2026 Integrated Resource Plan (IRP): External Advisory Panel Meeting #3

Marker Marker (Laure 191

April 2, 2025

WE POWER SEATTLE

Today's Agenda

- SCL Presenters
- 2026 IRP & DSMPA Staggered Approach
- 2026 DSMPA Preliminary Results
- Existing Resources
- Next Steps

Today's SCL Sponsors and Contributors – IRP

Name	Title, Group	Role
Siobhan Doherty	Power Supply Officer	IRP Sponsor
Katie Ewing	Manager, Resource Planning & Analysis	IRP Contributor
Mike Hamilton	Strategic Advisor/Data Scientist, Finance	IRP/DSMPA Contributor
Ruizhe Wang	Sr. Economist/Data Scientist, Finance	IRP/DSMPA Contributor
Verene Martin	Data Scientist, Resource Planning & Analysis	IRP/DSMPA Contributor
Rebecca Klein	Data Scientist, Resource Planning & Analysis	IRP Contributor
Alan Bach	Sr. Power Analyst, Resource Planning & Analysis	IRP Contributor
Ana Mileva	Principal, Sylvan Energy Analytics	IRP Contributor
Elaine Hart	Principal, Sylvan Energy Analytics	IRP Contributor

Today's SCL Sponsors and Contributors – DSMPA

DSMPA Team					
Name	Title, Group	Role			
Margaret Frey	Strategic Advisor, Power Contracts and Regional Affairs	DSMPA Contributor			
Aquila Velonis	Principal, Cadmus	DSMPA/IRP Contributor			
Jesse Emge	Sr. Associate, Cadmus	DSMPA/IRP Contributor			
Sophia Spencer	Principal, Nauvoo Solutions	DSMPA Contributor			
Jennifer Finnigan	Manager, CES Strategy, Planning and Evaluation	DSMPA Contributor			
Joseph Fernandi	Director, Customer Energy Solutions (CES)	DSMPA Sponsor			
Craig Smith	Chief Customer Officer	DSMPA Sponsor			

2026 IRP & DSMPA Staggered Approach

Elements of the 2026 IRP

IRP Process							
Existing Resources Long Term Contracts Resource Needs Resource Options							
Owned Hydro	30 Temp Years 30 Hydro Years Policies (I-937, CETA)	Scenario Modeling Supply (e.g. wind, solar) Demand (EE, DR)	Create Portfolic Meets Resource Adequacy Meets Policies Metric Performance				

2026 Staggered Approach

BPA Product Choice

- Production cost model
- Decision independent of candidate resources

DSMPA

• BPA product choice, Cadmus demand side resources, and candidate supply side resources

IRP

Capacity expansion & production cost models

• BPA product choice, DSMPA demand side resources, and candidate existing and emerging supply side resources

2026 Integrated Resource Plan (IRP) Timeline Context

Targeted City Council Consideration:

Aug 2025

Jan 2026

2026 DSMPA

Potential Assessment 101 EE Preliminary Results DR Preliminary Results

PA 101: Who prepares potential assessments?

Name	Title, Group	Role
Margaret Frey	Strategic Advisor, Power Contracts and Regional Affairs	DSMPA Contributor
Mike Hamilton	Sr. Economist / Data Scientist, Financial Planning	IRP/DSMPA Contributor
Verene Martin	Data Scientist, Resource Planning & Analysis	IRP/DSMPA Contributor
Aquila Velonis	Principal, Cadmus	IRP/DSMPA Contributor
Jesse Emge	Senior Associate, Cadmus	IRP/DSMPA Contributor
Sophia Spencer	Data Consultant, Nauvoo Solutions	DSMPA Contributor
Jennifer Finnigan	Manager—CES Strategy, Planning and Evaluation	DSMPA Sponsor
Joseph Fernandi	Director, Customer Energy Solutions (CES)	DSMPA Sponsor
Craig Smith	Chief Customer Officer	DSMPA Sponsor

PA 101: What, Why, How, When

PA 101: What is a potential assessment?

