2020 INTEGRATED RESOURCE PLANNING ("THE FUTURE IS NOW")

City Light IRP Kickoff
October 16, 2019
AGENDA

• Welcome & Safety Procedure
• 2020 IRP Kickoff
 o Regional Resource Adequacy
 o Conservation Potential Assessment
• Change Vision
• 2020 Priorities and Timeline
• Discussion about process and deliverables
• Wrap Up and Next Steps
HOW TO CONTRIBUTE TODAY

• Learn about resource adequacy and identify questions for follow up
• Review new conservation potential assessment and discuss next steps for future evaluations
• Discuss and identify your highest priorities for 2020 Integrated Resource Plan
• Review and schedule stakeholder activities
INTEGRATED RESOURCE PLANNING

• Identifies how City Light plans to meet Seattle area’s electric power supply needs for the next 20 years (PLAN)

• An evaluation to explain the mix of generation and demand-side resources that we plan to use to meet the Energy Independence Act and ensure adequate power supply (PLANNING)

• Describes clean energy implementation plans with new guidelines from Clean Energy Transformation Act (NEW)

• Requires City Council approval before September 1, 2020 (TIMELINE)
CITY LIGHT MARKET RESEARCH TAKEAWAYS

- Leverage new technologies to improve service, lower costs, and ensure safety
- Invest in alternative clean energy solutions, such as replacing fossil fuels with clean electric power for transportation
- Invest in infrastructure and operations to improve power reliability
- **Customers want City Light to effectively prepare for the future while keeping costs affordable**
2018 INTEGRATED RESOURCE PLAN
STAKEHOLDER RECOMMENDATIONS

• Evaluate City Light’s market reliance to be prepared for a changing resource mix

• Consider renewable power resources over purchasing renewable energy credits

• Look more broadly and strategically at demand side and supply side alternatives to complement City Light’s hydropower resources

• Ensure equitable outcomes

• Explore different paths to meet electrification policies and respond to climate change
CITY LIGHT GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Service Area Population</th>
<th>906,595</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Area Size</td>
<td>131 sq. mi.</td>
</tr>
<tr>
<td>Customers Served</td>
<td>460,609</td>
</tr>
<tr>
<td>Employees</td>
<td>1,771</td>
</tr>
<tr>
<td>Major Substations</td>
<td>15</td>
</tr>
<tr>
<td>Commercial and Industrial Power Transformers</td>
<td>56</td>
</tr>
<tr>
<td>Distribution Circuit Miles</td>
<td>2,335</td>
</tr>
<tr>
<td>Network Distribution Circuit Miles</td>
<td>309</td>
</tr>
</tbody>
</table>
CITY LIGHT’S POWER SUPPLY
WHERE DO WE GO FROM HERE?

• Can we depend on the regional market for some of our reliability?

• How much of demand can be controlled reliably? (i.e., Demand Response)

• Will energy surpluses provide ample revenue to fund additional investment?

• How much energy efficiency, new renewable energy and storage will be needed?
Assessing Resource Adequacy in the Pacific Northwest

Seattle City Light Stakeholders Meeting
October 16, 2019

John Fazio, Senior Systems Analyst
NW Power and Conservation Council
What is Resource Adequacy?

- Adequacy ≠ Reliability

- **Reliable** – a system is reliable if it operates when needed
- **Adequate** – a system is adequate if produces enough to serve all needs

- A power supply can be 100% reliable (i.e. no component failures) but not adequate
- A power supply can be adequate even if some of its components are unreliable

- A power supply is adequate if it can supply all electrical needs, within an acceptable level of tolerance, accounting for unscheduled component outages and unexpectedly high demand
Three Major Components of a Power System

• Until recently, adequacy for each component was done separately

• With greater computing power, a few are now combining generation and transmission

• Distribution adequacy is always done separately

• Council assesses generation adequacy only
Tradeoff: Adequacy vs. Cost

- Low investment in resources results in higher curtailment costs.
- High investment in resources results in lower curtailment costs.
- Optimum mix yields minimum cost.

Diagram:
- Cost on the y-axis.
- Adequacy on the x-axis.
- Total Costs curve.
- Capital and Operating Costs curve.
- Curtailment Costs curve.

Legend:
- High investment in resources results in lower curtailment costs.
- Low investment in resources results in higher curtailment costs.

Northwest Power and Conservation Council
What is an Adequacy Standard?

