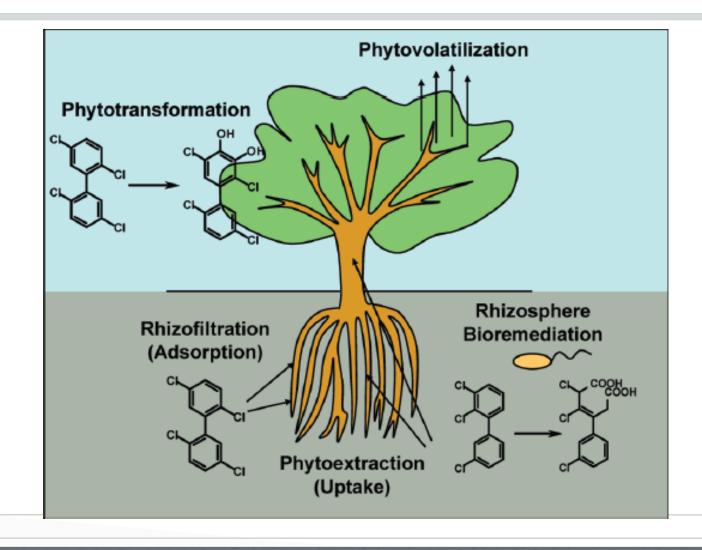
Phytoremediation of Organic and Inorganic Contaminants

Urban Forestry Commission Meeting 6/11/2014

Outline

• Phytoremediation


• Research Focus

• Broader Applications

Phytoremediation

- Definition
- Benefits to bacteria
 - Root exudates:
 - Decrease competition
 - Co-substrates for oxidation/degradation
 - Compounds that modify pollutant mobility

Phytoremediation

Phytoremediation -Advantages

- Environmental impact
- Cost
- Effectiveness
- Contamination type
- Monitoring
- Erosion control
- Carbon sequestration

Phytoremediation - Challenges

• Acceptability

• Knowledge

• Phytotoxicity

• Efficiency

Gas Works Park Research

- Background
 - Gas production from 1905-1956
 - Residual contamination under soil cap
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Prior remediation
- Endophyte-assisted phytoremediation of PAHs

Endophyte-Assisted Phytoremediation

• Endophyte = microbe that lives within a plant without causing apparent disease

• Plant-endophyte partnerships → increased remediation, protective effects on plants

• Applications to Gas Works Park

Endophyte-Assisted Phytoremediation of PAHs

• Willow

- 3 PAHs: naphthalene, phenanthrene, pyrene
- Willow + endophytes
 - PD1 (*Pseudomonas putida*)
 - Isolated from *Populus deltoides*
 - Degradation of phenanthrene, decreased phytotoxicity

• Grass + PD1

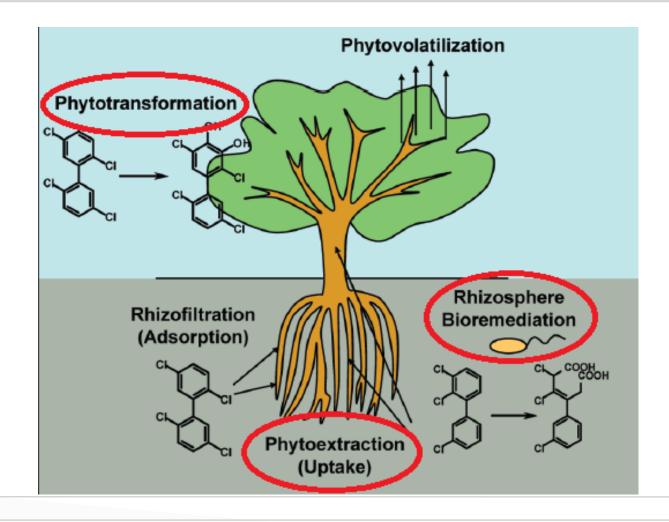
Social Component

• Important in public spaces

- Landscape preference
 - Values
 - Study site

Applications to Other Contaminants

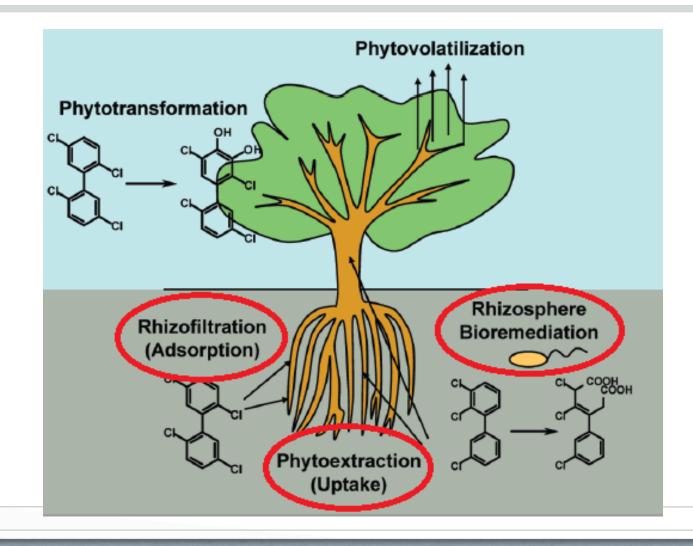
- Organic
 - PCBs
 - DDT
 - Dieldrin
- Inorganic
 - Arsenic
 - Lead


