PREFACE

The 2000 edition City of Seattle Standard Specifications for Road, Bridge, and Municipal Construction (henceforth referred to as the "2000 Seattle Standard Specifications") have been prepared by Seattle Public Utilities in cooperation with Seattle Transportation Department (SEATRAN), Department of Parks and Recreation, Executive Services Department, Seattle City Light, and Seattle Center. This document was compiled by combining the 1998 WSDOT / APWA Standard Specifications with Seattle’s 1989 Standard Specifications and supplemental General Special Provisions, and then revising or supplementing the resulting whole to reflect current City policies and procedures.

For all public works projects administered by Seattle Public Utilities, SEATRAN, or Seattle City Light within the Rights-of-Way under the jurisdiction of Seattle Public Utilities, SEATRAN, or Seattle City Light, the following apply on all individual projects and are considered as a whole:

- This printed hardcopy version of the 2000 Seattle Standard Specifications
- Traffic Control Manual for In-Street Work (used in conjunction with the MUTCD)
- Laws of the State of Washington
- Charter and Ordinances of the City of Seattle
- Project Manual and Drawings for the individual project

For public works projects within the Rights-of-Way under the jurisdiction of Seattle Public Utilities, SEATRAN, or Seattle City Light and administered by the Department of Parks and Recreation, Executive Services Department, and Seattle Center who may utilize a separate Division 1, known as 2000 Seattle Standard Specifications, Version B.

Other than work administered by the Department of Parks and Recreation, Executive Services Department, and Seattle Center who may utilize a separate Division 1, known as 2000 Seattle Standard Specifications, Version B, the 2000 Seattle Standard Specifications and the 2000 Seattle Standard Plans apply whenever any public or private work is performed within the Rights-of-Way of the City of Seattle under the jurisdiction of Seattle Public Utilities, SEATRAN, or Seattle City Light, including work performed by private parties at their own expense under authority granted by ordinance of the City Council or by permit of the SEATRAN Street Use section. All requirements of the 2000 Seattle Standard Specifications apply to such work in the same manner as though the work were being performed under a contract awarded by the Executive Services Department (Contracting Services Division), with the exception of those requirements or conditions pertaining to payment for the work performed or to withholding or receiving money due the Contractor. All matters relating to financing of such work shall be between the permittee and the Contractor, and the City shall not enter into such matters.

SHADING: For the convenience of some of our users, we have shaded the text like this to indicate 2000 WSDOT / APWA 1-99 Standard Specification language.

ITALICS: For the convenience of some of our users, we have indicated current text which has been revised from the 1989 Standard Specifications as italicized text.

Despite considerable efforts to produce a completely error-free document, some mistakes seem to defy detection until after publication. Should you discover errors in this document, please bring them to our attention at Seattle Public Utilities, Contracts and Standards Section, 600 - 4th Avenue, Room 800, Seattle, Washington, 98104-1879.

My sincere thanks and appreciation to all those individuals in Seattle Public Utilities, and other City Departments and outside agencies who participated in the effort of providing input, discussing, and reviewing this document. In particular, thanks to Jonathan Marsh who shouldered most of the work in questioning, authoring, communicating, coordinating, obtaining cooperation, editing, and resolving conflict in the Standard Specifications. Thanks also to Doug J. Howell who shouldered most of the burden for initial upgrading of the General Requirements, and to Debby Allen for coordinating the Standard Plans. Additional thanks to Tamara Granfors, Annie Bradley, Julia Bump, Shariar Keshavarzi for word processing and publication set-up, and to Cliff Jones, Pam Hamlin, and other members of the Contracts and Standards Section of Seattle Public Utilities for editing detail.

Additional copies of this document are available at SEATRAN, Street Use Office, Room 500, 600 Fourth Avenue, Seattle, Washington 98104, 206-684-5283 at a cost of $35.00 per copy.

Brian Patton, P.E.
Director, Engineering Support
Seattle Public Utilities
2000 City Of Seattle Standard Specifications
Table Of Contents

VOLUME 1

Signature Page
Preface
Table of Contents for Volumes 1 and 2

Division 1 General Requirements ... 1-1 to 1-122
Division 2 Earthwork.. 2-1 to 2-42
Division 3 Production From Quarry And Pit Sites And Stockpiling................. 3-1 to 3-6
Division 4 Bases .. 4-1 to 4-14
Division 5 Surface Treatments And Pavements... 5-1 to 5-50
Division 6 Structures.. 6-1 to 6-134

VOLUME 2

Introduction Page

Division 7 Storm Drains, Culverts, Sanitary, And Combined Sewers, Water Mains And Related Structures... 7-1 to 7-78
Division 8 Miscellaneous Construction... 8-1 to 8-98
Division 9 Materials... 9-1 to 9-160

Index
VOLUME 1 of 2

DIVISION 1 – GENERAL REQUIREMENTS

SECTION 1-01 DEFINITIONS AND TERMS

1-01.2 Abbreviations .. 1-1
1-01.2(1) Associations And Miscellaneous 1-1
1-01.2(2) Items Of Work And Units Of Measurement 1-4

1-01.3 Definitions ... 1-4

SECTION 1-02 BID PROCEDURES AND CONDITIONS

1-02.1 Qualifications Of Bidders .. 1-14
1-02.2 Bid Documents ... 1-14
1-02.3 Estimated Quantities .. 1-14
1-02.4 Examination Of Bid Documents And Project Site 1-14
1-02.4(2) Subsurface Information .. 1-15
1-02.5 Form And Style Of Bid .. 1-16
1-02.6 Addenda .. 1-16
1-02.7 Bid Guaranty ... 1-16
1-02.8 Noncollusion Requirement .. 1-17
1-02.9 Bid Submittal ... 1-17
1-02.9(2) Change Of Bid Submittal Date 1-17
1-02.9(3) Subcontractor List ... 1-17
1-02.10 Modification Or Withdrawal Of Bid 1-18
1-02.11 Additives, Alternates, Deductives 1-18
1-02.12 Public Opening Of Bids ... 1-18
1-02.13 Irregular Bids ... 1-18
1-02.14 Disqualifications Of Bidders .. 1-19

SECTION 1-03 AWARD AND EXECUTION OF CONTRACT

1-03.1 Consideration Of Bids .. 1-19
1-03.1(2) Bid Tabulation .. 1-19
1-03.1(3) Claim Of Error .. 1-19
1-03.1(4) Pre-Award Information ... 1-20
1-03.1(5) Rights Of The Owner ... 1-20
1-03.2 Award Of Contract ... 1-20
1-03.3 Execution Of Contract .. 1-21
1-03.3(2) Time To Execute Agreement Form 1-21
1-03.4 Contract Bond .. 1-21
1-03.5 Failure To Execute The Contract 1-22
1-03.6 Return Of Bid Guaranty .. 1-22
1-03.7 Appeals .. 1-22

SECTION 1-04 SCOPE OF WORK

1-04.1 Intent Of Contract Documents 1-23
1-04.1(1) Bid Items Included In The Bid Form 1-23
1-04.1(2) Bid Items Not Included In The Bid Form 1-23
1-04.2 Coordination Of Contract Documents 1-23
1-04.4 Changes ... 1-24
1-04.4(5) Disputes And Claims Resolution Process 1-25
1-04.5(1) Sequence Of Disputes Resolution Process 1-25
1-04.5(2) Dispute Notice For Protested Work 1-25
1-04.5(3) Claims ... 1-26
1-04.5(4) Mediation ... 1-28
1-04.5(5) Litigation .. 1-28
1-04.5(6) Audits .. 1-28
1-04.6 Increased Or Decreased Quantities 1-28
SECTION 1-05 CONTROL OF WORK

1-05.1 Authority Of Engineer
1-05.2 Authority Of Assistants And Electrical Safety Observer
1-05.2(1) Authority Of Assistants
1-05.2(2) Authority Of Electrical Safety Observer
1-05.3 Drawings
1-05.3(1) Supplemental Drawings
1-05.3(2) Shop Drawings
1-05.3(4) As Built Records
1-05.4 Conformity With And Deviations From Plans And Stakes
1-05.5 Construction Stakes
1-05.5(2) Roadway And Utility Surveys
1-05.5(3) Bridge And Structure Surveys
1-05.6 Inspection Of Work And Materials
1-05.6(1) Samples And Tests For Acceptance
1-05.6(2) Authority Of Assistants
1-05.6(3) Manufacturer’s Certificate Of Compliance
1-05.7 Defective And Unauthorized Work
1-05.8 Engineer’s Right To Correct Defective Or Unauthorized Work
1-05.9 Equipment
1-05.10 Guarantees
1-05.10(1) General Guaranty And Warranty
1-05.10(2) Warranty Of Title
1-05.11 Final Inspection
1-05.11(1) Substantial Completion Date
1-05.11(2) Final Inspection And Physical Completion Date
1-05.11(3) Operational Testing
1-05.12 Completion
1-05.13 Superintendents, Labor, And Equipment
1-05.14 Cooperation With Other Contractors
1-05.15 Methods Of Serving Notices
1-05.16 Water And Power
1-05.17 Oral Agreements

SECTION 1-06 CONTROL OF MATERIALS

1-06.1 Source Of Supply And Quality Of Materials
1-06.2 Acceptance Of Materials
1-06.2(1) Samples And Tests For Acceptance
1-06.3 Manufacturer’s Certificate Of Compliance
1-06.4 Handling And Storage Of Materials
1-06.6 Sieves For Testing

SECTION 1-07 LEGAL RELATIONS AND RESPONSIBILITIES TO THE PUBLIC

1-07.1 Laws To Be Observed
1-07.1(2) Safety Rules And Standards
1-07.2 State Taxes
1-07.2(2) State Sales Tax - Rule 171
1-07.2(3) State Sales Tax - Rule 170
1-07.2(4) Services
1-07.4 Sanitation
1-07.5 Prevention Of Environmental Pollution And Preservation Of Public Natural Resources
1-07.5(2) Water Quality
1-07.5(3) Air Quality
1-07.5(4) Noise Pollution ... 1-51
1-07.5(5) Liability And Payment ... 1-51
1-07.5(6) Archaeological And Historic Preservation 1-51
1-07.6 Permits And Licenses .. 1-51
1-07.7 Load Limits ... 1-52
1-07.7(2) Load-Limit Restrictions .. 1-52
1-07.9 Wages ... 1-53
1-07.9(1) Prevailing Wage Rates ... 1-53
1-07.9(2) Posting Notices ... 1-56
1-07.9(3) Apprentices ... 1-56
1-07.9(4) Disputes ... 1-56
1-07.9(5) Required Documents ... 1-57
1-07.9(6) Audits .. 1-57
1-07.11 Equal Employment Opportunity Requirements 1-57
1-07.11(2) Equal Employment Opportunity Policy 1-58
1-07.11(3) Equal Employment Opportunity Officer 1-58
1-07.11(4) Dissemination Of Policy .. 1-58
1-07.11(5) Recruitment .. 1-59
1-07.11(6) Personnel Actions .. 1-60
1-07.11(7) Training And Promotion .. 1-60
1-07.11(10) Records And Reports .. 1-61
1-07.11(11) Compliance Monitoring ... 1-62
1-07.11(12) Sanctions ... 1-62
1-07.11(13) Employment Goals .. 1-62
1-07.12 Women And Minority Business Enterprise Requirements 1-62
1-07.12(2) Non-Discrimination ... 1-63
1-07.12(3) Record-Keeping .. 1-63
1-07.12(4) Affirmative Efforts To Utilize WMBEs 1-63
1-07.12(5) Sanctions For Violation .. 1-63
1-07.13 Contractor’s Responsibility For Work And Damage 1-64
1-07.13(2) Relief Of Responsibility For Completed Work 1-64
1-07.13(3) Relief Of Responsibility For Damage By Public Traffic 1-65
1-07.13(4) Repair Of Damage .. 1-65
1-07.15 Temporary Water Pollution/Erosion Control 1-65
1-07.16 Protection And Restoration Of Property 1-66
1-07.16(1) Private And Public Property ... 1-66
1-07.16(2) Trees, Shrub, And Plant Material Protection 1-67
1-07.16(3) Fences, Mailboxes, And Miscellaneous Items 1-68
1-07.16(4) Payment .. 1-68
1-07.17 Utilities And Similar Facilities .. 1-69
1-07.17(2) Underground Utility Clearances 1-70
1-07.18 Insurance .. 1-71
1-07.18(2) Required Coverages .. 1-71
1-07.18(3) Deductibles .. 1-72
1-07.18(4) Conditions ... 1-73
1-07.18(5) Evidence Of Insurance .. 1-73
1-07.18(7) Indemnification ... 1-74
1-07.18(8) Worker’s Benefits ... 1-74
1-07.19 Gratuities ... 1-75
1-07.20 Patented Devices, Materials, And Processes 1-75
1-07.21 Rock Drilling Safety Requirements 1-75
1-07.22 Use Of Explosives ... 1-75
1-07.23 Public Convenience And Safety .. 1-75
1-07.23(1) Construction Under Traffic ... 1-75
1-07.23(2) Pedestrian Control And Protection 1-78
1-07.24 Real Property Rights ... 1-79
SECTION 2-02 REMOVE, ABANDON, OR RELOCATE STRUCTURES AND OBSTRUCTIONS ... 2-3
 2-02.1 Description ... 2-3
 2-02.2 Materials .. 2-3
 2-02.3 Construction Requirements .. 2-3
 2-02.3(2) Removal Of Bridges, Box Culverts And Other Drainage Structures .. 2-4
 2-02.3(3) Removal Of Existing Street Improvements .. 2-4
 2-02.3(4) Abandon Catch Basin, Valve Chamber, Manhole, Or Inlet ... 2-6
 2-02.3(5) Abandon And Fill, And Plug Pipe ... 2-6
 2-02.3(6) Sawing And Line Drilling ... 2-6

DIVISION 2 - EARTHWORK
SECTION 2-01 CLEARING, GRUBBING, AND ROADSIDE CLEANUP .. 2-1
 2-01.1 Description ... 2-1
 2-01.2 Borrow And Disposal Sites ... 2-1
 2-01.3 Construction Requirements .. 2-2
 2-01.3(2) Grubbing ... 2-2
 2-01.3(3) Limits Of Clearing And Grubbing ... 2-2
 2-01.3(4) Roadside Cleanup ... 2-2
 2-01.3(5) Protection Of Existing Improvements .. 2-2
 2-01.4 Measurement ... 2-2
 2-01.5 Payment .. 2-3
SECTION 2-03 ROADWAY EXCAVATION AND EMBANKMENT .. 2-11
 2-03.1 Description .. 2-11
 2-03.2 Classification ... 2-11
 2-03.3 Protection Of Existing Improvements .. 2-12
 2-03.4 Construction Requirements .. 2-12
 2-03.4.1 Widening Of Cuts ... 2-12
 2-03.4.2 Rock Cuts .. 2-12
 2-03.4.3 Excavation Below Grade ... 2-12
 2-03.4.4 Sluicing ... 2-13
 2-03.4.5 Slope Treatment ... 2-13
 2-03.4.6 Deposit Of Rock For Owner’s Use .. 2-13
 2-03.4.7 Disposal Of Surplus Material ... 2-13
 2-03.4.8 Wasting Material ... 2-14
 2-03.4.9 Roadway Ditches ... 2-14
 2-03.4.10 Selected Material .. 2-14
 2-03.4.11 Slides .. 2-15
 2-03.4.12 Overbreak ... 2-15
 2-03.4.13 Borrow .. 2-15
 2-03.4.14 Embankment Construction .. 2-15
 2-03.4.15 Aeration .. 2-20
 2-03.4.16 End Slopes ... 2-21
 2-03.4.17 Snow Removal ... 2-21
 2-03.4.18 Stepped Slope Construction ... 2-21
 2-03.5 Measurement .. 2-21
 2-03.6 Payment .. 2-22

SECTION 2-04 HAUL ... 2-24
 2-04.1 Description .. 2-24
 2-04.2 Construction Requirements .. 2-24
 2-04.3 Measurement .. 2-24
 2-04.4 Payment .. 2-24

SECTION 2-06 SUBGRADE PREPARATION .. 2-24
 2-06.1 Description .. 2-24
 2-06.2 Materials .. 2-24
 2-06.3 Construction Requirements .. 2-24
 2-06.3.1 Subgrade For Surfacing ... 2-24
 2-06.3.2 Subgrade For Pavement ... 2-25
 2-06.3.3 Subgrade Stabilization .. 2-25
 2-06.3.4 Maintenance And Protection Of Subgrade .. 2-26
 2-06.4 Measurement .. 2-27
 2-06.5 Payment .. 2-27

SECTION 2-07 WATERING ... 2-27
 2-07.1 Description ... 2-27
 2-07.3 Construction Requirements .. 2-27
 2-07.3.1 Source Of Water Supply And Regulations Pertaining To Hydrant Use .. 2-27
 2-07.4 Measurement .. 2-28
 2-07.5 Payment .. 2-28
DIVISION 3 – PRODUCTION FROM QUARRY AND PIT SITES AND STOCKPILING

SECTION 3-01 PRODUCTION FROM QUARRY AND PIT SITES

3-01.1 Description .. 3-1
3-01.2 Materials .. 3-1
3-01.2(1) General Source .. 3-1
3-01.2(2) Contractor-Furnished Material Source 3-2
3-01.4 Measurement ... 3-2
3-01.5 Payment ... 3-3
5-04.3(6) Heating Of Asphalt Material ... 5-17
5-04.3(7) Preparation Of Aggregates ... 5-17
5-04.3(8) Mixing .. 5-18
5-04.3(9) Spreading And Finishing ... 5-18
5-04.3(10) Compaction .. 5-19
5-04.3(11) Joints ... 5-20
5-04.3(12) Samples ... 5-20
5-04.3(13) Surface Smoothness ... 5-21
5-04.3(14) Asphalt Concrete Driveways .. 5-21
5-04.3(15) Weather Limitations .. 5-21
5-04.3(17) Paving Under Traffic .. 5-22
5-04.3(18) Change In Grade Of Asphalt .. 5-22
5-04.3(19) Sealing Of Driving Surfaces ... 5-22
5-04.3(20) Anti-Stripping Additive ... 5-23
5-04.3(21) Shoulders ... 5-23
5-04.3(22) Asphalt Concrete Sidewalk .. 5-23
5-04.3(23) Asphalt Concrete Pavement Patching ... 5-23
5-04.4 Measurement .. 5-24
5-04.5 Payment .. 5-25

SECTION 5-05 CEMENT CONCRETE PAVEMENT .. 5-26
5-05.1 Description ... 5-26
5-05.2 Materials .. 5-27
5-05.3 Construction Requirements .. 5-27
 5-05.3(1) Proportioning Materials ... 5-27
 5-05.3(2) Consistency (Slump Requirements) ... 5-28
 5-05.3(3) Equipment ... 5-28
 5-05.3(4) Handling, Measuring And Batching Materials 5-30
 5-05.3(5) Mixing Concrete ... 5-30
 5-05.3(6) Subgrade ... 5-31
 5-05.3(7) Placing, Spreading, And Compacting Concrete 5-31
 5-05.3(8) Joints ... 5-35
 5-05.3(9) Steel Reinforcing Bars ... 5-38
 5-05.3(10) Tie Bars And Dowel Bars .. 5-38
 5-05.3(11) Finishing ... 5-38
 5-05.3(12) Surface Smoothness .. 5-40
 5-05.3(13) Curing ... 5-40
 5-05.3(14) Cold Weather Work .. 5-42
 5-05.3(15) Concrete Pavement Construction In Adjacent Lanes 5-43
 5-05.3(16) Protection Of Pavement .. 5-43
 5-05.3(17) Opening Pavements To Traffic ... 5-43
 5-05.3(18) Cement Concrete Approach .. 5-43
 5-05.3(19) Reinforced Concrete Bridge Approach Slabs 5-44
 5-05.3(20) Unfinished Cement Concrete Pavement 5-44
 5-05.3(21) Side Forms ... 5-44
 5-05.3(22) Repair Or Replacement Of Defective Pavement Panels 5-45
 5-05.3(23) Cement Concrete Pavement For Alley 5-45
 5-05.3(24) Concrete Underpinning .. 5-46
 5-05.3(25) Water .. 5-46
 5-05.3(26) Pavement Patching ... 5-46
 5-05.3(27) Temporary Pavement Patching .. 5-47
5-05.4 Measurement .. 5-47
5-05.5 Payment .. 5-47
DIVISION 6 – STRUCTURES

SECTION 6-01 GENERAL REQUIREMENTS

6-01.1 Description
6-01.2 Foundation Data
6-01.3 Clearing The Site
6-01.4 Appearance Of Structures
6-01.6 Load Restrictions On Bridges Under Construction
6-01.7 Navigable Streams
6-01.9 Shop Drawings
6-01.11 Name Plates
6-01.12 Structure Cleanup
6-01.13 Architectural Features
6-01.14 Premolded Joint Filler
6-01.15 Normal Temperature
6-01.16 Maintenance Of Bridge Drains

SECTION 6-02 CONCRETE STRUCTURES

6-02.1 Description
6-02.2 Materials
6-02.3 Construction Requirements
 6-02.3(1) Classification Of Structural Concrete
 6-02.3(2) Proportioning Materials
 6-02.3(3) Admixtures
 6-02.3(4) Mixing Concrete
 6-02.3(5) Acceptance Of Concrete
 6-02.3(6) Placing Concrete
 6-02.3(7) Concrete Exposed To Sea Water
 6-02.3(8) Concrete Exposed To Alkaline Soils Or Water
 6-02.3(9) Vibration Of Concrete
 6-02.3(10) Roadway Slabs
 6-02.3(11) Curing Concrete
 6-02.3(12) Construction Joint
 6-02.3(13) Expansion Joints And Compression Seals
 6-02.3(14) Finishing Concrete Surfaces
 6-02.3(15) Date Numerals
 6-02.3(16) Shop Drawings For Falsework And Formwork
 6-02.3(17) Falsework And Formwork
 6-02.3(18) Placing Anchor Bolts
 6-02.3(19) Bridge Bearings
 6-02.3(20) Grout For Anchor Bolts And Bridge Bearings
 6-02.3(21) Drainage Of Box Girder Cells
 6-02.3(22) Drainage Of Substructure
 6-02.3(23) Opening To Traffic
 6-02.3(24) Reinforcement
 6-02.3(25) Prestressed Concrete Girders
 6-02.3(26) Cast-In-Place Prestressed Concrete
 6-02.3(27) Concrete For Precast Units
 6-02.3(28) Precast Concrete Panels
 6-02.3(29) Downspouts
 6-02.3(30) Drilling Holes In Concrete
 6-02.3(31) Epoxy In Drilled Holes
 6-02.3(32) Repair Of Spalled And Delaminated Concrete
 6-02.3(33) Epoxy Injection Of Concrete Crack
 6-02.3(34) Removal Of Concrete / Bonding New Concrete To Existing
 Concrete

Concrete
6-03.1 Description .. 6-83
6-03.2 Materials .. 6-84
6-03.3 Construction Requirements ... 6-84
 6-03.3(1) Notice Of Rolling .. 6-84
 6-03.3(2) Facilities For Inspection .. 6-84
 6-03.3(3) Inspector's Authority .. 6-84
 6-03.3(4) Rejections ... 6-84
 6-03.3(5) Mill Orders And Shipping Statements .. 6-84
 6-03.3(6) Weighing .. 6-85
 6-03.3(7) Submittals .. 6-85
 6-03.3(8) Substitutions .. 6-86
 6-03.3(9) Handling, Storing, And Shipping Of Materials .. 6-86
 6-03.3(10) Straightening Bent Material .. 6-86
 6-03.3(11) Workmanship And Finish .. 6-86
 6-03.3(12) Falsework ... 6-87
 6-03.3(13) Fabricating Tension Members .. 6-87
 6-03.3(14) Edge Finishing ... 6-87
 6-03.3(15) Planing Of Bearing Surfaces ... 6-87
 6-03.3(16) Abutting Joints ... 6-87
 6-03.3(17) End Connection Angles ... 6-87
 6-03.3(18) Built-Up Members ... 6-87
 6-03.3(19) Hand Holes .. 6-88
 6-03.3(20) Lacing Bars .. 6-88
 6-03.3(21) Plate Girders ... 6-88
 6-03.3(22) Eyebars ... 6-88
 6-03.3(23) Annealing ... 6-88
 6-03.3(24) Pins And Rollers ... 6-88
 6-03.3(25) Welding And Repair Welding .. 6-89
 6-03.3(26) Screw Threads ... 6-91
 6-03.3(27) High Strength Bolt Holes ... 6-91
 6-03.3(28) Shop Assembly .. 6-93
 6-03.3(29) Sandblasting ... 6-93
 6-03.3(30) Shop Painting .. 6-94
 6-03.3(31) Alignment And Camber .. 6-95
 6-03.3(32) Assembling And Bolting ... 6-95
 6-03.3(33) Bolted Connections ... 6-96
 6-03.3(34) Adjusting Pin Nuts .. 6-99
 6-03.3(35) Setting Anchor Bolts .. 6-99
 6-03.3(36) Setting And Grouting Bearing Plates ... 6-99
 6-03.3(37) Setting Steel Bridge Bearings ... 6-99
 6-03.3(38) Placing Superstructure .. 6-99
 6-03.3(39) Swinging The Span ... 6-99
 6-03.3(40) Draining Pockets .. 6-100
 6-03.3(41) Floorbeam Protection .. 6-100
 6-03.3(42) Surface Condition .. 6-100
 6-03.3(43) Castings, Steel Forgings, And Miscellaneous Metals 6-100
6-03.4 Measurement .. 6-101
6-03.5 Payment .. 6-101
VOLUME 1 of 2 (continued)

SECTION 6-07 PAINTING ... 6-121
 6-07.1 Description .. 6-121
 6-07.2 Materials .. 6-121
 6-07.3 Construction Requirements ... 6-121
 6-07.3(1) Painting New Steel Structures 6-121
 6-07.3(2) Repainting Existing Steel Structures 6-123
 6-07.3(3) Painting Timber Structures 6-124
 6-07.3(4) Painting Galvanized Surfaces 6-124
 6-07.3(5) Paint Film Thickness 6-125
 6-07.3(6) Protection Of Public And Private Property 6-125
 6-07.3(7) Moisture Cured Urethane Paint 6-125
 6-07.4 Measurement .. 6-125
 6-07.5 Payment ... 6-125

SECTION 6-08 WATERPROOFING .. 6-126
 6-08.1 Description .. 6-126
 6-08.2 Materials .. 6-126
 6-08.3 Construction Requirements ... 6-126
 6-08.3(1) Storage Of Fabric .. 6-126
 6-08.3(2) Preparation Of Surface 6-126
 6-08.3(3) Application Of Waterproofing 6-126
 6-08.3(4) Protection Course ... 6-127
 6-08.4 Measurement .. 6-127
 6-08.5 Payment ... 6-127

SECTION 6-09 CRIBBING .. 6-128
 6-09.1 Description .. 6-128
 6-09.2 Materials .. 6-128
 6-09.3 Construction Requirements ... 6-128
 6-09.3(1) Gabion Cribbing ... 6-128
 6-09.4 Measurement .. 6-129
 6-09.5 Payment ... 6-129

SECTION 6-10 CONCRETE BARRIER ... 6-129
 6-10.1 Description .. 6-129
 6-10.2 Materials .. 6-130
 6-10.3 Construction Requirements ... 6-130
 6-10.3(1) Precast Concrete Barrier 6-130
 6-10.3(2) Cast-In-Place Concrete Barrier 6-130
 6-10.3(3) Resetting Concrete Barrier 6-131
 6-10.3(4) Joining Precast Concrete Barrier To Cast-In-Place Barrier 6-131
 6-10.3(5) Temporary Concrete Barrier 6-131
 6-10.3(6) Placing Concrete Barrier 6-131
 6-10.4 Measurement .. 6-131
 6-10.5 Payment ... 6-132

SECTION 6-11 PRECAST CONCRETE RETAINING WALL STEMS 6-132
 6-11.1 Description .. 6-132
 6-11.1(1) Submittals ... 6-132
 6-11.2 Materials .. 6-132
 6-11.3 Construction Requirements ... 6-133
 6-11.3(1) Tolerances ... 6-133
 6-11.4 Measurement .. 6-133
 6-11.5 Payment ... 6-133
SECTION 7-08 MISCELLANEOUS PIPE CONNECTIONS ... 7-17
 7-08.1 Description... 7-17
 7-08.2 Materials .. 7-18
 7-08.3 Construction Requirements .. 7-18
 7-08.3(1) Excavation And Backfill ... 7-18
 7-08.3(2) Connections To Existing Sanitary Sewers .. 7-18
 7-08.3(3) Pipe Installing, Jointing, And Testing ... 7-18
 7-08.3(4) Catch Basin Connections ... 7-18
 7-08.3(5) Inlet Connections ... 7-18
 7-08.3(6) Drop Connections ... 7-18
 7-08.4 Measurement ... 7-19
 7-08.5 Payment .. 7-19

SECTION 7-09 PIPE AND FITTINGS FOR WATER MAINS .. 7-19
 7-09.1 Description... 7-19
 7-09.2 Materials .. 7-19
 7-09.3 Construction Requirements .. 7-20

SECTION 7-10 TRENCH EXCAVATION, BEDDING AND BACKFILL FOR WATER MAINS 7-20
 7-10.1 Description... 7-20
 7-10.2 Materials ... 7-21
 7-10.3 Construction Requirements .. 7-21
 7-10.3(1) Ungraded Streets ... 7-21
 7-10.3(2) Clearing And Grubbing In Ungraded Streets ... 7-21
 7-10.3(3) Removal Of Existing Street Improvements ... 7-21
 7-10.3(4) Grade And Alignment .. 7-21
 7-10.3(5) Existing Utilities ... 7-21
 7-10.3(6) Trench Excavation .. 7-21
 7-10.3(7) Material From Trench Excavation ... 7-22
 7-10.3(8) Bedding The Pipe .. 7-23
 7-10.3(9) Backfilling Trenches .. 7-24
 7-10.3(10) Compaction Of Backfill ... 7-24
 7-10.4 Measurement ... 7-25
 7-10.5 Payment .. 7-25

SECTION 7-11 PIPE INSTALLATION FOR WATER MAINS ... 7-26
 7-11.1 Description... 7-26
 7-11.2 Material .. 7-26
 7-11.2(2) Pre-Installation Taste Testing ... 7-26
 7-11.2(3) Post Installation Taste Rating Tests ... 7-26
 7-11.3 Construction Requirements .. 7-27
 7-11.3(1) Dewatering Of Trench ... 7-27
 7-11.3(2) Handling Of Pipe .. 7-27
 7-11.3(3) Cutting Pipe .. 7-28
 7-11.3(4) Installing Pipe On Curves .. 7-28
 7-11.3(5) Cleaning And Assembling Joints ... 7-28
 7-11.3(6) Installing And Jointing Pipe ... 7-28
 7-11.3(7) Installing Steel Pipe .. 7-29
 7-11.3(8) Connections .. 7-30
 7-11.3(10) Locating Wire ... 7-32
 7-11.3(11) Hydrostatic Pressure Test ... 7-32
 7-11.3(12) Flushing And Disinfection Of Water Mains ... 7-34
 7-11.3(13) Concrete Thrust Blocking ... 7-37
 7-11.3(14) Blowoff Assemblies ... 7-37
 7-11.3(15) Electrolysis Monitoring System For Ductile Iron Pipe 7-37
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-17.1</td>
<td>Description of Storm Drains and Sanitary Sewers</td>
</tr>
<tr>
<td>7-17.2</td>
<td>Materials for Storm Drains and Sanitary Sewers</td>
</tr>
<tr>
<td>7-17.3</td>
<td>Construction Requirements for Storm Drains and Sanitary Sewers</td>
</tr>
<tr>
<td>7-17.3(1)</td>
<td>Excavation and Preparation of Trench, and Pipe Bedding</td>
</tr>
<tr>
<td>7-17.3(2)</td>
<td>Valve Chambers</td>
</tr>
<tr>
<td>7-17.3(3)</td>
<td>Setting Frame and Cover</td>
</tr>
<tr>
<td>7-17.3(4)</td>
<td>Setting Valve Box</td>
</tr>
<tr>
<td>7-17.3(5)</td>
<td>Valves Installed on Specially Coated Pipe</td>
</tr>
<tr>
<td>7-17.3(6)</td>
<td>Ladders</td>
</tr>
<tr>
<td>7-17.3(7)</td>
<td>Painting of Valves</td>
</tr>
<tr>
<td>7-17.3(8)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-17.3(9)</td>
<td>Cleaning and Testing</td>
</tr>
<tr>
<td>7-17.3(10)</td>
<td>Backfilling Trenches</td>
</tr>
<tr>
<td>7-17.3(11)</td>
<td>Installing Sewer Pipe</td>
</tr>
<tr>
<td>7-17.3(12)</td>
<td>Setting Valve Box</td>
</tr>
<tr>
<td>7-17.3(13)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-17.3(14)</td>
<td>Valves Installed on Water Mains</td>
</tr>
<tr>
<td>7-17.3(15)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-17.3(16)</td>
<td>Electrical Insulation of Water Main</td>
</tr>
<tr>
<td>7-17.4</td>
<td>Measurement of Storm Drains and Sanitary Sewers</td>
</tr>
<tr>
<td>7-17.5</td>
<td>Payment for Storm Drains and Sanitary Sewers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-16.1</td>
<td>Description of Flow Control Systems</td>
</tr>
<tr>
<td>7-16.2</td>
<td>Materials for Flow Control Systems</td>
</tr>
<tr>
<td>7-16.3</td>
<td>Construction Requirements for Flow Control Systems</td>
</tr>
<tr>
<td>7-16.3(1)</td>
<td>Flow Control Structure</td>
</tr>
<tr>
<td>7-16.3(2)</td>
<td>Detention Pipe</td>
</tr>
<tr>
<td>7-16.3(3)</td>
<td>Tee Connection to Corrugated Pipe</td>
</tr>
<tr>
<td>7-16.3(4)</td>
<td>Testing</td>
</tr>
<tr>
<td>7-16.4</td>
<td>Measurement of Flow Control Systems</td>
</tr>
<tr>
<td>7-16.5</td>
<td>Payment for Flow Control Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-15.1</td>
<td>Description of Water Service Connections</td>
</tr>
<tr>
<td>7-15.2</td>
<td>Materials for Water Service Connections</td>
</tr>
<tr>
<td>7-15.3</td>
<td>Construction Requirements for Water Service Connections</td>
</tr>
<tr>
<td>7-15.3(1)</td>
<td>Electrical Insulation of Water Main</td>
</tr>
<tr>
<td>7-15.3(2)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-15.3(3)</td>
<td>Painting of Valves</td>
</tr>
<tr>
<td>7-15.3(4)</td>
<td>Setting Valve Box</td>
</tr>
<tr>
<td>7-15.3(5)</td>
<td>Valves Installed on Specially Coated Pipe</td>
</tr>
<tr>
<td>7-15.3(6)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-15.4</td>
<td>Measurement of Water Service Connections</td>
</tr>
<tr>
<td>7-15.5</td>
<td>Payment for Water Service Connections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-14.1</td>
<td>Description of Hydrants</td>
</tr>
<tr>
<td>7-14.2</td>
<td>Materials for Hydrants</td>
</tr>
<tr>
<td>7-14.3</td>
<td>Construction Requirements for Hydrants</td>
</tr>
<tr>
<td>7-14.3(1)</td>
<td>Setting Hydrants</td>
</tr>
<tr>
<td>7-14.3(2)</td>
<td>Hydrant Connections</td>
</tr>
<tr>
<td>7-14.3(3)</td>
<td>Resetting Existing Hydrants</td>
</tr>
<tr>
<td>7-14.3(4)</td>
<td>Hydrant Barrel Extensions</td>
</tr>
<tr>
<td>7-14.3(5)</td>
<td>Retaining Walls for Hydrants</td>
</tr>
<tr>
<td>7-14.3(6)</td>
<td>Hydrants on Water Mains That Are Polyethylene Encased, Taped, or Specially Coated</td>
</tr>
<tr>
<td>7-14.3(7)</td>
<td>Hydrant Field Painting</td>
</tr>
<tr>
<td>7-14.4</td>
<td>Measurement of Hydrants</td>
</tr>
<tr>
<td>7-14.5</td>
<td>Payment for Hydrants</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-12.1</td>
<td>Description of Valves</td>
</tr>
<tr>
<td>7-12.2</td>
<td>Materials for Valves</td>
</tr>
<tr>
<td>7-12.3</td>
<td>Construction Requirements for Valves</td>
</tr>
<tr>
<td>7-12.3(1)</td>
<td>Valve Chambers</td>
</tr>
<tr>
<td>7-12.3(2)</td>
<td>Setting Frame and Cover</td>
</tr>
<tr>
<td>7-12.3(3)</td>
<td>Setting Valve Box</td>
</tr>
<tr>
<td>7-12.3(4)</td>
<td>Valves Installed on Specially Coated Pipe</td>
</tr>
<tr>
<td>7-12.3(5)</td>
<td>Ladders</td>
</tr>
<tr>
<td>7-12.3(6)</td>
<td>Painting of Valves</td>
</tr>
<tr>
<td>7-12.3(7)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-12.3(8)</td>
<td>Cleaning and Testing</td>
</tr>
<tr>
<td>7-12.3(9)</td>
<td>Backfilling Trenches</td>
</tr>
<tr>
<td>7-12.3(10)</td>
<td>Installing Sewer Pipe</td>
</tr>
<tr>
<td>7-12.3(11)</td>
<td>Setting Valve Box</td>
</tr>
<tr>
<td>7-12.3(12)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-12.3(13)</td>
<td>Valves Installed on Water Mains</td>
</tr>
<tr>
<td>7-12.3(14)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-12.4</td>
<td>Measurement of Valves</td>
</tr>
<tr>
<td>7-12.5</td>
<td>Payment for Valves</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-11.1</td>
<td>Description of Water Mains</td>
</tr>
<tr>
<td>7-11.2</td>
<td>Materials for Water Mains</td>
</tr>
<tr>
<td>7-11.3</td>
<td>Construction Requirements for Water Mains</td>
</tr>
<tr>
<td>7-11.3(1)</td>
<td>Electrical Insulation of Water Main</td>
</tr>
<tr>
<td>7-11.3(2)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-11.3(3)</td>
<td>Painting of Valves</td>
</tr>
<tr>
<td>7-11.3(4)</td>
<td>Setting Valve Box</td>
</tr>
<tr>
<td>7-11.3(5)</td>
<td>Valves Installed on Specially Coated Pipe</td>
</tr>
<tr>
<td>7-11.3(6)</td>
<td>Thermoplastic Powder Coating</td>
</tr>
<tr>
<td>7-11.4</td>
<td>Measurement of Water Mains</td>
</tr>
<tr>
<td>7-11.5</td>
<td>Payment for Water Mains</td>
</tr>
</tbody>
</table>
SECTION 8-01 EROSION CONTROL ...8-1

8-01.1 Description ...8-1
8-01.2 Materials ...8-1
8-01.3 Construction Requirements ...8-1

8-01.3(2) Preparation Of Area ..8-1
8-01.3(3) Topsoil, Playfield Soil, Decomposed Organic Mulch, & Fertile Mulch8-2
8-01.3(4) Decomposed Organic Mulch & Fertile Mulch...8-2
8-01.3(5) Mulching ...8-3
8-01.3(6) Soil Binder Or Tacking Agent ...8-3
8-01.3(7) Dates For Application Of Seed, Fertilizer, And Mulch ...8-3
8-01.3(8) Placing Matting Or Clear Plastic Covering ..8-4
8-01.3(9) Protection And Care Of Seeded Areas ...8-4
8-01.3(10) Inspection ..8-4

SECTION 7-20 ADJUSTMENT OF NEW AND EXISTING UTILITY STRUCTURES TO FINISH GRADE ...7-74

7-20.1 Description ...7-74
7-20.2 Materials ...7-74
7-20.3 Construction Requirements ...7-75

7-20.3(1) Adjustment Of Manholes, Catch Basins, And Similar Structures7-75
7-20.3(2) Adjustment Of Inlets ..7-76
7-20.3(3) Adjustment Of Monuments, And Cast Iron Frame And Cover7-76
7-20.3(4) Adjustment Of Valve Box Castings ..7-76
7-20.3(5) Furnishing Castings ..7-76
7-20.3(6) Adjust By Shafting ...7-76

7-20.4 Measurement ...7-77
7-20.5 Payment ...7-77

SECTION 7-19 SEWER CLEANOUT ...7-73

7-19.1 Description ...7-73
7-19.2 Materials ...7-73
7-19.3 Construction Requirements ...7-73

7-19.3(1) Adjustment Of Monuments, And Cast Iron Frame And Cover7-76
7-19.3(2) Furnishing Castings ..7-76
7-19.3(3) Adjust By Shafting ...7-76

7-19.4 Measurement ...7-74
7-19.5 Payment ...7-74

7-19.5 Payment ...7-74

SECTION 7-18 SIDE SEWERS ..7-69

7-18.1 Description ...7-69
7-18.2 Materials ...7-69
7-18.3 Construction Requirements ...7-70

7-18.3(1) Side Sewer Construction ...7-70
7-18.3(2) Excavation, Bedding, And Backfill ...7-70
7-18.3(3) Pipe Installation And Jointing ...7-70
7-18.3(4) Fittings ...7-71
7-18.3(5) Cleanouts ..7-71
7-18.3(6) Inspection And Testing ..7-71
7-18.3(7) Miscellaneous Requirements ...7-72
7-18.3(8) Restoration, Finishing, And Cleanup ...7-72
7-18.3(9) Extending Side Sewers Into Private Property ...7-72
7-18.3(10) End Pipe Marker ..7-72

7-18.4 Measurement ...7-73
7-18.5 Payment ...7-73

DIVISION 8 – MISCELLANEOUS CONSTRUCTION

SECTION 8-01 EROSION CONTROL ...8-1

8-01.1 Description ...8-1
8-01.2 Materials ...8-1
8-01.3 Construction Requirements ...8-1

8-01.3(1) Preparation Of Area ..8-1
8-01.3(2) Topsoil, Playfield Soil, Decomposed Organic Mulch, & Fertile Mulch8-2
8-01.3(3) Decomposed Organic Mulch & Fertile Mulch...8-2
8-01.3(4) Mulching...8-3
8-01.3(5) Soil Binder Or Tacking Agent ...8-3
8-01.3(7) Dates For Application Of Seed, Fertilizer, And Mulch ...8-3
8-01.3(8) Placing Matting Or Clear Plastic Covering ..8-4
8-01.3(9) Protection And Care Of Seeded Areas ...8-4
8-01.3(10) Inspection ..8-4
VOLUME 2 of 2 (continued)

8-01.3(11) Mowing... 8-4
8-01.3(12) Shear Boards... 8-5
8-01.4 Measurement.. 8-5
8-01.5 Payment ... 8-5

SECTION 8-02 ROADSIDE PLANTING... 8-6
8-02.1 Description... 8-6
8-02.2 Materials... 8-7
8-02.3 Construction Requirements... 8-7
 8-02.3(1) Responsibility During Construction... 8-7
 8-02.3(2) Tunneling Or Trenching, And Tree Roots.. 8-18
 8-02.3(3) Relocate Tree .. 8-17
 8-02.3(4) Tree Grates.. 8-17
 8-02.3(5) Edging... 8-16
 8-02.3(6) Bollards... 8-16
 8-02.3(7) Benches... 8-17
 8-02.3(8) Plant Replacement... 8-13
 8-02.3(9) Landscape Establishment... 8-13
 8-02.3(10) Soil Amendments... 8-11
 8-02.3(11) Excavation ... 8-21
 8-02.3(12) Chemical Pesticides .. 8-8
 8-02.3(13) Jointing... 8-9
 8-02.3(14) Layout Of Planting ... 8-9
 8-02.3(15) Pruning And Staking ... 8-9
 8-02.3(16) Fertilizers .. 8-10

8-02.4 Measurement... 8-18
8-02.5 Payment ... 8-18

SECTION 8-03 IRRIGATION SYSTEM.. 8-20
8-03.1 Description... 8-20
8-03.2 Materials.. 8-21
 8-03.2(1) Applicable Electrical Codes ... 8-21
8-03.3 Construction Requirements... 8-21
 8-03.3(1) Layout Of Irrigation System .. 8-21
 8-03.3(2) Excavation .. 8-21
 8-03.3(3) Piping... 8-22
 8-03.3(4) Jointing .. 8-22
 8-03.3(5) Installation.. 8-23
 8-03.3(6) Electrical Wire And Controller Installation.. 8-23
 8-03.3(7) Backflow Prevention Device (BPD) ... 8-24
 8-03.3(8) Flushing And Testing ... 8-24
 8-03.3(9) Adjusting System ... 8-25
 8-03.3(10) Backfill .. 8-25
 8-03.3(11) As-Built Drawings And System Orientation .. 8-25
 8-03.3(12) System Operation .. 8-25
8-03.4 Measurement... 8-26
8-03.5 Payment ... 8-26

SECTION 8-04 CEMENT CONCRETE CURB, CURB AND GUTTER .. 8-26
8-04.1 Description... 8-26
VOLUME 2 of 2 (continued)

8-04.2 Materials ..8-26
8-04.3 Construction Requirements ..8-27
 8-04.3(2) Curb Block-Outs At Curb Ramps ...8-28
 8-04.3(4) Type 410B Curb And Gutter ...8-28
 8-04.3(5) Type 410C Curb ...8-28
 8-04.3(6) Mountable Curb ...8-29
8-04.4 Measurement ..8-29
8-04.5 Payment ..8-29

SECTION 8-06 EXTRUDED CURB ..8-29
 8-06.1 Description ..8-29
 8-06.2 Materials ..8-29
 8-06.3 Construction Requirements ..8-30
 8-06.3(1) Preparation Of Pavement Surface ..8-30
 8-06.3(3) Equipment For Laying Curb ..8-30
 8-06.3(4) Mixing And Placing ...8-30
 8-06.3(5) Joints ...8-31
 8-06.3(6) Curing Extruded Cement Concrete Curb ..8-31
 8-06.3(7) Barricades And Safeguards ..8-31
 8-06.3(8) Substitutions ...8-31
8-06.4 Measurement ..8-31
8-06.5 Payment ..8-31

SECTION 8-07 PRECAST TRAFFIC CURB AND BLOCK TRAFFIC CURB8-32
 8-07.1 Description ..8-32
 8-07.2 Materials ..8-32
 8-07.3 Construction Requirements ..8-32
 8-07.3(1) Installing Curbs ..8-32
 8-07.3(2) Painting Of Curbs ..8-32
8-07.4 Measurement ..8-33
8-07.5 Payment ..8-33

SECTION 8-08 PLASTIC LANE MARKERS AND TRAFFIC BUTTONS8-33
 8-08.1 Description ..8-33
 8-08.2 Materials ..8-33
 8-08.3 Construction Requirements ..8-33
 8-08.3(2) Surface Preparation ..8-33
 8-08.3(3) Adhesive Preparation ..8-33
 8-08.3(4) Application Procedure ..8-34
8-08.4 Measurement ..8-34
8-08.5 Payment ..8-34

SECTION 8-10 FLEXIBLE GUIDE POSTS ...8-34
 8-10.1 Description ..8-34
 8-10.2 Materials ..8-35
 8-10.3 Construction Requirements ..8-35
 8-10.4 Measurement ..8-35
8-10.5 Payment ..8-35

SECTION 8-11 GUARDRAIL ..8-35
 8-11.1 Description ..8-35
 8-11.2 Materials ..8-35
 8-11.3 Construction Requirements ..8-35
 8-11.3(1) Beam Guardrail ...8-35
 8-11.3(2) Guardrail Construction Exposed To Traffic ..8-36
 8-11.3(3) Access Control Gates ..8-37
 8-11.3(4) Raising Guardrail ..8-37
SECTION 8-12 CHAIN LINK FENCE AND WIRE FENCE ... 8-38
 8-12.1 Description .. 8-38
 8-12.2 Materials .. 8-38
 8-12.3 Construction Requirements ... 8-38
 8-12.3(2) Chain Link Fence And Gates .. 8-38
 8-12.3(3) Wire Fence And Gates .. 8-40
 8-12.4 Measurement ... 8-41
 8-12.5 Payment .. 8-41

SECTION 8-13 MONUMENT CASES ... 8-42
 8-13.1 Description .. 8-42
 8-13.2 Materials .. 8-42
 8-13.3 Construction Requirements ... 8-42
 8-13.3(1) Reference Points ... 8-42
 8-13.3(2) Furnish And Place Monument Castings ... 8-42
 8-13.3(3) Adjust Existing Monument Castings To Grade .. 8-42
 8-13.3(4) Reset Or Relocate Monument Castings ... 8-42
 8-13.3(5) Missing And Broken Castings, And Extra Work 8-42
 8-13.4 Measurement ... 8-43
 8-13.5 Payment .. 8-43

SECTION 8-14 CEMENT CONCRETE SIDEWALKS ... 8-44
 8-14.1 Description .. 8-44
 8-14.2 Materials .. 8-44
 8-14.3 Construction Requirements ... 8-44
 8-14.3(2) Excavation And Subgrade .. 8-44
 8-14.3(3) Forms And Fine Grading ... 8-44
 8-14.3(4) Placing And Finishing Concrete ... 8-44
 8-14.3(5) Curing And Protection ... 8-45
 8-14.3(6) Through And Contraction Joints ... 8-45
 8-14.3(7) Curb Ramp, Type 1 ... 8-45
 8-14.3(8) Curb Ramp, Type 2 ... 8-46
 8-14.3(9) Bus Shelter Footing .. 8-46
 8-14.3(10) Interlocking Concrete Pavers ... 8-46
 8-14.3(11) Stripping Forms And Finishing ... 8-48
 8-14.4 Measurement ... 8-48
 8-14.5 Payment .. 8-48

SECTION 8-15 RIPRAP .. 8-50
 8-15.1 Description .. 8-50
 8-15.2 Materials .. 8-50
 8-15.3 Construction Requirements ... 8-50
 8-15.3(2) Loose Riprap ... 8-50
 8-15.3(3) Hand-Placed Riprap .. 8-50
 8-15.3(4) Sack Riprap .. 8-51
 8-15.3(5) Concrete Slab Riprap ... 8-51
 8-15.3(6) Quarry Spalls ... 8-51
 8-15.3(7) Filter Blanket .. 8-51
 8-15.4 Measurement ... 8-51
 8-15.5 Payment .. 8-52

