

DRAFTING AND AutoCAD REQUIREMENTS FOR CONSULTANTS

Document Control

Version	Content	Contributors	Approval Date
R1.0		Drafting Standards and Design Guidelines-Blue Book	12/20/2007
R2.0		Reviewed and Approved by: David W. Holmes & Mike Haynes	04/08/2013
R3.0	Revised	Son T Nguyen – Civil Engineering Specialist Supervisor	05/18/2023
	Reviewed	Owen Kohashi PE, SE- Structural Engineering Supervisor	06/29/2023
	Reviewed	Jim Lee PE - Civil Engineering Supervisor	07/12/2023
	Reviewed	Caleb Rush PE - EPSE Principal	10/18/2023
	Reviewed	Ann McBurney – Civil Engineering Specialist, Senior	06/21/2023
	Reviewed	Walter McAlorum PE – EPSE Supervisor	05/25/2023
	Reviewed	Hans Gutmann PE – EPSE Principal	06/05/2023
	Reviewed	Patrick Doyle PE – Senior Mechanical Engineer	06/28/2023
	Reviewed	Paul Larson PE, SE - ETO Senior Manager	10/10/2023

Approved by:

Paul Larson (Oct 27, 2023 10:03 PDT)

10/27/2023

Paul Larson PE, SE Engineering and Operation Manager – Engineering Technology Operations

Division – Seattle City Light

RtoRP

10/27/2023

Bob Risch Interim Director – Engineering Technology Operations Division – Seattle City Light

Table of Contents

1.	iiido	Juiction	I
2.	Soft	ware	1
3.	Worl	kflow for a Typical Consultant Project	3
4.	Gene	eral Requirements	4
	4.1.	AutoCAD dwg files	
	4.2.	3-dimensional Models	4
	4.3.	Scale and Units	4
	4.4.	External References	4
	4.5.	Images	5
	4.6.	Electronic file and Layouts	5
	4.7.	North Arrow and Site Plan	5
5.	Draw	wing Classifications (Class Codes)	6
6.	Draw	wings Datum	7
7.	Draw	ving Setup	7
	7.1.	Drawing Template	7
	7.2.	Drawing Title Border	7
	7.3.	Font and Text Styles	8
	7.4.	Dimensioning	9
	7.5.	Leaders	10
	7.6.	Layers, Colors and Linetypes	11
	7.7.	Plot Style Table (ctb file)	11
8.	Title	Blocks	12
	8.1.	Subject Heading	12
	8.2.	Location Heading	12
	8.3.	Drawing Titles	12
	8.4.	Drawing Classifications (Class Codes)	13
	8.5.	Drawing Number	14
	8.6.	Endorsements Box Signatures	14
	8.7.	Engineering PE Stamp and Signature	14
	8.8.	Engineering Digital PE Stamp and Signature	15
	8.9.	Drawing Revision Block	15

9.	Stanc	lard Blocks	16
10.	Draw	ings Submittal	17
	10.1.	Submittal for 30%, 60% and 90% Design Phases	17
	10.2.	Final Phase (100%) Submittal	18
11.	Requ	irements for Electrical Drawings	18
	11.1.	Connection Diagrams:	19
	11.2.	Elementary Diagrams:	19
	11.3.	Detail Drawings:	19
12.	Requ	irements for Mechanical Drawings	21
	12.1.	Piping and Instrumentation Diagram (P&ID)	21
	12.2.	Mechanical Fabrication/Assembly Drawing	22
	12.3.	Mechanical Installation Drawings	23
Арре	endix A	- Subject Codes	24
Appe	endix B	s - Location Codes	27
Appe	endix C	– Sample Drawings Available Upon Request	30

1. Introduction

This Drafting and AutoCAD requirements for Consultants is a guideline for Consultant(s), Contractor(s) and/or Design-Build Contractor(s) who are performing engineering design and Computer-aided-drafting (CAD) services for the City of Seattle, Seattle City Light (SCL) Engineering and Technology Operation Division. The purpose of Drafting and AutoCAD Requirements guideline is for the standardization of SCL drawing information and consistency for all new drawing sets. Adherence to these title and format standards is required in order for SCL's Electronic Document Management System (EDMS) to integrate new drawings into an archive of more than 280,000 drawings.

Prior to starting the design and drafting phase, an intake meeting between the SCL Technical Resources, Project Manager, Project Engineers, and the Consultant CAD Team is highly recommended to begin with researching existing drawings, survey base maps, 3D laser scans as well as to ensure a clear understanding of this Drafting and AutoCAD requirements guideline to effectively complete the design drawing for submittal at each phase.

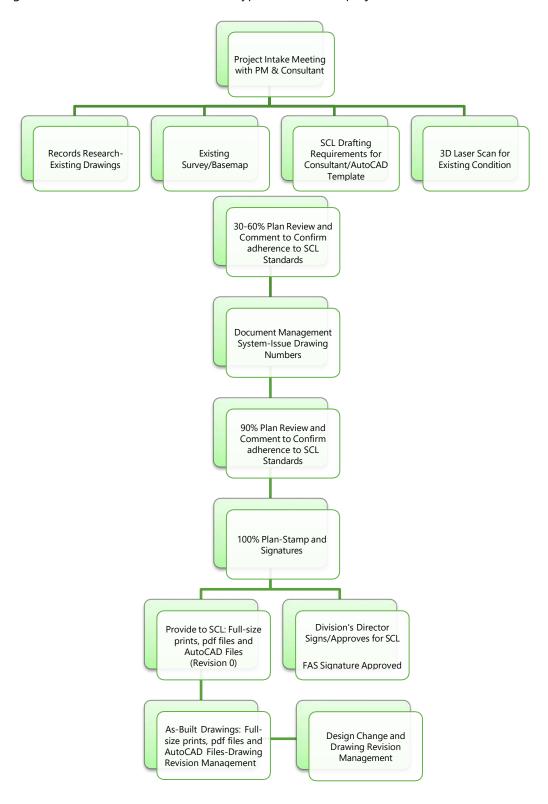
All drawings and drawing files become property of Seattle City Light when the work is completed, unless expressly agreed otherwise by SCL.

2. Software

Seattle City Light currently uses the following CAD and GIS software products:

- AutoCAD
- AutoCAD Map 3D
- AutoCAD Inventor
- AutoCAD Civil 3D, Civil 3D Survey
- AutoCAD Electrical
- AutoCAD Plant 3D
- Autodesk Revit
- Autodesk Advance Steel
- ESRI ArcGIS
- FARO Scene

Leica Cyclone 3DR


The current software version required by SCL will change from time to time. Therefore, please refer to the specific project contract or contact the Project Manager and SCL Technical Resources for guidance regarding version and submission requirements.

All new projects must use the latest version of the SCL drawing template, and supported blocks. Please coordinate with SCL Technical Resources for the current drawing template(s) and supporting files prior to beginning any SCL projects.

