shaft will be required.

8.6 Preliminary Preferred Alignment

Based on the completed explorations and available geotechnical data reviewed, for the two alignments included in the scope of this geotechnical study, the NW 56th Street alignment, in our opinion, has less geotechnical and environmental risk. The NW Market Street alignment requires one more pit than the NW 56th Street alignment. This increases the project risk for claims associated with groundwater control and associated dewatering impacts. In addition, the contamination encountered in BCT-4, combined with the more permeable soils encountered in

BCT-4 compared to the other borings, also suggests additional project risk and cost with the NW Market Street alignment.

8.7 Geotechnical Instrumentation

Prior to the start of construction, we recommend that a preconstruction survey be conducted to document the existing condition of nearby structures and utilities. In addition, geotechnical instrumentation should be installed to monitor the response of the ground and adjacent structures, utilities, and pavement to the construction activities.

In general, preconstruction surveys should be conducted on existing surface structures located within a horizontal distance equal to 1.5 times the open-cut and trenchless excavation depth. In addition, preconstruction surveys should also be conducted on existing gravity pipelines located within a horizontal distance equal to the open-cut and trenchless excavation depth. For structures, the preconstruction survey should include diagrams, sketches, and photographs. These records should include, but not be limited to, the number, locations, and length and width of existing cracks, etc. The surveys should be conducted by a Professional Engineer registered in the state of Washington and should be completed with the owner, Contractor, and resident engineer present. A formal report should then be developed and signed by each member of the group. For accessible gravity pipelines, they should be made to compare the original documented condition to the current condition.

Geotechnical instrumentation should be installed to monitor the response of the ground and adjacent structures, utilities, and pavement to the construction of the pipeline, manholes, and appurtenant structures. Data collected from the monitoring program would be used to assess:

- The validity of any claims.
- Effectiveness of remedial measures.
- Performance of the shoring.
- Performance of the dewatering system.

The construction of the Project will require relatively deep shored excavations, dewatering, and trenchless construction. Each of these construction activities could result in deformations or ground losses that may lead to vertical settlements adjacent to excavations, which may affect adjacent structures, utilities, and pavements. Each of these and other related elements should be monitored prior to construction and during construction, as required. For preliminary design, we recommend assuming the following geotechnical instrumentation systems:

- Surface settlement points for monitoring curbs, sidewalks, and roadways that will remain after construction that are within a distance equal to 1.5 times the excavation depth or within an area that could be influenced by construction vibrations.
- Utility settlement points should be established on settlement-sensitive utilities such as sewers and water mains that cross above and/or parallel to the pipe excavations and are within a distance equal to 1.5 times the excavation depth or within an area that could be influenced by construction vibrations.
- Structure settlement points should be established on all residences where preconstruction surveys were conducted, structures within 100 feet of pipe ramming operations, and structures within a distance equal to 1.5 times the excavation depth.
- Vibration monitors for measuring vibration levels at adjacent structures and utilities within 100 feet of where pipe ramming is conducted.
- Groundwater monitoring wells located at property boundaries adjacent to dewatering activities.

The design and related specifications and drawings for the geotechnical instrumentation should be developed as part of final design.

Assuming microtunneling is the selected trenchless alternative, in our opinion and for planning-level costing purposes only, we recommend assuming that the cost of monitoring ground movements, vibrations, and groundwater for either alignment will be \$70,000.

8.8 Other Risks

Methane has been identified by exploration programs and encountered during tunneling on several projects in the Seattle area, including the Lake City Trunk Sewer, Mercer Street Tunnel, Alki CSO Tunnel, and West Point Sewer Tunnel. Hydrogen sulfide associated with bacterial anaerobic decay can also be encountered in glacial soil. However, testing in this area performed as part of the Ship Canal Water Quality Project suggests methane and hydrogen sulfide are unlikely to be encountered in concentrations that would require changes to typical construction means and methods. Therefore, for planning purposes, it is our opinion that the risk of encountering methane or hydrogen sulfide at levels that would require special consideration during excavation is low.

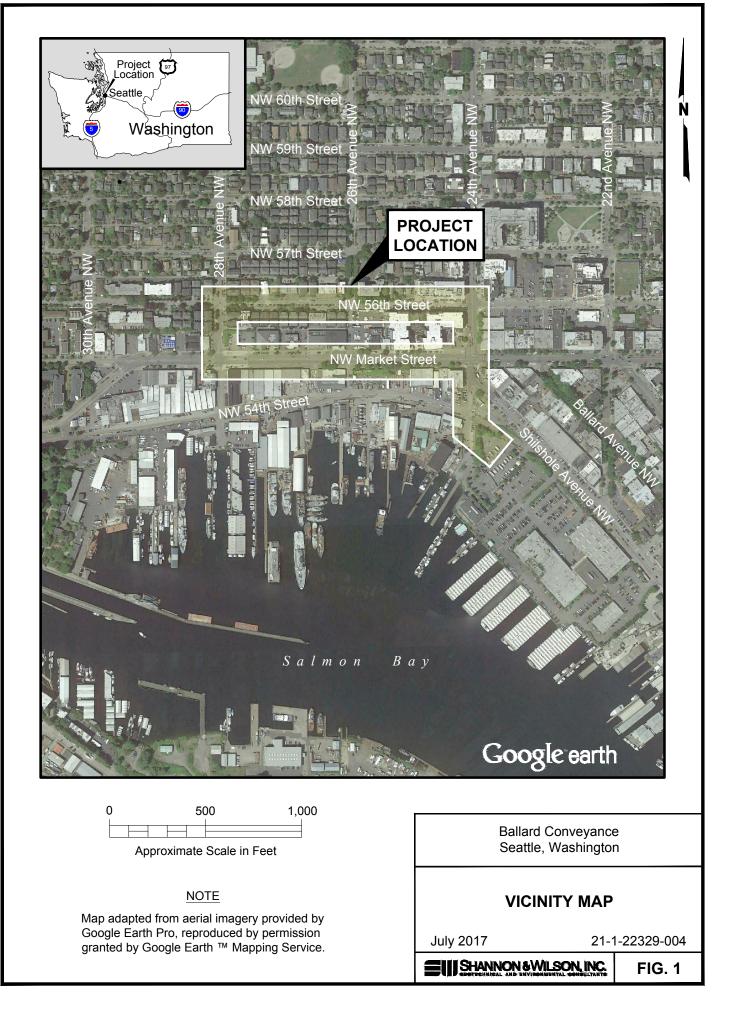
The current NW Market Street alignment is within the zone of lead contamination encountered in BCT-4. There is a moderate to high risk that this highly contaminated soil will also be encountered in excavations through this area. The presence of lead contamination does not necessarily preclude the selection of a trenchless method, but rather any contaminated soils

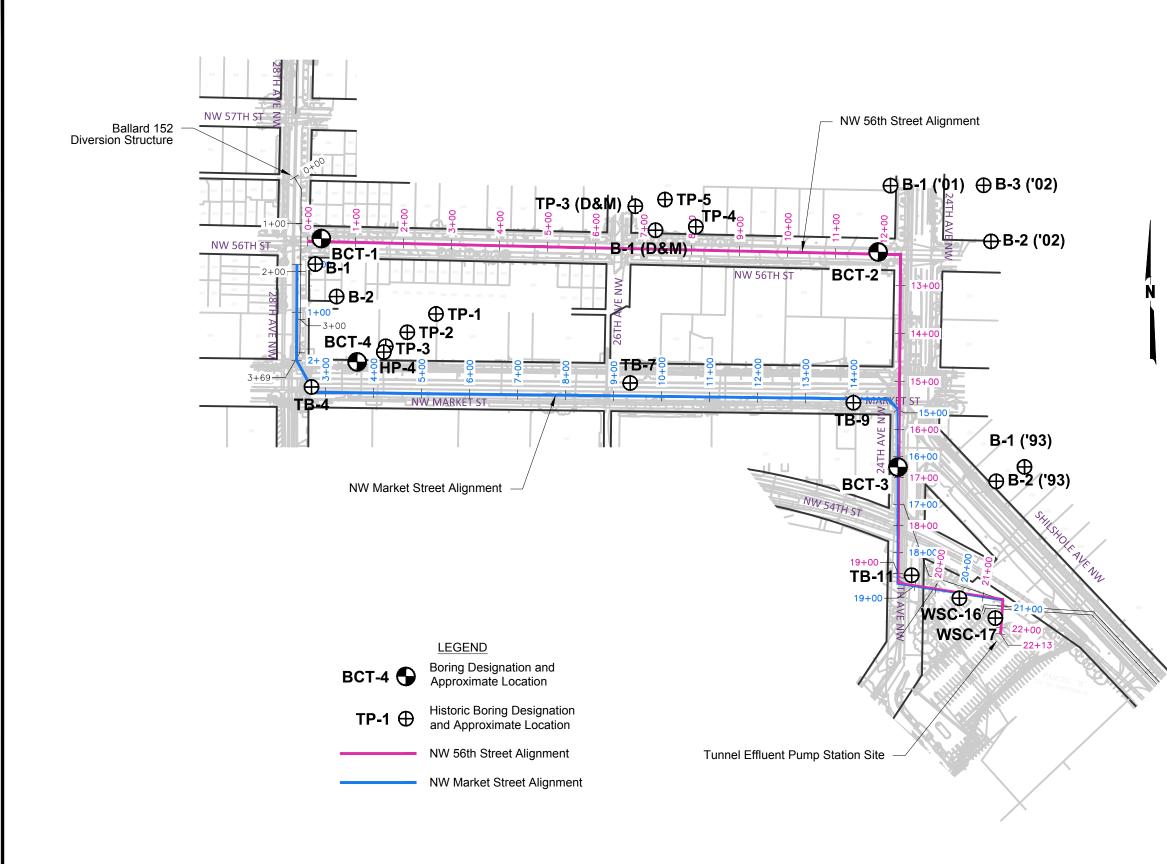
encountered would require special handling and disposal, which would increase the project costs and could risk the safety of workers in the excavation.

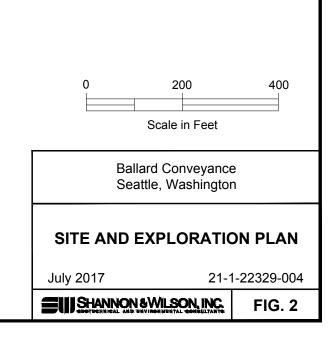
9.0 CLOSURE

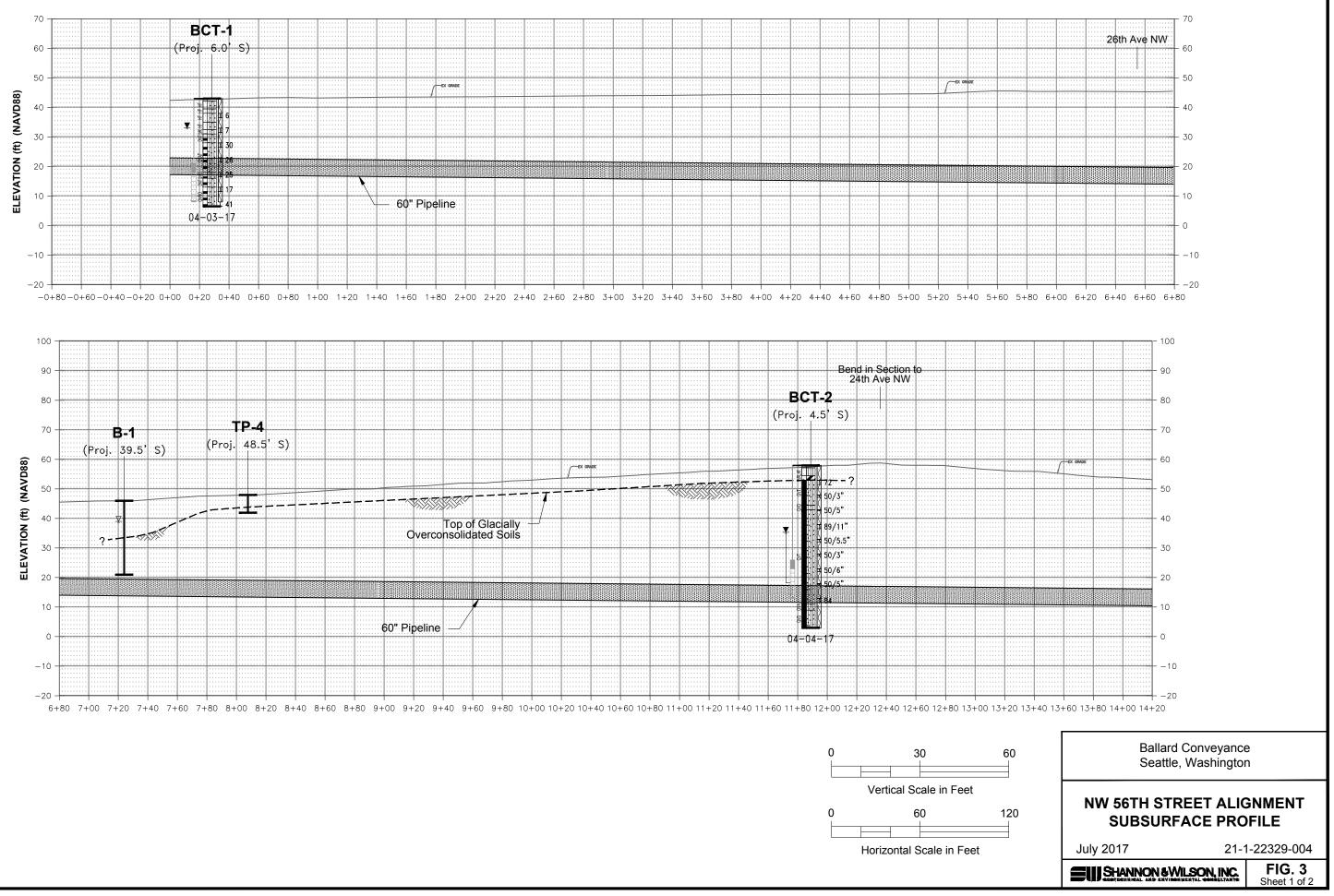
We have prepared the document "Important Information About Your Geotechnical Report/Environmental Report" (Appendix E) to assist you and others in understanding the use and limitations of this report. Please read this document to learn how you can lower your risks for this Project.

SHANNON & WILSON, INC.

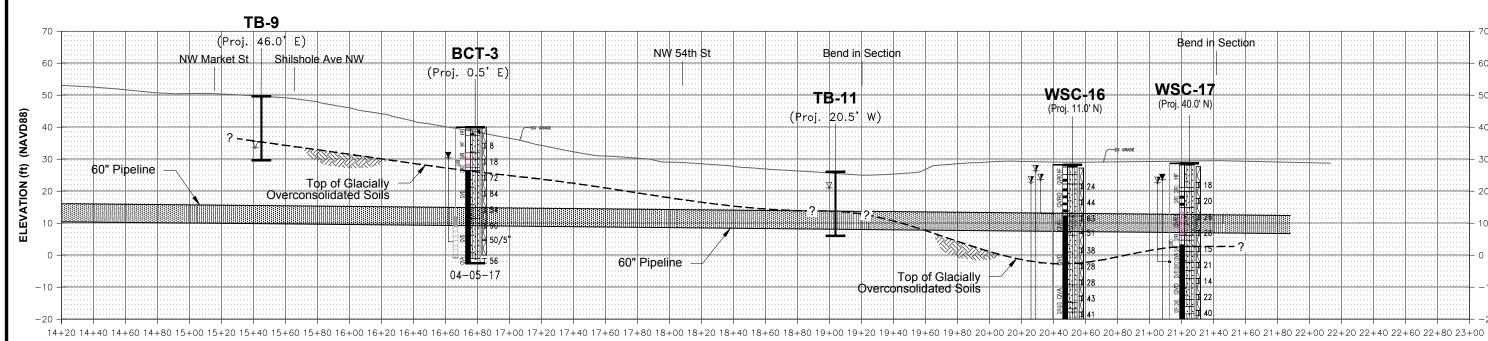


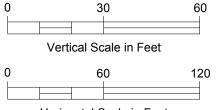

Michael D. Harney, PE Associate

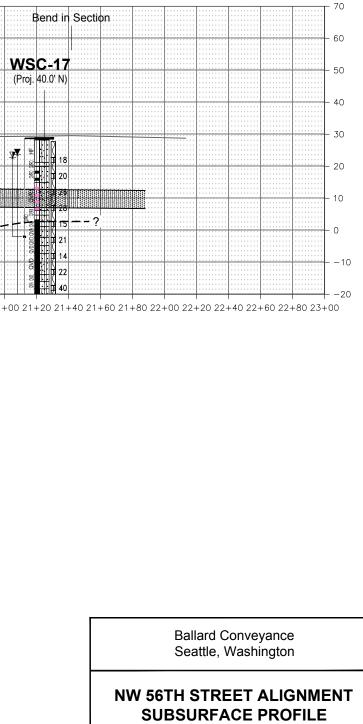

JCS:DCW:MDH:MSK/dcw

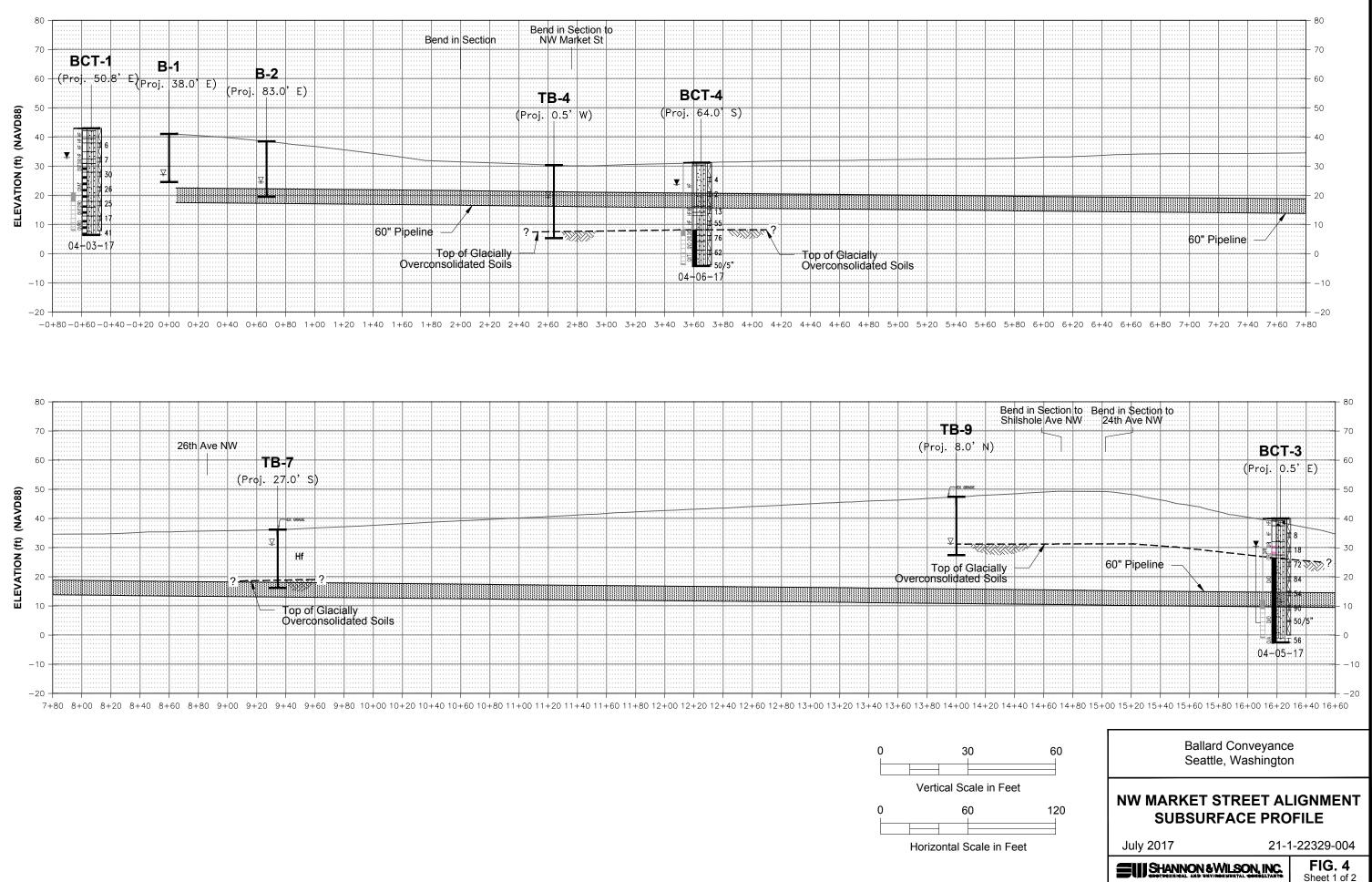

10.0 REFERENCES

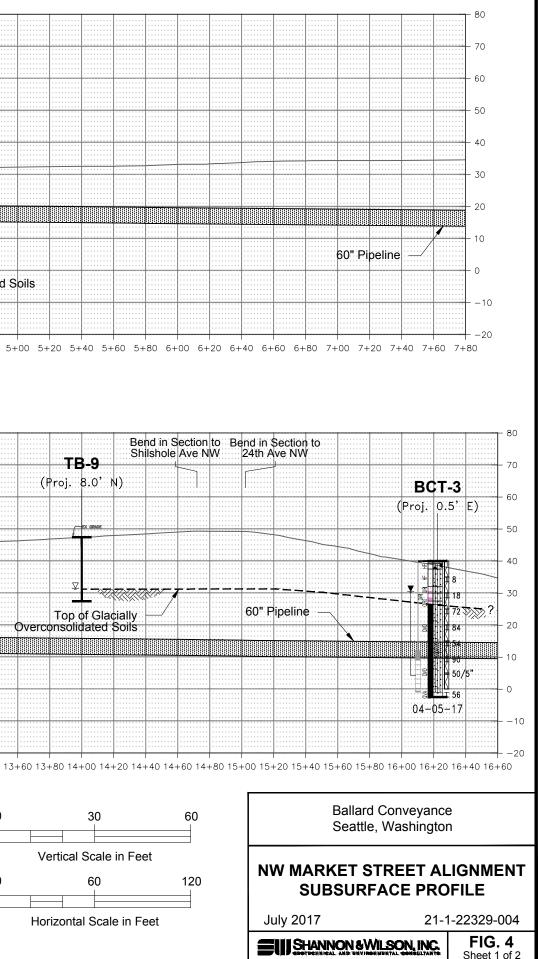
- Booth, D. B.; Troost, K. G.; and Shimel, S. A., 2005, Geologic map of Northwest Seattle (Part of the Seattle 7.5' x 15' quadrangle), King County, Washington: U.S. Geological Survey Scientific Investigation Map 2903, scale 1:12,000.
- Goldfinger, C.; Nelson, C.H.; Morey, A.E.; Johnson, J.E.; Patton, J.R.; Karabanov, E.; Gutiérrez-Pastor, J.; Eriksson, A.T.; Gràcia, E.; Dunhill, G.; Enkin, R.J.; Dallimore, A.; and Vallier, T., 2012, Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone: U.S. Geological Survey Professional Paper 1661–F, 170 p. (Available at http://pubs.usgs.gov/pp/pp1661f/).
- Shannon & Wilson, Inc. (Shannon & Wilson), 2017, Ballard conveyance geotechnical investigation plan, Ship Canal Water Quality project, Seattle, Washington: Plan prepared by Shannon & Wilson, Seattle, Wash., job no. 21-1-22329-001, dated February 10.
- U.S. Geological Survey (USGS), 2017, http://earthquake.usgs.gov/hazards/qfaults/map/, accessed May 11, 2017.
- Washington State Division of Geology and Earth Resources (DGER), 2012, Subsurface geology information system: Available: https://fortress.wa.gov/dnr/protectiongis/geology, accessed January 2017.

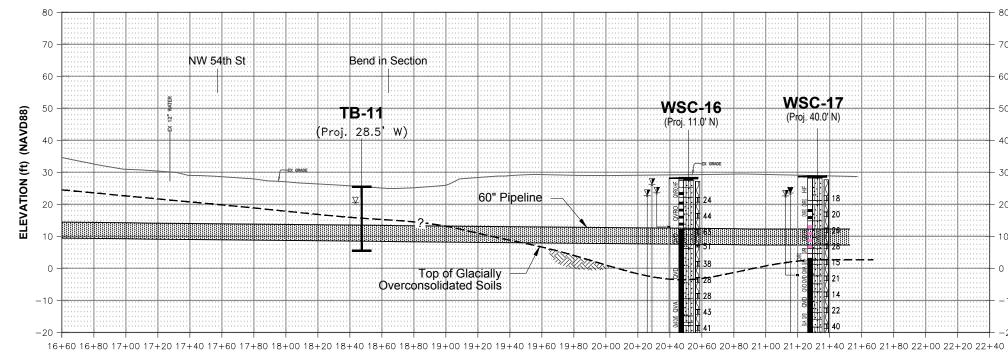







Horizontal Scale in Feet




21-1-22329-004

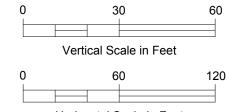
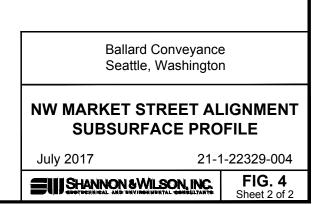
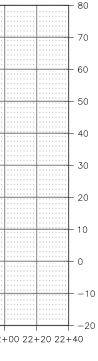

July 2017

FIG. 3 Sheet 2 of 2 **EUSHANNON & WILSON, INC.**





Horizontal Scale in Feet

APPENDIX A

PROJECT SUBSURFACE EXPLORATIONS

SHANNON & WILSON, INC.

APPENDIX A

PROJECT SUBSURFACE EXPLORATIONS

TABLE OF CONTENTS

Page

A.1	GENERAL	A-1
A.2	DRILLING PROCEDURES	A-1
A.3	SOIL SAMPLINGA.3.1Split-Spoon SamplingA.3.2Sonic Core Sampling	A-1
A.4	BORING LOGS	A-2

FIGURES

A-1	Soil Description and Log Key (3 sheets)
-----	---

- A-2 Log of Boring BCT-1 (2 sheets)
- A-3 Log of Boring BCT-2 (3 sheets)
- A-4 Log of Boring BCT-3 (3 sheets)
- A-5 Log of Boring BCT-4 (2 sheets)

APPENDIX A

PROJECT SUBSURFACE EXPLORATIONS

A.1 GENERAL

Subsurface explorations we performed for this project consist of drilling and sampling three soil borings. The approximate locations of the borings are shown in Figure 2.

A.2 DRILLING PROCEDURES

Four borings, designated BCT-1 through BCT-4, were drilled during the period of April 3 and 6, 2017. Cascade Drilling, under subcontract to Shannon & Wilson, Inc. (Shannon & Wilson) drilled the borings using a rubber tracked-mounted drill. The borings were advanced to various depths indicated in Table A-1 using the sonic core drilling method. This method uses high-frequency vibratory motion applied to the top of the drill column, along with down-pressure and rotation, to obtain nearly continuous core samples in soil. Soil samples were obtained using a 4.5-inch-outside-diameter (O.D.) core barrel. The core barrel was advanced into the ground a specific distance (termed a core "run") and then retrieved for extraction of the sample core. Following retrieval of the core barrel, a temporary casing was advanced to the bottom of the sampled interval. The casing was then cleared of slough, and the next core sample was collected, starting at the bottom of the temporary casing. The soil cuttings were placed into a 55-gallon drum and disposed of by the driller.

