

Endangered Salmon

- 52 Evolutionary Significant Units (ESU)
 - 28 threatened or endangered
 - 14 T/E in WA
- Listing Cover ~60%of Washington

Surface Water Monitoring

- 2003 Lower Yakima and Cedar-Sammamish
- 2006 Lower Skagit
- 2007 Entiat/Wenatchee
- Weekly sampling during typical use season (March – Sept)
- Laboratory methods include160 pesticides – current use and legacy

Why are we collecting the data?

- Pesticide usage and agricultural practices change
- Assess Exposure
 - Compare and contrast with modeled values.
- Assess the impact of any mitigation put in place
- Identify trends in both agricultural and urban watersheds

Urban Monitoring Results

Thornton Creek 2010

Longfellow Creek 2010

Why are herbicides detected so frequently?

- Use
- Physical Properties
- •Good news/bad news
 - Generally less toxic to aquatic organisms
 - •More H₂O soluble

The distribution of detections in agricultural areas are similar.

Urban - Thornton Creek 2009

Date	3/11	3/16	3/25	3/30	4/8	4/13	4/22	4/27	5/6	5/12	5/20	5/26	6/3	6/8	6/16	6/22	7/1	7/6	7/17	7/22	7/31	8/4	8/10	8/18	8/28	9/1	9/8
Month	Mar	Mar	Mar	Mar	Apr	Apr	Apr	Apr	May	May	May	May	Jun	Jun	Jun	Jun	Jul	Jul	Jul	Jul	Jul	Aug	Aug	Aug	Aug	Sep	Sep
Chemical	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
1-Naphthol	0.072	0.121	0.089	0.184	0.071	0.091	0.084	0.178			0.087		0.07	0.124													
2,4,6-									Λ																		
Trichlorophenol								0.51	$oldsymbol{\sqcup}$																		
2,4-D									0.11	0.037	0.13	0.019									0.02						0.04
3-																											
Hydroxycarbofuran					0.027	0.018			0.054		0.076																$\vdash \vdash$
4-Nitrophenol			0.12																								$\vdash \vdash$
Aldicarb					0.036																						\sqcup
Aldicarb Sulfone	0.08	0.088			0.054				0.1		0.075	0.059	0.117	0.093													\sqcup
Aldicarb Sulfoxide	0.154	0.024		0.074									0.012	0.148		0.026											$\sqcup \sqcup$
Carbaryl					0.025						0.018																\sqcup
Carbofuran					0.031																						igsquare
Dicamba I										0.01																	ш
Dichlobenil			0.046						0.053		0.049							0.037									0.051
Diuron				0.057																							
MCPP			0.041						0.042		0.086																
Methiocarb	0.099	0.215																									
Methomyl	0.065				0.042																						oxdot
Methomyl oxime											0.079																oxdot
Oxamyl		0.141	0.06	0.011	0.072	0.065	0.033		0.13			0.019				0.024											
Oxamyl oxime					0.028																						
Pentachlorophenol												0.007													0.015		0.024
Prometon							0.075	0.039																			
Propoxur					0.035											0.053											
Triclopyr									0.0		0.04																0.044
Total Suspended Solids	3	7	17	.5	7	6	6	.6	5	.4	11	.7	10	5	11	4	3	4	4	4	3	3	3	2	3	3	4

Things to Note

- Pesticides are just one component of the "chemical soup" entering our watersheds – metals, pharmaceuticals, nutrients, fecal...
- We typically find more than one pesticide in a sample
- Low individual pesticide levels, unknown effects when combined with other pesticides and contaminants

Naturally occurring vs. synthetic pesticides

Pyrethrin

Rainbow Trout LC50 = 5.1 ug/L (EPA RED 2006)

Permethrin

Rainbow Trout LC50 = 9.8 ug/L (Cal DPR 2003)

What Can You Do?

Applicator Participation

- Read the label
- Know your active ingredient
- Follow useinstructions –minimum rates
- Minimize drift

Applicator Participation

Use common sense in sensitive areas

- Water
 - » Rivers, streams, non-irrigation canals
 - » Reservoirs, natural ponds
 - » Wetlands, estuaries, inter-tidal areas
- ESA-defined sites
- Human Exposure
 - » Housing
 - » Roads
 - » Work sites

Run off mitigation

- Increase residence time
- Drainage swales
- Filter strips
- Treatment timing
- Avoid runoff into direct connections to surface water

Urban drainage

Filter strips

- http://ucanr.org/freepubs/docs/8195.pdf
- Filter Strips
 - Need to be site specific
 - Not practical for small areas
 - Slope 1-3% need 25 ft wide strip
 - » (NRCS tech guide no. 393)
 - Maintenance needed to prevent channelized flow

Drainage swales

Drainage swales

Follow up information

Surface water monitoring program – 2010 report

http://www.ecy.wa.gov/biblio/1103021.html

Program Contact:

Dr. Jim Cowles

Washington State Department of Agriculture 360,902,2066

jcowles@agr.wa.gov

http://www.agr.wa.gov/PestFert/NatResources/