Advanced integrated design software other than AutoCAD may be used with prior SCL approval. The submittals and other drafting requirements of this standard must still be met. Design using 3D models created in Revit, AutoCAD Plant 3D, Civil 3D or Solidworks must also be provided to SCL after the project is completed.

3. Workflow for a Typical Consultant Project

The diagram below shows the workflow for a typical Consultant project.

4. General Requirements

4.1. AutoCAD dwg files

All CAD drawings shall be prepared in AutoCAD. If the drawings are prepared by other CAD software, they must be converted to dwg format with standard AutoCAD entities and objects.

4.2. 3-dimensional Models

3-dimensional design models shall be done in 1:1 scale. Layers should be used for different discipline's scope. Multiple models for a single project are not permitted without approval. Existing models shall be x-referenced into the model and not changed without SCL permission. Design models from Manufacturers shall not be changed without notice to SCL Engineering and approval.

Models' accuracy shall be 1/8 inch or less for equipment and 1/16 inch or less for structures. Point clouds used in models shall be reduced to the minimum size possible.

4.3. Scale and Units

All scaled drawings shall be drawn at true scale and true coordinates in model space. Civil drawings such as plan views, profile, cross sections, details shall be drawn at full scale in engineering units such that one drawing unit equals one foot. Structural, Mechanical, Electrical and Architectural may use architectural units such that one drawing unit equals one inch. Mechanical fabrication drawings shall be in decimal inches for machined components and fractional inches for piping fabrications or supports. Tolerances for mechanical drawing must be shown on the drawing with the dimensions or by standard tables.

The SCL title border shall be inserted in paper space at 0,0,0.

4.4. External References

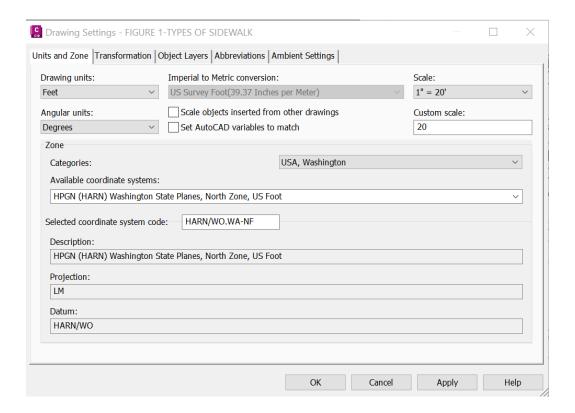
All external references "Xref" drawings shall be overlaid into the sub sheet at 0,0,0. This is permitted during the design phases only, 30%, 60% and 90% design phases. At final phase 100% submittal, all external references "Xref" files must be bound as blocks to each individual drawing file. No xref should be remained on the IFC/IFB drawings.

4.5. Images

Consultant shall avoid using background images (raster images) such as jpeg, tiff, pdf, png in drawings, if possible. If images are required, they shall be inserted into the drawings as embedded objects by using Insert OLE. If images cannot be inserted into the drawings as embedded objects, the consultant shall provide the image file(s) when submitting the final drawings to SCL.

4.6. Electronic file and Layouts

Electronic AutoCAD files shall match exactly with the printed submittal package delivered to SCL. There shall be no difference in contents between hard copies and electronic files.


Each drawing file shall contain only one layout. Multiple layout tabs in the single drawing file are not acceptable.

4.7. North Arrow and Site Plan

All site plan drawings shall utilize the same coordinate system used in the original survey drawing. The survey base data shall remain throughout all phases of the project. All site plans shall be prepared at their true geo-reference locations and drawing settings shall be matched with the current datum on the original survey drawings.

The North Arrow should be placed in the upper right of all plan views. Preferably, all north arrows should point to the top of the drawing. If this is not possible, it should point to the left or right. It is not recommended to point the arrow down, except in limited circumstances.

Civil drawings shall be set with Units and Zone to match with the original survey drawing datum.

5. Drawing Classifications (Class Codes)

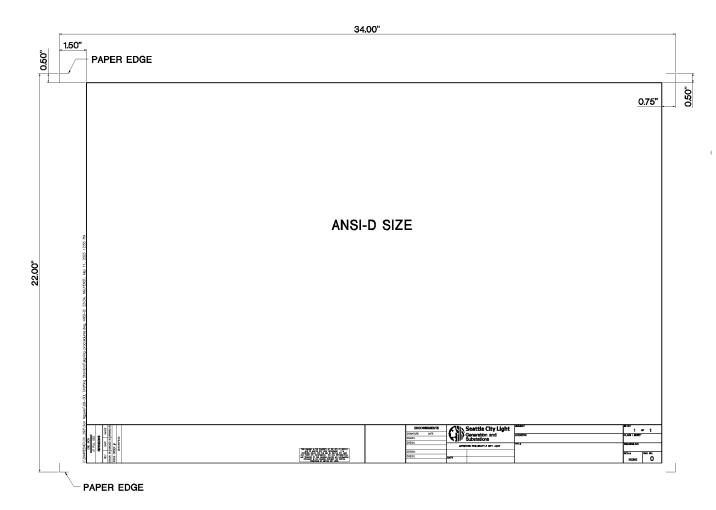
SCL has established the following discipline codes based on the data integrated and designed on the Electronic Document Management System (EDMS). The Consultant shall not create any other class codes.

Class Code	Class Code Description
A	Architectural
С	Civil
Е	Electrical
G	General (cover & index sheets)
M	Mechanical
L	Land Surveying (or Landscape)
S	Structural
R	Communications
Т	Transmission

U	Underground

6. Drawings Datum

- All drawings should be in the World UCS with the (0,0) point defined by Survey if project survey drawings are provided.
- Horizontal Datum should be the most recent projections reported by the National Geodetic Survey (http://www.ngs.noaa.gov/) and/or tied to a local network such as the WSRN (http://www.wsrn3.org/)
- Vertical Datum should be tied to a published benchmark found on the Washington Geodetic Survey website, http://gsow.org/map/. Datum should be the North American Vertical Datum of 1988 (NAVD 88) or the latest projection determined by the National Geodetic Survey.


7. Drawing Setup

7.1. Drawing Template

- SCL AutoCAD and Civil 3D standard drawing template can be found at https://www.seattle.gov/city-light/construction-services/requirements-andstandards.
- All dwg files created for any SCL project must use the default template GenPS.dwt GenPS_Digital.dwt or GenPS_C3D.dwt
- This template includes SCL specific Civil 3D styles, fonts, dimension styles/variables, linetypes, and block symbols.

7.2. Drawing Title Border

- Standard ANSI-D (22x34) drawing sheets are preferably used for Public Works design, construction, and as-constructed drawings.
- Standard SCL-D (28x40) drawing sheets should be prior approval before used per project. Consultants shall delete other unused layouts in the template.
- DO NOT under any circumstances modify or explode the attributed title block.

7.3. Font and Text Styles

• The following fonts and text styles are approved for SCL use and are pre-defined with the drawing templates.