A.3 SOIL SAMPLING

A Shannon & Wilson field representative was present to observe drilling, collect samples for subsequent laboratory testing, and prepare descriptive fields logs of the borings. Soil samples were collected from each current exploration for purposes of engineering classification, geologic evaluation, and geotechnical testing. Two different sampling methods were used in each boring, split-spoon sampling and sonic core sampling. The sampling methods are indicated in the exploration logs included in this appendix and are described in the following sections.

A.3.1 Split-Spoon Sampling

Split-spoon samples were collected in conjunction with Standard Penetration Tests (SPTs) at approximately 5-foot intervals in each of the borings. The SPTs were performed in general accordance with the ASTM International Designation: D1586-11, Test Method for

²¹⁻¹⁻²²³²⁹⁻⁰⁰⁴⁻R1-AA/wp/lkn

Penetration Test and Split-Barrel Sampling of Soils. For the SPT, a 2-inch-O.D., 1.375-inch-inside-diameter (I.D.), split-spoon sampler is driven with a 140-pound hammer falling 30 inches. The number of blows required to achieve each of three 6-inch increments of sampler penetration is recorded. The number of blows required to achieve the last 12 inches of penetration is termed the Standard Penetration Resistance (N-value). When penetration resistances exceeded 50 blows for 6 inches or less of penetration, the test was terminated, and the number of blows along with the penetration distance was recorded on the boring log. The SPT N-value is a useful parameter for determining the relative density or consistency of the soils. Density or consistency as it is related to the SPT N-value is shown in Figure A-1. The recorded N-values are included in the boring logs in Figures A-2 through A-5.

After each split-spoon sampler was removed from the borehole, a Shannon & Wilson field representative opened the sampler and visually examined the soil sample. The field representative then described and classified the sample, removed it from the split-spoon sampler, and sealed the sample in a jar. The jars were stored in boxes and returned to the Shannon & Wilson laboratory for further examination and testing.

A.3.2 Sonic Core Sampling

For the borings drilled using sonic core drilling methods, soil core samples were extracted from the core barrel using a combination of gravity and vibration to extrude the soil into flexible plastic bags. The plastic bags were then placed into wooden core boxes that were marked for the appropriate boring designation, core run number, and depths. Cohesive, hard soils were difficult to extract and occasionally required the use of pressurized air to force the soil out of the core barrel. Disturbance of the core samples (e.g., fragmented cobbles and gravel and distorted bedding planes) result from the coring and extraction process.

Once in the warehouse, the soil cores were opened, photographed, and logged by a Shannon & Wilson geologist. The geologist also obtained grab samples of the soil at depth intervals of about 5 feet; however, additional grab samples were obtained where variable soil conditions were encountered in the core. The sonic core photographs are provided in a separate electronic format.

A.4 BORING LOGS

The boring logs for this project are presented as Figures A-2 through A-5. A boring log is a written record of the subsurface conditions encountered. It describes the geologic units (layers) encountered in the boring and the Unified Soil Classification System symbol of each geologic

layer. It also includes the natural water content (where tested), groundwater level observations, approximate surface elevation, types and depths of sampling, and SPT blow counts.

Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹
Major	SONSTITUENT (50% or more fines) ¹ Major Silt, Lean Clay, Elastic Silt, or Fat Clay ³ Modifying (Secondary) 30% or more coarse grained;	Sand or Gravel ⁴
(Secondary) Precedes major		More than 12% fine-grained: <i>Silty</i> or <i>Clayey</i> ³
	coarse-grained: <i>with Sand</i> or	5% to 12% fine-grained: <i>with Silt</i> or <i>with Clay</i> ³
	30% or more total coarse-grained and lesser coarse- grained constituent is 15% or more: with Sand or	15% or more of a second coarse- grained constituent: <i>with Sand</i> or <i>with Gravel</i> ⁵
² The order of terms	is: Modifying Major with I on behavior.	ien passing a 3-inch sieve. Minor.

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
W/ot	Visible free water from below

Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) **SPECIFICATIONS**

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm
	NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.
Sampler:	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches
N-Value:	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.
bor hav	netration resistances (N-values) shown on ing logs are as recorded in the field and re not been corrected for hammer ciency, overburden, or other factors.

		E DEFINITIONS							
DESCRIPTION SIEVE NUMBER AND/OR APPROXIMATE SIZE									
FINES	< #200 (0.075 ı	mm = 0.003 in.)							
SAND Fine Medium Coarse	#40 to #10 (0.4	075 to 0.4 mm; 0.003 to 0.02 in.) to 2 mm; 0.02 to 0.08 in.) 4.75 mm; 0.08 to 0.187 in.)							
GRAVEL Fine Coarse	#4 to 3/4 in. (4. 3/4 to 3 in. (19	75 to 19 mm; 0.187 to 0.75 in.) to 76 mm)							
COBBLES	3 to 12 in. (76 to 305 mm)								
BOULDERS	> 12 in. (305 m	im)							
RE	LATIVE DENSIT	TY / CONSISTENCY							
COHESION	LESS SOILS	COHESIVE SOILS							
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY	N, SPT, RELATIVE BLOWS/FT. CONSISTENCY							
< 4	Very loose	< 2 Very soft							
4 - 10	Loose	2 - 4 Soft							
10 - 30 30 - 50	Medium dense Dense	4 - 8 Medium stiff 8 - 15 Stiff							
> 50	Very dense	15 - 30 Very stiff							
		> 30 Hard							
I	NELL AND BAC	KFILL SYMBOLS							
	onite ient Grout	Surface Cement							
Bent	onite Grout	Asphalt or Cap							

Vibrating Wire Piezometer
GES TERMS ^{1,2}
< 5%
5 to 10%
15 to 25%
30 to 45%
50 to 100%

Slough

Inclinometer or Non-perforated Casing

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

> **Ballard Conveyance** Seattle, Washington

SOIL DESCRIPTION AND LOG KEY

July 2017

Bentonite Chips

Silica Sand

Perforated or

21-1-22329-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. A-1 Sheet 1 of 3

(Modifie		OIL CLASSIF Tech Memo			EM (USCS) 2487, and ASTM D2488)
	MAJOR DIVISIONS			GRAPHIC IBOL	TYPICAL IDENTIFICATIONS
		Gravel	GW		Well-Graded Gravel; Well-Graded Gravel with Sand
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly Graded Gravel; Poorly Graded Gravel with Sand
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand
(more than 50% retained on No. 200 sieve)		Sand	sw		Well-Graded Sand; Well-Graded Sand with Gravel
	Sands (50% or more of	(less than 5% fines)	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel
	coarse fraction passes the No. 4 sieve)	Silty or Clayey Sand	SM		Silty Sand; Silty Sand with Gravel
		(more than 12% fines)	SC		Clayey Sand; Clayey Sand with Gravel
		Increania	ML		Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt
	Silts and Clays (liquid limit less than 50)	Inorganic	CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay
FINE-GRAINED SOILS		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
(50% or more passes the No. 200 sieve)		Inorconio	МН		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Silt
	Silts and Clays (liquid limit 50 or more)	Inorganic	СН		Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay
		Organic	ОН		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay
HIGHLY- ORGANIC SOILS	Primarily organi color, and c	c matter, dark in organic odor	PT		Peat or other highly organic soils (see ASTM D4427)

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

<u>NOTES</u>

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).
- 2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

Ballard Conveyance Seattle, Washington

SOIL DESCRIPTION AND LOG KEY

July 2017

21-1-22329-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 2 of 3

	GRADATION TERMS	
Poorly Graded Well-Graded	Narrow range of grain sizes present or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets criteria in ASTM D2487, if tested. Full range and even distribution of grain sizes present. Meets criteria in ASTM D2487, if tested.	
	CEMENTATION TERMS ¹	
Weak		
Moderate	finger pressure. Crumbles or breaks with considerable finger	
Strong	pressure. Will not crumble or break with finger pressure.	
	PLASTICITY ²	
	APPROX.	
DESCRIPTION	PLASITICITY VISUAL-MANUAL CRITERIA INDEX RANGE	
Nonplastic	A 1/8-in. thread cannot be rolled at < 4	
Low	any water content. A thread can barely be rolled and 4 to 10	
Medium	a lump cannot be formed when drier than the plastic limit. A thread is easy to roll and not 10 to 20 much time is required to reach the	
High	plastic limit. The thread cannot be rerolled after reaching the plastic limit. A lump crumbles when drier than the plastic limit. It takes considerable time rolling and kneading to reach the plastic > 20 limit. A thread can be rerolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.	
	ADDITIONAL TERMS	
Mottled	Irregular patches of different colors.	
Bioturbated	Soil disturbance or mixing by plants or animals.	
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.	
Cuttings	Material brought to surface by drilling.	
	Material that caved from sides of borehole.	
Slough	Disturbed texture, mix of strengths.	
PARTICI	LE ANGULARITY AND SHAPE TERMS ¹	
Angular	Sharp edges and unpolished planar surfaces.	
Subangular	Similar to angular, but with rounded edges.	
Subrounded	Nearly planar sides with well-rounded edges.	Ho
Rounded		
Flat	Width/thickness ratio > 3.	
Elongated	Length/width ratio > 3.	

¹Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

²Adapted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

ACRONYMS AND ABBREVIATIONS

AUR	UNTIVIS AND ABBREVIATIONS
ATD	At Time of Drilling
Diam.	Diameter
Elev.	Elevation
ft.	Feet
FeO	Iron Oxide
gal.	Gallons
Horiz.	Horizontal
HSA	Hollow Stem Auger
I.D.	Inside Diameter
in.	Inches
lbs.	Pounds
MgO	Magnesium Oxide
mm	Millimeter
MnO	Manganese Oxide
NA	Not Applicable or Not Available
NP	Nonplastic
O.D.	Outside Diameter
OW	Observation Well
pcf	Pounds per Cubic Foot
	Photo-Ionization Detector
PMT	Pressuremeter Test
ppm	Parts per Million
psi	Pounds per Square Inch
PVC	Polyvinyl Chloride
rpm	Rotations per Minute
SPT	Standard Penetration Test
USCS	Unified Soil Classification System
\mathbf{q}_{u}	Unconfined Compressive Strength
VWP	Vibrating Wire Piezometer
Vert.	Vertical
WOH	Weight of Hammer
WOR	Weight of Rods
Wt.	Weight
	STRUCTURE TERMS ¹

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch thick; singular: lamination.
Fissured	
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay.
Homogeneous	Same color and appearance throughout.

Ballard Conveyance Seattle, Washington

SOIL DESCRIPTION AND LOG KEY

July 2017

21-1-22329-004

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. A-1 Sheet 3 of 3

CLASS_KEY_PG3_21-22329.GPJ_SHAN_WIL.GDT 7/19/17

SOL

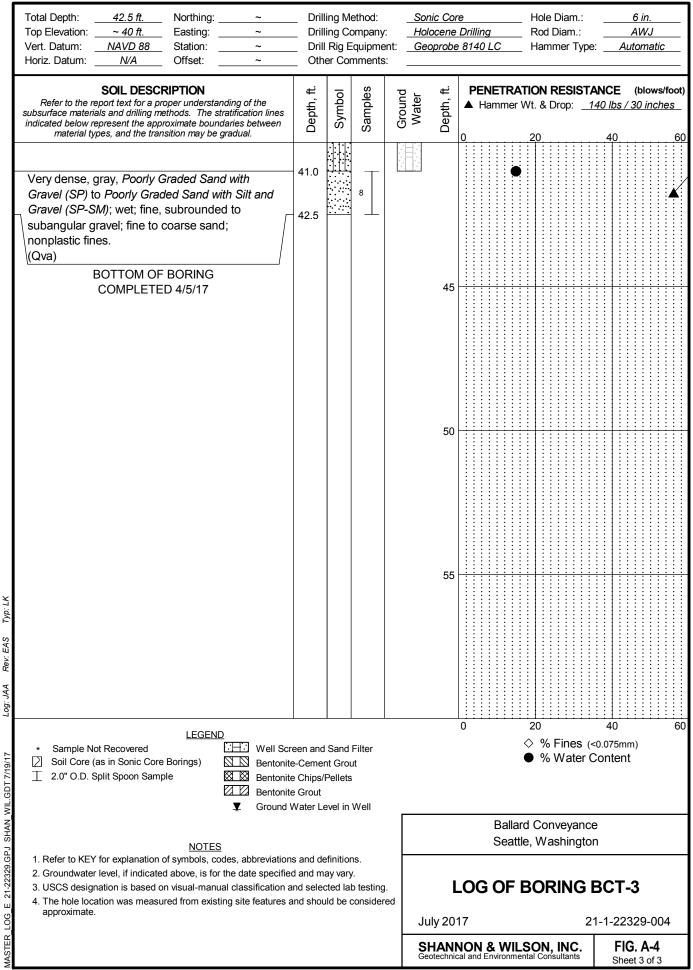
T EL 11 10 10 10 1	Drilling Method:				Sonic Core Holocene Drilling						ole D		-		6 in.			
Top Elevation: ~ 43 ft. Easting: ~ Vert. Datum: NAVD 88 Station: ~				Drilling Company: Drill Rig Equipment:										AWJ				
Vert. Datum: <u>NAVD 8</u> Horiz. Datum: <u>N/A</u>	<u>8</u> Station: Offset:	~		•	iquipmen nments:	t: _	Geop	robe	814	0 LC	;	_ Н	amm	er Ty	/pe: _	A	utoma	atic
	SCRIPTION a proper understance ang methods. The stra	ling of the atification lines	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.							TAN 140		•	ws/foo ches
material types, and the				0	ο Ο Π		×4	Ō	0	:::		() : : :			40		
Concrete.				A 4 4	S	A P P	No.											
Gray and gray-brown, (<i>SM</i>); moist; fine to coa subangular gravel; fine nonplastic fines; diamic iron-oxide staining. (Hf) Gray, <i>Silty Sand (SM</i>); subrounded to subang sand; nonplastic to low trace iron-oxide stainin (Hf)	arse, subrounded to coarse sand; ct; trace organics moist; few fine to gular gravel; fine <i>i</i> plasticity fines; g.	d to s; trace o coarse, to coarse diamict;	- 0.8 - 3.5 - 5.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			5			•							
Loose, brown, <i>Silty Sa</i> subrounded to subang sand; nonplastic to low organics; diamict. (Hf) Loose, brown to dark <i>Gravel (SM</i>); moist; fin subangular gravel; fine nonplastic to low plasti and wood fragments; fi	ular gravel; fine plasticity fines; prown, <i>Silty San</i> e, subrounded to to coarse sand; city fines; few or	to coarse trace	- 8.0				Ž	10				•						
(Hf) Loose, gray-brown, <i>Si</i> , wet; fine, subrounded to coarse sand; nonpla (Qvro/Hf)	to subagular gra astic fines.	vel; fine	15.0				During Drilling ¹	15										
Gray-brown to orange Gravel (SM); moist to v subrounded to subang sand; nonplastic to low pockets with iron-oxide (Qvat/Qvri) Medium dense to dens moist to wet; trace to f	vet; fine to coars gular gravel; fine / plasticity fines; e staining; diamic se, gray, <i>Silty Sa</i> ew fine, subroun	e, to coarse few ct. <i>nd (SM)</i> ;			R4 E													
* Sample Not Recovere Soil Core (as in Sonic	Core Borings)	 ₩ell Sci Bentonit Bentonit Bentonit Bentonit Ground 	e-Ceme e Chips/ e Grout	nt Grou Pellets	ut				0				% F		(<0.0			6
	NOTES	⊈ Ground	Water L	evel in	Well								Conv Wasl	-				
 Refer to KEY for explana Groundwater level, if ind USCS designation is bas The hole location was m approximate 	icated above, is for the sed on visual-manual	he date specifie I classification a	d and m and sele	ay vary	/. b testing.	d		L	-00	GC	OF	BC	DRI	NG	6 B(СТ	·1	
approximate.							Luby	201	17						21 4	1 22	329-0	004
							July	20	17						21-	1-22	523-0	-00

Total Depth: <u>36.5 ft.</u> Northing: ~			ethod:		nic Cor		Hole Diam		6 in.	
Top Elevation: ~ 43 ft. Easting: ~ Vert. Datum: NAVD 88 Station: ~		-	ompany: Equipment			Drilling 8140 LC	_ Rod Diam.: <u>AW.</u> Hammer Type: Automa			
Horiz. Datum: <u>N/A</u> Offset: <u>~</u>		-	Equipment mments:			0140 LC		тур с . <u>А</u>	utomatic	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer		-	(blows/fo / 30 inches	
material types, and the transition may be gradual. subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvat/Qvd) - Wet from 20 to 20.5 feet.			K ² A A A A A A A A A A A A A A A A A A A			0	20	<u>40</u>		
Medium dense, gray, <i>Silty Sand (SM</i>); wet; trace fine, subrounded gravel; fine to coarse sand; nonplastic fines. (Qvro/Qva)	25.0 27.0		5		25	•		- 0		
Medium dense, gray, <i>Silty Sand (SM)</i> ; moist; trace to few fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvat/Qvd)	30.0		R6		30					
Medium dense to dense, gray, <i>Silty Sand (SM</i>); wet; trace fine to coarse, subrounded gravel; fine to coarse sand; nonplastic fines. (Qvro/Qva)					35	•				
BOTTOM OF BORING COMPLETED 4/3/17	36.5					0	20	40		
LEGEND Sample Not Recovered Soil Core (as in Sonic Core Borings) Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample Z Bentonite Ground V	e-Cemer e Chips/ e Grout	nt Gro Pellets	ut			-	◇ % Fine			
 Ground V <u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations 							d Conveya e, Washin			
 Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification and The hole location was measured from existing site features a approximate. 	d and m nd selee	ay vary cted la	y. b testing.				BORIN			
					uly 201	17		21-1-22	329-004	

REV 3 - Approved for Submittal

Total Depth: <u>5</u> Top Elevation: <u>~</u>	Drilling Method: Drilling Company:				nic Cor ocene	re Drilling	Hole Diam.: Rod Diam.:	<u> </u>			
Vert. Datum: NA	<u>58 ft.</u> Easting: <u>VD 88</u> Station: <u>V/A</u> Offset:	~	Dril	I Rig E	Equipment mments:			e 8140 LC	Hammer Type:	Automatic	_
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.				Symbol	Samples	Ground Water	Depth, ft.		TION RESISTAN Wt. & Drop: <u>14</u>	、	es
Concrete.									 	_40 : : : : : : : : :	<u>6</u>
Sand (SM); moist; gravel; fine to coar iron-oxide staining; (Hf)	-	led ty fines;	0.8		R1						•••••••••••••••••••••••••••••••••••••••
with few brick fra	own, silty sand with g gments from 2.5 to countered at 3 feet.		5.0				5				
(CH); moist; trace f subangular gravel;	d gray, <i>Fat Clay with</i> fine, subrounded to fine to coarse sand les; iron-oxide stainin	; medium					-				72
<i>Gravel (SM)</i> ; moist to subangular grav	o gray-brown, <i>Silty S</i> ; fine to coarse, sub rel; fine to coarse sa amict; trace iron-oxio	rounded nd;			2		10			50)/3
	prown, <i>Silty Sand (Si</i>	<i>M</i>); moist;	13.5		R3			•			
	ubrounded to suban se sand; nonplastic	•	15.0		3 NAV 3		15			.50)/5
Very dense, gray, with Gravel (SM); r	Silty Sand (SM) to S noist; fine, subround fine to coarse sand; amict.	led to			R4						
C								0	20	40	6
 * Sample Not Recc [2] Soil Core (as in S ☐ 2.0" O.D. Split Sp 	onic Core Borings)	Well Scree Bentonite Bentonite Bentonite	-Ceme Chips/ Grout	nt Grou Pellets	ut ;				 ◇ % Fines (<0 ● % Water Co 		
	<u>NOTES</u>								rd Conveyance e, Washington		
 2. Groundwater level, 3. USCS designation i 4. The hole location w 	blanation of symbols, cod if indicated above, is for th s based on visual-manua as measured from existin	he date specified I classification ar	l and m nd sele	ay vary cted la	/. b testing.		L	OG OF	BORING B	CT-2	
approximate.										1-22329-004 FIG. A-3	+
						Ge	otechnic	NON & WIL cal and Environme	ntal Consultants	FIG. A-3 Sheet 1 of 3	

REV 3 - Approved for Submittal


Total Depth:	55 ft.	_ Northing:	~			ethod:		Sonic C			_ Hole Diam.:			<u>6 in.</u>		
Top Elevation: _	~ 58 ft.	_ Easting:	~			ompany		Holocer				Rod D			AW	
Vert. Datum: _ Horiz. Datum:	<u>NAVD 88</u> N/A	_ Station: Offset:	~			Equipme mments		Geopro	be 8	140 LC		Hamn	ner Ty	pe:	Auton	atic
nonz. Datum.	/ w/A			_ 011			· _									
	SOIL DESC	RIPTION		÷		S	σ	نے _	:	PENE	TRAT	ION R	ESIS	TANCE	(bl	ows/foo
	port text for a p	oroper understandi	ing of the	, Ę	du	hple	ůn.	th.						140 lb:		nches
indicated below rep	present the app	proximate boundai	ries between	Depth,	Symbol	Samples	Ground	Water Depth.	$\frac{1}{2}$							
material typ	es, and the trai	nsition may be gra	adual.		1.1.1.1				0	.		20		40		(
						₄≶		×								: : : : : 89/1:1
] ∑ _		×								
						Ś		×								$\begin{array}{c} \vdots \end{array}$
						R5	_ 🕅									
						"<	₹ 🕅									
						5	0/20									
						$ \langle \rangle $	21	×								
						S			_							
						5		≥ ∠	5							50/5
						₹										
						$ \langle $										
						2 S		×								
						Ľ₿		×								
						S										
						S										
						S		× ,								
- Few wet sea	ams below 3	30 feet.				6 🖇		3								50/
						2										
						S										
						~ 5		~								
						S S										
						<u></u>		3	5	<u></u>					<u></u>	<u></u>
						7									\diamond	50/
						R				::::	::::		• • • •			::::
						5										
						88		· · ·								
						<u></u>										
						$ \langle $										
	CONTINUE					2										
	CONTINUEL	D NEXT SHEET LEGEND							0			20	-1	40		
* Sample Not											<			<0.075 (<0.075 r Conte		
	is in Sonic Core olit Spoon Sam		Bentonite									/01	, ale			
<u> </u>		_	Bentonite		renets	•										
			⊈ Ground V		evel in	Well	_									
							Γ			В	allard	l Con	veyar	nce		
		NOTES										, Was				
	-	of symbols, code														
		ed above, is for th	-												т ^	
 USCS designation 		on visual-manual				-			L			OR	ING	BC	1-2	
4 The hole local				ື່ມນັບສາມປະ												
 The hole locat approximate. 								luk <i>i</i> O	017					21 4 0	00000	004
								July 2	017					21-1-2	2329 FIG. A	

Total Depth: 55 ft. Northing: ~ Top Elevation: ~ 58 ft. Easting: ~ Vert. Datum: NAVD 88 Station: ~	Dril	ling C	ethod: ompany:	Hol		Drilling	Hole Diam.: Rod Diam.:	<u> </u>
Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: N/A Offset: ~		•	Equipmen mments:	t: <u>Ge</u>	oprope	8140 LC	Hammer Type:	Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.		TION RESISTA Wt. & Drop: <u>1</u>	NCE (blows/foo 40 lbs / 30 inches 40 6
Gray, <i>Silty Sand (SM)</i> ; wet; trace fine, subrounded gravel; fine to coarse sand; nonplastic fines. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd)	- 47.0 - 49.0		R10 ° R9 ° C		45		\$.50/5
BOTTOM OF BORING COMPLETED 4/6/17 - BCT-2 was completed to a depth of 45 feet. A second BCT-2 was drilled adjacent to the original boring to a depth of 55 feet. Samples were not collected from the second BCT-2 from the surface to 45 feet. Both borings are compiled on the same BCT-2 boring log.	- 55.0				55			
⊥ 2.0" O.D. Split Spoon Sample Image: Split Spoon Sample Image: Split Spl	te-Ceme te-Ceme te Chips/ te Grout Water L	nt Gro Pellets	ut s				20	Content
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specifie 3. USCS designation is based on visual-manual classification 4. The hole location was measured from existing site features approximate.	ed and m and sele	ay var	/. b testing.			Seattl	e, Washingtor	BCT-2
- F F				Ju	ly 20	17	21	1-1-22329-004

REV 3 - Approved for Submittal

Total Depth: _	42.5 ft. ~ 40 ft.	_ Northing: _	~ ~		ling M			Sonic Co	re Drilling	_ Hole Diam.: Rod Diam.:		6 in. AWJ
Top Elevation: _ Vert. Datum: _	~ 40 π. NAVD 88	_ Easting: _ _ Station: _	~		-	ompan <u>y</u> Equipm			e Drilling e 8140 LC	_ Rod Diam.: _ Hammer Type	: _ A	AVVJ Automatic
Horiz. Datum:	N/A	Offset:	~		-	nment						
Refer to the rep subsurface material indicated below rep	ls and drilling n present the app	roper understand nethods. The stra	atification lines aries between	Depth, ft.	Symbol	Samples	Ground	Depth, ft.		ATION RESISTA		
Asphalt.		nonion may be g		0.3		Z	a de la			20	40 	
Concrete.				0.8		S	P. A. X.	17. V.				
Dark brown, S	Silty Gravel v	with Sand (Gl	M); moist;					8				
fine to coarse,		-	-			-5		8				
fine to coarse fines; diamict; (Hf)	-	-	plasticity	2.5		R						
Loose, brown	Silty Sand	(SM) to Sand	ly Silt			S						
(ML); moist; fe	-		-			R		5				· · · · · · · · ·
subangular gr						1\$						
nonplastic to le fragments; tra												
staining.	ce pockets		C			2		8				
(Hf)						83		8				
- Layer of dar		ty gravel with	sand /	8.0								
from 5 to 5.								8				
Loose, gray, S						$ \langle \rangle $	Y	8				
coarse, subro		• •		10.0		}	/2017	10	•)	$\Rightarrow \Rightarrow$	
diamict; trace	-		- /			2₿	5/11	8				
(Qvri/Hf)	-					<u></u> ≸		8				
Medium dense						$\left \right $						
wet; trace fine				12.5		82					\sim	
fine to coarse fines; diamict.	sanu; nonp	IASUC IO IOW F		13.5								
(Qvri/Hf)						$ \zeta $						
Medium dense	e, brown, S	ilty Sand (SM); wet;			5		15				
trace fine, sub		avel; fine to c	oarse			_ \$]		10				
sand; nonplas	tic fines.					3						
(Qvro/Qvri)		whrower Oth	(Sand			S						
Very dense, b (SM); moist; fe						<u>≯</u> >		8				
gravel; fine to			•			<u></u>		8				
plasticity fines						$ \langle \rangle $		8				
(Qvd)												
- Layer of wet		from 19.5 to 2	20 feet.			15		8	0	20	<u>: : :</u> 40	
		LEGEND							U	20 ◇ % Fines (<		um)
 ★ Sample Not ∑ Soil Core (a) 	t Recovered s in Sonic Cor		↔ Well Scr N Bentonite							 % I mes (% Water (,
	olit Spoon Sam		Bentonite									
		E	Bentonite									
			⊈ Ground \	Vater L	evel in	Well						
										ard Conveyance		
1 Refer to KEV	for evolution	NOTES	es abbraviation	e and d	ofinition	ne			Seat	ttle, Washingto	11	
1. Refer to KEY 1 2. Groundwater	-	-										
3. USCS designation							g.	I	LOG OF	BORING	вст	-3
 The hole locat approximate. 	tion was meas	ured from existir	g site features a	ind shoi	uld be o	conside						
-pprovintato.								July 20	17	2	1-1-22	2329-004
								SHAN	NON & WI	LSON. INC.	FI	G. A-4
								Geotechni	cal and Environm	LSON, INC.		eet 1 of 3