- Identifies the amount, timing, and cost of demand-side resources
- A tool that helps to weigh demand-side resources as alternatives to supply-side resources
- Sets our 2-year and 4-year targets as required by WA State law (I-937, Clean Energy Implementation Plan)
- Year-long study; results in 150+ page report

PA 101: Why we do potential assessments?

PA 101: What, Why, How, When

PA 101: How we set potential?

Demand Response

- Analysis methodology is similar to the energyefficiency market potential assessment
 - Use the same load forecast and baseline load data
- Develop a defined list of demand response (DR) options looking at firm and flexible load reduction opportunities
- Analyze different DR options to develop IRP supply curve inputs for possible selection in the economic screening process

PA 101: What, Why, How, When

Timeline: Completed and Expected

	2024			2025									
	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep
Kickoff													
Data gathering													
Measure lists/characterization													
End use load forecast													
Potential (EE/DR)													
Draft report													
Final report													
Present (Stakeholder Briefings)													
City Council Resolution													

PA 101: Considerations around potential assessments

- Are based on City Light's load forecast and regional studies, like the Commercial and Residential Building Stock Assessments
- **Do** account for codes and standards that are 'on the books'
- **Do** use broad assumptions about the adoption of energy measures
- **Do** rely on cost data from the Northwest Power and Conservation Council and Regional Technical Forum
- Are directional and can inform program design
- Are updated every two years

PA 101: Limitations of potential assessments

- **Do not** consider program implementation barriers
- Cannot predict market changes over time
- Cannot predict future changes in policies, pending codes and standards, and which new technologies may become commercially available
- **Do not** attempt to forecast or otherwise predict future changes in energy efficiency/demand response/customer solar measure costs
- Are not prescriptive

2026 **DSMPA**

Potential Assessment 101 **EE Preliminary Results** DR Preliminary Results

Study Focus: What's included in the 2026 study

End Use Forecast	Energy Efficiency	Demand Response
Building Electrification	Add up to 5 Energy Conservation Measures (ECMs)	Added new Demand Response (DR) products
Climate Change	Updated high priority ECMs	Update 2024 DSMPA products with program info
Highly Impacted Communities	Integrated Resource Plan (IRP) inputs	IRP inputs
Update saturations, efficiency shares, and fuel shares	Codes and Standards Forecast	Hourly inputs for electric vehicles (EV) and Time-of-Use (TOU) products

EE Baseline End-Use Forecast

+A single base case forecast; embeds electrification (no scenarios)

STUDY PERIOD

2026 to 2045 (20 years) Base year: 2025

BUILDING TYPES

Same as 2024 DSMPA Residential: Single family, multifamily - low rise, multifamily - mid rise, multifamily – high rise; standard and highly impacted communities

SECTORS

Residential, commercial, industrial (same as 2024 DSMPA)

END USES

Heating, cooling, lighting, water heat, dryer, etc.

EE Baseline Forecast Results

Industrial: Does not include spot loads, district steam, or street lighting forecast

EE Conservation Potential Assessment

- Determine technical and achievable technical energy efficiency potential (2026 through 2045)
- Review the measure list from the 2024 DSMPA project and discuss changes Working session with the City Light staff

	_	-	
	-	-	
Ŀ			

2026 CHANGES:

- Updated to RBSA III 🔺
- Increased avoided T&D
- Revised Admin cost factor
- Added new measures 🔺
- Updated 10 high impact measures with latest RTF data 🔶
- Included City Light evaluation data for DHPs and HPWHs
- Changes in codes and standards \checkmark
- No change to emerging technologies

- = increase impact
- = mixed impact
- **w** = decrease impact

New Measures Added

- EV chargers
- Window HP
- HVAC sizing
- MF PTHP
- HP with back-up

- Measures Removed
- Street lighting controls
- Secondary wastewater impacts
- Spas
- Fryers
- Refrigerator and freezer recycling