Annotation Type	Text Style	Plotted Text Size Sheet ANSI (22 x 34) & SCL-D (28 x 40)
Drawing Titles (in title block)	HELV	0.25"
View Title	HELV	0.1875"
General Text, Callouts	Romans	0.125"

Dimension Text	Romans	0.125"
All Other Notes	Romans	0.125"
Revision Note Text	Romans	0.09375"

- Annotation callouts, dimensions, notes and general texts within the body of the drawing must be upper case letters. Lower case letters are only allowed for unit measurements, symbols, and technical designations such as Fc', Fy etc.
- All lettering shall be oriented to facilitate reading from the bottom or from the right side of the sheet.
- Use Mtext for all notes and callouts / multileaders. Dtext from converted REVIT files is acceptable, however it is not ideal.
- Many special symbols (Ω, the "ohm" symbol, for example) can be selected from the "@" list in the Multiline Text tool. Other symbols (e.g., µ, the "micro" symbol), can be selected from the 'Other' palette of special characters. Use these for creating text like "µF" for "microfarads".
- All text within the body of the drawing shall be vertical UPPER CASE letters except for the symbols for units of measure, which shall use UPPER and lower case based on NIST and SI standards.
- Do not use text smaller than 0.09 (9/100") in the body of drawings.
- All fraction formats shall not be stacked, such as: 1/8".

7.4. Dimensioning

The consultant shall use the GENPSSTANDARD dimension style from SCL provided in the drawing template file. This may be modified, but the consultant is encouraged to use the GENPSSTANDARD setting variables and select "Override" to temporarily change settings only if necessary.

Dimension style settings used in the GENPSSTANDARD:

Dimension line color: Yellow

Baseline spacing: 0.5

Extension line color: Yellow

Extend beyond dim lines: 0.0625

Offset from origin: 0.0625

Arrowheads: Closed filled

Arrow size: 0.125

Center Mark: 0.0625

Dimension break: 0.125

Text style: ROMANS

Text color: Green

Text height: 0.125

Text placement vertically: Above

o Text placement horizontally: Centered

Offset from dim line: 0.09

o Text alignment: Aligned with dimension line

o Linear dimension unit format: Architectural

Linear dimension precision: 0'-0 1/16"

Linear dimension fraction format: Not stacked

Angular dimension unit format: Decimal Degrees

o Angular dimension precision: 0

7.5. Leaders

All callouts shall be shown using multileader. The leader shall be at approximately 45 degrees whenever possible.

Multileader style settings used in the GENPS:

Leader format type: Straight

Color: Yellow

Arrowhead symbol: Closed filled

Arrowhead size: 0.125

Leader break size: 0.125

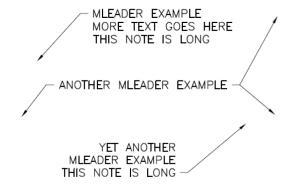
Landing distance: 0.125

Multileader type: Mtext

Text style: ROMANS

Text angle: Keep horizontal

Text color: Green


Text height: 0.125

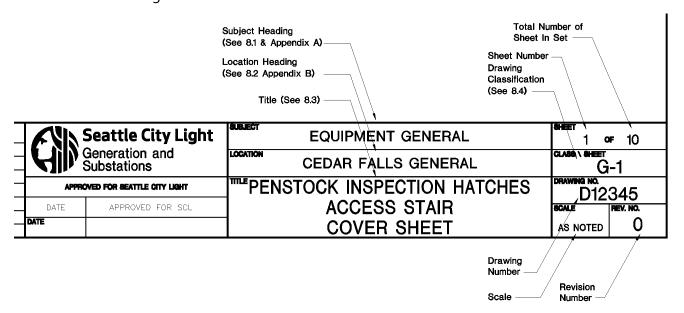
Leader connection: Horizontal

Left attachment: Middle of top line

Right attachment:: Middle of bottom line

Landing gap: 0.09

7.6. Layers, Colors and Linetypes


- SCL uses the National CAD Standard layer naming conventions. A selection of layers exists in the template. For additional layers, follow the NCS convention.
- When starting a new drawing, layer 0 will be set as the current layer. No objects shall be drawn on layer 0. Use layer 0 to insert blocks and xrefs. Do not freeze layer 0.
- Include layer description for all layers. All entities in the drawings shall be drawn with colors and layers set to "By Layer" only.

7.7. Plot Style Table (ctb file)

The plot style is intended to provide consistency throughout the drawing package. The Consultant shall use GenPS Standard-Black.ctb file provided by SCL. If the Consultant believes the ctb file requires modification, contact SCL Technical Resources for approval prior to implementing changes.

8. Title Blocks

Design and Construction drawings created by or submitted to Seattle City Light shall be used the standard SCL title block. Although the drawing template contains six standard layouts within the title block, the Consultant shall use the ANSI-D (22x34) drawing title for Public Works design and construction documents.

8.1. Subject Heading

Use only the appropriate subject heading that is provided by SCL and is applicable to the project, i.e. Overhead Transmission, Underground Distribution Network, Equipment General, or Telecommunications. Subject Heading should be spelled out on the AutoCAD title block. If there is no applicable subject heading, leave this block blank. See Appendix A for the official list of subject headings.

8.2. Location Heading

The location heading should be the officially designated facility name and location heading as designed in SCL EDMS. See Appendix B for the official list of location headings.

8.3. Drawing Titles

The standard City Light title block for AutoCAD drawings includes three lines of titles: General Description, Detailed Description, and Drawing Type. These titles are AutoCAD attribute text that is also associated with metadata embedded in

our Document Management System. Your effort to fill out it properly will make drawing search in SCL Document Management system more efficient.

For consistency of title format in drawings, please follow the recommended structure example below:

General Description Example:

UNIT 24

ACCESS ROAD

DAM AND TUNNEL

SUSPENSION FOOT BRIDGE

ENTRANCE ROADWAY REALIGNMENT

Detailed Description Example:

EXCITATION SYSTEM

GOVERNOR CONTROL

GENERAL NOTES

STEEL TOWER

DELUGE CONTROL

Drawing Types Example:

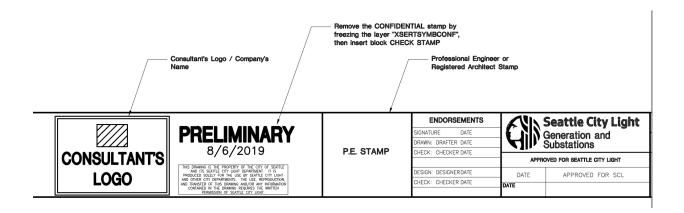
SITE PLAN

GENERAL LAYOUTS

FOUNDATION PLAN

ONE-LINE DIAGRAM

DC ELEMENTARY


8.4. Drawing Classifications (Class Codes)

See Section 5 for the official list of class codes used in the drawings. The Class\Sheet number assigned shall be in consecutive numbers such as A-1, A-2, A-3, etc. **DO NOT use A-001, A-002 or A1.1, A1.2.** See Appendix C for sample drawing set.