Total Depth: 42.5 ft. Northing:Top Elevation: $\sim 40 \text{ ft.}$ Easting:	~		-	ethod: ompany:		nic Cor	re Drilling	_ Hole Dian Rod Diam		6 in. AWJ	
Vert. Datum: <u>NAVD 88</u> Station:	~	_ Dril	Rig E	Equipment			e 8140 LC	_ Hammer		utomatic	
Horiz. Datum: <u>N/A</u> Offset: SOIL DESCRIPTION Refer to the report text for a proper understa subsurface materials and drilling methods. The indicated below represent the approximate boun material types, and the transition may be	stratification lines ndaries between	Depth, ft.	Symbol Q	mments: Samples S	Ground Water	Depth, ft.	PENETRA ▲ Hammer	TION RES Wt. & Drop:	140 lbs .		
- Few wet, silty sand seams from 21				R5 b			<u>U</u>		40		
 Layer of wet, poorly graded sand v iron-oxide staining at 24.5 feet. Few pockets with iron-oxide staining feet. 				R6 G		25	•			K	
Very dense, gray, <i>Silty Sand (SM)</i> ; m trace to few fine, subrounded to sub- gravel; fine to coarse sand; nonplast diamict. (Qvd)	angular	28.5		<u>к</u> , [∞] www. <mark>www</mark>		30	-			¢	
				R8 2		35	•		♦	5D/:	
CONTINUED NEXT SHEET LEGEN * Sample Not Recovered Discrete Source (as in Sonic Core Borings)							0	20 ◇ % Fine ● % Wat	40 es (<0.075m er Conter		
	Bentonite Bentonite	e Chips/ e Grout	Pellets	3		Ballard Conveyance Seattle, Washington					
 Refer to KEY for explanation of symbols, c Groundwater level, if indicated above, is fo USCS designation is based on visual-man The hole location was measured from exis approximate. 	odes, abbreviations or the date specified ual classification a	d and m nd sele	ay vary cted la	/. b testing.		L uly 20 [.]	-OG OF	BORIN		-3 2329-004	

REV 3 - Approved for Submittal

	Total Depth: 35.4 ft. Northing: ~ Top Elevation: 31 ft. Easting: Vert. Datum: 088 Station:	Drill	ing C	lethod: ompany Equipme		Hole		re Drilling e 8140 LC	Hole Diam.: Rod Diam.: Hammer Type	<u> </u>
	Horiz. Datum: <u>N/A</u> Offset: ~			mments				1		
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Croind	Water	Depth, ft.		TION RESISTA Vt. & Drop: <u>1</u> 20	NCE (blows/foot) 40 lbs / 30 inches 40 60
	Concrete. Very loose to loose, brown, <i>Poorly Graded Sand</i> <i>with SIIt and Gravel (SP-SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few silty sand seams. (Hf) - Contaminated from 5 to 15 feet.	0.8			5/10/2017 i		5		20	
Log: JAA Rev: EAS Typ: LK	Medium dense, gray-brown, <i>Poorly Graded</i> <i>Sand with Silt and Gravel (SP-SM)</i> ; wet; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few organics and wood fragments. (Hf) Brown, <i>Poorly Graded Sand with Silt (SP-SM)</i> ; wet; fine to medium sand; nonplastic fines. (Hf)	15.0 17.0 18.0		\mathbb{R}^{4}			15			
	CONTINUED NEXT SHEET <u>LEGEND</u> * Sample Not Recovered ☐ Soil Core (as in Sonic Core Borings) ☐ 2.0" O.D. Split Spoon Sample ☐ Bentonite ☐ Ground V	e-Cemer e Chips/ e Grout	nt Gro Pellets	ut s				0	20 ◇ % Fines (< ● % Water C	
MASTER_LOG_E_21-22329.GPJ_SHAN_WIL.GDT 7/19/17	NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and 4. The hole location was measured from existing site features a approximate.	d and mand mand mand select	ay var cted la	y. Ib testing			ly 20	Seattle	21	n BCT-4 1-1-22329-004
MASTE						SI Geo	HAN otechni	NON & WIL	SON, INC. Ital Consultants	FIG. A-5 Sheet 1 of 2

REV 3 - Approved for Submittal

		•	ethod:		nic Cor		Hole Diam.: <u>6 in.</u>			
Top Elevation: <u>~ 31 ft.</u> Easting: <u>~</u> Vert Datum: NAVD 88 Station: ~		-	ompany:			Drilling	_ Rod Diam		AWJ	
Vert. Datum: <u>NAVD 88</u> Station: <u>~</u> Horiz. Datum: <u>N/A</u> Offset: <u>~</u>		•	Equipment mments:	. <u> </u>	oprope	e 8140 LC	_ Hammer	туре. <u>А</u>	utomatic	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between		Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer	ATION RES Wt. & Drop:	-	(blows/foo / 30 inches	
material types, and the transition may be gradual. Very dense, gray, <i>Silty Sand (SM</i>); moist; few				\otimes \otimes		0	20 ::::::::	40	6	
fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; few wood fragments. (Hf)			R5 M							
- Contaminated from 20 to 23 feet. Very dense, gray, <i>Silty Sand (SM)</i> ; moist; trace fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines;	23.0				25					
diamict; odor. \(Qvd) Very dense, gray, <i>Silty Sand with Gravel (SM</i>);	25.0		5		25				7	
moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict; slight odor. (Qvd)	27.0									
Very dense, gray, <i>Silty Sand (SM)</i> ; moist; trace fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd)	30.0				30				6.	
Very dense, gray, <i>Silty Sand with Gravel (SM)</i> ; moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvt)			R7		25					
BOTTOM OF BORING COMPLETED 4/6/17	35.4		7		35				50/5	
☑ Soil Core (as in Sonic Core Borings) ☑ Bentor ☑ 2.0" O.D. Split Spoon Sample ☑ ☑ Bentor ☑ ☑ Ø.D. Split Spoon Sample ☑ Ø.D. Split Spoon Sample	Screen and hite-Ceme hite Chips.	ent Grou /Pellets	ut S			0		<u>+ + + + + + + + + + + + + + + + + + + </u>		
⊈ Groun <u>NOTES</u>	d Water L	evel in	Well				ird Convey tle, Washir			
 Refer to KEY for explanation of symbols, codes, abbreviation Groundwater level, if indicated above, is for the date specified USCS designation is based on visual-manual classification 	fied and m n and sele	nay vary ected la	y. b testing.		L	_OG OF	BORIN	G BCT	-4	
4. The hole location was measured from existing site features	s and sho	uiu be	CONSIDERED	·						
 The hole location was measured from existing site features approximate. 	s and sho		considered		uly 20 ⁻	17		21-1-22	329-004	

REV 3 - Approved for Submittal

SHANNON & WILSON, INC.

APPENDIX B

EXISTING EXPLORATION DATA

APPENDIX B

EXISTING EXPLORATION DATA

TABLE OF CONTENTS

FIGURES

- B-1 Log of Existing Boring B-1
- B-2 Log of Existing Boring B-2
- B-3 Log of Existing Boring B-1('01)
- B-4 Log of Existing Boring B-2('02)
- B-5 Log of Existing Boring B-3('02)
- B-6 Log of Existing Boring B-1('93)
- B-7 Log of Existing Boring B-2('93)
- B-8 Log of Existing Boring B-1(D&M)
- B-9 Log of Existing Test Pit TP-3(D&M)
- B-10 Logs of Existing Test Pit TP-4 and Test Pit TP-5
- B-11 Log of Existing Boring TB-4
- B-12 Log of Existing Boring TB-7
- B-13 Log of Existing Boring TB-9
- B-14 Log of Existing Boring TB-11
- B-15 Log of Existing Boring HB-4
- B-16 Logs of Existing Test Pit TP-1 and Existing Test Pit TP-2
- B-17 Log of Existing Test Pit TP-3
- B-18 Log of Existing Boring WSC-16
- B-19 Log of Existing Boring WSC-17

21-1-22329-004-R1-AB/wp/lkn

SOIL AND BORING COMPLETION LOG

PROJECT NUMBER : JN 23073

BORING NUMBER : B-1

PROJECT : Noland Ballard Development

LOGGER : Mark K. Dodds, P.E.

٩

LOCATION : 13' E & 10' S of NWC GROUND SURFACE ELEVATION (ft msl) : Street WATER LEVEL AND DATE (ft bgs) : 14' ATD

			SAMPLE			SAMPLE DESCRIPTION	
DEPTH BELOW SURFACE (FT)	WATER LEVEL	NUMBER	STANDARD PENETRATION 6"-6"- (N)	SYMBOL	USCS SYMBOL		COMMENTS
					Fill	Light brown to brown Gravelly Sandy Silt Fill to Gravelly Silty Sandy Fill, slightly moist to moist, loose to medium-dense.	
4		1	22				
8		2	7				
12- 13- 14-	I					Gray Gravelly Silty Sand, wet, very dense.	
15-		3	82		SM		
17						Stopped at 16.5 feet. GWT at 14.0 feet ATD.	

SOIL AND BORING COMPLETION LOG

PROJECT NUMBER : JN 23073

BORING NUMBER : B-2

PROJECT : Noland Ballard Development

LOGGER : Mark K. Dodds, P.E.

LOCATION : 11' W & 15' N of SEC GROUND SURFACE ELEVATION (ft msi) : Alley WATER LEVEL AND DATE (ft bgs) : 14' ATD

			SAMPLE			SAMPLE DESCRIPTION	
DEPTH BELOW SURFACE (FT)	WATER LEVEL	NUMBER	STANDARD PENETRATION 6"-6"-6"- (N)	SYMBOL	USCS SYMBOL		COMMENTS
1- 2-		-			Fill	Light brown to brown Gravelly Sandy Silt Fill to Gravelly Silty Sandy Fill, slightly moist to moist, loose to medium-dense.	
3		4	6				
5- 6-							
7 8 9-		2	7				
12-		3	49				On rock? No recovery.
14-					ŚM	Gray Gravelly Silty Sand, wet, very dense.	,
16- - 17-							
18- - 19-		4	+100			Stopped at 19.0 feet. GWT at 14.0 feet ATD.	
20-							

03/22/2001 11:31 4258289443

Hole No. B-1

.

PROJECT: SWC NW57th & 24th NW DRILL RIG: Trailer Rig HOLE DIA: 8 in. INITIAL WATER DEPTH: 13.5 ft. FINAL WATER DEPTH: ft. DATE DRILLED: 02/22/01 LOGGED BY: MKD SAMPLER: SPT HOLE ELEV: ± Road TOTAL DEPTH: 24.0 ft.

DESCRIPTION	SOIL Type		SANPLES	BLOWS /FT.	REMARKS
" Asphalt Concrete Brown to gray Silty Sandy Fill with Clayier a	zones Fill	17-31)		
nd pieces at brick and glass, wet, loose.		555	4		
		555-2	2 -		
		757	1		
				7	Maisture Cantent = 10.5%
		555-6	3-1		
		1353-			
		×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3-1		
		آ ہے تر ا	π		
		535 -	0-1	2	Moisture Content = 15.8%
		15 3 ET	- F		•
		5 5 - 1	2		
		\$ 5 5	4		
iray Silty Sand with layers of Gravelly Silty Sand, wet, very der (Glacial Till)	nse. SM	1//-1	4-╁		
			-41	74	Moisture Content = 15.5%
		1	6 -		
		1	8 -		
			$\frac{1}{4}$		
		///-2	0-	+100	Moisture Content = 7.8%
			4		
		-2	2-		
			\downarrow		
		Y/A		+100	Moisture Content = 9.9%

B-3

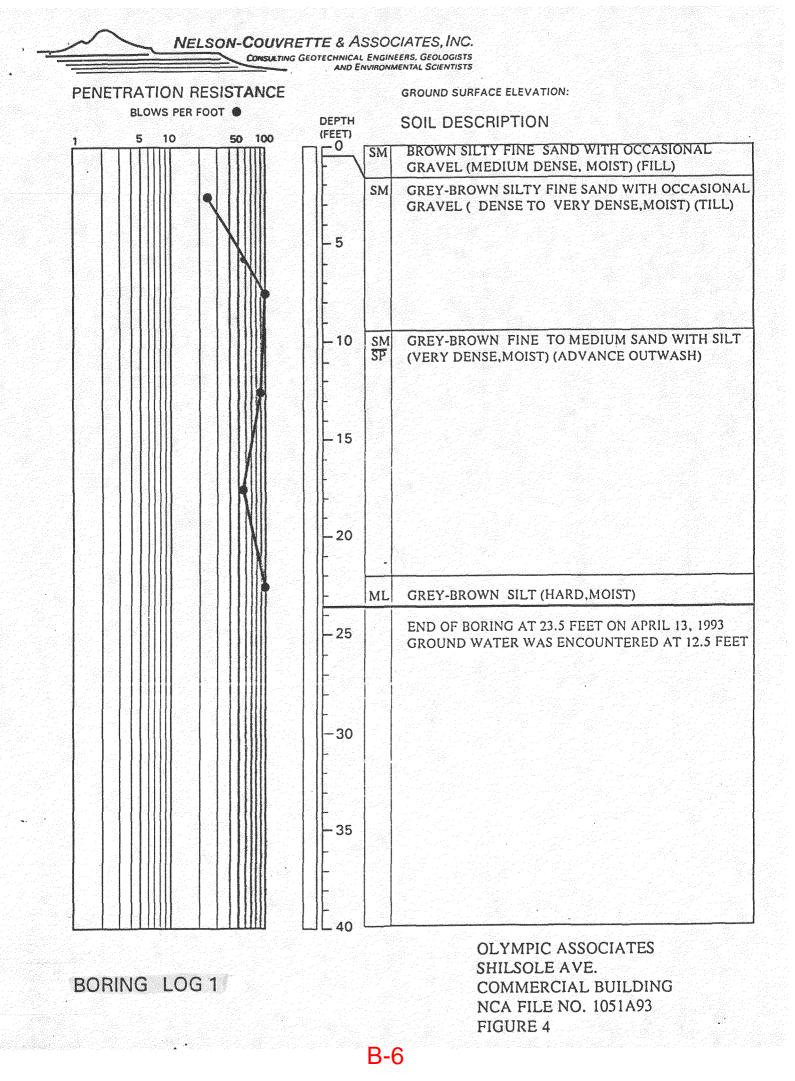
DODDS GEOSCIENCES INC.

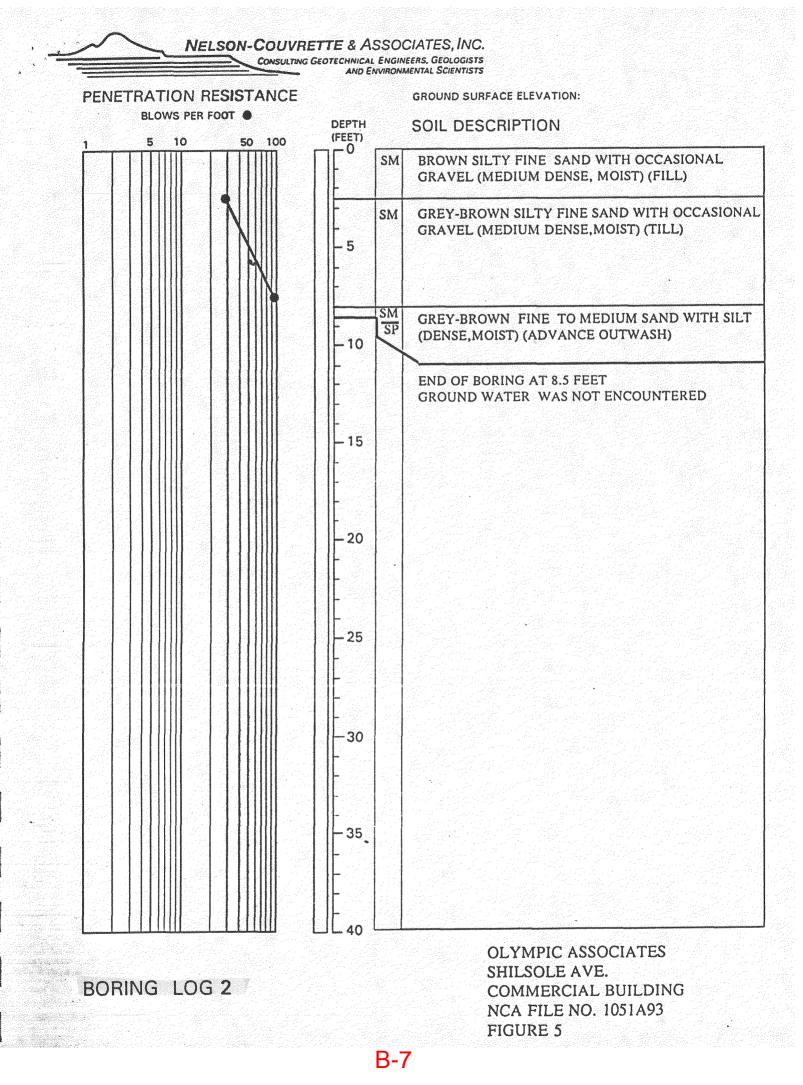
j.

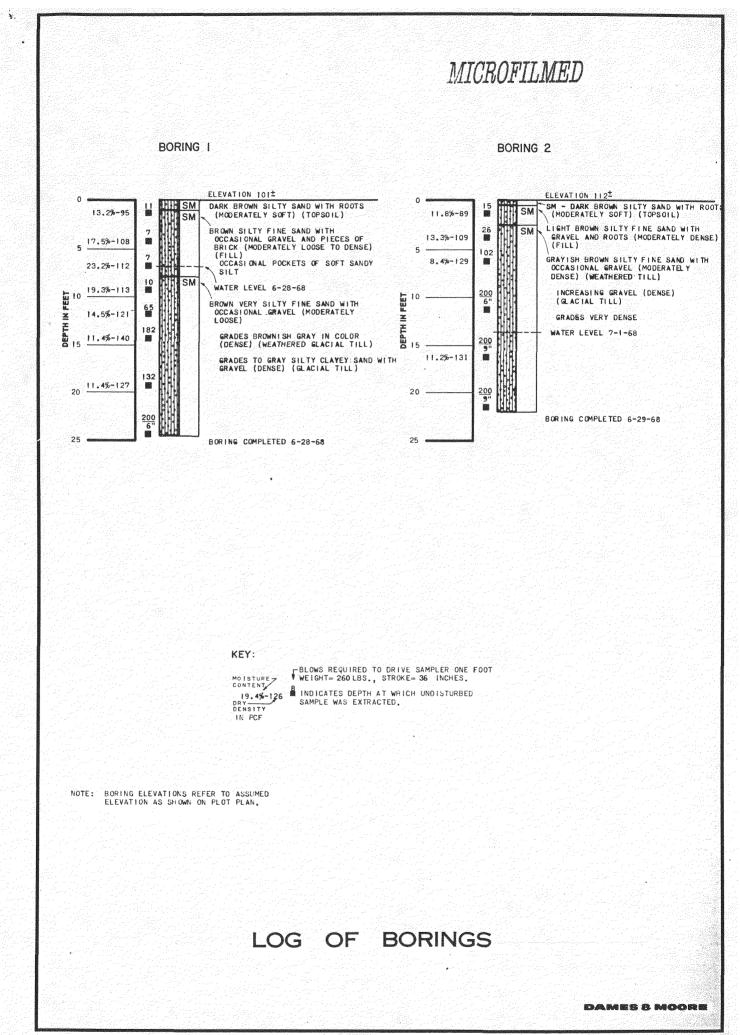
BORING LOG

Boring No. B-2

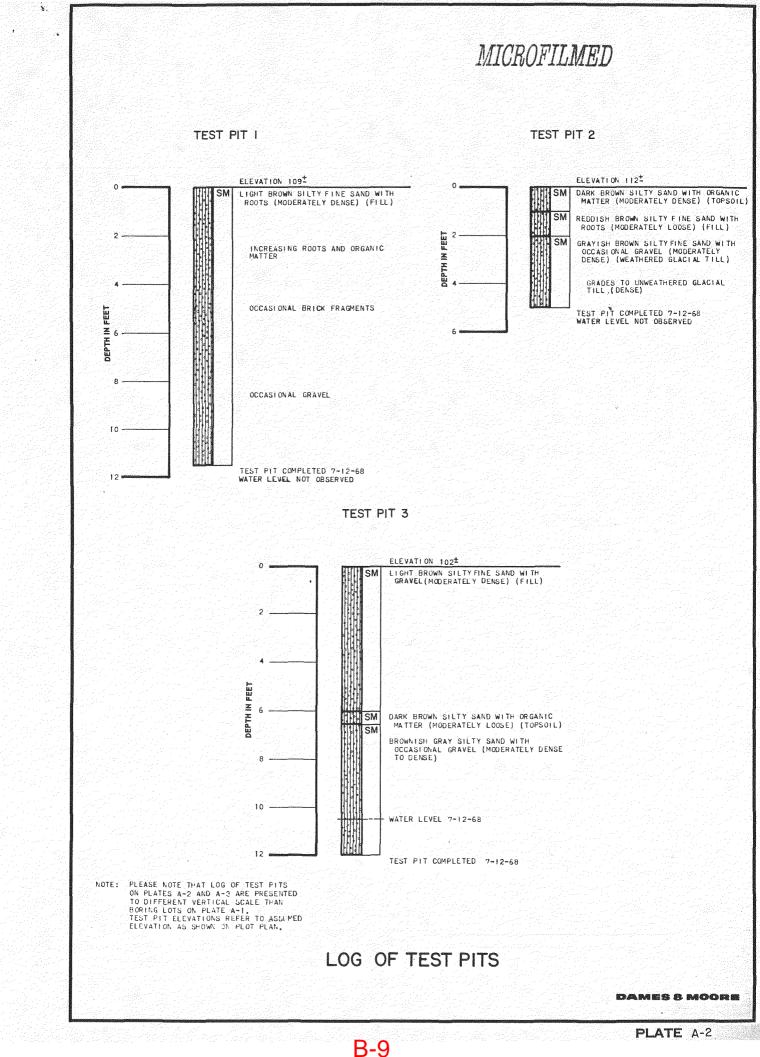
Logged by: CRL


Approximate Elev. 62+/-Date: 12/12/02 Sample Consistency/ (N) Blows/ Moisture Relative Content Soil Description Depth Density (ft.) (%) ft. (6 inches CONCRETE) 50/4" 8 5 50/6" 10 Gray silty SAND with gravel, moist. (Glacial till) With zones of silty fine SAND. 10 Very Dense 50/5* 10 - 15 50/5" \square 9 20 50/5" 13 25 T 50/4" 10 -1-Boring terminated at 28.5 feet. Groundwater seepage encountered at 28 feet.

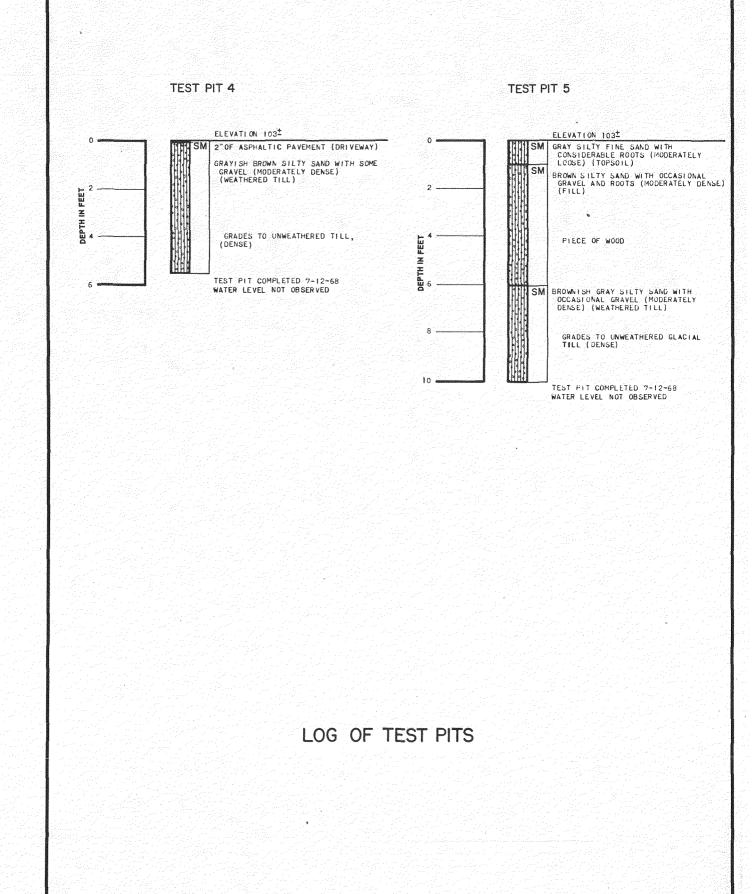

			· · · · · · · · · · · · · · · · · · ·
Terra Associates, Inc. Consultants in Geotechnical Engineering	BALLAF	oring log Rd Eagles Sit .e, Washingto	
Geology and Environmental Earth Sciences	Proj. No. T-5299	Date FEB 2003	Figure A-3


B-4

Boring	No. B-3				
Logged by: CRL	. · · ·				
Date: 12/12/02			Appr	oximate	Elev. 67-
Soil Description	Consistency/ Relative Density	Depth (ft.)	Sample	(N) Blows/ ft.	Moistur Conter (%)
(2 inches ASPHALT CONCRETE)		-	- 07		
		- - - 5		50/6"	8
Gray silty SAND with gravel, moist. (Glacial till)				50/6"	8
		- 10 			
	Very	- 15 -		50/6"	10
	Dense	- 15 - 1/15/03		50/6"	8
		20 			
		- - 25		50/5* 50/5"	8
] •		=	50/6"	11
Becomes wet below 32.5 feet.		30 		50/5"	9
		_ 35		50/3	
		-		50/5"	10
Boring terminated at 38.5 feet. Groundwater seepage encountered at 32.5 feet. 2-inch diameter PVC monitoring well installed with screen	n set from 27 to 37 fe	eet and sand	p ack 1	to 12 feet.	• • •
Terra Associates, Inc.	BA SE	BORIN LLARD E ATTLE, V	AGL	ES SITE	
Consultants in Geotechnical Engineering Geology and	Proj. No. T-5	299 Dat			


B-5

SEATLE HOUS AVEN - 11-68 BY D'AK BY DATE 7-11-68 CHECKED BY DATE


DATE

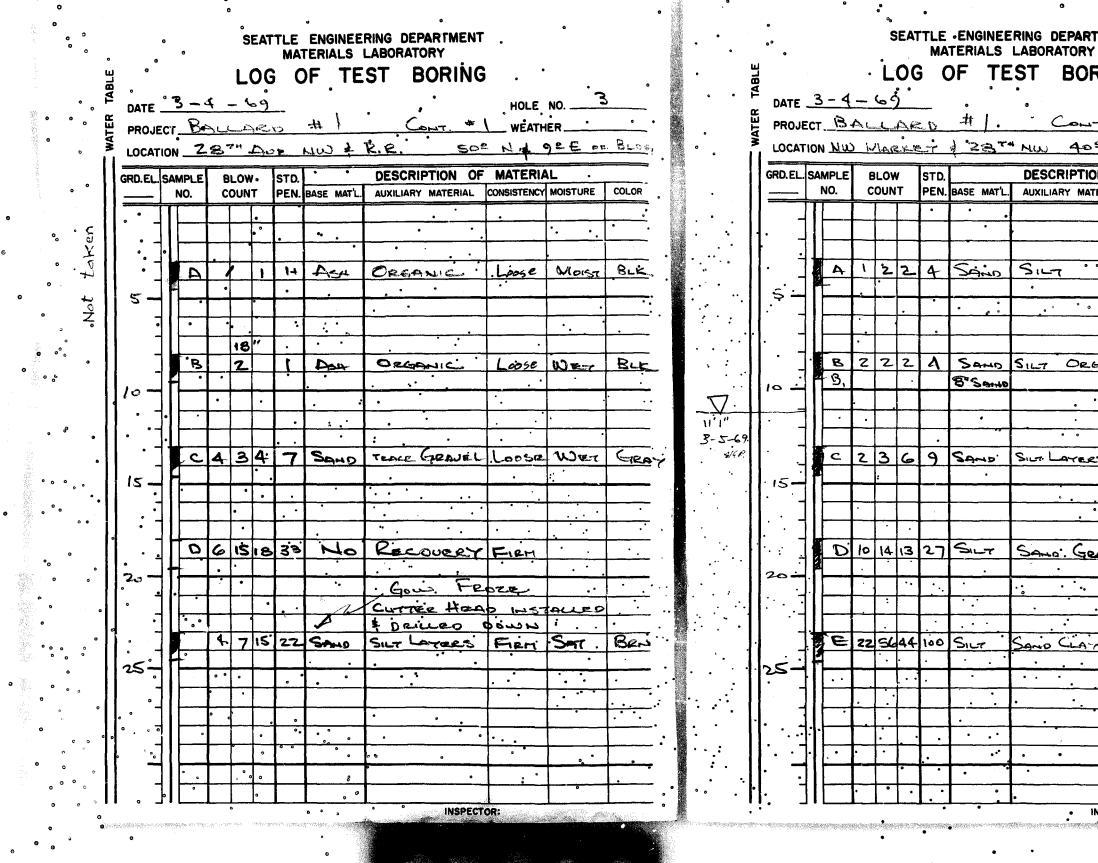
DATE 7-17-68

BY D'LY ArNOLO 7087-003 CHECKED BY.