EE 2026 DSMPA Comparison to 2024 DSMPA Achievable Technical Potential **DRAFT**

■ Residential ■ Commercial ■ Industrial

■ Residential ■ Commercial ■ Industrial

Base Case: Change in Residential Technical Potential by End Use **DRAFT**

- Changes in RBSA III enduse saturations and fuel shares impact end-uses
- Increase in heat pump dryer appliance savings characterization
- Decrease in water heating characterization (saturations/unit savings)

Base Case: Change in Commercial Technical Potential by End Use **DRAFT**

Increase Decrease Total

- Reduced potential from commercial lighting (2029 WA lighting code); lighting control potential remains
- Updates in cooling and heat pump characterization of chiller upgrades and ASHP

Levelized Cost Results by Cost Bundle **DRAFT**

- Similar distribution as 2024 CPA but with more aMW in lower cost bundles due to new T&D
- 2026 DSMPA found 66% of the cumulative 2045 achievable technical potential can be acquired at less than or equal to \$70/MWh
- 2026 DSMPA found 19% of cumulative achievable technical potential has a levelized cost greater than \$160/MWh

EE Potential Conclusions **DRAFT**

- Short-term **achievable technical potential** is ~36 aMW within the first two years (through 2027)
- Commercial sector continues to provide the highest potential
- Similar to the prior CPA, low-cost energy efficiency potential is not abundant
 - In-part due to reduced low-cost lighting potential
 - More expensive HVAC measures

2026 **DSMPA**

Potential Assessment 101 EE Preliminary Results **DR Preliminary Results**

Products Assessed

14 Residential, 15 Nonresidential Products

Three main DR categories:

- Direct load control (DLC)
- Pricing options
- Other (Behavioral and battery)

Residential DR Product List	DR Type
Residential Storage Switch Water Heater (WH)	WH DLC
Residential Storage Grid-Enabled Water Heater	WH DLC
Residential Heat Pump Grid-Enabled Water Heater	WH DLC
Residential Electric Vehicle Direct Load Control	EV DLC
Residential Critical Peak Pricing (CPP)	CPP Pricing
Peak Time Rebates (PTR)	PTR Pricing
Residential Time of Use (TOU) - OptOut	TOU Pricing
Residential Time of Use (TOU)	TOU Pricing
Highly Impacted Community Residential Battery (Batt)	Batt Other
Residential Battery	Batt Other
Residential BYOT	HVAC DLC
Residential HVAC Switch	HVAC DLC
Residential Connected Heat Pump Direct Load Control	HVAC DLC
Residential Behavioral (Non-incentivized)	Behavioral Other

Non-Residential DR Product List	DR Type
Commercial Electric Vehicle Time of Use (TOU)	EV Pricing
Commercial Light Duty Electric Vehicle Direct Load Control	EV DLC
Commercial Medium Duty Electric Vehicle Direct Load Control	EV DLC
Commercial Heavy Duty Electric Vehicle Direct Load Control	EV DLC
Commercial Critical Peak Pricing (CPP)	CPP Pricing
Industrial Critical Peak Pricing (CPP)	CPP Pricing
Commercial Curtailment	Load DLC
Industrial Curtailment	Load DLC
Commercial Time of Use (TOU)	TOU Pricing
Small Commercial Battery	Batt Other
Large Commercial Battery	Batt Other
Small Commercial BYOT	HVAC DLC
Small Commercial HVAC Switch	HVAC DLC
Medium Commercial HVAC Switch	HVAC DLC
Commercial Grid Enabled Building Curtailment	Load DLC
	23

Comparison 2026 vs 2024 DSMPA DR Results DRAFT

Sector	2024 DSMPA Winter (MW)	2026 DSMPA Winter (MW)	2024 DSMPA Summer (MW)	2026 DSMPA Summer (MW)
Commercial	50.8	43.9	65.0	55.1
Residential*	129.0	120.5	78.1	105.3
New in 2026**	NA	22.1	NA	24.7
Total	179.9	176.6 (with opt-in) 180.7 (with opt-out)	143.1	174.3 (with opt-in) 178.9 (with opt-out)

* Includes Res TOU opt-in

** Includes Res TOU opt-out

Changes in the 2026 DSMPA

- **Program and Evaluation data.** Leveraged recent City Light and NW program and evaluation data
- Aligned C&I Curtailment design. Assumed up to 10 participants with at least 1MW load curtailable (up to 72 hours).
- Integrated City Light program staff input. For example, aligned assumptions across products.