8.5. Drawing Number

Technical Resources will provide the drawing numbers to the Consultant at 90% design review.

The file name of the AutoCAD file should be named according to the drawing numbers. For example, if a drawing number is D12345, the file name should be D12345.dwg

8.6. Endorsements Box Signatures

SCL requires the endorsement box initials/signatures and dates to be filled out along with PE stamp and signature for all drawings at final (100%) design phase.

a) Drafter: The person that created the AutoCAD drawings.

b) Drafter Checker: CAD Manager or designated CAD QC person.

c) Designer: The Engineer.

d) Engineering Checker: The Engineer's Supervisor or designated Engineering QC person.

e) Leave boxes under Approved for SCL blank.

8.7. Engineering PE Stamp and Signature

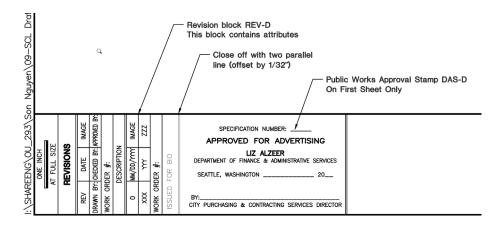
State of Washington professional engineer, architect, or land surveyor stamp(s) shall be placed in a block immediately to the left of the "Endorsements". Final Issued For Bid (IFB) or Issued For Construction (IFC) set shall be stamped and sealed on all drawings. Wet signatures may be placed on either wet or electronic seals and they shall meet the requirements of Washington State WAC <u>Chapter</u> 196-23 WAC:

Electronic engineer's or architect's stamps shall not be included in the electronic CAD file unless agreed to by SCL.

8.8. Engineering Digital PE Stamp and Signature

Upon agreement between SCL and Consultant to use digital stamping and signatures for the project, Consultant's CAD Team shall download an AutoCAD template that will be used for digital stamping called GenPS_Digital.dwt or expand the PE stamping box by 4.5 inches by using Block Editor (BEDIT) command. See image below for an example.

	ENDORSEMENTS	Seattle City Light
4.50'	SIGNATURE DATE	Generation and
-	DRAWN:	Substations
	CHECK:	
		APPROVED FOR SEATTLE CITY LIGHT
	DESIGN:	
	CHECK:	DATE
1		

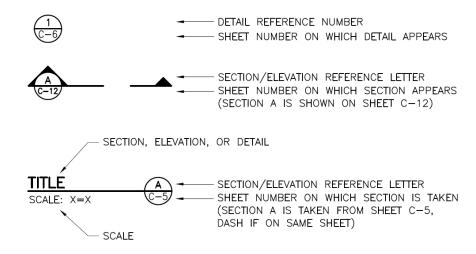

Digital stamping and signature shall meet the requirements of Washington State WAC <u>Chapter 196-33 WAC</u>:, <u>Chapter 196-23 WAC</u>:

Digital stamping and signatures shall be made individually on each drawing. Consultant shall not use multiple drawings at once when performing digital stamping and signatures.

8.9. Drawing Revision Block

The drawing revision block for revision 0 is already inserted in each layout of SCL drawing template. Revisions shall begin as Rev 0 for Issued for Bid (IFB) or Issued for Construction (IFC).

The figure below is for general arrangements of revision and Public Works Approval blocks.



9. Standard Blocks

Consultant shall use the following standard blocks on drawings. These are AutoCAD Dynamic blocks containing rules that allow Users to configure parameters and changes the appearance of the blocks. No other standard blocks shall be allowed on the drawings.

- Use letter for PLAN, SECTION, ELEVATION and SECTION CUT VIEWS.
- Use number for DETAIL VIEWS.

DETAIL AND SECTION REFERENCING

VIEW SYMBOLS	FILE NAME
(C-1)	SECT-CUT.dwg
(A)	ELEV-CUT.dwg
(A) (C-1)	VIEW-ELEV.dwg
(A)	VIEW-SECT.dwg
SECTION SCALE: 1/2"=1'-0" A-2	SECTION—NOTATION.dwg
ELEVATION SCALE: 1/2"=1'-0" A-2	ELEVATION-NOTATION.dwg
DETAIL 1 SCALE: 3"=1'-0" A-2	DETAIL—NOTATION.dwg
PLAN DETAIL A SCALE: 1"=5" A-2"	PLAN-DETAIL-NOTATION.dwg
	N-ARROW.dwg
PRELIMINARY 5/16/2023	CHECK STAMP.dwg

10. Drawings Submittal

10.1. Submittal for 30%, 60% and 90% Design Phases

- Submit prints and pdf files of all drawings to SCL Technical Resources for review and comment in accordance with the project contract.
- Provide one (1) set of half size (11x17) drawings for all internal submittals (30/60/90%). All electronic files and PDFs shall be created at full-size (ANSI D, 22x34).
- SCL Technical Resources will provide comments on AutoCAD drawings.
 Consultants shall incorporate the comments into the next design phase.
- For the 30% and 60% deliverables, only a representative sample needs to be provided – not the entire drawing set (i.e., a few examples from each type of

- drawing general, plans, profiles, details, etc.). Approximately 10% of the total number of drawings is expected.
- For the 90% submittal, all drawing files including 3D model shall be reviewed by SCL Project Engineers and SCL Technical Resources. This is considered the final CAD review – no additional CAD comments (from SCL) should be expected after this submittal.

10.2. Final Phase (100%) Submittal

- These drawings shall incorporate all of the final design changes. Drawings shall
 be of such quality that electronic scans or copies can be made without loss of
 details. No drawings shall be considered 'final' until all SCL comments have been
 resolved, as well as design and all contractor provided construction changes have
 been incorporated into the drawings.
- The Consultant shall provide one (1) set of full-size prints (ANSI D, 22x34 or other sizes as approved), plotted using 'paper space', with original signatures and seals on all drawings. Wet signatures may be placed on either wet or electronic seals. Drawings shall be produced on standard bond paper.
- The Consultant shall provide one set of the final stamped drawings in pdf format Wet signed drawings shall be scanned to make the PDF set.
- Each AutoCAD file will contain only one (1) layout for each drawing sheet. All review corrections from 90% review comments should be included in this submittal.
- If Xrefs or attributed objects are used by the Consultant during design phases, all
 reference files required to generate the complete drawing shall be bound to the
 drawing file.
- A complete 3D model and project files shall be submitted to SCL as records of the design model. Any major changes made during construction shall be updated in the model at as-built phase.

11. Requirements for Electrical Drawings

Use IEEE C37.2 (latest active revision) **Standard Electrical Power System Device Function Numbers and Contact Designations** to designate all relay and control equipment and devices on all electrical diagrams. Relays shall also indicate the specific relay manufacturer and model designation on connection diagrams. On elementary diagrams, provide the complete manufacturer's model number in the drawing legend, uniquely identified with an IEEE device number and device-specific identifier.