DATE

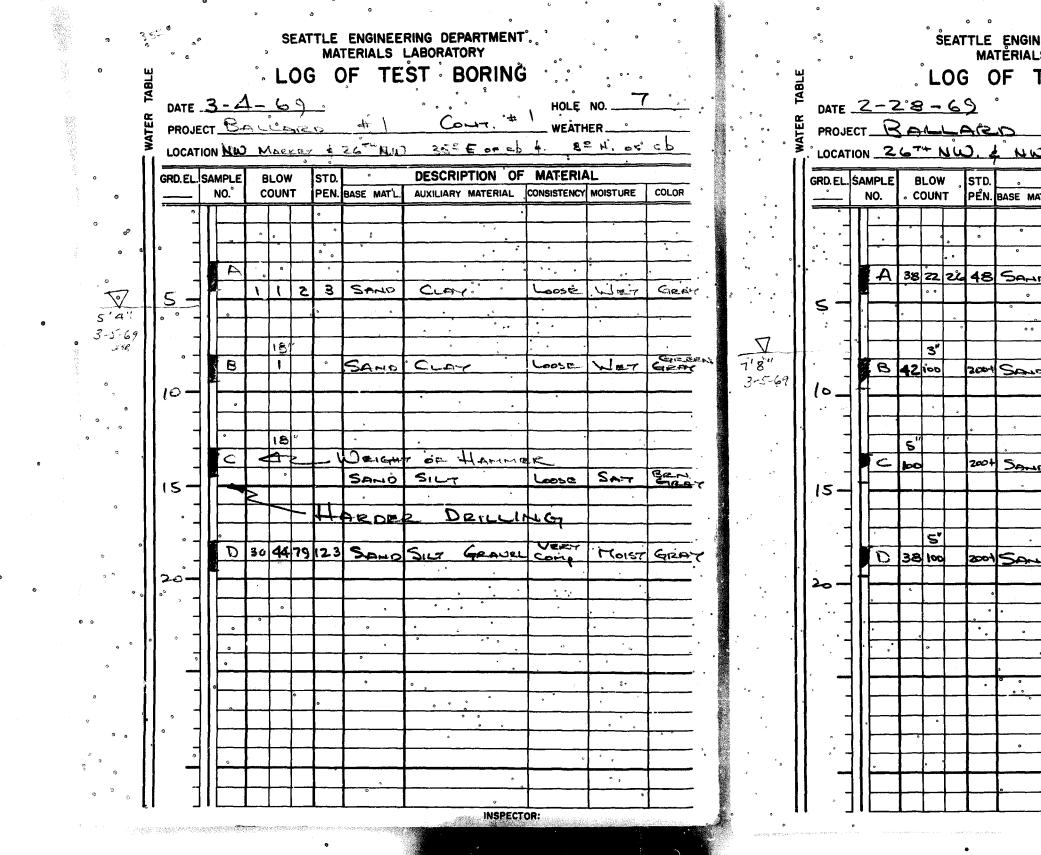
Υ.

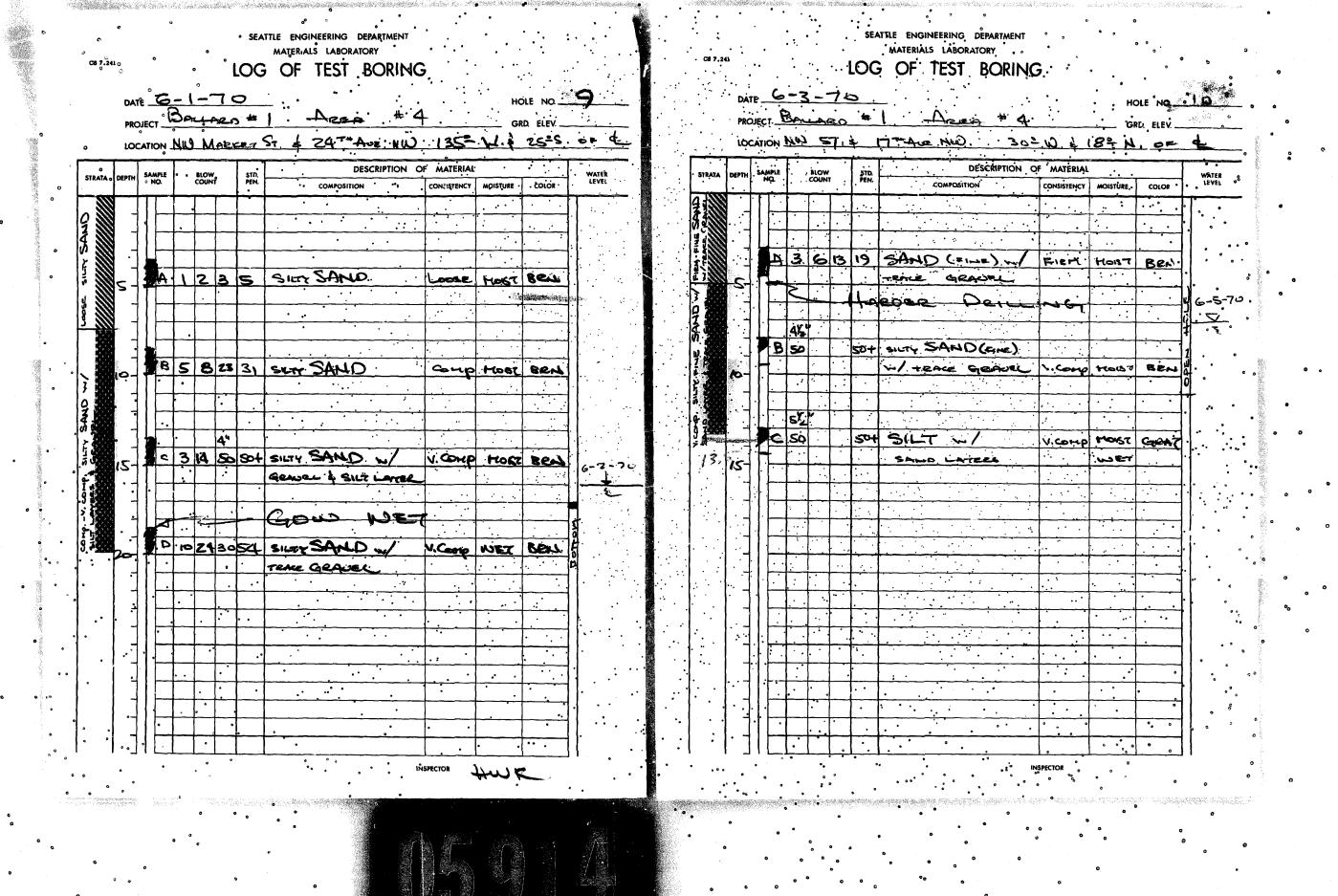
DATE


DATE 7-17-68

W DICK Arnold CHECKED BY ÷ Al

DAMES & MOORE




B-11

RTMENT		9 6		0		
RY	¢		<u>ہ</u>			0
DRING	0			0	.,	0
•		. <	L 。			њ. [.]
	HOLE	NO				
	WEATH	IER				
0° E .		S OF	ch o			
		8				
ION OF			•°			
ATERIAL	CONSISTENC	MOISTURE	COLOR			
•	•					
8						
	•					
• •	LODSE	Moist	BRA	0		0
	•		60	•	9	· 0
0				-		
	•			3	٥	
	0	°				
	•		BLE			
2.GANK	Loose	Hois-			0	
		Moist	Ben			
•				•		
				49 14		
	•			day V		
es_	Loose	Sar	BEN	9 		
					0	
					0	
•			0	0		
•	•					
RANEL	Fien	WET	Giza	-		0
		•				o
•	······			• •		
	•	0	•		. 0	
	······································	• •	•. •	•	0	0
¥-7.	Very	Moisr	<u> </u>		A .	
<u>, , , , , , , , , , , , , , , , , , , </u>	Comp	1 COLST	GRA		Ф	o
	·			_	. 0	
			•	8		0
			•	9	•	
				•		
				° 0	0	
•		• •			c)
	Ļ		•	0 . 9	° 0	
	L	•	° 0			
INSPECTO)R: .	e	*		, o	
an a	and a second	i i shekara na selati <u>Bili</u> sa kati	u un ne numero d'Alto De			
	• •	0			0	
•	-					
ø						

.

			ଁଢ		
	RING DEPARTMENT	° L	AUN	2	¢
	ST BORING		⁰ 0		
• –	•	õ			3
ί	ILIT IG	HOLE			
5	587 402		5= <u>~</u> a	~ ¢	
	· DESCRIPTION OF				
AT'L.		CONSISTENCY	the second statistical descent states and the second states and the second states and the second states and the	COLOR	8
	° ° 0	0			
	0				
	FRACTURE	0		•	
D	SILT - GEWEL	Comp	Moist	BRN	
	<u> </u>	0			O
	o o	<u> </u>	0		0
	° ° 6		0	0	
0	Sicr "	Comp	Moisz	BRN	G
	o				9
	, 			<u> </u>	
		<u> </u>		<u> </u>	
0 -	SILT : "	Very	MOIST	BRAL	
-	0.00	p	0		9 10
	0				
	·····				
	6 /	Very		~	
D	SILT GRADEL	Comp	MOIST	Gent	e
	° °	<u> </u>	·		
•	υ 0 υ 0	0	•		
•	0 0	, , o			o •
•	0	» ··	·		0 •0
	,	0		<u> </u>	e e
		00	<u></u>		
		0 0		°	ø
	. 0	1	1		
	°				
		8			
	°	0			

B-13

SEATTLE ENGINEERING DEPARTMENT MATERIALS LABORATORY

CS 7.24	1						LOG	, OF	TES	T BO	RING	;			
	DA		_	<u>η</u>		12		_					но		
	PRC		т К	luc).	54	+-244	5	By and	Sea	Jac	• .			
												2E. Gr			
							1	t							
STRATA	DEPTH		APLE IO.		BLOW		STD. PEN.						MOISTURE	COLOR	WATER LEVEL
	_						Ber	Sum	1000						
1															1-17-72
5 IT						<u> </u>				<u></u>					+1-13-72
*	5		4	З	10	11	21	SUZZ	FHIE	SAN	2	FIRM	MOK-7	BRAN	
	5					ļ				ATRES					
	_												·		
	-					. 									1-11-72-
													with T		THE REAL
	10-	3	в	7	10	13	23			e SAt	41)	Fiem	MOLYT	BRAI	
										~	<u></u> .				
	_									avers					
												· · · · · · · · · · · · · · · · · · ·	•		
			C	13	z 9	27	56	SILTY	· Frie	SAM	0	Vicopijo	4-1013-4	BEN	
	15-							-1-26	we c	RANK	<u> </u>	1			
<u>ا</u> پ ا															
FIRM- V. COMP.													· · · · · ·		
	_													BRN	SAND
T III	20	\$	D	9	20	32	56	SILT	Y Frint	e Sap	10	xcarp	were	48071	
	_							\sim	GRA	عد					
									······	•					21-1
	_								·						
					r.				· · · · · · · · · · · · · · · · · · ·						
	. –														1
	. –			<u>_</u>											
															Datha Sh
				•	•										
	-											* *			
						_		L							

INSPECTOR H w Kocza

-

10

B-14

۰.

7111

n.					LOG OF BORING	Sh	eet :	l of	1
Date	drille	ed.	4/1	/93	Sampler and Driving Weight R,3001b El	evation	(ft)	2	5
Depth, ft	55 Elevation	Samples	Blows/6"	Graphic Symbol	This log is part of the report prepared by Converse Consultants NW for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented are a simplification of actual conditions encountered. DESCRIPTION	Observation Well	Dry density pcf	Moisture Content, X	Other tests
	23	1	1 1 3		FILL SILTY SAND WITH GRAVEL; brown, fine to coarse, fine gravel, wood debris, silt chunks, very loose, moist to very moist			15	
		2	1 1 1		SILTY SAND WITH GRAVEL; brown to dark brown, fine to medium, trace coarse sand, silt chunks, root structures; very loose, moist to very moist				
5-	20-	3	3 1 3		SILTY SAND; dark brown to black, fine to medium, trace fine gravel, silt chunks, some iron oxidation staining, wood debris; loose, very moist to wet				
-		4	4 8 10		WEATHERED GLACIAL TILL SILTY SAND WITH GRAVEL; brown, fine to coarse sand; loose to medium dense, very moist to wet				
10-	15-	5	[17 51/5'		UNWEATHERED GLACIAL TILL SILTY SAND; gray to brown, fine sand, few medium to coarse sand; very dense, wet			14	
- 15-	10-			<u>. : .; .</u>	Bottom of boring at depth 13.5 feet. Boring backfilled with bentonite chips and cuttings. Groundwater encountered at depth 10.23 feet.				
				,					
-									
							Proj	ect No]

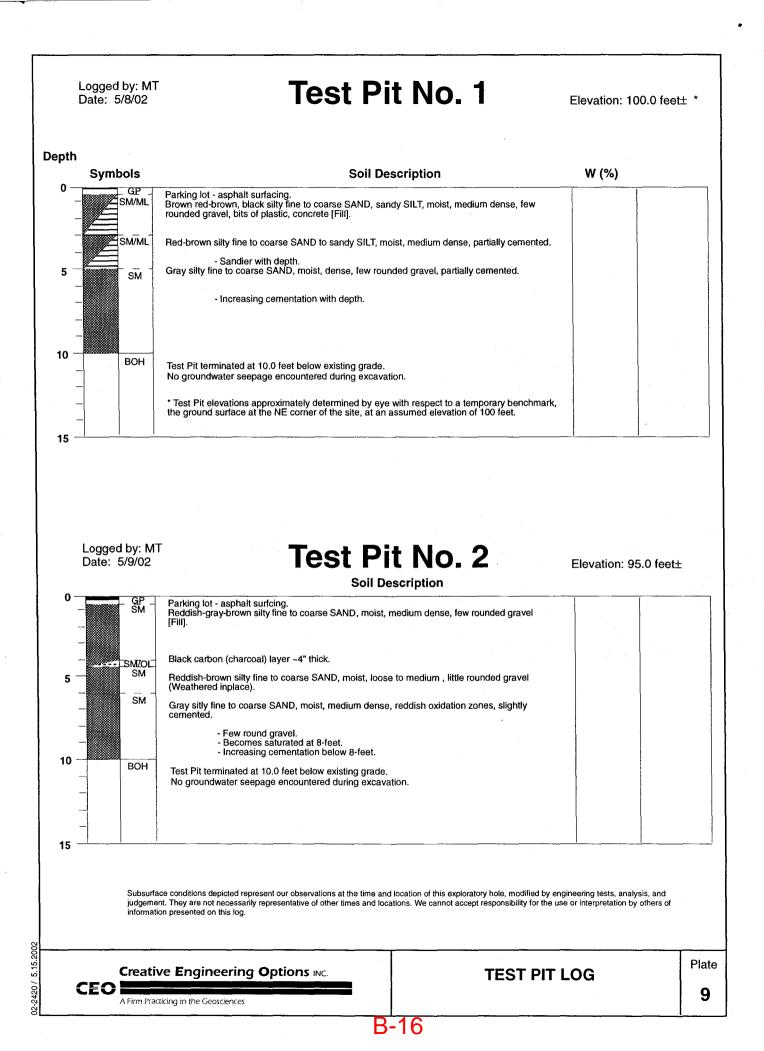
OFF THE WALL MARKET STREET SITES

Seattle, Washington

OFF THE WALL

であっています

Converse Consultants NW


Geotechnical Engineering and Applied Earth Sciences i oject no

93-35508-02

Figure No.

A-4

B-15

Logged by: MT Date: 5/8/02

Test Pit No. 3

Elevation: 93.5 feet±

Symbols	Soil Description	W (%)
- GP - SM -	 Parking lot - asphalt surfacing. Brown-gray silty fine to coarse SAND, moist, medium dense, few rounded gravel [Fill]. 	
 SM	Black & brown silty fine to coarse SAND, moist, loose to medium dense, little wood debris (stake), very slight organic - 1/2" dia. root [Fill].	
SM	Reddish-gray silty fine to coarse SAND, moist, medium dense, few round gravel oxidized.	
SM	Gray silty fine to coarse SAND, moist, medium dense to dense, partially, cemented - increases with depth.	
ВОН	Test Pit terminated at 10.0 feet below existing grade. No groundwater seepage encountered during excavation.	
-		
-		

Subsurface conditions depicted represent our observations at the time and location of this exploratory hole, modified by engineering tests, analysis, and judgement. They are not necessarily representative of other times and locations. We cannot accept responsibility for the use or interpretation by others of information presented on this log.

B-17

Creative Engineering Options INC.

TEST	PIT	LOG
------	-----	-----

Plate

10

02-2420 / 5.15.2002

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,696 Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -						Cas Truc	:k-Mo	Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ <i>liners at 61 fee</i>	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples		Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Asphalt. Brown, <i>Silty Sand with Gravel (SM</i>); moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace to few organics. (Hf)	0.7				00 AM 14 ₪ XXXXXXX 444 444 444					
Gray-brown, <i>Silty Sand (SM)</i> ; moist; less than 5% fine, subrounded gravel; fine to medium sand; nonplastic fines; few pockets with iron-oxide staining. (Qvro) Medium dense, gray-brown, <i>Silty Sand</i>	6.0		1		10/31/2016 7:30:00	D AM IA :	5		•	
 (SM); wet; less than 5% fine, subrounded to angular gravel; fine to medium sand; nonplastic fines; trace iron-oxide staining. (Qvro) Few seams with iron-oxide staining below 8 feet. 			0.9			₩ WV 00:00:00:00:00:00:00:00:00:00:00:00:00:				
			15.3			0	10		•	
	16.0		1	K-3			15			
Very dense, gray-brown, <i>Silty Sand (SM)</i> to <i>Silty Sand with Gravel (SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict; few wet, silty sand seams; trace pockets with iron-oxide staining.	10.0		3.2					•		63
pockets with iron-oxide staining. (Qvd) CONTINUED NEXT SHEET LEGEND I Sample Recovery ▼ Grouters * Sample Not Recovered ○ ○ Sonic Core Sample ○ 1 2.0" O.D. Split Spoon Sample ○ 1 Refer to KEY for explanation of symbols, codes, abbreviati ○ 2 Groundwater level, if indicated above, is for the date speci ○ 3 USCS designation is based on visual-manual classification	und Wate	er Leve	l in V	WP				Plastic L	20 ♦ % Fines (~ ● % Water (imit ● Natural Water (Content Liquid Limit
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviati	ions and	definiti	ons.					-	Vater Quality e, Washingto	-
 Coundwater level, if indicated above, is for the date speci USCS designation is based on visual-manual classification 	fied and	may va	ary.	sting.				OF SON		E WSC-16
								NON & WIL		FIG. A-17 Sheet 1 of 11

MASTER LOG BFW 21-21979.GPJ SHAN WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

Total Depth: <u>201 ft.</u> Northing: <u>575,438</u>			-	lethod:		onic Co		Hole Diam.:	<u> </u>
Top Elevation: 28.7 ft. Easting: 1,585,690 Vert. Datum: NAVD 88 Station: -	<u>6 ft.</u>						Drilling ounted Sonic	Rod Diam.: Hammer Type	2.625" Automatic
Horiz. Datum: <u>Project</u> Offset:			-	omments				liners at 61 feet	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.			NCE (blows/foot 40 lbs / 30 inches 40 61
Medium dense to very dense, gray, <i>Silty</i> <i>Sand (SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict; few silt seams. (Qvd) - Moist to wet below 24 feet.	- 22.0		3.9	$\underbrace{\operatorname{Never}_{S_5}}_{S_5}$		25			
 Layer of silty gravel with sand from 30 to 30.5 feet. Layer of wet, silty sand from 31.5 to 32.3 feet. 				.7 R.6 WWWWWW S.6		30	•		
- Layer of silty sand with gravel from 34.3 to 35 feet.			•			35	•		
Medium dense to dense, gray, <i>Silty Sand</i> (<i>SM</i>) to <i>Silty Sand with Gravel (SM</i>); wet; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few	- 37.5			R-8			•		
CONTINUED NEXT SHEET LEGEND Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample	ound Wa	ter Lev	vel in	VWP			Plastic L	20 ◇ % Fines (⊲ ● % Water C imit I – ● – Natural Water C	Content Liquid Limit
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbrevial	tions and	d defini	itions	i.			-	Water Quality e, Washingtor	-
 Groundwater level, if indicated above, is for the date spec USCS designation is based on visual-manual classification 	ified and	d may v	vary.				GOFSON		-1-22176-003
							NON & WIL		FIG. A-17
					1	Geotechnic	cal and Environmen	tal Consultants	Sheet 2 of 11

MASTER_LOG_BFW 21-21979.GPJ SHAN_WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

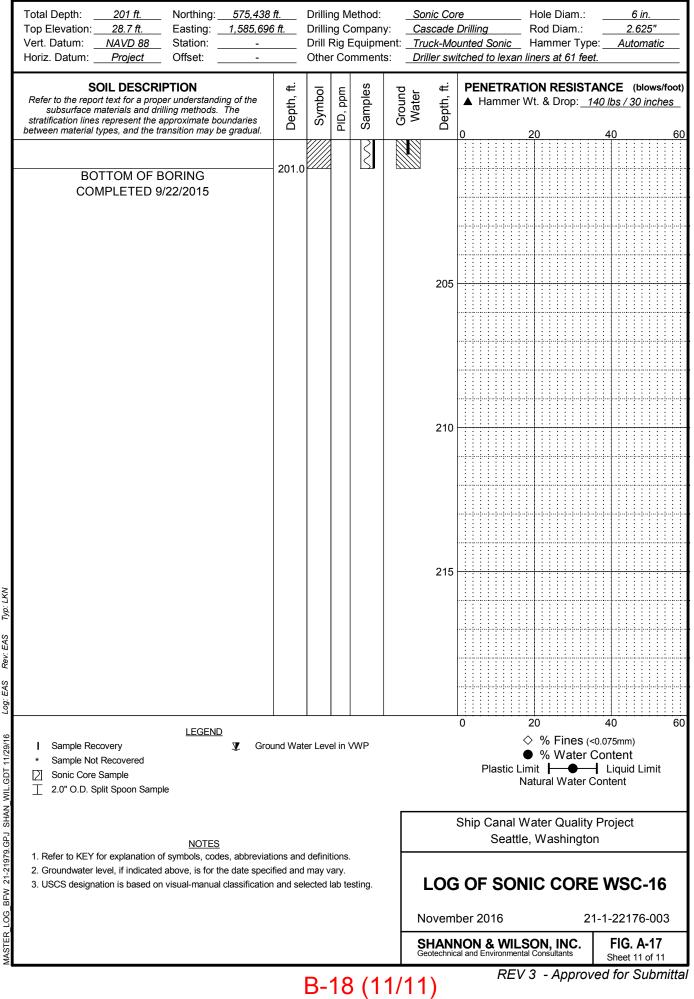
Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,69 Vert. Datum: NAVD 88 Station: Horiz. Datum: Project Offset:		Drillin Drill F	ig Co Rig E	ethod: ompany quipm nment	/: <u>C</u> ent: <u>7</u>	Sonic Core Cascade Drilling t: Truck-Mounted Sonic Driller switched to lexan													
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.		E NE Har		er W			-	<u>140</u>		•			
diamict pockets. (Qva)				<u>8-8</u>				•											
Dense, gray, <i>Silty Sand with Gravel (SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd) Dense, gray, <i>Poorly Graded Sand with Silt</i> (<i>SP-SM</i>); wet; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines.	- 43.0 - 45.0 - 46.0					45			•										
(Qva) Dense, gray, <i>Silty Sand (SM)</i> to <i>Silty Sand</i> <i>with Gravel (SM)</i> ; wet; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few diamict pockets. (Qvd) - 5 feet of heave at 51 feet.			ç	<u>үүүүүүүүүүүүүүүүү S-10</u>		50			•										
Dense, gray, <i>Silty Sand (SM)</i> to <i>Silty Sand</i> <i>with Gravel (SM)</i> ; moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd)	- 53.5		Ē			55			•										
Medium dense, gray, <i>Silty Sand (SM)</i> ; moist to wet; less than 10% fine to coarse, subrounded to subangular gravel; fine to coarse sand; low plasticity fines. (Qva) - Blow counts at 56 feet may be artificially low due to slough in boring.			Ċ	R-12					•										
ČONTINUED NEXT SHEET LEGEND I Sample Recovery	ound Wa	ater Leve	el in V	WP			0	Pla	astic	♦ € Lim		Wa	ter	<0.0 Coi	nter Liqu	nt iid Li	mit	6	
NOTES 1. Refer to KEY for explanation of symbols, codes, abbrevia 2. Groundwater level, if indicated above, is for the date spec 3. USCS designation is based on visual-manual classification	cified an	d may va	ary.	sting.		LOC	G 0)F \$	Seat	ttle,	Wa	Ishii	ngto DR	on E \	NS				
						SHAN Geotechnic		N & d Envi	WI	LS(ental	ON, Consi	IN	Ç.			G. A			