SECTION 8-16 CONCRETE SLOPE PROTECTION ... 8-52
 8-16.1 Description .. 8-52
 8-16.2 Materials .. 8-52
8-22.1 Description ... 8-61
8-22.2 Materials .. 8-63
8-22.3 Construction Requirements ... 8-63
 8-22.3(1) Preliminary Spotting ... 8-63
 8-22.3(2) Preparation Of Surfaces .. 8-64
 8-22.3(3) Painted Pavement Marking .. 8-64
 8-22.3(4) Thermoplastic Pavement Marking ... 8-64
 8-22.3(5) Pressure Sensitive Tape Pavement Marking .. 8-65
8-22.4 Measurement .. 8-65
8-22.5 Payment ... 8-65

SECTION 8-19 CEMENT CONCRETE DRIVEWAY ... 8-56
 8-19.1 Description .. 8-56
 8-19.2 Materials .. 8-56
 8-19.3 Construction Requirements .. 8-57
 8-19.3(1) Excavation And Subgrade .. 8-57
 8-19.3(2) Forms And Fine Grading .. 8-57
 8-19.3(3) Placing And Finishing Cement Concrete Driveway 8-57
 8-19.3(4) Curing And Protection ... 8-57
 8-19.4 Measurement .. 8-57
 8-19.5 Payment ... 8-58

SECTION 8-21 PERMANENT SIGNING .. 8-58
 8-21.1 Description .. 8-58
 8-21.2 Materials .. 8-58
 8-21.3 Construction Requirements .. 8-58
 8-21.3(1) Sign Installation ... 8-58
 8-21.3(2) Post Installation ... 8-59
 8-21.3(3) Sign Covering ... 8-59
 8-21.3(4) Sign Relocation ... 8-59
 8-21.3(5) Sign Cleaning ... 8-60
 8-21.4 Measurement .. 8-60
 8-21.5 Payment ... 8-60

SECTION 8-22 PAVEMENT MARKING .. 8-61
 8-22.1 Description .. 8-61
 8-22.2 Materials .. 8-63
 8-22.3 Construction Requirements .. 8-63
 8-22.3(1) Preliminary Spotting ... 8-63
 8-22.3(2) Preparation Of Surfaces .. 8-64
 8-22.3(3) Painted Pavement Marking ... 8-64
 8-22.3(4) Thermoplastic Pavement Marking .. 8-64
 8-22.3(5) Pressure Sensitive Tape Pavement Marking .. 8-65
 8-22.4 Measurement .. 8-65
 8-22.5 Payment ... 8-65
9-04.1 Premolded Joint Fillers ...9-25
 9-04.1(1) Asphalt Filler For Contraction And Longitudinal Joints In Concrete Pavements..9-25
 9-04.1(2) Premolded Joint Filler For Expansion Joints9-25
 9-04.1(4) Elastomeric Expansion Joint Seals ..9-25
9-04.2 Joint Sealants ..9-26
 9-04.2(1) Joint Sealants For Sawed Contraction Joints9-26
 9-04.2(2) Poured Joint Sealer For Pavement Areas9-26
 9-04.2(3) Poured Joint Sealer For Walkways ...9-26
9-04.3 Mortar And Non-Shrink Cement Sand Grout9-26
 9-04.3(1) Joint Mortar ..9-26
 9-04.3(2) Non-Shrink Cement Sand Grout ..9-26
9-04.4 Rubber Gaskets ...9-27
 9-04.4(1) Rubber Gaskets For Concrete Pipes And Precast Manholes9-27
 9-04.4(3) Rubber Gaskets For Aluminum Or Steel Culvert Or Storm Sewer Pipe ..9-27
 9-04.4(4) Rubber Gaskets For Aluminum Or Steel Drain Pipe9-27
 9-04.4(5) Protection And Storage ...9-27
9-04.5 Flexible Plastic Gaskets ..9-27
9-04.6 Expanded Polystyrene ...9-28
9-04.7 Expanded Rubber ...9-28
9-04.8 Flexible Elastomeric Seals ...9-28
9-04.9 Solvent Cements ..9-28
9-04.10 Crack Sealing - Rubberized Asphalt ...9-28
SECTION 9-05 STORM DRAIN AND SANITARY SEWER STRUCTURES, CULVERTS, AND CONDUITS

9-05.0 Acceptance By Manufacturer’s Certification ... 9-28
9-05.1 Drain Pipe .. 9-28
 9-05.1(1) Concrete Drain Pipe .. 9-28
 9-05.1(2) Zinc Coated (Galvanized) Or Aluminum Coated (Aluminized) Corrugated Iron Or Steel Drain Pipe .. 9-28
 9-05.1(3) Corrugated Aluminum Drain Pipe ... 9-29
 9-05.1(4) Galvanized Steel Pipe .. 9-29
 9-05.1(5) Polyvinyl Chloride (PVC) Drain Pipe ... 9-29
 9-05.1(6) Corrugated Polyethylene Drainage Tubing Drain Pipe 9-29
 9-05.1(7) Corrugated Polyethylene Drain Pipe ... 9-29
9-05.2 Subsurface Drain Pipe .. 9-30
 9-05.2(2) Perforated Concrete Subsurface Drain Pipe .. 9-30
 9-05.2(4) Zinc Coated (Galvanized) Or Aluminum Coated (Aluminized) Corrugated Iron Or Steel Subsurface Drain Pipe .. 9-30
 9-05.2(5) Perforated Corrugated Aluminum Subsurface Drain Pipe 9-30
 9-05.2(6) Perforated PVC Subsurface Drain Pipe .. 9-30
 9-05.2(7) Perforated Corrugated Polyethylene Drainage Tubing Subsurface Drain Pipe ... 9-30
 9-05.2(8) Perforated Corrugated Polyethylene Subsurface Drain Pipe 9-30
9-05.3 Concrete Culvert Pipe ... 9-31
 9-05.3(1) Plain Concrete Culvert Pipe .. 9-31
 9-05.3(2) Reinforced Concrete Culvert Pipe .. 9-31
 9-05.3(3) Beveled Concrete End Sections ... 9-31
9-05.4 Steel Culvert Pipe And Pipe Arch ... 9-32
 9-05.4(2) Elliptical Fabrication ... 9-32
 9-05.4(4) Asphalt Coatings And Paved Inverts ... 9-32
 9-05.4(6) Spun Asphalt Lining .. 9-33
 9-05.4(7) Coupling Bands ... 9-33
 9-05.4(8) Steel Pipe Arch ... 9-33
 9-05.4(9) Steel End Sections .. 9-33
9-05.5 Aluminum Culvert Pipe ... 9-33
 9-05.5(1) Elliptical Fabrication ... 9-34
 9-05.5(2) Mitered Ends ... 9-34
 9-05.5(3) Protective Treatment ... 9-34
 9-05.5(4) Asphalt Coatings .. 9-34
 9-05.5(5) Coupling Bands ... 9-34
 9-05.5(6) Aluminum End Sections .. 9-34
9-05.6 Structural Plate Pipe, Pipe Arch, Arch, And Underpass .. 9-34
 9-05.6(2) Fabrication .. 9-34
 9-05.6(3) Elliptical Fabrication ... 9-34
 9-05.6(4) Structural Plate Pipe Arch ... 9-35
 9-05.6(5) Structural Plate Arch ... 9-35
 9-05.6(6) Structural Plate Underpass ... 9-35
 9-05.6(7) Concrete .. 9-35
 9-05.6(8) Plates .. 9-35
9-05.7 Concrete Pipe .. 9-35
 9-05.7(1) Plain Concrete Pipe .. 9-35
 9-05.7(2) Reinforced Concrete Pipe .. 9-35
 9-05.7(3) Concrete Pipe Joints ... 9-35
 9-05.7(4) Testing Concrete Sewer Pipe Joints ... 9-36
9-05.8 Vitrified Clay Pipe .. 9-36
9-05.9 Steel Spiral Rib Drain Pipe ... 9-37
 9-05.9(2) Continuous Lock Seam Pipe ... 9-37
 9-05.9(3) Continuous Welded Seam Pipe ... 9-37
SECTION 9-06 STRUCTURAL STEEL AND RELATED MATERIALS

9-06 Structural Steel And Related Materials
9-06.1 Structural Carbon Steel
9-06.2 Structural Low Alloy Steel
9-06.3 Structural High Strength Steel
9-06.5 Bolts
9-06.8 Steel Castings
9-06.9 Gray Iron Castings
9-06.10 Malleable Iron Castings
9-06.11 Steel Forgings And Steel Shafting
9-06.12 Bronze Castings
9-06.13 Copper Seals
9-06.14 Ductile Iron Castings
9-06.15 Welded Shear Connectors
9-06.16 Roadside Sign Structures
9-06.17 Metal Bridge Railing
9-06.18 Roadside Sign Structures
9-06.19 Flow Control Structure
9-06.20 Aluminum Pipe For Detention
9-06.21 Steel Pipe For Detention
9-06.22 Geotextiles

SECTION 9-07 REINFORCING STEEL

9-07 Reinforcing Steel
9-07.1(1) Acceptance By Manufacturer’s Certification
9-07.1(2) Bending
9-07.1(3) Lengths
9-07.1(4) Inspection
9-07.2 Deformed Steel Bars
9-07.3 Epoxy-Coated Steel Reinforcing Bars
9-07.4 Plain Steel Bars
VOLUME 2 of 2 (continued)

9-12.2(3) Galvanized Deformed Bar Steps .. 9-67
9-12.2(4) Polypropylene Steel Reinforced Steps 9-67
9-12.2(5) Copolymer Polypropylene Plastic ... 9-67
9-12.3 Ladders .. 9-67
9-12.4 Mortar ... 9-67
 9-12.4(1) Mortar For Jointing .. 9-67
 9-12.4(2) Mortar For Plaster-Coating .. 9-68
9-12.5 Concrete Masonry Units .. 9-68
9-12.6 Concrete Brick ... 9-68
9-12.7 Clay Brick .. 9-68
9-12.8 Metal Castings .. 9-68
 9-12.8(1) Manhole Ring And Cover ... 9-68
 9-12.8(2) Metal Frame And Grate And Metal Cover For Catch Basins Or Inlets 9-69
 9-12.8(3) Cast Metal Inlets ... 9-69
9-12.10 Shop Fabricated Corrugated Metal Manholes 9-69
9-12.11 Monolithic Concrete Manholes .. 9-69
9-12.12 Traps ... 9-69
9-12.13 Grate Inlets And Drop Inlets ... 9-69

SECTION 9-13 RIPRAP, QUARRY SPALLS, AND SLOPE PROTECTION ... 9-69

 9-13.2 Loose Riprap ... 9-70
 9-13.2(1) Heavy Loose Riprap ... 9-70
 9-13.2(2) Light Loose Riprap ... 9-70
 9-13.3 Hand Placed Riprap ... 9-70
 9-13.4 Sack Riprap ... 9-70
 9-13.6 Concrete Slope Protection ... 9-70
 9-13.6(2) Semi-Open Concrete Masonry Units Slope Protection 9-70
 9-13.6(3) Poured Portland Cement Concrete Slope Protection 9-71
 9-13.6(4) Pneumatically Placed Portland Cement Concrete Slope Protection 9-71
 9-13.7 Quarry Spalls .. 9-71

SECTION 9-14 EROSION CONTROL AND ROADSIDE PLANTING ... 9-73

 9-14.1 Soil ... 9-73
 9-14.1(1) Topsoil Type A ... 9-73
 9-14.1(2) Topsoil Type B ... 9-73
 9-14.1(4) Planting Soil And Playfield Soil 9-73
 9-14.2 Seed ... 9-75
 9-14.2(2) Seed Mix #1 (Erosion Mix) ... 9-76
 9-14.2(3) Seed Mix #2 (Non-Irrigated Lawn Seed Mix) 9-76
 9-14.2(4) Seed Mix #3 (Irrigated Lawn Or Athletic Play Field) 9-76
 9-14.2(5) Seed Mix #4 (Biofiltration Swale Mix) 9-77
 9-14.2(6) Wildflower Mix .. 9-77
 9-14.3 Fertilizer .. 9-78
 9-14.3(1) Lime ... 9-79
 9-14.4 Mulch And Amendments ... 9-79
 9-14.4(1) Straw ... 9-79
 9-14.4(2) Wood Cellulose Fiber ... 9-79
 9-14.4(3) Bark .. 9-80
 9-14.4(4) Fertile Mulch ... 9-80
 9-14.4(5) Peat .. 9-80
 9-14.4(6) Vermiculite / Perlite / Pumice ... 9-80
 9-14.4(7) Tackifier .. 9-80
 9-14.4(8) Decomposed Organic Mulch .. 9-80
 9-14.5 Matting ... 9-81
 9-14.5(1) Jute Matting ... 9-81
 9-14.5(2) Excelsior Matting .. 9-81
SECTION 9-15 IRRIGATION SYSTEM

9-15.1 Pipe, Tubing, And Fittings ... 9-88
 9-15.1(2) Galvanized Pipe And Fittings ... 9-88
 9-15.1(3) Polyvinyl Chloride Pipe And Fittings ... 9-89
 9-15.1(4) Polyethylene Pipe .. 9-89

9-15.2 Control Tubing .. 9-89

9-15.3 Automatic Controllers ... 9-89

9-15.4 Sprinkler Heads .. 9-89

9-15.5 Valve Boxes And Protective Sleeves .. 9-90

9-15.6 Gate Valves .. 9-90

9-15.7 Control Valves .. 9-90
 9-15.7(1) Manual Control Valves ... 9-90
 9-15.7(2) Automatic Control Valves ... 9-90
 9-15.7(3) Automatic Control Valves With Pressure Regulator 9-90

9-15.8 Quick Coupling Equipment ... 9-91

9-15.9 Drain Valves .. 9-91

9-15.10 Hose Bibs .. 9-91

9-15.11 Backflow Prevention Devices (BPDs) ... 9-91

9-15.12 Check Valves ... 9-92

9-15.13 Pressure Reducing Valves ... 9-92

9-15.14 Tree Grates ... 9-92
VOLUME 2 of 2 (continued)

9-15.14 Three Way Valves ... 9-92
9-15.15 Flow Control Valves .. 9-92
9-15.16 Air Relief Valve .. 9-92
9-15.17 Electrical Wire .. 9-92
9-15.18 Detectable Marking Tape .. 9-92
9-15.19 Sleeve ... 9-93

SECTION 9-16 FENCE AND GUARDRAIL ... 9-93

9-16.1 Chain Link Fence And Gates .. 9-93
 9-16.1(2) Posts ... 9-93
 9-16.1(3) Top Rail, Braces, And Trusses ... 9-93
 9-16.1(4) Tension Wire And Attachments ... 9-94
 9-16.1(6) Fittings .. 9-94
 9-16.1(7) Chain Link Fence Fabric .. 9-94
 9-16.1(8) Fabric Bands And Stretcher Bars 9-94
 9-16.1(9) Tie Wire .. 9-94
 9-16.1(10) Chain Link Gates .. 9-94
 9-16.1(11) Miscellaneous ... 9-95

9-16.2 Wire Fence And Gates ... 9-95
 9-16.2(2) Steel Fence Posts And Braces .. 9-95
 9-16.2(3) Wood Fence Posts And Braces .. 9-95
 9-16.2(4) Brace Wire .. 9-96
 9-16.2(5) Staples And Wire Clamps .. 9-96
 9-16.2(6) Barbed Wire .. 9-96
 9-16.2(7) Wire Mesh ... 9-96
 9-16.2(8) Vertical Cinch Stays .. 9-96
 9-16.2(9) Wire Gates ... 9-96
 9-16.2(10) Miscellaneous ... 9-97

9-16.3 Beam Guardrail ... 9-97
 9-16.3(1) Rail Element ... 9-97
 9-16.3(2) Posts And Blocks ... 9-97
 9-16.3(3) Galvanizing ... 9-97
 9-16.3(4) Hardware ... 9-98
 9-16.3(5) Anchors ... 9-98
 9-16.3(6) Inspection And Acceptance .. 9-98

9-16.4 Wire Mesh Slope Protection .. 9-99
 9-16.4(2) Wire Mesh ... 9-99
 9-16.4(3) Wire Rope ... 9-99
 9-16.4(4) Hardware ... 9-99
 9-16.4(5) Hog Rings And Tie Wire .. 9-99
 9-16.4(6) Grout ... 9-99
 9-16.4(7) Anchor Rods ... 9-99

9-16.6 Glare Screen ... 9-99
 9-16.6(2) Glare Screen Fabric .. 9-99
 9-16.6(3) Posts ... 9-100
 9-16.6(4) Tension Wire ... 9-100
 9-16.6(5) Cable ... 9-100
 9-16.6(6) Cable And Tension Wire Attachments 9-100
 9-16.6(7) Slats ... 9-100
 9-16.6(8) Fittings ... 9-101
 9-16.6(9) Fabric Bands And Stretcher Bars 9-101
 9-16.6(10) Tie Wire ... 9-101

9-16.7 Rock Protection Fence .. 9-101
 9-16.7(2) Posts ... 9-101
 9-16.7(3) Cable ... 9-101
 9-16.7(4) Hook Bolts And Offset Blocks .. 9-101
VOLUME 2 of 2 (continued)

9-16.7(6) Spring Anchorage Assemblies ... 9-101
9-16.7(7) Chain Link Fence Fabric ... 9-102
9-16.7(8) Post Anchor Rods For Positions B And C .. 9-102
9-16.8 Weathering Steel Beam Guardrail ... 9-102
9-16.8(1) Rail And Hardware ... 9-102
9-16.8(2) Anchors ... 9-102

SECTION 9-17 FLEXIBLE GUIDE POSTS .. 9-102
9-17.2 Laboratory Tests .. 9-103
9-17.3 Field Tests ... 9-104
9-17.4 Approval .. 9-104

SECTION 9-18 PRECAST TRAFFIC CURB AND BLOCK TRAFFIC CURB 9-104
9-18.1 Precast Traffic Curb ... 9-104
 9-18.1(1) Aggregates And Proportioning .. 9-104
 9-18.1(2) Mixing ... 9-104
 9-18.1(3) Forms .. 9-105
 9-18.1(4) Placing Concrete .. 9-105
 9-18.1(5) Removal Of Forms ... 9-105
 9-18.1(6) Curing Concrete ... 9-105
 9-18.1(7) Finish ... 9-105
 9-18.1(8) Surface Treatment ... 9-105
 9-18.1(9) Dimensions And Shape .. 9-105
 9-18.1(10) Curb Lengths .. 9-105
 9-18.1(11) Defective Curb .. 9-105
 9-18.1(12) Repairing Curb ... 9-106
 9-18.1(13) Identification Marking ... 9-106
 9-18.1(14) Shipping .. 9-106
 9-18.1(15) Sampling And Inspection .. 9-106
9-18.3 Block Traffic Curb .. 9-107
9-18.4 Water-Repellent Compound ... 9-107
9-18.5 Sodium Metasilicate ... 9-107

SECTION 9-19 PRESTRESSED CONCRETE GIRDER 9-107
9-19.1 Aggregates And Proportioning .. 9-107
9-19.2 Reinforcement ... 9-107

SECTION 9-21 PLASTIC TRAFFIC BUTTON AND LANE MARKERS 9-108
9-21.1 Plastic Traffic Button And Lane Marker Type 1 9-108
 9-21.1(2) Physical And Chemical Properties ... 9-108
 9-21.1(3) Test Methods .. 9-108
9-21.2 Lane Markers Type 2A And Type 2B ... 9-109
 9-21.2(1) Physical Properties ... 9-109
 9-21.2(2) Optical Requirements ... 9-109
 9-21.2(3) Strength Requirements .. 9-109

SECTION 9-22 MONUMENT FRAMES AND COVERS 9-110

SECTION 9-23 CONCRETE CURING MATERIALS AND ADMIXTURES 9-110
9-23.1 Sheet Materials For Curing Concrete .. 9-110
9-23.2 Liquid Membrane-Forming Concrete Curing Compounds 9-110
9-23.5 Burlap Cloth .. 9-110
9-23.6 Air-Entraining And Chemical Admixtures 9-110
9-23.7 Air-Entraining And Chemical Admixtures For Precast Prestressed Concrete 9-111
9-23.9 Concrete Mixes Incorporating Fly Ash ... 9-111
9-23.10 Coloring Agent .. 9-112
SECTION 9-24 PLASTIC WATERSTOP..9-112
 9-24.1 Material..9-112
 9-24.1(1) Tests Of Material ...9-112
SECTION 9-25 WATER..9-112
 9-25.1 Water For Concrete..9-112
 9-25.2 Water For Irrigation ..9-113
SECTION 9-26 EPOXY RESINS..9-113
 9-26.1(2) Aggregate ...9-113
 9-26.1(3) Sampling ..9-113
 9-26.1(4) Rejection ...9-113
 9-26.1(5) Packaging And Marking ...9-113
 9-26.1(6) Certification ..9-113
 9-26.1(7) Acceptance ..9-114
 9-26.2 Adhesive For Lane Markers ...9-114
 9-26.2(1) Description ...9-114
 9-26.2(2) Raw Materials ..9-114
 9-26.2(3) Physical requirements Of Mixed Adhesive ...9-115
 9-26.2(4) Acceptance ...9-115
SECTION 9-27 CRIBBING ..9-115
 9-27.3 Gabion Cribbing ...9-115
 9-27.3(1) Gabion Fabric ..9-115
 9-27.3(2) Gabion Baskets ...9-115
 9-27.3(3) Gabion Mattresses ...9-116
 9-27.3(4) Fasteners For Basket Assembly ...9-116
 9-27.3(5) Nonraveling Construction ...9-117
 9-27.3(6) Stone ..9-117
SECTION 9-28 SIGNING MATERIALS AND FABRICATION ..9-117
 9-28.1 Signs..9-117
 9-28.1(2) Plywood ...9-117
 9-28.1(3) Sheet Aluminum ...9-118
 9-28.1(4) Reflective Sign Face Sheeting ...9-118
 9-28.1(5) Non-Reflective Sign Face Sheeting ...9-119
 9-28.1(6) Sheeting Application ...9-119
 9-28.1(7) Letters, Arrows, And Symbols ..9-120
 9-28.1(8) Hardware ...9-120
 9-28.2 Posts ..9-120
 9-28.2(1) Wood Sign Post ...9-120
 9-28.2(2) Direct Burial Parking Meter Post ...9-121
 9-28.2(3) Parking Meter Posts, Surface-Mounted Type ..9-121
 9-28.2(4) Street Name Sign Post ..9-121
SECTION 9-29 PAVEMENT MARKING ..9-121
 9-29.2 Paint ..9-121
 9-29.2(2) Physical Properties Of The Coating ...9-121
 9-29.2(3) Test Methods ...9-122
 9-29.2(4) Compositional Requirements ..9-122
 9-29.3 Thermoplastic ...9-123
 9-29.4 Pressure-Sensitive Tape ..9-123
SECTION 9-30 WATER DISTRIBUTION MATERIALS ...9-123
 9-30.1 Pipe..9-124
 9-30.1(1) Ductile Iron Pipe ...9-124
 9-30.1(4) Steel Pipe ..9-124
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-30.1(5)</td>
<td>Polyvinyl Chloride (PVC) Pipe (4 Inches And Over)</td>
</tr>
<tr>
<td>9-30.1(6)</td>
<td>Pipe Coatings</td>
</tr>
<tr>
<td>9-30.2</td>
<td>Fittings</td>
</tr>
<tr>
<td>9-30.2(1)</td>
<td>Ductile Iron Pipe</td>
</tr>
<tr>
<td>9-30.2(4)</td>
<td>Steel Pipe</td>
</tr>
<tr>
<td>9-30.2(5)</td>
<td>Polyvinyl Chloride (PVC) Pipe, 4 Inch Diameter And Larger</td>
</tr>
<tr>
<td>9-30.2(6)</td>
<td>Restrained Joints</td>
</tr>
<tr>
<td>9-30.2(7)</td>
<td>Transition Reducing, And Insulating Flexible Couplings</td>
</tr>
<tr>
<td>9-30.2(8)</td>
<td>Restrained Flexible Couplings And Sleeves</td>
</tr>
<tr>
<td>9-30.2(9)</td>
<td>Special Fittings</td>
</tr>
<tr>
<td>9-30.2(10)</td>
<td>Two-Inch Blow Off Assembly</td>
</tr>
<tr>
<td>9-30.2(11)</td>
<td>Plastic Foam (Ethafom)</td>
</tr>
<tr>
<td>9-30.2(12)</td>
<td>Portland Cement Concrete</td>
</tr>
<tr>
<td>9-30.2(13)</td>
<td>Polyethylene Encasement</td>
</tr>
<tr>
<td>9-30.2(14)</td>
<td>Steel Casing Pipe</td>
</tr>
<tr>
<td>9-30.2(15)</td>
<td>Seals And Insulators For Steel Casing Pipe</td>
</tr>
<tr>
<td>9-30.3</td>
<td>Valves</td>
</tr>
<tr>
<td>9-30.3(1)</td>
<td>General - Manufacture And Marking</td>
</tr>
<tr>
<td>9-30.3(2)</td>
<td>Gate Valves</td>
</tr>
<tr>
<td>9-30.3(4)</td>
<td>Butterfly Valves</td>
</tr>
<tr>
<td>9-30.3(5)</td>
<td>Valve Boxes</td>
</tr>
<tr>
<td>9-30.3(7)</td>
<td>Combination Air Release / Air Vacuum Valves</td>
</tr>
<tr>
<td>9-30.3(8)</td>
<td>End Connections</td>
</tr>
<tr>
<td>9-30.3(9)</td>
<td>Tapping Sleeve And Valve Assembly</td>
</tr>
<tr>
<td>9-30.3(10)</td>
<td>Operating Nut Extensions</td>
</tr>
<tr>
<td>9-30.3(11)</td>
<td>Plastic Foam Rings</td>
</tr>
<tr>
<td>9-30.3(12)</td>
<td>Valve Chambers</td>
</tr>
<tr>
<td>9-30.3(13)</td>
<td>Painting At Factory</td>
</tr>
<tr>
<td>9-30.3(14)</td>
<td>Water Pressure Regulating Valves</td>
</tr>
<tr>
<td>9-30.3(15)</td>
<td>Coatings For Valves</td>
</tr>
<tr>
<td>9-30.5</td>
<td>Hydrants</td>
</tr>
<tr>
<td>9-30.5(2)</td>
<td>End Connections</td>
</tr>
<tr>
<td>9-30.5(3)</td>
<td>Hydrant Dimensions</td>
</tr>
<tr>
<td>9-30.5(4)</td>
<td>Operating Nuts</td>
</tr>
<tr>
<td>9-30.5(5)</td>
<td>Hydrant Restraint</td>
</tr>
<tr>
<td>9-30.5(6)</td>
<td>Sidewalk Flange Construction</td>
</tr>
<tr>
<td>9-30.5(7)</td>
<td>Hydrant Painting</td>
</tr>
<tr>
<td>9-30.5(8)</td>
<td>Hydrant Factory Hydrostatic Test</td>
</tr>
<tr>
<td>9-30.5(9)</td>
<td>Hydrant Connection Pipe</td>
</tr>
<tr>
<td>9-30.5(10)</td>
<td>Hydrant Vertical Extensions</td>
</tr>
<tr>
<td>9-30.5(11)</td>
<td>Hydrant Bleeder</td>
</tr>
<tr>
<td>9-30.5(12)</td>
<td>Polyethylene Encasement And Special Tape Coating For Hydrants And Connections</td>
</tr>
<tr>
<td>9-30.6</td>
<td>Service Connections And Service Pipe Or Tubing</td>
</tr>
<tr>
<td>9-30.6(2)</td>
<td>Saddles</td>
</tr>
<tr>
<td>9-30.6(3)</td>
<td>Corporation Stops</td>
</tr>
<tr>
<td>9-30.6(4)</td>
<td>Service Pipe</td>
</tr>
<tr>
<td>9-30.6(5)</td>
<td>Compression Couplings</td>
</tr>
<tr>
<td>9-30.6(7)</td>
<td>Meter Stops And Setters</td>
</tr>
<tr>
<td>9-30.6(8)</td>
<td>Meter Box And Lid</td>
</tr>
<tr>
<td>9-30.6(9)</td>
<td>Valves</td>
</tr>
<tr>
<td>9-30.7</td>
<td>Bedding, Foundation Material And Gravel</td>
</tr>
<tr>
<td>9-30.10</td>
<td>Joint Bond Cable</td>
</tr>
<tr>
<td>9-30.11 Thermite Weld Materials</td>
<td></td>
</tr>
<tr>
<td>9-30.11(2)</td>
<td>Adapter Sleeves</td>
</tr>
<tr>
<td>9-30.11(3)</td>
<td>Thermite Weld Caps And Primer</td>
</tr>
</tbody>
</table>
VOLUME 2 of 2 (continued)

9-30.11(4) Coating Repair At Thermite Weld...9-138
9-30.12 Electrolysis Test Station ...9-138
9-30.12(1) General - Non-Traffic Area ..9-138
9-30.12(2) Test Box ..9-138
9-30.12(3) Test Station Wires ..9-138
9-30.12(4) Wire Connectors Inside Test Box ..9-138
9-30.12(5) Zinc Reference Electrodes ...9-138
9-30.12(6) Electrical Conduit And Fittings ...9-138
9-30.13 Turbine Meters (Meter, Cold Water, Magnetic Drive Turbine Type,
2” Through 12” Sizes) ...9-139
9-30.13(2) Register And Register Box ..9-139
9-30.13(3) Main Case And Cover ...9-139
9-30.13(4) Measuring Mechanism ...9-139
9-30.13(5) Intermediate Gear Train ...9-139
9-30.13(6) Capacity And Accuracy ...9-139
9-30.13(7) Normal Flow Limits ..9-139
9-30.13(8) Head Loss ..9-139
9-30.13(9) Connections ...9-139
9-30.13(10) Interchangeable Parts ...9-139
9-30.13(11) Strainer ...9-140
9-30.13(12) Remote Reading ...9-140
9-30.13(13) Manufacture and Approval ..9-140
9-30.13(14) Inspection ...9-140
9-30.13(15) Guarantee ..9-140
9-30.13(16) Test Report ...9-140
9-30.14 Locating Wire ...9-140
9-30.15 Coating For All Bolts And Shackle Rods ...9-140

SECTION 9-31 ILLUMINATION AND ELECTRICAL MATERIALS9-140

9-31.1 Luminaires ...9-140
9-31.1(2) Roadway Lighting Luminaire ...9-141
9-31.1(3) Lamps ...9-141
9-31.1(5) Photoelectric Cells ...9-141
9-31.1(6) Underdeck Mounted Undercrossing Luminaire ..9-141
9-31.1(7) Wall-Pack Luminaire ..9-141
9-31.3 Wire ..9-142
9-31.5 Wire Splices ..9-142
9-31.6 Fuses And Fuse Holders ..9-143
9-31.7 Ground Rods And Clamps ..9-143
9-31.8 Enclosures ..9-143
9-31.9 Receptacles ...9-144

SECTION 9-32 TRAFFIC SIGNALS SYSTEM ...9-144

9-32.3 Signal Heads, Vehicle ...9-144
9-32.3(2) Bi-Modal Vehicle Signals Section ...9-144
9-32.3(3) Optically Programmed Vehicle Signal Section ..9-146
9-32.3(4) Directional Louvers ...9-146
9-32.3(5) LED Traffic Signal Red Section ..9-146
9-32.4 Signal Heads, Pedestrian ..9-147
9-32.4(2) Message Module ...9-147
9-32.4(3) Case ..9-148
9-32.4(4) Eggcrate Visor ..9-148
9-32.4(5) Transformers ...9-149
9-32.4(6) Optically Programmed Pedestrian Signal (2-Sections)9-149
9-32.5 Pedestrian Pushbutton Assembly ..9-149
9-32.6 Detector Loops ..9-149
VOLUME 2 of 2 (continued)

9-32.7 Interior Illuminated Signs ... 9-150
9-32.9 Interconnect Cable ... 9-150
 9-32.9(1) Underground .. 9-150
 9-32.9(2) Aerial ("Figure 8") ... 9-150
 9-32.9(3) Indoor .. 9-150
9-32.11 Signal Wiring .. 9-151
 9-32.11(1) Traffic Signal Cable .. 9-151
 9-32.11(2) Pedestrian Push Button Cable .. 9-151
 9-32.11(3) Electrical Service Connections .. 9-151
 9-32.11(4) Fuses And Fuse Blocks .. 9-151
 9-32.11(5) Pole Junction Boxes And Terminal Boxes 9-151
 9-32.11(6) Ground Rods, Clamps And Bonding 9-151
 9-32.11(7) Squeeze Cable Fittings ... 9-151
9-32.12 Span Wire And Insulated Span Wire .. 9-152
 9-32.12(1) Span Wire ... 9-152
9-32.13 Pole Line Hardware .. 9-152
9-32.14 Galvanizing Repair Paint ... 9-152

SECTION 9-33 POLES, PEDESTALS, AND FOUNDATIONS 9-152
 9-33.1(1) Poles, Mast Arms, And Luminaire Arms 9-152
 9-33.1(2) Anchor Bolts ... 9-152
 9-33.1(3) Galvanizing .. 9-153
 9-33.1(4) Ground Lugs ... 9-153
 9-33.1(5) Nut Covers ... 9-153
 9-33.1(6) Concentricity .. 9-153
9-33.2 Steel Poles, Mast Arms, Bracket Arms, And Luminaire Extensions 9-153
 9-33.2(2) Strength And Deflection Requirements 9-153
 9-33.2(3) Bolt Circle ... 9-154
 9-33.2(4) Welds .. 9-154
 9-33.2(5) Handholes, Festoons, And Cable Outlets 9-154
 9-33.2(7) Anchor Base Plates ... 9-154
 9-33.2(8) Pole And Mast Arm Caps .. 9-154
 9-33.2(9) Bracket Arms ... 9-154
9-33.3 Aluminum Poles .. 9-155
9-33.4 Wood Poles .. 9-155
 9-33.4(2) Douglas Fir .. 9-155
 9-33.4(3) Western Red Cedar ... 9-155
9-33.5 Fiberglass Lighting Poles ... 9-155
9-33.6 Steel Pedestals And Aluminum Pedestals 9-155
 9-33.6(1) Steel Pedestals .. 9-155
 9-33.6(2) Aluminum Pedestals .. 9-156
9-33.7 Pedestrian Pushbutton Posts ... 9-156
9-33.8 Back Guy Assemblies ... 9-156

SECTION 9-34 ELECTRICAL AND SIGNAL CONDUITS 9-156
 9-34.2 Rigid Steel Conduit ... 9-157
 9-34.2(2) Threads ... 9-157
 9-34.2(3) Couplings And Fittings ... 9-157
 9-34.2(4) PVC Coating ... 9-157
 9-34.2(6) Expansion/Deflection Fittings In Non-Hazard Areas 9-158
 9-34.3 PVC Conduit .. 9-158
 9-34.4 Conduit Riser .. 9-158
 9-34.5 Pull Cord .. 9-158
 9-34.6 Handholes .. 9-158

SECTION 9-35 ELASTOMERIC BEARING PADS 9-158
This page intentionally blank.
SECTION 1-01 DEFINITIONS AND TERMS

1-01.1 GENERAL

Standard acronyms, abbreviations, definitions, and symbols common to the fields of engineering and construction are used throughout the Contract Documents without further explanation. Acronyms and definitions often used in the Contract Documents can be found in Sections 1-01.2 and 1-01.3. Often used abbreviations may be found in the Standard Plans. Additional acronyms, definitions, and symbols may be found in the Project Manual or Drawings. Welding symbols are defined in the current edition of the American Welding Society Structural Welding Code.

When abbreviations are used in the Bid Form as part of denoting an item of work and as a unit of measurement, each abbreviated terms shall have the meaning specified for it as noted in subparagraph 1 above unless a Bid item measurement or payment description specifies another meaning.

When used in the Contract Documents, the acronyms listed in Section 1-01.2(1) and terms defined in Section 1-01.3 (or pronouns used in place of acronyms and terms) have the indicated meanings unless the context implies otherwise.

Words in the plural include singular and vice versa.

Words of a particular gender include any gender and genderless words may refer to any gender when the sense so indicates.

1-01.2 ABBREVIATIONS

1-01.2(1) ASSOCIATIONS AND MISCELLANEOUS

The following standard acronyms are used throughout the Bid Documents:

AAA American Arbitration Association
AAN American Association of Nurserymen
AAR Association of American Railroads
AASHTO American Association of State Highway and Transportation Officials
ACSF Arterial City Street Fund
ACI American Concrete Institute
ACIL American Council of Independence Laboratories
ADF Arterial Development Fund
AGA American Gas Association
AGC Associated General Contractors of America
AHERA Asbestos Hazard Emergency Response
AI Asphalt Institute
AIA American Institute of Architects
AIHA American Industrial Hygiene Association
AISC American Institute of Steel Construction
AISI American Iron and Steel Institute
AITC American Institute of Timber Construction
ALSC American Lumber Standards Committee
ANSI American National Standards Institute
APA American Plywood Association
API American Petroleum Institute
APWA American Public Works Association
ARA American Railway Association
AREA American Railway Engineering Association
ASA American Standards Association
ASCE American Society of Civil Engineers
ASLA American Society of Landscape Architects
ASME American Society of Mechanical Engineers
ASNT American Society for Non-Destruction Testing
ASSE American Society of Sanitary Engineering
ASTM American Society for Testing and Materials
AWPA American Wood Preservers’ Association
AWS American Welding Society
AWWA American Water Works Association
BACIF Building Acquisition and Capital Improvement Fund
BMTF Beach Maintenance Trust Fund
BR Bridge Replacement and Redevelopment Program
CBD Central Business District
CBE Combination Business Enterprise
CDBG Community Development Block Grant
CFB Capital Facilities Bonds
CFR Code of Federal Regulations
CFT Conservation Futures Tax
CLI Chain Link Institute
CPSPT Central Puget Sound Public Transportation Account
CRAB County Road Administration Board
CRF Cumulative Reserve Fund
CRSI Concrete Reinforcing Steel Institute
CSI Construction Specifications Institute
CSO Executive Services Operating Fund
DBE Disadvantaged Business Enterprise
DBRA Davis-Bacon and Related Acts
DIPRA Ductile Iron Pipe Research Association
DPR Seattle Department of Parks and Recreation
DWF Drainage and Wastewater Fund
EEI Edison Electrical Institute
EEO Equal Employment Opportunity
EF Emergency Fund
EPA Environmental Protection Agency
ER Emergency Relief Fund
ESD Executive Services Department
FEMA Federal Emergency Management Agency
FHWA Federal Highway Administration
FSS Federal Specifications and Standards, General Services Administration
FTA Federal Transit Administration
GF General Fund
HES Hazard Elimination Program
HPMA Hardwood Plywood Manufacturers Association
HUD United States Department of Housing and Urban Development
ICEA Insulated Cable Engineers Association
ICOR Interagency Commission on Outdoor Recreation
IEEE Institute of Electrical and Electronic Engineers
IES Illuminating Engineering Society
IMSA International Municipal Signal Association
ISTEA Intermodal Surface Transportation Efficiency Act
ITE Institute of Transportation Engineers
KC King County
LID Local Improvement District
LPI Lighting Protection Institute
MBE Minority Business Enterprise
METRO King County Department of Transportation
MSDS Material Safety Data Sheet
MTCA Washington Model Toxic Control Act
MSHA Mine Safety and Health Act
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUTCD</td>
<td>Manual on Uniform Traffic Control Devices for Streets and Highways</td>
</tr>
<tr>
<td>MWBE</td>
<td>Minority and Women Business Enterprise</td>
</tr>
<tr>
<td>NACE</td>
<td>National Association of Corrosion Engineers</td>
</tr>
<tr>
<td>NAPA</td>
<td>National Asphalt Pavement Association</td>
</tr>
<tr>
<td>NCMA</td>
<td>National Concrete Masonry Association</td>
</tr>
<tr>
<td>NCSPA</td>
<td>National Corrugated Steel Pipe Association</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>NECA</td>
<td>National Electrical Contractors Association</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturer's Association</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Association</td>
</tr>
<tr>
<td>NETA</td>
<td>International Electric Testing Association</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>NFRPA</td>
<td>National Forest Products Association</td>
</tr>
<tr>
<td>NHS</td>
<td>National Highway System</td>
</tr>
<tr>
<td>NMF</td>
<td>Neighborhood Matching Fund</td>
</tr>
<tr>
<td>NRMCA</td>
<td>National Ready Mix Concrete Association</td>
</tr>
<tr>
<td>NRCA</td>
<td>National Roofing Contractors Association</td>
</tr>
<tr>
<td>NSF</td>
<td>National Sanitation Foundation</td>
</tr>
<tr>
<td>OMWBE</td>
<td>Office of Minority and Women's Business Enterprises</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>OSTF</td>
<td>Open Space Trail Fund</td>
</tr>
<tr>
<td>PCA</td>
<td>Portland Cement Association</td>
</tr>
<tr>
<td>PFP</td>
<td>Pedestrian Facility Program</td>
</tr>
<tr>
<td>P/PCI</td>
<td>Precast/Prestressed Concrete Institute</td>
</tr>
<tr>
<td>PORT</td>
<td>Port of Seattle</td>
</tr>
<tr>
<td>PPI</td>
<td>Plastic Pipe Institute</td>
</tr>
<tr>
<td>PSCAA</td>
<td>Puget Sound Clean Air Agency</td>
</tr>
<tr>
<td>PWCC</td>
<td>Public Works and Consultant Contracting Section</td>
</tr>
<tr>
<td>PWTF</td>
<td>Public Works Trust Fund</td>
</tr>
<tr>
<td>RID</td>
<td>Road Improvement District</td>
</tr>
<tr>
<td>RCW</td>
<td>Revised Code of Washington</td>
</tr>
<tr>
<td>REA</td>
<td>Rural Electrification Association</td>
</tr>
<tr>
<td>RRP</td>
<td>Railway-Highway Grade Crossing Program</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SCL</td>
<td>Seattle City Light</td>
</tr>
<tr>
<td>SCLF</td>
<td>Seattle City Light Fund</td>
</tr>
<tr>
<td>SCRPCCF</td>
<td>Seattle Center Redevelopment and Parks Community Center Fund</td>
</tr>
<tr>
<td>SEATRAN</td>
<td>Seattle Transportation Department</td>
</tr>
<tr>
<td>SEPA</td>
<td>State Environmental Policy Act</td>
</tr>
<tr>
<td>SKCDPH</td>
<td>Seattle-King County Department of Public Health</td>
</tr>
<tr>
<td>SMC</td>
<td>Seattle Municipal Code</td>
</tr>
<tr>
<td>SPIF</td>
<td>Shoreline Parks Improvement Fund</td>
</tr>
<tr>
<td>SPU</td>
<td>Seattle Public Utilities</td>
</tr>
<tr>
<td>SSPC</td>
<td>Steel Structures Painting Council</td>
</tr>
<tr>
<td>TIA</td>
<td>Transportation Improvement Account</td>
</tr>
<tr>
<td>TIB</td>
<td>Transportation Improvement Board</td>
</tr>
<tr>
<td>TIF</td>
<td>Transportation Improvement Fund</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratory</td>
</tr>
<tr>
<td>ULID</td>
<td>Utility Local Improvement District</td>
</tr>
<tr>
<td>UMTA</td>
<td>Urban Mass Transit Administration</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>USDODE</td>
<td>United States Department of Energy</td>
</tr>
<tr>
<td>VLF</td>
<td>Vehicle License Fees</td>
</tr>
<tr>
<td>WAC</td>
<td>Washington Administrative Code</td>
</tr>
<tr>
<td>WBE</td>
<td>Women's Business Enterprise</td>
</tr>
<tr>
<td>WCLIB</td>
<td>West Coast Lumber Inspection Bureau</td>
</tr>
</tbody>
</table>
1-01.2(2) ITEMS OF WORK AND UNITS OF MEASUREMENT

Standard abbreviations are included on Standard Plan No. 002.1. Standard symbols are included on Standard Plan No. 003.1.

1-01.3 DEFINITIONS

Unless the Contract Documents specifically indicate otherwise, the definition of electrical and electronic technical terms and phrases used within the Contract Documents shall be interpreted as defined in the current IEEE Dictionary of Electrical and Electronic Terms.

The titles of headings of the sections and subsections herein are intended for convenience or reference and shall not be considered as having any bearing on their interpretation.

The following terms, listed in alphabetical order, shall be defined as follows:

ADDENDUM

A written or graphic instrument, issued prior to the Bid opening to all Bidders and identified as an Addendum, which modifies or clarifies the Bid Documents.

ADDITIVE

A supplemental unit of work or group of Bid items, identified separately in the Bid, which may be Awarded, at the discretion of the Owner in addition to the Base Bid if sufficient funding is available.

ADVERTISEMENT FOR BIDS

A public notice published in the Official Newspaper of The City of Seattle, soliciting Bids for the Work.

AGREEMENT FORM

The written agreement between the Owner and the Contractor setting forth the obligations of the parties thereunder including, but not limited to, the performance of the Work, the basis of payment and the Contract Time.

ALTERNATE

A unit of Work or group of Bid items, identified separately in the Bid, which permits a choice of different methods or material of construction for performing the same work.

ARCHITECT

A licensed registered Architect of the State of Washington, acting directly or through duly authorized representatives in the administrative management of the Contract.

ASBESTOS-CONTAINING MATERIAL

Any material containing more than one percent (1%) asbestos as determined using the method specified in EPA regulations Appendix A, Subpart F, 40 CFR Part 763, Section I, Polarized Light Microscopy, according to Puget Sound Air Pollution Control Agency Regulation III Article 4.01.
ASBESTOS-CONTAINING WASTE

Any waste that contains or is contaminated with asbestos. Asbestos-Containing Waste material includes asbestos waste from control equipment, materials used to enclose the work area during an asbestos project, Asbestos-Containing Material collected for disposal, Asbestos-Contaminated Waste, debris, containers, bags, protective clothing, of HEPA filters, according to Puget Sound Air Pollution Control Agency Regulation III Article 4.01. Asbestos-Containing Waste must be handled and disposed pursuant to 40 CFR Part 61 Subpart M, Chapter 173-303 WAC, and Regulation No. III, Article 4.07 Puget Sound Air Pollution Agency. Asbestos-Containing Wastes shall only be disposed of at a landfill approved by the jurisdictional Health Department (Example: Seattle-King County Department of Public Health).

ASSISTANT

The Engineer’s authorized representative assigned to make detailed inspection of the Work.

AUXILIARY LANE

The part of the roadway next to Traveled Ways for parking, speed changes, turning, weaving, truck climbing or for anything that adds to through traffic movement.

AWARD

The formal decision of the Owner to accept for the Work, the lowest responsive Bid of a responsible Bidder.

BASE BID

The summation of Bid item amounts (extensions) or the lump sum Bid in the Bid Form, excluding Additives, Alternates, Deductives and taxes collected separately pursuant to Washington State Excise Tax Rules.

BASE COURSE

The layer of aggregate, oil-treated aggregate, treated soil, or soil-aggregate that rests upon the subbase or, if no subbase, upon the Subgrade.

BID

The written offer of a Bidder, executed pursuant to the Bid Documents, to perform the Work for a specific price. The terms “Bid,” “Proposal,” “Bid Proposal,” and like terms are synonymous.

BIDDER

An individual, partnership, firm, corporation, or Joint Venture, submitting a Bid. When required by law or otherwise such individual, partnership, firm, corporation or Joint Venture shall be prequalified.

BID DOCUMENTS

The Advertisement for Bids, Instructions to Bidders, Bid Form, and the proposed Contract Documents including any Addenda issued prior to Bid opening.

BID FORM

The Bid and the Affidavit included in the Bid Documents.

BID GUARANTY

Bid bond, cash, cashier’s check or certified check accompanying the Bid as a guarantee that the Bidder will enter into an agreement with the Owner for performance of the Work if the Bidder is Awarded the Contract.

BID PROPOSAL

See “Bid”.

BIO-MEDICAL WASTE

See “Infectious Waste”.

BRIDGE APPROACH EMBANKMENT

An embankment beneath a Structure and extending 100 feet beyond a Structure’s end (at Subgrade elevation for the full embankment width) plus an access ramp on a 10:1 slope to the original ground elevation.
Bridge Approach Embankment may also include any material replacing unsuitable foundation soil at and below the Subgrade elevation.

CHANGE ORDER

A written order to the Contractor, issued by the Engineer after execution of the Contract, authorizing an addition, deletion, or other revision in the Work within the scope of the Contract Documents. A Change Order establishes the basis of payment and time adjustments, if any, for the Work affected by the change.

COMBINATION BUSINESS ENTERPRISE (CBE)

A business which has been certified by the Washington State Office of Minority and Women’s Business Enterprises as a bona fide Combination Business Enterprise.

COMPLETION DATE

See “Dates.”

CONSTRUCTION, DEMOLITION AND LANDCLEARING WASTE (CDL WASTE)

“CDL waste” means any combination of recyclable or non-recyclable Construction, Demolition, and Landclearing waste that results from construction, remodeling, repair or demolition of buildings, roads or other Structures, or from landclearing for development, and is to be removed from the site.

1. **CONSTRUCTION WASTE**: Waste from building construction such as scraps of wood, concrete, masonry, drywall, roofing, siding, structural metal, wire, fiberglass insulation, other building materials; and plastics, Styrofoam, twine, baling and strapping materials, cans and buckets, and other packaging materials and containers. It also includes sand, rocks and dirt, that are used in construction. In no event shall Construction Waste include dangerous or extremely hazardous waste of any kind, garbage (as defined by King County Solid Waste Regulations 10.08.185), sewage, animal carcasses, Contaminated Soils or asbestos.