Use IEEE 100, **The Authoritative Dictionary of IEEE Standards Terms** for all electrical terms.

11.1. Connection Diagrams:

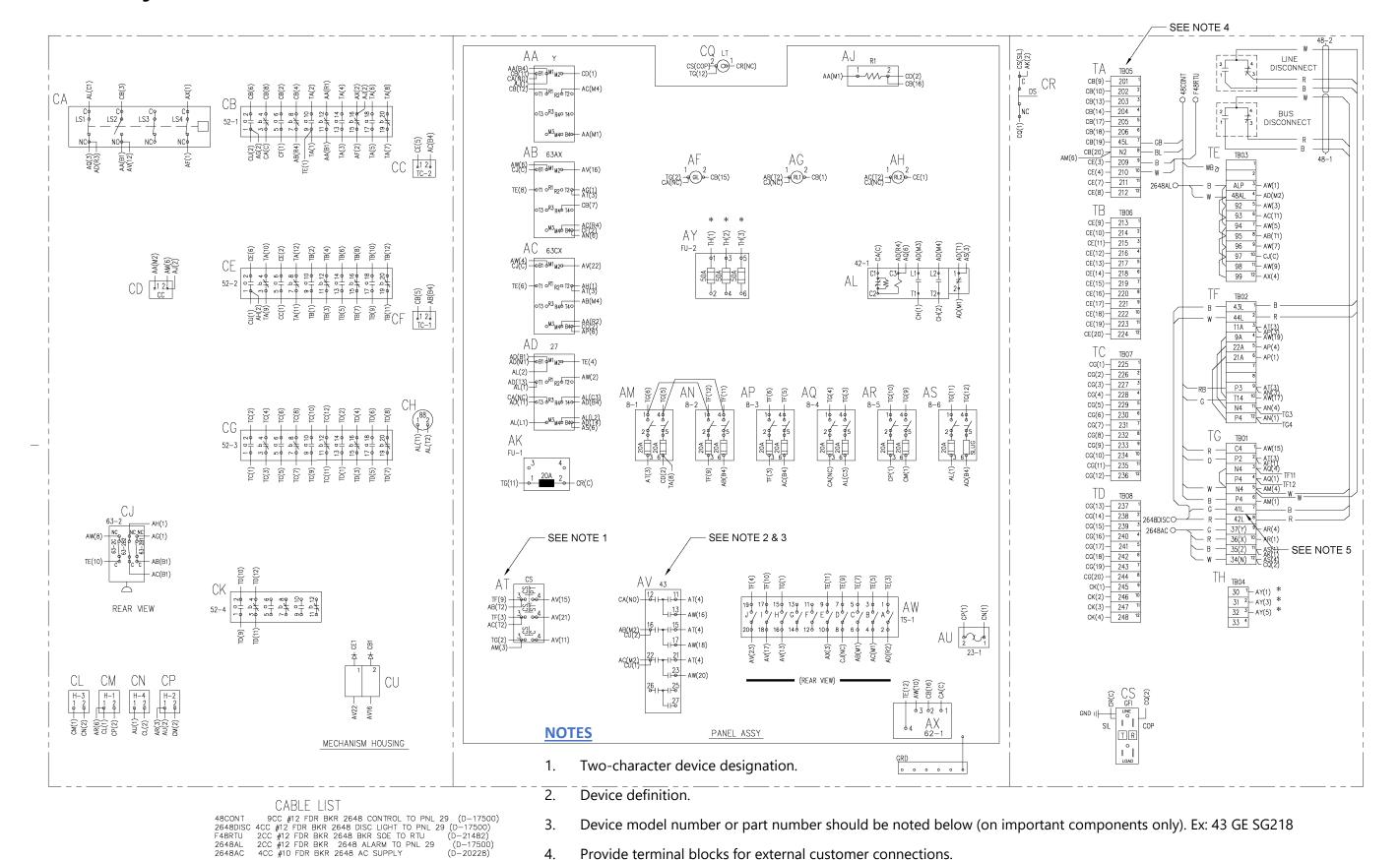
- Labeling of Devices: On connection drawings, all devices shall be assigned a two (2) letter code above and to the left of each device (e.g. AA, AB, AC, BA, BB, BC...CA, CB, CC, etc.) Devices shall also be marked with the ANSI device function number above and to the right of each device. Also, the model number of the equipment shall be indicated on or near the device (see Figure 1).
- **Connections:** Connection drawings shall show every point-to-point connection using the two (2) letter device designation described above, not the IEEE device function number. Provide space for showing and listing external cables to be installed by others. All external cabling shall be terminated on the terminal blocks. Interconnections from one drawing to another shall be referenced by drawing number and terminal block position. (See Figure 2).

11.2. Elementary Diagrams:

Elementary diagrams shall conform to SCL standards as follows:

- Terminal block connections, when practical, shall be shown.
- An open circle (\bigcirc) shall be used to designate terminal points.
- The two (2) letter designations for the terminal block shall be to the right of the circle and the terminal block point number on the left.

11.3. Detail Drawings:


- Equipment layout: Provide equipment layout drawings showing the location, size and dimensions for all equipment, parts and components to be installed, built or constructed.
- **Wiring, Piping and Ducts:** All wireway, conduit, and cable tray drawings shall include all pertinent information to show the route, size, and material for wireway, conduit, or cable tray as appropriate.
- **Equipment Assembly drawing:** Provide drawings showing equipment assembly detail and detailed connections between components, equipment and their appurtenances, so the completed system will function as designed once the construction or installation work is completed.

Other Detailed Drawings: Provide detailed drawings indicating all visible
interference and obstruction to the new installation or construction. Also provide
drawings showing solutions to the interference or obstruction. Visible
interference and obstruction are defined as object, parts or materials that are
exposed and can be seen without removing permanent structures or materials.