- Adequacy standard is composed of 2 parts
 - Metric (measure of adequacy)
 - Threshold (limit for the metric)
- Two types of standard
 - Deterministic – e.g. load/resource balance
 - Probabilistic – measure of the frequency, duration and magnitude of potential curtailment events
- Industry is moving toward using probabilistic standards
- But there is no industry-wide standard, most common “measure” is 1-day-in-10-year loss of load expectation
Historical Perspective on Adequacy

- Historically, **Load/Resource Balance** (based on critical hydro) was used to measure adequacy.
- During the 1990s, few new resources were built and by 1998 L/R deficit grew to 4,000 aMW.
- Was the power supply adequate?
 - Difference between average hydro and critical hydro is about 4,000 aMW.
 - So, based on the L/R balance, region had about a 50% chance of being short.
 - But no indication of the size, duration, frequency or seasonality of potential shortfalls.
 - In other words, L/R balance is a very gross measure of adequacy.
- In 1999, Council took a probabilistic approach, built the GENESYS model and set the initial standard to 5% LOLP (see next slide).
- First assessment done in 1999 indicated a 24% chance of a shortfall.
- West Coast energy crisis of 2001 validated need for new more accurate adequacy standard.
Council’s Adequacy Standard

• The Council deems the power supply to be adequate if the likelihood of having one or more shortfalls in a future operating year is less than or equal to 5 percent (i.e. annual LOLP ≤ 5%)

• LOLP is assessed by simulating the power system’s operation thousands of times with different future conditions for each simulation,
 • River flow volume (based on historic record from 1929-2008)
 • Temperature-sensitive load (based on historic hourly temperatures from 1949-2017)
 • Hourly wind and solar generation (based on historic distributions)
 • Thermal resource forced outages

• Only existing resources, planned resources that are sited and licensed and expected EE savings are assumed for the studies because this is just an early warning to give planners time to act

1Officially adopted by the Council in 2011.
Coal Retirements (2018-2032)

Additions and Retirements since the Seventh Power Plan (incl. announced planned retirements)
2019-26 Resource Adequacy Assessments

- **2019 LOLP ≈ 2.5% (estimate)**
 Region has roughly 800 MW of headroom (e.g. loss of 800 MW brings the LOLP to 5%)

- **2021 LOLP = 7.5% (estimate)**
 1,619 MW Retired (Hardin, Colstrip 1 and 2, Boardman, Centralia 1)

- **2024 LOLP = 8.2%**
 127 MW Retired (N Valmy 1)
 Net annual load growth (after EE savings) is 0.3%

- **2026 LOLP = 17%**
 804 MW Retired (Centralia 2, N Valmy 2)
 Net annual load growth (after EE savings) is 0.3%
Sensitivity to Markets and Load Growth

<table>
<thead>
<tr>
<th>LOLP (%)</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Load (85th Percentile)</td>
<td>21.1</td>
<td>18.0</td>
<td>16.0</td>
<td>14.4</td>
<td>12.0</td>
</tr>
<tr>
<td>Medium Load</td>
<td>12.5</td>
<td>10.2</td>
<td>8.2</td>
<td>6.9</td>
<td>5.2</td>
</tr>
<tr>
<td>Low Load (15th Percentile)</td>
<td>7.0</td>
<td>5.2</td>
<td>4.0</td>
<td>3.1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

While the availability of future markets and of rate of future load growth are unknown, the general assumption is that conditions toward the center of the matrix above are more likely than conditions on the edges.
Is Annual LOLP the Right Metric

• The annual LOLP does not tell us
 • When a shortfall may occur
 • How big a shortfall may be
 • How long a shortfall may last
 • Or how often it may occur

• Planners and customers need to decide what they are protecting against and how much they want to spend
2024 Percent Events by Month

Percent of Events by Month

- October: 0%
- November: 13%
- December: 19%
- January: 27%
- February: 14%
- July: 9%
- August 1-15: 8%
- August 16-31: 9%
- September: 0%
2024 Average Event Duration by Month

![Bar chart showing average event duration by month](chart.png)
2024 Average Peak-hour Curtailment

Average Event Peak-Hour Curtailment by Month

<table>
<thead>
<tr>
<th>Month</th>
<th>MW-hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>500</td>
</tr>
<tr>
<td>Dec</td>
<td>1500</td>
</tr>
<tr>
<td>Jan</td>
<td>2000</td>
</tr>
<tr>
<td>Feb</td>
<td>2500</td>
</tr>
<tr>
<td>Jul</td>
<td>400</td>
</tr>
<tr>
<td>Aug 1-15</td>
<td>300</td>
</tr>
<tr>
<td>Aug 16-31</td>
<td>300</td>
</tr>
<tr>
<td>Sep</td>
<td>300</td>
</tr>
</tbody>
</table>
Updated Coal Retirements (2018-2028)

Planned retirements based on agreements, announcements, IRPs; subject to change

*Colstrip 3, 4 should be considered very tentative

Hardin Generating Station was sold to an out of region cryptocurrency company, therefore no longer “counts” towards the region
THOUGHTS?