Organic Contaminants

- Bioremediation
 - Plants improve bioremediation
 - Root exudates
 - Plant-microorganism cooperation can be stronger and more effective
- Soil-plant transfer, phytoextraction, phytodegradation, rhizodegradation, rhizodegradation, rhizofiltration

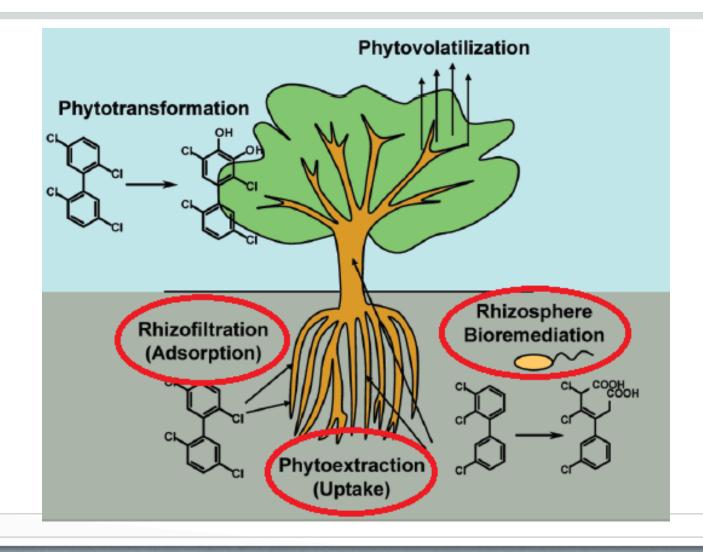
PCB Remediation Research

- Legumes and grasses (Chekol et al., 2004)
 - 3 legumes, 4 grass species
 - >60% of PCBs removed from all planted soil
- Rice, alfalfa, ryegrass, tall fescue (Shen et al., 2009)
 PCB degradation in all planted conditions
- Squash, legumes, grasses, sedge (Zeeb et al., 2006)
 - PCB removal
 - Phytoextraction


Phytoremediation of PCBs

DDT Remediation Research

- Wild plants (Nurzhanova et al., 2011)
 - All able to degrade DDT
 - Squash especially effective (73% removal)
- Zucchini, pumpkin (White, 2001)
 - Significant decreases in soil concentration
- Zucchini, pumpkin, tall fescue, ryegrass, alfalfa (Lunney et al., 2004)
 - Accumulation in roots and shoots
 - Removal from soil


Phytoremediation of DDT

Dieldrin Remediation Research

- Poplar trees (Skaates et al., 2005)
 - Remediation successful
 - Adsorption of 66% of contaminant
- *Curcubita* sp (Otani et al., 2007)
 - Removal from soil
 - All had high uptake of dieldrin, zucchini highest
- Fungus (Takagi et al., 2011)
 - Dieldrin-degrading soil fungus
 - 95.8% degradation by strain DDF

Dieldrin Phytoremediation

Inorganic Contaminants

• Metals – arsenic, lead

• Phytoextraction/hyperaccumulation

• Phytomining

• Disposal

Lead Remediation Research

- 9 food crops (Sekara et al., 2005)
 - Beet and parsnip had highest concentration
- Salix acmophylla (Ali et al., 2003)
 - Effective accumulator of lead, nickel, and copper
 - High tolerance
 - Phytoremediation, site monitoring
- Indian mustard (Lim et al., 2004)
 - Electric field stimulation + chelating agent

Arsenic Remediation Research

- Wild plants (Visoottiviseth et al., 2002)
 - Two fern species, an herb, a shrub
 - Ferns by far most effective
- Chinese Brake Fern (Ma et al., 2001)
 - Hyperaccumulates to extremely high concentrations
- Range of species limited by climate
 - Alternatives?

Phytoremediation of Inorganics

Potential for Wider Application

• Likely that many plants are capable of degrading organic contaminants such as PCBs and DDT

• Look for capability in plants that are already thriving on contaminated soil

• Use microbes that evolved in contaminated soil, add those to plants suited to environment