See Figure 1 – Example of Connection Diagram

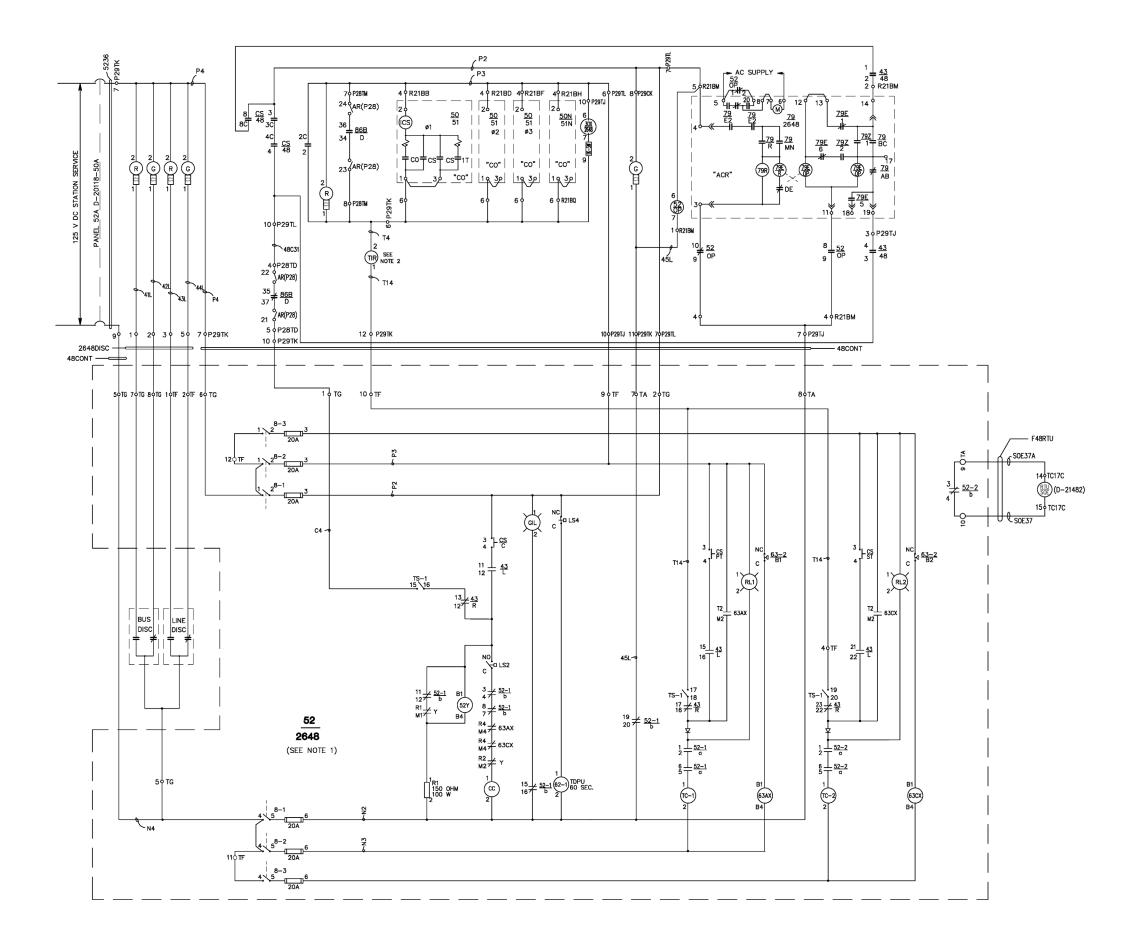
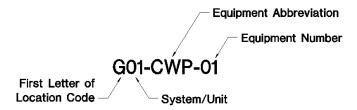
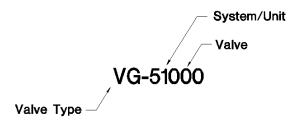

See Figure 2 - Example of Elementary Diagram

Figure 1 - Example of Connection Diagram

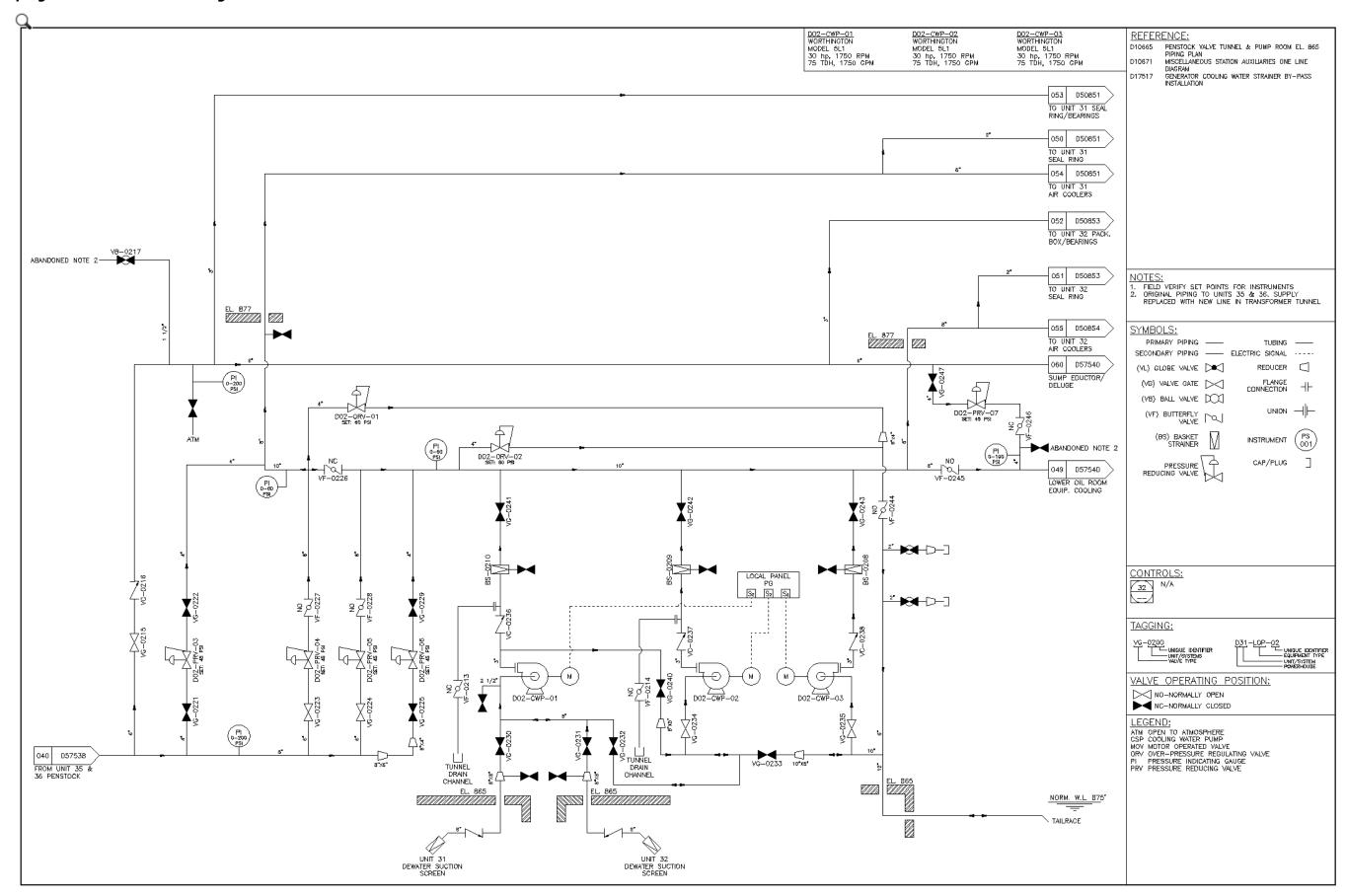
Use terminal block labels as circuit designations on elementary diagram.