- Utilities and customers need to decide what they are protecting against and how much they want to spend.
ESTABLISHING BASELINE SALES
2018 VS 2016 RETAIL FORECAST METHODOLOGY

Econometric to End-Use based forecast

Inclusion of emerging trends in base case:

• Electric Vehicles 🚗
• Distributed generation ☀
• Increased saturation of cooling equipment 🌡
• Large transit electrification 🚇
2018 VS 2016 RETAIL FORECAST BEFORE PROGRAMMATIC EFFICIENCY

Actuals vs Forecast before programmatic efficiency

- 2018 Retail before Programmatic
- 2016 Retail before Programmatic
- Retail Weather Normals
- Retail Actuals

Annual aMW

2005 2010 2015 2020 2025 2030 2035 2040
KEY DIFFERENCES IMPACTING THE 2020 CONSERVATION POTENTIAL ASSESSMENT

- Stronger long-term growth in residential housing but more heavily weighted towards multi-family
- Industrial energy sales are expected to decline
- Over 200k light duty electric vehicles will be added in City Light’s service territory
OBJECTIVES, METHODOLOGY, AND CHANGES.
OBJECTIVES

• Estimate 20-year technical, economic, and achievable potential
 o Build ECM data sets consistent with Council’s most recent Power Plan and Regional Technical Forum (RTF) unit energy savings (UES) measures

• Satisfy Requirements of WAC 194-37

• Provide reports and presentations that document methodology, data sources, and results

• Develop Conservation Supply Curves for 2020 IRP
 o Provide supply curves that demonstrate savings at various levelized costs
OVERVIEW OF METHODOLOGY

- Customer count
 - Sector sales
- Secondary sources
- Measure savings
 - Measure applicability
 - Measure interactions
 - Fuel shares
 - Current saturations
- Measure costs
 - Avoided costs
 - Economic screens
- Market constraints
 - Institutional constraints
Changes from 2018 CPA

<table>
<thead>
<tr>
<th>Update</th>
<th>Description</th>
<th>Technical Potential Impact</th>
<th>Economic Potential Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated Avoided Cost Forecasts</td>
<td>Updated Avoided Energy Cost Forecast</td>
<td>N/A</td>
<td>Decrease</td>
</tr>
<tr>
<td></td>
<td>Updated Deferred T&D Forecast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Load Forecasts</td>
<td>Forecasted residential baseline sales are 31% higher*</td>
<td>Res Increase Com/Ind Decrease</td>
<td>Res Increase Com/Ind Decrease</td>
</tr>
<tr>
<td></td>
<td>Forecasted commercial baseline sales are 7% lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forecasted industrial baseline sales are 41% lower**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure Updates</td>
<td>New/Updated Residential Measures</td>
<td>Res Mostly Increase Com Increase</td>
<td>Res Mostly Increase Com Increase</td>
</tr>
<tr>
<td></td>
<td>New/Updated Commercial Measures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Res forecast includes higher customer growth and EVs
**Ind forecast is lower because some customers were re-classified Com
ADDITIONAL CONSIDERATIONS

2020 Conservation Potential Assessment

- Clean Energy Transformation Act
- Federal Standards
- WA State Appliance Standards (RCW 19.260, WAC 194-24)
- City of Seattle Energy Code and Benchmarking Ordinance
- Commercial Lighting Updates
SUMMARY OF RESULTS
COMPARISON TO THE 2018 CPA

2020 CPA Percent of Sales

2018 CPA Percent of Sales

Percent of Total 2040 Sales Forecast

0% 5% 10% 15% 20% 25%

Technical Potential (% of Sales) Economic Potential (% of Sales) Achievable Potential (% of Sales)

- Residential
- Commercial
- Industrial

Percent of Total 2040 Sales Forecast

0% 5% 10% 15% 20% 25%

Technical Potential (% of Sales) Economic Potential (% of Sales) Achievable Potential (% of Sales)

- Residential
- Commercial
- Industrial
- Street Lighting
ACHIEVABLE POTENTIAL

2020 Conservation Potential Assessment

![Graph showing the conservation potential from 2020 to 2040, with bars for residential, commercial, and industrial sectors. The graph illustrates a steady increase in potential across the years.]
AVOIDED COSTS