2. **DEMOLITION WASTE**: Largely inert waste resulting from the demolition or razing of buildings, roads and other man-made structures such as concrete, drywall, asphalt, wood, masonry, composition roofing and roofing paper, siding, minor amounts of structural metal, wire, insulation, and other materials found in demolished buildings, roads and other structures. It also includes sand, rocks and clean dirt, that result from demolition. Plaster (i.e., sheet rock or plaster board) or any other material, other than wood, that is likely to produce gases or leachate during its decomposition process and Asbestos wastes are not considered to be Demolition Waste. In no event shall Demolition Waste include dangerous or extremely hazardous waste of any kind, garbage (as defined by King County Solid Waste Regulations 10.08.185), sewage, animal carcasses, Contaminated Soils or asbestos.

3. **LANDCLEARING WASTE**: Natural vegetation and minerals from clearing and grubbing land for development such as stumps, brush, blackberry vines, tree branches, tree bark, mud, clean dirt, sod and rocks.

CONSULTANT

A licensed registered engineer, architect, or an authorized member of a licensed consulting firm or organization retained by the Engineer.

CONTAMINATED SOILS

Soils which are not designated as Dangerous Waste and are not considered clean but exceed the State Model Toxics Control Act cleanup concentrations specified in Chapter 173-340 WAC.

CONTRACT

The entire and integrated agreement between the Owner and the Contractor. (See definition of Contract Documents).

CONTRACT BOND

The approved form of security, furnished by the Contractor and the Contractor’s Surety, guaranteeing completion of the Work and payment to persons supplying labor and materials in the prosecution of the Work, in accordance with the terms and conditions of the Contract Documents.
CONTRACT DOCUMENTS
The component parts of the Contract shall include, but are not limited to, the executed Bid Form, bonds, evidence of insurance, Project Manual, Drawings, Standard Specifications, Standard Plans, Addenda, and Change Orders.

CONTRACT PRICE
1. **Awarded Contract Price**: The summation of Bid item amounts (extensions) or a lump sum for all items of Work, including applicable taxes, upon which the Award is made.
2. **Revised Contract Price**: The Awarded Contract Price, at any time after Award but prior to the Completion Date adjusted as a result of approved Change Orders.
3. **Final Contract Price**: The total amount of money payable to the Contractor under the terms and conditions of the Contract.

CONTRACT TIME
The period of time established by the terms and conditions of the Contract within which the Work must be completed.

CONTRACTING AGENCY
See Owner.

CONTRACTOR
The individual or entity contracting with the Owner to do the Work.

CONTROLLED DENSITY FILL (CDF)
A mixture of Portland cement, fly ash, aggregates, water and admixtures proportioned to provide a non-segregating, free-flowing, low-strength, compacted, dense and non-settling backfill or fill material.

CULVERT
Drainage Structures that may, or may not, directly support traffic and that extends across and beneath a Highway, street, driveway, alley, or other public way.

DANGEROUS WASTE
Any solid waste designated as Dangerous Waste or extremely hazardous waste by the Department of Ecology under WAC Chapter 173-303. Small, Medium and Large Quantity generators of Dangerous Waste are prohibited from disposal of such wastes in the municipal solid waste collection system.

DATES
The following are Contract milestone dates:
1. **Bid Opening Date**: The date on which Bids for the Work are opened and read publicly.
2. **Award Date**: The date on which the Owner formally accepts for the Work, the lowest responsive Bid of a responsible Bidder and Awards the Contract.
3. **Contract Completion Date**: The date by which the Work is contractually required to be physically completed. The Contract Completion Date will be stated in the Notice to Proceed. The Engineer will authorize revisions of this date in writing and or by Change Order whenever there is an extension to the Contract Time.
4. **Notice to Proceed Date**: The date stated in the Notice to Proceed on which the Contract Time begins.
5. **Substantial Completion Date**: The date the Engineer determines the Owner has full and unrestricted use and benefit of the facilities, both from an operational and safety standpoint, and only minor incidental work, replacement of temporary substitute facilities, or correction or repair remains for the physical completion of the total Contract.
6. **Physical Completion Date**: The day all Work is physically complete on the Project. All documentation required by the Contract and required by law does not necessarily need to be furnished by the Contractor by this date.
7. **Completion Date**: The date, certified in writing by the Owner, when the Work specified in the Contract Documents is completed and all the obligations of the Contractor under the Contract are fulfilled by the
Contractor. All documentation required by the Contract and required by law must be furnished by the Contractor before establishment of this date.

DAY

Unless otherwise specified, day(s) shall mean Calendar Day(s).

1. **Business Day**: Any day other than Saturday, Sunday, or Holiday.
2. **Calendar Day**: The time period of twenty-four hours measured from midnight to the next midnight.
3. **Non-Working Day**: The following are Non-Working Days:
 a. Saturday
 b. Sunday
 c. Holiday
 d. A day upon which the Engineer issues a suspension order.
 e. A day the Contract specifically requires the Contractor to suspend the Work.
4. **Working Day**: A day not otherwise defined as a Non-Working Day.
5. **Unworkable Day**: A partial or whole day the Engineer declares to be unworkable because of unusually severe weather, or another condition beyond the control of the Contractor that prevents satisfactory and timely performance of the Work, when such performance, if not hindered, would have otherwise progressed toward completion of the Work.

DEDUCTIVE

A supplemental unit of work or group of Bid items, identified separately in the Bid that may, at the discretion of the Owner, be deducted from the Base Bid.

DRAWINGS

The portions of the Contract Documents showing in graphic or pictorial form the design, location, and dimensions of the elements of a Project.

ELECTRICAL SAFETY OBSERVER

The Engineer’s authorized Assistant assigned to monitor electrical safety, unless indicated otherwise in the Contract Documents.

ENGINEER

The chief executive officer, or authorized Assistant, of a City Department or Division, who is a licensed registered Engineer of the State of Washington, acting directly or through duly authorized representatives in the administrative management of the Contract.

EQUIPMENT

The machinery tools, implements, apparatus, and appliances, together with the necessary Supplies for their upkeep and maintenance, that are necessary to enable the Contractor to perform the Work.

FRONTAGE ROAD

A local street or road usually next to an arterial Highway that serves abutting property and adjacent areas and controls access.

GARBAGE

All discarded putrescible waste matter, including small dead animals weighing not over fifteen (15) pounds, but not including sewage or sewage sludge or human or animal excrement or yard waste, per Seattle Municipal Code 21.36.014.

HAZARDOUS SUBSTANCES (HAZARDOUS WASTE)

Any liquid, solid, gas or sludge, including any material, substance, product, commodity or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in Chapter 173-303 WAC.
HIGHWAY (ARTERIAL)
Any U.S. or numbered route, controlled access Highway, or other major radial or circumferential street or Highway designated by local authorities within their respective jurisdiction as part of a major arterial system of streets or Highways.

HIGHWAY (STREET, ROAD, ALLEY)
The entire width between the boundary lines of every way, publicly maintained, when any part thereof is open to the use of the public for the purpose of vehicular travel.

HOLIDAY
A day designated by law commemorating a religious festival or some important event in history. A day of exemption from labor. Pursuant to SMC 4.20.190 and RCW 1.16.050 recognized Holidays for The City of Seattle are the:
1. First day of January (New Year’s Day)
2. Third Monday of January (Martin Luther King, Jr.’s Birthday)
3. Third Monday of February (President’s Day)
4. Last Monday of May (Memorial Day)
5. Fourth day of July (Independence Day)
6. First Monday of September (Labor Day)
7. Eleventh day of November (Veterans’ Day)
8. Fourth Thursday of November and the Friday immediately following (Thanksgiving Day)
9. Twenty-fifth day of December (Christmas Day)
When any recognized Holiday falls on a Sunday, the following Monday shall be considered a Holiday. When any recognized Holiday falls on a Saturday, the preceding Friday shall be considered a Holiday.

IMPROVEMENT
See “Work”.

INFECTIOUS WASTE
Cultures and stocks of etiologic agents and associated biologicals; laboratory waste that has come into contact with such culture or stock; sharps, including: needles, syringes, scalpels, or contaminated broken or sharp glassware; pathological waste; human blood and blood products; animal carcasses exposed to pathogens, and other similar waste.

INSPECTOR
See “Assistant.”

JOB SITE
See “Project Site.”

JOINT VENTURE
An association of two or more persons or businesses to carry out a single business enterprise for profit, and for which purpose they combine their property, capital, efforts, skills or knowledge and in which they exercise control and share in profits and losses to the enterprise.

LABORATORY
The Materials Laboratory of the Engineer or such other laboratories authorized by the Engineer.

LIQUIDATED DAMAGES
The amount fixed in the Contract Documents to be paid to the Owner by the Contractor, for each Working Day of delay in completing all or any specified portion of the Work beyond the time specified in the Contract. Such obligation shall not be construed as a penalty, and may be deducted by the Owner from any payments due or become due the Contractor.
MATERIAL
Any substance specified for use in the construction of the Project that enters into and forms a part of the finished Structure or improvement. The substance shall be capable of being so used and shall be furnished for that purpose.

MATERIALMAN
A person or entity that furnishes a Material, supply, commodity, equipment, or manufactured or fabricated product and does not perform labor at the Project Site; a Supplier.

MINORITY AND WOMEN’S BUSINESS ENTERPRISE (MWBE)
A business which has been certified by the Washington State Office Of Minority and Women’s Business Enterprises as a bona fide minority business enterprise, and a bona fide women’s business enterprise.

MINORITY BUSINESS ENTERPRISE (MBE)
A business that has been certified by the Washington State Office Of Minority and Women’s Business Enterprise as a bona fide Minority and Women’s Business Enterprise.

NOTICE
See “Written Notice”.

NOTICE OF AWARD
The Written Notice from the Owner to the successful Bidder signifying the Owner’s acceptance of the Bid.

NOTICE TO PROCEED
The Written Notice from the Engineer to the Contractor authorizing and directing the Contractor to proceed with the Work and establishing the date on which the Contract Time begins.

OFFICIAL NEWSPAPER
The publication designated annually by the Executive Services Director to publish all official proceedings of The City of Seattle.

ON-SITE-LEAD
The Contractor’s on-site representative responsible for and authorized to resolve electrical safety related issues including those raised by the Engineer, Assistant, or Electrical Safety Observer.

OWNER
The City of Seattle, acting through the Executive Services Director.

PAVEMENT STRUCTURE
The combination of subbase, Base Course, and Surface course placed on a Subgrade to support the traffic load and distribute it to the roadbed.

PLANS
See “Drawings.”

PROFILES
See “Drawings.”

PROJECT
See “Work”.

PROJECT MANUAL
The compilation of written provisions and requirements for the Work related to a specific Project. The Project Manual includes, but is not limited to, the requirements for Bids, sample forms, Agreement Form, wage rates, conditions of the Contract, Special Provisions and Addenda.

PROJECT SITE
The geographical location usually defined by legal boundary lines, where the Work is to be performed.
PROPOSAL
See “Bid”.

REAL PROPERTY
Land and attached improvements (also called “real estate”).

RIGHT OF WAY
A strip of real property secured and reserved for public or private transportation, utility, or other purposes.

ROADBED
The graded part of the Roadway within top and side slopes prepared as a foundation for the Pavement Structure and Shoulders.

ROADWAY
The portion of the Right of Way within the outside limits of the side slopes.

SEWER
A pipe or conduit for carrying sewage and other waste liquids excluding hazardous materials. This includes sanitary sewer, side sewer, and combined sewer.

SHOP DRAWINGS
Drawings, diagrams, illustrations, schedules, performance charts, brochures, and other similar data prepared or submitted by the Contractor or a Subcontractor, manufacturer, Supplier, or distributor to illustrate how specific portions of the Work shall be fabricated or installed.

SHOULDER
The part of the roadway next to the Traveled Way or Auxiliary Lanes that provides lateral support of base and Surface courses and is an emergency stopping area for vehicles.

SMALL QUANTITY GENERATOR HAZARDOUS WASTE
Any discarded liquid, solid, contained gas, or sludge, including any material, substance, product, commodity or Waste used or generated by businesses, that exhibits any of the characteristics or criteria of Dangerous Waste set forth in WAC Chapter 173-303, but which is exempt from regulation as Dangerous Waste.

SOLID WASTE
All putrescible and non-putrescible solid and semisolid Wastes, including but not limited to Garbage, rubbish, ashes, industrial wastes, Infectious Wastes, swill, Demolition and Construction Wastes, abandoned vehicles or parts thereof, and recyclable materials. This includes all liquid, solid and semisolid materials that are not the primary products of public, private, industrial, commercial, mining and agricultural operations. Solid waste includes, but is not limited to sludge from wastewater treatment plants, seepage from septic tanks, wood waste, Dangerous Waste, and Contaminated Soils.

SPECIAL CATEGORY WASTES
The Director of Seattle Public Utilities may define by Administrative Rule, pursuant to SMC 21.36.026, special restrictions and limitations on the disposal of certain types of wastes which cannot be handled safely through the municipal solid waste collection system. Restricted materials may include items over certain sizes or weights, and dust-producing materials.

SPECIAL PROVISIONS
Supplemental Specifications and modifications to the Standard Specifications and the amendments to the Standard Specifications that apply to an individual Project which are found in the Project Manual.

SPECIAL WASTE
Contaminated soils, asbestos and other waste specified by Washington Waste Systems in the Special Waste Management Plan included in the Operations Plan as requiring special handling or disposal procedures.
SPECIFICATIONS
Written technical descriptions of Materials, equipment, construction systems, standards, and workmanship, that, in conjunction with the Drawings, detail the requirements for acceptable completion of the Work. Specifications include but are not limited to notes, schedules, and comments on the Drawings.

STANDARD PLANS
The current edition of The City of Seattle Standard Plans for Municipal Construction adopted by the Owner. They show frequently recurring components of work that have been standardized for use by various departments within The City of Seattle.

STANDARD SPECIFICATIONS
The current edition of The City of Seattle Standard Specifications for Road, Bridge, and Municipal Construction adopted by the Owner and supplemented by the current edition of the Traffic Control Manual for In-Street Work.

STATE
The State of Washington, acting through its representatives.

STORM DRAIN
A pipe used for conveying rainwater, subsurface water, condensate cooling water or other similar discharges, but not commercial and industrial wastewater or sewerage. Storm drains carry the excessive storm water from the point source and convey it to the nearest natural body of water.

STRUCTURES
Bridges, Culverts, walls, buildings, foundations, water tanks, transmission towers, cribbing, caissons, or cofferdams, and other similar features that may be encountered in the Work and are classified as Structures in the Contract Documents.

SUBBASE
The layer(s) of specified or selected Material of designated thickness in a Pavement Structure immediately above the Subgrade and below the Base Course.

SUBCONTRACTOR
An individual or entity to whom the Contractor, with the prior written approval of the Engineer, subcontracts part of the Work.

SUBGRADE
The top surface of the Roadbed upon which the Pavement Structure is placed.

SUBSTANTIAL COMPLETION
See “Dates”.

SUBSTRUCTURE
The part of a Structure below:
1. The bottom of the grout pad for the simple and continuous span bearings, or
2. The bottom of the girder or bottom slab soffit, or
3. Arch skewbacks and construction joints at the top of vertical abutment members or rigid frame piers.

Substructures include endwalls, wingwalls, barrier and railing attached to the wingwalls, and cantilever barriers and railings.

SUPERSTRUCTURE
The part of the Structure above:
1. The bottom of the grout pad for the simple and continuous span bearings, or
2. The bottom of the girder or bottom slab soffit, or
3. Arch skewbacks and construction joints at the top of vertical abutment members or rigid frame piers, and extending:
SECTION 1-01 DEFINITIONS AND TERMS

SECTION 1-01-01 DEFINITIONS

a. From the back of pavement seat at one end to the back of pavement seat at other end when the endwalls are attached to the Superstructure, or
b. When the endwalls are not attached to the Superstructure, from the expansion joint at the end pier to the expansion joint at the other end pier

Superstructures include, but are not limited to girders, slabs, and barrier attached to the Superstructure. Superstructures do not include endwalls, wingwalls, barriers, and railing.

SUPPLEMENTAL CONTRACT

A document executed in accordance with the provisions of RCW 60.28.011 stipulating conditions for completion of that portion of the Work which was deleted from the Contract Documents to allow for acceptance of a substantially completed Contract.

SUPPLIER

See “Materialman.”

SUPPLIES

Any substance or matter used or consumed in the construction of the Project and its appurtenances that do not become part of the Structure or improvement.

SURETY

A surety company that is bound with the Contractor to ensure:

1. Faithful performance of the Contract, and
2. Payment of all laborers, mechanics, Subcontractors and Materialmen and all persons or entities that supply any such person with provisions and Supplies for the carrying on of the Work.

SURFACE COURSE

The top layer of the Pavement Structure designed to accommodate the traffic load and resist skidding, traffic abrasion, and the disintegrating effects of climate; sometimes called the “Wearing Course.”

TRAFFIC CONTROL MANUAL FOR IN-STREET WORK

The document that refines the basic principles embodied in the Manual on Uniform Traffic Control Devices (MUTCD) as published by the Department of Transportation, Washington, D.C. to allow for better application to urban traffic conditions in the Seattle area.

TRAVELED WAY

The part of the Pavement Structure made for vehicle travel not including Shoulders and Auxiliary Lanes.

UNACCEPTABLE WASTE

All waste not authorized for disposal at the Columbia Ridge Landfill and Recycling Center or successor site designated by the City, or by those governmental entities having jurisdiction or any waste the disposal of which would constitute a violation of any governmental requirement pertaining to the environment, health or safety. Unacceptable Waste includes any waste that is now or hereafter defined by federal law or by the jurisdiction in which such disposal occurs as radioactive, dangerous, Hazardous Waste or extremely hazardous waste and vehicle tires in excess of those permitted to be disposed of by the laws of the jurisdiction in which such disposal occurs.

UNLAWFUL WASTE

Dead animals over fifteen (15) pounds; sewage; human or animal excrement (including excrement from disposable diapers), with the exception of animal excrement deposited in a public or residential garbage can, provided the animal excrement is wrapped in a closed, leak-proof bag or container; hot ashes, household hazardous waste, as set forth in SMC 21.36.026; Small Quantity Generator Hazardous Waste; Asbestos-Containing Waste; Asbestos Containing Material; tires; Dangerous Waste; radioactive wastes; explosives; and Bio-Medical or Infectious Waste.

VENDOR

See “Materialman.”
SECTION 1-01 DEFINITIONS AND TERMS

WASTE OR CITY WASTE
All residential and nonresidential Solid Waste generated within the City, excluding Unacceptable Waste, Special Waste, Construction, Demolition and Landclearing Waste, and materials destined for recycling. City Waste includes all such Waste, regardless of which private or public entity collects or transports the Waste. Waste includes all waste remaining after recycling.

WATER MAIN
A water supply pipe for public or community use.

WOMEN AND MINORITY BUSINESS ENTERPRISES (WMBEs)

WOMEN’S BUSINESS ENTERPRISE (WBE)
A business which has been certified by the Washington State Office of Minority and Women’s Business Enterprises as a bona fide women’s business enterprise.

WORK
The provision of all labor, Materials, Equipment, and everything needed to successfully complete a Project or improvement pursuant to the Contract Documents. The term Work when capitalized means "Project" or "improvement."

WORKING DAY
See “Day.”

WRITTEN NOTICE
A written communication to the Owner, Engineer, Contractor, or Surety relative to the Work.

SECTION 1-02 BID PROCEDURES AND CONDITIONS

1-02.1 QUALIFICATIONS OF BIDDERS
Bidders shall be qualified by experience, financing, Equipment, and organization to do the work called for in the Contract Documents. The Owner reserves the right to take whatever action it deems necessary to ascertain the ability of the Bidder to perform the work satisfactorily. This action may include conducting an evaluation of the Bidder’s qualifications and references prior to Award.

1-02.2 BID DOCUMENTS
Information as to where Bid Documents can be obtained or reviewed will be found in the Advertisement for Bids.

1-02.3 ESTIMATED QUANTITIES
The quantities shown on the Bid Form are estimates only, and are stated only for Bid comparison purposes. The Owner does not warrant, expressly or by implication, that actual quantities of the Work will correspond with those estimated. The Engineer reserves the right to increase or decrease the amount of any item of Work, or to make other changes in the Work as necessary. Payment will be made on the basis of the actual quantities of each item of Work completed in accordance with the Contract Documents.

1-02.4 EXAMINATION OF BID DOCUMENTS AND PROJECT SITE

1-02.4(1) GENERAL
The Bidder shall carefully examine the Bid Documents as defined in Section 1-01.3. Submittal of a Bid shall be conclusive evidence that the Bidder has made these examinations and understands all requirements for the performance of the Work. The Bidder further warrants, agrees and acknowledges by submitting a Bid, that the Bidder:

1. Has taken all steps necessary to ascertain the full scope, nature and location of the Work;
2. Has investigated and is satisfied as to the general and local conditions which can affect the Work or its cost, including but not limited to:
 a. Conditions bearing upon acquisition, transportation, disposal, handling, and storage of materials.
 b. The availability of labor, materials, water, electric power, and roads.
 c. Uncertainties of weather, river stages, tides, or similar physical conditions at the site.
 d. The conformation and condition of the ground.
 e. The character of equipment and facilities needed preliminary to and during work performance.
 f. Site and environmental conditions which by statute, law, or regulation requires specific training and certifications for employees.

3. Is satisfied as to the character, quality, and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information is reasonably ascertainable from an inspection of the Project Site (including material sites) as well as from the Bid Documents and other information made a part of this Contract.

4. Is satisfied as to the adequacy of the amount of time allowed for physical completion of the Contract.

 Any failure of the Bidder to take the actions described and acknowledged above, shall not relieve the Bidder from responsibility:
 1. For estimating properly the difficulty and cost of successfully performing the Work.
 2. From proceeding to successfully perform the Work without additional expense to the Owner.

 The Bidder agrees that the Owner shall not be liable to the Bidder (1) on any claim for additional payment or time, or (2) for any claim whatsoever, if the claim directly or indirectly results from the Bidder's failure to investigate and become sufficiently knowledgeable of the conditions under which the Contract is to be performed.

 The Bidder shall be familiar and comply with all Federal, State, and local laws, ordinances, and regulations that might affect those engaged in the Work. The Owner will not consider any plea of misunderstanding or ignorance of such requirements.

 Bid prices shall reflect what the Bidder anticipates to be the cost of completing the Work, including methods, materials, labor, and equipment. The Bidder will not be compensated for any costs that exceed those in the Bid prices except as the Contract Documents may provide.

 The Bidder is advised to include in its Bid the applicable costs required by Sections 1-07.18 related to insurance.

 A claim will not be allowed because of any ambiguity in the Contract Documents if:
 1. The Bidder discovers an ambiguity but fails to notify the Engineer, or
 2. The Bidder failed to discover any ambiguity that would be discovered by a reasonably prudent Contractor in preparing its Bid.

 Any prospective Bidder desiring an explanation or interpretation of the Bid Documents, must request the explanation or interpretation in writing soon enough to allow a written reply to reach all prospective Bidders before the submission of their Bids. Oral explanations, interpretations, or instructions given by anyone before Award will not be binding on the Owner. Any information given to a prospective Bidder concerning any of the Bid Documents will be furnished to all prospective Bidders as an Addendum if:
 1. That information is deemed by the Engineer to be necessary in submitting a Bid, or
 2. The Engineer concludes that the lack of information would be prejudicial to other prospective Bidders.

1-02.4(2) SUBSURFACE INFORMATION

 If the Engineer has made a subsurface investigation of the site of the proposed work, the boring log data, soil sample test data, and geotechnical reports accumulated by the Engineer will be made available for inspection by the Bidders. The boring logs shall be considered as part of the Contract. In addition to the above data, DCLU has geotechnical reports for private property located in an Environmentally Critical Area-Geographically Hazardous zone if the private property has been under DCLU permit review. This data is available for the Contractor’s review by contacting:

 DCLU
However, the Engineer makes no representation, guaranty or warranty, expressed or implied, that:

1. The Bidder's interpretation from the boring logs or geotechnical reports are correct.
2. Moisture conditions and indicated water tables do not vary from those found at the time the borings were made.
3. The ground at the location of the borings has not been physically disturbed or altered after the boring was made.
4. The condition, materials, or proportions of the materials between the specific borings, regardless of any subsurface information the Engineer may make available to the prospective Bidders.

The availability of subsurface information from the Engineer shall not relieve the Bidder or the Contractor of any duty to make examinations and investigations as required by Section 1-02.4(1), any other responsibility under the Contract, or as may be required by law.

1-02.5 FORM AND STYLE OF BID

A Bid shall be submitted only on the Bid Form issued by the Owner. A sample Bid Form may be found in the Project Manual. The Bid Form will identify the Project and may describe the Work by listing estimated quantities, units of measure, items of work, and Materials to be furnished.

Bids shall be completed by typing or shall be printed in ink by hand, preferably in black ink. A price shall be submitted for each Bid item listed.

Spaces to be filled in by the Bidder include:

1. Spaces for unit price Bid items or lump sum prices;
2. Bid item amounts (extensions);
3. Summations and, where applicable, retail sales taxes;
4. Acknowledgment of Addenda;
5. The Bidder’s name, address, telephone number, and signature;
6. A State of Washington Contractor’s Registration Number; and
7. A City of Seattle Business License Number.

Required certifications, as appropriate, shall be included on the Affidavit of the Bid Form.

The signer of the Bid shall initial any correction to a Bid made by interlineation, alteration, or erasure. The Bidder shall make no stipulation on the Bid Form nor qualify the Bid in any manner. A Bid shall be submitted for every Additive, Alternate, or Deductive identified in the Bid Form, unless otherwise specified.

A Bid by a corporation shall be executed in the corporate name, by the president or a vice president (or other corporate officer accompanied by evidence of authority to sign).

A Bid by a partnership shall be executed in the partnership name, and signed by a partner. A Bid by a Joint Venture shall be executed in the Joint Venture name and signed by a member of the Joint Venture.

1-02.6 ADDENDA

Questions regarding the meaning or intent of the Bid Documents shall be submitted to the Engineer in writing. If warranted by the Engineer, modifications or clarifications will be provided by addenda. Only questions answered by formal written addenda will be binding. Oral or other interpretations or clarifications will be without legal effect.

Addenda may be issued to modify or clarify the Bid Documents. Addenda will be mailed to persons or organizations to whom the Bid Documents were issued. The Bidder shall acknowledge receipt of each Addendum by filling in the appropriate spaces on the Bid Form Affidavit.

The Bidder should always check with the Engineer the day before Bids are opened to ensure all addenda have been received. The address and telephone number of the Engineer’s office where copies of Bid Documents and addenda may be obtained is stated in the Advertisement for Bids.
1-02.7 BID GUARANTY

A Bid shall be accompanied by:

1. A certified or cashier’s check payable to the order of The City of Seattle, or,
2. By cash, or,
3. By a Bid bond.

The cash, check, or bond shall be for a sum of not less than five percent of the maximum Bid amount that could be Awarded, including sales tax and Additives if applicable. A Bid will not be accepted or considered unless accompanied by such check, cash, or Bid bond.

If a Bid bond accompanies a Bid, a company authorized to do business in the State of Washington shall furnish the Bid bond. In order to be authorized to do business in the state of Washington, the Surety shall be registered with the Washington State Insurance Commissioner and the Surety’s name shall appear on the current list of authorized insurance companies published by the Office of the Insurance Commissioner.

Bid bonds shall contain the following:

1. Ordinance, L.I.D., or specification number of the improvement;
2. Name and nature of the improvement;
3. The City of Seattle named as obligee;
4. The amount of the Bid bond stated either as a dollar figure or as a percentage that represents five percent of the maximum Bid amount that could be Awarded;
5. Signature of the Bidder’s officer empowered to sign official statements. The signature of the person authorized to submit the Bid should agree with the signature on the bond, and the title of the person must accompany the said signature; and
6. The signature of the Surety’s officer empowered to sign the bond and the power of attorney.

1-02.8 NONCOLLUSION REQUIREMENT

The Bidder, by signing and having the Bid Form notarized, swears, deposes and says that the Bidder has not, either directly or indirectly, entered into any agreement, participated in any collusion, or otherwise taken any action in restraint of free, competitive bidding in the preparation and submission of a Bid to the Owner for consideration in the Award of a Contract on the improvement described in the Bid Documents.

1-02.9 BID SUBMITTAL

1-02.9(1) GENERAL

The authorized Bid Form shall be submitted at the time and place specified in the Advertisement for Bids. The Bid Form, together with the Bid Guaranty and such other documentation as is required, shall be enclosed in a sealed envelope marked with the Project title and the Bidder’s name, and be addressed to:

Public Works and Consultant Contracting Section
City of Seattle Executive Services Department
Arctic Building, Suite 800
700 Third Avenue
Seattle, Washington, 98104-1809

If the Bid is sent through the mail or other delivery system, the sealed envelope shall be enclosed in a separate envelope, with a notation “BID ENCLOSED” on the face of the envelope. The Bidder shall assume full responsibility for the timely delivery at the location designated in the Advertisement for Bids for receipt of Bids. A Bid submitted or delivered after the time fixed for receipt of Bids will not be accepted.

1-02.9(2) CHANGE OF BID SUBMITTAL DATE

The Owner reserves the right to change the date and time for Bid submittal. Notification of the change will be by Addendum.
1-02.9(3) SUBCONTRACTOR LIST

In compliance with RCW 39.30.060, for any public works contract estimated to cost one million dollars or more, each Bidder shall complete and submit the Subcontractors List form, Section 0-01.4, naming those Subcontractors with whom the Bidder, if Awarded the Contract, will subcontract for performance of the Work of heating, ventilation and air conditioning; plumbing; and electrical, or to name itself for the work. The Bidder may list no more than one Subcontractor for each category of work identified, unless Subcontractors vary with Bid Alternates, Additives, or Deductives, in which case the Bidder must indicate on a separate Subcontractors List which Subcontractor will be used for which Alternate, Additive, or deductive. Failure of the Bidder to complete and submit the Subcontractors List as required shall render the Bidder’s Bid non-responsive and, therefore, void.

Section 0-01.4, the Subcontractors List, may be submitted with the Bid, or separately within one hour of the time and date for Bid submittal, but no later than 3:00 p.m. on the day for Bid submittal stated in the Advertisement for Bids or by Addendum.

1-02.10 MODIFICATION OR WITHDRAWAL OF BID

After submitting a Bid to the Owner, the Bidder may withdraw or revise it if:

1. The Bidder submits a written request signed by an authorized person, or a telegram; and
2. The Owner receives the request before the time for receipt of Bids.

If the request for modification or withdrawal is by telegram, written confirmation over the signature of the Bidder shall be mailed and postmarked on or before the time designated for receipt of Bids.

The original Bid, as revised in writing, and received prior to the time designated for receipt of Bids, will be acceptable as the official Bid.

A Bid may not be modified, withdrawn, or canceled by the Bidder after the time for Bid submittal unless, the Award is delayed for a period exceeding the limit set forth for Award or a Bidder’s claim of error is upheld by the Owner.

1-02.11 ADDITIVES, ALTERNATES, DEDUCTIVES

The Engineer reserves the right to arrange the Bid Form with Alternates, Additives, or Deductives, if such be to the advantage of the Owner. The Bidder shall Bid on all Alternates, Additives, or Deductives set forth in the Bid Form unless otherwise specified in the Project Manual.

1-02.12 PUBLIC OPENING OF BIDS

Bids will be opened and read:

Orally immediately after 2:00 p.m. on the date indicated in the Advertisement for Bids or in an Addendum in the Arctic Building, 700 Third Avenue, Room 1003, Seattle, Washington 98104.

1-02.13 IRREGULAR BIDS

A Bid will be considered irregular and non-responsive, and will be rejected if:

1. The Bidder has not been prequalified when so required.
2. The authorized Bid Form is not used or is altered.
3. The completed Bid Form contains any unauthorized addition, deletion, alternate Bid, or condition.
4. The Bidder adds provisions reserving the right to accept or reject the Award or to enter into the Contract.
5. A price per unit cannot be determined.
6. For Projects estimated to cost $1,000,000 or more, the Bidder did not comply with the Subcontractor list requirements (See Section 1-02.9(3), Subcontractor’s List).
7. The Bid does not constitute a definite and unqualified offer to meet the material terms of the Bid invitation.

A Bid may be considered irregular and may be rejected if:

1. The Bid Guaranty is insufficient or improper.
2. Any of the unit prices are excessively unbalanced (either above or below the amount of a reasonable Bid) to the potential detriment of the Owner.

3. Receipt of Addenda is not acknowledged.

4. A member of a Joint Venture or partnership and the Joint Venture or partnership submit a Bid for the same Project (in such an instance, both Bids may be rejected).

5. The entries in the Bid Form are not typewritten or entered in ink.

6. The Bid is not properly executed.

7. The Bidder did not Bid on all Additives, Deductives, or Alternates, when required.

8. The Bid does not include a unit price for every Bid item.

1-02.14 DISQUALIFICATIONS OF BIDDERS

A Bidder may be deemed not responsible and its Bid rejected if:

1. More than one Bid is submitted for the same Project from a Bidder under the same or different names.

2. Evidence of collusion exists with any other Bidder or potential Bidder. Participants in collusion will be restricted from submitting further Bids.

3. A Bidder, in the opinion of the Owner, is not qualified for the work specified, or to the extent that the Bid exceeds the authorized prequalification amount as may have been determined by a prequalification or pre-Award evaluation of the Bidder;

4. An unsatisfactory performance record exists as shown by past or current Work for the Owner, or for others, as judged from the standpoint of conduct of the Work, environmental and safety compliance records, workmanship, progress, affirmative action, or equal employment opportunity practices.

5. There is uncompleted work (Owner or otherwise) which might hinder or prevent the prompt physical completion of the Work Bid upon.

6. The Bidder failed to settle bills for labor or materials on past or current contracts.

7. The Bidder has failed to complete a public contract or has been convicted of a crime arising from a previous public contract.

8. The Bidder is unable, financially or otherwise, to perform the Work.

9. A Bidder is not authorized to do business in the State of Washington (not registered in accordance with Chapter 18.27 RCW).

10. For any other reason deemed proper by the Owner.

1-02.15 RESERVED

SECTION 1-03 AWARD AND EXECUTION OF CONTRACT

1-03.1 CONSIDERATION OF BIDS

1-03.1(1) RESERVED

1-03.1(2) BID TABULATION

After Bid opening, Bids will be checked for correctness of unit price extensions and the total Bid price. A discrepancy between a unit price and the extended amount of any Bid item shall be resolved by accepting the unit price as correct.

The summation of extensions, corrected where necessary and including sales taxes if applicable, will be used for Award purposes, to fix the Awarded Contract Price, and the amount of the Contract Bond.

1-03.1(3) CLAIM OF ERROR

A Bidder who wishes to claim error after the Bids have been opened and tabulated shall submit a notarized affidavit signed by the Bidder, accompanied by original work sheets used in the preparation of the Bid, requesting relief from the responsibilities of Award. The affidavit shall describe the specific error(s) and certify
that the work sheets are the originals used in the preparation of the Bid. The affidavit and the work sheets shall be submitted to the

Public Works and Consultant Contracting Section
City of Seattle Executive Services Department
Arctic Building, Suite 800
700 Third Avenue
Seattle, Washington, 98104-1809
Telephone (206) 684-0430

by 5:00 p.m. on the next Business Day after Bid opening or the claim will not be considered.

The Engineer will review the certified work sheets to determine the validity of the claimed error and make recommendation to the Owner. If the Owner concurs in the claim of error, the Bidder will be relieved of responsibility and the Bid Guaranty of the Bidder will be returned. Thereafter, at the discretion of the Owner, all Bids may be rejected or Award made to the next lowest responsive, responsible Bidder.

1-03.1(4) PRE-AWARD INFORMATION

The Owner will evaluate all Bids to determine the lowest responsive, responsible Bidder. This evaluation may include investigations to establish the responsibility, qualifications and financial ability of the Bidder to do the Work pursuant to the Contract Documents.

A Bidder whose Bid is under consideration for Award shall, upon request, promptly submit satisfactory evidence of qualifications, financial resources, construction experience and organization available for the performance of the proposed Work. Documented information shall be submitted within 7-days after receipt of a written request from the Engineer.

In addition, a Bidder under consideration for Award may be required to furnish:

1. A complete statement as to the origin, composition, and manufacture of any and all Materials to be used in the Project, together with samples which may in turn be subjected to tests to determine their quality and fitness for the Work, as provided for in the Contract;
2. A critical path schedule in the form required by the Engineer showing the order of work and time required on the various phases of the Work;
3. A breakdown of costs assigned to any Bid item; and
4. Such additional information as may be specified to assist the Owner in ascertaining the Bidder’s general ability to perform the Work.

1-03.1(5) RIGHTS OF THE OWNER

In addition to such other rights as may be reserved elsewhere in the Contract Documents, the Owner reserves the right to:

1. Reject any or all Bids,
2. Waive informalities in the Bidding,
3. Accept the lowest responsive Bid of a responsible Bidder,
4. Correct arithmetical errors in a Bid,
5. Re-advertise for Bids,
6. Revise or cancel the Work,
7. Require the Work be done in another way if, in the opinion of the Owner, the best interest of the public will be served, and
8. Award such Additives, Deductives, or Alternates, as may be set forth in the Bid Form.

1-03.2 AWARD OF CONTRACT

The Owner reserves the right to Award such Additives, Deductives or Alternates as may be set forth in the Bid Form.

If a Contract is to be awarded, the Owner will endeavor to Award the same to the lowest, responsive, Bidder within 60 days after the Bid Opening Date. If a Contract is not awarded within that 60-day Award period,
all Bids will expire and will not be considered further unless the Owner deems it necessary to try to secure an extension of the time period for Bid evaluation and the allowable period for Award. In such event, prior to the end of the 60-day Award period, the Owner shall issue an invitation to the apparent low Bidder and such other Bidders as the Owner, in the exercise of its discretion, deems appropriate, to extend the period each such Bid is valid and capable of Owner acceptance.

The following conditions shall apply to each such extension:

1. The extension shall be by mutual consent between the Owner and the Bidder;
2. The extension shall be documented in writing on a form acceptable to the Owner; and,
3. The written extension shall be received by the Owner prior to the expiration of the initial 60-day period for Award.

A Notice of Award will be mailed to the successful Bidder following Award by the Owner.

1-03.3 EXECUTION OF CONTRACT

1-03.3(1) GENERAL

The Owner is prohibited by RCW 39.06.010 from executing a Contract with a Contractor who is not registered or licensed as required by the laws of the State. In addition, SMC Chapter 5.44 requires that every person engaging in business with The City of Seattle possess a City of Seattle Business License. Subcontractors performing work within The City of Seattle shall possess a City of Seattle Business License.

Bidders having a City of Seattle Business License, a State of Washington Contractor’s Registration, or both, shall insert the license number and registration number in the spaces provided on the Bid Form Affidavit. If requested by the Engineer the Contractor shall submit legible copies of the Contractor’s State of Washington Contractor’s Registration and City of Seattle Business License to the Engineer, prior to Award of Contract.

1-03.3(2) TIME TO EXECUTE AGREEMENT FORM

The original and one copy of the Project Manual, including the unsigned Agreement Form, will be available for signature by the successful Bidder at the:

Public Works and Consultant Contracting Section
City of Seattle Executive Services Department
Arctic Building, Suite 800
700 Third Avenue
Seattle, Washington, 98104-1809
Telephone (206) 684-0430

The documents will be ready on the first Business Day following Award, or shortly thereafter.

The successful Bidder shall sign and return to the Public Works and Consultant Contracting Section of the Executive Services Department within 14-days of Award:

1. The original of the Agreement Form bound in the Project Manual,
2. The Contract Bond (see Section 1-03.4), and
3. Acceptable evidence of insurance (see Section 1-07.18).

The above time limit may be extended by mutual agreement between the Owner and the successful Bidder.

The Owner will forward a copy of the fully executed Agreement Form to the successful Bidder for incorporation into the successful Bidder’s copy of the Project Manual.

No work shall begin within the Project limits or within sites furnished by the Owner until the successful Bidder has received the fully executed Agreement Form and has been given the Notice to Proceed per Section 1-08.4. The Contractor shall bear all risks for any work begun prior to the issuance of the Notice to Proceed.

1-03.4 CONTRACT BOND

The successful Bidder shall provide an executed Contract Bond for the Awarded Contract Price. The Contract Bond shall:
1. Be on an Owner-approved form;
2. Be signed by an approved Surety (or sureties) that:
 a. Is registered with the Washington State Insurance Commissioner, and
 b. Appears on the current Authorized Insurance List in the State of Washington published by the Office of the Insurance Commissioner;
3. Be conditioned upon the faithful performance of the Contract by the Contractor within the prescribed time;
4. Guarantee that the Surety shall indemnify, defend, and protect the Owner against any claim of direct or indirect loss resulting from the failure of the Contractor, or any of the Contractor’s employees, agents, or Subcontractors of any tier, to:
 a. Faithfully perform the Contract;
 b. Pay all laborers, mechanics, Subcontractors, agents, Materialmen, or any other person who provides Supplies or provisions for carrying out the Work; and
 c. Pay all just debts, dues and demands incurred in the performance of such Work;
5. Contain the following language:
 IT IS FURTHER DECLARED AND DECREED that nothing of any kind or nature whatsoever that will not discharge the Principal shall operate as a discharge or a release of liability of the Surety, any law, rule of equity or usage relating to the liability of sureties to the contrary notwithstanding, and the Surety waives notice of any alteration, or extension of time, made by The City of Seattle, except that any single or cumulative Change Orders amounting to more than 25% of the Awarded Contract Price shall require the consent of the Surety.
The Surety agrees to be bound by the laws of the State of Washington and subjected to the jurisdiction of the State of Washington;
6. Be accompanied by a current power of attorney for the Surety’s officer empowered to sign the bond; and
7. Be signed by an officer of the Contractor empowered to sign official statements (sole proprietor or partner). If the Contractor is a corporation, the president or vice-president shall sign the Bond. If not signed by the president or vice-president the Bond shall be accompanied by written proof of the authority of the individual signing the bond to bind the corporation (i.e., corporate resolution, power of attorney or a letter to such effect signed by the president or vice-president).

The Owner may require the Surety (or sureties) named on the Contract Bond to appear and qualify themselves whenever the Owner deems the Surety (or sureties) to be inadequate. In such case the Owner may require, upon written demand, the Contractor to furnish additional Surety to cover any remaining work. Until the added Surety is furnished, payment on the Contract will stop.

1-03.5 FAILURE TO EXECUTE THE CONTRACT

The Bidder’s Bid Guaranty will be forfeited if the Bidder to whom the Award was made fails to:
1. Execute the Agreement Form within the required time period;
2. Furnish satisfactory bond(s) and insurance(s) within the required time period; or
3. Refuses to enter into a Contract with the Owner.

The Owner may then Award the Contract to the second lowest responsible Bidder.

If the second lowest responsive, responsible Bidder fails to execute the Agreement Form, and furnish satisfactory bond(s) and insurance(s) within 14 days after Award has been made to the second Bidder, or within the time period mutually agreed upon by the Owner and second Bidder, the second Bidder’s Bid Guaranty will also be forfeited. The Contract may be Awarded successively in a like manner to the remaining lowest responsive, responsible Bidders until the Agreement Form is executed and bond(s) and insurance(s) furnished, by a responsible Bidder, or the remaining Bids are rejected.

The time for the successful Bidder to execute the Agreement Form and return the Project Manual and furnish satisfactory bond(s) and insurance(s) may be extended if requested by the Bidder, and the Owner deems circumstances warrant the extension.
1-03.6 RETURN OF BID GUARANTY

After the Agreement Form has been executed and the required bond(s) and insurance(s) approved by the Owner, the Bid Guaranty in the form of cash or check will be returned to the successful Bidder. A Bid Guaranty in the form of a Bid Bond from the successful Bidder shall be filed with the executed Contract. A Bid Guaranty in the form of cash or check will be returned to each unsuccessful Bidder after Contract Award or after all Bids have been rejected. Bid Bonds of unsuccessful Bidders will be retained for 30-days after the executed Contract has been filed with the City Clerk, and then disposed of, unless return is requested by an unsuccessful Bidder.

1-03.7 APPEALS

Any protest of an intended Award must be filed by 5:00 P.M. on the fifth Business Day from the date of Bid opening. An appeal of a notice that a Bid is non-responsive or a Bidder is not responsible must be filed by 5:00 P.M. on the third Business Day of such notification. All such protests or appeals shall be filed with the:

Contracting Manager
Public Works and Consultant Contracting Section
City of Seattle Executive Services Department
Arctic Building, Suite 800
700 Third Avenue
Seattle, Washington, 98104-1809
Telephone (206) 684-0388

ESD will review and decide upon all such protests and appeals. Any protest or appeal of a decision of ESD must be filed with the Office of the Hearing Examiner no later than 5:00 P.M. on the third Business Day following receipt of a written decision by ESD with which the Bidder disagrees. In order for the Hearing Examiner to consider such a Bid protest or appeal, the Bidder must have filed an initial protest or appeal with the Contracting Manager as required above.

After hearing a Bid protest or appeal, the Hearing Examiner shall make a recommendation to the Executive Services Director who shall make the final decision.

1-03.8 RESERVED

SECTION 1-04 SCOPE OF WORK

1-04.1 INTENT OF CONTRACT DOCUMENTS

The intent of the Contract Documents is to prescribe a complete Work. Omissions from the Contract Documents of details of the Work that are necessary to carry out the intent of the Contract shall not relieve the Contractor from completing the Work.

The Project Manual may describe Work the Standard Specifications do not cover. The Contractor’s Work shall comply first with the Special Provision requirements of the Project Manual and then with any Standard Specifications that may apply. The Contractor shall include all costs of doing this Work within the Bid Contract unit prices.

1-04.1(1) BID ITEMS INCLUDED IN THE BID FORM

The Contractor shall furnish all labor, Materials, tools, equipment, transportation, Supplies, and everything needed or required to make each and every part of the Work complete. The Contractor shall be solely responsible for the means, methods, techniques, sequences, and procedures of construction.

1-04.1(2) BID ITEMS NOT INCLUDED IN THE BID FORM

If the Project Manual requires work that is not listed as a Standard Bid item in a "Payment" clause of the Standard Specifications, then the costs shall be incidental and included within the Bid Contract unit prices of the various items in the Contract. If Standard Bid item work is performed and a Bid item for that work is not included in the Bid Form then payment shall be in accordance with Section 1-09.4.
1-04.2 COORDINATION OF CONTRACT DOCUMENTS

All parts of the Contract Documents are essential and complementary. A requirement occurring in one is binding as though occurring in all.

Work or Material that has been omitted from the description of a part of the Work, but is clearly implied, shall be furnished by the Contractor as though it had been specifically stated. The Contractor shall inform the Engineer immediately, in writing, if the Contractor finds:

1. A discrepancy between various parts of the Contract Documents,
2. An error or omission in the Drawings, or
3. A discrepancy in the layouts and instructions given by the Engineer,

The Contractor shall not proceed with any work affected by such discrepancy, error, or omission until directed to do so by the Engineer.

In the event of any conflicting provisions or requirements between the component parts of the Contract Documents, the component parts shall take precedence in the following order:

1. Change Orders
2. Addenda
3. Bid Form
4. Project Manual
5. Drawings
6. Standard Specifications
7. Standard Plans

When appearing on the Drawings, Shop Drawings, Standard Plans, or Supplemental Drawings figured dimensions shall take precedence over scaled dimensions.

This order of precedence shall not apply when work is required by one part of the Contract but omitted from another part or parts of the Contract. The work required in one part must be furnished even if not mentioned in other parts of the Contract. If any part of the Contract requires work that does not include a description for how the work is to be performed, the work shall be performed in accordance with standard trade practice(s). For purposes of the Contract, a standard trade practice is one having such regularity of observance in the trade as to justify an expectation that it will be observed by the Contractor in doing the work.

In case of any ambiguity or dispute over interpretation of the provisions of the Contract Documents, the decision of the Engineer shall be final unless protest is made.

1-04.3 RESERVED

1-04.4 CHANGES

As the Work proceeds, the Engineer may, at any time and without notice to the Surety or sureties, change the Work within the general scope of the Contract. Among others, these changes may include:

1. Deleting any part of the Work;
2. Increasing or decreasing quantities;
3. Altering specifications, designs, or both;
4. Revising the way the Work is to be done;
5. Adding new work;
6. Altering facilities, equipment, materials, services, or sites provided by the Engineer; or,
7. Ordering the Contractor to speed up or delay the Work.

The Contractor shall obtain written consent of the Surety (or sureties) if changed work increases the Awarded Contract Price by more than 25 percent or, the Engineer specifically requests the Surety's consent.

Changes in the Work will be incorporated into the Contract Documents by Change Order. The Contractor accepts all terms and requirements of a Change Order by endorsing the Change Order, writing a separate acceptance, or not disputing a Change Order as provided for in Section 1-04.5.

An equitable adjustment for deleted work will be made in accordance with Section 1-09.5. An equitable adjustment for an increase or decrease exceeding 25 percent of the original quantity of any Bid item, will be made...
in accordance with Section 1-04.6. For all other changes the Engineer will determine if the change should be paid for at Contract unit prices.

If the Engineer determines that a change increased or decreased the Contractor’s costs or time to do any of the Work, including unchanged work, the Engineer will make an equitable adjustment to the Contract. The terms and the amount of equitable adjustment should be by agreement with the Contractor. However, if the parties are unable to agree on the terms or amount of equitable adjustment, the Engineer will unilaterally determine the amount of equitable adjustment in accordance with Sections 1-09.4 and, if applicable, 1-08.8. The Engineer’s decision concerning an equitable adjustment of costs and time shall be final unless the Contractor files claim and the claim is upheld pursuant to Section 1-04.5.

The Contractor shall proceed with the Work upon receiving:
1. A written Change Order approved by the Engineer.
2. A written field directive from the Engineer before actually receiving the written Change Order.

Changes normally noted on field stakes or variations from estimated quantities other than noted above, will not require a written Change Order. These changes shall be made at the unit prices that apply. The Contractor shall respond immediately to changes shown on field stakes without waiting for further notice.