Winter Demand Response **DRAFT**

Residential

Nonresidential

Winter Achievable Potential (MW)

NOTE: Res TOU opt-in and Res TOU opt-out are not additive

Summer Demand Response **DRAFT**

Residential

Nonresidential

NOTE: Res TOU opt-in and Res TOU opt-out are not additive

Winter DR Achievable Potential Supply Curve DRAFT

DR Potential Conclusions **DRAFT**

- Residential
 - Residential Heat Pump Grid-Enabled Water Heaters offer the greatest achievable demand response winter potential (41 MW) by 2045 and with levelized costs under ~\$175/kW-year
- Nonresidential
 - Curtailment and pricing programs offer the greatest achievable demand response winter and summer potential by 2045
- EVs
 - With the increase projected EV adoption, the opportunity to manage EV loads has also increased

Next Steps – DSMPA Legislative Timeline

- April 1st 28th: IRP team completes DSMPA EE/DR modeling and drafts economic potential section of the report
- May 5th May 21st final report review period
- May 26th: Legislative package due for pre-approval by CAO/CBO

- June 9th: GM Briefing Materials due
- June 24th: 2026 DSMPA Council Briefing w/ GM
- July 11th: Formal Legistar Review and Approval
- August 15th: SCLAC Council Meeting #1
- September 5th: SCLAC Council Meeting #2
- September 16th: Seattle City Council Vote on Resolution

Existing Resources

2024 Existing Resources

	2024 Energy	% of	Year Contract
Resources	Produced (MWh)	Grand Total	Expires
Owned Generation			
Boundary	3,025,434	30.7%	
Gorge	689,925	7.0%	
Diablo	363,142	3.7%	
Ross	411,631	4.2%	
Cedar Falls	6,841	0.1%	
South Fork Tolt	44,885	0.5%	
TOTAL OWNED	4,541,858	46.1%	
Contracts			
BPA Block	4,278,100	43.4%	2028
Priest Rapids	19,184	0.2%	2052
Columbia Basin Hydro	251,860	2.6%	2025-2027
High Ross	315,307	3.2%	2066
Seven Mile	3,263	0.0%	2066
Lucky Peak	290,821	3.0%	2038
Columbia Ridge	69,446	0.7%	2028/2033
King County WW	9,647	0.1%	2033
Condon Wind	73,861	0.7%	2028
TOTAL CONTRACTS	5,311,489	53.9%	
GRAND TOTAL	9.853.347	100.0%	

2024 Existing Resources

Next Steps

Next Meeting

- May proposed agenda
 - DSMPA Final Results
- 2025 meetings:
 - Adding at least one more meeting for the IRP results (Timing TBD)

THANK YOU

2026 IRP

 RCW 19.280.030 requires all state electric utilities to develop and update integrated resource plans (IRP) and make them available to the public every two years.

New Approach

- Sylvan Energy Analytics provides consulting services and software solutions for clean energy planning
- Extensive experience in integrated resource planning, working across the utility industry, with specific expertise in the Pacific Northwest

Sylvan develops and maintains GridPath, an open-source, versatile grid-analytics platform for capacity expansion, production cost, and resource adequacy analysis

GridPath

Re-cap: Energy Efficiency Potential Methodology

EE vs DR

Contrasts with Energy Efficiency Potential

Hundreds of individual measures

Over one thousand measure permutations

IRP model selects measures bundled by cost

Aggregate accuracy is important – not necessarily measure-level precision

Potential estimates typically ignore program delivery and design

Demand Response Potential

About one dozen products

IRP model selects individual products

Accuracy at the product level is paramount, but data is limited and not always transferable