2020 CPA Avoided Energy and Deferred T&D Costs

$38

$52
AVOIED COSTS

2020 CPA Avoided Cost Scenario Analysis

- Achievable potential increases by 12% if avoided costs + 30%
- Achievable potential decreases by 19% of avoided costs – 30%
- The downside risk is higher because a greater proportion of achievable potential is marginally cost-effective than is marginally not cost-effective
CONCLUSIONS

2020 Conservation Potential Assessment

1. Substantial short-term potential (~ 21 aMW through 2021) exists
2. Commercial potential is still really strong
3. Achievable potential is lower in the 2020 CPA compared to 2018 CPA
4. Potential is lower, primarily due to lower avoided costs
5. Potential is more sensitive to lower, rather than higher avoided costs
NEXT STEPS

• Report cost-effective targets to City Council (I-937 requirements)

• Conduct new integrated analysis to decide if additional energy efficiency provides strategic value (include in the Integrated Resource Plan)
CHANGE VISION
CHANGE VISION

• New City Light Division-- Electrification and Strategic Technology
TRANSPORTATION ELECTRIFICATION PLAN

- Program plan organized around these values:
 - Equity
 - Environment
 - The grid
- Stakeholder outreach
- Budget is capped
CITY LIGHT PLANNING PROCESSES EVOLVING

- Integrated Resource Plan
- Conservation Potential Assessment
- Transmission & Distribution Plans
- Strategic Plan
- Climate Vulnerability And Adaptation Plan
- Electrification Plan

New Long-term Strategic Planning
INTEGRATED RESOURCE PLANNING PROCESS

Infrastructure and Programs

Goals
Affordable
Reliable
Equitable
Environmentally Responsible

New Generation, Storage and Transmission
Existing Electric Generation and Transmission
Customer Energy Efficiency, Demand Response and Customer-Owned Generation

Uncertain Variables
Utility and Customer Infrastructure & Programs

Weather
Economy and Technology
Customer Electric Demand
2020 INTEGRATED RESOURCE PLAN VALUES

EXCELLENCE
CUSTOMER CARE
SAFETY
ENVIRONMENTAL STEWARDSHIP
INNOVATION
FOCUS AREAS - THREATS OR OPPORTUNITIES?

• Clean Energy Transformation Act and Energy Independence Act action plans
• Climate Change
• Environmental Justice
• Evolving regional energy markets benefits
• Resource Adequacy
• Strategic Opportunities for Demand-Side and New Renewable Resources
• Transmission and Distribution planning harmonization
HIGH-LEVEL INTEGRATED RESOURCE PLAN TIMELINE

- **Creating the framework**
 - Q3/Q4 2019

- **Conduct Analysis**
 - Q4 2019/ Q1 2020

- **IRP Draft review and updates**
 - Q1/Q2 2020

- **2020 Plan presented to City Council**
 - Q3 2020

Suggested Future Stakeholder meetings:

- ⭐ Demand Forecast & Scenario planning
- ⭐ Review Draft
- ⭐ Review updates & finalize
DISCUSSION
2018 INTEGRATED RESOURCE PLAN
STAKEHOLDER RECOMMENDATIONS

• Evaluate City Light’s market reliance to be prepared for a changing resource mix

• Look more broadly and strategically at demand side and supply side alternatives to complement City Light’s hydropower resources

• Ensure equitable outcomes

• Explore different paths to meet electrification policies and respond to climate change
IN PERSON VS WEBINAR

In person meetings

- **Review Draft (March)**
- **Final review and draft letter (April)**

One-hour informational webinars

- **Demand Forecast & Scenarios (?)**
- **Clean Energy Transformation Act /Other Topics (?)**
Seattle City Light
thanks you
OUR MISSION
Seattle City Light is dedicated to delivering customers affordable, reliable and environmentally responsible electricity services.

OUR VISION
We resolve to provide a positive, fulfilling and engaging experience for our employees. We will expect and reinforce leadership behaviors that contribute to that culture. Our workforce is the foundation upon which we achieve our public service goals and will reflect the diversity of the community we serve.

We strive to improve quality of life by understanding and answering the needs of our customers. We aim to provide more opportunities to those with fewer resources and will protect the well-being and safety of the public.

We aspire to be the nation’s greenest utility by fulfilling our mission in an environmentally and socially responsible manner.

OUR VALUES
Safety, Environmental Stewardship, Innovation, Excellence, Customer Care