1-04.5 DISPUTES AND CLAIMS RESOLUTION PROCESS

1-04.5(1) SEQUENCE OF DISPUTES RESOLUTION PROCESS

When disputes occur during a Contract, the Contractor shall pursue resolution through the Engineer by following the procedures outlined in Section 1-04.5(2). If the negotiation using the procedures outlined in Section 1-04.5(2) fails to provide satisfactory resolution, the Contractor shall then pursue the more formalized method outlined in Section 1-04.5(3), CLAIMS. If the negotiation using the procedures outlined in Section 1-04.5(3) fails to provide satisfactory resolution, the Contractor shall then pursue the method outlined in Section 1-04.5(4), MEDIATION. If the negotiation using the procedures outlined in Section 1-04.5(4) fails to provide satisfactory resolution, the Contractor shall then pursue the procedures outlined in Section 1-04.5(5), LITIGATION. The Contractor agrees to follow this sequence of disputes resolution process.

1-04.5(2) DISPUTE NOTICE FOR PROTESTED WORK

If in disagreement with anything required in a Change Order, another written order, or an oral order from the Engineer, including any direction, instruction, interpretation, or determination by the Engineer, the Contractor shall:

1. Immediately protest by giving a signed Written Notice of dispute to the Engineer or the Engineer’s field Assistant before doing the work;
2. Supplement the Written Notice of dispute within 15 Calendar Days of its filing with a written statement providing the following:
 a. The date of the protested order;
 b. The nature and circumstances which caused the protest;
 c. The Contract provisions that support the protest;
 d. The estimated dollar cost, if any, of the protested work and how that estimate was determined; and
 e. An analysis of the current accepted critical path schedule showing the schedule change or disruption if the Contractor is asserting a schedule change or disruption; and
3. If the protest is continuing, the information required above, shall be supplemented as requested by the Engineer. In addition, the Contractor shall provide the Engineer, before final payment, a written statement of the actual adjustment requested.

Throughout any protested work, the Contractor shall keep complete records of extra costs and time incurred. The Contractor shall permit the Engineer access to these and any other records needed for evaluating the protest.

The Engineer will evaluate all protests provided the procedures in this section are followed. If the Engineer determines that a protest is valid, the Engineer will adjust payment for work or time by an equitable adjustment in accordance with Section 1-09.4.
Extensions of time will be evaluated in accordance with Section 1-08.8. No adjustment will be made for an invalid protest.

In spite of any protest, the Contractor shall proceed promptly with the Work as the Engineer orders.

The Contractor accepts all requirements of a Change Order by: (1) endorsing it, (2) writing a separate acceptance, or (3) not protesting in the way this section provides. A Change Order that is not protested as provided in this section shall be full payment and final settlement of all claims for Contract Time and for all costs of any kind, including costs of delays, related to any work either covered or affected by the change.

By not protesting as this section provides, the Contractor also waives any additional entitlement and accepts from the Engineer any written or oral order (including directions, instructions, interpretations, and determinations).

By failing to follow the procedures of this section, the Contractor completely waives any claims for protested work.

1-04.5(3) CLAIMS

If the Contractor claims that additional payment is due and the Contractor has pursued and exhausted all the means provided in Section 1-04.5(2) to resolve a dispute, the Contractor may file a claim as provided in this Section. The Contractor agrees to waive any claim for additional payment if the written notifications provided in Section 1-04.5(2) are not given, or if the Engineer is not afforded reasonable access by the Contractor to complete records of actual cost and additional time incurred as required by Section 1-04.5(2), or if a claim is not filed as provided in this Section. The fact that the Contractor has provided a proper notification, provided a properly filed claim, or provided the Engineer access to records of actual cost, shall not in any way be construed as proving or substantiating the validity of the claim. If the claim, after consideration by the Engineer, is found to have merit, the Engineer will make an equitable adjustment either in the amount of costs to be paid or in the time required for the work, or both. If the Engineer finds the claim to be without merit, no adjustment will be made.

All claims filed by the Contractor shall be in writing and in sufficient detail to enable the Engineer to ascertain the basis and amount of the claim. All claims shall be submitted to the Engineer. As a minimum, the following information must accompany each claim submitted:

1. A detailed factual statement of the claim for additional compensation and time, if any, providing all necessary dates, locations, and items of work affected by the claim.
2. The date on which facts arose which gave rise to the claim.
3. The name of each individual, official, or employee involved in or knowledgeable about the claim.
4. The specific provisions of the Contract which support the claim and a statement of the reasons why such provisions support the claim.
5. If the claim relates to a decision of the Engineer which the Contract leaves to the Engineer’s discretion or as to which the Contract provides that the Engineer’s decision is final, the Contractor shall set out in detail all facts supporting its position relating to the decision of the Engineer.
6. The identification of any documents and the substance of any oral communications that support the claim.
7. Copies of any identified documents, other than documents previously furnished by the Contractor, that support the claim (manuals which are standard to the industry, used by the Contractor, may be included by reference).
8. If an extension of time is sought:
 a. The specific days and dates for which it is sought,
 b. The specific reasons the Contractor believes a time extension should be granted,
 c. The specific provisions of Section 1-08.8 under which it is sought, and
 d. The Contractor’s analysis on the critical path of its accepted critical path schedule in effect at the time to demonstrate the reason for a time extension.
9. If additional compensation is sought, the exact amount sought and a breakdown of that amount into the following categories:
 a. Direct Labor: Limited to the amount calculated in accordance with Section 1-09.6(2) excluding the 20% markup;
 b. Direct Materials: Limited to the amount calculated in accordance with Section 1-09.6(3) excluding the 15% markup;
c. Direct equipment: Limited to the amount calculated in accordance with Section 1-09.6(4) excluding the 15% markup. The actual cost for each piece of equipment for which a claim is made or in the absence of actual cost, the rates established by the AGC/WSDOT Equipment Rental Agreement which was in effect when the work was performed. In no case shall the amounts claimed for each piece of equipment exceed the rates established by that Equipment Rental Agreement even if the actual cost for such equipment is higher. The Engineer may audit the Contractor’s cost records as provided in Section 1-09.12 to determine actual equipment cost. The following information shall be provided for each piece of equipment:

1. Detailed description (e.g., Motor Grader Diesel Powered Caterpillar 12 “G,” Tractor Crawler ROPS & Dozer Included Diesel, etc.);
2. The hours of use or standby; and
3. The specific day and dates of use or standby;

d. Overhead and profit: Markups for overhead and profit shall not exceed the markups allowed in Section 1-09.6;

e. Subcontractor costs: Payments Contractor makes to Subcontractors for changed work performed by Subcontractors of any tier. This cost shall be calculated and itemized in the same manner prescribed for the Contractor;

f. Equipment Mobilization: If necessary equipment is not on the Project Site and it was not anticipated that it would be required for the performance of other work under the original terms of the Contract, the amount for mobilization based on the requirements of Section 1-09.6(5);

g. If the request for compensation relates to an alleged delay or other change in the Contract Time, the Contractor shall demonstrate the impact on the critical path of the accepted critical path schedule in effect at the time of the occurrence giving rise to the dispute; and

h. Other categories as specified by the Contractor.

10. A statement shall be submitted to the Engineer containing the following language:

“STATE OF WASHINGTON)
) SS.
THE COUNTY OF KING)
The undersigned, __,

__

(name)

__

(title) (company)

being first duly sworn on oath, deposes and says:

The claim for extra compensation and time, if any, made herein for work on this Contract is a true statement of the actual costs incurred and time sought, and is fully documented and supported under the Contract between the parties.

Dated __________________________ /s/ __________________________

Subscribed and sworn before me this ______________ day of __________________________

Notary Public in and for the State of Washington

residing at __

My appointment expires __________________________

It will be the responsibility of the Contractor to keep full and complete records of the costs and additional time incurred for any alleged claim. The Contractor shall permit the Engineer to have access to those records and any other records as may be required by the Engineer to determine the facts or contentions involved in the claim. The Contractor shall retain those records for a period of not less than three years after final acceptance.

The Contractor shall pursue administrative resolution of any claim with the Engineer or the designee of the Engineer.

The Contractor shall provide to the Engineer before final payment, a written statement detailing the actual adjustment requested. Failure to submit such information and details as described for any claim shall operate as a waiver of the claims by the Contractor.
Provided that the Contractor is in full compliance with all the provisions of this section and after the formal claim document has been submitted, the Engineer will respond, in writing, to the Contractor as follows:

1. Within 45 Calendar Days from the date the claim is received if the claim amount is less than $50,000;
2. Within 90 Calendar Days from the date the claim is received if the claim amount is equal to or greater than $50,000; or
3. If the above restraints are unreasonable due to the complexity of the claim under consideration, the Contractor will be notified within 15 Calendar Days from the date the claim is received as to the amount of time which will be necessary for the Engineer to prepare its response.

Full compliance by the Contractor with the provisions of this section is a contractual condition precedent to the Contractor’s right to seek judicial relief.

1-04.5(4) MEDIATION

If the Engineer denies the claim, the Contractor, prior to the initiation of any judicial proceedings, shall within thirty (30) days of receiving the Engineer’s Written Notice denying the claim or before the Completion Date, whichever comes first, give Written Notice of its election to utilize a non-binding resolution procedure whereby each party presents its case at a hearing (the “Hearing”) before a mutually acceptable mediator. The Contractor shall not be allowed to change the scope of the claim as presented in Section 1-04.5(3). The Hearing will occur no more than ten (10) days after the Contractor serves Written Notice to use outside mediation. Each party may be represented at the Hearing by lawyers. If the matter cannot be resolved at such Hearing, the mediator may be asked to assist the parties in evaluating the strengths and weaknesses of each party’s position on the merits of the disputed matter. The parties shall each bear their respective costs incurred in connection with this procedure, except that they shall share equally the fees and expenses of the mediator and the costs of the facility for the Hearing. If mediation does not resolve the disputed matter, thereafter, the Contractor may pursue judicial resolution in a court of competent jurisdiction in King County, Washington.

1-04.5(5) LITIGATION

If the Contractor disagrees with the mediator’s decision rendered in accordance with Section 1-04.5(4), the Contractor may serve and file a lawsuit in the Superior Court of King County, Washington. Such lawsuit shall be filed within 180 days of the Completion Date. This requirement cannot be waived except by an explicit waiver signed by the Owner. The failure to file a lawsuit within the 180 day period shall result in the mediator’s decision rendered in accordance with Section 1-04.5(4) being final and binding on the Contractor and all its Subcontractors.

Claims between the Owner and the Contractor, Contractor and its Subcontractors, Contractor and Engineer shall, upon demand by the Owner, be submitted in a single forum or the Owner may consolidate such Claims or join any of the above-named parties in the same forum.

1-04.5(6) AUDITS

All Claims filed against the Owner shall be subject to audit in accordance with Section 1-09.12 at any time following the filing of a Claim. In support of an audit the Contractor shall promptly, upon request, make available to the Owner all documents described in Section 1-04.5(3). Failure of the Contractor, or Subcontractor of any tier, to maintain or retain sufficient records to allow the Owner to verify all or a portion of the Claim or permit Owner access to the books and records the Contractor, or Subcontractor of any tier, shall constitute a waiver of the Claim and shall bar any recovery.

1-04.6 INCREASED OR DECREASED QUANTITIES

Payment to the Contractor will be made only for the actual quantities of work performed and accepted in conformance with the Contract Documents. When the accepted quantities of work vary from the original Bid quantities, payment will be at the Contract unit prices for accepted Work unless the total quantity of any Contract item, using the original Bid quantity, increases or decrease by more than 25 percent. In that case the part of the increase or decrease exceeding 25 percent will be adjusted as follows:
SECTION 1-04 SCOPE OF WORK PAGE 1 - 29

1. Increased Quantities: Either party to the Contract will be entitled to an equitable adjustment for that portion of the actual quantity in excess of 125 percent of the original Bid quantity. The price for increased quantities will be determined by agreement of the parties, or, where the parties cannot agree, the price will be determined by the Engineer based upon the actual costs to perform the work, including reasonable markup for overhead and profit.

2. Decreased Quantities: Either party to the Contract will be entitled to an equitable adjustment if the actual quantity of work is less than 75 percent of the original Bid quantity. The equitable adjustment in the case of decreased quantities shall be based upon any increase or decrease in costs solely to the variation of the estimated quantity. The total payment for any item will be limited to no more than 75 percent of the amount originally Bid for the item.

3. Adjustment Limits: The following limitations shall apply to the adjustment:
 a. The equipment rates shall be actual cost but shall not exceed the rates set forth in the AGC/WSDOT Equipment Rental Agreement in effect at the time the Change Order work is performed as referenced to in Section 1-09.6.
 b. No payment will be made for extended or unabsorbed home office overhead and field overhead expenses to the extent that there is an unbalanced allocation of such expenses among the Contract Bid items.
 c. No payment for consequential damages will be allowed because of any variance in quantities from those originally shown in the Contract Documents.

When ordered by the Engineer, the Contractor shall proceed with the work pending determination of the cost or time adjustments for the variation in quantities.

The Owner will not adjust for increases or decreases if the Owner has entered the amount for the item in the Bid Form only to provide a common basis for Bidders.

1-04.7 DIFFERING SITE CONDITIONS “CHANGED CONDITIONS”

The Contractor shall promptly, and before such conditions are disturbed, notify the Engineer in writing whenever the following conditions are encountered:

1. Pre-existing subsurface or latent physical conditions at the Project Site differing materially from those indicated in the Contract Documents.
2. Pre-existing unknown physical conditions at the Project Site of an unusual nature, differing materially from those ordinarily encountered and generally recognized as inherent in work of the character provided for in the Contract Documents.

Upon notification, the Engineer will promptly investigate the alleged changed condition. If the Engineer finds that conditions are materially different and cause a material increase or decrease in the Contractor's cost of, or the time required for, performance of all or any part of the Work under this Contract whether or not changed as a result of such conditions, the Engineer will make an equitable adjustment in the payment or the time required for the performance of the Work. Extensions of time will be evaluated in accordance with Section 1-08.8. The equitable adjustment will be by agreement with the Contractor. However, if the Engineer and Contractor are unable to agree, the Engineer will determine the amount of the equitable adjustment in accordance with Section 1-09.4.

If the Engineer determines that differing site conditions do not exist, the Contractor will be so notified in writing. Should the Contractor disagree with such determination, the Contractor may file a Written Notice of dispute with the Engineer pursuant to the requirements of Section 1-04.5. The Contractor shall proceed with the Work, unless ordered to suspend that portion of the Work involved, pending a decision as to the validity of any such claim for differing site conditions, or pending the execution of a Change Order, if a claim for differing site conditions is recognized by the Engineer.

No claim of differing site conditions by the Contractor will be allowed unless the Contractor has given the notice required in Section 1-04.5; provided, however, the time for giving notice will be extended by the Engineer for good cause shown. Time extensions will be evaluated pursuant to Section 1-08.8. The time for giving notice will not be extended beyond the time the Contractor knew, or should have known, of the existence of the differing site conditions. If there is a decrease in the cost or time required to perform the Work, failure of the Contractor to notify the Engineer of the differing site condition shall not affect the Engineer's right to make an adjustment in costs or time.
No claim by the Contractor for an equitable adjustment hereunder will be allowed:

1. Unless the Contractor has followed the claim procedures provided in Section 1-04.5.
2. If the claim is asserted after the Completion Date.

1-04.8 PROGRESS ESTIMATES AND PAYMENTS

Engineer-issued progress estimates or payments for any part of the work shall not be used as evidence of performance or quantities. Progress estimates serve only as basis for partial payments. The Engineer may revise progress estimates anytime before the Completion Date. If the Engineer deems it proper to do so, changes may be made in progress estimates and in the final estimate.

1-04.9 USE OF BUILDINGS OR STRUCTURES

The Engineer will decide whether any building or structure on the Right of Way may remain during the Work and whether the Contractor may use such a building or structure.

1-04.10 USE OF MATERIALS FOUND ON THE PROJECT SITE

With written approval of the Engineer, the Contractor may use on the Project Site:

1. Stone, gravel, sand, or other mineral aggregates obtained from on-site excavations.
2. Timbers removed in the course of the work.

Approval to use these materials will be granted provided the materials satisfy the requirements of the Contract Documents and are not required for other use by the Contract Documents or as selected materials.

The order of disposal for suitable materials obtained in the course of the Work shall be as follows unless the Engineer approves otherwise:

1. Used as selected material, pursuant to Section 2-03.3(10) unless such use, in the opinion of the Engineer, is not in the best interest of the Owner. The Engineer's decision shall be final as provided for in Section 1-05.1.
2. Delivered to the Engineer as salvage pursuant to Section 2-02.3(7).
3. Wasted and disposed of in accordance with Section 2-01.2.

1-04.11 FINAL CLEANUP

The Contractor shall perform final cleanup as provided in this Section to the Engineer's satisfaction. All costs associated with cleanup as specified in this Section shall be incidental to the various Bid items. The Engineer will not establish the Physical Completion Date until this is done. The street Right of Way, material sites, quarry or pit sites, borrow and waste sites, and all other areas the Contractor occupied to do the Work shall be left neat and presentable. From time to time or as may be ordered by the Engineer and immediately after completion of the Work, the Contractor shall clean up and remove all refuse and unused materials of any kind resulting from the Work. Upon failure to do so within 24 hours after request by the Engineer, the Work may be done by the Owner and the cost thereof charged to the Contractor and deducted from the Contractor's final estimate.

The Contractor shall:

1. Remove all rubbish, surplus materials, discarded materials, falsework, piling, camp buildings, temporary structures, equipment, and debris.
2. Deposit in embankments, or remove from the Project, all unneeded, oversized rock left from grading, surfacing, or paving.
3. Not remove warning, regulatory, or guide signs unless the Engineer approves.
4. On all concrete and asphalt pavement work, flush the pavement clean and remove the debris.
5. Structure decks shall be swept and flushed.
6. Clean out all open Culverts and drains, inlets, catch basins, manholes and Water Main valve chambers, within the limits of the Project, of dirt and debris of any kind which is the result of the Contractor's operations.
7. Level and fine grade all excavated material not used for backfill.
8. Fine grade all slopes and around all Structure piers, bents, and abutments.
9. Final cleanup of waste and disposal sites (Section 2-01.2) shall be in accordance with the requirements specified in the Grading Ordinance, permits, property agreements, and the Contract Documents. Upon completion of grading and cleanup operations at any privately-owned site for which a written agreement between the Contractor and property owner is required, the Contractor shall obtain and furnish to the Engineer a release from all damages, duly executed by the property owner, stating that the restoration of the property has been satisfactorily accomplished. Retainage withheld from the Contractor's payments will not be released until all such property owner releases have been furnished to the Engineer. Should the Owner believe a release is being arbitrarily withheld, the Owner may, at its sole discretion, accept that portion of the Work involved and cause final payment to be made.

10. Insulating gravel in substations and switchyards shall be left uncontaminated, graded smooth, be a minimum 6 inch depth total thickness or match existing gravel depth thickness whichever is greater, and place an equal to or better than weed control mat acceptable to the Engineer with 2 foot minimum overlaps at the same depth of the existing weed mat.

1-04.12 RESERVED

SECTION 1-05 CONTROL OF WORK

1-05.1 AUTHORITY OF ENGINEER

The Engineer shall be satisfied that all work is being done in accordance with the requirements of the Contract Documents. The Contract Documents give the Engineer authority over the Work. Whenever it is so provided in this Contract, the decision of the Engineer shall be final: provided, however, that if an action is brought within the time allowed in this Contract challenging the Engineer’s decision, that decision shall be subject to the scope of judicial review provided in such cases under Washington case law (see Section 1-04.5).

The Engineer's decisions will be final on all questions including, but not limited to the following:

1. Quality and acceptability of Materials and Work;
2. Measurement of unit price work;
3. Acceptability of rates of progress on the Work;
4. Interpretation of the Contract Documents;
5. Determination as to the existence of differing site conditions;
6. Fulfillment of the Contract by the Contractor;
7. Payments under the Contract including equitable adjustments;
8. Suspension of the Work;
9. Determination as to Unworkable Days;
10. Approvals of Shop Drawings; and
11. Determination of Notice to Proceed Date, Substantial Completion Date, and Physical Completion Date Contract milestone dates defined in Section 1-01.3.

If the Contractor fails to respond promptly to the requirements of the Contract or orders from the Engineer:

1. The Engineer, per Section 1-05.8, may use the Engineer's forces, other contractors, or other means to accomplish the Work; and
2. The Owner, per Section 1-09.9(3), will not be obligated to pay the Contractor, and will deduct from the Contractor's payments any costs that result when any other means must be used to carry out the Contract requirements or Engineer’s orders.

At the Contractor's risk, the Engineer may suspend, per Section 1-08.6, all or part of the Work, if:

1. The Contractor fails to fulfill Contract terms, to carry out the Engineer's orders, or to correct unsafe conditions of any nature;
2. The weather or other conditions are unsuitable; or
3. It is in the public interest.
Nothing in the Contract Documents requires the Engineer to provide the Contractor with direction or advice on how to do the Work. If the Engineer approves or recommends any method or manner for doing the Work or producing Materials, the approval or recommendation shall not:

1. Guarantee that following the method or manner will result in compliance with the Contract;
2. Relieve the Contractor of any risks or obligations under the Contract; or
3. Create any liability for the Owner.

1-05.2 AUTHORITY OF ASSISTANTS AND ELECTRICAL SAFETY OBSERVER

1-05.2(1) AUTHORITY OF ASSISTANTS

The Engineer may appoint Assistants to assist in determining if work performed and Materials furnished comply with the Contract Documents. Assistants have the authority to reject defective material and suspend work that is being done improperly, subject to the final decision of the Engineer. Assistants may exercise such additional authority as may be delegated to them by the Engineer. An Assistant is not authorized to approve or accept any Work or materials, or to issue instructions or advice, contrary to the provisions of the Contract Documents.

Work performed or materials furnished which at any time is found not to conform to the Contract Documents shall be at the Contractor's risk and shall not be a basis for a claim, even though an Assistant purports to change the Contract Documents to provide for such work or material, to approve or accept such work or material, or issue any instructions contrary to the Contract Documents.

Although Assistants may advise the Contractor of any faulty work or materials or infringements of the terms of the Contract Documents, failure of the Engineer or Assistant to do so shall not constitute acceptance or approval.

1-05.2(2) AUTHORITY OF ELECTRICAL SAFETY OBSERVER

The Engineer will assign an Electrical Safety Observer when work is performed in a substation; switchyard; in an energized vault; other locations containing high voltage lines or equipment; when installing ducts and vaults in the vicinity of energized underground electrical transmission or distribution system, or within 2 feet of an energized electrical transmission or distribution system as indicated by "marked for locate" per Section 1-07.17(1), or as otherwise deemed necessary by the Engineer.

The only exception shall be when the Contract Documents specifies, and contains a Bid item, that the Contractor provides a qualified Electrical Safety Observer.

When the Work includes a substation, or a switchyard, or an energized vault, or work within 2 feet of an underground energized electrical distribution or transmission system, the Contractor shall provide a minimum 7 Working Days advance notice request for an Electrical Safety Observer. See Section 1-07.28 for notification requirements. The Contractor shall provide an adequate description of the work to be performed, equipment to be used, and the work duration. When the Contractor, or its Subcontractor, does not schedule work on a specific day or days, the Contractor shall provide 1 Working Day advance notice unless arranged otherwise with the Electrical Safety Observer. Failure to inform the Electrical Safety Observer, at least 1 Working Day in advance of a change in the Contractor's schedule where an Electrical Safety Observer is not required, will result in the Owner backcharging the Contractor for the Electrical Safety Observer's services at the site.

The Electrical Safety Observer's involvement with site safety shall be limited to electrical safety, unless the Contract Documents indicate otherwise. The Electrical Safety Observer will notify the Contractor of electrical hazards and may instruct, warn, and if necessary, direct Contractor and Subcontractor personnel to move a safe distance from electrical system components. In addition to all other rights of the Owner and Engineer, the Electrical Safety Observer shall have the authority, but not the duty, to stop work if the Electrical Safety Observer judges that there is any hazard that immediately imperils life, health, or property.

The Contractor shall have sole responsibility for safety pursuant to the Contract Documents. The presence or absence of an Electrical Safety Observer shall not alter the Contractor's responsibility for the occupational health and safety of individuals on the Project Site and shall not relieve the Contractor of any of its legal obligations for worker safety.
The Contractor shall designate a Contractor's On-Site-Lead and shall ensure that each Subcontractor designates a Subcontractor's On-Site-Lead when work requires an Electrical Safety Observer. The On-Site-Lead shall be authorized to resolve safety-related issues raised by the Engineer, Assistant, or Electrical Safety Observer. The Contractor shall ensure that such On-Site-Lead is physically present at the work requiring an Electrical Safety Observer. Each On-Site-Lead, whether Contractor's or Subcontractor's, shall identify himself or herself to the Electrical Safety Observer at the briefing/tailgate conference.

At the briefing/tailgate conference on each day when an Electrical Safety Observer is required, the Contractor shall notify the Electrical Safety Observer of the work to be performed requiring an Electrical Safety Observer. Each On-Site-Lead, or Contractor's or Subcontractor's onsite supervisory representative, shall complete and sign the Safety Watch Checklist and Certification of Training form provided by the Electrical Safety Observer before work begins for which an Electrical Safety Observer is required.

1-05.3 DRAWINGS

1-05.3(1) SUPPLEMENTAL DRAWINGS

The Contract Documents include Drawings that show such details as are necessary to give a comprehensive understanding of the Work. The Engineer may supplement the original Drawings with additional drawings to further detail and illustrate the Work. The Contractor shall perform the Work according to these Supplemental Drawings and explanations.

1-05.3(2) SHOP DRAWINGS

1-05.3(2)A GENERAL

In addition to Supplemental Drawings furnished by the Engineer, the Contract Documents may also require the work to be supplemented by Shop Drawings prepared by the Contractor, a Subcontractor, Material Supplier, or manufacturer when necessary to detail and illustrate portions of the Work.

The Bid prices shall include all costs for furnishing Shop Drawings and submittals.

Additional requirements regarding Shop Drawings, other submittals, and Operating and Maintenance Manuals may be included elsewhere in the Contract Documents.

1-05.3(2)B SUBMITTAL CONTROL DOCUMENTS

The Contractor shall prepare and submit to the Engineer, within 14 days after receipt of Notice to Proceed, a Submittal Control Document in duplicate, listing all items for which Shop Drawings will be submitted. On major projects of 200 Working Days or more, the Contractor will be allowed 30 days after receipt of Notice to Proceed, to submit a Submittal Control Document. The Submittal Control Document shall be organized by specification section number and shall include the following information for all listed items:

1. Bid item(s) which the Shop Drawing represents.
2. Contractor Shop Drawing identification number.
3. Identification of those items which are "or equal" substitutions.
4. Scheduled submittal date.
5. Date when the Material is needed.

The Submittal Control Document shall be coordinated with the preliminary critical path schedule reviewed and accepted at the preconstruction conference (see Section 1-08.1(2)). The Contractor shall allow 10 Working Days for the Engineer's review. If rejected by the Engineer, the Contractor shall resubmit the document, allowing an additional ten (10) Working Days for each review required until accepted by the Engineer. The data in the Submittal Control Document shall not relieve the Contractor of the obligation to comply with the Specification requirements regarding Contract Time. The Contractor shall review the Submittal Control Document at least every thirty (30) days, update or correct the Submittal Control Document as necessary, and resubmit the updated or corrected document to the Engineer along with any revised critical path schedule, when required, within this thirty (30) day period.
1-05.3(2)C SIZE AND LAYOUT

Shop Drawings may be on 24 x 36-inch sheets or, if adequate, on small sheets, size 8-1/2 x 11, 8-1/2 x 14, or 11 x 17 inches.

For Shop Drawings, size 8-1/2 x 11, 8-1/2 x 14, or 11 x 17 inches, the Contractor shall submit eight copies that are sufficiently legible to make photocopies. For Shop Drawings that are 24 x 36 inches in size, the Contractor shall submit one reproducible original and eight copies. The reproducible original shall be Mylar. Other types of reproducibles will be accepted provided they are on clear and permanent type material (e.g., reprographic Mylar base film). All copies shall be suitable for microfilming.

Each Shop Drawing shall have a clear space for the Engineer's review stamp and comments (preferably in the lower, right-hand corner of the drawing). Two copies will be returned to the Contractor after review.

1-05.3(2)D SUBMITTAL

Before submittal of Shop Drawings, the Contractor shall have determined and verified all quantities, dimensions, specified performance criteria, installation requirements, materials, catalog numbers and similar data and reviewed or coordinated each Shop Drawing with other Shop Drawings and with the requirements of the Contract Documents.

The Contractor shall submit Shop Drawings sufficiently in advance of the actual need to permit the Engineer and other involved reviewing agencies, if applicable, to review them and shall allow sufficient time for revisions, and resubmittal.

Shop Drawings shall be submitted for all items required by the Specifications, all substitutions and items submitted as "or equal", and any item of work which does not conform to the Contract Documents.

When Shop Drawings are required for a series of similar items listed in the Bid Form, separate Shop Drawings shall be submitted for each individual Bid item. Shop Drawings will not be accepted if two or more Bid items are combined on one sketch except for illumination, electrical equipment, signals, poles and related items for which two or more Bid items may be accepted in one submittal form, provided they satisfy other submittal requirements stated elsewhere in this Section. Shop Drawings need not be submitted for items that are as shown in the Standard Plans. However, the Contractor shall submit a list of all Bid items where the use of Standard Plan items is intended.

The Contractor shall coordinate assembly of all Shop Drawings for submittal, including those prepared by Subcontractors, Suppliers, and manufacturer. Shop Drawings shall be numbered consecutively and shall show the Contractor identification number, Project name, Bid item or intended use, Engineer's Drawing number, detail number, Project location, material standard reference, Contractor's name and address, and any other information needed for the Engineer's review. The Contractor shall examine and approve all Shop Drawings for accuracy, completeness and compliance with Contract requirements before submittal to the Engineer. The Contractor shall sign a "Shop Drawing Review Form" for each shop drawing package, thereby accepting responsibility for the correctness and completeness of the Shop Drawings.

A copy of the Shop Drawing Review Form is included in the Appendix of the Project Manual. One Shop Drawing Review Form shall be filled out by the Contractor for each Shop Drawing submittal package. A Shop Drawing Review Form is not necessary for each Shop Drawing submitted.

Blanket review of catalogs or groups of items which lack reference to specific Bid items will not be made.

Copies of the Contract Drawings or Standard Plans will not be accepted in lieu of Contractor prepared Shop Drawings.

At the time of submittal, the Contractor shall give the Engineer specific Written Notice of each variation that the Shop Drawings may have from the requirements of the Contract Documents, and, in addition, shall highlight with a specific notation each such variation on each Shop Drawing submitted to the Engineer for review and approval. Shop Drawings submitted to the Engineer for review which are determined by the Engineer to be carelessly prepared, erroneous, incomplete, illegible, or lacking the Contractor's approval, will be returned to the Contractor for correction, re-checking, and resubmittal.

1-05.3(2)E REVIEW

The Engineer's Shop Drawing review is only for conformance with the general design concept of the Project and for compliance with the information given in the Contract Documents. The review shall not extend to
consideration of structural integrity, detailed compliance with Contract requirements or any other obligation of the Contractor including means, methods, techniques, sequences or procedures of construction (except where a specific means, method, techniques, sequence, or procedure of construction is indicated in or required by the Contract Documents) or to safety precautions or programs incident thereto. The review of a separate item as such will not indicate approval of the assembly in which the item functions. The Contractor is responsible for confirming and correlating all dimensions; fabricating and construction techniques; coordinating the Contractor’s work with that of all other trades; and the satisfactory performance of the entire Work in strict accordance with Contract Documents. The review is undertaken solely to satisfy Engineer's obligations and does not relieve the Contractor from the Contractor's obligation to perform all Contract requirements, nor shall such review give rise to any right of action or suit in favor of Contractor or third persons against the Owner.

The Contractor shall allow ten (10) Working Days, or other time frame where specified otherwise in the Contract (from receipt of Shop Drawings by the Engineer) for Engineer's review and return of comments. The Contractor shall make any corrections required by the Engineer, and shall resubmit the Shop Drawings for the Engineer's review; the number of resubmittal copies shall be as specified in Section 1-05.3(2)C. The Contractor shall direct specific attention in writing to revisions other than the corrections called for by the Engineer on previous submittals. If rejected by the Engineer, the Contractor shall re-submit the rejected Shop Drawing allowing additional 10 Working Days for each review required until no exception is taken by the Engineer.

Engineer's review of Shop Drawings shall not relieve Contractor from responsibility for any variation from the requirements of the Contract Documents unless the Contractor has in writing called the Engineer's attention to each such variation at the time of submission, and the Engineer has given written approval of each such variation by a specific written notation thereof incorporated in or accompanying the returned Shop Drawing; nor will any review by Engineer relieve Contractor from responsibility for errors or omissions in the Shop Drawings or from responsibility for having complied with the provisions of this Specification Section.

The following listed Specification Sections of the City of Seattle Standard Specifications for Road, Bridge, and Municipal Construction contain additional Shop Drawing requirements which may or may not be applicable to a specific Project.

DIVISION 1 GENERAL REQUIREMENTS

1-10.2(5)A Traffic Control Plans

DIVISION 2 EARTHWORK

2-09.3(3)D Shoring and Cofferdams.

DIVISION 6 STRUCTURES

6-01.9 Structures, General Requirements
6-02.3(13)A General Expansion Joints
6-02.3(16) Plans for Falsework and Forms.
6-02.3(17) Falsework and Forms
6-02.3(25) Prestressed Concrete Girders
6-02.3(26) Caste in Place Prestressed Concrete
6-02.3(28) Prestressed Concrete Panels
6-02.3(29) Downspouts
6-02.3(34)A Removal of Concrete (Structures)
6-03.3(7)A Shop Drawings (Steel Fabricating)
6-03.3(7)B Erection Methods (Steel Structures)
6-03.3(25) Welding and Repair of Welding
6-03.3(32) Assembling and Bolting (Steel Structures)
6-04.3(3) Shop Details (Treated Lumber)
6-05.3(8) Pile Tips and Shoes
6-06.3(2) Metal Railings
6-11.1(1) Precast Concrete Retaining Wall Systems
DIVISION 7 STORM DRAIN, CULVERTS, SANITARY AND COMBINED SEWERS, WATER MAINS AND RELATED STRUCTURES

7-02.3(1)A General (Placing Culvert Pipe)
7-03.3(6) Alternate Installation (Structural Plate Pipe, Etc.)
7-05.2 Material (MH, CB, and Inlets)
7-05.3(1)K Joints
7-05.3(1)L Shop Fabricated Corrugated Metal Manholes
7-17.3(1)A1 General (Trench Excavation)
7-17.3(2)J Jacking, Augering, or Tunneling

DIVISION 8 MISCELLANEOUS CONSTRUCTION

8-03.3(12) As-built Drawings and System Orientation
8-11.3(1)E Plans (Chain Link and Wire Fence)
8-31.1(4)A Shop Drawings (Traffic Signal items)
8-32.1(3) Shop Drawings (Poles, Pedestals, and Foundation items)
8-32.3(1)D Fiberglass Lighting Poles
8-33.1(3) Shop Drawings (Conduit and Trenching items)

DIVISION 9 MATERIALS

9-15.3 Automatic Controllers (Irrigation)
9-30.3(12)G Cast-in-place Concrete Valve Chamber

If a Shop Drawing is required by the Specifications, any related Work performed by the Contractor prior to completion of the Engineer's review will be at the Contractor's risk and expense.

1-05.3(2)F SUBMITTAL PREPARED BY PROFESSIONAL ENGINEER

Where the Contract requires a submittal prepared by a registered Professional Engineer, the drawings and design calculations shall be prepared by (or under the direct supervision of) a Professional Engineer, licensed under Title 18 RCW, State of Washington, in the branch of Civil or Structural Engineering. Each sheet of the drawings shall carry the following:

1. Professional Engineer's original signature, date of signature, original seal (photocopies not accepted), registration number, and date of expiration.
2. The initials and dates of all participating design professionals.
3. Clear notations of all revisions including identification of who authorized the revision, who made the revision, and the date of the revision.
4. The Contract number, Contract title, and sequential sheet number. These shall also be on all related documents.
5. Identify where each drawing sheet will be utilized by referencing the Contract Drawing sheet number and related item or detail.

Design calculations shall carry on the cover page, the Professional Engineer's original signature, date of signature, original seal (photo copies not accepted), registration number, and date of expiration. The cover page shall include the Contract number, Contract title, and sequential index to calculation page numbers.

A State of Washington Professional Engineer, licensed under Title 18 RCW, State of Washington, in the branch of Civil or Structural Engineering may be retained to check, review, and certify drawings and calculations of an individual who is licensed in another state and when such work was not prepared under the "direct supervision" of the Washington State Professional Engineer, provided that the following conditions are satisfied:

1. That the work being reviewed was legally prepared by an individual holding valid registration in another state as a civil or structural engineer.
2. The Washington State Professional Engineer conducts independent calculations and reviews all technical matters contained within the subject work, drawings, Contract Drawings, specifications, legal requirements, technical standards, other related documents; and has verified that the design meets all applicable specifications and is in agreement with the specific site conditions and geometry.
3. All drawing sheets shall carry the Washington State Professional Engineer’s original signature, date of signature, original seal (photo copies not accepted), registration number, and date of expiration.

4. Two copies of the Washington State Professional Engineer’s independent calculations shall be submitted to the Engineer for review along with the drawings. The independent calculations shall carry on the cover page the Washington State Professional Engineer’s original signature, date of signature, original seal (photo copies not accepted), registration number, and date of expiration. The cover page shall include the following: the Contract number, Contract title, and sequential index to calculation page numbers.

5. The Washington State Professional Engineer shall keep, a signed and sealed copy of the drawings, independent calculations, specifications, and other related documentation that represents the extent of the review.

1-05.3(3) RESERVED

1-05.3(4) AS BUILT RECORDS

Where Contractor provided as-built documents are required in the Contract Documents, the Contractor shall keep at the Project Site a set of Contract Documents, or Shop Drawings where indicated, accurately marked with all changes or deviations from the original Contract Documents, or approved Shop Drawings. This as-built record shall be kept up-to-date on a daily basis as the Work requiring as-built records progresses. Failure to keep the required as-built record set up-to-date shall, at the discretion of the Engineer, be reason to withhold payment until missing information is recorded.

Prior to the Physical Completion Date, the Contractor shall forward to the Engineer for approval, an as-built record set of drawings and other Contract Documents showing all as-built information where required. These as-built documents shall be clean and easily readable and shall become the official as-built record set for the Work.

City of Seattle Standard Specifications for Road, Bridge, and Municipal Construction specification Sections with Contractor provided as-built requirements are as follows:

6-03.2 Materials for Steel Structures
6-03.3(7)A Shop Drawings for Steel Structures
8-03.3(12) Irrigation System
8-31.3(5)C Detector Loop Inductance Testing at the Handhole
8-31.3(5)E Detector Loop Inductance Testing at the Control Cabinet
8-31.3(16) Turn-on/Cut-over Procedure
8-31.3(17) Final Inspection – Wiring
8-33.3(2)A Conduit Installation in Concrete Structures.

1-05.4 CONFORMITY WITH AND DEVIATIONS FROM PLANS AND STAKES

Work performed shall be in conformity with the lines, grades, cross sections, data, and dimensions indicated on the Drawings or staked by the Engineer. These stakes and marks will govern the Contractor’s Work. The Contractor shall take full responsibility for detailed dimensions, elevations, and slopes measured from them.

Where specific tolerances are stated in the Contract Documents, the Work shall be performed within those stated limits. The Engineer will determine if the Work is in reasonable conformity with the lines, grades, cross sections, and dimensions given. The Engineer’s decision on whether the Work is in conformity shall be final, as provided in Section 1-05.1.

Prior to undertaking each part of the Work, the Contractor shall carefully study and compare the Contract Documents to existing field conditions by checking and verifying pertinent figures shown in the Contract Documents, and checking and verifying all applicable field measurements. The Contractor shall promptly provide Written Notice to the Engineer any conflict, error or discrepancy that the Contractor may discover.

The Contractor shall not deviate from the requirements in the Contract Documents except when authorized to do so, in writing, by the Engineer.
1-05.5 CONSTRUCTION STAKES

1-05.5(1) GENERAL

The Engineer will provide construction stakes and marks establishing lines, slopes, and grades as stipulated in Sections 1-05.5(1) and 1-05.5(2). The Contractor shall assume full responsibility for detailed dimensions, elevations, and excavation slopes measured from these Engineer furnished stakes and marks.

When the Contractor trims the Subgrade with an automatic machine guided by reference lines, the Engineer will set control stakes for line and grade only once after grading is completed. To gain better control with unusual pavement widths or for other reasons, the Engineer may set more control stakes without added cost to the Contractor. The Contractor shall set reference lines from these control stakes for trimming Subgrade, for surfacing, and for controlling the paving machine.

The Contractor shall provide a work site that has been prepared to permit construction staking to proceed in a safe and orderly manner. The Contractor shall keep the Engineer informed of staking requirements and provide at least 48-hours notice to allow the Engineer adequate time for setting stakes.

Stakes, marks, and other reference points, including existing monumentation, set by the Engineer shall be carefully preserved by the Contractor. The Contractor will be charged for the costs of replacing stakes, markers and monumentation that were not to be disturbed but were destroyed or damaged by the Contractor’s operations. This charge will be deducted from moneys due or to become due to the Contractor.

Any claim by the Contractor for extra compensation by reason of alterations or reconstruction work allegedly due to error in the Engineer’s line and grade, will not be allowed unless the original control points set by the Engineer still exist, or unless other satisfactory substantiating evidence to prove the error is furnished the Engineer. Three consecutive points set on line or grade shall be the minimum points used to determine any variation from a straight line or grade. Upon discovery, any such variation shall be reported to the Engineer. In the absence of such report the Contractor shall be liable for any error in alignment or grade.

The Contractor shall provide all surveys required other than those to be performed by the Engineer. The Contractor’s surveyor shall be a licensed surveyor or licensed engineer in the State of Washington. The Contractor shall keep updated survey field notes in a standard field book and in a format set by the Engineer. These field notes shall include all survey work performed by the Contractor’s surveyor in establishing line, grade and slopes for the construction work. Copies of these field notes shall be provided the Engineer upon request and, upon physical completion of the Contract Work, the field books shall be submitted to the Engineer and become the property of the Engineer.

If the survey work provided by the Contractor does not meet the standards of the Engineer, the Contractor shall, upon the Engineer’s written request, remove the individual or individuals doing the survey work. Thereafter the survey work will be completed by the Engineer at the Contractor’s expense. Costs for completing the survey work required by the Engineer will be deducted from moneys due or to become due the Contractor.

All costs for survey work required to be performed by the Contractor shall be included in the prices Bid for the various items that comprise the improvement.

1-05.5(2) ROADWAY AND UTILITY SURVEYS

The Engineer shall furnish to the Contractor one (1) time only principal lines, grades, and measurements the Engineer deems necessary for physical completion of the Work. These shall generally consist of one initial set of:

1. Slope stakes for establishing grading.
2. Curb grade stakes.
3. Centerline finish grade stakes for pavement sections wider than 25-feet.
4. Offset points to establish line and grade for underground utilities such as water, sewers, and Storm Drains.

On alley construction projects with minor grade changes, the Engineer shall provide offset hubs on one side of the alley to establish the alignment and grade. Alleys with major grade changes shall be slope staked to establish grade before offset hubs are set.
1-05.5(3) BRIDGE AND STRUCTURE SURVEYS

For all structural work such as bridges and retaining walls, the Contractor shall retain as a part of the Contractor’s organization, an experienced team of surveyors under direct supervision of a licensed surveyor. The Contractor shall ensure that required field measurements and locations, match and fulfill the intended plan dimensions. The Contractor shall provide all surveys required to complete the Structure, except the following primary survey control that will be provided by the Engineer:

1. Centerline or offsets to centerline of the Structure.
2. Stations of abutments and pier centerline.
3. A sufficient number of bench marks for levels to enable the Contractor to set grades at reasonably short distances.
4. Monuments and control points as shown on the Drawings.

The Contractor shall establish all secondary survey controls, both horizontal and vertical, as necessary to assure proper placement of all Project elements based on the primary control points provided by the Engineer. Survey work shall be within the following tolerances:

1. Stationing ±0.01 foot
2. Alignment ±0.01 foot (between successive points)
3. Elevations:
 a. Superstructure ±0.01 foot (from plan elevations)
 b. Substructure ±0.05 foot (from plan elevations)

During the progress of the Work, the Contractor shall make available to the Engineer all field books including survey information, footing elevations, cross sections and quantities.

The Contractor shall be fully responsible for the close coordination of field locations and measurements with appropriate dimensions of structural members being fabricated.

1-05.6 INSPECTION OF WORK AND MATERIALS

Work performed and Materials furnished will be subject to inspection by the Engineer. The Contractor shall give the Engineer notice when work and Materials are ready for inspection, tests, or approvals. The Contractor shall provide such facilities as are deemed necessary by the Engineer for sufficient and safe access to the Work. Such facilities shall include, but not be limited to, walkways, railings, ladders, platforms, shoring, safety harnesses, safety lines, and safety nets.

Upon request, the Contractor shall furnish, without charge, samples of Materials used, or to be used in the Work, for inspection and testing, to ensure conformance with the Contract Documents. If Materials are tested and approved for the Work, then used for purposes not connected with the Work, the cost of testing and inspection will be deducted from monthly progress payments to the Contractor. Materials used without inspection may be ordered removed and replaced, and the cost of the Material, including the work associated with the removal and replacement of the Material, shall be at the Contractor’s expense.

Inspections, tests, measurements and other actions taken by the Engineer are for the sole purpose of assisting the Engineer to methodically assess, with reasonable assurance, whether or not work, Materials, rate of progress, and quantities, comply with the Contract Documents. These actions by the Engineer shall not relieve the Contractor from determining independently that full compliance with the Contract Documents is met at all times, or relieve the Contractor from full responsibility for the Work.

Upon request, the Contractor shall remove or uncover any portions of completed Work for inspection by the Engineer. After inspection, the Contractor shall restore them to the standards required by the Contract Documents. The costs associated with uncovering, removing, testing, and restoring exposed work, including compensating the Engineer for any additional professional services required, shall be borne by the Contractor, if:

1. The exposed Work proves to be unacceptable.
2. The exposed Work was placed without authority or due notice to the Engineer.

If the exposed Work proves to be acceptable and the Contractor had performed the original Work with the authority of and due notice to the Engineer, payment will be made as extra work for all costs associated with the uncovering, removing, and restoration and the Contract Time will be adjusted.
Where work is required to be performed on any facility of a public agency, railroad, or utility, or to the satisfaction of any federal, state, county, or municipal agency, their representatives shall be permitted to inspect the work when the Contractor is advised by the Engineer to permit them to do so. The Contractor agrees that such inspection shall not make such representatives a party to the Contract, nor shall it constitute an interference with the rights of the Owner or the Contractor.

1-05.7 DEFECTIVE AND UNAUTHORIZED WORK

The Engineer will not pay for unauthorized or defective work. Work and Materials that do not conform to the requirements of the Contract Documents, work done beyond lines and grades shown in the Drawings or established by the Engineer, or extra work and Materials furnished without written approval of the Engineer will be considered defective and unauthorized work. Such work shall be at the Contractor’s risk and expense and will be rejected, even if the work has been inspected, or progress payments made. Upon order of the Engineer, such Work shall immediately be remedied, removed, replaced, or disposed of, at the Contractor's expense.

Failure on the part of the Engineer or an Assistant to reject or condemn defective and unauthorized work shall not release the Contractor from the Contractor’s contractual obligations, be construed to mean acceptance of such work or Materials by the Owner or, after the Completion Date, bar the Owner from recovering damages or obtaining such other remedies as may be permitted by law.

No adjustment in the Contract Time or compensation will be allowed because of delays in the performance of the Work as a result of correcting defective work.

1-05.8 ENGINEER’S RIGHT TO CORRECT DEFECTIVE OR UNAUTHORIZED WORK

If the Contractor fails to remedy defective or unauthorized work within the time specified in a Written Notice from the Engineer, or fails to perform any part of the Work required by the Contract Documents, the Engineer may correct and remedy such work, as may be identified in the Written Notice, by such means as the Engineer may deem necessary, including the use of Engineer forces.

If the Contractor fails to comply with a written order to remedy what the Engineer determines to be an emergency situation, the Engineer may have the defective and unauthorized Work corrected immediately, have the rejected Work removed and replaced, or have Work the Contractor refuses to perform completed by using in-house or other forces. An emergency situation is any situation that, in the opinion of the Engineer, a delay in its remedy could be potentially unsafe, or might cause serious risk of loss or damage to the public.

Direct or indirect costs incurred by the Engineer attributable to correcting and remediing defective or unauthorized Work, or Work the Contractor failed or refused to perform, shall be paid by the Contractor. Payment will be deducted by the Engineer from moneys due, or to become due, the Contractor. Such direct and indirect costs shall include in particular, but without limitation, compensation for additional professional services required, and costs for repair and replacement of work of others destroyed or damaged by correction, removal, or replacement of the Contractor’s unauthorized Work.

No adjustment in Contract Time or compensation will be allowed because of the delay in the performance of the Work attributable to Owner’s exercise of the right provided by this section nor shall the exercise of this right diminish the Engineer’s right to pursue any other avenue for additional remedy or damages with respect to the Contractor’s failure to perform the Work as required.

1-05.9 EQUIPMENT

At the Engineer's request, the Contractor shall provide an operating and maintenance manual for each model or type of mixing, placing, or processing Equipment before using it in the work. The Contractor shall also provide test instruments to confirm whether the Equipment meets operating requirements, such as vibration rate, revolutions-per-minute, or any other requirements.

The Contract may require automatically controlled Equipment for some operations. If the automatic controls on such Equipment fail, the Contractor may operate the Equipment manually for the remainder to that normal Working Day, provided the method of operation produces results otherwise meeting the specifications. Continued operation of the Equipment manually beyond this Working Day will be permitted only by specific authorization of the Engineer.
The Engineer will reject Equipment that repeatedly breaks down or fails to produce results within the required tolerances. The Contractor shall promptly replace rejected Equipment. Rejection and replacement of Equipment shall give the Contractor no right to more pay or time.

1-05.10 GUARANTEES

1-05.10(1) GENERAL GUARANTY AND WARRANTY

The Contractor shall furnish to the Engineer any guaranty or warranty furnished as a normal trade practice in connection with the purchase (by the Contractor or a Subcontractor) of any equipment, Materials, or items incorporated in the Work.