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,696 Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -		Drillir Drill I	ng Method: ng Compan Rig Equipm er Comment	ent:	Cas Tru	ck-Mo	Drilling unted Sonic	Hole Diam.: Rod Diam.: Hammer Typ <i>liners at 61 fee</i>	e: <u>A</u> ι	6 in. 2.625" Itomatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm Samples	Ground	Water	Depth, ft.		TION RESIST Wt. & Drop: <u>1</u> 20		
Gray, <i>Silty Sand with Gravel (SM</i>); wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines. (Qva) - Layer of silt at 64.3 feet.	61.0		$\frac{R^{13}}{2}$			65				
- Layer of wet, sandy silt from 66.5 to 67 feet.	- 71.0		R.14			70	•			
Gray, <i>Silty Sand with Gravel (SM)</i> ; moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd) Gray, <i>Silty Sand (SM)</i> to <i>Silty Sand with</i> <i>Gravel (SM)</i> ; wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines. (Qva)	- 73.0 - 74.3		R-15			75	•			
Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; low plasticity fines; diamict. (Qvd) CONTINUED NEXT SHEET LEGEND			R.16				0	20 ♦ % Fines (·	40 <0.075mn	6C n)
I Sample Recovery ⊈ Groute Sample Not Recovered ∑ Sonic Core Sample ⊥ 2.0" O.D. Split Spoon Sample	und Wa	ater Lev	el in VWP	[;	Plastic Li N	% Water (% Water (% Water (% Natural Water (% Nater (% Nater (% Natural Wat	Conten Liqui Content	t d Limit
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	ified and	d may v	vary.		No	.OG	Seattle	e, Washingto	n E WS 1-1-22	C-16
		B-	18 (4	/1		HANI otechnic	NON & WIL al and Environment REV	SON, INC. al Consultants ' 3 - Approv	Shee	6. A-17 et 4 of 11 Submitta

MASTER_LOG_BFW 21-21979.GPJ SHAN_WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

Total Depth: 201 ft. Top Elevation: 28.7 ft.	-	<u>575,438</u> 1 585 60				lethod: ompany		<u>nic Col</u> scade	re Drilling	-	e Dia d Dia			<u>6 in</u> 2.62	
Vert. Datum: <u>NAVD 88</u> Horiz. Datum: <u>Project</u>	Easting: Station: Offset:	1,585,690 - -	<u> </u>	Drill I	Rig E		nt: <u><i>Tru</i></u>	ick-Mo	bunted Sonic itched to lexar	Har	mmer	. Туре	-	Autom	
SOIL DESCRIF Refer to the report text for a prope subsurface materials and drill stratification lines represent the ap between material types, and the tra	er understanding ling methods. The oproximate bour	he Idaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer						
Gray, <i>Poorly Graded Sanc</i> <i>Gravel (SP-SM)</i> ; wet; fine subrounded to subangular coarse sand; nonplastic fin (Qva) No recovery from 87.8 to 9	<i>d with Silt an</i> to coarse, gravel; fine nes.	d	- 86.0			$\frac{R.19^{\circ}}{2}$		85							
- Driller switched to bag s to 111 feet. Gray to green-gray, <i>Silty S</i> less than 15% fine, subrou subangular gravel; fine to nonplastic fines; iron-oxide (Qva) Gray, <i>Silty Sand (SM</i>); we fine, subrounded to suban CONTINUED	Sand (SM); w unded to coarse sand e staining. t; less than	vet; I; 10%	96.0			R.20		95	•						
Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample	LEGEND		und Wa	ter Leve	el in \	/WP			0 Plastic L	ہ ہ imit	6 Wa ┣──	ater C ●	onte Liq	ent Juid Lir	nit
 Refer to KEY for explanation of Groundwater level, if indicated USCS designation is based on 	above, is for the	date spec	ified and	d may v	ary.		N	L OG ovem	Ship Canal Seattl S OF SOI ber 2016 NON & WIL	le, W	CC	DRE	-1-2:		003

Total Depth: <u>201 ft.</u> Northing: <u>575,438</u> Top Elevation: <u>28.7 ft.</u> Easting: <u>1,585,69</u>			•	ethod: ompany		nic Col scade	re Drilling	-	e Dian d Diam	-		<u>6 in.</u> 2.625"	
Vert. Datum: <u>NAVD 88</u> Station:	<i>o n.</i>		•	. ,			ounted Sonic	-	nmer ⁻	-		tomat	
Horiz. Datum: <u>Project</u> Offset:		Othe	r Co	mments	: Dri	ller sw	itched to lexa	n liner	s at 61	feet.			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hammer	Wt. 8	-	. 140	lbs /	•	hes
to medium sand; nonplastic to low plasticity							0	20			40		(
fines. (Qva)				3									
- Layer of wet, poorly graded, fine to medium sand from 99.8 to 101.4 feet.	102.0	о <mark>:::::::</mark>		Š									
Gray, Sandy Silt (ML) to Silt with Sand (ML); moist; less than 5% fine, subrounded to subangular gravel; fine to coarse sand; low plasticity fines.				R-21				•					
(Qpgl)				Ş		105							
	- 107.0			$\left \right\rangle$									
Gray, <i>Lean Clay (CL)</i> to <i>Silt (ML)</i> ; moist; less than 5% fine, subrounded to				$\left \right\rangle$						•			
subangular gravel; less than 10% fine to coarse sand; low to medium plasticity fines; few silty sand seams and pockets,				R-22									
trace fine clay seams with slickensides. (Qpgl)				$\left \right $		110							
- Slightly diced to blocky texture below 111				2									
feet.				$\left \right\rangle$									
				R-23					•				
				$\left \right $		115							
Gray, Silty Sand (SM); moist; less than 5%	116.0			$\left \right $									
fine, subrounded to subangular gravel; fine sand; nonplastic fines.				$\left \right\rangle$									
(Qpgo)				R-24			•						
	119.	5		Ş									
CONTINUED NEXT SHEET LEGEND							0	20	/ Г		40		
I Sample Recovery ⊈ Grown of the Grown of t	ound Wa	ter Lev	el in V	/WP			Plastic I	ہ ہ _imit	% Fine % Wat ┠──● al Wat	er Co	nten Liqui	ť	it
							Ship Canal				rojec	t	
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbrevia 2. Groundwater level, if indicated above, is for the date spec							Seatt	le, W	ashin	gton			
 USCS designation is based on visual-manual classificatio 		-	-	sting.			GOF SO	NIC	CO				
							ber 2016 NON & WIL	SON	I, INC			76-0 . A-1	
					Ge	otechnic	al and Environme	ntal Con	sultants			t 6 of 1	


Total Depth: 201 ft. Northing: 575,438 ft. Top Elevation: 28.7 ft. Easting: 1,585,696 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	Drilling Method: Drilling Company: Drill Rig Equipment: Other Comments:	Sonic Core Cascade Drilling Truck-Mounted Sonic Driller switched to lexa		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Symbol PID, ppm Samples	·		ANCE (blows/foo 40 lbs / 30 inches 40 6
Gray, Silty Sand (SM); moist; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; low plasticity fines; diamict. (Qpgt)121.0Gray, Silty Sand with Gravel (SM); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qpgt)124.6Gray, Silty Sand (SM); moist; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qpgd)124.6Gray, Silty Sand (SM); moist; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qpgd)126.0Gray, Silty Sand with Gravel (SM); fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qpgt)131.0Gray, Poorly Graded Sand with Silt (SP-SM); wet; less than 5% fine, subrounded gravel; fine to medium sand; nonplastic fines. (Qpnf)132.0Gray to gray-brown, Silty Sand (SM); wet; fine to medium sand; nonplastic fines; few organics. (Qpnf)136.6	R.27 R.26 R.26 R.26			
Gray-brown <i>Silt with Sand (ML)</i> ; moist; fine sand; low plasticity fines; trace to few organics. (Qpnl) Gray-brown <i>Silt (ML)</i> to <i>Lean Clay (CL)</i> ; moist; less than 10% fine sand; low to CONTINUED NEXT SHEET LEGEND	d definitions.	Ship Canal Seat LOG OF SO November 2016 SHANNON & WI Geotechnical and Environm	2'	Content Liquid Limit Content Project n EWSC-16 1-1-22176-003 FIG. A-17 Sheet 7 of 11

Total Depth: <u>201 ft.</u> Northing: <u>575,438</u>				ethod:		nic Col		Hole Diam :		<u>6 in.</u> 2.625"	
Top Elevation: <u>28.7 ft.</u> Easting: <u>1,585,69</u> Vert. Datum: <u>NAVD 88</u> Station: -	ט <i>ת</i>			ompany: Equipmer			Drilling	Rod Diam.: Hammer Ty	-	<u>2.625"</u> utomatic	
Horiz. Datum: <u>Project</u> Offset:				mments:			itched to lexan			atomatic	_
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.		TION RESIS Wt. & Drop: _			
between material types, and the transition may be gradual.			₫				0	20	40		
medium plasticity fines; trace to few organics. \(QpnI)	- 141.()		$\left \right\rangle$							
Gray to gray-brown, <i>Silty Sand (SM)</i> ; moist to wet; fine to medium sand; nonplastic				Ş							
fines; trace to few organics; trace shell fragments. (Qpnf)			•	R-29				•			
			•	$\left \right\rangle$		145					
- Layer of wet, poorly graded sand with silt from 146.5 to 147 feet.	- 147.0		•	$\frac{1}{2}$							
Gray, <i>Poorly Graded Sand (SP)</i> ; wet; fine to medium sand; less than 5% nonplastic			•	R-30			•				
fines. (Qpnf)	- 150.2	2		$\left \right\rangle$		150					
Gray, <i>Silty Sand (SM)</i> ; wet; fine to medium sand; nonplastic fines; trace to few organics; few sandy silt seams.	100.2			$\left \frac{1}{2} \right $							
(Qpnf)Seam with little organics at 150.5 feet.Wood fragments at 151.7 feet.			•	$\left \right\rangle$				•		\diamond	
-				R-31							
Gray-brown, <i>Sandy Silt (ML)</i> to <i>Silty Sand</i> (<i>SM</i>); moist to wet; fine sand; nonplastic	- 155.2	2		$\left \right\rangle$		155					
fines; trace to few organics; slightly blocky texture. (QpnI)				$\left \right\rangle$							
	- 159.3	3		R-32							
CONTINUED NEXT SHEET		V////	1	IST			0	20	40		
LEGEND I Sample Recovery ▼ Growstand * Sample Not Recovered ② Sonic Core Sample 1 2.0" O.D. Split Spoon Sample	ound Wa	ter Lev	el in V	/WP			Plastic L	 ◇ % Fines ● % Water imit	(<0.075m Conter	nt iid Limit	
NOTES							Ship Canal \ Seattl	Nater Qualit e, Washingt		ct	
 Refer to KEY for explanation of symbols, codes, abbrevia Groundwater level, if indicated above, is for the date spectrum. USCS designation is based on visual-manual classification 	cified and	d may v	ary.	esting.			G of Son				
							ber 2016		-	176-003 5. A-17	3
					Ge	eotechnic	NON & WIL	tal Consultants		et 8 of 11	

Total Depth: 201 ft. Northing: 575,438 Top Elevation: 28.7 ft. Easting: 1,585,696 Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -		Drillir Drill F	ng C Rig	/lethod: Company: Equipmer comments:	nt:	Cas Truc	ck-Mo	Drilling	Hole Diam.: Rod Diam.: Hammer Typ <u>ners at 61 fee</u>	e: <u>A</u>	<u>6 in.</u> 2.625" .tomatio	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water	Depth, ft.	PENETRATI			•	'
Gray-brown, <i>Lean Clay (CL)</i> to <i>Silt (ML)</i> ; moist; less than 10% fine sand; low to medium plastlcity fines; trace organics; slight blocky texture. (Qpnl) Gray, <i>Lean Clay (CL)</i> to <i>Fat Clay (CH)</i> ; moist; less than 5% fine sand; medium to high plasticity fines; trace organics; trace shell fragments; blocky texture; trace slickensides. (Qpnl) - Diced texture from 163.2 to 163.5 feet. Gray-brown <i>Silt with Sand (ML)</i> to <i>Lean Clay with Sand (CL)</i> ; moist; fine sand; low to medium plasticity fines; trace organics. (Qpnl) Gray to gray-brown, <i>Elastic Silt (MH)</i> to <i>Silt (ML)</i> ; moist; less than 10% fine sand; low to medium plasticity fines; blocky texture; trace organics. (Qpnl) - Trace silty sand seams from 167.5 to 168 feet.	- 161.0 - 164.6 - 166.0	5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			165					
Gray, <i>Lean Clay (CL)</i> ; moist; less than 5% fine, subrounded to subangular gravel; less than 5% fine to coarse sand; medium plasticity fines; trace to few shell fragments; blocky to diced texture. (QpnI)	· 176.0			R-36					•			6
LEGEND	und Wat	ter Leve	el in	VWP				Contraction Co	20 % Fines (% Water (nit — ● — — — — — — — — — — — — — — — — — —	Conter I Liqu	it	60
I Sample Recovery ▼ Grout * Sample Not Recovered □ Sonic Core Sample □ 2.0" O.D. Split Spoon Sample □ 2.0" O.D. Split Spoon Sample 1 Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	fied and	d may v	ary.			No	.OG	Ship Canal W Seattle, OF SON ber 2016 NON & WILS al and Environmental	Washingto	n E WS		3
		B -'	18	3 (9/ [,]	1 ·		itechnica		3 - Approv		et 9 of 11 Subr	

MASTER LOG BFW 21-21979.GPJ SHAN WIL.GDT 11/29/16 Log: EAS Rev: EAS Typ: LKN

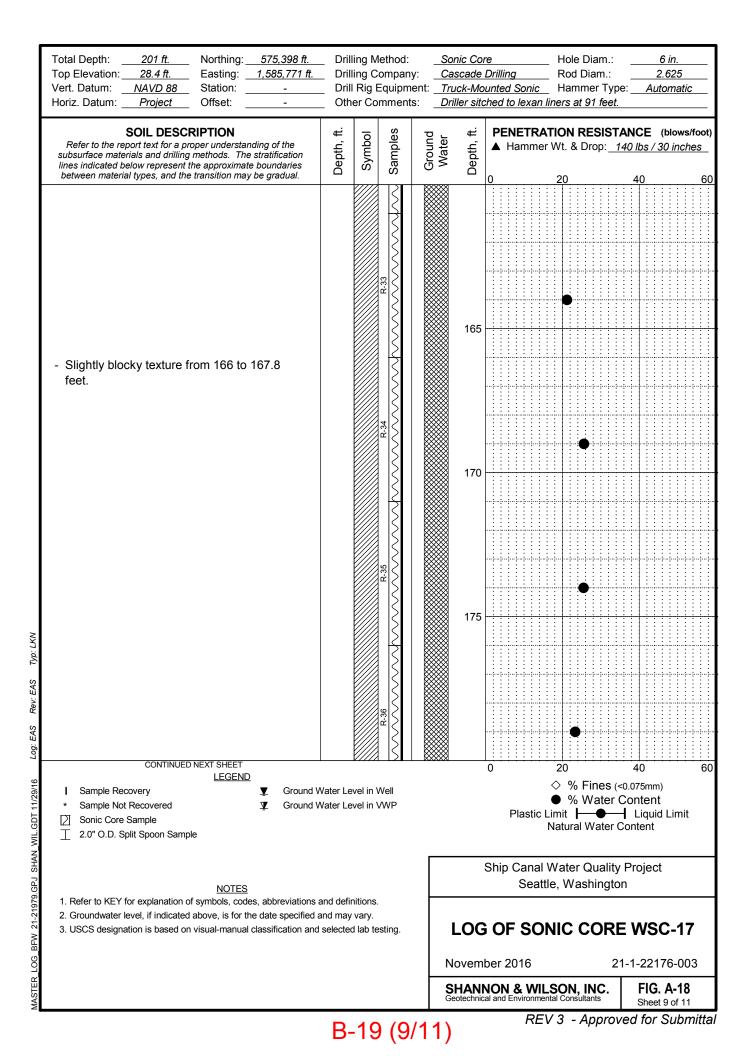
Total Depth: 201 ft. Northing: Top Elevation: 28.7 ft. Easting: Vert. Datum: NAVD 88 Station: Horiz. Datum: Project Offset:	575,438 ft. 1,585,696 ft. - -	Drillir Drill F	ng Method: ng Company: Rig Equipmen r Comments:	<u>Ca</u> t: <u>Tri</u>	uck-Mo	Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ	
SOIL DESCRIPTION Refer to the report text for a proper understand subsurface materials and drilling methods stratification lines represent the approximate b between material types, and the transition may	The doundaries do	Symbol	PID, ppm Samples	Ground Water	Depth, ft.			ANCE (blows/foo 140 lbs / 30 inches 40 6
 Layer of wet, silty, fine to medium from 196.6 to 196.9 feet. Layer of moist, sandy, lean clay fr 196.9 to 197.6 feet. 4-inch cobble at 197.6 feet. Manual Continued Next Sheet Legen I Sample Recovery 	om	Pater Level			185 190 195	0	20	
 * Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample 							Natural Water	- Liquid Limit Content
NOTES 1. Refer to KEY for explanation of symbols, cor 2. Groundwater level, if indicated above, is for 3. USCS designation is based on visual-manual	des, abbreviations a the date specified a	nd may v	ary.	N	LOG	Seattl	2	

Rev: EAS EAS Log: 11/29/16 BFW 21-21979.GPJ SHAN WIL.GDT LOG

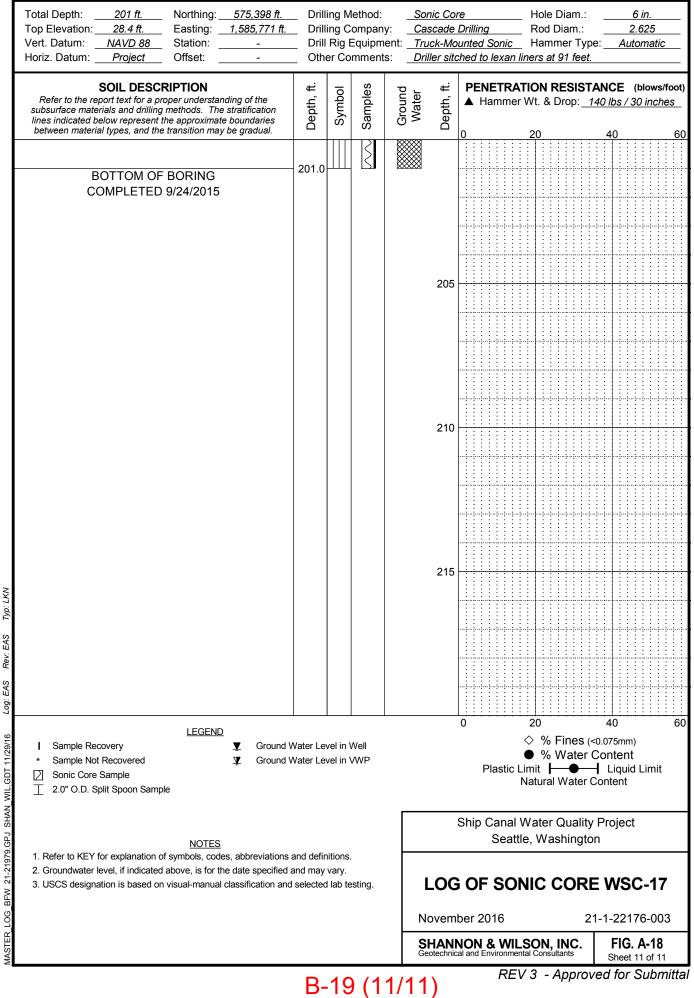
Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	_ Dri _ Dri	illing Method: illing Compan ill Rig Equipm her Comment	ent:		Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ iners at 91 feet.	<u>6 in.</u> <u>2.625</u> e: <u>Automatic</u>
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol Samples	Croind	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Asphalt. Medium dense, brown, <i>Silty Sand with Gravel</i> <i>(SM)</i> ; moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace pockets with iron-oxide staining; slight diamict texture. (Hf)	0.5	$\frac{1}{2}$	5 9:51:00 AM 帧	11/16/2016 9:51:00 AM i▲- 5			
Medium dense, brown, <i>Poorly Graded Sand</i> <i>with Silt (SP-SM)</i> to <i>Silty Sand (SM)</i> ; wet; fine to medium sand; nonplastic fines. (Qvro) Medium dense, brown, <i>Silty Sand (SM)</i> ; wet; less than 5% fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; few seams with iron-oxide staining above 10 feet. (Qvro)	- 7.5	Norway Norway<	11/16/2016	11/16/20	•		•
Medium dense, gray-brown, <i>Silty Sand with</i> <i>Gravel (SM)</i> ; moist; fine, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict; trace pockets of poorly graded sand. (Qvri)	- 13.8	10000000000000000000000000000000000000		15	•		
- Few wet, silty sand seams below 19 feet.					•		
		evel in Well evel in VWP				20 ♦ % Fines (● % Water (.imit ↓ ● Natural Water (Content Liquid Limit
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and	and ma	y vary.		LOG	Seattl		-
				SHAN Geotechnic	NON & WIL		FIG. A-18 Sheet 1 of 11 red for Submitta

Total Depth: Top Elevation Vert. Datum: Horiz. Datum:	NAVD 88	Northing: _ Easting: _ Station: _ Offset: _	575,398 ft. 1,585,771 ft. - -	_ Dri _ Dri	illing Method: illing Company: ill Rig Equipment her Comments:	<u> </u>	uck-Mo	Drilling unted Sonic	Hole Diam.: Rod Diam.: Hammer Typ iners at 91 feet.	e: Au	6 in. 2.625 Itomatic
subsurface ma lines indicated	SOIL DESC report text for a p terials and drilling below represent rial types, and th	roper understan g methods. The the approximate	stratification boundaries	Depth, ft.	Symbol Samples	Water	Depth, ft.		TION RESIST Wt. & Drop: 20		
Medium der Silty Sand w coarse, subito under Medium der Poorly Gradies than 5% subangular nonplastic fit (Qvro) Medium der Gravel (SM) subrounded coarse sand texture. (Qvd) Medium der Isubangular nonplastic fit (Qva) Medium der less than 15 subangular nonplastic fit (Qvd) Medium der less than 15 subangular nonplastic fit (Qvd) Medium der less than 10 gravel; fine * Sample R * Sample N Sonic Cor 2.0" O.D.	rial types, and the rise, gray-brow <i>vith Gravel (S</i> rounded to su and; nonplast led Sand with 6 fine to coar gravel; fine to nes. 1 to Silty Sand to subangula b; nonplastic f nse, gray, Silt ne to coarse, gravel; fine to nes. 1 to silty Sand to subangula b; nonplastic f nse, gray, Silt ne to coarse, gravel; fine to nes. 1 to coarse, gravel; fine to nes; diamict. 1 to nse, gray, Silt % fine to coarse gravel; fine to nes; diamict. 1 to nse, gray, Silt % fine, subro to coarse sar CONTINUEL ecovery ot Recovered	wn, Silty Sar Wn, Silty Sar M); wet; fine Jbangular gr ic fines; few Wn, Silty Sar Silt (SP-SM se, subround coarse san Wn, Silty Sar d (SM); mois ar gravel; fin- fines; slight of y Sand with subrounded o coarse san y Sand (SM, arse, subroun o coarse san y Sand (SM, bunded to su to coarse san y Sand (SM, bunded to su	be gradual.	 22.5 24.0 26.0 27.5 31.0 33.5 36.0 	evel in Well		25 30 35	Plastic L I Ship Canal \	20 20 20 20 20 20 3 % Fines (9 % Water imit ↓ ● Natural Water (Water Quality e, Washingto	40 <0.075mr Conter H Liqu Content	60 n) it id Limit
2. Groundwate 3. USCS desig	r level, if indicated nation is based of		-			N	lovem	GOF SON ber 2016 NON & WIL		1-1-22 ⁻	C-17 176-003
CHM				R	-19 (2/1				tal Consultants	Shee	et 2 of 11

Total Depth: 201 ft. Northing: 575,398 Top Elevation: 28.4 ft. Easting: 1,585,771				ethod: ompan			<u>iic Coi</u> scade	re Drilling	Hole Diam.: Rod Diam.:		<u>6 in.</u> 2.625
Vert. Datum: <u>NAVD 88</u> Station:	п.	_ Dril	l Rig E	Equipm	ent:			ounted Sonic	Hammer Typ	e: <u>A</u>	utomatic
Horiz. Datum: <u>Project</u> Offset:		_ Oth	er Co	mment	s:	Dril	ler sito	ched to lexan lii	ners at 91 feet.		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratificatior lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	5	Depth, ft.	Symbol	Samples	Ground	Water	Depth, ft.		TION RESIST	40 lbs .	-
slight diamict texture.				3						40	
(Qvd) Medium dense, gray, <i>Silty Sand (SM)</i> to <i>Silty</i>				₹				•	\mathbb{O}		
Sand with Gravel (SM); moist to wet; fine to				Ş °8							
coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict.	ſ	42.5		Š							
(Qvd)				6-2 2							
- Layer of wet, poorly graded sand with silt at				\leq							
38.9 feet.Layer of wet, poorly graded sand with silt	1	44.7		ξ			45				
from 41 to 41.7 feet.				5							
Medium dense, gray, <i>Silty Sand with Gravel</i>				ې							
<i>(SM)</i> ; wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand;	1	47.0		Ś						/	
nonplastic fines; slight diamict texture.				\mathbb{R}							· · · · · · · · · · · ·
(Qvd)				<u>-</u>							
Medium dense to dense, gray, <i>Poorly Graded</i> Sand with Silt (SP-SM) to Silty Sand (SM);				Ś							
wet; less than 10% fine to coarse, subrounded	1			ξ			50				
to subangular gravel; fine to coarse sand; nonplastic fines.				Ş				•	\downarrow		
(Qva)				S-10					/		
Medium dense to dense, gray, Silty Sand with				ξ					\mathbb{N}		
<i>Gravel (SM)</i> ; moist to wet; fine to coarse, subrounded to subangular gravel; fine to	_	53.5		÷							
coarse sand; nonplastic fines; diamict pockets	.			≝ ≶				•			
(Qvd)				3			55				· · · · · · · · ·
 Few wet, poorly graded sand with silt seams from 51 to 53.5 feet. 	'			3			00				
Medium dense, gray, Silty Sand (SM) to Silty				۲. ۲							
Sand with Gravel (SM); moist; fine to coarse, subrounded to subangular gravel; fine to				Ś					/		
coarse sand; nonplastic fines; diamict.	\int	57.5		$\left \right\rangle$					<u> </u>		
(Qvd)				₽ <u>1</u> 2							
Medium dense to dense, gray, <i>Silty Sand</i> (<i>SM</i>); wet; less than 10% fine to coarse,				3							
CONTINUED NEXT SHEET				\square				0	<u>: : : : /: : : :</u> 20	40	<u></u>
		Vater Le Vater Le						Plastic Li	 ◇ % Fines (◆ % Water (mit ↓ ◆ Jatural Water (Contei - Liqu	nt uid Limit
					ſ			Ship Canal V Seattle	Vater Quality e, Washingto	-	ct
<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviati 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	fied a	and may	vary.	sting.		L	_OG	G OF SON			SC-17
						No	ovem	ber 2016	2	1-1-22	2176-003
						Şł	IAN	NON & WIL	SON, INC.	FIC	G. A-18