Potential depends highly on program delivery and design, and this implementation risk not fully captured in the potential estimate

Emerging technologies

Residential

Induction Cooktops Vinyl siding, insulated SIPS panel framing Networked automation controls Smart Electrical Panel

Smart outlets

Indirect Evaporative Coolers Clothes dryer w heat recovery Advanced Air-to-water Heat Pump

Commercial

Web-Enabled Power Monitoring for Small and Medium-Sized Businesses Food truck, efficient electric cooking Low GWP freezers and refrigerator cases Induction Cooktop Commercial/Industrial CO2 Heat Pumps Central HPWH with load controls Aero foil outfitted shelving Advanced Air-to-water Heat Pump

Products Assessed Detail

14 Residential, 15 Nonresidential Products

Residential DR Product List	DR Type	Primary Competition	Assumptions
Residential Storage	WH DLC	А	Competes with grid-enabled and heat
Switch Water Heater			pump water heater adoption
Residential Storage Grid-	WH DLC	А	Competes with heat pump water
Enabled Water Heater			heater adoption; WA code requires to install
			grid-enabled water heaters adoption; Assume
			90% non-exempt rate.
Residential Heat Pump Grid-	WH DLC	A	Adoption based on Council ramp rate
Enabled Water Heater			(e.g., assume cost effective)
Residential Electric	EV DLC		Uses City Light EV adoption
Vehicle Direct Load Control			
Residential Critical Peak Pricing	Pricing	С	Removed customers with solar/batt
			adoption (from solar potential)
Peak Time Rebates	Pricing	С	Removed customers with solar/batt
			adoption (from solar potential)
Residential Time of Use (TOU) -	Pricing	С	Removed customers with solar/batt
OptOut			adoption (from solar potential). Does not
			complete with Opt-in Res TOU product.
Residential Time of Use (TOU)	Pricing	С	Removed customers with solar/batt
			adoption (from solar potential). Does not
			complete with Opt-out Res TOU product.
Highly Impacted	Batt DLC		Assume different incentives; based on
Community Residential Battery			solar potential
Residential Battery	Batt DLC		Based on solar potential
Residential BYOT	HVAC DLC	В	Competes with connected HP
Residential HVAC Switch	HVAC DLC	В	Competes with smart thermostat and connected
			HP adoption
Residential Connected	HVAC DLC	В	Assume slow ramp rate (similar
Heat Pump Direct Load Control			to Council's emerging technology ramp
			classification)
Residential Behavioral (Non- incentivized)	Behavioral		

Three main DR categories:	Direct load control (DLC) Pricing options Other (EV managed charging and battery)

Non-Residential DR Product List	DR Type	Primary Competition	Assumptions
Commercial Electric Vehicle Time of Use (TOU)	EV Pricing		Uses City EV adoption for public vehicles
Commercial Light Duty Electric Vehicle Direct Load Control	EV DLC		Uses City Light EV adoption for light duty vehicles
Commercial Medium Duty Electric Vehicle Direct Load Control	EV DLC		Uses City Light EV adoption for medium duty vehicles
Commercial Heavy Duty Electric Vehicle Direct Load Control	EV DLC		Uses City Light EV adoption for heavy duty vehicles
Commercial Critical Peak Pricing	Pricing	Е	Removed customers with solar/batt adoption (from solar potential)
Industrial Critical Peak Pricing	Pricing		
Commercial Curtailment	Load DLC		Large customer must commit to 1MW or more in load reduction
Industrial Curtailment	Load DLC		Large customer must commit to 1MW or more in load reduction
Commercial Time of Use (TOU)	Pricing	E	Removed customers with solar/batt adoption (from solar potential)
Small Commercial Battery	Batt DLC		Based on solar potential
Large Commercial Battery	Batt DLC		Based on solar potential
Small Commercial BYOT	HVAC DLC	D	Adoption based on Council ramp rate (e.g., assume cost effective)
Small Commercial HVAC Switch	HVAC DLC	D	Competes with smart thermostat adoption
Medium Commercial HVAC Switch	HVAC DLC		10
Commercial Grid Enabled Building Curtailment	Load DLC		48