If within one year after the Physical Completion Date, defective and unauthorized Work is discovered, the Contractor shall promptly, upon written order of the Engineer, return and in accordance with the Engineer’s instructions, either correct such Work, or if such Work has been rejected by the Engineer, remove it from the Project Site and replace it with non-defective and authorized Work, all without cost to the Owner. If the Contractor does not promptly comply with the written order to correct defective and unauthorized Work, or if an emergency exists, the Engineer reserves the right to have defective and unauthorized Work corrected or removed and replaced as provided by Section 1-05.8.

The Contractor agrees the above one year limitation shall not exclude or diminish the Owner’s rights under any law to obtain damages and recover costs resulting from defective and unauthorized work discovered after one year but prior to the expiration of the legal time period set forth in RCW 4.16.040 limiting actions upon a contract in writing, or liability expressed or implied arising out of a written agreement.

1-05.10(2) WARRANTY OF TITLE

The Contractor shall warrant good title to all Materials, Supplies, and equipment purchased for, or incorporated in the Work. Nothing contained in this paragraph, however, shall defeat or impair the right of persons furnishing materials or labor, to recover under any bond given by the Contractor for their protection, or any rights under any law permitting such persons to look to funds due the Contractor in the hands of the Owner.

The provisions of this paragraph shall be inserted in all subcontracts and material contracts, and notice of its provisions shall be given to all persons furnishing Materials for the Work when no formal contract is entered into for such Materials.

1-05.11 FINAL INSPECTION

1-05.11(1) SUBSTANTIAL COMPLETION DATE

When the Contractor considers the Work to be substantially complete, the Contractor shall so notify the Engineer and request the Engineer establish the Substantial Completion Date. To be considered substantially complete the following conditions must be met:

1. The Owner must have full and unrestricted use and benefit of the facilities, both from an operational and safety standpoint; and
2. Only minor incidental work, replacement of temporary substitute facilities, or corrective or repair work remains to reach physical completion of the Work.

The Contractor's request shall list the specific items of work in subparagraph two immediately above that remain to be completed in order to reach physical completion. The Engineer will schedule an inspection of the Work with the Contractor to determine the status of completion.

If, after inspection, the Engineer concurs with the Contractor that the Work is substantially complete, the Engineer will, by Written Notice to the Contractor, set the Substantial Completion Date. If, after this inspection, the Engineer does not consider the Work substantially complete, the Engineer will, by Written Notice, so notify the Contractor giving the reasons therefor.

Upon receipt of Written Notice concurring in or denying Substantial Completion, whichever is applicable, the Contractor shall pursue vigorously, diligently and without unauthorized interruption, the work necessary to reach substantial and physical completion. The Contractor shall provide the Engineer with a revised critical path schedule indicating when the Contractor expects to reach substantial and physical completion of the Work.
The above process shall be repeated until the Engineer establishes the Substantial Completion Date.
The Engineer may also establish the Substantial Completion Date unilaterally.

1-05.11(2) FINAL INSPECTION AND PHYSICAL COMPLETION DATE

The Engineer will not make the final inspection until the physical work required by the Contract has been completed. This work shall include final cleanup (see Section 1-04.11), providing the Engineer with required as-buils (see Section 1-05.3(4)), completing operational testing (see Section 1-05.11(3)), providing operation and maintenance (O&M) manuals when specified in the Project Manual, and all extra work ordered by the Engineer. The Physical Completion Date for the Contract will be determined as provided in Section 1-08.5.

When the Contractor considers the Work physically complete and ready for final inspection, the Contractor, by Written Notice, shall request the Engineer to schedule a final inspection. Within 5 days, the Engineer will set a date for final inspection. The Engineer and the Contractor will then make a final inspection and the Engineer will notify the Contractor in writing of all particulars in which the final inspection reveals the Work incomplete or unacceptable. The Contractor shall immediately take such corrective measures as are necessary to remedy the listed deficiencies. Corrective work shall be pursued vigorously, diligently, and without interruption until physical completion of the listed deficiencies.

If action to correct the listed deficiencies is not initiated within 7 days after receipt of the Written Notice listing the deficiencies, the Engineer may, upon Written Notice to the Contractor, take whatever steps are necessary to correct those deficiencies. Such steps may include the correction of defects using in-house forces or by others. In such case, the direct and indirect costs incurred by the Engineer shall be deducted from moneys due or becoming due the Contractor. Such indirect or direct costs shall include in particular, but without limitation to, compensation for additional professional services required in cost of repair and replacement of the work of others which is destroyed or damaged by correction, removal, or replacement of the Contractor's deficient work. The Contractor will not be allowed an extension of Contract Time because of a delay in the performance of the Work attributable to the exercise of the Engineer's right hereunder.

Upon correction of all deficiencies, the Engineer will notify the Contractor and the Owner, in writing, of the date upon which the Work was considered physically complete. That date shall constitute the Physical Completion Date of the Contract, but shall not imply all the obligations of the Contractor under the Contract have been fulfilled.

1-05.11(3) OPERATIONAL TESTING

It is the intent of the Owner to have at the Physical Completion Date, a complete and operable system. Therefore when the Work involves the installation of machinery or other mechanical equipment; street lighting, electrical distribution or signal systems; irrigation systems, buildings; or other similar work it may be desirable for the Engineer to have the Contractor operate and test the Work for a period of time after final inspection but prior to the Physical Completion Date. Whenever items of work are listed in the Project Manual for operational testing they shall be fully tested under operating conditions for the time period specified to ensure their acceptability prior to the Physical Completion Date. During and following the test period, the Contractor shall correct any items of workmanship, Materials, or equipment that proves faulty, or are not in first class operating condition. Equipment, electrical controls, meters, or other devices and equipment to be tested during this period, shall be tested under the observation of the Engineer, so that the Engineer may determine their suitability for the purpose for which they were installed. The Physical Completion Date can not be established until testing and corrections have been completed to the satisfaction of the Engineer.

The costs for power, gas, labor, material, Supplies, and everything else needed to successfully complete operational testing, shall be included in the various Contract prices related to the system being tested, unless specifically set forth otherwise in the Bid Form.

Operational and test periods, when required by the Engineer, shall not affect a manufacturer’s guaranties or warranties furnished under the terms of the Contract.

1-05.12 COMPLETION

The Contractor must perform all the obligations under the Contract before the Completion Date can be established. A Certificate of Completion for the Work issued by the Owner will establish the Completion Date and
certify the Work as complete. The Final Contract Price may then be calculated. The following must occur before
the Completion Date can be established and the Final Contract Price calculated:

1. The physical work on the Project must be complete; and
2. The Contractor must furnish all documentation required by the Contract and required by law,
 necessary to allow the Owner to certify the Contract as complete. These include but are not
 limited to:
 a. Audits per Section 1-04.5(6).
 b. Extension of Time requests per Section 1-04.7.
 c. Material certifications per Section 1-06.3.
 d. Certified payrolls and prevailing wage statements per Section 1-07.9.
 e. Property owner releases per Section 1-07.24.
 f. Final Contract Payments Reporting Form per Section 1-08.1(3).

The issuance of this Certificate of Completion will not constitute acceptance of unauthorized or defective
work or Material.

The Contractor agrees that establishment of the Completion Date shall not relieve the Contractor of the
responsibility to indemnify, defend, and protect the Owner against any claim of loss resulting from the failure of
the Contractor, a Subcontractor of any tier, or any other person who provides labor, Supplies, or provisions for
carrying out the Work or for any payments required for unemployment compensation under Title 50 RCW or for
industrial insurance and medical aid required under Title 51 RCW.

Failure of the Contractor to perform all of the Contractor’s obligations under the Contract shall not bar the
Owner from unilaterally certifying the Contract complete so the Engineer may calculate a Final Contract Price as
provided in Section 1-09.9.

1-05.13 SUPERINTENDENTS, LABOR, AND EQUIPMENT

The Contractor shall keep a set of Contract Documents at the Project Site, give the Work the attention
required to maintain scheduled progress, and cooperate with the Engineer and the Engineer’s Assistants in the
administration of the Work.

The Contractor shall be present, in person, or be continuously represented by a duly authorized
representative at the Project Site during progress of the Work. The Contractor shall designate in writing before
starting the Work a Project Manager or Superintendent, who shall be experienced, capable of understanding the
Contract, and able to supervise the performance of the Work. The Contractor’s Superintendent or Project
Manager shall have full authority to represent and act for the Contractor. Written Notice given to the Project
Manager or Superintendent shall be as binding as if given to the Contractor.

The Work shall be under the continuous supervision of competent personnel experienced in the class of
work being performed. Incompetent, careless, or negligent employees (including supervisors) shall be discharged
by the Contractor upon written order of the Engineer. A superintendent that repeatedly fails to follow a written
order, direction, instruction, or determination from the Engineer shall, upon written order from the Engineer,
immediately be removed from the Project Site by the Contractor. The Contractor shall then designate in writing to
the Engineer, a new superintendent. Failure to comply with such order shall be sufficient grounds for termination
of the Contract.

Machinery and Equipment shall be adequate for the purposes used, kept in good workable condition, and
operated by competent operators.

The Contractor’s performance and compliance with the terms of the Contract Documents will be rated by
the senior supervisor within the administrative department (i.e., the Senior Engineer, Architect, or Project
Manager as appropriate). The rating will be done utilizing the Contractor Performance Evaluation Program (copy
located in the Appendix of the Project Manual).

The Owner is concerned with five major areas relative to the Contractor or Subcontractor’s performance
on a given Project:

1. The Contractor’s or Subcontractor’s ability to effectively and efficiently schedule, administer,
 coordinate, finance, and manage its work and the work of its Subcontractors on the Project;
2. The degree and extent of the Contractor’s or Subcontractor’s cooperation with the Owner,
 Engineer, their employees and Consultants, and the public;
3. The Contractor’s or Subcontractor’s initiative in all aspects of its work; and
4. The quality of material and workmanship and safe and timely completion of the final product.
5. The Contractor enforces health and safety in conducting the Work.

The Contractor Performance Evaluation Program is intended to:

(a) Assist the Owner in exercising its discretion to determine a Contractor’s qualifications and abilities to successfully perform a particular contract;
(b) Provide the Owner with a rational basis for determining whether or not:
 (1) A Contractor can be relied upon to work responsibly and
 (2) To approve the Contractor’s proposed principal Subcontractors;
(c) Provide Contractors with a means of enhancing their reputation for qualification by receiving recognition for high standards of performance;
(d) Encourage better working relationships between the Owner and Contractors;
(e) Guide administering departments in approving, or not approving, proposed principal Subcontractors on a particular project.
(f) Provide official, verifiable references for Contractors and Subcontractors who may be under consideration for award of, or approval on, contracts to be awarded by other public agencies.
(g) Provide a history and an assessment of a Contractor’s or Subcontractor’s performance on prior City contracts for use in suspension or debarment proceedings.

An unacceptable report will be taken into consideration when determining Contractor qualifications for future work.

1-05.14 COOPERATION WITH OTHER CONTRACTORS

The Owner reserves the right to perform other work at or near the Project Site (including material sites) with forces other than those of the Contractor. This work may be done with or without a contract. Should work be underway or subsequently undertaken within or adjacent to this Project, the Contractor shall cooperate with all other contractors or other forces, and conduct the Work so that the operations of both suffer the least interference and delay. Should there be disagreement between the contractors, or the Contractor and the Engineer, as to the manner and order of performing work, such disagreement will be resolved by the Engineer. The Engineer’s decision in these matters shall be final, as provided in Section 1-05.1.

If the Contract gives Written Notice of other work that may affect the Work or other work is apparent from the Project Site investigation required by Section 1-02.4, the coordination of the Work shall be taken into account by the Contractor, and any resulting cost shall be included in the various Contract Bid items which make up the Work.

1-05.15 METHODS OF SERVING NOTICES

Written Notice shall be considered delivered and service complete when:

1. Posted by certified or registered mail to the other party at their last given address; or
2. Delivered in person to the other party; or
3. Delivered to authorized representative of the other party at the Project Site.

1-05.16 WATER AND POWER

The Contractor shall make necessary arrangements, and shall bear the costs for power and water necessary for the performance of the Work. See the exception for water in Section 2-07.

1-05.17 ORAL AGREEMENTS

No oral agreement or conversation with any officer, agent, or employee of the Owner, either before or after execution of the Contract, shall affect or modify any of the terms or obligations contained in any of the Contract Documents. Such oral agreement or conversation shall be considered as unofficial information and in no way binding upon the Owner, unless subsequently put in writing.
SECTION 1-06 CONTROL OF MATERIALS

1-06.1 SOURCE OF SUPPLY AND QUALITY OF MATERIALS

Within 14 days after Award, the Contractor shall notify the Engineer of the proposed sources for all Materials to be used on the Work, including fabricators and manufacturers. The Engineer will provide the Contractor with a Request for Acceptance of Material Sources (RAMS) form. See Sections 1-08.1(2) and 1-08.3(2) for Material source submittal requirements. If the manufacturer or fabricator and the source of Material are not the same, then the other involved sources shall be provided. In such case, information shall be included indicating where in the specific Material source process each source is involved.

Approval by the Engineer is required for Materialmen and fabricators before delivery is started. The Contractor shall furnish Material from other approved sources if it is found that sources of supply which have been approved do not furnish a uniform product, or if the product is determined to be unacceptable.

All equipment, Materials, and articles incorporated in the permanent Work:

1. Shall be new unless otherwise specified in the Project Manual or specifically approved otherwise in writing by the Engineer.
2. Shall conform to the requirements of the Contract Documents and be approved by the Engineer.
3. May be inspected or tested at any time during their preparation and use.
4. Shall not be used in the Work if they become unfit after being previously approved.

Mention of manufacturers by brand name and model number is occasionally made in order to establish a basis of quality for certain items of Material, equipment, or processes. Such mention is intended to include products of other manufacturers that will measure up to the designated standards of the product mentioned.

If the Contractor desires to use products other than those specified under this "or equal" provision, he shall obtain the approval of the Engineer before entering an order therefor.

Wherever mention is made of a specific manufacturer, such mention shall be treated as if the phrase "or equal" appears thereafter whether or not in fact it does. The terms "or equal" and "or approved equal" shall be considered synonymous.

1-06.2 ACCEPTANCE OF MATERIALS

1-06.2(1) SAMPLES AND TESTS FOR ACCEPTANCE

The Contractor shall deliver representative samples (from the Contractor, Producer, or Fabricator) to the Engineer without charge before incorporating Material into the work. Samples, not already provided for testing pursuant to Section 1-03.1(4), shall be provided in sufficient time and quantities to allow testing by the Engineer before use. The Engineer may require samples be submitted at any time. Samples not taken by or in the presence of the Engineer will not be accepted for test unless so permitted by the Engineer.

Material testing shall comply with any special methods of testing set forth in the Contract Documents, the Washington State Department of Transportation Materials Manual, or applicable designated recognized standards of national organizations. This will apply to field tests, as well as to laboratory tests. The standard or tentative standard in effect on the day the Work was approved for advertisement by the Owner will apply in each case.

1-06.2(2) RESERVED

1-06.3 MANUFACTURER'S CERTIFICATE OF COMPLIANCE

The Engineer may accept certain Materials based on a Manufacturer’s Certificate of Compliance as an alternative to material inspection and testing when these materials are specifically identified in the Project Manual. Unless the Contractor requests and obtains written authority from the Engineer to do otherwise, certification shall be furnished prior to use of the material. The Engineer reserves the right to deny the request for good cause. In addition, no payment will be made for work involving this material in the absence of an acceptable Manufacturer’s Certificate of Compliance. If for any reason the Contractor has not provided an acceptable Manufacturer’s Certification of Compliance by the Completion Date, the Engineer may process the final payment as provided by Section 1-09.9 without paying for the work performed on such a basis.
The Manufacturer’s Certificate of Compliance shall identify the manufacturer, the type and quantity of material being certified, and the applicable specifications being affirmed. The signature of a responsible corporate official of the manufacturer and supporting mill tests or documents shall be included. A Certificate of Compliance shall be furnished with each lot of material delivered to the Work. The certified lot shall be clearly identified in the certificate.

All materials used based on a Certificate of Compliance may be sampled and tested at any time. Any material not conforming to the requirements will be subject to rejection whether in place or not. The Engineer reserves the right to refuse to accept materials based on a Certificate of Compliance.

1-06.4 HANDLING AND STORAGE OF MATERIALS

Materials used in the Work shall be handled and stored by the Contractor by methods that will prevent damage from careless handling, from exposure to elements, from mixing with foreign materials, or from any other cause. The Engineer will not accept or sample for testing, materials that are improperly handled or stored.

The Contractor shall repair, replace or make good all Owner provided materials that are damaged or lost due to the Contractor's operation or while in the Contractor's possession, at no expense to the Owner.

1-06.5 RESERVED

1-06.6 SIEVES FOR TESTING

Test sieves shall be made of either:

1. Woven wire cloth sieves conforming to AASHTO Designation M92 or ASTM Designation E11.
2. Square hole perforated plates conforming to ASTM Designation E323.

SECTION 1-07 LEGAL RELATIONS AND RESPONSIBILITIES TO THE PUBLIC

1-07.1 LAWS TO BE OBSERVED

1-07.1(1) GENERAL

The Contractor shall observe and comply with all federal and state laws, and with county and city resolutions, ordinances, and regulations that will in any way affect the Work. No information, interpretation, or representation of any law, resolution, ordinance or regulation referenced in the Contract Documents shall take precedence over the law, resolution, ordinance or regulation, itself, or relieve the Contractor from the responsibility for determining the current construction and true content of such law, resolution, ordinance or regulation.

Without usurping the authority of other agencies, the Engineer will cooperate with them in their efforts to enforce legal requirements. On noticing any violation of a legal requirement, the Engineer will notify the Contractor in an effort to achieve voluntary compliance. The Engineer may also notify the agency responsible for enforcement if the Engineer deems that action necessary to achieve compliance with legal requirements. The Engineer will also help the agency obtain Contractor compliance to the extent such help is consistent with the provisions of the contract.

Compensation for increased or decreased costs due to changes in law or taxes occurring after the Bid Opening Date shall be determined in accordance with Section 1-09.4(2).

1-07.1(2) SAFETY RULES AND STANDARDS

The Contractor shall be solely and completely responsible for:

1. The safety, efficiency, and adequacy of the Contractor's plant, Equipment, and methods.
2. Any damage or injury resulting from the failure, or improper maintenance, use, or operation of the Contractor's plant, Equipment, and methods.
3. Conditions of the Project Site, including safety of all persons and property during performance of the Work.
These requirements shall apply continuously and not be limited to normal working hours. The required or implied duty of the Engineer to conduct construction review of the Contractor's performance does not and shall not be intended to include review or a determination of the adequacy of the Contractor's safety measures in, on, or near the Project Site.

The Contractor shall establish, maintain, and supervise:

1. A safe and healthy working environment.
2. An accident prevention program.
3. Training programs to improve the skill and competency of all employees with respect to occupational safety and health.

The Washington State Department of Labor and Industries shall be the sole and paramount administrative agency responsible for the administration of the provisions of the Washington Industrial Safety and Health Act of 1973 (WISHA), as amended.

The Contractor shall comply with the Federal Occupational Safety and Health Act of 1970 (OSHA), including all revisions and amendments thereto; the provisions of the Washington Industrial Safety Act of 1973 (WISHA), as amended; and as a minimum, the requirements of the following chapters of the Washington Administrative Code:

1. Chapter 296-24 WAC General Safety and Health Standards.

In addition, the Contractor shall comply with the following requirements when they are applicable:

2. Chapter 296-45 WAC Safety Standards for Electrical Workers.
3. Applicable national and local Building, Construction, and Electrical Codes.
6. Chapter 296-87 WAC Safety Requirements for Workmen’s Construction Elevators.

In cases of conflict between different safety regulations, the more stringent regulation shall apply.

The Contractor shall maintain at the Project Site office, or other well-known place at the Project Site, all articles necessary for providing first aid to the injured. The Contractor shall establish, publish, and make known to all employees, procedures for ensuring immediate removal to a hospital or doctor’s care persons, including employees who may have been injured on the Project Site. Employees shall not be permitted to work on the Project Site before the Contractor has established and made known procedures for removal of injured persons to a hospital or a doctor’s care.

1-07.2 STATE TAXES

1-07.2(1) GENERAL

The Washington State Department of Revenue has issued special rules designed to assist the Contractor in accurately reporting to the Department of Revenue the Contractor’s tax liability. Although information may be included in the Project Manual regarding the application of state taxes to a particular contract or Bid item, it shall be the Contractor’s responsibility to apply the correct interpretation of the laws and regulations relating to such taxes. Adjustments will not be made in the amount to be paid by the Owner under the Contract because of any misunderstanding by the Contractor as to the Contractor’s liability for, or the amount of, any taxes. If the Contractor is in doubt as to the tax procedures in any particular case, the Contractor shall consult with the Washington State Department of Revenue.

1-07.2(2) STATE SALES TAX - RULE 171

WAC 458-20-171, and its related rules, apply to building, repairing, or improving streets, roads, etc., that are owned by a municipal corporation, or political subdivision of the state, or by the United States, and that are
used, primarily, for foot or vehicular traffic. For work performed in such cases, the Contractor shall include Washington State Retail Sales Taxes in the various Bid item unit prices and other Contract amounts, including those that the Contractor pays on the purchase of materials, equipment, and Supplies used or consumed in doing the Work.

1-07.2(3) STATE SALES TAX - RULE 170

WAC 458-20-170, and its related rules, applies to the constructing and repairing of new or existing buildings, or other structures, upon Real Property. For work performed in such cases, the Contractor shall collect from the Owner retail sales tax on the full Contract price. The Owner will automatically add this sales tax to each payment to the Contractor. For this reason, the Contractor shall not include the retail sales tax in the Bid item unit prices, or in any other Contract amount subject to Rule 170, except as provided below.

Exception: The Owner will not add in sales tax for a payment the Contractor or a Subcontractor makes on the purchase or rental of tools, machinery, equipment, or consumable Supplies not integrated into the Project. Such sales taxes shall be included in the Bid item unit prices or in any other Contract amount.

1-07.2(4) SERVICES

The Contractor shall not collect retail sales tax from the Owner on any contract wholly for professional or other services (as defined in State Department of Revenue Rules 138 and 224).

1-07.3 RESERVED

1-07.4 SANITATION

The Contractor shall provide and maintain in a clean, neat, and sanitary condition, any accommodations for the Contractor and Owner employees that are necessary to comply with the requirements and regulations of the State of Washington Department of Social and Health Services and other agencies. The Contractor shall commit no public nuisance, keep all sites clean, dispose of all refuse in a proper manner and leave the Project Site in a neat and sanitary condition.

1-07.5 PREVENTION OF ENVIRONMENTAL POLLUTION AND PRESERVATION OF PUBLIC NATURAL RESOURCES

1-07.5(1) GENERAL

During the life of the Contract, the Contractor shall comply with all provisions of Federal, State and local statutes, ordinances and regulations pertaining to the prevention of environmental pollution and the preservation of public natural resources. Pursuant to RCW 39.04.120 such provisions as are reasonably obtainable are set forth below. Further, if the Contractor must undertake additional work not contemplated by the Contract, due to the enactment of new or the amendment of existing statutes, ordinances, rules, or regulations occurring after the submission of the successful Bid, the Engineer will issue a Change Order setting forth the additional work that must be undertaken, which shall not invalidate the Contract. Such additional work shall be considered extra work and will be compensated as such.

1-07.5(2) WATER QUALITY

The Contractor shall comply with city ordinances, State, and Federal laws and other regulations or rules applicable to water pollution occurring in waters of the State and in interstate waters.

The Contractor shall:

1. Exercise precautions throughout the life of the Contract to prevent pollution, erosion, siltation, and damage to property.
2. Provide for the flow of all watercourses, including but not limited to streams, ditches, sewers, and drains intercepted during the progress of the Work.
3. Completely restore disturbed watercourses in as good condition as the Contractor found them, or make such final provisions for them as the Engineer may direct.
4. Not obstruct the gutter of any street.
5. Use all proper measures to provide for the free passage of surface water.
6. Remove and dispose of all surplus water, mud, silt, slicking, or other run-offs pumped from excavations or resulting from sluicing or other operations.

7. Make all applicable notifications required by Section 1-07.28.

The Contractor shall comply with the water quality criteria required by the Department of Ecology and regulations of:

1. The Washington State Department of Fish and Wildlife.
2. Those Federal statutes on oil spills enacted under the Federal Water Pollution Control Act Amendments of 1972 (a copy of which may be obtained from the U.S. Environmental Protection Agency).
3. The water quality standards of the State of Washington as set forth in Chapter 173-201A WAC.
4. Any local statutes, regulations, ordinances, or rules, which stipulate the various types of discharge prohibited in public sewer systems or any drainage ditch in the local jurisdiction.

State statutes on water pollution covering liability of the Contractor, penalty for violation, liability and damages for injury or death of fish, animals or vegetation are set forth in Chapter 90.48 RCW. As an aid to the Contractor, some though not all, of the rules set forth by the various State departments are summarized below. The Contractor is cautioned, however, that each Department of the State may add other restrictions, as they deem necessary, to protect fish and to prevent air or water pollution:

1. **State Department of Fish and Wildlife:** In doing the work the Contractor shall:
 a. Not degrade water quality in a way that would harm fish. (The Washington State Water Quality Regulations will serve as water quality criteria for the Work.)
 b. Release into a flowing stream or open water any fish stranded by the Work.
 c. Replant any stream bank or shoreline areas if the Work has disturbed the vegetative cover. (Any trees, brush, and grasses used in replanting shall resemble the type and concentration of surrounding vegetation, unless the Contract Documents provides otherwise.)
 d. Provide an open water channel at the lowest level of any isolated pothole remaining when the Work is complete.
 e. Protect fish by preventing harmful siltation on the bed or bottom of any body of water.
 f. Not block stream flow or fish passage.
 g. Keep all Equipment out of any flowing stream or other body of water (except as the Contract Documents may permit).
 h. Not remove gravel or other bottom material from within the high-water flow channel bed of any stream nor from the bottom of any other body of water (except as the Contract Documents may permit).
 i. Dispose of any Project debris beyond high-water flows.

2. **State Department of Ecology:** In doing the work, the Contractor shall:
 a. Obtain a waste discharge permit from the Department of Ecology before:
 (1) Washing aggregate, and
 (2) Discharging water into a ground or surface waterway from pit sites or excavations when the water contains turbidity, silt, or foreign materials.
 b. Provide the Engineer with a copy of each waste discharge permit before starting the Work.
 c. Control drainage and erosion to minimize the pollution of any waterway.
 d. Dispose of all toxicants (including creosote, oil, cement, concrete, and water used to wash Equipment) in ways that will prevent them from entering State waters.
 e. Dispose of all debris, overburden, and other waste materials in ways that will prevent them from entering State waters.

The Contractor shall perform such temporary work as may be necessary to effectively control water pollution, erosion, and related damage within the Project Site or which might be necessary at work areas located outside the Project Site. These outside areas may include, but are not limited to, equipment, material and other storage sites. When temporary control facilities or measures are no longer needed, they shall be removed and the areas restored or finished as designated by the Engineer.
If Work is suspended for an extended period of time, the Contractor shall be responsible for controlling erosion, pollution, and runoff during the shutdown period.

In addition to other requirements in the Contract Documents, this temporary work shall include, but is not limited to, the following water quality considerations:

1. **Diversion of Uncontaminated Water:** Storm water shall be diverted around the Project to prevent pickup of silt. This may be accomplished by pumping; improvising ditches; lining channels or by placing metal, plastic or concrete gravity pipe; constructing ditches, berms, Culverts, etc., to control surface water; or constructing dams, settling basins, or energy dissipaters to control down stream flows.

2. **Intercepting Ground Water:** Surfacing ground water shall be intercepted and routed around the construction site to prevent silt erosion by the use of gravel trenches, French drain tiles, well points, or interceptor ditch. The Contractor shall provide means of controlling underground water that may be encountered during the Work.

3. **Turbid Water Treatment Before Discharge:** Determination of turbidity in surface waters shall be at the discretion of the Engineer; for Lake Class Receiving Waters, turbidity shall not exceed 5 NTU (Nephelometric Turbidity Units) over background conditions; for Class AA and Class A Waters, turbidity shall not exceed 5 NTU over background turbidity when the background turbidity is 50 NTU or less, or have more than a 10 percent increase in turbidity when the background turbidity is more than 50 NTU; for other classes of waters, refer to WAC 173-201-045 and WAC 173-201A-030.

 The term turbidity means the optical property of sample demonstrating the scattering and absorption of light caused by suspended material as expressed in Nephelometric Turbidity Units and measured with a calibrated turbidimeter.

 Discharges to a State waterway caused by aggregate washing, drainage from aggregate pit sites, and stockpiles or dewatering of pits and excavations shall not increase the existing turbidity of the receiving waters. Turbid water from the Project Site shall be treated before being discharged into stream or other State waters. Turbidity may be removed by the use of lagoons or holding ponds, settling basins, overflow weir, polymer water treatment, discharging to ground surface, by percolation, evaporation or by passing through gravel, sand or fiber filters.

4. **Erosion Control:** Temporary erosion control shall be exercised by minimizing exposed areas and slopes until permanent measures are effective. Plastic sheet covering shall be placed over exposed ground areas to protect from rain erosion. Other alternative methods for erosion control under certain situations may include netting, mulching with binder, and seeding. Should rutting and erosion occur the Contractor shall be responsible for restoring damaged areas and for clean-up of eroded material including that in ditches, catch basins, manholes, and Culverts and other pipes.

5. **Chlorine Residual:** Water containing chlorine residual shall not be discharged directly into Storm Drains, streams, or State waters. Chlorine water may be discharged into sanitary sewers or disposed on land for percolation. Chlorine residual may be reduced chemically with a reducing agent such as sodium thiosulphate. Water shall be periodically tested for chlorine residual.

6. **Vehicle and Equipment Washing:** Water used for washing vehicles and Equipment shall not be allowed to enter Storm Drains, streams or other State waters unless separation of petroleum products, fresh concrete products or other deleterious material is accomplished prior to discharge. Detergent solution may be discharged into sanitary sewers or held on the ground for percolation. A recirculation system for detergent washing is recommended. Steam cleaning units shall provide a device for oil separation.

7. **Oil and Chemical Storage and Handling:** Handling and storage of oil and chemicals shall not take place adjacent to waterways. The storage shall be made in dike tanks and barrels with drip pans provided under the dispensing area. Shut-off and lock valves shall be provided on tanks. Shut-off nozzles shall be provided on hoses. Oil and chemicals shall be dispensed only during daylight hours unless the dispensing area is properly lighted. Disposal of waste shall not be allowed on oil and chemical spills. Fencing shall be provided around oil storage. Locks shall be provided on valves, pumps, and tanks.

8. **Sewage:** If a sanitary sewer line is encountered and repair or relocation work is required, the Contractor shall provide blocking and sealing of the sanitary sewer line. Sanitary sewer flow shall
be pumped out, collected, and hauled by tank truck or pumped directly to a sanitary system manhole for discharge. The existing Sewers shall be maintained by the Contractor without interruption of service by the use of temporary Sewer bypasses. In addition, the excavated materials adjacent to and around a rupture of a sanitary sewer line shall be removed from the Project Site and deposited into refuse trucks for haul to a sanitary fill site. Equipment and tools in contact with the above materials shall be washed by pressure water lines and the attendant wash water discharged into a sanitary Sewer line for transmission to a sewage treatment plant.

9. **Sawcutting, Planing, and Grinding By-Products:** The Contractor shall take special precautions to ensure that no concrete, asphalt, concrete by-products, or asphalt byproducts from, or used in, the saw-cutting, grinding, or planing of Asphalt Cement or Cement Concrete pavements, sidewalks, curbs, etc. are discharged into any Storm Drain or surface water system. Such discharge is prohibited by the Department of Ecology. In as much as saw-cutting by-products increase the pH of the wastewater, filtering prior to discharge will NOT be acceptable. Impervious surfaces contaminated with sediment and grit from saw-cutting, planing or pulverizing operations shall be cleaned by sweepers to prevent contaminants from entering the Storm Drainage system or surface waters when it rains.

1-07.5(3) **AIR QUALITY**

The Contractor shall not cause or allow the discharge of particulate matter, the emission of any air contaminants or odor bearing gases in excess of the limits specified under Regulation I of the Puget Sound Air Pollution Control Agency, Article 9 - Emission Standards.

The Contractor shall maintain air quality within the National Emission Standards for Hazardous Air Pollutants. Air pollutants being defined as that part of the atmosphere to which no ambient air quality standard is applicable and which, in the judgment of the Administrator of the Environmental Protection Agency Clean Air Act, may cause or contribute to an increase in mortality or an increase in serious irreversible or incapacitating reversible illness.

1-07.5(4) **NOISE POLLUTION**

The Contractor shall take all reasonable measures for the suppression of noise resulting from work operations. Mobile engine driven cranes, loaders and similar material handling Equipment; engines used in stationary service for standby power; and air compressors for high and low pressure service shall be equipped with exhaust and air intake silencers designed for the maximum degree of silencing. The type of silencer required is that for use in critical noise problem locations such as high density residential, hotel, and hospital areas.

The Contractor shall conduct performance of the Work consistent with the applicable noise control levels set forth in SMC Chapter 25.08 or, if outside the City limits and in King County, Chapters 12.86 through 12.100, King County Code.

1-07.5(5) **LIABILITY AND PAYMENT**

The Contractor shall be liable for the payment of all fines and penalties resulting from failure to comply with the Federal, State and local pollution control regulations even though the Engineer is on the job at the time of the violation.

Except as may be otherwise provided for in the Contract Documents, costs pertaining to the prevention of environmental pollution and the preservation of public natural resources as outlined in the Contract Documents shall be considered as incidental to the Work and such costs shall be included in the unit Bid item prices for the various items of Work which comprise this Contract.

1-07.5(6) **ARCHAEOLOGICAL AND HISTORIC PRESERVATION**

“On the private and public lands of this State, it shall be unlawful for any person, firm, corporation or any individual to knowingly alter, dig into or excavate by use of any mechanical, hydraulic, or other means, or to damage, deface or destroy any historic or prehistoric archaeological resource or site without having obtained written permission from the preservation officer for such activities on public property” (RCW 27.53.060)
It shall be the responsibility of the Contractor to notify the Engineer if any artifacts, skeletal remains or other archaeological resources (as defined under RCW 27.53.040) are unearthed during excavation or otherwise discovered on the construction site. If ordered by the Engineer, the Contractor shall immediately suspend any construction activity which, in the opinion of the Engineer, would be in violation of Chapter 27.53 RCW. Suspension of the Work shall remain in effect until the Engineer has obtained permission to proceed from the State Historic Preservation Officer.

1-07.6 PERMITS AND LICENSES

Unless otherwise specified in the Contract Documents, the Contractor shall obtain all required permits and licenses for the completion of the Work, shall give any notices such permits and licenses may require, and shall comply with all requirements of said permits and licenses. Permits and licenses obtained by the Owner will be referenced or included in the Contract Documents. A copy of each permit or license obtained by the Contractor shall be furnished to the Engineer. The costs of permits and licenses obtained by the Contractor shall be included in the unit prices Bid for the Work.

The Owner will support the Contractor in efforts to obtain a temporary operating permit in its name if:

1. A local rule or an agency policy prevents issuing the permit to a private firm;
2. The Contractor takes all action to obtain the permit;
3. The permit will serve the public interest;
4. The permit applies only to work under the Contract;
5. The Contractor agrees in writing:
 (a) to comply with all the issuing agency requires, and
 (b) to hold the Owner harmless for any work-related liability incurred under the permit; and
6. The permit costs the Owner nothing.

1-07.7 LOAD LIMITS

1-07.7(1) GENERAL

While moving Equipment and materials on any public Highway, the Contractor shall comply with any law that controls traffic or limits loads. The Contract does not exempt the Contractor from such laws nor does it license overloads. At the Engineer’s request, the Contractor shall provide any information needed to determine the weight of Equipment on the roadway.

When the Contractor moves Equipment or materials within the Project boundaries, legal load limits shall apply on any:

1. Road open to, and in use by, public traffic.
2. Existing road not designated for major reconstruction under the current Contract.
3. Newly paved road (with its final lift in place) built under this Contract. The Contractor may haul overloads (not exceeding 25 percent) on such roads not open to public traffic if this does not damage completed work. Should damage occur, the Contractor shall pay all repair costs.

On all other parts of the Project, the Contractor may operate Equipment without load-limit restrictions except as restricted by Section 1-07.7(2). In doing so, however, the Contractor remains responsible for any damage that may result. All vehicles subject to be licensed on a tonnage basis will be required to license to the maximum legal capacity before being eligible to operate under the weight limitation described in Section 1-07.7(2).

The Engineer may approve higher load limits than those allowed by Section 1-07.7(2) if it is necessary and safe to do so. To obtain such approval, the Contractor shall make this request in writing to the Engineer at least 5 Working Days in advance of the need. The request shall describe in detail the loading, configuration, and movement or position of the Equipment on the Structure or over the Culverts and pipes. The request shall state that the Contractor assumes all risk for damages. The Contractor shall include in the unit prices all costs for operating over bridges or Culverts. Nothing in this Section affects the Contractors’ other responsibilities under these Specifications or under public Highway laws.
1-07.7(2) LOAD-LIMIT RESTRICTIONS

The following load limits shall apply to:

1. **Structures Designed for Direct Bearing of Live Loads**: On these Structures, the gross or maximum load on each individual vehicle axle shall not exceed the legal load limit by more than 35 percent. No more than one vehicle shall operate over any Structure at one time.

2. **Underpasses and Reinforced Concrete Box Culverts Under Embankments**: Over these Structures, maximum loads shall be 24,000 pounds on a single axle and 16,000 pounds each on tandem axles spaced less than 10 feet apart, provided that:
 a. The embankment has been built to specifications.
 b. The embankment has reached at least 3 feet above the top of the underpass or Culvert. When the embankment has reached 5 feet above the top of the Culvert or underpass, the Contractor may increase axle loads up to 100,000 pounds each if outside wheel spacing is at least 7 feet on centers on the axle.

3. **Pipe Culverts and Sewer Pipes**: Over pipe Culverts and sewer pipes, maximum loads shall be 24,000 pounds on a single axle and 16,000 pounds each on tandem axles spaced less than 10 feet apart, provided that:
 a. The Culvert or pipe has been installed and backfilled to specifications.
 b. The embankment has reached at least 2 feet above the top limit of pipe compaction as defined in WSDOT Standard Plan B-11, Pipe Compaction Designs and Backfill.

When the embankment has reached 5 feet above the top limit of pipe construction, the Contractor may increase axle loads up to 100,000 pounds each if outside wheel spacing is at least 7 feet on centers on the axle - except that:
 a. For Class III reinforced concrete pipes, the embankment shall rise above the top limit of compaction at least:
 (1) 6 feet for Design A work.
 (2) 7 feet for Design C work.
 b. For Class II reinforced concrete pipes, the maximum load for each axle shall be 80,000 pounds if outside wheel spacing is at least 7 feet on centers on the axle. In this case, the embankment shall rise above the top limit of compaction at least:
 (1) 6 feet for Design A work.
 (2) 10 feet for Design C work.

1-07.8 RESERVED

1-07.9 WAGES

1-07.9(1) PREVAILING WAGE RATES

1-07.9(1)A GENERAL

The Work is subject to the wage requirements of RCW Chapter 39.12 (Prevailing Wages on Public Works), RCW Chapter 49.28 (Hours of Labor), and to RCW Chapter 49.46 (Minimum Wage Act) as amended or supplemented. On projects funded in whole or part from Federal monies, Federal wage laws and rules shall also apply.

When the Work is subject to both the provisions of the State (RCW Chapter 39.12) and Federal (Davis-Bacon and related acts) prevailing wage requirements, the Contractor and every Subcontractor must pay at least the State prevailing wage rates, if they are higher than the Federal prevailing wage rates for the Project unless specifically preempted by federal law. When the Federal prevailing wage rates are higher than the State prevailing wage rates, the Contractor (and every Subcontractor) shall pay the Federal rate as required by federal law.

The Contractor, any Subcontractor and all individuals and firms required to pay prevailing wages per WAC 296-127-010, shall not pay any laborer, worker, or mechanic less than the applicable prevailing hourly wage rates and fringe benefits for said worker’s classification. Higher wages and benefits may be paid at the option of the employer.
Pursuant to the provisions of State law, the Contractor, every Subcontractor, and all other individuals or firms required to pay prevailing wages for work performed on this Contract, shall be subject to investigation by the State of Washington Department of Labor and Industries for failing to pay the required prevailing wage to workers, laborers, and mechanics employed on the Project. Such investigation may result in the State issuing a notice of violation in accordance with WAC 296-127-150.

To the extent an individual or firm required to pay prevailing wages is found by the Department of Labor and Industries to have violated the requirement to pay the prevailing rate of wage, the unpaid wages shall constitute a lien against the Contractor's bond and retainage. Consistent with RCW 39.12.065 and 39.12.050, the Contractor or Subcontractor may also be subject to civil penalties and may be prohibited from bidding on any public works contract within the State of Washington for the period specified by law.

It shall be the sole responsibility of the Contractor to assign the appropriate classification to all laborers, workers or mechanics who perform any work pursuant to this Contract, in conformance with the scope of work descriptions of the Industrial Statistician of the Washington State Department of Labor and Industries. It shall also be the Contractor's sole responsibility to ascertain the applicable prevailing rate of wage for each such classification. Laborers, workers, and mechanics must be paid in full at least once each week and in lawful money of the United States.

The Owner holds the Contractor responsible for compliance of all Subcontractors with payroll reporting requirements and payment of prevailing wages.

The Project Manual includes hourly minimum rates for wages and fringe benefits to be paid laborers, workers and mechanics employed in the Work as established by the State Department of Labor and Industries.

Any listing of wages and fringe benefits in the Project Manual for any classification is intended only as a guideline for the Contractor and does not necessarily reflect the most recent classification or prevailing wage rate. Prevailing wage rates will be determined by the Department of Labor and Industries and published only on the first Business Day of February and the first Business Day of August of each year. All prevailing wage rates become effective thirty days after they are published. Current prevailing wage information may be obtained upon request from the:

Industrial Statistician
Department of Labor and Industries
ESAC Division
P.O. Box 44540
Olympia, WA 98504-4540
(360) 902-5335

For Projects funded in whole or part with Federal monies, current Federal prevailing wage information may be obtained upon request from the:

U.S. Department of Labor
Employment Standards Administration
Wage and Hour Division
71 Stevenson Street
Suite # 930
San Francisco, CA 94105
(415) 975-4851
(415) 975-4539 FAX

By including wage and fringe benefit rates in the Project Manual, the Owner does not imply that the Contractor will find labor available at those rates. The Contractor shall calculate any amount above the minimums that have to be paid.

If the Contractor employs labor in a classification not listed in the Project Manual, the Contractor, on any Projects where only State prevailing wage rates apply, shall request the Industrial Statistician of the Washington State Department of Labor and Industries to determine the correct prevailing wage rate for that classification and locality. If the Project is funded in whole or part with Federal monies, the Contractor shall request the Industrial Statistician of the Washington State Department of Labor and Industries to determine a State prevailing wage rate for that classification and locality and shall separately request the U.S. Department of Labor to determine a
Federal prevailing wage rate for that classification and locality. If those wage rates differ, the Contractor shall use the higher wage rate determined.

1-07.9(1)B OVERTIME

Pursuant to the provisions of Chapter 49.28 RCW and WAC 296-127-022, work performed on public works contracts will not require the payment of overtime rates for the first two hours worked in excess of eight hours per day when the employer and employee voluntarily enter into an agreement wherein the employee will work up to ten hours per day in a four-day week to accomplish forty hours of work.

Recognizing that there may be days when a full ten hours of work is not available, the remainder of the forty hours may be made up on another work day or days within the same work week, except work performed on Saturdays, Sundays, and Holidays is subject to the established prevailing overtime provisions for a given trade or occupation, as provided in Chapter 39.12 RCW.

For the purpose of this section an agreement must:

1. Have been authorized by employees who bargained collectively with their employers through representatives of their own choosing; or
2. be obtained in writing, signed, and dated by both parties; and
3. be entered into individually with each employee; and
4. be entered into separately for each public works project, except that an employer, at its option, may obtain an annual authorization; and
5. state the name of the public works project with specificity; and
6. be entered into voluntarily by the employer and employee.

Each employer must retain copies of individual employee authorization agreements for three years from the Completion Date of the Work. Absence of an authorization record for an employee shall be deemed per se evidence of lack of that employee's authorization. Such records are payroll records, subject to the requirements of WAC 296-127-320.

It is prohibited to work more than ten hours in any Calendar Day on a public works project except in cases of extraordinary emergency, such as danger to life or property.

Notwithstanding the above provisions, overtime rates must be paid for all hours worked in excess of forty hours per week. For any overtime work performed on a federally funded project in accordance with the agreements referenced above, the Contractor, Subcontractor, and all other individuals or firms required to pay prevailing wages, must submit a copy of such authorization agreement for each affected employee to the Contract Compliance Section of the Executive Services Department, 700 Third Avenue, Suite 800, Seattle, Washington 98104.

WAC 296-127-022 provides a minimum public works overtime standard, and does not supersede prevailing overtime wage rates established under the authority of RCW Chapter 39.12.

1-07.9(1)C EFFECTIVE DATE FOR DETERMINING PREVAILING WAGES

In accordance with WAC 296-127-011, the effective date for determining State prevailing wages will be the Bid Opening Date, provided the Contract is awarded within six months after Bids are due. If the Contract is not awarded within six months after Bids are due, the effective date for determining prevailing wages shall be the Award Date of the Contract. If the Contract is not awarded pursuant to Bids (e.g. emergency Contracts), the effective date for determining prevailing wages shall be the date when the Contract is executed.

For a Project funded in whole or part with Federal monies, the effective date for determining prevailing wages shall be 10 days prior to the date Bids are due provided the Contract is awarded within 90 days after Bids are due, unless the Engineer determines there is sufficient time to notify Bidders by Addendum of changes in the prevailing wage rates up to the date of Bid opening, in which case those changed prevailing wage rates shall apply. If the Contract is not awarded within 90 days after the Bids are due, the effective date for determining prevailing wages shall be the Award Date of the Contract.

1-07.9(1)D PAYROLL REPORTS

On any Project that is federally funded, payroll reports for the Contractor, every Subcontractor, and all other individuals or firms required to pay prevailing wages for work performed on this Contract shall be submitted
weekly to the Contract Compliance Section of the Executive Services Department, City of Seattle, Arctic Building, Suite 800, 700 Third Avenue, Seattle, Washington, 98104 within 72 hours after the expiration of each pay period. On a non-federally funded Project, the Owner and Engineer reserve the right to request payroll reports from the Contractor, every Subcontractor, and all other individuals or firms required to pay prevailing wages for work performed on this Contract. When required or requested, the payroll reports shall contain the following information:

1. Name and residence address of each worker.
2. Social Security number of each worker.
3. Classification of work performed by each worker. The classification must be specific and match the classification categories listed in the Project Manual.
4. Total number of hours employed each day.
5. Total number of hours employed during the payroll period.
6. Straight time and overtime hourly rate of wages paid to each worker.
7. Total or gross amount earned by each worker.
8. Deductions for Medical Aid, FICA, Federal withholding tax, and any other deductions taken.
9. Net amount paid each worker.
10. Contractor's (or Subcontractor's) name and address.
11. Days and dates worked.
12. Date of final day of pay period.
13. Whether fringe benefits were paid to each worker as part of the hourly wage rate or whether fringe benefits were paid into an approved plan, fund, or program.

Payrolls may be submitted on Federal payroll form WH-347 (or equivalent), which may be obtained from the:

Federal Bookstore
Federal Building
915 Second Avenue, Room 194
Seattle, WA 98174
(206) 553-4270

The reverse side of the form contains an affidavit that must be filled out and signed. If the Contractor's payroll reports are computerized, the computerized reports may be submitted along with a Statement of Compliance affidavit form, which may be photocopied from the sample in the Project Manual.

The first payroll submitted for the Work for both the Contractor and each Subcontractor shall be labeled "Initial." The last payroll submitted for the Work for both the Contractor and each Subcontractor shall be labeled "Final." Payrolls shall be sequentially numbered for all periods in which work is performed.

1-07.9(2) POSTING NOTICES

The Contractor shall post in a location acceptable to the Washington State Department of Labor and Industries ("State L&I"), and in compliance with the requirements of RCW 39.12.020:

1. One copy of the approved "Statement of Intent to Pay Prevailing Wages" for the Contractor, each Subcontractor regardless of tier, and any other individual or firm required to pay prevailing wages per WAC 296-127-010.
2. The address and telephone number of the Industrial Statistician, State L&I (along with notice that complaints or questions about wage rates may be directed there).

1-07.9(3) APPRENTICES

A laborer, worker, or mechanic employed on the Work for whom an apprentice agreement is registered and approved by the State Apprenticeship Council pursuant to Chapter 49.04 RCW within 60 days of hiring may be paid the applicable prevailing hourly rate for an apprentice of that trade. If formal registration with the State Apprenticeship Council is not accomplished within 60 days of hiring, the laborer, worker or mechanic must be paid the prevailing hourly journey level rate for all hours worked on the Contract until an apprenticeship agreement is registered.
If the Contractor or Subcontractor of any tier make use of an apprentice on Work also governed by Federal wage rates and regulations, the Contractor shall present to the Owner written evidence of registration of such employees in a program approved by the Washington State Apprenticeship Council and recognized by the U.S. Bureau of Apprenticeship and Training. On any Project that is federally funded and where submission of payroll reports is required, such evidence shall be submitted with the first payroll upon which the name of the employee appears. In the absence of such a state apprenticeship council program, the Contractor shall submit evidence of approval and registration by the U.S. Bureau of Apprenticeship and Training.

1-07.9(4) DISPUTES

In the event any dispute arises as to what the prevailing wages are for this Contract, and the dispute cannot be resolved by the parties involved, the matter shall be referred to the Director of the Department of Labor and Industries of the State of Washington when such dispute involves State prevailing wage rates. In such case, the Director’s decision shall be final, conclusive, and binding on all parties.