Figure 2 – Example of Elementary Diagram


12. Requirements for Mechanical Drawings

12.1. Piping and Instrumentation Diagram (P&ID)

- Drawings that diagram piping system shall contain all major piping components, valves, equipment, penetrations, and instruments. The drawing layout shall be based on a flow of left to right. Standard symbols for equipment and valves shall be used.
- Equipment Tagging shall be based on location, system/unit, and type. For
 equipment that is not specifically for one generation/turbine, the common
 system number are listed below. Standard equipment abbreviations can be used.
- Tag format is:



Valve Tagging shall be based on valve type, system/unit, and unique number. For
valves that are not specifically for one generator/turbine, the common system
numbers are listed below. Instrument root valves, drain valves, and vent valves do
not receive tag numbers.

- Instrument Tagging is done with standard abbreviations in ISA 5. Tag specific numbers are supplied by SCL. Consultant can request tab numbers at 60% design.
- See Figure 3 for example of Piping and Instrumentation Diagram

Figure 3 – Example of Piping and Instrumentation Diagram

System Codes		<u>Unit Codes</u>			
01	Air	5	Cedar Falls Unit 5	41	Ross Unit 41
02	Water	6	Cedar Falls Unit 6	42	Ross Unit 42
03	Oil	21	Gorge Unit 21	43	Ross Unit 43
04	CO2/Fire Suppression	22	Gorge Unit 22	44	Ross Unit 44
05	Instrument Air	23	Gorge Unit 23	51	Boundary Unit 51
06	Other	24	Gorge Unit 24	52	Boundary Unit 52
		31	Diablo Unit 31	53	Boundary Unit 53
		32	Diablo Unit 32	54	Boundary Unit 54
		35	Diablo Unit 35	55	Boundary Unit 55
		36	Diablo Unit 36	56	Boundary Unit 56
				81	Tolt Unit 81

Table 1: Codes for System and Units

VA	Angle Valve	FCV	Flow Control Valve
VB	Ball Valve	MOV	Motor Operated Valve
VC	Check Valve	PRV	Pressure Reducing Valve
VF	Butterfly Valve	PSV	Pressure Safety Valve
VG	Gate Valve	SSV	Solenoid Shutoff Valve
VK	Knife Valve		
VL	Globe Valve		
VN	Needle Valve		
VP	Plug Valve		
VZ	3-way Valve		

Table 2: Valve Abbreviations

12.2. Mechanical Fabrication/Assembly Drawing

- Drawings for fabrication or machine of components shall be standard
 Orthograph or Multiview drawings. Isometric views may be added to drawings for
 clarity. Multi-component drawings should not be used for components that
 require multistep machining. Drawing scales should be standard (1:2, 1:4, 1:16,
 1:24). Specific materials for all components must be listed in a table on the
 drawings.
- Drawing size should be based on the smallest practical to provide details needed for fabrication. Preferred drawing sizes are ANSI C or ANSI B.

- Dimensioning should not be done on isometric views unless it is for piping fabrication.
- Dimensions shall be in imperial units with the option to have metric units in parentheses. Tolerances shall be per ASME Y14.5 and weld symbols per AWS A2.4.

12.3. Mechanical Installation Drawings

 Drawings which show installation of equipment or other mechanical components shall contain all pertinent information for installation and notes for details which are determined by the field. Notes may be used for guidance information on location or possible clashes. Breaks between existing and additions must be called out.

Appendix A - Subject Codes

City Light Facility Subject Codes			
Subject			
Code	Subject Code Description		
AEQ	Auxiliary Equipment (pumps, backup generators, cranes, special tools, etc.)		
BRG	Bearings (turbine/generator bearings)		
BLD	Building		
BUS	Bus Fabrication (High & Low Voltage)		
CCA	Computer Control Automation (PLC, HMI, Thin Client, etc.)		
CRM	Cable Routing Map		
CPS	Cathodic Protection Systems		
AIR	Compressed Air Systems (includes; tanks, after cooler, dryer)		
CON	Conservation		
COV	Cover Title Page (Sheet Index)		
DGM	Dam Gates (Mechanical; intake, broom, taintor, sluice, etc.)		
DVS	Development Studies (see UND)		
DIS	Distribution Substation		
DTS	Draft Tube to Stop Log		
EQP	Equipment General		
FRC	Federal Energy Regulatory Commission (FERC Exhibits)		
FDS	FERC Dam Safety (FERC related miscellaneous)		
FPS	Fire Protection Systems (water and gas)		
FMS	Forms		
FDN	Foundation		
GCS	Generation Cooling Systems (water or air)		
GEN	Generator		
GEO	Geologic Content (Geology related: rocks mechanics, etc.)		
GOV	Governor System (pressure tank, sump, pumps, filters, servomotor)		
GRD	Grading for Drainage		
GND	Ground Electrical		
HCO	HVAC Controls (diagrams sequence of operations etc.)		
HPI	HVAC Piping (heat, vent, air conditioning)		
HSY	HVAC Systems (schema & details and equipment schedule)		
IND	Industrial Substations		
INS	Instrumentation (schem & det-perf test equip install-conn diag are "E" dwgs)		
LSC	Landscape		
LOG	Log (record of drill log)		
LUB	Lube Oil Systems (tanks, pumps, filters, etc.)		
MAP	Mapping (general, survey, topographic)		

MVS	Medium Voltage Switchgear
MCR	Meter Communications & Relay
MTR	Meter Division (NSC equipment)
OCS	Oil Containment System
OHD	Overhead Distribution
OHS	Overhead Distribution Standards
OHF	Overhead Fiberoptic
OHT	Overhead Transmission
PAS	Panel Schedule
PEN	Penstock and Tunnel
PER	Permits
PHP	Physical Plant
PIP	Piping Systems (all fluid or gas piping)
PLT	Plot Plan
PDS	Plumbing Drainage Sewer
REL	Relay and Control
REM	Remodel
RAP	Roads (access & paving)
ROF	Roofing (any facility)
STY	Safety (equipment or systems)
SCA	Scada System (Power System Monitor, Oscillograph)
SEI	Seismic Improvement
SMS	Security Systems
SKC	Skagit Communications
SLS	Slope Stabilization
SPC	Spill Prevention Control Countermeasure
SPE	Specifications
STD	Standards General
SYS	System Engineering & Diagrams
TUG	Tanks Underground
TEL	Telecommunications
TLM	Telemetry (remote sensors-communication)
XMH	Transmission High Voltage (over 100kV)
XML	Transmission Low Voltage (under 100kV)
XSD	Transmission Standards
TUR	Turbines (include from stay vanes to the nose cone)
UGA	Underground Distribution - Arterial
UGS	Underground - System
UGX	Underground - Transmission (Cable)
UGG	Underground Distribution - General (miscellaneous)
UGI	Underground Distribution - Industrial, Commercial & Medical
UGN	Underground Distribution - Network

UGR	Underground Distribution - Residential
USD	Underground Distribution - Standards
UND	Undeveloped Proposals - Maps & Surveys (see DVS)
WTF	Wastewater Treatment Facilities
WTR	Water Systems (filtration, disinfection)
WIC	Wicket gates (include shift ring, linkage, shear pin)
WLA	Wireless Antenna Telecommunications