Total Depth: 201 ft. Top Elevation: 28.4 ft.	Northing: _ Easting: _	575,398 ft. 1,585,771 ft.		ling Me lina Ca	ethod: mpany	-	onic Col ascade		a		Hole D Rod D				<u>6 in.</u> .625	
Vert. Datum: NAVD 88	Station:	-	_ Dril	l Rig E	quipme	nt: <u></u>	uck-Mo	ounted	Soni	c ł	lamm	er Typ			omat	ic
Horiz. Datum: <u>Project</u>	Offset: _	-	_ Oth	er Con	nments	: <u>D</u>	riller sito	ched to	o lexa	an line	rs at 9	91 feet				
SOIL DESCF Refer to the report text for a pro subsurface materials and drilling lines indicated below represent th between material types, and the	pper understan methods. The he approximate	stratification boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ner W		ESIST		<u>bs / 3</u>	-	
subrounded to subangular coarse sand; nonplastic fir plasticity silt seams. (Qva)	•		61.0		<u>S-12</u>						, ,	/		<u>,</u>		
Medium dense, gray, <i>Silty</i> <i>Sand with Gravel (SM)</i> ; m subrounded to subangular coarse sand; nonplastic to diamict. (Qvd)	oist; fine to r gravel; fin o low plastic	coarse, e to city fines;					65		•	/						
 Wet, poorly graded sand feet. Wet, poorly graded grav seam at 62 feet. Medium dense, gray, Silty 	el with silt	and sand	66.5											>		
wet; less than 10% fine, subangular gravel; fine to plasticity fines. (Qvd) - Layer of wet, poorly grad from 67.5 to 68 feet.	coarse san	d; low	69.0				70					\				
Medium dense, gray, <i>Silty</i> (<i>SM</i>); moist; fine to coarse subangular gravel; fine to nonplastic to low plasticity (Qvd) - Layer of wet, poorly grad and gravel from 70.5 to	e, subround coarse san r fines; dian ded sand w	ed to d; nict.	72.5				75		•)				
Medium dense, gray, <i>Silty</i> less than 15% fine to coar subangular gravel; fine to nonplastic to low plasticity (Qva) - Silt seam at 75 feet. Medium dense, gray, <i>Silty</i>	r Sand (SM, rse, subrou coarse san fines. r Sand (SM,	nded to d;); moist;	77.5											÷\$		
less than 15% fine to coar		nded to			3			0			0		4			
Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample	<u>LEGEND</u>	♥ Ground V ♥ Ground V						-	Plast	⇔ ● ic Lim	% F % V it ┣─	ines (Vater Mater	(<0.07 Con L	5mm) tent iquid		
1. Refer to KEY for explanation of	NOTES symbols, code	s, abbreviations a	and defi	nitions.				Ship				Quality	-	ject		
 Groundwater level, if indicated USCS designation is based on 	above, is for th	e date specified a	and may	vary.	sting.		LOG			ONI	сс		E V 21-1-1			
							SHANI Beotechnic			/ILS(ON, I			FIG.	A-18	8
						1 `							1 5	sneet	4 of 1	1

Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	_ Dri _ Dri	Iling Method: Iling Company: Il Rig Equipment: her Comments:		Drilling ounted Sonic	Hole Diam.: Rod Diam.: Hammer Typ	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.		Depth, ft.	PENETRA	TION RESIST	ANCE (blows/foo 140 lbs / 30 inches 40 6
subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd)		$\underbrace{ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	85	•	•	
Very dense, gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd)	87.0	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	90			74/1
Gray, <i>Silty Sand (SM</i>); wet; less than 10% fine, subrounded to subangular gravel; fine to coarse sand; nonplastic fines. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict.	93.6 94.6 96.0 97.0					
(Qvd) Gray, Silty Sand with Gravel (SM) to Poorly Graded Sand with Silt and Gravel (SP-SM); wet; fine to coarse, subrounded to subangular				0	20	40 6
		evel in Well evel in VWP			 ◇ % Fines (● % Water .imit ↓ ● Natural Water (Content – Liquid Limit
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	y vary.	LOG	Seattl		
		·	SHANI Geotechnic	NON & WIL	SON, INC.	FIG. A-18 Sheet 5 of 11


Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	Drill Drill	ling C I Rig I	/lethod: Company Equipme omments	:: ent:	<u>Sonic C</u> Cascad Truck-N Driller s	le E Nou	orillin nted	l Sc			Roo Hai	d Di mm	iam am. er T <u>1 fe</u>	: ype	:	2	<u>6 ir</u> 2.62 torr	25	c
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Denth ft		PEI ▲ ト			er V	-					<u>s/:</u>	•		
gravel; fine to coarse sand; nonplastic fines. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qvd) - Wet from 100.5 to 101 feet. Gray, <i>Poorly Graded Sand (SP</i>); wet; fine to medium sand; less than 5% nonplastic fines; few low plasticity silt seams. (Qva) Gray, <i>Silty Sand with Gravel (SM</i>); moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines; diamict. (Qvd) Gray <i>Silt (ML)</i> ; moist; less than 5% fine, rounded to subangular gravel; less than 10% fine to coarse sand; nonplastic to low plasticity fines; trace light gray silt partings. (QpgI)	- 101.0 - 102.7 - 104.5		$\sim \sim $		10)												
Gray, <i>Silty Sand with Gravel (SM</i>); moist; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic fines; diamict. (Qpgt)	- 117.4				11	5													
CONTINUED NEXT SHEET LEGEND I Sample Recovery ▼ Ground V * Sample Not Recovered ▼ Ground V [2] Sonic Core Sample 2.0" O.D. Split Spoon Sample				 Г	×) Ship			< Lir	nit atur	% ₩ ┣── al V	ines /ate Vate	er C I er Co	ont Li	omm ent quic ent	t d Li	mit	6
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	vary.			LO Nove	G	OF er 2	S = (201	беа 5С	ttle	, w IC	C	OF	21-	N -1-2	/S	C- 76	-00)3
	B-	.10	9 (8/	/ 11	SHAI Geotech	nica	and E						nts opr		S	hee	t 6 c	of 11	1

Vert. Datum:	Total Depth: <u>201 ft.</u> Northing: <u>575,398 ft.</u>	_	ing Method			Sonic Core					_ Hole Diam.:				<u> </u>				
Hortz: Datur: Project Offset Other Comments: Driller statulet to leava lines at 21 feet. Soll: DESCRIPTION Soll: Description Project Project <th></th> <th>_</th> <th>• •</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>nic</th> <th></th> <th></th> <th></th> <th></th> <th>pe:</th> <th></th> <th></th> <th></th> <th>-</th> <th>;</th>		_	• •						nic					pe:				-	;
Refer to be majoritist for a sprage understanding at the substring methods and aling methods. The shall close is the sprage of the sprage understanding by the sprage of the sprage o										_				•					
Gray to dark gray-brown. Silty Sand (SM); moist to wet; less than 5% subrounded gravel; fine to coarse sand; nonplastic to low plasticity fines. (ew organics. and wood debris. (Qpnf) 121.5 126.8 126.8 Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines. (Qpnf) 128.8 128.8 126.8 Dark gray-brown, Silty Sand (SM); wet; tees than 5% subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) 128.8 128.8 126.8 Tark gray-brown, Silty Sand (SM); wet; tees than 5% subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) 131.0 131.0 131.0 Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) 131.0 132.0 132.0 Gray to gray-brown, Silty Sand (SM); wet; fine to medium sand; nonplastic fines; trace organics. (Qpnf) 132.0 132.0 132.0 Gray to gray-brown, Silty Sand (SM); wet; fine to correstore smeter 132.0 132.0 132.0 132.0 I Sample Nat Rocoverg I Ground Water Level in WWI 132.0 132.0 132.0 132.0 132.0 I Sample Nat Rocoverg I Ground Water Level in WWI I Ground Water Level in WWI 132.0 132.0 132.0 132.0 132.0 132.0 132.0 </th <th>Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries</th> <th>Depth, ft.</th> <th>Symbol Samples</th> <th>Ground</th> <th>Water</th> <th></th> <th></th> <th></th> <th></th> <th>r W</th> <th>t. &</th> <th></th> <th></th> <th></th> <th>0 lb</th> <th>s/</th> <th>•</th> <th></th> <th>es</th>	Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries	Depth, ft.	Symbol Samples	Ground	Water					r W	t. &				0 lb	s/	•		es
(Qpnf) 135 Gray, Poorly Graded Sand with Silt (SP-SM); 137.2 wet; fine to medium sand; nonplastic fines. 137.2 (Qpnf) 137.2 Gray-brown, Silty Sand (SM); wet; fine to medium sand; nonplastic fines; few organics; trace wood fragments. 137.2 (Qpnf) 137.2 CONTINUED NEXT SHEET 0 LEGEND 139.8 * Sample Recovery Cound Water Level in Well * Sample Not Recoverd ✓ Ground Water Level in WWP Sonic Core Sample ✓ Ground Water Level in WWP 2 Sonic Core Sample ✓ Ground Water Level in WWP 2 Sonic Core Sample ✓ Ground Water Level in WWP 2 Sonic Core Sample ✓ Ship Canal Water Quality Project Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Ship Canal Water Quality Project Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Ship Canal Water Quality Project Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. LOG OF SONIC CORE WSC-17 3. USCS designation is based on visual-manual classification and selected lab testing. LOG OF SONIC CORE WSC-17	between material types, and the transition may be gradual. Gray to dark gray-brown, Silty Sand (SM); moist to wet; less than 5% subrounded gravel; fine to coarse sand; nonplastic to low plasticity fines; few organics and wood debris. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines. (Qpnf) Dark gray-brown, Silty Sand (SM); wet; less than 5% subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines; trace organics. (Qpnf) Gray, Poorly Graded Sand with Silt (SP-SM); wet; fine to coarse sand; nonplastic fines. (Qpnf) Gray to gray-brown, Silty Sand (SM); wet; fine	121.5 126.8 128.8 131.0	$\frac{\left \left(\frac{1}{2}\right)\left(1$		8	25					•				_4C				
CONTINUED NEXT SHEET 139.8 0 20 40 LEGEND 0 20 40 * Sample Recovery Image: Ground Water Level in Well 0 % Fines (<0.075mm)	(Qpnf) Gray, <i>Poorly Graded Sand with Silt (SP-SM</i>); wet; fine to medium sand; nonplastic fines. (Qpnf) Gray-brown, <i>Silty Sand (SM</i>); wet; fine to medium sand; nonplastic fines; few organics; trace wood fragments.	137.2	R 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	35 -													
NOTES Seattle, Washington 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Seattle, Washington 2. Groundwater level, if indicated above, is for the date specified and may vary. LOG OF SONIC CORE WSC-17 3. USCS designation is based on visual-manual classification and selected lab testing. LOG OF SONIC CORE WSC-17	CONTINUED NEXT SHEET LEGEND I Sample Recovery	Vater Le						Plas		♦ ● Lim	% % it 	Wa	ater	- Co	.075 ont Li	5mn en qui	t	mit	
SHANNON & WILSON, INC. FIG. A-18 Geotechnical and Environmental Consultants Short 7 of 11	 Refer to KEY for explanation of symbols, codes, abbreviations a Groundwater level, if indicated above, is for the date specified a 	and may	vary.		Nove)G	OF	Se S 016	o S	ile, NI	Wa	nshi	ngt	ion RE	W 1-2	/S 221	C -	-00	3

Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft. Vert. Datum: NAVD 88 Station: - Horiz. Datum: Project Offset: -	_ Drill _ Drill	ling Method: ling Company: l Rig Equipme ler Comments:	<u> </u>	onic Cor ascade uck-Mo iller sito	Drilling unted S	Soni	с	Hole Rod Ham <u>ers a</u>	Diar	n.: [.] Typ		2	<u>6 in.</u> 2.625 toma	5
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol Samples	Ground Water	Depth, ft.	PEN ▲ Ha		ner V					<u>bs/3</u>	•	
 Gray, <i>Poorly Graded Sand with Silt (SP-SM)</i>; wet; fine to medium sand; nonplastic fines. (Qpnf) Gray, <i>Silty Sand (SM)</i>; wet; fine to medium sand; nonplastic fines; trace organics. (Qpnf) Layer of moist, brown, sandy silt from 143 to 143.8 feet. 	141.4			145			•							
Gray-brown and brown, <i>Silty Sand (SM)</i> and <i>Sandy Silt (ML)</i> ; moist; fine sand; nonplastic fines; few organics; trace seams with mostly organics; interbedded. (Qpnf)	146.0)					
Gray-brown <i>Silt (ML)</i> to <i>Lean Clay (CL)</i> ; moist; less than 10% fine sand; low to medium plasticity fines; trace organics; trace silty, fine sand partings.	151.6	R31		150										
(Qpnl) - Layer of wet, silty sand from 154.5 to 154.8 feet. Gray, <i>Lean Clay (CL)</i> to <i>Silt (ML)</i> ; moist; less than 5% subrounded to subangular gravel; less than 5% fine to coarse sand; low to medium plasticity fines; trace silty sand	154.8			155										
continued Next Sheet		R-32			0			20 > %	Fin	es (-	4	-	· · · · · · · · · · · · · · · · · · ·	
		evel in Well		;	P Ship C		ic Lin Na	● % nit atura	Wa I Wa	ater (Con – L Conte	tent iquic ent	: d Lim	1it
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations a 2. Groundwater level, if indicated above, is for the date specified a 3. USCS designation is based on visual-manual classification and	and may	vary.		LOG	OF	Sea S(attle	, Wa	ashii	ngto DRE	on	VS	C- 1	
				HAN			/ILS	ON,	IN			FIG.	A-1	18

Total Depth: 201 ft. Northing: 575,398 ft. Top Elevation: 28.4 ft. Easting: 1,585,771 ft.	_ Dril	ling C	ethod: ompan	y: Ca	onic Cor ascade	Drilling	_ Ro	le Diar d Dian		<u>6 in.</u> 2.625			
Vert. Datum: <u>NAVD 88</u> Station: <u>-</u> Horiz. Datum: <u>Project</u> Offset: <u>-</u>		-	Equipm mment			unted Sonic ched to lexan	_	mmer <i>at 91 f</i>		A	utomat	ic	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRA ▲ Hamme	-	-	-		•		
- Slightly blocky texture from 181 to 182.2 feet.			R-37		185			•					
- Diced texture from 185.4 to 186 feet.			R-38										
Gray, <i>Fat Clay (CH)</i> ; moist; less than 5% fine, subrounded to subangular gravel; less than 5% fine to coarse sand; high plasticity fines;	- 191.0				190			•					
few slickensides. (QpnI) Gray <i>Silt (ML)</i> ; moist; less than 5% fine,	196.0		R-39		195			•					
subrounded gravel; less than 5% fine to coarse sand; nonplastic to low plasticity fines; trace silty, fine sand partings. (QpnI)			R-40										
CONTINUED NEXT SHEET <u>LEGEND</u> Sample Recovery Sample Not Recovered Sonic Core Sample 2.0" O.D. Split Spoon Sample						0 Plastic	ہ ک Limit	% Fine % Wa ∦€ ral Wa	ter C	onter Liqu	nt id Limi	it	
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification and	and may	vary.			LOG	GOF SO	tle, W	ashir	RE	ws	6C-1		
						ber 2016 NON & WI	SON	JINC			176-0 6. A-1		

11/29/16 BFW 21-21979.GPJ SHAN WIL.GDT LOG

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

SHANNON & WILSON, INC.

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

TABLE OF CONTENTS

Page

C.1	GENERAL	C-1
C.2	NATURAL WATER CONTENTS	C-1
C.3	GRAIN SIZE ANALYSES	C-1

FIGURE

C-1 Grain Size Distributio	n
----------------------------	---

APPENDIX C

GEOTECHNICAL LABORATORY TESTING

C.1 GENERAL

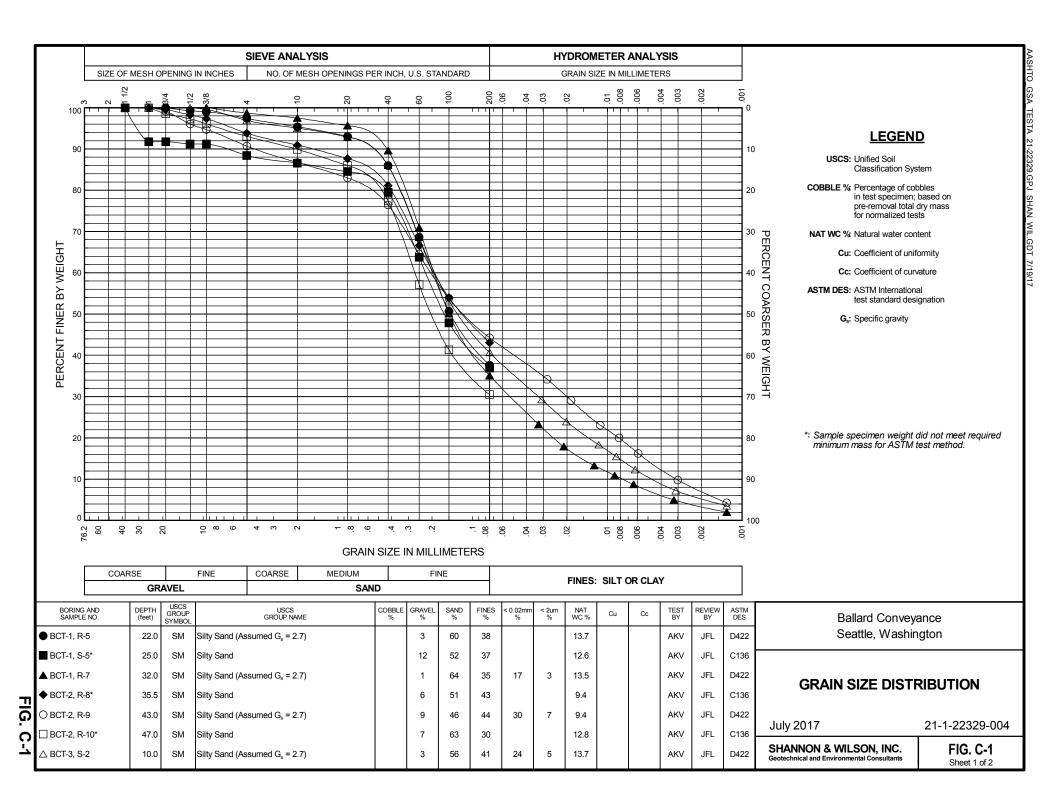
Laboratory tests were performed on selected soil samples retrieved from the geotechnical borings. The laboratory testing program included tests to classify the soils and to provide data for engineering studies.

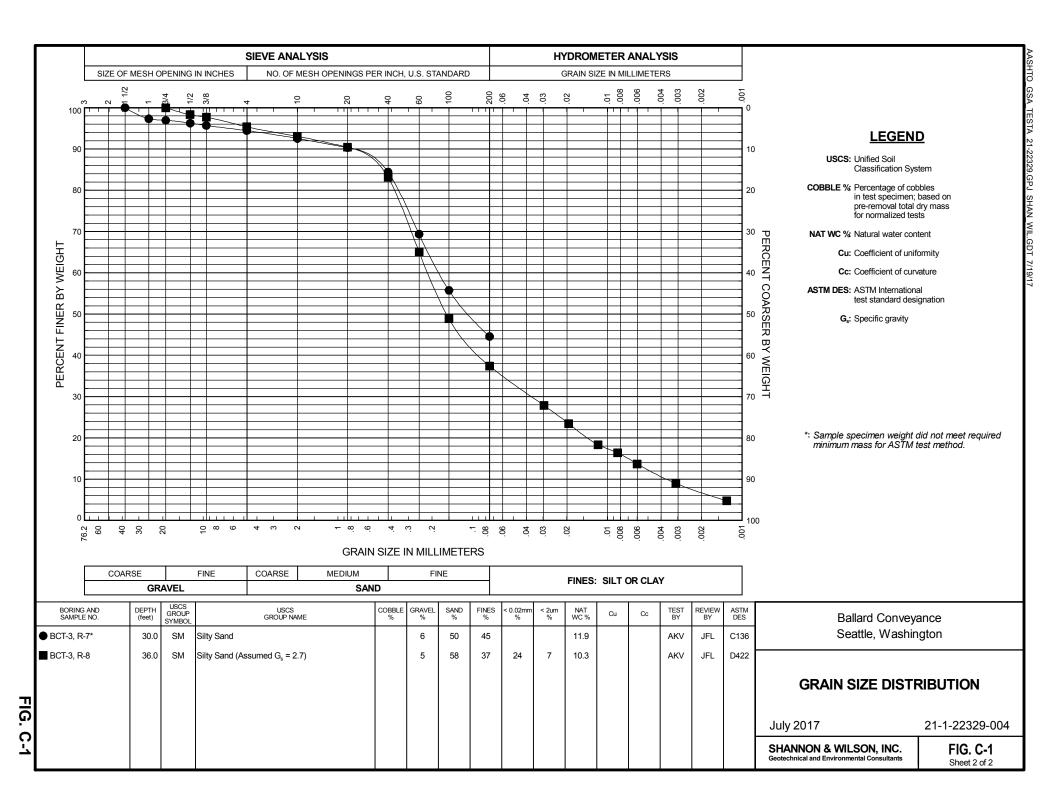
Soil samples recovered from the borings were visually reclassified in our laboratory using a system based on ASTM International (ASTM) Designation: D2487, Standard Test Method for Classification of Soil for Engineering Purposes, and ASTM Designation: D2488, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). This visual classification method allows for convenient and consistent comparison of soils from widespread geographic areas. Using this method, the soils are classified using the Unified Soil Classification System (USCS). The individual sample classifications have been incorporated into the boring logs presented in Appendix A.

Due to high levels of lead contamination in BCT-4, no geotechnical laboratory tests were performed on samples from this boring.

C.2 NATURAL WATER CONTENTS

The natural water content of select soil samples recovered from the field exploration was determined in general accordance with ASTM Designation: D2216, Standard Method of Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Comparison of water content of a soil with its index properties can be useful in characterizing soil unit weight, consistency, compressibility, and strength. Water content, where tested, is plotted on each of the boring logs presented in Appendix A.


C.3 GRAIN SIZE ANALYSES


Grain size distribution analyses were performed on two samples in general accordance with ASTM Designation: D422, Standard Method for Particle-Size Analysis of Soils or D1140, Standard Test Methods for Amount of Material in Soils Finer than No. 200 (75-microgram) Sieve. The general procedures to determine the grain size distribution of a soil sample include

21-1-22329-004-R1-AC/wp/lkn

sieve analysis, hydrometer analysis, combined analysis, and percentage of fines passing the No. 200 sieve.

Grain size distributions are used to assist in classifying soils and to provide correlation with soil properties, including permeability, behavior when excavated, capillary action, and sensitivity to moisture. Results of the grain size analyses are shown on grain size distribution curves shown in Figure C-1. Along with each grain size distribution is a tabulated summary containing the group symbol according to the USCS, the sample description, percentage of fines passing the No. 200 sieve, and the natural water content.

APPENDIX D

ANALYTICAL LABORATORY TESTING

APPENDIX D

ANALYTICAL LABORATORY TESTING

REPORT

Report to Shannon & Wilson, Inc., from Fremont Analytical, 4/20/2017 (32 pages). Samples included: BCT-04-ENV.