If the dispute involves a Federal prevailing wage rate, the matter shall be referred to the U.S. Secretary of Labor for a decision. In such case, the Secretary’s decision shall be final, conclusive, and binding on all parties.

When the Work is subject to both State and Federal prevailing wage requirements, the Contractor and every Subcontractor shall comply with whichever standard is higher.

1-07.9(5) REQUIRED DOCUMENTS

Before payment is made by the Owner of any sums due under this Contract, the Contractor and each Subcontractor regardless of tier shall submit to the Public Works and Consultant Contracting Section of the Executive Services Department, a copy of a "Statement of Intent to Pay Prevailing Wages" (form F700-029-000), approved by the Industrial Statistician of the Washington State Department of Labor and Industries.

Upon completion of the Work and before any funds retained under RCW Chapter 60.28 can be released to the Contractor, the Contractor and each Subcontractor regardless of tier shall deliver to the Public Works and Consultant Contracting section of the Executive Services Department, a copy of a "Affidavit of Wages Paid" (form L700-007-000), approved by the Industrial Statistician of the Washington State Department of Labor and Industries. These forms, along with other requirements outlined in Section 1.09.9(2), must be submitted by the Contractor to the Public Works and Consultant Contracting Section before any funds retained under RCW 60.28.011 will be released to the Contractor.

A fee of $25.00 per each "Statement of Intent to Pay Prevailing Wages" and "Affidavit of Wages Paid" is required to accompany each form submitted to the State of Washington Department of Labor and Industries by the Contractor or any Subcontractor. The Contractor or Subcontractor, as applicable, shall be responsible for payment of these fees and shall submit all forms directly to the State of Washington Department of Labor and Industries for approval. The cost of these fees shall be included in the prices of the various units of work that comprise this Contract.

The required forms specified herein may be obtained from the Department of Labor and Industries.

Each progress estimate submitted to the Engineer for payment shall include or have attached a statement signed by the Contractor that the prevailing wages have been paid in accordance with the pre-filed Statement of Intent to Pay Prevailing Wages as specified in the first paragraph of 1-07.9(5), or the estimate will not be paid. The following is a sample of the wording required:

"Project: ___________________________ PW#: ____________
I certify that the prevailing wages have been paid in accordance with the pre-filed Statement or Statements of Intent to Pay Prevailing Wages on file with the Public Works and Consultant Contracting Section of the Executive Services Department for the period covering ____________________, 20___ to ____________________, 20____.

Contractor Signature"

This letter shall be signed by an authorized representative of the Contractor prior to payment of any voucher pursuant to RCW 39.12.040.
1-07.9(6) AUDITS

Payroll, wage, and cost records shall be retained, and may be audited or inspected, as permitted by Section 1-09.12.

1-07.10 RESERVED

1-07.11 EQUAL EMPLOYMENT OPPORTUNITY REQUIREMENTS

1-07.11(1) GENERAL

Notwithstanding any other provisions in the Project Manual, this Contract does not require any specific levels of utilization of minorities or women in the Contractor’s workforce, except as may be specified in any federal regulations or statutes included or referenced in the Contract Documents. The City encourages the Contractor to employ a workforce reflective of the region’s diversity. The Contractor shall adhere to all non-discrimination requirements as set forth in Federal and State laws and regulations and Seattle Municipal Code provisions.

The Contractor shall not discriminate and shall take affirmative action to ensure equal employment opportunity pursuant to SMC Ch. 20.44. These, and other requirements that may be set forth in the Project Manual, shall constitute the specific Affirmative Action requirements for the Work.

The Contractor and every Subcontractor (not including Materialmen) holding a subcontract of $1,000 or more shall comply with the requirements of equal employment opportunity specified in Sections 1-07.11(2) through and including 1-07.11(11). The Contractor shall include these requirements in every subcontract of $1,000 or more with such modification of language as is necessary to make them binding on the Subcontractor.

1-07.11(2) EQUAL EMPLOYMENT OPPORTUNITY POLICY

The Contractor shall accept as operating policy the following statement, which is designed to further the provision of equal employment opportunity to all persons without regard to their race, religion, creed, age, color, sex, marital status, sexual orientation, gender identity, political ideology, ancestry, national origin, or the presence of any sensory, mental or physical handicap; and to promote the full realization of equal employment opportunity through a positive continuing program:

"The Contractor shall not discriminate against any employee or applicant for employment because of race, religion, creed, age, color, sex, marital status, sexual orientation, gender identity, political ideology, ancestry, national origin, or the presence of any sensory, mental or physical handicap, unless based upon a bona fide occupational qualification. The Contractor shall take affirmative action to ensure that applicants are employed, and that employees are treated during employment, without regard to their creed, religion, race, age, color, sex, national origin, marital status, political ideology, ancestry, sexual orientation, gender identity, or the presence of any sensory, mental or physical handicap. Such action shall include, but not be limited to the following: employment, upgrading, demotion, or transfer, recruitment, or recruitment advertising, layoff or termination, rates of pay or other forms of compensation, and selection for training, including apprenticeship. The Contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided by the Owner setting forth the provisions of this nondiscrimination clause.

"The Contractor shall, prior to commencement and during the term of the Contract, furnish to the Executive Services Director (as used herein Executive Services Director means that official or his/her designee) upon his/her request and on such form as may be provided, a report of the affirmative action taken by the Contractor in implementing the terms of these provisions. The Contractor shall permit access to his/her/its records of employment, employment advertisements, application forms, and other pertinent data requested by the Director to determine compliance with these requirements.

"If the Director finds probable cause to believe that the Contractor has failed to comply with the terms of these provisions, the Contractor will be so notified in writing. The Director will give the Contractor an opportunity to be heard within ten (10) days of the date written notification is sent. After hearing and considering the Contractor's response to the findings (if any), the Director will make a final decision as to whether the Contractor has failed to comply with the provisions of the Contract. If the Director's final decision is that the Contractor has failed to comply with the provisions of the Contract, the Director may..."
suspend the Contract and/or withhold any funds due or to become due to the Contractor pending compliance by the Contractor.

"Failure to comply with these requirements shall be a material breach of the Contract."

The foregoing requirements and policy shall be inserted in all subcontracts for work covered by the Contract. When inserting such requirements and policy, the Contractor shall substitute for all references to “the Contractor” therein, the identifying title used in such subcontract for the party to which the Contractor is substituting a portion of the Work.

1-07.11(3) EQUAL EMPLOYMENT OPPORTUNITY OFFICER

The Contractor shall designate and make known to the Engineer and ESD at the preconstruction conference the Contractor’s Equal Employment Opportunity Officer (hereinafter referred to as the EEO Officer). The EEO Officer will have the responsibility for making him/herself known to each of the Contractor’s employees. The EEO Officer shall possess the responsibility, authority, and capability for effectively administering and promoting an active Contractor program of equal employment opportunity.

1-07.11(4) DISSEMINATION OF POLICY

1-07.11(4)A SUPERVISORY PERSONNEL

All members of the Contractor's staff who are authorized to hire, supervise, promote, and discharge employees, or who recommend such action, or who are substantially involved in such action, shall be made fully cognizant of, and shall implement the Contractor's equal employment opportunity policy and contractual responsibilities to provide equal employment opportunity in each grade and classification of employment. To ensure that the Contractor’s obligations under this subparagraph will be met, the following actions shall be taken:

1. **EEO Meetings:** Periodic meetings of supervisory and personnel office employees shall be conducted before the start of work and then not less often than once every 6 months, at which time the Contractor’s equal employment opportunity policy and its implementation shall be reviewed and explained. The meetings shall be conducted by the EEO Officer or other knowledgeable company official.

2. **EEO Education:** All new supervisory or personnel office employees shall be given thorough instruction by the EEO Officer or other knowledgeable company official regarding all major aspects of the Contractor's equal employment opportunity obligations within 30 days following their reporting for duty with the Contractor.

3. **Internal EEO Procedures:** All personnel who are engaged in direct recruitment for the Project shall be instructed by the EEO Officer or appropriate company official in the Contractor's procedures for locating and hiring minority and women employees.

The Contractor shall ensure that all employees, particularly supervisors, are aware of, and adhere to their obligation to maintain a working environment free from discriminatory conduct, including, but not limited to, harassment and intimidation of minorities and women.

1-07.11(4)B EMPLOYEES, APPLICANTS, AND POTENTIAL EMPLOYEES

In order to make the Contractor’s equal employment opportunity policy known to all employees, prospective employees, and potential sources of employees, i.e., schools, employment agencies, labor unions (where appropriate), college placement officers, etc., the Contractor shall take the following actions:

1. **Notices and Posters:** Notices and posters setting forth the Contractor’s equal employment opportunity policy shall be placed in areas readily accessible to employees, applicants for employment, and potential employees.

2. **EEO Education:** The Contractor’s equal employment opportunity policy and the procedures to implement such policy shall be brought to the attention of employees by means of meetings, employee handbooks, or other appropriate means.

3. **Non-Segregation:** The Contractor will ensure that all of Contractor’s facilities and activities are non-segregated with the following exceptions: separate male and female or single-user toilet and changing facilities will be provided.
1-07.11(5) RECRUITMENT

The Contractor shall be responsible for directing recruitment efforts, both oral and written to minority, female, and community organizations and shall take the following actions:

1. Equal Opportunity Employer: When advertising for employees, the Contractor shall include in all advertisements for employees the notation: "An Equal Opportunity Employer." All such advertisements shall be published in newspapers or other publications having a large circulation among minority and women's groups in the area from which the Project work force would normally be derived.

2. Systematic and Direct Recruitment: Unless precluded by a valid bargaining agreement, the Contractor shall conduct systematic and direct recruitment through public and private employee referral sources likely to yield qualified minority and women applicants, including, but not limited to State employment agencies, schools, colleges, and minority and women's organizations. To meet this requirement, the Contractor, through the designated EEO Officer, shall identify sources of potential minority and women employees and establish with such identified sources procedures whereby minority applicants may be referred to the Contractor for employment consideration.

3. Exclusive Hiring: In the event the Contractor has a valid bargaining agreement providing for exclusive hiring hall referrals, the Contractor is expected to observe the provisions of that agreement to the extent that the system permits the Contractor's compliance with equal employment opportunity contract provisions. (The U.S. Department of Labor has held that where implementation of such collective bargaining agreements have the effect of discriminating against minorities or women, or obligates the Contractor to do the same, such implementation violates Executive Order 11246, as amended.)

4. Referrals and Notices (Existing Employees): The Contractor shall encourage present employees to refer minority and women applicants for employment by posting appropriate notices or bulletins in areas accessible to all employees. In addition, information and procedures with regard to referring minority and women applicants shall be discussed with employees.

5. Female and Minority Youth: When possible, the Contractor shall provide after school, summer, and vacation employment opportunities for female and minority youth.

1-07.11(6) PERSONNEL ACTIONS

Wages, working conditions, and employee benefits shall be established and administered, and personnel actions of every type, including hiring, upgrading, promotion, transfer, demotion, layoff, and termination, shall be taken, without regard to race; color; religion; sex; marital status; sexual orientation; political ideology; age; creed; ancestry; national origin; or the presence of any sensory, mental or physical handicap. The following procedures shall be followed:

1. Conditions of Employment: The Contractor shall conduct periodic inspections of Project Sites to ensure that working conditions and employee facilities do not indicate discriminatory treatment of Project Site personnel.

2. Wages: The Contractor shall periodically evaluate the spread of wages paid within each classification to determine any evidence of discriminatory wage practices.

3. Work Force Profile: The Contractor shall evaluate the work force profile on a quarterly basis to identify job categories in which minorities and women are underutilized. The Contractor shall undertake affirmative action to remedy underutilization of minorities and women at all levels of its work force including management.

4. Review of Personnel Actions: The Contractor shall periodically review selected personnel actions in depth to determine whether there is evidence of discrimination. Where evidence is found, the Contractor shall promptly take corrective action. If the review indicates that the discrimination may extend beyond the actions reviewed, such corrective action shall include all affected persons.

5. Complaints: The Contractor shall promptly investigate all complaints of alleged discrimination made to the Contractor in connection with the obligations under this Contract, shall attempt to resolve such complaints, and shall take appropriate corrective action within a reasonable time. If the investigation indicates that the discrimination may affect persons other than the complainant,
such corrective action shall include such other persons. Upon completion of each investigation the Contractor shall inform every complainant of all of the avenues of appeal.

6. **Application Forms**: The Contractor shall review all existing application forms, test minimum qualifications, etc., for job relatedness and necessity, and revise any forms, practices, and activities which would adversely impact minority and women applicants.

7. **Name and Address File**: The Contractor shall maintain a current file of the names and addresses and telephone numbers of all job applicants.

1-07.11(7) **TRAINING AND PROMOTION**

The Contractor shall assist in locating, qualifying and increasing the skills of minority and women employees and applicants for employment through training and promotion. The Contractor may call the WSDOT Supportive Service Consultant (the Tacoma Urban League) 1-(800)-562-8197, toll free, for assistance in filling a trainee position with a minority or woman.

Consistent with the Contractor’s work force requirements and as permissible under Federal, State and City regulations, the Contractor shall make full use of training programs, i.e., apprenticeship and “on-the-job” training programs, for the specific project and the geographical area of the Work to meet training and promotion needs and requirements. The use of established State or Federal approved apprenticeship programs and standards is preferred over a Contractor’s own “on-the-job” training program.

1-07.11(8) **RESERVED**

1-07.11(9) **RESERVED**

1-07.11(10) **RECORDS AND REPORTS**

1-07.11(10)A **GENERAL**

The Contractor and each Subcontractor shall keep such records as are necessary to enable ESD to determine compliance with the Contractor’s and Subcontractor’s equal employment opportunity obligations. The records kept by the Contractor and each Subcontractor shall indicate:

1. **Work Force Data**: The number of minority and non-minority group members and women employed in each work classification on the Project.

2. **Good Faith Efforts - Unions**: The progress and efforts being made in cooperation with unions to increase employment opportunities for minorities and women. (This requirement is applicable only to employers that rely in whole or in part on unions as a source of their work force.)

3. **Good Faith Efforts - Recruitment**: The progress and efforts being made in locating, hiring, training, qualifying, and upgrading minority and women employees.

4. **Subcontracting**: The progress and efforts being made in securing the services of minority group and women Subcontractors and Subcontractors with meaningful minority and women representation among their employees.

1-07.11(10)B **WORK FORCE REPORTS**

The Contractor shall submit to ESD at the time of the preconstruction conference a completed Work Force Report form. The Work Force Report form is a projection and commitment of minorities and women to be used on the Contractor’s work force during the term of the Contract and a profile of the Contractor’s permanent work force. The name and title of the person with the Contractor’s firm who has the authority and responsibility for assuring compliance and reporting progress on affirmative action requirements must be indicated on the Work Force Report form.

1-07.11(10)C **EEO REPORTS**

To document compliance with the EEO provisions of this Contract, the Contractor and each Subcontractor shall submit Equal Employment Opportunity (EEO) reports required by ESD. The Contractor’s first submittal is due two weeks after the Contract start date specified in the Notice to Proceed; succeeding reports
shall be submitted at two-week intervals thereafter until completion of the Work. The first Subcontractor submittal is due two weeks after commencement of the first portion of the Work performed by the Subcontractor; succeeding reports shall be submitted every two weeks thereafter for every bi-weekly period that the Subcontractor performs any portion of the Work under this Contract. All reports by Subcontractor shall be submitted to the Contractor and by the Contractor to ESD.

A Contractor having more than one contract or project with the City shall not combine EEO reporting information regarding the separate contracts or projects but, instead, shall submit separate EEO reports regarding each contract or project. The shifting of minorities and women to the work force of various separate projects in an attempt to show compliance within an affirmative action plan will not be acceptable.

To meet the records and reporting requirements, the Contractor and each Subcontractor shall:

1. Maintain a current file of the names, addresses, and telephone numbers of all job applicants specifying the race and gender of each job applicant and the action taken with respect to such job applicant.
2. Maintain and keep a written record of the time and place of notices regarding affirmative action, persons notified, and the specific subject of the notice.
3. Maintain records in an easily retrievable and understandable format that will document any and all openings and opportunities for advancement that occur; the Contractor's or Subcontractor's efforts to train, recruit, and promote minorities and women; and the results of those affirmative action efforts.

The Contractor and each Subcontractor shall submit such additional forms and documentation as may be included in the Contract Documents on the forms and at the times set forth therein.

1-07.11(10)D REQUIRED RECORDS AND RETENTION

Records shall be retained for a period of three years following the Completion Date and shall be available at reasonable times and places for inspection by authorized representatives of the Owner, and when applicable, the State Department of Transportation and the Federal agency providing funds for the Work.

1-07.11(11) COMPLIANCE MONITORING

ESD will monitor the affirmative action program of the Contractor and each Subcontractor, utilizing the EEO documentation submitted by the Contractor for the Contractor and each Subcontractor, to determine the affirmative action efforts made by the Contractor and each Subcontractor. The Contractor shall cooperate fully with ESD and shall be responsible for each Subcontractor's compliance. If ESD is not satisfied that the documentation submitted by the Contractor complies with the requirements herein, an attempt will be made by ESD to reach a satisfactory solution of the problem with the Contractor. If discussions between ESD and the Contractor result in an unsatisfactory conclusion, as determined by ESD, then ESD will find that the Contractor has not made a good faith effort and is in noncompliance with the Contractor's sworn statement to ensure equality of opportunity in employment during the term of the Contract.

Coincident with or before a report from ESD asserting unsatisfactory performance is sent to the Owner, ESD will notify the Contractor in writing of such report and of the Contractor's right to be heard by the Owner. The Owner will give the Contractor an opportunity to be heard after 10 days' prior Written Notice. If the unsatisfactory performance is by a Subcontractor, the Contractor will be given an opportunity to remedy the Subcontractor's noncompliance before the report is sent to the Owner.

If after said hearing, the Owner concurs with the report submitted by ESD that (1) the Contractor has failed to comply with the promises and representations made in the sworn statement and other required documentation or (2) has failed to live up to or ensure compliance with the employment goals established in the Contract pursuant to Section 20.44.100 of the Seattle Municipal Code, the Owner will find the Contractor in noncompliance. Thereafter, the Owner will not enter into a contract with the noncomplying Contractor until the Owner is reasonably assured of future satisfactory compliance. This action will be in addition to such other remedies which may be available to the Owner under the provisions of the Contract.
1-07.11(12) SANCTIONS
Any violation of the mandatory requirements of Section 1-07.11, subsections (1) through (11), shall be a material breach of Contract for which the Contractor may be subject to damages and sanctions provided for by the Contract and by applicable law.

1-07.11(13) EMPLOYMENT GOALS
The City encourages the Contractor to meet employment goals of not less than 21% minorities and 20% women; and an employment subgoal of 4.5% for minority women.

1-07.12 WOMEN AND MINORITY BUSINESS ENTERPRISE REQUIREMENTS

1-07.12(1) GENERAL
No utilization requirements for Women and Minority Business Enterprises (“WMBEs”) apply to this Contract. No minimum level of WMBE Subcontractor participation shall be required as a condition of receiving Award of the Contract and no preference will be given to a Bidder for its WMBE utilization or WMBE status. Provided, however, that any affirmative action requirements set forth in any federal regulations or statutes included or referenced in the Contract Documents will continue to apply.

As required by RCW 35.22.650 and other provisions of these Specifications, the Contractor and all Subcontractors shall comply with the following clause:

"Contractor agrees that he shall actively solicit the employment of minority group members. Contractor further agrees that he shall actively solicit bids for the subcontracting of goods or services from qualified minority businesses. Contractor shall furnish evidence of his compliance with these requirements of minority employment and solicitation. Contractor further agrees to consider the grant of subcontracts to said minority Bidders on the basis of substantially equal proposals in the light most favorable to said minority businesses. The Contractor shall be required to submit evidence of compliance with this section as part of the Bid."

"As used in this clause, the term 'minority business' means a business at least 51% of which is owned by minority group members. Minority group members include but are not limited to Blacks, Women, Native Americans, Orientals, Eskimos, Aleuts and Spanish Americans."

1-07.12(2) NON-DISCRIMINATION
Contractors and Bidders shall not create barriers to open and fair opportunities for WMBEs to participate in all City contracts and to obtain or compete for contracts and subcontracts as sources of Supplies, equipment, construction and services. In considering offers from and doing business with Subcontractors and Suppliers, the Contractor shall not discriminate on the basis of race, color, creed, religion, sex, age, nationality, marital status, sexual orientation or the presence of any mental or physical disability in an otherwise qualified disabled person.

1-07.12(3) RECORD-KEEPING
The Contractor shall maintain, for at least 12 months after completion of this Contract, relevant records and information necessary to document the Contractor’s utilization of WMBEs and other businesses as Subcontractors and Suppliers under this Contract and in its overall public and private business activities. The Contractor shall also maintain all written quotes, bids, estimates, or proposals submitted to the Contractor by all businesses seeking to participate as Subcontractors or Suppliers under this Contract. The Owner shall have the right to inspect and copy such records. If this Contract involves federal funds, the Contractor shall comply with all record-keeping requirements set forth in any federal rules, regulations or statutes included or referenced in the Contract Documents.

1-07.12(4) AFFIRMATIVE EFFORTS TO UTILIZE WMBES
The City encourages the utilization of Minority Business Enterprises (“MBEs”) and Women’s Business Enterprises (“WBEs”) (collectively, “WMBEs”), in all City contracts. The City encourages the following practices to open competitive opportunities for WMBEs:
1. Attending a pre-Bid or pre-solicitation conference, if scheduled by the Owner, to provide Project information and to inform WMBEs of contracting and subcontracting opportunities.

2. Placing all qualified WMBEs attempting to do business in The City of Seattle on solicitation lists, and providing Written Notice of subcontracting opportunities to WMBEs capable of performing the work, including without limitation all businesses on any list provided by The City of Seattle, in sufficient time to allow such businesses to respond to the written solicitations.

3. Breaking down total requirements into smaller tasks or quantities, where economically feasible, in order to permit maximum participation by small businesses including WMBEs.

4. Establishing delivery schedules, where the requirements of this Contract permit, that encourage participation by WMBEs.

5. Providing WMBEs that express interest with adequate and timely information about plans, specifications, and requirements of this Contract.

6. Utilizing the services of available minority community organizations, minority contractor groups, local minority assistance offices, The City of Seattle, and other organizations that provide assistance in the recruitment and placement of WMBEs.

1-07.12(5) SANCTIONS FOR VIOLATION

Any violation of the mandatory requirements of Section 1-07.12, subsections (1) through (3), shall be a material breach of Contract for which the Contractor may be subject to damages and sanctions provided for by Contract and by applicable law.

Compliance with Seattle’s “Fair Contracting Practices Ordinance” Required:

Each party is required to comply with the Fair Contracting Practices Ordinance of The City of Seattle (Ordinance 119601), as amended. Conduct made unlawful by that ordinance constitutes a breach of Contract. Engaging in an unfair contracting practice may also result in the imposition of a civil fine or forfeiture under the Seattle Criminal Code as well as various civil remedies.

1-07.13 CONTRACTOR’S RESPONSIBILITY FOR WORK AND DAMAGE

1-07.13(1) GENERAL

Except as provided for otherwise in the Contract Documents, all Work and Material for the Project, including Change Order Work, shall be at the sole risk of the Contractor until the Completion Date. Until such date, damage to, or destruction of, either permanent or temporary portions of the Work, existing utilities, street improvements, materials, or equipment and plant shall be promptly rebuilt, restored, repaired, corrected or replaced by the Contractor, at the Contractor’s expense, regardless of the cause of damage.

Exceptions to the above shall be limited exclusively to the following:

1. Damage to the permanent Work caused by acts of nature, such as earthquake, flood or other cataclysmic phenomenon of nature.

2. An act of the public enemy or a government authority.

3. A slide occurring on a finished slope after the Physical Completion Date of the Work; provided, however, that this exception shall not apply should damages be by reason of the Contractor’s failure to comply with the Contractor’s contractual responsibilities or to perform sound engineering and construction practices in the conduct of the Work, or to take reasonable precautions under the circumstances.

4. Third party damage or vandalism occurring after the Physical Completion Date.

If the performance of the Work is delayed as a result of damage by one or more others, an extension of time will be evaluated in accordance with Section 1-08.8.

Damage qualifying under any of the exceptions listed in Section 1-07.13(1) above shall be corrected promptly when ordered by the Engineer, and compensation therefor shall be made in accordance with Section 1-04.4. Where public safety is affected and an emergency exists, the Engineer may elect to accomplish repair by means of Owner forces or other forces as permitted by Section 1-05.8.

Nothing contained in this section shall be construed as relieving the Contractor of responsibility for, or damage resulting from, the Contractor’s own operations or negligence, or the operations or negligence of any of
The Contractor shall bear sole responsibility for:

1. Damage to property located within or outside the Project Site limits caused by erosion, siltation, run-off, or other related cause as a result of any construction operation.
2. Any pollution of a river, stream, ground water, or other water that may occur as a result of any construction operation.

1-07.13(2) RELIEF OF RESPONSIBILITY FOR COMPLETED WORK

Upon written request, the Contractor may be relieved of the duty of maintaining and protecting certain portions of the Work, as described in Section 1-07.13(2) below that have been completed in all respects in accordance with the requirements of the Contract. If the Engineer provides written approval, the Contractor will be relieved of the responsibility for damage to said completed portions of the Work resulting from use by public traffic or from the action of the elements or from any other cause, but not from damage resulting from the operations or negligence of the Contractor or any of its Subcontractors.

Portions of the Work for which the Contractor may be relieved of the duty of maintenance and protection as provided in Section 1-07.13(1) above include but are not limited to the following:

1. The completion of at least two city blocks (approximately 1/4 mile) of Roadway including the Traveled Way, Shoulders, drainage control facilities, planned Roadway protection work, lighting, and any required traffic control and access facilities.
2. A bridge or other Structure of major importance.
3. A complete unit of a traffic control signal system or street lighting system.
4. A complete unit of permanent street protection work.
5. A building that is functionally complete and open to the public.
6. Any Contract Bid item.

1-07.13(3) RELIEF OF RESPONSIBILITY FOR DAMAGE BY PUBLIC TRAFFIC

When it is necessary for public traffic to utilize a street facility during construction, the Contractor will be relieved of responsibility for damages to permanent work by public traffic under the following circumstances:

1. The work is in accordance with the Contract Plans or approved stage construction plans,
2. The work is on a section of Roadway required by the Contract to be opened to public traffic, and
3. The traffic control is in accordance with the approved traffic control plans.

If traffic is relocated to another section of Roadway, the Contractor shall resume responsibility for the Work until such time as the section of Roadway is again open to public traffic or the Contractor submits a written request for work that is completed to a point where relief can be granted in accordance with Section 1-07.13(2).

1-07.13(4) REPAIR OF DAMAGE

The Contractor shall promptly repair all damage to either temporary or permanent work as directed by the Engineer. For damage qualifying for relief under Sections 1-07.13(2) or 1-07.13(3), payment will be made in accordance with Section 1-04.4. Payment will be limited to repair of damaged work only. No payment will be made for delay or disruption to the Work.

The Engineer may elect to accomplish repair by Owner forces or other means.

1-07.14 RESERVED

1-07.15 TEMPORARY WATER POLLUTION/EROSION CONTROL

Temporary water pollution/erosion control work shall consist of temporary measures that may be indicated in the Contract Documents, proposed by the Contractor and approved by the Engineer, or ordered by the Engineer during performance of the Work. This temporary work is intended to provide prevention, control, and abatement of water pollution/erosion within the limits of the Project, and to minimize damage to the Work, adjacent property, streams, and other bodies of water.
Controlling pollution, erosion, run-off, and related damage may require the Contractor to perform temporary work items including but not limited to:

1. Providing ditches, berms, Culverts, and other measures to control surface water;
2. Building dams, settling basins, energy dissipaters, and other measures, to control downstream flows;
3. Controlling underground water found during construction; or
4. Covering or otherwise protecting slopes until permanent erosion-control measures are working.

The Contractor is hereby notified that compliance with these requirements may necessitate performance of certain items of work at a different time or in a different manner than has been considered normal construction practices in the past and that such revisions in scheduling of Work may interfere with said normal construction practices.

Therefore, if required by the Contract Documents, the Contractor shall, before starting the Work, submit to the Engineer for approval an effective temporary water pollution/erosion control plan. The plan shall show the scheduling, as it relates to the Contractor’s critical path schedule, for permanent pollution and erosion control work and for temporary erosion control measures the Contractor proposes to take, to prevent water pollution/erosion due to the Work on:

1. Areas within the limits of the Project Site.
2. Other work areas outside the Project Site.
3. Haul roads.
4. Adjacent property.
5. Streams and other bodies of water.

The Contractor shall not perform clearing, grubbing or any other earthwork on the Project, other than that specifically authorized in writing by the Engineer, until the plan has been approved. The Contractor shall revise and bring the plan up to date whenever the Engineer makes written request for revisions. The Contractor shall allow the Engineer not less than five Working Days for the review of a submitted plan whether the original or revised. The Engineer will not be liable to the Contractor for failure to approve all or any portion of an originally submitted or revised water pollution/erosion control plan, nor for any delays to the work due to the Contractor’s failure to submit an acceptable plan.

The Contractor shall coordinate temporary water pollution/erosion control work with the permanent drainage and erosion control work that may be specified in the Contract Documents to ensure continuous water pollution/erosion control is maintained during performance of the Work.

If the Engineer, under Section 1-08.6, orders the work suspended for an extended time, the Contractor shall make, before the Engineer assumes maintenance responsibility, every effort to control erosion, pollution, and run-off during shutdown. Section 1-08.7 describes the Engineer’s responsibility in such cases.

The area of excavation, borrow, and embankment operations in progress will be limited commensurate with the Contractor’s capability and progress in keeping the finish grading, mulching, seeding, and other permanent erosion control measures current according to the accepted critical path schedule. If the Engineer determines that water pollution or erosion could occur due to seasonal limitations, the nature of the material, or the Contractor’s progress, temporary water pollution/erosion control measures shall be taken immediately. The Engineer may require the Contractor’s operations to be scheduled so those permanent erosion control features will be installed concurrently with or immediately following grading operations.

Under no conditions shall the amount of surface area of erodible earth material exposed at one time by clearing and grubbing, excavation, borrow or fill within the Right of Way exceed 18,000 square feet without prior approval by the Engineer.

Permanent erosion control work ordered by the Engineer and not covered in the Bid will be considered extra work and paid for as such. Only erosion control included in the Bid Form or designated by the Engineer and ordered as extra work will be considered permanent control measures.

Temporary erosion control and water pollution control shall be the Contractor’s responsibility. Costs for temporary erosion and water pollution control work will be considered incidental to the Work and such costs shall be included in the lump sum Bid or the unit prices for the various items of Work listed in the Bid Form that comprise the Contract.
Records shall be retained for a period of three years after the Completion Date and shall be available at reasonable times and places for inspection by authorized representatives of the Owner and, when applicable, WSDOT and the Federal agency providing funds for the Work.

1-07.16 PROTECTION AND RESTORATION OF PROPERTY

1-07.16(1) PRIVATE AND PUBLIC PROPERTY

The Contractor shall protect from damage or destruction private and public property located on or near the Work that is not designated for repair, replacement or removal. The Contractor shall ensure that interference with the use of such property is minimized.

Property includes land; improvements lawfully occupying the Right of Way; trees, shrubbery and landscaping; electric distribution and transmission systems; water distribution and transmission systems; survey markers and monuments; buildings and Structures; conduits and pipes; fences; Highway facilities such as signal systems including loop detection systems in Pavement Structures both approaching and at signalized intersections, roadway lighting systems, signs, guardrails, pavements, curbs, driveways, sidewalks, traffic buttons, paint striping and other channelization; and other property of all descriptions whether shown on the Drawings or not.

The Contractor is alerted to the existence of cast iron Water Mains within the Right of Way having pipe joints very sensitive to disturbance. These pipe joints have been known to develop leakage when disturbed by shifting earth, or excessive vibrations, or adverse impacts of any other construction excavation work. The Contractor shall take additional precautions to eliminate adverse impact to cast iron Water Main. Information as to the type of Water Main material when Water Mains are identified by "marked for locate" per Section 1-07.17(1) can be obtained from the GIS counter, room 510, Municipal Building, 600 4th Avenue, Seattle, Washington 98104.

If the Engineer requests in writing, or if otherwise necessary, the Contractor shall, at no expense to the Owner, provide and install safeguards acceptable to the Engineer to protect public and private property. If public or private property is damaged or destroyed or its use interfered with by the Contractor, the Contractor’s agents or the Contractor’s employees, such interference shall be terminated and damaged or destroyed property repaired and restored immediately to its former condition by the Contractor at the Contractor’s expense. Should the Contractor refuse or not respond promptly to a written request to restore damaged or destroyed property to its original condition, the Engineer may have such property restored by other means at the Contractor’s expense as permitted by Section 1-05.8.

The Seattle Public Utilities is responsible for maintaining all Right of Way survey monumentation. If monuments are in danger of being dislodged or lost because of nearby construction, or in danger of being disturbed during removal of pavement where monumentation, whether cased or not, exists within the pavement, the Contractor shall notify the Engineer at least 4 Working Days ahead of construction start to allow a Seattle Public Utilities survey crew to install reference points from which the monuments can be reset, as necessary, in their original locations at a later date.

Cost to replace monumentation not referenced and then lost because of the Contractor’s failure to notify Seattle Public Utilities survey crews as required above will be borne by the Contractor. Costs shall include the cost of replacement surveys and the supervision needed to set monuments in their original locations.

1-07.16(2) TREES, SHRUB, AND PLANT MATERIAL PROTECTION

Trees, shrubs, plants, and other landscaping not designated for removal shall be left in place and protected from damage or injury during construction. The Contractor shall provide full and adequate protection against construction damage to all landscaping that is to remain.

Where existing trees are within the area of work, or where existing trees outside the area of work have driplines extending into the area of work, the Contractor shall employ methods to minimize adverse impact to these existing trees including limbs and roots. The Contractor shall notify the Engineer of any construction work within the drip line of trees at least 1 Working Day before the scheduled activity. These may include:

1. Temporary construction fencing.
2. Temporary tie-up of low limbs.
3. Application of a 4 to 6 inch layer of mulch (or wood chips salvaged from cleaning and grubbing) within the drip-line of trees.
4. Timber or steel planking for protection of surface roots from Equipment.

5. Tree root pruning or other tree root treatment as directed by the Engineer.

No storage of Equipment or materials shall be allowed within the drip-line of trees not designated for removal. Steel planking, or timber planking made of 4-inch thick material, each plank covering a minimum 8 square feet, shall be used to support the backhoe and other Equipment stabilizers when set within the drip-line of a tree or sodded planting strip.

Where sidewalk, curb, and pavement removal and placement operations occur where tree roots 2 inch or greater in diameter are impacted, the Engineer will determine how these tree roots are to be handled.

Tree removal or tree trimming within 10 feet of any overhead utility line requires the Contractor make the notification specified in Section 1-07.28.

Trenching or tunneling within the drip-line of existing trees not designated for removal shall be in accordance with the Standard Plans and defining zone clearance requirements. Excavation or tunneling of any kind within the "critical root zone" as defined by the Standard Plans will not be allowed unless the Contractor requests at least 2 Working Day in advance and receives approval of the Engineer. Excavation around roots 2-inches in diameter and larger requires handwork. Individual tree roots 2-inches or greater in diameter shall not be cut, but rather protected when within the drip line of the tree. Tree roots smaller than 2-inch diameter shall be cleanly cut flush with the edge of the trench. Ripping or tearing of tree roots will not be allowed.

The Contractor may propose alternate methods of installing utilities under an existing root system when work is within the drip line of the tree. Where the Contractor foresees construction operations where impact to limbs cannot be avoided, the Contractor shall notify the Engineer at least 5 Working Days in advance. Low limbs that will interfere with the normal operation of the Contractor’s Equipment shall be trimmed. Before trimming any trees, the Contractor shall notify the Engineer of the proposed method and the amount of trimming required. The trimming shall be done by a professional tree service company whose past and current performance is in accordance with National Arborist Association tree-pruning standards.

Trenching or tunneling within the drip-line of existing trees not designated for removal shall be in accordance with the Standard Plans and defining zone clearance requirements. Excavation or tunneling of any kind within the "critical root zone" as defined by the Standard Plans will not be allowed unless the Contractor requests at least 2 Working Day in advance and receives approval of the Engineer. Excavation around roots 2-inches in diameter and larger requires handwork. Individual tree roots 2-inches or greater in diameter shall not be cut, but rather protected when within the drip line of the tree. Tree roots smaller than 2-inch diameter shall be cleanly cut flush with the edge of the trench. Ripping or tearing of tree roots will not be allowed.

The Contractor may propose alternate methods of installing utilities under an existing root system when work is within the drip line of the tree. Where the Contractor foresees construction operations where impact to limbs cannot be avoided, the Contractor shall notify the Engineer at least 5 Working Days in advance. Low limbs that will interfere with the normal operation of the Contractor’s Equipment shall be trimmed. Before trimming any trees, the Contractor shall notify the Engineer of the proposed method and the amount of trimming required. The trimming shall be done by a professional tree service company whose past and current performance is in accordance with National Arborist Association tree-pruning standards.

Trenching or tunneling within the drip-line of existing trees not designated for removal shall be in accordance with the Standard Plans and defining zone clearance requirements. Excavation or tunneling of any kind within the "critical root zone" as defined by the Standard Plans will not be allowed unless the Contractor requests at least 2 Working Day in advance and receives approval of the Engineer. Excavation around roots 2-inches in diameter and larger requires handwork. Individual tree roots 2-inches or greater in diameter shall not be cut, but rather protected when within the drip line of the tree. Tree roots smaller than 2-inch diameter shall be cleanly cut flush with the edge of the trench. Ripping or tearing of tree roots will not be allowed.

The Contractor may propose alternate methods of installing utilities under an existing root system when work is within the drip line of the tree. Where the Contractor foresees construction operations where impact to limbs cannot be avoided, the Contractor shall notify the Engineer at least 5 Working Days in advance. Low limbs that will interfere with the normal operation of the Contractor’s Equipment shall be trimmed. Before trimming any trees, the Contractor shall notify the Engineer of the proposed method and the amount of trimming required. The trimming shall be done by a professional tree service company whose past and current performance is in accordance with National Arborist Association tree-pruning standards.

Trenching or tunneling within the drip-line of existing trees not designated for removal shall be in accordance with the Standard Plans and defining zone clearance requirements. Excavation or tunneling of any kind within the "critical root zone" as defined by the Standard Plans will not be allowed unless the Contractor requests at least 2 Working Day in advance and receives approval of the Engineer. Excavation around roots 2-inches in diameter and larger requires handwork. Individual tree roots 2-inches or greater in diameter shall not be cut, but rather protected when within the drip line of the tree. Tree roots smaller than 2-inch diameter shall be cleanly cut flush with the edge of the trench. Ripping or tearing of tree roots will not be allowed.

The Contractor may propose alternate methods of installing utilities under an existing root system when work is within the drip line of the tree. Where the Contractor foresees construction operations where impact to limbs cannot be avoided, the Contractor shall notify the Engineer at least 5 Working Days in advance. Low limbs that will interfere with the normal operation of the Contractor’s Equipment shall be trimmed. Before trimming any trees, the Contractor shall notify the Engineer of the proposed method and the amount of trimming required. The trimming shall be done by a professional tree service company whose past and current performance is in accordance with National Arborist Association tree-pruning standards.

The Contractor may propose alternate methods of installing utilities under an existing root system when work is within the drip line of the tree. Where the Contractor foresees construction operations where impact to limbs cannot be avoided, the Contractor shall notify the Engineer at least 5 Working Days in advance. Low limbs that will interfere with the normal operation of the Contractor’s Equipment shall be trimmed. Before trimming any trees, the Contractor shall notify the Engineer of the proposed method and the amount of trimming required. The trimming shall be done by a professional tree service company whose past and current performance is in accordance with National Arborist Association tree-pruning standards.
their original location, or at other locations directed by the Engineer. New supports or boxes will not be required unless the original boxes or posts were damaged by the Contractor. Replacement or repairs shall be at the Contractor's expense. Mailbox height shall be in accordance with U.S. Postal Service requirements.

When trenching is required within a planting strip the Contractor shall protect the existing curb, gutter and sidewalk from damage utilizing timber pads if necessary. The Contractor shall demonstrate to the Engineer the method or procedure the Contractor intends to follow in order to protect existing improvements adequately before proceeding with trenching in the planting strip.

Where sprinkler systems are encountered in the planting strip the Contractor shall carefully remove the existing sprinkler system for reinstallation by the Contractor after the work is complete.

When, due to the Contractor's operations, plastic traffic buttons, lane markers or pavement markings are damaged, destroyed or obliterated outside the neat lines of a trench or area of pavement restoration, the Contractor shall restore them in kind at no expense to the Owner.

1-07.16(4) PAYMENT

All costs for the protection and repair or restoration of damaged or destroyed property specified in this section will be considered incidental to the Work. These costs shall be included in the lump sum Bid or the unit prices for the various items of work listed in the Bid Form.

1-07.17 UTILITIES AND SIMILAR FACILITIES

1-07.17(1) GENERAL

Locations and dimensions shown in the Drawings for existing facilities are in accordance with available information obtained without uncovering, measuring or other verification.

The Contractor shall protect from damage private and public utilities encountered during the work. Utilities shall include, but are not limited to, Sewer and Storm Drain systems; water distribution and supply systems; electrical distribution and transmission systems; natural gas distribution systems; telephone, telegraph, and CATV systems; fire alarm systems; petroleum pipe lines; steam distribution systems; traffic control systems; power lines and appurtenances; METRO trolley lines and feeders; railroad tracks and appurtenances; and similar facilities and systems.

Public and private utilities, or their contractors, will furnish all work necessary to adjust, relocate, repair, or construct their facilities unless otherwise provided for in the Contract Documents. Where it is necessary to remove or relocate private utilities in order to accommodate the Work, the removal or relocation will normally be accomplished in advance of construction. Under some circumstances however, this removal or relocation may have to be performed concurrent with the Work. In this case, the Contractor shall coordinate the Contract Work with that of the utilities so as to cause the least possible interference with both kinds of work. Where a private utility should have been removed or relocated prior to the Contractor beginning the Work at the point affected, and such work by the utility was not accomplished, the Contractor shall note the presence of the facility and immediately notify the Engineer in writing.

Attention is directed to the possible existence of underground facilities that are not shown in the Contract Documents. When the relocation of these facilities is necessary to accommodate the Work, the Engineer will provide for the relocation of these facilities by other forces, or the relocation shall be performed by the Contractor as extra work pursuant to a Change Order.

It is further anticipated that the Contractor may encounter private water-service utilities (water-service lines running between meters and private residences) during work operations. Records of these utilities are not maintained by the Engineer and therefore do not appear on the Drawings and will not be field located by Seattle Public Utilities. The locations of these private utilities can usually be ascertained by relative meter location, residence location, or through discussion with various private property owners. It shall be the Contractor's responsibility to locate and protect these private water services from damage.

The Contractor is also alerted to the existence of RCW Chapter 19.122, an act relating to underground utilities and prescribing penalties, and Section 1-07.28 herein prescribing certain notification to be made by the Contractor. Any cost or scheduling impact incurred by the Contractor by reason of Contractor's required compliance with these statutory and contractual provisions shall be borne by the Contractor. No excavation shall begin until all known facilities near the excavation area have been located and marked.

The right is reserved to the Engineer and the owner of utilities, or their authorized agents, to enter upon the Right of Way for the purpose of making changes, connections, or repairs to their facilities. The Contractor shall cooperate with forces engaged in this work and shall avoid any unnecessary delay or hindrance to work being performed by other forces. It shall be the Contractor’s responsibility to make all notifications and applications needed to effectively coordinate utility and Contractor Work (See Section 1-07.28).

Should the Contractor desire to have an adjustment in line or grade made on a utility or other improvement for the Contractor's convenience and the rearrangement is in addition to, or different from, that indicated in the Contract Document, the Contractor shall make all necessary notifications and applications with the owner of the utility for such rearrangement and bear all expenses in connection with that work.

If it is necessary to provide temporary water supply connections due to conflict with private water-service pipes during the course of construction, it shall be the responsibility of the Contractor to do so.

In all cases, private water-service lines damaged by the Contractor shall be repaired by the Contractor at the Contractor’s expense. The Contractor shall notify the Engineer immediately of any such damage and shall begin repairs immediately and work continuously until water service is restored. Repair of damaged private water-service lines shall be inspected by Seattle Public Utilities or applicable water utility prior to backfilling.

Except as otherwise provided herein, all costs incurred by the Contractor in complying with requirements of this Section shall be included in the lump sum Bid or the unit prices for the various items of Work listed in the Bid Form. When others delay the work through late removal or relocation of any utility or similar facility, the Contractor’s loss of time will be adjusted by extending the Contract Time per Section 1-08.8.

1-07.17(2) UNDERGROUND UTILITY CLEARANCES

1-07.17(2)A CLEARANCES BETWEEN WATERMAINS AND OTHER UTILITIES

Where possible, sewers shall be laid at a lower invert elevation than Water Mains.

Water mains and sewers shall be spaced apart horizontally a minimum of 10 feet, measured center to center, except the spacing may be reduced to the following “nearest point” measurements:

1. Five (5) feet horizontal when the Water Main is a ductile iron Water Main.
2. Less than 5 feet when the Water Main is ductile iron, and:
 a. The sewer is constructed of materials and with joints that are equivalent to Water Main standards, including pressure-testing requirements.
 b. The bottom of the Water Main is at least 18 inches above the top of the sewer.

Water mains crossing over sewers shall be constructed of ductile iron and shall be spaced to provide a minimum separation of 18 inches between the bottom of the Water Main and the top of the sewer. In addition to the above requirements, Water Mains passing under sewers shall be protected by providing:

1. A minimum vertical spacing of 18 inches between the bottom of the sewer and the top of the Water Main.
2. Adequate support for the sewer to prevent excessive deflection of joints and settling on and breaking the Water Main.
3. The point of crossing centered between two successive joints of the Water Main pipe.

When the Water Main is existing and new side sewers are being installed or reconnected the following requirements pursuant to SMC Chapter 21.16 shall apply:

1. Ductile iron pipe shall be used for all side sewers crossing over Water Mains, for a perpendicular distance of at least 5 feet from the center of the Water Main.
2. Side sewers laid below Water Mains shall be laid at least 6 inches below and 12 inches horizontal, from all Water Mains and water-service lines as measured from the “nearest points,” unless ductile or cast iron pipe is used for the side sewer.

All utilities, both public and private, passing over, under, or very close to existing Water Mains within distances specified in this Section shall be coordinated with Water Operations at least 15 Working Days in advance of construction for approval of, and coordination with, the Engineer. See Section 1-07.28. At a
1-07.17(2)B CLEARANCES BETWEEN GAS MAINS AND OTHER UTILITIES

Minimum clearances of 1 foot vertical and 6 inches horizontal shall separate an existing gas main, or a gas service line, from a new ductile iron water line to be installed above or below the gas line. If these minimum clearances cannot be maintained, a protective wrap shall be provided for the entire distance where clearances are smaller than required. Wrapping material shall consist of either a split PVC pipe or PVC wrapping of at least 0.04-inch thickness and shall be applied to either one of the pipes.

Horizontal and vertical clearances of 6 inches or more are desired between Water Mains and all other utilities except gas and sewer lines (discussed in this Section and Section 1-07.17(2)A respectively). If a smaller separation is unavoidable, the space between the Water Main and the other utilities shall be filled with polyethylene plastic foam material before backfilling.

1-07.17(2)C CLEARANCES BETWEEN SEWERS

Whenever a new sewer/drain pipe clears an existing or new utility by 6-inch or less, polyethylene plastic foam shall be placed between the utilities as a cushion prior to backfilling. The polyethylene plastic foam shall conform to the specifications in Section 9-05.14.

1-07.17(2)D CLEARANCES WITH ELECTRICAL DISTRIBUTION AND TRANSMISSION SYSTEMS

When an underground electrical utility is “marked for locate” (see section 1-07.17(1)) within the vicinity of a proposed excavation, the Contractor shall give the notification specified in Section 1-07.28 regarding clearances from underground electrical distribution and transmission lines.

1-07.18 INSURANCE

1-07.18(1) GENERAL

Prior to undertaking any Work under this Contract, the Contractor shall obtain and file with the Owner, acceptable evidence of a policy or policies of insurance as enumerated below.

Failure of the Contractor to fully comply with the insurance requirements of the Contract will be considered a material breach of Contract and, at the option of the Owner, will be cause for such action as may be available to the Owner under other provisions of the Contract Documents or otherwise in law, including immediate termination of the Contract.

The cost of furnishing insurance shall be incidental to and included in the lump sum or unit prices bid by the Contractor for the various items of Work listed in the Bid Form.

1-07.18(2) REQUIRED COVERAGES

The insurance shall contain the following types of coverages and minimum dollar limits:

1. Commercial General Liability Insurance: A policy of Commercial General Liability insurance, written on an insurance industry standard occurrence form (CG 00 01) or equivalent, including all the usual coverages known as:
 a. Premises/Operations Liability
 b. Products/Completed Operations
 c. Personal/Advertising Injury
 d. Contractual Liability
 e. Independent Contractors Liability
 f. Stop Gap/Employers Contingent Liability
 g. Explosion, Collapse, or Underground (XCU)*
 h. Watercraft Liability – Owned and Non-owned*
This coverage is only required when the Contractor’s Work under this Contract includes exposures to which this coverage responds.

Such policy(ies) must provide the following minimum coverage limits:

Bodily Injury and Property Damage

- a. $1,000,000 General Aggregate
- b. $1,000,000 Products & Completed Operations Aggregate
- c. $1,000,000 Personal & Advertising Injury
- d. $1,000,000 Each Occurrence
- e. $100,000 Fire Damage Legal

Stop Gap/Employers Liability

- a. $1,000,000 Each Accident
- b. $1,000,000 Disease - Policy Limit
- c. $1,000,000 Disease - Each Employee

2. **Business Automobile Liability:** A policy of Business Automobile Liability, including coverage for owned, non-owned, leased or hired vehicles written on an insurance industry standard form (CA 00 01) or equivalent, and as specified by Insurance Services Office Symbol 1 (any auto). If “pollutants” as defined in exclusion 11 of the commercial auto policy are to be transported, endorsement CA9948 & MCS 90 are required.