2026 and 2024 DSMPA Demand Response Potential Comparison

	Winter				Summer			
	2024 DRPA Achievable Potential in 2045		2026 DRPA Achievable Potential in 2045		2024 DRPA Achievable Potential in 2045		2026 DRPA Achievable Potential in 2045	
Product Option	Achievable	TRC Levelized	Achievable	TRC Levelized	Achievable	TRC Levelized	Achievable	TRC Levelized
ComCPP	14.8	-\$4	14.3	-\$31	14.8	-\$4	14.3	-\$31
GridIEBCurtail	4.9	\$476	4.6	\$331	8.6	\$283	8.1	\$188
IndCPP	2.0	\$24	1.6	\$15	1.9	\$25	1.8	\$7
NRCurtailCom	6.8	\$27	8.4	\$16	15.2	\$27	12.8	\$15
NRCurtailInd	1.4	\$31	1.7	\$30	1.4	\$31	1.7	\$30
PkTmRbtP	2.2	\$182	4.0	\$191	1.6	\$264	2.8	\$292
ResCPP	1.2	\$58	1.6	\$54	0.6	\$122	1.3	\$78
ResTOU	5.5	\$54	5.8	\$53	3.8	\$83	6.1	\$48
ComEVTOU	16.6	\$27	9.8	\$67	16.6	\$27	9.8	\$67
ConHPDCLWin	32.6	\$20	22.0	\$6	4.8	\$74	21.8	\$6
LgNRBatt	0.3	\$749	0.3	\$623	0.4	\$639	0.4	\$489
LIResBatt	1.0	\$544	1.0	\$250	1.3	\$515	1.3	\$215
NRHVACSwchMed	2.0	\$16	1.6	-\$3	3.6	\$11	3.6	-\$13
NRHVACSwchSm	0.2	\$95	0.2	\$113	0.2	\$148	0.2	\$148
NRTstatSm	1.1	\$41	0.8	\$11	1.4	\$34	1.5	\$1
ResBatt	7.0	\$285	7.2	\$69	9.2	\$281	9.5	\$65
ResBYOT	16.3	\$40	8.4	\$134	22.3	\$31	19.4	\$141
ResERWHDLCSwch	0.5	\$218	0.5	\$210	0.5	\$235	0.5	\$229
ResERWHDLCGrd	9.9	\$132	9.6	\$80	9.2	\$143	8.9	\$90
ResEVSEDLC	8.4	\$361	15.3	\$346	8.4	\$361	15.3	\$346
ResHVACSwch	5.3	\$48	3.7	\$59	1.7	\$126	2.8	\$73
ResHPWHDLCGrd	39.0	\$247	41.4	\$175	14.8	\$666	15.8	\$526
SmNRBatt	0.7	\$487	0.7	\$306	0.9	\$438	0.9	\$246
ComTOU	Not Modeled		0.7	\$101	Not Modeled		2.8	-\$5
ComEVSEDLCHD	Not Modeled		3.1	-\$7	Not Modeled		3.1	-\$7
ComEVSEDLCLD	Not Modeled		3.7	\$149	Not Modeled		3.7	\$149
ComEVSEDLCMD	Not Modeled		3.9	\$230	Not Modeled		3.9	\$230
ResBehaviorDR	Not Modeled		0.8	\$97	Not Modeled		0.4	\$106
ResTOUOptOut	Not Modeled		9.9	\$87	Not Modeled		10.7	\$77

Mission, Vision, and Values

Mission

Seattle City Light safely provides our customers with affordable, reliable, and environmentally responsible energy services.

Vision

Create a shared energy future by partnering with our customers to meet their energy needs in whatever way they choose.

Values

Customers First

Environmental Stewardship

Equitable Community Connections

Operational and Financial Excellence

Safe and Engaged Employees

Seattle City Light

WE POWER SEATTLE