21-1-22329-004-R1-AD/wp/lkn

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Shannon & Wilson Dave Randall 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Ballard Conveyance Work Order Number: 1704169

April 20, 2017

Attention Dave Randall:

Fremont Analytical, Inc. received 1 sample(s) on 4/13/2017 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext. Gasoline by NWTPH-Gx Mercury by EPA Method 7471 Sample Moisture (Percent Moisture) Total Metals by EPA Method 6020 Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

phil c. Rady

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Work Order:	Shannon & Wilson Ballard Conveyance 1704169	Work Order S	Sample Summary
Lab Sample ID 1704169-001	Client Sample ID BCT-04-ENV	Date/Time Collected 04/13/2017 11:30 AM	Date/Time Received 04/13/2017 11:52 AM

Case Narrative

WO#: **1704169** Date: **4/20/2017**

CLIENT:Shannon & WilsonProject:Ballard Conveyance

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1704169** Date Reported: **4/20/2017**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 1704169

 Date Reported:
 4/20/2017

Client: Shannon & Wilson				Collection	Dat	e: 4/13/20)17 11:30:00 AI
Project: Ballard Conveyance							
.ab ID: 1704169-001				Matrix: So	sil		
Client Sample ID: BCT-04-ENV							
analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
-							-
Diesel and Heavy Oil by NWTPH	-Dx/Dx Ext.			Batch	ID:	16783	Analyst: SB
Diesel (Fuel Oil)	ND	23.6		mg/Kg-dry	1	4/15	/2017 9:14:33 AM
Heavy Oil	1,330	59.1		mg/Kg-dry	1	4/15	/2017 9:14:33 AM
Surr: 2-Fluorobiphenyl	50.4	50-150		%Rec	1	4/15	/2017 9:14:33 AM
Surr: o-Terphenyl	53.0	50-150		%Rec	1	4/15	/2017 9:14:33 AM
Gasoline by NWTPH-Gx				Batch	ID:	16767	Analyst: NG
Gasoline	ND	5.37		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
Surr: Toluene-d8	102	65-135		%Rec	1		/2017 9:10:49 PM
Surr: 4-Bromofluorobenzene	99.8	65-135		%Rec	1		/2017 9:10:49 PM
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	ID:	16767	Analyst: NG
		0.0045	0				10047 0 40 40 D M
Dichlorodifluoromethane (CFC-12)	ND	0.0645	Q	mg/Kg-dry	1		/2017 9:10:49 PM
Chloromethane	0.0688	0.0645		mg/Kg-dry	1		/2017 9:10:49 PM
Vinyl chloride	ND	0.00215		mg/Kg-dry	1		/2017 9:10:49 PM
Bromomethane	ND	0.0967		mg/Kg-dry	1		/2017 9:10:49 PM
Trichlorofluoromethane (CFC-11)	ND	0.0537		mg/Kg-dry	1		/2017 9:10:49 PM
Chloroethane	ND	0.0645		mg/Kg-dry	1		/2017 9:10:49 PM
1,1-Dichloroethene	ND	0.0537		mg/Kg-dry	1		/2017 9:10:49 PM
Methylene chloride	ND	0.0215		mg/Kg-dry	1		/2017 9:10:49 PM
trans-1,2-Dichloroethene	ND	0.0215		mg/Kg-dry	1		/2017 9:10:49 PM
Methyl tert-butyl ether (MTBE)	ND	0.0537		mg/Kg-dry	1		/2017 9:10:49 PM
1,1-Dichloroethane	ND	0.0215		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
2,2-Dichloropropane	ND	0.0537		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
cis-1,2-Dichloroethene	ND	0.0215		mg/Kg-dry	1	4/13	/2017 9:10:49 PM
Chloroform	ne -						
	ND	0.0215		mg/Kg-dry	1		/2017 9:10:49 PM
1,1,1-Trichloroethane (TCA)					1 1		/2017 9:10:49 PM /2017 9:10:49 PM
	ND ND ND	0.0215		mg/Kg-dry		4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA)	ND ND ND ND	0.0215 0.0215		mg/Kg-dry mg/Kg-dry	1	4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene	ND ND ND	0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1	4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride	ND ND ND ND	0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1	4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC)	ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene	ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE)	ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE) 1,2-Dichloropropane	ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE) 1,2-Dichloropropane Bromodichloromethane	ND ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0215 0.0322 0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM
1,1,1-Trichloroethane (TCA) 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane (EDC) Benzene Trichloroethene (TCE) 1,2-Dichloropropane Bromodichloromethane Dibromomethane	ND ND ND ND ND ND ND ND	0.0215 0.0215 0.0215 0.0225 0.0225 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215		mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry mg/Kg-dry	1 1 1 1 1 1 1	4/13 4/13 4/13 4/13 4/13 4/13 4/13 4/13	/2017 9:10:49 PM /2017 9:10:49 PM

Analytical Report

Work Order: **1704169** Date Reported: **4/20/2017**

Client: Shannon & Wilson Project: Ballard Conveyance				Collection	Date: 4/	13/2017 11:30:00 AM
Lab ID: 1704169-001 Client Sample ID: BCT-04-ENV				Matrix: So	bil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	<u>3260C</u>		Batch	n ID: 1676	67 Analyst: NG
1,1,2-Trichloroethane	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,3-Dichloropropane	ND	0.0537		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Tetrachloroethene (PCE)	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Dibromochloromethane	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2-Dibromoethane (EDB)	ND	0.00537		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Chlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,1,1,2-Tetrachloroethane	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Ethylbenzene	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM
m,p-Xylene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
o-Xylene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Styrene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Isopropylbenzene	ND	0.0860		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Bromoform	ND	0.0215	Q	mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,1,2,2-Tetrachloroethane	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
n-Propylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Bromobenzene	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,3,5-Trimethylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
2-Chlorotoluene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
4-Chlorotoluene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
tert-Butylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2,3-Trichloropropane	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2,4-Trichlorobenzene	ND	0.0537		mg/Kg-dry	1	4/13/2017 9:10:49 PM
sec-Butylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
4-Isopropyltoluene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,3-Dichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,4-Dichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
n-Butylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2-Dichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2-Dibromo-3-chloropropane	ND	0.537		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2,4-Trimethylbenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Hexachlorobutadiene	ND	0.107		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Naphthalene	ND	0.0322		mg/Kg-dry	1	4/13/2017 9:10:49 PM
1,2,3-Trichlorobenzene	ND	0.0215		mg/Kg-dry	1	4/13/2017 9:10:49 PM
Surr: Dibromofluoromethane	90.3	56.5-129		%Rec	1	4/13/2017 9:10:49 PM
Surr: Toluene-d8	96.1	64.5-151		%Rec	1	4/13/2017 9:10:49 PM
Surr: 1-Bromo-4-fluorobenzene	97.3	63.1-141		%Rec	1	4/13/2017 9:10:49 PM
NOTES:						

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Analytical Report

 Work Order:
 1704169

 Date Reported:
 4/20/2017

Client: Shannon & Wilson Project: Ballard Conveyance				Collection	Date: 4	I/13/2017 11:30:00 AM
Lab ID: 1704169-001 Client Sample ID: BCT-04-ENV				Matrix: So	bil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by EPA Method 7471				Batch	1D: 167	786 Analyst: WF
Mercury	0.553	0.316		mg/Kg-dry	1	4/14/2017 1:09:38 PM
Total Metals by EPA Method 6020				Batch	1D: 167	779 Analyst: TN
Arsenic	18.2	0.101		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Barium	123	0.506		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Cadmium	1.68	0.202		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Chromium	23.2	0.101		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Lead	10,700	20.2	D	mg/Kg-dry	100	4/17/2017 12:02:46 PM
Selenium	0.803	0.506		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Silver	0.569	0.101		mg/Kg-dry	1	4/14/2017 3:35:13 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID: R3	5537 Analyst: BB
Percent Moisture	26.8			wt%	1	4/14/2017 9:45:32 AM

Work Order: 1704169								QCS	SUMMA	RY REF	POR
CLIENT: Shannon	& Wilson						Diacol	and Heavy			
Project: Ballard C	onveyance						Diesei	апи пеачу			
Sample ID MB-16783	SampType: MBLK			Units: mg/K	g	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: MBLKS	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 681	1244	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	22.3		20.00		112	50	150				
Surr: o-Terphenyl	22.1		20.00		110	50	150				
Sample ID LCS-16783	SampType: LCS			Units: mg/K	g	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: LCSS	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 68	1011	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	414	20.0	500.0	0	82.8	65	135				
Surr: 2-Fluorobiphenyl	22.2		20.00		111	50	150				
Surr: o-Terphenyl	23.2		20.00		116	50	150				
Sample ID 1704174-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: BATCH	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 68	1607	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	19.1						0		30	
Heavy Oil	ND	47.9						0		30	
Surr: 2-Fluorobiphenyl	20.7		19.15		108	50	150		0		
Surr: o-Terphenyl	20.7		19.15		108	50	150		0		
Sample ID 1704174-001AMS	SampType: MS			Units: mg/K	g-dry	Prep Date:	4/14/20	17	RunNo: 35	552	
Client ID: BATCH	Batch ID: 16783					Analysis Date:	4/14/20	17	SeqNo: 681	1608	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
		18.3	457.4	0	76.7	65	135				
Diesel (Fuel Oil)	351	10.5	407.4	Ŭ	10.1						
Diesel (Fuel Oil) Surr: 2-Fluorobiphenyl	351 14.8	10.5	18.30	0	80.7	50	150				

Work Order:	1704169									2.00	SUMMAI	RY RFF	ORT
CLIENT:	Shannon &	Wilson								• - ·			-
Project:	Ballard Con	veyance							Diesel	and Heavy	Oil by NW	/TPH-Dx/	Dx Ext
Sample ID 1704174	-001AMS	SampType	: MS			Units: mg/H	(g-dry	Prep Da	ite: 4/14/20)17	RunNo: 35	552	
Client ID: BATCH		Batch ID:	16783					Analysis Da	ite: 4/14/20)17	SeqNo: 68	1608	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID 1704174	-001AMSD	SampType	: MSD			Units: mg/ł	(g-dry	Prep Da	ite: 4/14/20)17	RunNo: 35	552	
Client ID: BATCH		Batch ID:	16783					Analysis Da	ite: 4/14/20)17	SeqNo: 68	1609	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			504	18.9	473.3	0	106	65	135	350.6	35.9	30	R
Surr: 2-Fluorobiph	enyl		17.4		18.93		92.0	50	150		0		
Surr: o-Terphenyl			18.8		18.93		99.2	50	150		0		
NOTES:													
R - High RPD obse	erved, spike re	ecoveries are v	vithin range.										
Sample ID 1704172	-008ADUP	SampType	: DUP			Units: mg/ł	Kg-dry	Prep Da	ite: 4/14/20)17	RunNo: 35	552	
Client ID: BATCH		Batch ID:	16783					Analysis Da	ite: 4/15/20)17	SeqNo: 68	1606	
Analyte		I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)			ND	20.3						0		30	
Heavy Oil			ND	50.7						72.60	53.6	30	
Surr: 2-Fluorobiph	enyl		20.6		20.27		102	50	150		0		
Surr: o-Terphenyl			21.0		20.27		104	50	150		0		

Work Order: CLIENT: Project:	1704169 Shannon & Ballard Cor									QC S	SUMMAI Gasoline	RY REF e by NW ⁻	_
Sample ID LCS-16	6767	SampType:	LCS			Units: mg/Kg	I	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: LCSS		Batch ID:	16767					Analysis Dat	te: 4/13/20	17	SeqNo: 680	808	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			23.7	5.00	25.00	0	94.9	65	135				
Surr: Toluene-d8			1.24		1.250		99.3	65	135				
Surr: 4-Bromofluc	orobenzene		1.31		1.250		105	65	135				
Sample ID MB-167	767	SampType:	MBLK			Units: mg/Kg	J	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: MBLKS	6	Batch ID:	16767					Analysis Dat	te: 4/13/20	17	SeqNo: 680	0809	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	5.00									
Surr: Toluene-d8			1.24		1.250		99.1	65	135				
Surr: 4-Bromofluc	orobenzene		1.26		1.250		101	65	135				
Sample ID 170414	7-001BDUP	SampType:	DUP			Units: mg/Kg	J-dry	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: BATCH	ł	Batch ID:	16767					Analysis Dat	te: 4/13/20	17	SeqNo: 680	0800	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	2.23						0		30	
Surr: Toluene-d8		C).561		0.5566		101	65	135		0		
Surr: 4-Bromofluc	orobenzene	C).544		0.5566		97.7	65	135		0		
Sample ID 170414	7-008BMS	SampType:	MS			Units: mg/Kg	J-dry	Prep Dat	te: 4/13/20	17	RunNo: 35	539	
Client ID: BATCH	I	Batch ID:	16767					Analysis Dat	te: 4/14/20	17	SeqNo: 680	0802	
Analyte		R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			10.0	2.43	12.17	0	82.2	65	135				
Surr: Toluene-d8		C).617		0.6087		101	65	135				
Surr: 4-Bromofluc	orobenzene	C).610		0.6087		100	65	135				

Work Order: CLIENT: Project:	NT: Shannon & Wilson QC SUMMAR ect: Ballard Conveyance Gasoline e ID 1704147-008BMSD SampType: MSD Units: mg/Kg-dry Prep Date: 4/13/2017 RunNo: 355 ID: BATCH Batch ID: 16767 Analysis Date: 4/14/2017 SeqNo: 680							RY REF e by NW	_			
		1 51			Units: mg/	/Kg-dry						
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline		10.2	2.43	12.17	0	83.5	65	135	10.00	1.63	30	
Surr: Toluene-d8	В	0.616		0.6087		101	65	135		0		
Surr: 4-Bromoflu	uorobenzene	0.615		0.6087		101	65	135		0		

Work Order:									QC S	SUMMAR	RY REF	POR
CLIENT:	Shannon &								Mer	cury by El	PA Metho	od 747
Project:	Ballard Cor											
Sample ID MB-		SampType: MBLK			Units: mg/Kg			4/14/2017		RunNo: 355		
Client ID: MBI	LKS	Batch ID: 16786					Analysis Date:			SeqNo: 680)921	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250									
Sample ID LCS	5-16786	SampType: LCS			Units: mg/Kg		Prep Date:	4/14/2017		RunNo: 355	543	
Client ID: LCS	S	Batch ID: 16786					Analysis Date:	4/14/2017		SeqNo: 680)922	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.518	0.250	0.5000	0	104	80	120				
Sample ID 170	4169-001ADUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date:	4/14/2017		RunNo: 355	543	
Client ID: BC	Γ-04-ENV	Batch ID: 16786					Analysis Date:	4/14/2017		SeqNo: 680	0924	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.623	0.311						0.5530	11.8	20	
Sample ID 170	4169-001AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date:	4/14/2017		RunNo: 35	543	
Client ID: BC	Γ-04-ENV	Batch ID: 16786					Analysis Date:	4/14/2017		SeqNo: 680	0925	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:		1.29	0.316	0.6328	0.5530	117	70	130				E
		nt exceeds the linear workin	ig range of	ine instrumen								
Sample ID 170		SampType: MSD			Units: mg/Kg ·	-dry		4/14/2017		RunNo: 355		
Client ID: BC1	-04-ENV	Batch ID: 16786	5.	0.51/			Analysis Date:			SeqNo: 680		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ignLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:		1.02	0.316	0.6328	0.5530	74.0	70	130	1.291	23.3	20	E

Original

Work Order:	1704169									00.5	SUMMA		ORT
CLIENT:	Shannon & W	Vilson											
Project:	Ballard Conv	eyance								Sample Mo	oisture (Pe	ercent Mo	oisture)
Sample ID 17041	66-002ADUP	SampType	DUP			Units: wt%		Prep Da	te: 4/14/20	017	RunNo: 355	537	
Client ID: BATCH	н	Batch ID:	R35537					Analysis Da	te: 4/14/20	017	SeqNo: 680	0754	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Percent Moisture			19.3	0.500						16.07	18.2	20	

Fremont
Analytical

CLIENT: Shannon & Wilson Project: Ballard Conveyance Sample ID MB-16779 SampType: MBLK Units: mg/Kg Prep Date: 4/14/2017	QC SUMMARY REPORT
riojeci. Dallalu Conveyance	
Sample ID MB-16779 SampType: MBLK Units: mg/Kg Prep Date: 4/14/2017	Total Metals by EPA Method 6020
	RunNo: 35557
Client ID: MBLKS Batch ID: 16779 Analysis Date: 4/14/2017	SeqNo: 681091
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPE	D Ref Val %RPD RPDLimit Qual
Arsenic ND 0.0719	
Barium ND 0.360	
Cadmium ND 0.144	
Chromium ND 0.0719	
Lead ND 0.144	
Selenium ND 0.360	
Silver ND 0.0719	
Sample ID 1704161-001ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 4/14/2017	RunNo: 35557
Client ID: BATCH Batch ID: 16779 Analysis Date: 4/14/2017	SeqNo: 681094
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPE	D Ref Val %RPD RPDLimit Qual
Arsenic 23.1 0.0949	20.31 12.8 20
Barium 195 0.475	152.6 24.2 20 R
	0.1538 34.1 20
Cadmium 0.217 0.190	27.77 21.4 20 R
Cadmium 0.217 0.190 Chromium 34.4 0.0949	21.11 21.4 20 K
	27.77 21.4 20 R 2.766 12.8 20
Chromium 34.4 0.0949 Selenium 3.14 0.475	
Chromium 34.4 0.0949 Selenium 3.14 0.475 Silver 0.0954 0.0949 NOTES: Image: Comparison of the second s	2.766 12.8 20
Chromium 34.4 0.0949 Selenium 3.14 0.475 Silver 0.0954 0.0949	2.766 12.8 20
Chromium 34.4 0.0949 Selenium 3.14 0.475 Silver 0.0954 0.0949 NOTES: Image: Comparison of the second s	2.766 12.8 20
Chromium34.40.0949Selenium3.140.475Silver0.09540.0949NOTES: R - High RPD observed. The method is in control as indicated by the LCS.	2.766 12.8 20 0.07518 23.8 20

20.31

152.6

0.1538

27.77

80.56

2.766

107

202

125

137

-8.04

114

75

75

75

75

75

75

125

125

125

125

125 125

0.0949

0.475

0.190

0.0949

0.190

0.475

47.46

47.46

2.373

47.46

23.73

4.746

71.0

248

3.11

92.9

78.6

8.17

Lead

Arsenic

Barium

Cadmium

Chromium

Selenium

S

s

s

Work Order: CLIENT: Project:	1704169 Shannon & W Ballard Conve								-	SUMMA etals by El		
Sample ID 17041 Client ID: BATC		SampType: MS Batch ID: 16779			Units: mg	/Kg-dry	Prep Dat Analysis Dat	e: 4/14/20 e: 4/14/20		RunNo: 35 SeqNo: 68		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		1.90	0.0949	2.373	0.07518	77.0	75	125				

NOTES:

S - Outlying spike recovery(ies) observed for Barium and Lead. A duplicate analysis was performed with similar results indicating a possible matrix effect.

S - Outlying spike recovery observed for Chromium. A duplicate analysis was performed and recovered within range.

Sample ID 1704161-001AMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Da	te: 4/14/20)17	RunNo: 35	557	
Client ID: BATCH	Batch ID: 16779					Analysis Da	te: 4/14/20)17	SeqNo: 681	1099	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	67.0	0.0942	47.11	20.31	99.2	75	125	70.98	5.72	20	
Barium	219	0.471	47.11	152.6	140	75	125	248.2	12.7	20	S
Cadmium	2.81	0.188	2.355	0.1538	113	75	125	3.111	10.3	20	
Chromium	83.2	0.0942	47.11	27.77	118	75	125	92.91	11.1	20	
Lead	84.4	0.188	23.55	80.56	16.5	75	125	78.65	7.11	20	S
Selenium	7.26	0.471	4.711	2.766	95.4	75	125	8.172	11.8	20	
Silver	1.55	0.0942	2.355	0.07518	62.6	75	125	1.901	20.5	20	RS

NOTES:

S - Outlying spike recovery(ies) observed for Barium and Lead. A duplicate analysis was performed with similar results indicating a possible matrix effect.

S/R - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample ID LCS-16779	SampType: LCS			Units: mg/Kg		Prep Da	te: 4/14/20	017	RunNo: 35557		
Client ID: LCSS	Batch ID: 16779					Analysis Da	te: 4/14/20)17	SeqNo: 681	1161	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	37.3	0.0725	36.23	0	103	80	120				
Barium	37.2	0.362	36.23	0	103	80	120				
Cadmium	1.83	0.145	1.812	0	101	80	120				
Chromium	33.8	0.0725	36.23	0	93.2	80	120				
Lead	18.8	0.145	18.12	0	104	80	120				
Selenium	3.44	0.362	3.623	0	94.9	80	120				
Silver	1.45	0.0725	1.812	0	79.9	80	120				

Work Order:	1704169								00.5	SUMMAF		ORT
CLIENT:	Shannon &	Wilson							•			-
Project:	Ballard Con	iveyance							lotal Me	etals by EF	A Metho	od 6020
Sample ID 1704	161-001ADUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Da	te: 4/14/201	7	RunNo: 355	57	
Client ID: BAT	СН	Batch ID: 16779					Analysis Da	te: 4/17/201	7	SeqNo: 681	402	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		73.1	0.190						80.56	9.65	20	
Sample ID CCV	-16779F	SampType: CCV			Units: µg/L		Prep Da	te: 4/17/201	7	RunNo: 355	57	
Client ID: CCV	,	Batch ID: 16779					Analysis Da	te: 4/17/201	7	SeqNo: 681	405	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Lead		52.9	2.00	50.00	0	106	90	110				

Ballard Conveyance

Work Order: 1704169

Project:

CLIENT: Shannon & Wilson

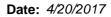
QC SUMMARY REPORT

Sample ID LCS-16767	SampType: LCS			Units: mg/Kg		Prep Dat	te: 4/13/20)17	RunNo: 355	538	
Client ID: LCSS	Batch ID: 16767					Analysis Dat	te: 4/13/20	017	SeqNo: 680)795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.770	0.0600	1.000	0	77.0	14.3	167				
Chloromethane	0.907	0.0600	1.000	0	90.7	46	144				
Vinyl chloride	0.947	0.00200	1.000	0	94.7	44	142				
Bromomethane	0.979	0.0900	1.000	0	97.9	40.9	157				
Trichlorofluoromethane (CFC-11)	0.955	0.0500	1.000	0	95.5	36.9	156				
Chloroethane	0.936	0.0600	1.000	0	93.6	33.4	155				
1,1-Dichloroethene	0.942	0.0500	1.000	0	94.2	49.7	142				
Methylene chloride	0.927	0.0200	1.000	0	92.7	46.3	140				
trans-1,2-Dichloroethene	0.946	0.0200	1.000	0	94.6	68	130				
Methyl tert-butyl ether (MTBE)	0.983	0.0500	1.000	0	98.3	66.3	145				
1,1-Dichloroethane	0.979	0.0200	1.000	0	97.9	61.9	137				
2,2-Dichloropropane	1.29	0.0500	1.000	0	129	35.5	186				
cis-1,2-Dichloroethene	0.960	0.0200	1.000	0	96.0	71.3	135				
Chloroform	0.959	0.0200	1.000	0	95.9	69	145				
1,1,1-Trichloroethane (TCA)	0.960	0.0200	1.000	0	96.0	69	132				
1,1-Dichloropropene	0.967	0.0200	1.000	0	96.7	72.7	131				
Carbon tetrachloride	0.954	0.0200	1.000	0	95.4	63.4	137				
1,2-Dichloroethane (EDC)	0.959	0.0300	1.000	0	95.9	61.9	136				
Benzene	1.03	0.0200	1.000	0	103	64.3	133				
Trichloroethene (TCE)	0.951	0.0200	1.000	0	95.1	65.5	137				
1,2-Dichloropropane	1.01	0.0200	1.000	0	101	63.2	142				
Bromodichloromethane	0.950	0.0200	1.000	0	95.0	73.2	131				
Dibromomethane	0.955	0.0400	1.000	0	95.5	70	130				
cis-1,3-Dichloropropene	1.07	0.0200	1.000	0	107	59.1	143				
Toluene	1.06	0.0200	1.000	0	106	67.3	138				
trans-1,3-Dichloropropylene	1.04	0.0300	1.000	0	104	49.2	149				
1,1,2-Trichloroethane	0.937	0.0300	1.000	0	93.7	74.5	129				
1,3-Dichloropropane	0.955	0.0500	1.000	0	95.5	70	130				
Tetrachloroethene (PCE)	1.00	0.0200	1.000	0	100	52.7	150				
Dibromochloromethane	0.975	0.0300	1.000	0	97.5	70.6	144				
1,2-Dibromoethane (EDB)	0.931	0.00500	1.000	0	93.1	70	130				

Ballard Conveyance

Work Order: 1704169

Project:


CLIENT: Shannon & Wilson

QC SUMMARY REPORT

Sample ID LCS-16767	SampType: LCS			Units: mg/Kg		Prep Da	te: 4/13/20	17	RunNo: 35	538	
Client ID: LCSS	Batch ID: 16767					Analysis Da	te: 4/13/20	17	SeqNo: 68	0795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	0.990	0.0200	1.000	0	99.0	76.1	123				
1,1,1,2-Tetrachloroethane	0.976	0.0300	1.000	0	97.6	65.9	141				
Ethylbenzene	1.07	0.0300	1.000	0	107	74	129				
m,p-Xylene	2.15	0.0200	2.000	0	107	70	124				
o-Xylene	1.07	0.0200	1.000	0	107	68.1	139				
Styrene	0.979	0.0200	1.000	0	97.9	76.8	130				
Isopropylbenzene	0.990	0.0800	1.000	0	99.0	70	130				
Bromoform	0.818	0.0200	1.000	0	81.8	67	154				
1,1,2,2-Tetrachloroethane	0.923	0.0200	1.000	0	92.3	60	130				
n-Propylbenzene	0.998	0.0200	1.000	0	99.8	74.8	125				
Bromobenzene	0.985	0.0300	1.000	0	98.5	49.2	144				
1,3,5-Trimethylbenzene	1.00	0.0200	1.000	0	100	74.6	123				
2-Chlorotoluene	0.997	0.0200	1.000	0	99.7	76.7	129				
4-Chlorotoluene	0.993	0.0200	1.000	0	99.3	77.5	125				
tert-Butylbenzene	1.01	0.0200	1.000	0	101	66.2	130				
1,2,3-Trichloropropane	0.915	0.0200	1.000	0	91.5	67.9	136				
1,2,4-Trichlorobenzene	0.991	0.0500	1.000	0	99.1	62.6	143				
sec-Butylbenzene	1.06	0.0200	1.000	0	106	75.6	133				
4-Isopropyltoluene	1.10	0.0200	1.000	0	110	76.8	131				
1,3-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.8	128				
1,4-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.6	126				
n-Butylbenzene	1.18	0.0200	1.000	0	118	65.3	136				
1,2-Dichlorobenzene	1.03	0.0200	1.000	0	103	72.8	126				
1,2-Dibromo-3-chloropropane	0.864	0.500	1.000	0	86.4	61.2	139				
1,2,4-Trimethylbenzene	1.03	0.0200	1.000	0	103	77.5	129				
Hexachlorobutadiene	1.11	0.100	1.000	0	111	42	151				
Naphthalene	0.956	0.0300	1.000	0	95.6	62.3	134				
1,2,3-Trichlorobenzene	0.905	0.0200	1.000	0	90.5	54.8	143				
Surr: Dibromofluoromethane	1.24		1.250		99.2	56.5	129				
Surr: Toluene-d8	1.27		1.250		102	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.31		1.250		105	63.1	141				

Work Order: 1704169								2.00	SUMMAR		PORT
CLIENT: Shannon & V	Vilson							• - ·			-
Project: Ballard Conv	reyance					Volatile (Organi	c Compour	nds by EPA	A Method	8260C
Sample ID LCS-16767	SampType: LCS			Units: mg/Kg		Prep Date:	4/13/20)17	RunNo: 355	538	
Client ID: LCSS	Batch ID: 16767					Analysis Date:	4/13/20	017	SeqNo: 680)795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
							5				
Sample ID MB-16767	SampType: MBLK			Units: mg/Kg		Prep Date:	4/13/20)17	RunNo: 355	538	
Client ID: MBLKS	Batch ID: 16767			00		Analysis Date:			SeqNo: 680)796	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									Q
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									

Fremont
Analytical

Work Order:	1704169								QCS	SUMMAI	RY REF	POR
CLIENT:	Shannon &	Wilson						. .	-			
Project:	Ballard Con	veyance					Volatile	Organi	c Compour	nds by EP/	A Method	8260
Sample ID MB-167	767	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 4/13/2	017	RunNo: 35	538	
Client ID: MBLKS	6	Batch ID: 16767					Analysis Dat	e: 4/13/2	017	SeqNo: 68	0796	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropr	ropylene	ND	0.0300									
1,1,2-Trichloroethar	ne	ND	0.0300									
1,3-Dichloropropane	e	ND	0.0500									
Tetrachloroethene ((PCE)	ND	0.0200									
Dibromochlorometh	ane	ND	0.0300									
1,2-Dibromoethane	(EDB)	ND	0.00500									
Chlorobenzene		ND	0.0200									
1,1,1,2-Tetrachloroe	ethane	ND	0.0300									
Ethylbenzene		ND	0.0300									
m,p-Xylene		ND	0.0200									
o-Xylene		ND	0.0200									
Styrene		ND	0.0200									
Isopropylbenzene		ND	0.0800									
Bromoform		ND	0.0200									Q
1,1,2,2-Tetrachloroe	ethane	ND	0.0200									
n-Propylbenzene		ND	0.0200									
Bromobenzene		ND	0.0300									
1,3,5-Trimethylbenz	zene	ND	0.0200									
2-Chlorotoluene		ND	0.0200									
4-Chlorotoluene		ND	0.0200									
tert-Butylbenzene		ND	0.0200									
1,2,3-Trichloropropa	ane	ND	0.0200									
1,2,4-Trichlorobenze		ND	0.0500									
sec-Butylbenzene		ND	0.0200									
4-Isopropyltoluene		ND	0.0200									
1,3-Dichlorobenzen	е	ND	0.0200									
1,4-Dichlorobenzen		ND	0.0200									
n-Butylbenzene		ND	0.0200									
1,2-Dichlorobenzen	е	ND	0.0200									
1,2-Dibromo-3-chlor		ND	0.500									
1,2,4-Trimethylbenz		ND	0.0200									

Ballard Conveyance

Work Order: 1704169

Project:

CLIENT: Shannon & Wilson

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-16767	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/13/2017	RunNo: 35	538	
Client ID: MBLKS	Batch ID: 16767					Analysis Date	e: 4/13/2017	SeqNo: 68	0796	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	0.100								
Naphthalene	ND	0.0300								
1,2,3-Trichlorobenzene	ND	0.0200								
Surr: Dibromofluoromethane	1.19		1.250		95.2	56.5	129			
Surr: Toluene-d8	1.22		1.250		97.7	64.5	151			
Surr: 1-Bromo-4-fluorobenzene NOTES:	1.22		1.250		97.4	63.1	141			