Appendix B - Location Codes

Active City Light Facilities		
Location		
Code	Location Code Description	
BAB	Babcock Creek (communication)	
BCN	Beacon Hill Cable Terminus (cable to tower transition)	
BES	Bethlehem Substation (steel mill; Bethlehem, Birmingham, Nucor)	
BOE	Boeing Corporation (was East Property now all sites list equip site in title 1)	
BPA	Bonneville Power Administration (BPA)	
BOT	Bothell Receiving Substation	
BOS	Boundary Off Site (communication external to facility)	
BDG	Boundary Project General	
BDM	Boundary Dam & Reservoir	
BHW	Boundary Headworks	
BPH	Boundary Powerhouse	
BSS	Boundary Switching Station	
BOX	Box Canyon (dam & facilities-Pend Oreille PUD)	
BSA	Broad Street Annex (to Receiving Substation)	
BST	Broad Street Receiving Substation	
CAN	Canal Receiving Station	
CFG	Cedar Falls General	
CHS	Cedar Falls Housing & Camp	
CFM	Cedar Falls Masonry Dam	
CFL	Cedar Falls Morse Lake Dam	
CNS	Cedar Falls North Switchyard	
CFP	Cedar Falls Penstock	
CPH	Cedar Falls Powerhouse	
CFS	Cedar Falls Switchyard	
CID	Columbia Basin Irrigation District (GCPHA-Grand Coulee Project Hydroelectric Authority)	
CEF	Commercial Electrical Facility (SCL equip on private industrial site)	
COU	Cougar Mountain Radio Site (communication)	
COV	Covington Substation (BPA)	
CRT	Creston Nelson Receiving Station	
CRI	Crista Ministries Radio Site (communication)	
DAW	Dawson Substation (energized 4kV unit sub)	
DEL	Delridge Receiving Station	
DEU	Delridge Unit Substation (see also DEL-4kV unit sub decomm files)	
DEN	Denny Substation (New facility Location)	
DHS	Diablo Camp & Housing	
DDM	Diablo Dam & Reservoir	
DPH	Diablo Powerhouse	

DSS	Diablo Switching Station
DND	Downtown Network Distribution
DTP	Downtown Transit Project (public transport systems; bus, street car, rail)
DUW	Duwamish Receiving Station
EGR	Eagle Ridge (communication)
EPS	East Pine Receiving Station
ETC	East Telecommunication (communication)
EAT	East Transmission
ELC	Environmental Learning Center (North Cascades)
FCR	French Creek Repeater (communication)
GTS	Georgetown Steam Plant (facility not active)
GMT	Gold Mountain Radio Site (communication)
GDM	Gorge Dam & Reservoir (Gorge High Dam)
GPH	Gorge Powerhouse
GSS	Gorge Switching Station
HIS	Highline Substation (future site-Burien)
HUD	Hudson Cable Terminus
LAH	Laurelhurst Substation (energized 4kV unit sub)
LPP	Lucky Peak Project
MLF	Maple Leaf Reservoir (communication)
MPV	Maple Valley Substation (BPA)
MRS	Massachusetts Receiving Station
MET	Metro-West Point Treatment Plant
MIL	Miller Ledge Repeater (communication)
MOR	Morgan Substation (energized 4kV unit sub)
MYR	Myrtle Street Reservoir (communication-decomm sub)
NEW	Newhalem Camp & Facilities
NCD	Newhalem Creek Dam
NCP	Newhalem Creek Powerhouse
NOD	North Distribution
NMS	North Mountain Substation (SnoPUD intertie)
NSC	North Service Center
NOR	North Substation
NTC	North Telecommunications (communication)
NOT	North Transmission
NES	Northeast Substation (future site in City of Shoreline)
Objects	Objects (WAMS interface links)
OTHER	Other (multiple or no location code)
PCC	Power Control Center (communication)
QUA	Queen Anne Tower (communication)
RAT	Rattle Snake Radio Terminal (communication)
RKP	Rockport (the town of)

RDM	Ross Dam & Reservoir (Ruby Dam)
RPH	Ross Powerhouse
SBU	Salmon Bay Undercrossing
SMT	Seattle Municipal Tower (was KEY-Key Tower)
SSF	Seattle Safeco Field (baseball stadium)
STM	Seattle Steam Plant (2014 new owner-continue STM)
SEG	Segelsen Ridge (communication)
SHR	Shoreline Substation
SKG	Skagit General (select more specific Code Location)
SNO	Snohomish Substation (BPA intertie)
SNK	Sno-King Substation (BPA intertie)
SOD	South Distribution
SSC	South Service Center
SOU	South Substation
STC	South Telecommunications (communication)
SOT	South Transmission
SRT	SR 99 Seattle Tunnel (replaced Alaskan Way Viaduct)
STL	Street Lights (City of Seattle all facilities)
SCC	System Control Center (System Operation Center)
SYS	System Wide (SCL multiple facilities)
TAL	Talbot Hill Substation (PSE)
TTC	Technical Training Center
TOL	Tolt River (26kV pole line)
TSF	Tolt River-South Fork (dam, powerhouse & penstock)
TDP	Transmission Distribution Planning
UST	Union Street Receiving Station
UWE	University of Washington, East
UWW	University of Washington, West
URC	University Receiving Station
VLD	Viewland-Hoffman Receiving Station
WFB	West Seattle Freeway Bridge

Drafting&AutoCAD Requirements for Consultants 2023_R3.4

Final Audit Report 2023-10-27

Created: 2023-10-27

By: SonT Nguyen (SonT.Nguyen@seattle.gov)

Status: Signed

Transaction ID: CBJCHBCAABAAKL7yPeQadXi9WHNeQL8TM8FnFDRsJfvX

"Drafting&AutoCAD Requirements for Consultants 2023_R3.4" H istory

- Document created by SonT Nguyen (SonT.Nguyen@seattle.gov) 2023-10-27 3:51:12 PM GMT- IP address: 50.47.188.236
- Document emailed to Paul Larson (Paul.Larson@seattle.gov) for signature 2023-10-27 3:54:18 PM GMT
- Email viewed by Paul Larson (Paul.Larson@seattle.gov) 2023-10-27 4:59:53 PM GMT- IP address: 104.47.64.254
- Document e-signed by Paul Larson (Paul.Larson@seattle.gov)
 Signature Date: 2023-10-27 5:03:21 PM GMT Time Source: server- IP address: 97.126.5.249
- Document emailed to Bob Risch (Bob.Risch@seattle.gov) for signature 2023-10-27 5:03:24 PM GMT
- Email viewed by Bob Risch (Bob.Risch@seattle.gov) 2023-10-27 6:20:00 PM GMT- IP address: 104.47.64.254
- Document e-signed by Bob Risch (Bob.Risch@seattle.gov)

 Signature Date: 2023-10-27 6:26:35 PM GMT Time Source: server- IP address: 73.19.50.61
- Agreement completed. 2023-10-27 - 6:26:35 PM GMT