Such policy(ies) must provide the following minimum limit:

Bodily Injury and Property Damage

- $1,000,000 per accident

3. **Worker’s Compensation:** A policy of Worker’s Compensation. As respects Workers’ Compensation insurance in the state of Washington, the Contractor shall secure its liability for industrial injury to its employees in accordance with the provisions of Title 51 of the Revised Code of Washington. The Contractor shall be responsible for Workers’ Compensation Insurance for any Subcontractor who provides services under the Contract. Additionally, if the Contract requires working on or around a navigable waterway the Contractor shall provide evidence of United States Longshoremen’s and Harbor Workers’ (USL&H) coverage and contingent coverage for Jones Act (Marine Employers Liability) in compliance with Federal Statutes. If the Contractor is qualified as a self-insurer in accordance with Chapter 51.14 of the Revised Code of Washington, Contractor shall so certify to the Owner by submitting a letter signed by a corporate officer, indicating that it is a qualified self-Insurer, and setting forth the limits of any policy of excess insurance covering its employees; or any similar coverage required.

Contractor hereby assumes all risk of damage to its property, or injury to its officers, directors, agents, contractors, or invitees, in or about the Project from any cause, and hereby waives all claims against the Owner. The Contractor further waives, with respect to the Owner only, its immunity under RCW Title 51, Industrial Insurance, of the Revised Code of Washington.

4. **Other Special Coverages:** If the Contract requires Work for remediation, abatement, disposal, transporting or other handling of one or more pollutants, additional coverage is required for sudden & non-sudden bodily injury, sickness, disease, mental anguish or shock sustained by any person including death; property damage including physical injury to or destruction of tangible property including the resulting loss of use thereof, clean up costs, and the loss of use of tangible property that has not been physically injured or destroyed; defense including cost, charges and expenses incurred in the investigation, adjustment of defense of claims for such compensatory damages, as follows:

- a. If Work involves remediation, disposal or other handling of pollutants at sites which are owned or occupied during construction or remediation operations by the Contractor, a Contractor’s Pollution Liability policy is required.
- b. If Work involves remediation, abatement, repair, maintenance or other work with lead-based paint or materials containing asbestos, a specific pollution Liability policy covering that exposure is required.
- c. If Work involves storage, transfer, treatment or other processing of pollutants at a disposal site owned or occupied by the Contractor, a Pollution Legal Liability policy is required.
Such policy(ies) shall provide at a minimum limits of:
$1,000,000 per loss/per annual aggregate

If any such policy required by Section 1-07.18 is written on a claim made form, the retroactive date shall be prior to or coincident with the effective date of this Contract. The policy shall state that coverage is claim made, and shall state the retroactive date of the coverage. The Contractor shall maintain the claim made form coverage continuously in force for a minimum of two years following the Completion Date of the Contract. The Contractor shall annually provide the Owner with proof of renewal. If renewal of the claim made form of coverage becomes unavailable, or economically prohibitive, the Contractor shall purchase an extended reporting period ("tail") that shall run at least through the Completion Date, or execute another form of guarantee acceptable to the Owner to assure financial responsibility for liability for services performed.

1-07.18(3) DEDUCTIBLES
If the Contractor's insurance contains a deductible (or self-insured retention amount) the Contractor shall:
1. Disclose such amount.
2. Be responsible for payment of any claim equal to or less than the deductible (or self-insured retention amount).

The Owner reserves the right to reject any insurance policy with a deductible (or self-insured retention amount) for which adequate financial strength of the Contractor cannot be demonstrated to the satisfaction of the Owner.

1-07.18(4) CONDITIONS
The insurance policy or policies, endorsements thereto, and subsequent renewals shall:
1. Be subject to approval by the Owner as to company, form and coverage. The insurance company shall be:
 a. Rated A-:VII or higher in the A.M. Best's Key Rating Guide.
 b. Licensed to do business in the State of Washington or be filed as surplus line by a Washington surplus line broker.
2. Be primary to all other insurance the City may obtain;
3. Be maintained in full force and effect through the Physical Completion Date;
4. Protect The City of Seattle within the policy limits from any and all losses, claims, actions, damages, and expenses arising out or resulting from the Contractor's performance or lack of performance under this Contract;
5. Name The City of Seattle as an additional insured pursuant to the requirements of Section 1-07.18(5) Evidence of Insurance;
6. Include a provision (whether by endorsement or otherwise) indicating that, except with respect to the limits of insurance and any rights or duties specifically assigned to the first named insured, the insurance shall apply:
 a. As if each party insured thereunder (whether as a named insured, additional named insured, or additional insured) were the only party insured by such policy; and
 b. Separately to each insured against whom a claim is made or a suit is brought.
7. Include all Subcontractors as insureds. Alternatively, the Contractor shall obtain from each Subcontractor not insured under the Contractor's policy or policies of insurance, evidence of insurance meeting all the requirements of Section 1-07.18.

1-07.18(5) EVIDENCE OF INSURANCE
In many cases, evidence of insurance may be demonstrated by submitting a copy (photocopy or facsimile acceptable) of the declarations pages of the policy, the endorsement forms list, and the additional insured endorsement. The declarations pages shall clearly show the policy effective dates, the policy number, policy limits, and named insured. Any reference to premiums may be blacked out. However at the option of the Owner, the Contractor may be required to submit a copy of the insurance policy, all referenced endorsements, or both. Certificates of Insurance (ACORD forms) will not be accepted as evidence of insurance.
Evidence of insurance for each policy shall:

1. Be submitted to the Owner with the signed Contract per Section 1-03.3(2).
2. Comply with all of the requirements for insurance required by this Section 1-07.18.
3. Comply with one of the following requirements regards naming The City of Seattle as an additional insured:

a. Insurance Services Office (ISO) Standard Endorsement: An additional insured endorsement issued on an ISO form (i.e. CG 20 10 or CG 20 26) shall name "The City of Seattle, its officers, elected officials, employees, agents, and volunteers" (and any other entity or person specifically identified in the Project Manual) as additional insureds. The endorsement shall
 (1) Be signed by an authorized representative of the insurance company; and
 (2) Include the policy number and name of the insured on the endorsement.

b. Non-ISO Endorsements: For Non-ISO endorsements any of the following options are acceptable:
 (1) A blanket clause (in the policy or endorsement) adding, without undue restriction of coverage, as additional insured anyone for whom the Contractor is required to provide insurance under a contract or permit.
 (2) An additional insured endorsement on a non-ISO endorsement form containing the following provision:

 "The City of Seattle, its officers, elected officials, employees, agents, volunteers, and any other entity or person specifically identified in the Project Manual are an additional insured for all coverages provided by this policy and shall be fully and completely protected to the extent provided in said policy for any and every injury, death, damage and loss of any sort sustained by any person, organization or corporation in connection with any activity performed by the Contractor by virtue of the provisions of the Contract between The City of Seattle and (insert name of Contractor) entitled (insert Project name and PW Contract No.) dated / / ."

 "In accordance with RCW 48.18.290, the coverages provided by this policy to The City of Seattle shall not be terminated, reduced or otherwise materially changed without providing at least forty-five (45) days prior written notice to The City of Seattle."
 (3) Any other additional insured endorsement form or clause approved by the Owner.

1-07.18(6) RESERVED

1-07.18(7) INDEMNIFICATION

The Contractor shall defend, indemnify and save harmless the Owner and its officers, employees and agents from every claim, risk, loss, damage, demand, suit, judgment and attorney's fee, and any other kind of expense on account of injury to or death of any and all persons, or on account of property damage of any kind, whether tangible or intangible, or loss of use resulting therefrom arising out of or in any manner connected with the Work performed under this Contract, or caused or occasioned by reason of the presence of the property, or an officer, employee or agent of either the Contractor or a subcontractor upon or in proximity to the property of the Owner, at any time before the Completion Date.

If the claim, suit, or action for injuries, death, or damage is caused by or results from the concurrent negligence of (a) the Contractor or its officer, agent, or employee and (b) the Owner or its officer, agent or employee, these indemnity provisions shall be valid and enforceable only to the extent of the Contractor's negligence.

The Contractor shall also indemnify, defend, and save harmless any county, city or district and the officers and employees of said county, city or district connected with the Work within the limits of which county, city or district the Work is being performed hereunder all in the same manner and to the same extent as provided above for the protection of the Owner and the Owner's officers, employees and agents provided that no retention
of money due the Contractor will be made by the Owner except as provided in RCW 60.28, pending disposition of suits or claims for damages brought against the county, city or district.

1-07.18(8) WORKER'S BENEFITS

The Contractor shall make all payments required for unemployment compensation under Title 50 RCW and for industrial insurance and medical aid required under Title 51 RCW. If any payment required by Title 50 or Title 51 is not made when due, the Owner may retain such payments from any money due the Contractor and pay the same into the appropriate fund.

For work on or adjacent to water, the Contractor shall make the determination as to whether workers are to be covered under the Longshoremen's and Harbor Worker's Compensation Act administered by the U.S. Department of Labor, or the State Industrial Insurance coverage administered by the Washington State Department of Labor and Industries, or both coverages.

The Contractor shall include in the various items in the bid proposal all costs for payment of unemployment compensation and for providing either or both of the insurance coverages. The Contractor will not be entitled to any additional payment for: (1) failure to include such costs, or (2) determinations made by the U.S. Department of Labor or the Washington State Department of Labor and Industries regarding the insurance coverage.

The Public Works Contract Division of the Department of Labor and Industries will provide the Contractor with applicable industrial insurance and medical aid classification and premium rates. The "Request for Release" form of the Department of Labor and Industries is also for the purpose of obtaining a release with respect to the payments of industrial insurance and medical aid premiums.

1-07.19 GRATUITIES

The Contractor shall not extend any loan, gratuity, or gift of money in any form whatsoever to any employee or officer of the Owner; nor shall the Contractor rent or purchase any Equipment or materials from any employee or officer of the Owner.

1-07.20 PATENTED DEVICES, MATERIALS, AND PROCESSES

The Contractor shall assume all costs arising from the use of patented devices, materials, or processes used on or incorporated in the Work, and agrees to indemnify, defend, and save harmless the Owner, and its duly authorized agents and employees from all actions of any nature for, or on account of the use of any patented devices, materials, or processes.

1-07.21 ROCK DRILLING SAFETY REQUIREMENTS

It shall be the Contractor's responsibility to maintain safe working conditions during rock drilling, by keeping dust concentration below the threshold limit value or by providing those protective devices that may be required by the State Department of Labor and Industries.

1-07.22 USE OF EXPLOSIVES

Explosives shall not be used without written authority of the Engineer; and then only under such restrictions as may be required by the proper authorities. When the use of explosives is necessary, the Contractor's insurance shall contain a special clause covering the blasting. Explosives shall be handled, marked, stored, and used in strict compliance with Chapter 296-52 WAC and such local laws, rules, and regulations as may apply. The stricter provision shall apply. For work within The City of Seattle, the Seattle Fire Code, Article 77, shall also apply and the individual in charge of blasting shall be certified by the Seattle Fire Department. In all cases, the individual in charge of blasting shall have a current Washington State Blaster Users License.

The Contractor shall obtain, comply with, and pay for such permits and costs as may be necessary in conjunction with blasting operations. Copies of the permits shall be furnished to the Engineer. For work within the city limits of Seattle, a permit shall be obtained from the Seattle Fire Department.

The Contractor shall use the utmost care not to endanger life or property, cause slides, or disturb the materials outside the neat lines of the cross section. Blasting near proposed Structures shall be completed before construction on such Structures is undertaken. Explosives shall not be left unprotected along or adjacent to any existing public place.
The Contractor shall provide advance Written Notice of the location, date, time and approximate duration of blasting to public and private utilities having facilities near the blast site and any other property owner in the vicinity who may be affected by blasting operations. Notification shall be sufficiently in advance that affected entities can take steps to protect their property from damage.

1-07.23 PUBLIC CONVENIENCE AND SAFETY

1-07.23(1) CONSTRUCTION UNDER TRAFFIC

The Contractor shall be responsible for first aid; the safety, efficiency, and adequacy of the Contractor's plant, Equipment, and method of construction; and for any damage or injury resulting from the failure, improper maintenance, use or operation of such plant or Equipment or method of operation. (See Section 1-07.1(2) Safety Rules and Standards).

The Contractor shall:

1. Conduct all operations with the least possible obstruction and inconvenience to the public.
2. Have under construction no greater length or amount of work than can be continuously and vigorously prosecuted properly with due regards to the rights of the public.
3. To the extent possible, finish each section before beginning work on the next.
4. Minimize the disruption of public traffic by:
 a. Permitting traffic to pass through the Work with the least possible inconvenience or delay except in those areas where safety and lack of space requires detouring the traffic elsewhere.
 b. Maintaining existing roads and streets that lie next to or inside the Project limits by keeping them open and in good, clean, and safe condition at all times. Deficiencies caused by the Contractor's operation shall be repaired at the Contractor's expense. Deficiencies not caused by the Contractor's operations will be repaired by Owner forces at the Owner's expense. The Contractor shall also maintain roads and streets adjacent to the Project Site when they are affected by the Contractor's operations. Snow and ice control debris on the Roadway will be cleaned up by Owner forces at no expense to the Contractor.
 c. Removing or repairing any condition resulting from the Work or Contractor's operations that might impede traffic or create a hazard including the removal of deposits and debris that accumulates on the Roadway surface. At a minimum, removal of deposits and debris shall be on a daily basis. If daily removal is insufficient to keep the streets clean, the Contractor shall perform removal operations on a more frequent basis. If the Engineer determines that a more frequent cleaning is impractical or if the Contractor fails to keep the streets free from deposits and debris resulting from the Work, the Contractor shall, upon order of the Engineer, remove all clay or other deposits from the tires or between wheels before trucks or other Equipment is allowed to travel over paved streets.

If the Contractor fails or refuses to clean the streets, trucks, or Equipment as required by the Engineer, the Engineer may order the Work suspended at the Contractor's risk until compliance with the Contractor's obligation is assured. Alternately, the Engineer may order the streets in question cleaned by others and such costs incurred by the Owner in achieving compliance with these Contract requirements, including cleaning of the streets, shall be deducted from moneys due or to become due the Contractor on monthly estimates. The Contractor shall have no claim for delay or additional costs if the Engineer chooses to suspend the Contractor's Work until compliance is achieved.

d. Maintaining existing, permanent signs and not relocating or removing traffic control and street name signs that interfere with construction until absolutely necessary; and installing and maintaining temporary pavement markings and striping on the Roadway using temporary pressure sensitive tape when necessary. The Contractor shall be responsible for scheduling when to renew striping and pavement marking, subject to the Engineer's approval.

e. Providing access at all times to emergency traffic such as police, fire, and disaster units.
Coordinating construction operations with all disposal firms and transit bus service that may be operating within the Project Site.

Providing safe and convenient access to transit bus zones affected by the Work at all times and maintaining the Project Site such that transit bus service is uninterrupted. The Contractor shall be liable for any damages that may result from failure to provide reasonable access or coordination with affected transit authorities.

Keeping existing traffic signal and lighting systems in operation as the Work proceeds. (The Owner will continue the routine maintenance on such systems.)

Protect the rights of abutting property owners by:

Planning and conducting construction operations so that the least inconvenience as possible is caused to abutting property owners;

Except during those urgent stages of construction when it is impractical to carry on the construction and maintain traffic simultaneously, maintaining ready and convenient access to driveways, houses, and buildings along the line of Work;

When street closure is required in the preparation of the Roadway for placement of asphalt pavement, concrete pavement, sewer excavation, or other construction that prohibits safe vehicular traffic abutting property owners and tenants shall be notified per Section 1-07.28 of any restrictions that might affect access to their property. When the abutting owners’ or tenants access across the Right of Way line is to be eliminated and replaced under the Contract by another access, the existing access shall not be closed until the replacement access facility is available.

Providing temporary approaches to crossing or intersecting roads and keeping those approaches in good condition;

Providing another access before closing an existing one whenever the Contract calls for removing and replacing an abutting owner’s access; and

Providing advance notification to property owners and tenants of adjacent properties of any impending restrictions that might affect access to their property. Advance notification shall be made per Section 1-07.28

Access to Private Properties: The Contractor shall maintain convenient access for local vehicular and pedestrian traffic to private properties along the line of Work except during those urgent stages of construction when it is impractical to carry on the construction and maintain vehicular and pedestrian traffic simultaneously, or when street closure is required because construction will prohibit safe vehicular traffic. If a street or alley is to be closed, the Contractor shall notify all abutting property owners and tenants of the closures or of any other restrictions that may interfere with their access. Notification shall be at least 24 hours in advance for residential property, and at least 48 hours in advance for commercial property. When an abutting owner's access across the Right of Way line is to be eliminated and replaced under the Contract by other access, the existing access shall not be closed until the replacement access is available.

The Contractor shall post signs and barricades advising street closure at the nearest intersections away from the closed portion of the street and on all cross-streets. Street closings shall not exceed 2 blocks in length at any one time unless approved otherwise by the Engineer.

When traffic must pass through grading areas, the Contractor shall:

Make cuts and fills that provide a reasonably smooth, even roadbed;

Place, in advance of other grading work, enough fill at all Culverts and bridges to permit traffic to cross;

Make Roadway cuts and fills, if ordered by the Engineer, in partial-width lifts, alternating lifts from side to side to permit traffic to pass on the side opposite the Work;

Install Culverts on half the width of the Traveled Way, keeping the other half open to traffic and unobstructed until the first half is ready for use;

After rough grading or placing any subsequent layers:

Prepare the final Roadbed to a smooth, even surface (free of humps and dips) suitable for use by public traffic; and

Settle dust with water, or other dust palliative, as the Engineer may order.
8. If grading work is on or next to a Roadway in use, the Contractor shall finish the grade immediately after rough grading and place surfacing materials as the Work proceeds.

9. Conduct all operations to minimize any drop-offs (abrupt changes in Roadway elevation) left exposed to traffic during non-working hours. Unless otherwise directed in the Traffic Control Plan, the Contractor shall also protect drop-offs left exposed to traffic during non-working hours as follows:
 a. Drop-offs up to 0.20 foot may remain exposed with appropriate warning signs alerting motorists of the condition.
 b. Drop-offs more than 0.20 foot that are in the Traveled Way or Auxiliary Lane will not be allowed unless motorists are informed about the danger of a drop-off immediately ahead of them with appropriate warning signs and protection is provided as indicated in the immediately following subparagraphs c(1) or c(2).
 c. Drop-offs with depths more than 0.20 foot, but no more than 0.50 foot, that are not within the Traveled Way will not be allowed unless motorists are informed about the danger of a drop-off immediately ahead of them with appropriate warning signs and further protected by having one of the following:
 (1) Channeling devices (Type I barricades, plastic safety drums, or other devices 36 inches or more in height) placed along the traffic side of the drop-off and a new edge of pavement stripes placed a minimum of 3 feet from the drop-off on the traffic side. The “number” in feet of maximum spacing between the devices shall be the posted speed “number” in miles per hour. Signs, warning of pavement drop-off, shall be placed in advance of and throughout the drop-off treatment.
 (2) Temporary concrete barrier or other approved barrier installed on the traffic side of the drop-off with 1 foot between the drop-off and the drop-off side of the barrier, and a new edge of pavement stripe a minimum of 2 feet from the face of the traffic side of the barrier. An approved terminal, flare, or impact attenuator will be required at the beginning of the barrier facing oncoming traffic. For night use, the barrier shall have standard delineation such as paint, reflective tape, lane markers, or warning lights.
 d. Drop-offs more than 0.50 foot not within the Traveled Way or Auxiliary Lane shall be marked with appropriate warning signs and further protected as indicated in the immediately preceding subparagraphs c(1) or c(2) if all of the following conditions are met:
 (1) The drop-off is less than 2 feet;
 (2) The total length throughout the Project is less than 1 mile;
 (3) The drop-off does not remain for more than three Working Days;
 (4) The drop-off is not present on any of the Holidays listed in Section 1-01.3; and
 (5) The drop-off is on one side of the Roadway.
 e. Drop-offs more than 0.50 foot that are not within the Traveled Way or Auxiliary Lane and are not otherwise covered by the immediately preceding subparagraph d(4) above shall be marked with appropriate warning signs and further protected as indicated in the immediately preceding subparagraph c(2).

10. Open trenches within the Traveled Way or Auxiliary Lane shall have a steel-plate cover placed and anchored over them. A wedge of suitable material, if required, shall be placed for a smooth transition between the Pavement Structure and the steel plate. Warning signs shall be used to alert motorists of the presence of the steel plates.

The Contractor shall be responsible for providing adequate safeguards, safety devices, and protective Equipment, and for taking any other needed actions to protect the life, health, and safety of the public, and to protect property in connection with the performance of the Work covered by the Contract. The Contractor shall perform any measures or actions the Engineer may deem necessary to protect the public and property. The responsibility and expense to provide this protection shall be the Contractor’s except that which is to be furnished by the Owner as specified in other sections of these Specifications:

1. Roadway snow and ice removal from the Project Site, which will be performed by City forces at no direct expense to the Contractor.
2. Whatever other specific work the Contract Documents indicate is to be furnished or performed by the Owner or Engineer.

Nothing contained in this Contract is intended to create any third-party beneficiary rights in favor of any person utilizing the Highway facilities being constructed or improved under this Contract.

1-07.23(2) PEDESTRIAN CONTROL AND PROTECTION

When the Work area encroaches upon a sidewalk, walkway or crosswalk area, special consideration must be given to pedestrian safety. Maximum effort must be made to separate pedestrians from the Work area.

Protective barricades, fencing, and bridges, together with warning and guidance devices and signs, shall be utilized so that the passageway for pedestrians is safe and well defined. Whenever pedestrian walkways are provided across excavations, they shall be provided with suitable handrails. Footbridges shall be safe, strong, free of bounce and sway, free of cracks, holes, and irregularities that could cause tripping. Ramps shall be provided at the entrance and exit of all raised footbridges, again to prevent tripping. Adequate illumination and reflectorization shall be provided during hours of darkness. All walkways shall be maintained at least 4 feet clear width except in areas of unusually heavy pedestrian traffic such as business districts, where the minimum clear width shall be 8 feet.

Where walks are closed by construction, an alternate walkway shall be provided, preferably within the planting strip. Where it is necessary to divert pedestrians into the Roadway, barricading or channeling devices shall be provided to separate pedestrian walkway from adjacent vehicular traffic lane. At no time shall pedestrians be diverted into a portion of a street used concurrently by moving vehicular traffic.

At locations where adjacent alternate walkways cannot be provided, appropriate signs shall be posted at the limits of construction and in advance of the closure at the nearest crosswalk or intersection to divert pedestrians across the street.

To prevent visually impaired people from inadvertently entering a closed area, physical barricades shall be installed to prevent passage. Pedestrian walkways shall be wheelchair accessible at all times. Pedestrian access shall be maintained to all properties adjacent to the construction site.

1-07.24 REAL PROPERTY RIGHTS

Right of Way margins, parcel boundaries, limits of easements and other real property rights, and limits of construction permits obtained by the Engineer, will be indicated on the Drawings. The Contractor's construction activities shall be confined within these limits, unless arrangements for use of private property are made.

Generally, the Engineer will have obtained, prior to Bid opening, all real property rights (both permanent and temporary) necessary for carrying out the Work. Exceptions to this will be noted in the Contract Documents or brought to the Contractor's attention by a duly issued Addendum.

Whenever any of the Work is accomplished on or through property other than public street Right of Way, the Contractor shall meet and fulfill all covenants and stipulations of any real property agreement obtained by the Engineer from the owner of the private property. Copies of the real property rights documents will be included in the Project Manual or made available to the Contractor as soon as practical after they have been obtained by the Engineer.

Whenever necessary real property rights have not been acquired prior to advertising, they will be so noted on the Drawings. The Contractor shall not proceed with any portion of the Work on private property where real property rights have not been secured. If the Contractor is delayed due to acts of omission on the part of the Engineer in obtaining real property rights, the Contractor will be entitled to an extension of time. The Contractor agrees that such delay shall not be a breach of Contract.

Each property owner shall be notified, pursuant to Section 1-07.28, prior to entry by the Contractor. This includes entry onto private property where private improvements must be adjusted.

The Contractor shall be responsible for providing, without expense or liability to the Owner, any additional land and access thereto that the Contractor may desire for temporary construction facilities, storage of materials, or other Contractor needs. However, before using any private property, whether adjoining the Work or not, the Contractor shall file with the Engineer a written permission of the property owner, and, upon vacating the premises, a written release from the property owner of each property disturbed or otherwise interfered with by reasons of construction pursued under this Contract. The statement shall be signed by the private property owners.
The Contractor reserves the right to use and occupy any portion of the Work before the Physical Completion Date. This action will not cause the Owner to incur any liability to the Contractor except as may otherwise be provided in the Contract.

If the Engineer opens any portion of the Work prior to the Physical Completion Date because early opening is specified in the Contract Documents, or the Contractor has failed to prosecute the Work continuously and efficiently, then any work remaining after that portion of the Project is open to traffic shall be performed at Contract unit prices for items of work involved. No additional compensation will be made for costs incurred by the Contractor because of:

1. Inconvenience, additional length of travel to conform to established traffic patterns, or planned access features.
2. Compliance with statutes governing traffic regulations and limitations of loads.
3. Additional flagging costs necessary to protect the Work and the traveling public.

The Contractor shall take into account all costs of construction resulting from the contractual requirement that public traffic be able to use, concurrent with construction activities, portions of the Work. These costs shall be included in the lump sum Bid or the unit prices for the various items of Work listed in the Bid Form.

No officer or employee of the Owner shall be personally liable for any act or failure to act in connection with the Work, it being understood that in such matters each such person is acting solely as an agent of the Owner.

The Owner shall not be precluded or estopped by any measurement, estimate or certificate made either before or after the Completion Date and payment therefor from showing the true amount and character of the work performed and materials furnished by the Contractor or from showing that any such measurement, estimate, or certificate is untrue or incorrectly made or that the Work or materials do not conform in fact to the Contract. The Owner shall not be precluded or estopped notwithstanding any such measurement, estimate or certificate and payment in accordance therewith from recovering from the Contractor and the Contractor’s Sureties such damages as the Owner may have sustained by reason of the Contractor’s or Sureties’ failure to comply with the terms of the Contract and bond. Neither the establishment of the Completion Date by the Owner nor any payment for the whole or any part of the Work nor any extension of time nor any possession taken by the Owner shall operate as a waiver of any portion of the Work or of any power herein reserved to the Owner or any right to damages herein or otherwise provided or bar recovery by the Owner of any money wrongfully or erroneously paid to the Contractor. A waiver by the Owner of any breach of the Contract shall not be held to be a waiver of any other or subsequent breach.

The Contractor and the Owner recognize that the impact of any overcharge to the Owner by the Contractor resulting from an anti-trust law violation by any Supplier or Subcontractor affects the Owner rather than the Contractor. Therefore the Contractor assigns to the Owner any and all claims for such overcharges.

The Contractor shall plan and schedule Contractor work activities to conform to and allow time for notifications, approvals, reviews, and other conditions of the Contract Documents.

The Engineer will initially notify public and private entities having facilities in the street Right of Way of:
1. The approximate time the Work will begin.
2. What the Project scope of Work is.
3. Utilities in the street Right of Way that require relocation.
4. Any other particular problems the Engineer anticipates may occur.

Thereafter the Contractor shall make the following notifications regarding work performed in City Right Of Way, as applicable. Notification shall give the time of commencement and completion of the work, work hours, location of the work, names of streets affected by the work, schedule of operation, routes of detours, closures, etc.

1. **For Work That Partially or Completely Restricts Any Arterial, Street, Sidewalk, or Alley:** After receiving approval of the Traffic Control Plan (see Section 1-10.2(5)), the Contractor shall provide SEATRAN (684-7623 Monday to Friday 8:00 am to 5:00 PM) with at least 24-hours advance noticifications before the start of work within the street Right of Way and immediately after the work is complete. This notification requirement includes partial or full lane closures, parking restrictions, sidewalk closures, detours, complete or partial street closures, Shoulder work, and pedestrian rerouting, as well as the placing of building materials or Equipment on city streets, sidewalks, or alleys. For work on roads and Highways outside the Seattle City limits, notifications shall be provided in accordance with permit and other requirements of the agency having jurisdiction over those roads and Highways. The Contractor shall become familiar with those requirements prior to starting work.

 A. **Partial closure of any street:** In addition to notifying SEATRAN, provide 24-hours advance notification to the following:
 (1) Within Seattle City Limits:
 (a) Seattle Fire Department (386-1494 or 386-1495).
 (b) Seattle Police Department, Parking Enforcement, and Traffic Section of the Seattle Police Department (684-5101 FAX - written notification only).

 (2) Outside Seattle City Limits: For work on roads and Highways outside the Seattle City limits but within King County, notifications shall be made as indicated below, as otherwise indicated in the permit, or by the requirements of the agency having jurisdiction over those roads and Highways. Construction permits in the King County Right of Way may be obtained by calling 206-296-7456. In unincorporated areas of King County, the following shall be notified at least 2 Working Days in advance:
 (a) King County Roads Division (296-8100)
 (b) King County Fire Marshall's Office (296-6675)
 (c) King County Police (1-800-344-4080 or 206-296-3311)

 B. **Complete closure of any arterial street within the Seattle City Limits:** Provide 72-hours advance notice to SEATRAN (684-7623 Monday to Friday 8:00 am to 5:00 PM) and the applicable agencies listed under paragraph 1.A.(1) above.

 C. **Complete closure of any local-access street, alley, or sidewalk within the Seattle City Limits:** Provide 24-hours advance notice to SEATRAN (684-7623 Monday to Friday 8:00 am to 5:00 PM).

 D. **To Restrict Parking on any Street within the Seattle City Limits:** Provide 48-hours advance notification to SEATRAN (684-7623 Monday to Friday 8:00 am to 5:00 PM).

2. **Disruptions to, or service modification requests for, METRO transit service:** Provide at least 48-hours advance notification to METRO Construction Information Center (684-2732). Whenever it is necessary to modify METRO Transit Bus or Trolley Service, the Contractor shall notify the Construction Information Center at least 14-days in advance.

3. **Property access restrictions:** Provide abutting property owners and tenants of impending access restrictions. Advance notification shall be 24-hours for residential property and 48-hours for commercial property.

4. **Emergency Work for Pavement or Sidewalk Problems:** Provide immediate notification to: During the day notify SEATRAN (684-7623 Monday to Friday 8:00 AM to 5:00 PM, all other times 386-1218)

5. **Water Mains, Hydrants, Water Services, and Related Appurtenances – Shutdowns and Obstructions:** For all shutdowns involving facilities owned by Seattle Public Utilities, all water service connections, and hydrant access restrictions, the Contractor shall coordinate scheduling and notification with the Seattle Public Utilities Water Operations Division via the Engineer. The same applies to work
that will obstruct normal access to any fire hydrant or water utility valve. The Contractor shall not operate or access any water valve owned by the Seattle Public Utilities. Notifications shall be as follows:

A. **Within SPU Water Service Franchise Area**: Seattle Public Utilities Water Operations (386-1800). Water main shutdown notifications and advisories regarding fire hydrant status will be given to fire agencies by SPU Water Operations. At least 5 Working Days advance notice before any request to shutdown or otherwise interrupt water service or, restrict access to hydrants and valves is required. Where Water Main shutdowns are requested in commercial and industrial areas, additional advance notification is required on a project specific basis. The Contractor shall be prepared to accommodate this additional time requirement in the Contractor’s critical path schedule (see Section 1-08.3(1)). See Section 1-07.17(2)A regarding clearances with Water Mains.

B. **Outside SPU Water Service Franchise Area**: Seattle-King County Department of Public Health (296-4722). At least 24 hours advance notice is required.

C. **Boundaries of SPU Water Service Franchise Area**: The Contractor shall notify the agencies set forth in paragraphs A and B above.

6. **Seattle City Light - Electrical Safety Observer**: To schedule the Electrical Safety Observer, notify Seattle City Light at least 7 Working Days in advance of the need to enter a Seattle City Light vault, or to work on or within any other Seattle City Light electrical Structure or facility, or to work on or near any Seattle City Light electrical transmission or distribution system (206-684-4911). See Section 1-05.2(2).

7. **Sanitary Sewer Spills**: In the event of a sanitary Sewer spill immediately notify:
 A. Seattle-King County Department of Public Health (206-296-4632).
 B. METRO (206-263-3801)

8. **Chemical, Oil, Hazardous Substance, or other Contaminant Spill or Discharge**: Whenever the Contractor first becomes aware of a chemical, oil, Hazardous Substance, or other contaminant spill or discharge, immediately notify:
 A. Engineer.
 B. Into any body of water: The local United States Coast Guard office (206-217-6232) or the National Response Center, Washington, D.C. 1-800-424-8802 (operated 24 hours a day), and the Department of Ecology (425-649-7000) and King County Trouble Call (206-684-2328).
 C. Into any Storm Drain or Sewer: King County Industrial Waste (206-263-3000) and the Department of Ecology (425-649-7000).
 D. Other than into a body of water, Storm Drain, or Sewer: EPA (206-553-1263) and the Department of Ecology (425-649-7000).

9. **Seattle Monorail**: When work is within 10 feet of any portion of the monorail Structure above ground, or is within 20 feet of any portion of the monorail Structure below ground, the Contractor shall contact Seattle Monorail Services at 206-448-2259 (cell phone: 240-0157) at least 5 Working Days in advance of the work.

10. **Overhead Utility Lines and Trees**: When tree trimming or tree removal is within 10 feet of overhead power lines less than 115Kv, within 10 feet of all overhead telecommunication lines, or within 16.5 feet of overhead power lines 115Kv or higher, the Contractor shall contact Seattle City Light at least 7 Working Days in advance at 206-386-1663. See Section 1-07.16(2).

11. **Overhead Wires - METRO Trolley and Waterfront Street Car**: When work is within 10 feet of overhead wires for METRO bus trolley or waterfront street car, the Contractor shall contact 206-684-1910 at least 10 Working Days in advance of the Work.

12. **Underground Utility Locator**: The Contractor shall, before an excavation begins, call the Utilities Underground Location Center 1-800-424-5555 not less than 2 or more than 10 Business Days before the scheduled date for commencement of any excavation that might affect underground facilities. Alternate notification time periods limits may be substituted if mutually agreed to, in writing, by the Contractor and utility involved. If a utility is known to have, or suspected of having, underground facilities within the area of any proposed excavation, and that utility is not a subscriber to the Underground Utilities Location Center, notice by the Contractor shall be provided individually to the utility. See Section 1-07.17(1).

13. **Entry onto Private Property**: Each property owner shall be given 48 hours advance notice prior to entry by the Contractor (see Section 1-07.24).

14. **U.S. Postal Service Collection Boxes, Mail Receptacles, and other Structures**: U.S. Postal Service collection box and other Structures requiring temporary relocation to accommodate construction, the
Contractor shall contact 206-768-4368 at least 5 Working Days in advance for coordination. Only the U.S. Post Office will move postal property (see Section 1-07.16(3)).

15. **Underground Electrical Distribution and Transmission System**: When proposed construction excavation is within the vicinity of underground electrical distribution and transmission system identified by “marked for locate” per Section 1-07.17(1), the Contractor shall notify Seattle City Light at least 3 Working Days in advance of the excavation as follows (see Section 1-07.17(2)^D):
 - At and North of Denny Way: (206) 615-0600
 - South of Denny Way: (206) 386-4200.

16. **Water Mains and Clearance with other Utilities**: When proposed underground utilities are within the clearance limits specified in Section 1-07.17(2)^A, notification shall be provided to 206-386-9794 at least 15 Working Days in advance of construction for approval of the Engineer.

17. **Loop Detection Systems approaching and near signalized intersections**: Where an excavation is to take place through a signal loop detector system as identified in accordance with Section 1-07.17(1), the Contractor shall provide at least 10 Working Days advance notice to 206-386-1206 for coordinating temporary signal wire disconnect and temporary signal timing requirements.

SECTION 1-08 PROSECUTION AND PROGRESS

1-08.1 PRELIMINARY MATTERS

1-08.1(1) COPIES OF CONTRACT DOCUMENTS

The Engineer will furnish the Contractor with the number of Contract Document sets specified below. Prior to undertaking each part of the Work the Contractor shall carefully study and compare the measurements and conditions indicated in the Contract Documents with applicable field measurements and conditions. The Contractor shall promptly give the Engineer Written Notice of any conflict, error or discrepancy found in the Contract Documents through this comparison prior to proceeding with the Work in question.

The Engineer will issue to the Contractor, without charge, the following number of Contract Documents:

1. Full-size Drawings (22-inch x 34-inch) 2 Sets
2. Reduced Drawings (11-inch x 17-inch) 10 Sets
3. Project Manual 10 Sets

The Contractor may purchase from the Engineer additional copies of Drawings and Project Manuals by submitting a request in writing to the Engineer stating the type and number of each document. The Contractor will be charged reproduction and binding costs for each document requested based upon the following:

1. Project Manuals $0.05 per page
2. Drawings Current rate (per square foot basis)

These charges will be deducted from the money due or become due the Contractor on monthly estimates.

The Contractor may also purchase Drawings directly from the:

Records Vault Counter
Seattle Public Utilities
Municipal Building, Room 801
600 4th Avenue,
Seattle, WA. 98104-1709

Payment shall be made by cash or check only. Checks shall be made payable to The City of Seattle.
1-08.1(2) PRECONSTRUCTION CONFERENCE

After the Contract has been executed, but before the Contractor begins work, a preconstruction conference will be held for the Contractor, the Engineer and such other interested parties as may be invited. The purpose of the preconstruction conference will be:

1. To review the preliminary critical path schedule indicating major work activities including the order and duration of work activities, milestones and time frames if required in the Contract, the critical path, and as required by the Engineer;
2. To establish a working understanding among the various parties affected by the Work;
3. To establish and review procedures for progress payments, notifications, approvals, reviews, submittals, etc.;
4. To establish normal working hours for the Work;
5. To review safety standards, traffic control, and maintaining cleanliness; and
6. To discuss such other related items as may be pertinent to the Work.

The Contractor shall prepare and submit the following at the preconstruction conference:

1. A breakdown of all lump sum Bid items;
2. A list of all portions of the Work to be subcontracted and the name of the proposed Subcontractors;
3. A preliminary schedule of working drawing submittals;
4. A list of material sources for approval if applicable; and

1-08.1(3) SUBCONTRACTING

Work done by the Contractor’s own organization shall account for at least 40 percent of the Awarded Contract Price. Before computing this percentage, however, the Contractor may subtract (from the Awarded Contract Price) the cost of any subcontracted work the Project Manual specifically designates may be first excluded from the Awarded Contract Price.

Work shall not be subcontracted, regardless of tier, without written consent of the Engineer. A request to subcontract shall be made on the “Subcontractor Approval Application Form” provided by the Engineer. If the Engineer requests, the Contractor shall provide proof that the Subcontractor has the experience, ability, and Equipment the Work requires. Each subcontract shall contain a provision that requires the Subcontractor to comply with Chapter 39.12 RCW and furnish to the Contractor all certificates, statements, and submittals that the Contractor is required by the Contract Documents to furnish to the Owner.

Along with the request to subcontract, the Contractor shall submit the names of any contracting firms a Subcontractor proposes to use (i.e. second- and lower-tier Subcontractors). Collectively, these second and lower tier Subcontractors shall not perform work that exceeds 25 percent of the total amount subcontracted to the first-tier Subcontractor. When a Subcontractor is responsible for construction of a specific Structure or Structures, the following work may be performed by second- and lower-tier Subcontractors without being subject to the 25 percent limitation:

1. Furnishing and driving of piling; and
2. Furnishing and installing concrete reinforcing and post-tensioning steel.

Except for the 25 percent limit, second- and lower-tier Subcontractors shall meet the same requirements as first-tier Subcontractors.

Consent to subcontract will not be given unless the Engineer is satisfied with the proposed Subcontractor’s prior performance, Equipment, experience, and ability to perform the Work. Approval to subcontract shall not:

1. Relieve the Contractor of any responsibility to carry out the Contract.
2. Relieve the Contractor of any obligation or liability under the Contract and the Contractor’s bond;
3. Create any Contract between the Owner and the Subcontractor; or
4. Convey to the Subcontractor any right against the Owner.
The Owner will not consider as subcontracting:

1. The purchase of sand, gravel, crushed stone, crushed slag, batch concrete aggregates, ready mixed concrete, off-site fabricated structural steel, other off-site fabricated items, and any other materials supplied by established and recognized commercial plants;

2. Delivery of any of the materials identified in item 1 immediately above to the Project Site in any vehicle owned or operated by the Supplier of such material or by a recognized independent or commercial hauling company. Such purchase shall be considered as being purchased from Materialmen.

The Washington State Department of Labor and Industries may determine that Chapter 39.12 RCW applies to the employees of any Supplier identified in items 1 or 2 immediately above in accordance with Chapter 296-127 WAC. If this should occur, the provisions of Section 1-07.9, as modified or supplemented, shall apply.

When a portion of the Work that has been subcontracted by the Contractor is not being prosecuted in a manner satisfactory to the Engineer, the Subcontractor shall be removed and replaced immediately upon the Engineer's written order, and shall not again be employed on the Work unless the Contractor makes protest, and the Contractor's protest is upheld by the Owner.

If the Engineer determines that any Subcontractor is performing any services in an unsatisfactory manner or is not completing the Work in accordance with the requirements of the Contract Documents or is otherwise undesirable or unacceptable, the Engineer will so advise the Contractor by Written Notice. The Contractor shall then take immediate steps to terminate such Subcontractor. Further subcontracting by Subcontractors will be subject to the same Owner's rights and Subcontractors' obligations. The Contractor and each of its Subcontractors shall ensure that such Owner's right is included in each subcontract and sub-subcontract for a portion of the Work.

The Contractor's cost records pertaining to this Contract shall be open to inspection, subject to retainage periods, and the other requirements of Section 1-09.12.

By no later than 30 days after the Physical Completion Date, the Contractor shall submit to the Owner a completed Final Contract Payments Reporting Form, listing the name of and dollar amount paid to each Subcontractor and Supplier utilized by the Contractor on the Project, as well as the dollar amount paid to the Contractor. A sample of the form is included in the Sample Forms section of the Project Manual. The Owner will not establish the Completion Date until the completed Final Contract Payments Reporting Form has been received.

1-08.1(4) HOURS OF WORK

Except in case of emergency or unless otherwise approved by the Engineer, the normal hours of work shall be between 6:00 a.m. and 7:00 p.m. on any Working Day and shall consist of 8 hours exclusive of a lunch period of not more than one hour. The normal hours of work shall be established at the preconstruction conference or prior to the Contractor commencing the Work and shall not be changed or extended without approval of the Engineer.

Permission to work Saturdays, Sundays, Holidays, or other than the normal hours of work Monday through Friday may be given subject to certain conditions set forth by the Engineer. These conditions include but are not limited to requiring the Engineer or other Owner employees to be present during the Work. Such other employees include but are not limited to survey crews, personnel from the Engineer's material testing lab, Inspectors, and employees from the administering or other departments.

SMC Chapter 25.08 specifies maximum permissible sound levels for sound sources located within the Seattle City Limits or King County. Permission to work outside normal hours of work may be withdrawn at any time if the Contractor exceeds the specified maximum permissible sound level or if a complaint is received from the public or an adjacent property owner. The Contractor shall have no claim for damages or delay should such permission be withdrawn.

Any request to perform work on Saturdays between 6:00 a.m. and 7:00 p.m. only shall be submitted to the Engineer no later than noon on the Working Day prior to the Saturday that the Contractor is requesting permission to work.

The performance work on a Holiday, Sunday, or before 6:00 a.m. or after 7:00 p.m. on any day requires the prior approval of the Engineer. A request for approval to work on any such day or at such time shall be
submitted to the Engineer no later than 10 days prior to the day that the Contractor is requesting permission to work.

1-08.1(5) **REIMBURSEMENT FOR OVERTIME WORK OF EMPLOYEES OF OWNER**

If the Contractor elects to work on a Saturday, Sunday or Holiday, or longer than an 8-hour period on any Working Day, such work shall be considered as overtime work. On all such overtime work, the Contractor shall reimburse the Engineer for the full costs of straight time with benefits plus overtime for employees of the Owner who are required to work overtime hours on any Project-related construction activity.

The Contractor hereby authorizes the Engineer to deduct the reimbursement required in the paragraph immediately above from any amount that might then be or thereafter become due or payable by the Owner to the Contractor under or by virtue of the Contract until such reimbursement has been recouped by the Owner.

1-08.2 ASSIGNMENT

The performance of the Work or any part of it shall not be assigned without written consent of the Owner. Consent will not be given to a proposed assignment that would relieve the Contractor or the Contractor’s Surety of their responsibilities under the Contract.

The Contractor may assign moneys due or become due to the Contractor under the Contract. This assignment will be recognized by the Owner, if given Written Notice, to the extent permitted by law. Assignment of monies shall be subject to all set-offs, withholdings, and deductions provided by law and under the Contract.

1-08.3 CONTRACTOR SUBMITTALS

1-08.3(1) CRITICAL PATH SCHEDULE

The Contractor shall submit eight (8) copies of a Critical Path Schedule to the Engineer for review and acceptance by the Engineer no later than 14 days after receipt of the Notice to Proceed. On major projects of 200 Working Days or more, the Contractor will be allowed 30 days after the receipt of Notice to Proceed, to submit a Critical Path Schedule.

The Engineer allocates resources to a Contract based on the total time allowed in the Contract. The Engineer will review and accept a Critical Path Schedule indicating an early Physical Completion Date but cannot guarantee Engineering resources will be available to meet the accelerated Critical Path Schedule. No additional compensation or time will be allowed if the Contractor is not able to meet its accelerated Critical Path Schedule due to the unavailability of Engineering resources or for other reasons beyond the Engineer’s control.

The Critical Path Schedule, and any revised Critical Path Schedule, shall:

1. Show completion of all Work within the specified Contract Time;
2. Show the proposed order of the Work;
3. Show the projected starting and completion times for:
 a. Major phases of the Work;
 b. All Work activity components integral to the major Work phases;
 c. Milestone, time frame, and order of work when required in the Contract;
 d. The total Project completely planned and scheduled;
 e. The critical path as indicated by a single path of critical Work activities;
4. Be developed using Microsoft (MS) Project for Windows 95 scheduling program and be submitted on electronic 3-1/2 inch PC-compatible disk media.

The Contractor shall provide sufficient material, Equipment and labor to meet the completion times in this, and any revised, Critical Path Schedule.

As the Work proceeds, the Contractor shall submit eight (8) copies of revised Critical Path Schedule(s) to the Engineer for review and acceptance. These revised Critical Path Schedules shall reflect any change in the proposed order of the Work, any construction delay, or other condition that may affect the progress of the Work. The revised Critical Path Schedule(s) shall not conflict with any time and order-of-work requirement in the Contract. The Contractor shall promptly notify the Engineer of any proposed revision to the accepted Critical Path Schedule in effect and shall submit the revised Critical Path Schedule within 14 days of the revision notification.
The Owner will make no payment under this Contract until a Critical Path Schedule has been submitted, and reviewed and accepted by the Engineer. If the Engineer deems that the Critical Path Schedule, or any revised Critical Path Schedule, is not acceptable, the Engineer may request the Owner to withhold progress payments until an acceptable Critical Path Schedule has been submitted by the Contractor.

The Project's Critical Path Schedule shall be maintained by the Contractor during the duration of the Project so that an accurate indication of Project progress is available. When required by the Engineer during the course of the Work, the Contractor shall furnish to the Engineer within 14 days after the Engineer's written request, eight (8) copies of the Critical Path Schedule in effect at the time.

The Engineer's review and acceptance of any Critical Path Schedule shall not transfer any of the Contractor's responsibilities to the Owner. The Contractor, alone, shall remain responsible for adjusting forces, Equipment, materials, deliveries, staging, Work schedules, and as necessary to ensure completion of the Work within the time(s) specified in the Contract.

1-08.3(2) REQUIRED CONTRACTOR SUBMITTALS

Required Contractor submittals include as necessary, but are not limited to, the following:

1. A method of removal and/or demolition plan and schedule.
2. Copies of permits required.
3. Traffic control plan, schedule, and safeguards to be used.
5. Sources of materials (Section 1-06.1).
6. Submittal Control Document (Section 1-05.3(2)B).
7. Critical Path Schedule (Section 1-08.3(1)).

The required Contractor submittals shall be forwarded to the Engineer for review, and approval or acceptance, or rejection within 14 days after the receipt of the Notice to Proceed. On major projects of 200 Working Days or more, the Contractor will be allowed 30 days after the receipt of Notice to Proceed, to make the required submittals. No monthly estimates of progress payments will be processed until the submittals that are required are received, and either approved or accepted.

1-08.4 NOTICE TO PROCEED AND PROSECUTION OF THE WORK

Notice to Proceed will be given after the Contract has been executed and the Contract Bond and evidence of insurance have been approved and filed by the Owner. No portion of the Work shall begin within the Project Site or within sites furnished by the Engineer until the Contractor has been given the Notice to Proceed. The Contractor shall bear all risks for any portion of the Work begun outside such areas and for any materials ordered before the Notice to Proceed has been given.

The Contractor shall begin the Work within 10 days of the Notice to Proceed Date. Thereafter, Work shall be prosecuted vigorously, diligently, and without unauthorized interruption until physical completion of the Work. The Contractor shall not voluntarily shut down or slow Work operations without requesting and obtaining prior approval of the Engineer. Such approval shall not relieve the Contractor from the contractual obligation to complete the Work within the prescribed Contract Time.

1-08.5 TIME FOR COMPLETION

The Work shall be physically completed in its entirety within the time specified in the Contract Documents or as extended by the Engineer. The Contract Time will be stated in “Working Days,” shall begin on the Notice to Proceed Date, and shall end on the Contract Completion Date.

The Contract Time has been established to allow for periods of normal inclement weather that, from historical records, are to be expected during the Contract Time, and during such periods, Work is anticipated to be performed. Each successive Working Day, beginning with the Notice to Proceed Date and ending with the Physical Completion Date, shall be charged to the Contract Time as it occurs except a day or part of a day that is designated a Non-Working Day or an Engineer determined Unworkable Day.