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1704147-001BDUP	SampType:	DUP			Units: mg/	Kg-dry	Prep Da	te: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID:	16767					Analysis Da	te: 4/13/2	017	SeqNo: 68)775	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		ND	0.0267						0		30	Q
Chloromethane	0.0	0318	0.0267						0.02936	8.00	30	
Vinyl chloride		ND	0.000891						0		30	
Bromomethane		ND	0.0401						0		30	
Trichlorofluoromethane (CFC-11)		ND	0.0223						0		30	
Chloroethane		ND	0.0267						0		30	
1,1-Dichloroethene		ND	0.0223						0		30	
Methylene chloride		ND	0.00891						0		30	
trans-1,2-Dichloroethene		ND	0.00891						0		30	
Methyl tert-butyl ether (MTBE)		ND	0.0223						0		30	
1,1-Dichloroethane		ND	0.00891						0		30	
2,2-Dichloropropane		ND	0.0223						0		30	
cis-1,2-Dichloroethene		ND	0.00891						0		30	
Chloroform		ND	0.00891						0		30	
1,1,1-Trichloroethane (TCA)		ND	0.00891						0		30	
1,1-Dichloropropene		ND	0.00891						0		30	
Carbon tetrachloride		ND	0.00891						0		30	
1,2-Dichloroethane (EDC)		ND	0.0134						0		30	

Work Order:	1704169
CLIENT:	Shannon & Wilson
Project:	Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-001BDUP	SampType: DUP			Units: mg/ł	Kg-dry	Prep Date	e: 4/13/2 0)17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Date	e: 4/13/2 0	017	SeqNo: 68	0775	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.00891						0		30	
Trichloroethene (TCE)	ND	0.00891						0		30	
1,2-Dichloropropane	ND	0.00891						0		30	
Bromodichloromethane	ND	0.00891						0		30	
Dibromomethane	ND	0.0178						0		30	
cis-1,3-Dichloropropene	ND	0.00891						0		30	
Toluene	ND	0.00891						0		30	
trans-1,3-Dichloropropylene	ND	0.0134						0		30	
1,1,2-Trichloroethane	ND	0.0134						0		30	
1,3-Dichloropropane	ND	0.0223						0		30	
Tetrachloroethene (PCE)	ND	0.00891						0		30	
Dibromochloromethane	ND	0.0134						0		30	
1,2-Dibromoethane (EDB)	ND	0.00223						0		30	
Chlorobenzene	ND	0.00891						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0134						0		30	
Ethylbenzene	ND	0.0134						0		30	
m,p-Xylene	ND	0.00891						0		30	
o-Xylene	ND	0.00891						0		30	
Styrene	ND	0.00891						0		30	
Isopropylbenzene	ND	0.0356						0		30	
Bromoform	ND	0.00891						0		30	Q
1,1,2,2-Tetrachloroethane	ND	0.00891						0		30	
n-Propylbenzene	ND	0.00891						0		30	
Bromobenzene	ND	0.0134						0		30	
1,3,5-Trimethylbenzene	ND	0.00891						0		30	
2-Chlorotoluene	ND	0.00891						0		30	
4-Chlorotoluene	ND	0.00891						0		30	
tert-Butylbenzene	ND	0.00891						0		30	
1,2,3-Trichloropropane	ND	0.00891						0		30	
1,2,4-Trichlorobenzene	ND	0.0223						0		30	
sec-Butylbenzene	ND	0.00891						0		30	
										Dog	

Work Order:	1704169
CLIENT:	Shannon & Wilson

QC SUMMARY REPORT

Project: Ballard Conveyance

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1704147-001BDUP	SampType: DUP			Units: mg/ I	Kg-dry	Prep Dat	e: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Dat	e: 4/13/2	017	SeqNo: 68	0775	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Isopropyltoluene	ND	0.00891						0		30	
1,3-Dichlorobenzene	ND	0.00891						0		30	
1,4-Dichlorobenzene	ND	0.00891						0		30	
n-Butylbenzene	ND	0.00891						0		30	
1,2-Dichlorobenzene	ND	0.00891						0		30	
1,2-Dibromo-3-chloropropane	ND	0.223						0		30	
1,2,4-Trimethylbenzene	ND	0.00891						0		30	
Hexachlorobutadiene	ND	0.0445						0		30	
Naphthalene	ND	0.0134						0		30	
1,2,3-Trichlorobenzene	ND	0.00891						0		30	
Surr: Dibromofluoromethane	0.497		0.5566		89.2	56.5	129		0		
Surr: Toluene-d8	0.533		0.5566		95.8	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.530		0.5566		95.1	63.1	141		0		

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1704147-005BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 4/13/20)17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20)17	SeqNo: 680	0780	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.442	0.0321	0.5357	0	82.4	43.5	121				
Chloromethane	0.569	0.0321	0.5357	0.03912	98.9	45	130				
Vinyl chloride	0.518	0.00107	0.5357	0	96.6	51.2	146				
Bromomethane	0.371	0.0482	0.5357	0.02986	63.7	21.3	120				
Trichlorofluoromethane (CFC-11)	0.408	0.0268	0.5357	0	76.1	35	131				
Chloroethane	0.468	0.0321	0.5357	0	87.3	31.9	123				
1,1-Dichloroethene	0.506	0.0268	0.5357	0	94.4	61.9	141				
Methylene chloride	0.531	0.0107	0.5357	0	99.1	54.7	142				
trans-1,2-Dichloroethene	0.528	0.0107	0.5357	0	98.5	52	136				
Methyl tert-butyl ether (MTBE)	0.613	0.0268	0.5357	0.01279	112	54.4	132				
1,1-Dichloroethane	0.531	0.0107	0.5357	0	99.1	51.8	141				

Project:

CLIENT: Shannon & Wilson

Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-005BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 4/13/20)17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20)17	SeqNo: 68	0780	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,2-Dichloropropane	0.535	0.0268	0.5357	0	99.8	36	123				
cis-1,2-Dichloroethene	0.521	0.0107	0.5357	0	97.2	58.6	136				
Chloroform	0.512	0.0107	0.5357	0	95.6	53.2	129				
1,1,1-Trichloroethane (TCA)	0.496	0.0107	0.5357	0	92.5	58.3	145				
1,1-Dichloropropene	0.548	0.0107	0.5357	0	102	55.1	138				
Carbon tetrachloride	0.471	0.0107	0.5357	0	87.9	53.3	144				
1,2-Dichloroethane (EDC)	0.549	0.0161	0.5357	0	102	51.3	139				
Benzene	0.543	0.0107	0.5357	0.02096	97.4	63.5	133				
Trichloroethene (TCE)	0.508	0.0107	0.5357	0	94.8	68.6	132				
1,2-Dichloropropane	0.544	0.0107	0.5357	0	101	59	136				
Bromodichloromethane	0.418	0.0107	0.5357	0	78.0	50.7	141				
Dibromomethane	0.501	0.0214	0.5357	0	93.4	50.6	137				
cis-1,3-Dichloropropene	0.542	0.0107	0.5357	0	101	50.4	138				
Toluene	0.551	0.0107	0.5357	0.02369	98.4	63.4	132				
trans-1,3-Dichloropropylene	0.541	0.0161	0.5357	0	101	44.1	147				
1,1,2-Trichloroethane	0.524	0.0161	0.5357	0	97.8	51.6	137				
1,3-Dichloropropane	0.539	0.0268	0.5357	0	101	53.1	134				
Tetrachloroethene (PCE)	0.543	0.0107	0.5357	0	101	35.6	158				
Dibromochloromethane	0.440	0.0161	0.5357	0	82.2	55.3	140				
1,2-Dibromoethane (EDB)	0.518	0.00268	0.5357	0	96.7	50.4	136				
Chlorobenzene	0.542	0.0107	0.5357	0	101	60	133				
1,1,1,2-Tetrachloroethane	0.484	0.0161	0.5357	0	90.4	53.1	142				
Ethylbenzene	0.568	0.0161	0.5357	0.02044	102	54.5	134				
m,p-Xylene	1.14	0.0107	1.071	0.04232	102	53.1	132				
o-Xylene	0.578	0.0107	0.5357	0.02144	104	53.3	139				
Styrene	0.555	0.0107	0.5357	0	104	51.1	132				
Isopropylbenzene	0.562	0.0429	0.5357	0	105	58.9	138				
Bromoform	0.352	0.0107	0.5357	0	65.7	57.9	130				
1,1,2,2-Tetrachloroethane	0.521	0.0107	0.5357	0	97.2	51.9	131				
n-Propylbenzene	0.573	0.0107	0.5357	0	107	53.6	140				
Bromobenzene	0.559	0.0161	0.5357	0	104	54.2	140				

Work Order: 1	704169
---------------	--------

Project:

CLIENT: Shannon & Wilson

Ballard Conveyance

QC SUMMARY REPORT

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1704147-005BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Dat	e: 4/13/20	17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Dat	e: 4/14/20	17	SeqNo: 680	0780	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	0.564	0.0107	0.5357	0	105	51.8	136				
2-Chlorotoluene	0.548	0.0107	0.5357	0	102	51.6	136				
4-Chlorotoluene	0.560	0.0107	0.5357	0	104	50.1	139				
tert-Butylbenzene	0.569	0.0107	0.5357	0	106	50.5	135				
1,2,3-Trichloropropane	0.550	0.0107	0.5357	0	103	50.5	131				
1,2,4-Trichlorobenzene	0.694	0.0268	0.5357	0	129	50.8	130				
sec-Butylbenzene	0.619	0.0107	0.5357	0	116	52.6	141				
4-Isopropyltoluene	0.634	0.0107	0.5357	0	118	52.9	134				
1,3-Dichlorobenzene	0.563	0.0107	0.5357	0	105	52.6	131				
1,4-Dichlorobenzene	0.575	0.0107	0.5357	0	107	52.9	129				
n-Butylbenzene	0.670	0.0107	0.5357	0	125	52.6	130				
1,2-Dichlorobenzene	0.567	0.0107	0.5357	0	106	55.8	129				
1,2-Dibromo-3-chloropropane	0.429	0.268	0.5357	0	80.0	40.5	131				
1,2,4-Trimethylbenzene	0.613	0.0107	0.5357	0	114	50.6	137				
Hexachlorobutadiene	0.693	0.0536	0.5357	0	129	40.6	158				
Naphthalene	0.744	0.0161	0.5357	0	139	52.3	124				S
1,2,3-Trichlorobenzene	0.651	0.0107	0.5357	0	121	54.4	124				
Surr: Dibromofluoromethane	0.579		0.6696		86.4	56.5	129				
Surr: Toluene-d8	0.663		0.6696		99.0	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	0.725		0.6696		108	63.1	141				
NOTES:											

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample ID 1704147-005BMSD	SampType: MSD			Units: mg/ł	Kg-dry	Prep Da	te: 4/13/20	17	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767			Analysis Date: 4/14/2017					SeqNo: 680781		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.442	0.0321	0.5357	0	82.6	43.5	121	0.4416	0.155	30	
Chloromethane	0.558	0.0321	0.5357	0.03912	96.9	45	130	0.5688	1.90	30	
Vinyl chloride	0.504	0.00107	0.5357	0	94.1	51.2	146	0.5177	2.72	30	
Bromomethane	0.381	0.0482	0.5357	0.02986	65.6	21.3	120	0.3710	2.78	30	

Work Order: 1704169

CLIENT: Shannon & Wilson

QC SUMMARY REPORT

Project: Ballard Conveyance

Sample ID 1704147-005BMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 4/13/20)17	RunNo: 355	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20	017	SeqNo: 680	0781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichlorofluoromethane (CFC-11)	0.462	0.0268	0.5357	0	86.3	35	131	0.4079	12.5	30	
Chloroethane	0.482	0.0321	0.5357	0	89.9	31.9	123	0.4679	2.91	30	
1,1-Dichloroethene	0.515	0.0268	0.5357	0	96.2	61.9	141	0.5057	1.83	30	
Methylene chloride	0.511	0.0107	0.5357	0	95.3	54.7	142	0.5308	3.86	30	
trans-1,2-Dichloroethene	0.528	0.0107	0.5357	0	98.6	52	136	0.5277	0.124	30	
Methyl tert-butyl ether (MTBE)	0.570	0.0268	0.5357	0.01279	104	54.4	132	0.6125	7.15	30	
1,1-Dichloroethane	0.533	0.0107	0.5357	0	99.5	51.8	141	0.5309	0.397	30	
2,2-Dichloropropane	0.539	0.0268	0.5357	0	101	36	123	0.5346	0.739	30	
cis-1,2-Dichloroethene	0.516	0.0107	0.5357	0	96.4	58.6	136	0.5208	0.850	30	
Chloroform	0.508	0.0107	0.5357	0	94.9	53.2	129	0.5124	0.804	30	
1,1,1-Trichloroethane (TCA)	0.505	0.0107	0.5357	0	94.3	58.3	145	0.4955	1.95	30	
,1-Dichloropropene	0.547	0.0107	0.5357	0	102	55.1	138	0.5477	0.134	30	
Carbon tetrachloride	0.515	0.0107	0.5357	0	96.1	53.3	144	0.4709	8.93	30	
I,2-Dichloroethane (EDC)	0.507	0.0161	0.5357	0	94.6	51.3	139	0.5488	7.98	30	
Benzene	0.537	0.0107	0.5357	0.02096	96.3	63.5	133	0.5428	1.11	30	
Trichloroethene (TCE)	0.514	0.0107	0.5357	0	95.9	68.6	132	0.5081	1.12	30	
I,2-Dichloropropane	0.530	0.0107	0.5357	0	99.0	59	136	0.5436	2.51	30	
Bromodichloromethane	0.422	0.0107	0.5357	0	78.8	50.7	141	0.4180	0.992	30	
Dibromomethane	0.480	0.0214	0.5357	0	89.7	50.6	137	0.5005	4.13	30	
cis-1,3-Dichloropropene	0.535	0.0107	0.5357	0	99.8	50.4	138	0.5425	1.47	30	
Toluene	0.550	0.0107	0.5357	0.02369	98.3	63.4	132	0.5510	0.108	30	
rans-1,3-Dichloropropylene	0.529	0.0161	0.5357	0	98.8	44.1	147	0.5410	2.23	30	
1,1,2-Trichloroethane	0.489	0.0161	0.5357	0	91.2	51.6	137	0.5241	7.03	30	
1,3-Dichloropropane	0.503	0.0268	0.5357	0	94.0	53.1	134	0.5386	6.73	30	
Tetrachloroethene (PCE)	0.544	0.0107	0.5357	0	102	35.6	158	0.5434	0.175	30	
Dibromochloromethane	0.430	0.0161	0.5357	0	80.2	55.3	140	0.4401	2.39	30	
I,2-Dibromoethane (EDB)	0.482	0.00268	0.5357	0	89.9	50.4	136	0.5182	7.30	30	
Chlorobenzene	0.530	0.0107	0.5357	0	98.8	60	133	0.5420	2.32	30	
1,1,1,2-Tetrachloroethane	0.482	0.0161	0.5357	0	90.0	53.1	142	0.4844	0.461	30	
Ethylbenzene	0.554	0.0161	0.5357	0.02044	99.6	54.5	134	0.5677	2.41	30	
m,p-Xylene	1.11	0.0107	1.071	0.04232	99.2	53.1	132	1.136	2.76	30	

Work Order: 1704169

Project:

CLIENT: Shannon & Wilson

Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-005BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Da	te: 4/13/20)17	RunNo: 355	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/20)17	SeqNo: 680	0781	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	0.555	0.0107	0.5357	0.02144	99.6	53.3	139	0.5780	4.07	30	
Styrene	0.529	0.0107	0.5357	0	98.8	51.1	132	0.5554	4.80	30	
Isopropylbenzene	0.546	0.0429	0.5357	0	102	58.9	138	0.5616	2.80	30	
Bromoform	0.341	0.0107	0.5357	0	63.6	57.9	130	0.3521	3.26	30	
1,1,2,2-Tetrachloroethane	0.463	0.0107	0.5357	0	86.5	51.9	131	0.5207	11.7	30	
n-Propylbenzene	0.544	0.0107	0.5357	0	102	53.6	140	0.5730	5.09	30	
Bromobenzene	0.519	0.0161	0.5357	0	96.8	54.2	140	0.5591	7.51	30	
1,3,5-Trimethylbenzene	0.537	0.0107	0.5357	0	100	51.8	136	0.5640	4.90	30	
2-Chlorotoluene	0.531	0.0107	0.5357	0	99.1	51.6	136	0.5485	3.24	30	
4-Chlorotoluene	0.532	0.0107	0.5357	0	99.3	50.1	139	0.5596	5.05	30	
tert-Butylbenzene	0.550	0.0107	0.5357	0	103	50.5	135	0.5690	3.32	30	
1,2,3-Trichloropropane	0.466	0.0107	0.5357	0	87.0	50.5	131	0.5504	16.6	30	
1,2,4-Trichlorobenzene	0.626	0.0268	0.5357	0	117	50.8	130	0.6935	10.3	30	
sec-Butylbenzene	0.584	0.0107	0.5357	0	109	52.6	141	0.6188	5.79	30	
4-Isopropyltoluene	0.593	0.0107	0.5357	0	111	52.9	134	0.6342	6.65	30	
1,3-Dichlorobenzene	0.566	0.0107	0.5357	0	106	52.6	131	0.5631	0.492	30	
1,4-Dichlorobenzene	0.570	0.0107	0.5357	0	106	52.9	129	0.5750	0.915	30	
n-Butylbenzene	0.671	0.0107	0.5357	0	125	52.6	130	0.6697	0.243	30	
1,2-Dichlorobenzene	0.562	0.0107	0.5357	0	105	55.8	129	0.5675	1.03	30	
1,2-Dibromo-3-chloropropane	0.383	0.268	0.5357	0	71.5	40.5	131	0.4288	11.3	30	
1,2,4-Trimethylbenzene	0.560	0.0107	0.5357	0	105	50.6	137	0.6134	9.04	30	
Hexachlorobutadiene	0.684	0.0536	0.5357	0	128	40.6	158	0.6932	1.31	30	
Naphthalene	0.633	0.0161	0.5357	0	118	52.3	124	0.7442	16.1	30	
1,2,3-Trichlorobenzene	0.577	0.0107	0.5357	0	108	54.4	124	0.6505	12.0	30	
Surr: Dibromofluoromethane	0.620		0.6696		92.5	56.5	129		0		
Surr: Toluene-d8	0.659		0.6696		98.4	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.699		0.6696		104	63.1	141		0		

Work Order:	1704169
CLIENT:	Shannon & Wilson

QC SUMMARY REPORT

Project: Ballard Conveyance

Sample ID 1704147-012BDUP	SampType: DUP			Units: mg/k	lg-dry	Prep Da	te: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/2	017	SeqNo: 680	0789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0284						0		30	Q
Chloromethane	0.0363	0.0284						0.03933	8.01	30	
Vinyl chloride	ND	0.000946						0		30	
Bromomethane	ND	0.0426						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0236						0		30	
Chloroethane	ND	0.0284						0		30	
1,1-Dichloroethene	ND	0.0236						0		30	
Methylene chloride	ND	0.00946						0		30	
trans-1,2-Dichloroethene	ND	0.00946						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0236						0		30	
1,1-Dichloroethane	ND	0.00946						0		30	
2,2-Dichloropropane	ND	0.0236						0		30	
cis-1,2-Dichloroethene	ND	0.00946						0		30	
Chloroform	ND	0.00946						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.00946						0		30	
1,1-Dichloropropene	ND	0.00946						0		30	
Carbon tetrachloride	ND	0.00946						0		30	
1,2-Dichloroethane (EDC)	ND	0.0142						0		30	
Benzene	ND	0.00946						0		30	
Trichloroethene (TCE)	ND	0.00946						0		30	
1,2-Dichloropropane	ND	0.00946						0		30	
Bromodichloromethane	ND	0.00946						0		30	
Dibromomethane	ND	0.0189						0		30	
cis-1,3-Dichloropropene	ND	0.00946						0		30	
Toluene	ND	0.00946						0		30	
trans-1,3-Dichloropropylene	ND	0.0142						0		30	
1,1,2-Trichloroethane	ND	0.0142						0		30	
1,3-Dichloropropane	ND	0.0236						0		30	
Tetrachloroethene (PCE)	ND	0.00946						0		30	
Dibromochloromethane	ND	0.0142						0		30	
1,2-Dibromoethane (EDB)	ND	0.00236						0		30	

Work Order:	1704169
CLIENT:	Shannon & Wilson
Project:	Ballard Conveyance

QC SUMMARY REPORT

Sample ID 1704147-012BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 4/13/2	017	RunNo: 35	538	
Client ID: BATCH	Batch ID: 16767					Analysis Da	te: 4/14/2	017	SeqNo: 68	0789	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.00946						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0142						0		30	
Ethylbenzene	ND	0.0142						0		30	
m,p-Xylene	ND	0.00946						0		30	
o-Xylene	ND	0.00946						0		30	
Styrene	ND	0.00946						0		30	
Isopropylbenzene	ND	0.0378						0		30	
Bromoform	ND	0.00946						0		30	Q
1,1,2,2-Tetrachloroethane	ND	0.00946						0		30	
n-Propylbenzene	ND	0.00946						0		30	
Bromobenzene	ND	0.0142						0		30	
1,3,5-Trimethylbenzene	ND	0.00946						0		30	
2-Chlorotoluene	ND	0.00946						0		30	
4-Chlorotoluene	ND	0.00946						0		30	
tert-Butylbenzene	ND	0.00946						0		30	
1,2,3-Trichloropropane	ND	0.00946						0		30	
1,2,4-Trichlorobenzene	ND	0.0236						0		30	
sec-Butylbenzene	ND	0.00946						0		30	
4-Isopropyltoluene	ND	0.00946						0		30	
1,3-Dichlorobenzene	ND	0.00946						0		30	
1,4-Dichlorobenzene	ND	0.00946						0		30	
n-Butylbenzene	ND	0.00946						0		30	
1,2-Dichlorobenzene	ND	0.00946						0		30	
1,2-Dibromo-3-chloropropane	ND	0.236						0		30	
1,2,4-Trimethylbenzene	ND	0.00946						0		30	
Hexachlorobutadiene	ND	0.0473						0		30	
Naphthalene	ND	0.0142						0		30	
1,2,3-Trichlorobenzene	ND	0.00946						0		30	
Surr: Dibromofluoromethane	0.500		0.5912		84.5	56.5	129		0		
Surr: Toluene-d8	0.568		0.5912		96.2	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.569		0.5912		96.2	63.1	141		0		

Work Order:	1704169						00	SUMMARY REPORT
CLIENT:	Shannon & Wi	lson						
Project:	Ballard Conve	yance					Volatile Organic Compo	Inds by EPA Method 8260C
Sample ID 17041	47-012BDUP	SampType: DUP			Units: mg/	′Kg-dry	Prep Date: 4/13/2017	RunNo: 35538
Client ID: BATC	H	Batch ID: 16767					Analysis Date: 4/14/2017	SeqNo: 680789
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Va	%RPD RPDLimit Qual

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample Log-In Check List

Cli	ent Name:	sw	Work Order Num	ber: 1704169	
Lo	gged by:	Clare Griggs	Date Received:	4/13/2017	11:52:00 AM
<u>Cha</u>	in of Custe	<u>ody</u>			
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
<u>Log</u>	In				
-	 Coolers are p	resent?	Yes 🔽	No 🗌	NA 🗌
4.	Shipping cont	tainer/cooler in good condition?	Yes 🖌	No 🗌	_
		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes 🖌	No 🗌	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	No 🔽	
		Sample	e received straigh	t from field	
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
9.	Sufficient san	nple volume for indicated test(s)?	Yes 🖌	No 🗌	
10.	Are samples	properly preserved?	Yes 🖌	No 🗌	
11.	Was preserva	ative added to bottles?	Yes 🖌	No 🗌	NA 🗌
			_	_	MeOH
12.	Is there head	space in the VOA vials?	Yes 🗌	No 🗌	NA 🗹
-		es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗔	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🔽	No 🗌	
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌	
17.	Were all hold	ing times able to be met?	Yes 🖌	No 🗌	
Spe	cial Handli	ing (if applicable)			
-		tified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
	Person	Notified: Date			
	By Who	m: Via:	eMail Pr	none 🗌 Fax 🛛	In Person
	Regardi	ng:			
	Client In	structions:			
19.	Additional rer	narks:			

Item Information

Item #	Temp ⁰C
Cooler	6.4
Sample	13.5
Temp Blank	9.9

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

5
0
270
0
-
0

×
¥
.fre
emo
ont
ana
Yti
cal.
COT
3

00	
1.2	
- 2.22	
17	

	3600 Fremont Ave N.	Chain of Custody Record & Labo	Laboratory Services Agreement
Fremon	Seattle, WA 98103 Tel: 206-352-3790	of:	1041109
Analytica	Fax: 206-352-7178	NAME: BALLARD CONVEYANCE	Special Remarks:
dient: StW		Project No: 21-1-32329 - 002	ge 3
Address: 400 N. 34 St			Pa
City, State, Zip: ShATTUR / WA		Location: BALLARD	
Telephone: 206 - 224 - 695	8169-5	Shan DAVID RANDALL	Sample Disposal: CReturn to client Disposal by lab (after 30 days)
Fax:		dir @ shanwi	
and a second sec	Gaaaa		
Sample Name	Date Time (Matrix)*	201 23 0 00 00 00 00 00 00 00	Comments
1 BCT-OY-ENU 4	4/13/2017 11:30 50	×	nak nam provinské politiku sladní sladný provinské zaklada. Na hrani sladní se stanistické s
XO REAL PROVIDENCE AND A SECONDARY SECONDARY 2 100 State (Secondary Contraction Contraction)	a success a data and a farmer da		entroper structure rection of the structure with the structure set in the set of the set
	solar - the first of the second	High Star Try (1989-1991) 2014 - Sci AG (1975) 1 2 COTO (1974) 2014 - 201	e re less in more substance and the state of
6			
2 Contradiction of the state of		1. Constraints of the second s Second second secon second second sec	n en anter actor con transformation and enter an actor and actor
	and the second second second second	the state of the s	tions as galaxi suppollars start y hass formult only yourly area online.
6 The sould have and avoid own the . This approve	Contraction of the second s		and the second second second fill a manual of the second second second second second second second second second
10			
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other,	P = Product, S = Soil,	SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water, SW = Stc	SW = Storm Water, WW = Waste Water Turn-around Time:
**Metals (Circle): MTCA-5 (CRA-8) Priori	Priority Pollutants TAL Individual:	Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb Sb	Se Sr Sn Ti Ti U V Zn
***Anions (Circle): Nitrate Nitrite C	Chloride Sulfate Bromide	a O-Phosphate Fluoride Nitrate+Nitrite	
I represent that I am authorized to enter into this Agreement v each of the terms on the front and backside of this Agreement.	er into this Agreement with side of this Agreement.	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	
Relingunstigd	Date/Time 4/13/17	11:55 * MANUM Ulas H/13	A C SY O Next Day
Refinquished ×	Date/Time	x	Same Day (specify)
and all we have a first destruction of the first state	ないというというという	unnu fromontomolution from	(Africate)

APPENDIX E

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Date: July 19, 2017

To: Seattle Public Utilities Seattle, Washington

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimation always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland