

Garden Loosestrife Lysimachia vulgaris

Class B Noxious Weed in WA state, regulated in King County

2-10 foot tall perennial of wetlands and shorelines

Native to Eurasia

Flowers: showy yellow primrose-like flowers clustered at top of stem (terminal pannicle)

Each flower: 5 sepals, 5 pedals

Flowers in July to September

Leaves: opposite or whorled (in threes or fours), leaves usually have small orange or black glands visible with magnification

garde

Produces extensive red **rhizomes** that will reach out up to 10 feet into

the adjacent open water

Stems have soft hairs and are round, occasionally flattened (fasciated)

Reproduces by both rhizome...

 Rhizome pieces as short as 1 and 2 cm in length can produce shoots.

-Kelsey Taylor, (2017), Competitive Interactions and Rhizome Reproductive Capacity of an Invasive Plant, Garden Loosestrife (Lysimachia vulgaris L.), Unpublished Masters Thesis, University of Washington, Seattle, WA.

...and by seed.

Seeds average <u>82% viability</u> when exposed to summer temperatures

-Kevin <u>Dillon 2012,</u> Senior research project on seed viability, School of Environmental and Forestry Science, University of Washington

Garden loosestrife seeds

How tall does it get in King County?

10' Shade Karen is actual size

Flora of China	2-4 ft	
University of Wisconsin	to 3.3 ft	
Connecticut Botanical Society	2-4 ft	
England	2-4 ft	
Germany	1 <mark>.4-4.9 ft</mark>	
Australia	to 4.9 ft	
Flora of Europe	to 4 ft	

what garden loosestrife isn't:

purple loosestrife(Lythrum salicaria),

- a different Order and Family
- Square stem
- Purple/magenta flowers

yellow loosestrife (Lysimachia punctata), Same Genus

 Star-shaped flowers occur all along the stem only (never in a terminal cluster like L. vulgaris)

L. vulgaris (garden) and L. punctata (yellow) together

Garden loosestrife distribution in Washington

garder

Garden loosestrife Impacts

Ecological – displaces native plants and animals; interferes with wetland food web and habitat; clogs small streams

Economic – clogs irrigation systems & water control structures; dominates wet pastures

Garden Loosestrife - Impacts

Outcompetes other plants, even tough ones

Why so aggressive in King County? Could it be polyploid?

- Polyploidy = inheriting more than the usual 2 copies of DNA (2n = normal vs. 3n=polploid)
- Polyploid plants = potentially more genetically diverse and able to grow more aggressively
- Rhizomes were collected from three sites in the county in June 2011 (Lake Sammamish, Rutherford Slough, Lake Burien)
- Analyzed by Brenda Grewell at USDA-ARS University of California, Davis
- All samples came back as 2n not polyploid

Manual: Really only feasible for individuals or pioneering stands; could dig out as much root as possible; this plant doesn't pull well (breaks off from long rhizomes leaving lots of root behind).

Mechanical: Repeated mowing may keep it contained and slow dispersal by seed, but won't kill it. Plant fragments will root if left behind.

Control - Cultural

- Weed fabric or tarp recommended to suppress plants on sensitive shorelines, but won't kill mature plants.
- Potentially useful in small area without moving water
- Requires careful monitoring, high maintenance

Cultural: Tarp over garden loosestrife plants at Oxbow Farm

- Heavy opaque tarp
- Stake down corners well
- Lay debris (wood) over top
- Check in July and September for :
 - Tarp integrity
 - Sneaky plants

Plants growing through rip in tarp

Control – Biocontrol?

Control - fortuitous herbivory

- A insect has been found eating some garden loosestrife plants
- Identified as a sawfly (Monostegia abdominalis) Chris Looney, WSDA
- Insect is non-native, but not intentionally released = not biocontrol
- Unknown impact plants still flower and set seed even if skeletonized
- Actual biocontrol development unlikely until the plant becomes a "problem" in more places

Control – Chemical (herbicide)

- Needs to be systemic to get at those rhizomes
- Needs to be an aquatic –approved herbicide
- Have tried many herbicides over the years:
 - Triclopyr –seems to act too fast, plants return
 - Glyphosate- not complete kill
 - Imazapyr works pretty well, acts very slowly, off target damage
 - Imazamox?
 - Combinations of herbicides?

Greenhouse study

- Conducted by Tim Miller* at WSU
 Extension Mt. Vernon
- Rhizomes collected and potted-up May 2014
- Grown for 6 weeks in greenhouse
- Treated with both single and combinations of herbicides
- Herbicide allowed to be active for one month, then defoliation rated and plants clipped
- After two months, regrowth measured

Garden Loosestrife Regrowth

2 Months After Treatment

Greenhouse study results

- Imazapyr at 0.75%
- Imazapyr at 0.5% + Triclopyr at 1%
- Imazamox at 0.5% + Triclopyr at 1%
- Glyphosate at 1% + aminopyralid* at 0.25%

*not aquatic-approved, don't exceed label rate

Field Study Methods

- Lake Sammamish shoreline study site
 - "pristine" garden loosestrife plants in 400m section of shoreline
 - 30 3m x 3m study plots set up, min. 2m between plots
 - Garden loosestrife stems/plot
 - Average & maximum stem height
 - Phenological state at time of treatment
 - List of other plants growing in plot and site conditions

Field Study Methods

- Focus on imazamox in effort to reduce un-intended harm to other plants such as willow (that seem particularly sensitive to imazapry)
- Foliar spray herbicide treatments*:

Treatment	Imazamox	Triclopyr TEA	Glyphosate	Surfactant (Agri-dex)
T-1	3%	0.5%	-	1%
T-2	2%		1%	1%
T-3	4%		1%	1%
T-4	4%			1%
C (control)	No herbicide	No herbicide	No herbicide	No herbicide

Pre-flower

*percent = volume chemical/volume total mix including water

flowering

- Early treatment June 22 (all plants pre-flower stage)
- Late treatment August 10 (all plants flowering stage)

Results were measured 12 months later (7/19/18)

- Counted garden loosestrife stems,
- Some missing or disturbed plots (vandalism, big trees fallen over)
- Un-even sample site, very few replicates
- Data analysis help from Tim Miller* (he squeeze some results from our very messy data) *WSU extension Mt. Vernon

A "control" study plot

A herbicide study plot

Average stem height (cm) 1 year after treatment

Percent control- 1-year after treatment

Results Summary

- Best
 - Treatment 3 (4% imazamox + 1% glyphosate) in June
- Second best
 - Treatment 2 (2% imazamox + 1% glyphosate) in June and August
 - Treatment 4 (4% imazamox) in August
- Third best
 - Treatment 3 (4% imazamox + 1% glyphosate) in August *
 - Treatment 4 (4% imazamox) in June
- Triclopyr TEA hindered imazamox effectiveness
- 23% of study plots = some off-target damage to woody plants

^{*} suspect poor data from one of these study plots as a result of plot damage

Overall treatment recommendations

- Still no prefect treatment
- Very small areas= long term tarping or deep, persistent digging
- 1% imazapyr (where no woody native spp.)- late summer
- 4% imazamox (w or wo/1% glyphosate) (where woody native spp.)
 - early summer (pre-flower) to avoid insect pollinators
 - Late summer (flowering) also effective
- Try aminopyralid in sites where allowed
- Persistence (go back annually, don't let it seed)

Suggestions for future studies

- Many more replicates
- Avoid informal beaches
- Potted plant study (with mature plants)
- More herbicide combinations
- Try different surfactants

Persistence pays off

Garden Loosestrife at Rutherford Slough (Fall City, WA)

- Herbicide treatment almost every year since 2003
 - Glyphosate or triclopyr 2003-2010
 - Imazapyr 2012 and 2013
 - Glyphosate + triclopyr 2014

Thank You

Jennifer Andreas
Kelsie Crawford
Jordan Drugge
Ellison Heil
Elby Jones Kirk Massee
Katie Messick
Tim Miller
Kelsey Taylor

King County Noxious Weed Control Program

Ben.peterson@kingcounty.gov

www.kingcounty.gov/weeds 206-477-WEED