The Engineer will furnish the Contractor a weekly report showing:

1. The number of Working Days charged against the Contract Time for the preceding week;
2. The Contract Time in Working Days;
3. The number of Working Days remaining in the Contract Time;
4. The revised Contract Completion Date as applicable;
5. The number of Non-Working Days; and
6. Any partial or whole days during the immediately preceding week that the Engineer declared to be an Unworkable Day.

This weekly report will be correlated with the Contractor’s current accepted critical path schedule. The Contractor will be allowed 10 days after the date of each report in which to file a written protest of an alleged discrepancy in the Contract Time as reported. Otherwise, the report will be deemed to have been accepted by the Contractor as correct.

The requirements for scheduling the final inspection and establishing the Substantial Completion, Physical Completion, and Completion Dates are specified in Sections 1-05.11 and 1-05.12.

Upon physical completion of the Work, the Engineer will advise the Contractor and the Owner in writing of the Physical Completion Date for all the Work. This date shall constitute the Physical Completion Date but shall not imply acceptance of the Work or the Contract.

The Owner will give the Contractor Written Notice of the Completion Date of the Contract after all the Contractor’s obligations under the Contract have been performed. The following must occur before the Completion Date can be established:

1. The physical work on the Project must be complete; and
2. The Contractor must have furnished all documentation required by the Contract and required by law, necessary to allow the Owner to certify the Work as complete.

1-08.6 SUSPENSION OF WORK

The Contractor shall immediately suspend the Work or resume suspended Work only when ordered or authorized in writing to do so by the Engineer. The Engineer may suspend all or part of the Work and for such periods of time as the Engineer may deem proper if:

1. Unusually severe weather or such other conditions beyond the control of the Contractor has occurred that will, in the opinion of the Engineer, prevent satisfactory, safe, and timely performance of the Work.
2. The Contractor has failed to perform a material requirement of the Contract Documents or written order given to the Contractor by the Engineer.

Suspension of the Work by the Engineer for either of the conditions 1 or 2 specified immediately above shall not be grounds for any claim by the Contractor for damages except as provided hereinafter.

Periods of suspension due to the condition 1 immediately above will be considered excusable and counted as Unworkable Days if, prior to the suspension, the Contractor, in the Engineer’s opinion, was performing the Work vigorously, diligently, and without unauthorized interruption in accordance with the Contractor’s current accepted critical path schedule in effect at the time. Otherwise, the suspension may be considered non-excusable and all or part of the suspension period may be counted as Working Days. The Engineer will set the number of Unworkable Days (or parts of Days) by deciding how long the suspension delayed the entire Project.

The periods of suspension due to the condition 2 specified immediately above or for failure of the Contractor to perform the Work timely, vigorously, and diligently will be considered a non-excusable delay. This lost work time shall not relieve the Contractor from any contractual responsibility.

Requests for adjustments in the Contract Time or costs as a result of suspensions or delays to the Work will be evaluated pursuant to Section 1-08.8

1-08.7 MAINTENANCE DURING SUSPENSION

In preparing for or during suspensions of the Work (as described in Section 1-08.6), the Contractor shall do whatever is necessary to prevent damage to or deterioration of the Work. The Contractor’s safety and maintenance responsibilities shall remain unchanged except for those assumed by the Engineer under the conditions set forth in this section.
At no expense to the Owner, the Contractor shall provide a safe, smooth, and unobstructed Roadway for public use through the construction area during suspension of the Work as required by Section 1-07.23. This may include a temporary road or detour.

If the Engineer determines that the Contractor failed to pursue the work vigorously, diligently, and without unauthorized interruption before the suspension, or failed to comply with the Contract or the Engineer's orders, the Contractor shall maintain the temporary Roadway or detour in use during suspension. In this case, the Contractor shall bear the maintenance costs. If the Contractor fails to maintain the temporary Roadway or detour, the Owner will do the maintenance work and deduct all resulting costs from payments due to the Contractor pursuant to Section 1-05.8.

If the Engineer determines that the Contractor has pursued the Work vigorously, diligently, and without unauthorized interruption before the suspension, the Owner will do the routine maintenance work and bear its cost. The maintenance performed by the Owner will include only routine maintenance of:

1. The Traveled Way, Auxiliary Lanes, Shoulders, and detour surface;
2. Roadway drainage along and under the traveled Roadway or detour; and
3. All barricades, signs, and lights needed for directing traffic through the temporary Roadway or detour in the construction area.

The Contractor shall protect, maintain and bear the costs of doing all other portions of the Work in areas not used for traffic.

After a suspension, during which the Owner has done the routine maintenance, the Contractor shall accept the traveled Roadway or detour as is, when the Work resumes. The Contractor shall make no claim against the Owner for the condition of the Roadway or detour.

After any suspension, the Contractor shall retain the responsibility for repairing or restoring the Roadway, its slopes, and its drainage system to the requirements of the Contract Documents.

1-08.8 TIME EXTENSIONS AND DELAYS - ENTITLEMENT AND COMPENSATION

1-08.8(1) GENERAL

The Engineer considers the Contract Time as sufficient to do all the Work. For this reason the Engineer will not grant a time extension for any reason other than those listed in Section 1-08.8(3)A.

The Contract will be extended for a period equivalent to the actual time the Work is suspended or delayed for an excusable reason. Entitlement, length of time extension, and applicable compensation will be determined by the Engineer.

If the Work is suspended or delayed and the Contractor believes the reason for the suspension or delay is excusable or compensable, the Contractor shall submit to the Engineer a written request for an adjustment in the Contract Time, costs or both. To be considered, the request shall be submitted to the Engineer no later than 10 days after the claimed suspension or delay occurs. The request shall state the reasons why the adjustment should be granted. Upon receipt, the Engineer will evaluate the Contractor's request and determine if the:

1. Cost, time, or both:
 a. Has increased as a result of such suspension or delay;
 b. Was caused by one or more conditions beyond the control of, and were not the fault of, the Contractor or any of the Contractor's Suppliers or Subcontractors at any approved tier; and
 c. Was not caused by weather;

2. Performance was not suspended or delayed by any other cause; and

3. Adjustment is not provided for, or specifically excluded, under any other term or condition of this Contract.

If the Engineer agrees an adjustment is warranted considering all evaluation criteria stated in items 1, 2, and 3 immediately above, the Engineer will make an adjustment (excluding profit) and modify the Contract accordingly. No adjustment will be allowed for any cost that was incurred by the Contractor more than 7 days prior to the date the Engineer received the Contractor's written request for adjustment. The reasons for and times
of extensions shall be determined by the Engineer and such determination shall be final pursuant to Section 1-05.1. Any disagreement with the Engineer’s determination shall be pursued in accordance with Section 1-04.5.

The Contractor’s accepted critical path schedule in effect at the start of the claimed delay will be used to evaluate the extent of the delay and the claimed delay’s impact on the Contract Time. The Contractor shall be responsible for showing on this critical path schedule that the change or event:

1. Had a specific impact on the critical path, and except in cases of concurrent delay, was the sole cause of such impact; and
2. Could not have been avoided by resequencing of the Work or other reasonable alternative.

Failure of the Contractor to efficiently utilize all available time after the Notice to Proceed Date will be considered in evaluating requests for extensions of time.

The granting of a time extension or payment of additional compensation will be made by Change Order, except that time extensions and or payment of additional compensation for suspensions of the Work on days determined by the Engineer to have been unworkable shall be in accordance with this Section 1-08.8(2) NONEXCUSABLE DELAYS

Non-excusable delays shall be those delays caused by factors within the Contractor’s control that could have been foreseen or avoided had the Contractor exercised due care, prudence, foresight, or diligence and pursued the Work vigorously and without unauthorized interruption. Non-excusable delays will not entitle the Contractor to an extension of time and will not be compensable.

Non-excusable delays include, but are not limited to:

1. Delays caused by or resulting from the Contractor’s own Subcontractors or Materialmen;
2. The Contractor’s lack of sufficient working capital;
3. The default of the Contractor;
4. The Contractor’s act or failure to act;
5. The Contractor’s failure to procure materials or workmen or to perform the Work according to the Contract Documents;
6. Changes, protests, increased quantities, or changed conditions that do not delay the completion of the Contract or prove to be an invalid or inappropriate time extension request;
7. Delays caused by non-approval of drawings or plans as provided in Section 1-05.3; and
8. Rejection of faulty or inappropriate Equipment as provided in Section 1-05.9.

The Contract may be terminated for a non-excusable delay.

1-08.8(3) EXCUSABLE DELAYS

1-08.8(3)A GENERAL

Excusable delays shall be those delays caused by one or more factors beyond the control and without fault or negligence of the Contractor. Excusable delays:

1. May be compensable; and
2. Will entitle the Contractor to an extension of time:
 a. If the activities that are subject to the delay are on the critical path of the accepted critical path schedule in effect at that time; and
 b. The Contractor has submitted a request for an extension of time within the prescribed time limits.

Excusable delays shall be limited to:

1. Acts of nature;
2. Acts of the public enemy;
3. Acts of a government in its sovereign capacity;
4. Acts or omissions or defaults of the Owner, or any of its officers and employees, including the Engineer, or of another Contractor employed by the Owner;
5. Unforeseeable conditions not the fault of the Contractor;
6. Fires, floods due to nature or other casualty for which the Contractor is not responsible;
7. Epidemics;
8. Quarantine restrictions;
9. Unusual transportation delays (freight embargoes);
10. Strikes or combined actions of labor;
11. Unusually severe weather as defined in the next to last paragraph in this Specification Section, provided that:
 a. The Engineer had not already allowed it as an Unworkable Day under Section 1-08.5; and
 b. The Contractor had timely filed a written protest asserting that time the Engineer charged as a Working Day should have been allowed as an Unworkable Day and
 c. The Engineer responded to the Contractor's written protest with a Written Notice approving that time as unworkable;
12. Any other conditions for which the Contract Documents permit time extensions such as:
 a. Section 1-04.4 if a change increases the time to do any of the Work including unchanged work;
 b. Section 1-04.5:
 (1) If increased time is part of a dispute that is found to be valid; or
 (2) If a dispute or claim also involves a delay in completing the Contract and the dispute or claim proves to be valid;
 c. Section 1-04.6 if increases in the quantities of any item of Work exceed 25 percent and these increases caused a delay in completing the Contract;
 d. Section 1-04.7 if a changed condition is determined to exist that caused a delay in completing the Contract;
 e. Section 1-05.3 if the Engineer's review does not approve properly prepared and acceptable Shop Drawings within the specified time frame;
 f. Section 1-07.13 if the performance of the Work is delayed as a result of damage by others;
 g. Section 1-07.17 if the removal or the relocation of any utility by forces other than the Contractor caused a delay;
 h. Section 1-07.24 if a delay results from all the Right of Way necessary for the construction not being purchased and the Project Manual does not make specific provisions regarding unpurchased Right of Way;
 i. Section 1-08.6 if the performance of the Work is suspended, delayed, or interrupted for an unreasonable time that proves to be the responsibility of the Engineer or Owner;
13. Exceptional causes not specifically identified in items 1 through 12, provided the request letter proves the Contractor had no control over the cause of the delay and could have done nothing to avoid or shorten it.

Foreseeability shall modify all factors in determination of entitlement to an excusable delay.

Normal inclement weather that, from historical records, is to be expected and during which the Work is anticipated to be performed shall not be considered unworkable or unusually severe weather. The Contractor shall consider normal inclement weather in the preparation of the critical path schedule and if the Contractor elects not to perform the Work during periods of normal inclement weather, the Contractor will not be entitled to an extension of time for these periods of non-work. Unusually severe weather, as determined by the Engineer, is weather disturbance during which the Contractor is unable to perform the Work in strict accordance with the requirements of the Contract Documents (see this Section item 11) including but not limited to:

1. Prolonged periods of snow;
2. Freezing temperatures; or
3. Above-average rainfall.

The Contract cannot be terminated for an excusable delay.

1-08.8(3)B COMPENSABLE DELAYS

Compensation will be provided for an increase in cost of performance of the Work (excluding profit) if the performance of all or any part of the Work is suspended or delayed for an unreasonable period of time by an act
of the Engineer or the Owner in the administration of the Work and such act is not expressly or implicitly authorized by the Contract Documents; or by failure of the Engineer or Owner to act within a time period specified in the Contract Documents (or if no time is specified, within a reasonable time). However, no adjustment will be made under this section for a suspension or delay if:

1. The performance would have been suspended or delayed by any other cause including the fault or negligence of the Contractor, or
2. Compensation is provided for or excluded under any other provision of the Contract Documents (i.e. Concurrent Delays). Compensable time extensions may be granted for reasons arising from the "CHANGES" or "CHANGED CONDITIONS (DIFFERING SITE CONDITIONS)" Contract provisions. However, time extension granted under the "CHANGES" or "CHANGED CONDITIONS (DIFFERING SITE CONDITIONS)" Contract provisions shall not be considered a delay or suspension of the Work as defined in this section.

If the Contractor believes an excusable delay is compensable, the Contractor shall immediately submit a written request for adjustment as specified in Section 1-08.8(1). The Engineer will determine if an equitable adjustment in cost or time is due. The equitable adjustment for increase in costs, if due, shall be subject to the limitations provided in Section 1-09.4, provided that no profit of any kind will be allowed on any increase in cost necessarily caused by the suspension, delay, or interruption.

The Engineer’s determination as to whether an adjustment should be made will be final unless the decision is disputed in accordance with the dispute resolution procedures specified in Sections 1-04.5.

1-08.8(3)C NONCOMPENSABLE DELAYS

Non-compensable delays are delays to the completion of the Work arising from conditions beyond the control and without fault or negligence of the Contractor, the Engineer, or the Owner. Non-compensable delays include, but are not limited to:

1. Acts of nature;
2. Acts of the public enemy;
3. Fires;
4. Floods due to nature;
5. Epidemics and quarantine restrictions;
6. Unusual transportation delays (freight embargoes);
7. Strikes or combined actions of labor;
8. Unusually severe weather;
9. Delays of Subcontractors or Suppliers at any tier.

1-08.8(4) CONCURRENT DELAYS

Concurrent delays are those delays where progress on critical path activities is impeded over the same period of time due to causes attributable to both the Contractor and Engineer or Owner. In the event of a concurrent delay, neither party shall be entitled to compensation from the other, over the period of time that concurrency of delay exists, as a direct result of such delay.

1-08.9 LIQUIDATED DAMAGES

Time is of the essence of the Contract. Delays inconvenience the public and add time needed for administration, engineering, inspection and supervision.

Because it is impractical to calculate the actual cost of delays, Liquidated Damages have been agreed upon to provide compensation for damages resulting from failure to complete the Contract on time. Such obligation shall not be construed as a penalty.

The Contractor:

1. Shall pay Liquidated Damages for delay for overruns in the Contract Time as set forth below; and
2. Authorizes the Engineer to deduct these damages from any money due or coming due to the Contractor.
For overruns in Contract Time occurring before the Substantial Completion Date, the Liquidated Damages set forth in Section 4 of the Form of Agreement will apply. For overruns in Contract Time occurring after the Substantial Completion Date, damages will be assessed on the basis of direct engineering and related costs assignable to the Project from, and including, the Substantial Completion Date to, and including, the Physical Completion Date. The Substantial Completion Date and Physical Completion Date will be established pursuant to the requirements of Section 1-05.11. The Completion Date will be established pursuant to the requirements of Section 1-05.12.

Liquidated Damages will not be assessed for any day for which an extension of time is granted. No deduction or payment of such damages for delay will release the Contractor, in any degree, from further obligations and liabilities to complete the entire Contract obligations within the Contract Time.

1-08.10 TERMINATION OF CONTRACT

1-08.10(1) TERMINATION FOR DEFAULT

The Owner may terminate the Contract upon the occurrence of any one or more of the following events:

1. If the Contractor fails to supply sufficient skilled workers or suitable materials or Equipment;
2. If the Contractor refuses or fails to prosecute the Work with such diligence as will ensure its physical completion within the Contract Time and any extension of time that may have been granted to the Contractor by Change Order or otherwise;
3. If the Contractor is adjudged bankrupt or insolvent, or makes a general assignment for the benefit of creditors, or if the Contractor or a third party files a petition to take advantage of any debtor's act or to reorganize under the bankruptcy or similar laws concerning the Contractor, or if a trustee or receiver is appointed for the Contractor or for any of the Contractor's property on account of the Contractor's insolvency, and the Contractor or its successor in interest does not provide the Engineer adequate assurance of future performance in accordance with the Contract within 15-days of receipt by the Contractor or its successor in interest of a request for assurance from the Engineer;
4. If the Contractor disregards any law, ordinance, rule, code, regulation, order or similar requirement of any public entity having jurisdiction;
5. If the Contractor disregards the authority of the Engineer;
6. If the Contractor performs any portion of the Work in a way that deviates from the Contract requirements, and neglects or refuses to correct any rejected performance; or
7. If the Contractor otherwise violates in any material way any material provision or requirement of the Contract.

Once the Owner determines that sufficient cause exists to terminate the Contract, Written Notice will be given to the Contractor and its Surety indicating that the Contractor is in breach of the Contract and that the Contractor is to remedy the breach within 15-days after the Written Notice is delivered. In case of an emergency such as potential damage to life or property, the response time to remedy the breach after the Written Notice may be shortened. If the remedy does not take place to the satisfaction of the Engineer, the Engineer, by serving Written Notice to the Contractor and Surety, may either:

1. Transfer the performance of the work from the Contractor to the Surety; or
2. Terminate the Contract and, at the Engineer's option, prosecute it to completion by Contract or by other means. Any extra costs or damages to the Owner shall be deducted from any money due or coming due to the Contractor or Surety under the Contract.

If the Owner elects to pursue one remedy, it will not bar the Owner from pursuing other remedies on the same or subsequent breaches.

Upon receipt of a Written Notice that the Work is being transferred to the Surety, the Surety shall enter upon the Project Site and take possession of all materials, tools, and appliances for the purpose of completing the Work pursuant to the Contract Documents and employ by contract or otherwise any person or persons satisfactory to the Engineer to finish the Work and provide the Materials without termination of the Contract. Such employment shall not relieve the Surety of its obligations under the Contract and the Bond. If there is a transfer to the Surety, payments on estimates covering the Work subsequent to the transfer shall be made to the extent
permitted under law to the Surety or its agent without any right of the Contractor to make any claim against the Owner for such sums.

If the Contractor fails to correct in a timely manner any material breach and the Owner terminates the Contract or provides such sufficiency of labor or materials as is required to complete the Work, the Contractor shall not be entitled to receive any further payment on the Work until the Work has been fully performed. The Contractor shall bear all extra expenses incurred by the Owner in completing the Work, including all increased costs for completing the Work, and all damages sustained, or that may be sustained, by the Owner by reason of such refusal, neglect, failure, or discontinuance of the Work by the Contractor. If Liquidated Damages are provided in the Contract, the Contractor shall be liable for whatever amount of such damages accrues through the Substantial Completion Date. After all the Work encompassed by the Contract has been completed, the Engineer will calculate the total expenses and damages for the completed Work. If the total expenses and damages are less than any unpaid balance due the Contractor, the excess will be paid by the Owner to the Contractor. If the total expenses and damages exceed the unpaid balance, the Contractor and the Surety shall be jointly and severally liable to the Owner and shall pay the difference to the Owner on demand.

In exercising the Engineer’s right to prosecute the Work to physical completion, the Engineer shall have the right to exercise sole discretion as to the manner, method, and reasonableness of the costs of completing the Work. In the event that the Owner takes Bids for remedial work or physical completion of the Project, the Contractor shall not be eligible for the Award of such contract.

In the event the Contract is terminated, the termination shall not affect any rights of the Owner against the Contractor. The rights and remedies of the Owner under the termination clause are in addition to any other rights and remedies provided by law or under this Contract. Any retention or payment of monies to the Contractor by the Owner will not release the Contractor from liability.

If a Written Notice of termination for default has been issued and it is later determined for any reason that the Contractor was not in default, the rights and obligations of the parties shall be the same as if the Written Notice of termination had been issued pursuant to Termination for Public Convenience in Section 1-08.10(2). This result shall apply where the Contract is terminated for default because of failure to prosecute the Work, and where a Contractor’s delay was found to be excusable under the provisions of Section 1-08.8.

1-08.10(2) TERMINATION FOR PUBLIC CONVENIENCE
The Owner may terminate the Contract in whole, or from time to time in part, whenever:

1. The Contractor is prevented from proceeding with the Work as a direct result of an Executive Order of the President with respect to the prosecution of war or in the interest of national defense; or an Executive Order of the President or Governor of the State with respect to the preservation of energy resources;

2. The Contractor is prevented from proceeding with the Work by reason of a preliminary, special, or permanent restraining order of a court of competent jurisdiction where the issuance of such restraining order is primarily caused by an act or omission of a person or agency other than the Contractor; or

3. The Owner determines that such termination is in the best interests of the public.

1-08.10(3) PAYMENT FOR TERMINATION FOR PUBLIC CONVENIENCE
Whenever the Contract is terminated in accordance with Section 1-08.10(2), payment will be made for actual work performed at Contract unit prices for completed items of the Work. An equitable adjustment for partially completed articles of work and disposal of materials will be made as provided in Section 1-09.5.

1-08.10(4) TERMINATION CLAIM BY CONTRACTOR
After receipt of a Written Notice of termination of Contract for public convenience, the Contractor shall submit to the Engineer a termination claim in sufficient detail to enable the Engineer to ascertain the basis and amount of the claim. The claim shall provide the minimum detailed information required by Section 1-04.5(3). The claim shall be submitted promptly but in no event later than 60 days after the effective date of termination. The Contractor shall pursue resolution of the claim through the established administrative channels of the Owner. The Contractor shall make its business and office records available to the extent necessary for the Engineer to
verify the Contractor's claim and to determine the amount of entitlement per Section 1-09.12. Subject to the provisions of Section 1-05.1, the decision of the Engineer shall be final.

1-08.10(5) TERMINATION FOR DELAYS DUE TO LITIGATION
Pursuant to RCW 60.28.080, if the delay caused by litigation exceeds six months, the Contractor may then elect to terminate the Contract and receive payment in proportion to the amount of the Work completed plus the cost of the delay. Amounts retained and accumulated under RCW 60.28.011 shall be held for a period of 60 days following the election of the Contractor to terminate.

1-08.10(6) RESPONSIBILITY OF THE CONTRACTOR AND SURETY
Termination of the Contract shall not relieve the:
1. Contractor of any responsibilities under the Contract for work performed; or
2. Surety or Sureties of obligations under the Contract Bond, and Retainage Bond if applicable, for work performed.

1-08.10(7) TERMINATION BEFORE COMPLETION
Pursuant to RCW 60.28.011(7), if after a substantial portion of the Work has been completed, an unreasonable delay will occur in the completion of the remaining portion of the Contract for any reason not the result of a breach thereof, the Owner may, if the Contractor agrees, delete from the Contract the remaining work and accept as final the improvement at the stage of completion then attained and make payment in proportion to the amount of the Work accomplished. In such case, whatever amount of the Contractor’s compensation has been retained and accumulated pursuant to RCW 60.28.011(7) shall be held for the statutory period of 60 days following the establishment of the Completion Date. In the event that the Work shall have been terminated before Final Completion, the Owner may thereafter enter into a new contract with the same Contractor without advertisement or Bid for the performance of the remaining Work or improvement for an amount equal to or less than the cost of the remaining Work under the original Contract.

SECTION 1-09 MEASUREMENT AND PAYMENT

1-09.1 MEASUREMENT OF QUANTITIES

In measuring all acceptably completed Bid items of work, the Engineer will:

1. Use United States standard measure.
2. Make all measurements as described in this section, unless individual Specifications require otherwise.
3. Follow methods generally recognized as conforming to good engineering practice.
4. Conform to the usual practice of the Owner by carrying measurements and computations to the proper significant figure or fraction of units for each item.
5. Measure horizontally or vertically (unless otherwise specified).

The terms listed below shall be defined as follows in all measurements under this section:
1. Lump Sum (when used as an item of payment): Complete payment for the work described for that item in the Contract.
2. Gage:
 a. In the measurement of plates: the U.S. Standard Gage.
 b. In the measurement of galvanized sheets used to manufacture corrugated metal pipe, metal plate pipe Contracts and arches, and metal cribbing: that specified in AASHTO M 36, M 167, M 196, M 197, or M 219.
 c. In the measurement of wire: that specified in AASHTO M 32.
3. Ton: The short ton is equal to 2,000 pounds of avoirdupois weight. All materials that are measured or proportioned by weight will be weighed according to the requirements of Section 1-09.2. If material is shipped by rail, the car weight may be accepted provided only the actual weight of material is paid for. However, car weights will not be acceptable for material to be passed through mixing plants.
For each basis of measurement listed below, the Engineer will use the method of measurement described. For Bid items or materials measured on the basis of:

1. **Square Yard or Square Foot**: Measured on the neat dimensions shown in the Drawings or as altered by the Engineer. If an individual fixture has an area of 9 square feet or less, no deductions in area will be made.

2. **Linear Foot**: Pipe Contracts, guardrail, under drains, etc. shall be measured parallel to the Structure’s base or foundation, unless the Drawings require otherwise.

3. **Weight**: Weighed as required in Section 1-09.2.

4. **Volume**:
 a. **Excavation and Embankment**: Measured by the average-end-area method or by the finite element analysis method utilizing digital terrain modeling techniques. All or some computations may be based on ground elevations and other data derived photogrammetrically. The Engineer may correct for curvature.
 b. **In Hauling Vehicle**: Measured at the point of delivery. Hauling vehicles may be of any size or type the Engineer approves provided that the body is of such shape that the actual contents may be readily and accurately determined. If the Engineer requires, the Contractor shall level loads at the delivery point to facilitate measurement.
 c. **Mineral Aggregates**: Measured by the cubic yard compacted in place to the neat line dimensions indicated on the Drawings or Standard Plans.

Minor incidental construction items for which the Contract Documents require measurement by weight may, at the Contractor’s request and with the Engineer’s approval, be converted to weight from volume measurements using the factor of 1.25 tons per cubic yard of volume measure.

For each item listed below, the Engineer will use the method of measurement described:

1. **Structures**: Measured on the neat lines shown in the Drawings or as altered by the Engineer. When a complete structure or structural unit is specified as the unit of measurement, the unit shall include all fittings and accessories.

2. **Timber**: Measured by the thousand board feet (MBM) actually used in the Structure. Measurements will be based on the nominal width, thickness, and the extreme length of each piece.

3. **Standard Manufactured Items**: Fence, wire, plates, rolled shapes, pipe conduit, etc., when specified shall be measured by the manufacturer’s identification of gage, unit weight, section dimension, etc. The Engineer will accept manufacturing tolerances set by each industry unless cited Specifications require more stringent tolerances.

4. **Cement**: Measured by the pound, ton, or sack. A sack shall mean a sack weighing 94 pounds.

5. **Asphalt**: Measured by the gallon or ton. If measured by gallon, measurement will be made at 60°F (or will be corrected to the volume at 60°F in keeping with ASTM D 1250). If shipped by rail, truck, or transport, measurement will be by net certified scale weights or certified volumes (corrected for material lost enroute or not actually incorporated into the work). The Engineer will use the above volume-weight conversion table to compute asphalt measurements:

<table>
<thead>
<tr>
<th>Conversion Factors</th>
<th>Average Weights and Volumes of Asphalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>Gallons per Ton</td>
</tr>
<tr>
<td>Liquid Asphalt</td>
<td>@ 60°F</td>
</tr>
<tr>
<td>70</td>
<td>253</td>
</tr>
<tr>
<td>250</td>
<td>249</td>
</tr>
<tr>
<td>800</td>
<td>245</td>
</tr>
<tr>
<td>3000</td>
<td>241</td>
</tr>
<tr>
<td>Paving Asphalt</td>
<td>235</td>
</tr>
<tr>
<td>Emulsified Asphalt</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>All Grades</td>
<td>240</td>
</tr>
</tbody>
</table>

No measurement will be made for:

1. Work performed or materials placed outside lines shown in the plans or set by the Engineer.
2. Materials wasted, used, or disposed of in a manner contrary to the Contract.
3. Rejected materials (including those rejected after placement if the rejection resulted from the Contractor’s failure to comply with the Contract).
5. Material remaining on hand after the work is completed, except as provided in Section 1-09.8.
6. Any other work or material contrary to any Contract provision.

1-09.2 WEIGHING EQUIPMENT

1-09.2(1) GENERAL REQUIREMENTS FOR WEIGHING EQUIPMENT

Materials proportioned, or measured and paid for by weight shall be weighed on accurate, approved scales by competent, qualified personnel at locations satisfactory to the Engineer.

Scales for the weighing of natural, manufactured, or processed construction materials obtained from natural deposits, stockpiles, or bunkers which are required to be proportioned or measured and paid for by weight, shall be furnished, erected and maintained by the Contractor, or shall be certified, permanently installed commercial scales.

Each truck to be weighed shall bear a unique identification number. This number shall be legible and in plain view of the scale operator. Trucks used to haul material being paid for by weight shall be weighed empty at least twice daily or at such times as the Engineer directs. Duplicate weight tickets shall be prepared and accompany each truckload of material delivered to the Project. The duplicate weight tickets shall be submitted to the Engineer on the day of delivery. The tickets shall be legible and contain the following information:

1. Preprinted ticket serial number.
2. Identification number of truck/truck trailer.
3. Date and hour of weighing.
4. Type of material.
5. Weight of load including gross, tare and net weights. If the scale has a tare beam so the net weight can be read directly, only the net weight need be recorded on the ticket.
6. Weighman’s identification.
7. Item number.
8. Contract number.
9. Unit of measure.
10. Legal gross weight in remarks section.
11. Location of delivery (station or by street name).

The net weight of material measured by the ton that is being placed in each truck shall be printed on the ticket by an automatic weighing device from a certified scale.

Scales shall:

1. Be accurate to within one-half of 1 percent throughout the range of use,
2. Not include spring balances,
3. Include beams, dials, or other reliable readout equipment,
4. Be arranged so that operators and Inspectors can safely and easily see the dials, beams, rods, and operating scale mechanisms,
5. Be built to prevent scale parts from binding, vibrating, or being displaced and to protect all working parts from falling material, wind, and weather, and
6. Be carefully maintained, with
 a. Bunkers and platforms kept clear of accumulated materials that could cause errors.
 b. Knife edges given extra care and protection.
At each batch and platform scale location, the Contractor shall keep 10 standard 50-pound weights for scale calibration and testing. If the Engineer has approved other calibration and testing equipment, the Contractor may substitute it for these weights.

1-09.2(2) SPECIFIC REQUIREMENTS FOR BATCHING SCALES

All materials proportioned by weight shall be weighed on an accurate, approved scale by qualified operators employed by the Contractor. Scale locations require the Engineer’s approval.

Each scale shall be designed to support a weighing hopper. The arrangement shall make it convenient for the operator to remove material from the hopper while watching readout devices. Any hopper mounted on a platform scale shall have its center of gravity directly over the platform centerline.

Marked intervals on the readout device shall be spaced evenly throughout and shall be based on the scale’s nominal rated capacity. These intervals shall be at least 1-pound, but shall not exceed one-tenth of 1 percent of nominal rated capacity.

An agent of the scale manufacturer shall test and service any batch scale before its use at each new site and then at 6-month intervals. The Contractor shall provide the Engineer a copy of the final results after each test. Whenever the Engineer requests, the Contractor’s operator(s) shall test the scale while the Inspector observes.

Portland or asphalt cement shall be weighed on a scale not used for other materials.

1-09.2(3) SPECIFIC REQUIREMENTS FOR PLATFORM SCALES

Platform scales shall be certified scales that automatically print the net, tare, and gross weights on the ticket and shall have the size and capacity to weigh an entire hauling vehicle or combination of connected vehicles at one time. No part of the connected vehicle or combination shall be off the platform at the time of weighing.

A platform scale operator shall be designated by the Contractor to weigh all materials on the Contractor’s platform scales and make the records thereof. The Contractor may also elect to use commercial scales. The Contractor shall furnish approved load tickets at the scale and legible duplicate copies to the Engineer at the delivery point and guarantee permission for Owner personnel to periodically observe the weighing and to check and compile the daily record of scale weights. Tare weights of each conveyance shall be taken two or more times daily.

Each commercial and certified weigher shall check the scales at least daily. The scales check methods and documentation procedures for scale checks and recording tare weights shall be approved by the Engineer. Checks shall be made throughout each day to see that the scales are balanced and return to zero when no load is on them.

Any Contractor-supplied scale shall include a scale house with a floor space of at least 6 by 10 feet. The scale house shall be wind and weather tight, shall have windows for light and ventilation, shall include a door, and shall be lockable. It shall include a table, a chair, electrical power, and a space heater. The Contractor shall provide a rest room near the scale house.

Platform scales shall be installed and maintained with the platform level and rigid bulkheads at each end to eliminate binding and shifting. The platform scale beam or dial shall have graduated intervals of no more than 40 pounds. When testing the scales, the weights shall be read and recorded to the nearest 20 pounds and during weighing operations, weights shall be read and recorded to the nearest hundred weight (cwt.).

Before use at a new site and every six months thereafter, the scales shall be approved in accordance with local ordinances or rules of the State Department of Agriculture’s Weights and Measures Section, or be serviced and tested by a scale company representative with at least 10,000 pounds, with a copy of the final test results provided to the Engineer.

1-09.2(4) SPECIFIC REQUIREMENTS FOR BELT CONVEYOR SCALES

Conveyor belt weighing may be accepted for untreated materials provided that this method or device meets the general requirements of weighing equipment.

Belt conveyor scales shall meet the requirements for belt conveyor scales as specified in the National Bureau of Standards, Handbook No. 44, except as modified by these Specifications.
A daily static-load test shall be made after about 1/2 hour of continuous running of the belt conveyor and whenever the air temperature varies significantly. A chain test will be required whenever a need for adjustment has been determined by the daily static-load test.

The test chain calibration computation, calibration procedures and results, and related documents shall be available for review by the Engineer. The test chain shall be clearly marked with its calibration. It shall be carried in a suitable container and shall be immediately available for testing of the best conveyor scales.

Comparisons of accuracy may be made by checking the average of 5 or more sequential hauling unit payloads on platform scales meeting the requirements of these Specifications. A comparative accuracy of 0.5 percent (plus or minus) of the payload of the average hauling unit will be acceptable. Since the recording odometer, of conveyor belt scales in general use, is graduated in 0.1-tn (i.e. 200 lbs.) increments and, since the recording is a cumulative process, minor differences in reading or variations smaller than 0.1-tn carry over from one vehicle unit to another. For greater accuracy, confirmation of the conveyor weights will be based on the tonnage values obtained from readings taken from the sealed odometer at the beginning and end of each check period. The number of check loads may be increased by the Engineer should the test results fluctuate.

The Contractor shall furnish appropriate serially numbered tickets as approved by the Engineer for self-printing of the time and date of loading and the approximate load out weight. Each ticket shall be imprinted from a recording device at the loading point by the truck driver and delivered to the Engineer at the Job Site. The delivered ticket shall be marked with hauling conveyance equipment number.

The recording tape, odometer, totalizer, calibration adjustment and clock-time imprinter shall be secured and locked. All keys shall be in the possession of the Engineer.

1-09.2(5) MEASUREMENT

In the event inspection reveals that scales have been under-weighing, the scales shall be adjusted and no additional payment to the Contractor will be allowed for materials previously weighed and recorded. Scales overweighing (indicating more than true weight) will not be permitted to operate and all materials received subsequent to the last previous corrected weighing accuracy test will be reduced by the percentage of error in excess of one-half of one percent. No payment will be made for materials received by weight which have not been weighed in accordance with the foregoing Specification or other methods specifically approved in writing for the individual Project.

1-09.2(6) PAYMENT

All costs in connection with furnishing, installing, certifying and maintaining scales for furnishing check weights and scale house and for all other items specified in this section for the weighing of construction materials for proportioning or payment shall be included in the unit Bid item prices for the various items of work which comprise the Contract.

1-09.3 SCOPE OF PAYMENT

1-09.3(1) GENERAL

The Contractor shall receive and accept compensation provided in the Contract Documents as full payment for the following:

1. Furnishing all materials and for performing all work under the Contract in a complete and acceptable manner including changes in the work, materials, or Drawings as provided for by approved Change Orders.
2. All risks, loss, damage, or expense of whatever character arising out of the nature or prosecution of the Work.
3. All expense incurred in consequence of the suspension or discontinuance of the Work as specified in the Contract Documents.

The payment of any estimate or retained percentage shall not relieve the Contractor of the obligation to make good any defective work or materials.

Unless the Contract Documents provide otherwise, the unit Bid item prices for the various items of the Work listed in the Bid Form shall be full compensation for all labor, materials, Supplies, Equipment, tools, and all
things of whatever nature required for the complete incorporation of the item into the Work, the same as though the item were to read "in place."

The term, "lump sum," when used as an item of payment means full compensation for the work described for that item in the Contract.

Unless modified otherwise in the Project Manual, the Bid items listed or referenced in the “Payment” clause of each Section of the Standard Specifications, will be the only items for which compensation will be made for the Work described in or specified in that particular Section. Should the Contractor perform work that is listed as a Bid item in a “Payment” clause but not in the Bid Form, then payment for that Work will be made by Change Order pursuant to Section 1-09.4.

The words “Bid item,” “Contract item,” and “pay item,” and similar terms used throughout the Contract Documents are synonymous.

If the “Payment” clause in the Specifications relating to any unit Bid item price in the Bid Form requires that said unit Bid item price cover and be considered compensation for certain work or material essential to the item, then the work or material will not be measured or paid for under any other unit Bid item which may appear elsewhere in the Bid Form or Specifications.

Certain unit Bid items appearing in the Specifications may be modified in the Contract Documents to include words such as:
1. “For Structure,” or “For Concrete Barrier,” or “For Bridge,” etc. with the intent of clarifying specific use; or
2. “Site (site designation),” with the intent of clarifying where a specific item of work is to be performed.

Modifications of the unit Bid items in this manner shall not change the intent of the Specifications relating to these items.

Payment for Bid items listed or referenced in the “Payment” clause of any particular Section of the Specifications shall be considered as including all of the Work required, specified, or described in that particular Section. Payment items will generally be listed generically in the Specifications, [e.g., “Manhole (type)”] and specifically in the Bid form (e.g., “Manhole, Type 130”). When items are to be “furnished” under one payment item and “installed” under another payment item, such items shall be furnished FOB Project Site, or, if specified in the Project Manual, delivered to a designated City site. Materials to be “furnished,” or “furnished and installed” under these conditions, shall be the responsibility of the Contractor with regard to storage until such items are incorporated into the Work or, if such items are not to be incorporated into the work, delivered to the applicable City storage site when provided for in the Specifications.

Payment for material “furnished,” but not yet incorporated into the Work, may be made on monthly estimates to the extent allowed.

1-09.4(1) EQUITABLE ADJUSTMENT FOR CHANGES

1-09.4(2) LUMP SUM BREAKDOWN

The Contractor shall submit at the preconstruction meeting a breakdown of costs for each lump sum Bid item. The breakdown shall list the labor, Equipment, material, profit and overhead cost for the item. These values will then be used as a guideline for determining partial payments or deductions for authorized changes in the Work.

1-09.4 EQUITABLE ADJUSTMENT FOR CHANGES

Payment for work pursuant to a Change Order (other than deleted work) shall be full compensation for any such change. The amount of payment shall be determined by one or more of the following methods:
1. by unit prices contained in the Bid;
2. by unit prices mutually agreed upon;
3. by mutual acceptance of a lump sum price; or
4. by Force Account.
When the Work performed can be measured and paid for at unit Bid item prices, it will be measured and paid for at such prices. When payment is by Method (3), the Contractor shall provide substantiation of the lump sum price in a form acceptable to the Engineer. Payment by methods (1),(2) and (3) shall include all costs for overhead and profit except that any mark-ups for overhead and profit included in any computation requested to justify a lump sum agreed price shall be limited to those permitted for method (4) force account. If the Contractor and Engineer are unable to agree on compensation the Engineer will determine the compensation or if deemed appropriate by the Engineer compensation will be paid by method (4) Force Account.

When payment for extra work is by lump sum, agreed price or by unit prices mutually agreed upon, the Contractor shall include in the agreed price(s), retail sales tax on taxable materials when such extra work is for improving public roads. When the extra work is for water systems, sanitary Sewer systems, sewage disposal facilities, electrical distribution, or other work not related to public roads, the Contractor shall not include retail sales tax in the agreed price.

1-09.4(2) IN LAW OR TAXES

Adjustments in the amount to be paid by the Owner under the terms and conditions of the Contract will not be made as a result of any change in laws, ordinances or regulations except as specifically provided by the following:

1. Changes in Laws: The Owner will not adjust payment to compensate the Contractor for changes in legal requirements unless those changes are specifically within the scope of RCW 39.04.120. For changes under RCW 39.04.120 the Owner will compensate the Contractor in accordance with Section 1-09.4(1).

2. Changes in Taxes: The Owner will adjust payment to compensate for tax changes under the following conditions:
 a. The changes involve Federal or State taxes on materials used in or consumed for the Work.
 b. The changes increase Contractor-paid taxes by more than $500.
 c. For items in the original Contract, the tax change must occur after the Bid opening date.
 d. For negotiated Contracts, the tax change must take place after the execution date of the Contract.
 e. The Contractor if requested by the Engineer certifies in writing that the Awarded Contract Price does not include an extra amount to cover a possible change in taxes.
 f. The Contractor permits the Owner to audit the Contractor’s records to the extent necessary to substantiate any claim for compensation under the provisions of this section.

Within the above conditions the Owner will adjust compensation by the actual dollar amounts of increase or decrease caused by the tax changes.

1-09.5 DELETED OR TERMINATED WORK

The Engineer may delete work by Change Order as provided in Section 1-04.4. The Owner may terminate the Contract in whole or part as provided in Section 1-08.10. When the Contract is terminated in part, the partial termination shall be treated as a deletion Change Order for payment purposes under this section.

Payment for completed items will be at Contract unit prices.

When any item is deleted in whole or in part by Change Order or when the Contract is terminated in whole or in part, payment for deleted or terminated work will be made as follows:

1. Payment will be made for the actual number of units of work completed at the Contract unit prices unless the Engineer determines the unit prices are inappropriate for the work actually performed. When that determination is made by the Engineer, payment for work performed will be as mutually agreed. If the parties cannot agree the Engineer will determine the amount of the equitable adjustment in accordance with Section 1-09.4.

2. Payment for partially completed lump sum items will be as mutually agreed. If the parties cannot agree, the Engineer will determine the amount of the equitable adjustment in accordance with Section 1-09.4.
3. To the extent not paid for by the Contract prices for the completed units of work, the Owner will pay as part of the equitable adjustment those direct costs necessarily and actually incurred by the Contractor in anticipation of performing the work that has been deleted or terminated.

4. The total payment for any one item in the case of a deletion or partial termination shall not exceed the Bid price as modified by approved Change Orders less the estimated cost (including overhead and profit) to complete the work and less any amount paid to the Contractor for the item.

5. The total payment where the Contract is terminated in its entirety shall not exceed the total Contract price as modified by approved Change Orders less those amounts paid to the Contractor before the effective date of the termination.

6. No claim for damages of any kind or for loss of anticipated profits on deleted or terminated work will be allowed because of the termination or Change Order. Contract Time shall be adjusted as the parties agree. If the parties cannot agree, the Engineer will determine the equitable adjustment for Contract Time.

Acceptable materials ordered by the Contractor prior to the date the Work was terminated as provided in Section 1-08.10(2) by the Owner or deleted as provided in Section 1-04.4 by the Engineer, will either be purchased from the Contractor by the Owner at the actual cost and shall become the property of the Owner, or the Owner will reimburse the Contractor for the actual costs connected with returning these materials to the Suppliers.

1-09.6 FORCE ACCOUNT

1-09.6(1) GENERAL

Payment for Force Account work shall be as specified hereinafter. The payments provided shall be full payment for all work done on a Force Account basis. The payment shall cover all expenses of every nature, kind, and description, including all overhead expenses, profit, occupational tax and any other Federal or State revenue acts, premiums on public liability and property damage insurance policies, and for the use of small tools and Equipment for which no rental is allowed.

No claim for Force Account shall be allowed except upon written order by the Engineer prior to the performance of the work. No work shall be construed as Force Account work that can be measured under the Specifications and paid for at the unit prices named in the Contract.

The amount and costs of any work to be paid by Force Account shall be computed by the Engineer, and the amount certified by the Engineer shall be final as provided in Section 1-05.1.

The Contractor's cost records pertaining to Force Account work shall be open to inspection, subject to retainage amounts and periods, and the audit requirements of Section 1-09.12.

1-09.6(2) LABOR

The Contractor will be reimbursed for labor and for supervision by foremen dedicated solely to the particular force account item of work (but not for supervision by general superintendents, project managers, or general foremen). The Engineer will compute the labor payment on the basis of these four factors:

1. **Weighted Wage Rate:** The Weighted Wage Rate combines:
 a. The current basic wage and fringe benefits the Contractor is required and has agreed to pay.
 c. Federal Unemployment Tax Act (FUTA).
 d. State Unemployment Compensation Act (SUCA).

 A Weighted Wage Rate shall be computed for each classification of labor used. This rate shall reflect the Contractor's actual cost. It shall neither exceed what is normally paid to comparable labor nor fall below the minimum required by Section 1-07.9. If the Engineer authorizes overtime, the Weighted Wage Rate shall be determined on the same basis.

2. **Travel Allowance and Subsistence:** This includes the actual costs of allowances for travel or subsistence paid to employees in the course of their work on the item. This reimbursement will be made
only if such allowances are required by a regional labor agreement or are normally paid by the Contractor to comparable labor for performing other work.

3. **Industrial Insurance and Medical Aid Premiums**: The Owner will reimburse Contractor-paid premiums for Marine Industrial Insurance, for State of Washington Industrial Insurance, and Medical Aid premiums which become an obligation of the Contractor and are chargeable to the Force Account work on the basis of time worked. Reimbursement will be for the composite rate (the full Industrial Insurance premium plus one-half the Medical Aid premium) which the regulatory body sets for the Contractor doing the work. The composite rate will be adjusted if the regulatory body changes this rate.

4. **Overhead and Profit**: The Owner will pay the Contractor 20 percent of the sum of the costs listed in (1), (2), and (3) above to cover Project overhead, general company overhead, profit, and any other costs incurred.

1-09.6(3) **MATERIALS**

The Owner will reimburse actual invoice cost for Contractor-supplied materials. This cost includes actual freight and express charges and taxes as described in Section 1-07.2 provided that these costs have not been paid in some other manner under the Contract. A deduction will be made for any offered or available discounts or rebates if the Engineer has provided the Contractor with the means to comply with the provisions allowing the discount. The Engineer will then add 15 percent of the balance to cover Project overhead, general company overhead, profit, and any other cost of supplying materials.

To support charges for materials, the Contractor shall provide the Engineer with valid copies of Vendor invoices, including freight and express bills. If invoices are not available for materials from the Contractor stocks, the Contractor shall certify actual costs by affidavit.

If claims for materials costs are too high, inappropriate, or unsupported by satisfactory evidence, the Engineer may determine the cost for all or part of the materials. When determined in this manner, the cost will be the lowest current wholesale price from a source that can supply the required quantity (including delivery costs).

The Owner reserves the right to provide materials. In this case, the Contractor will receive no payment for any costs, overhead, or profit.

1-09.6(4) **EQUIPMENT**

The approval of the Engineer shall be required for the selection of machine-power tools or Equipment prior to their use on Force Account.

The payment for machine-power tools or Equipment shall be made according to the current AGC/WSDOT Equipment Rental Agreement which is in effect at the time the Force Account is authorized. The rates as set forth in the Rental Rate Blue Book (as modified by the current AGC/WSDOT Equipment Rental Agreement) are the maximum rates allowable for equipment of modern design and in good working condition. These rates shall be full compensation for all fuel, oil, lubrication, repairs, maintenance, and all other costs incidental to furnishing and operating the equipment except labor for operation.

The Engineer will add 15 percent to Equipment costs to cover Project overhead, general company overhead (excluding Equipment overhead included in the Rental Rate Blue book), and profit.

Current copies of the Rental Rate Blue Book and the AGC/WSDOT Equipment Rental Agreement will be maintained at each District office of the Washington State Department of Transportation and at each of the offices of the Associated General Contractors of America (in Seattle, Spokane, Tacoma, and Wilsonville, Oregon) where they are available for inspection.

1-09.6(5) **FORCE ACCOUNT MOBILIZATION**

Force Account mobilization is defined as the preparatory work performed by the Contractor including transportation of tools, equipment, and personal travel time (when included in a bargaining agreement).

The Owner may pay for mobilization of Equipment and labor if the Force Account item is not an item included in the original Contract proposal or such other Contract items as may be included in the Project Manual as being eligible for reimbursement for mobilization. Off-site work in preparation for the travel to the Project, costing $300 or less will not be paid. The Owner will not pay for mobilization for off-site preparatory work for Force Account items under any circumstances unless the Contractor specifically makes a request in writing in advance of any such mobilization work. The written request shall include an estimate for mobilization costs.
involving off-site preparatory work and the basis for reimbursement. The approval of the Engineer will be required prior to commencing the mobilization for all Force Accounts. To the agreed final amount of mobilization for Force Account shall be added an amount equal to 15 percent of that sum for all other costs, including Project overhead, general company overhead, and profit.

1-09.6(6) SUBCONTRACTORS

The Subcontractors will be allowed a 5 percent markup of the total cost computed for labor, materials, Equipment, and mobilization (per Sections 1-09.6(2) through 1-09.6(5) above) for insurance, B&O tax, and bonding.

1-09.6(7) CONTRACTOR MARKUP ON SUBCONTRACTORS

When work is performed on a Force Account basis by approved Subcontractors, the Contractor will be allowed an additional markup equal to 5 percent of the total Subcontractor’s cost computed for labor, materials, Equipment, mobilization, and Subcontractor’s markup (per Section 1-09.6(2) through 1-09.6(6) above) for all administrative costs.

1-09.6(8) INSURANCE, B&O TAX, AND BONDING

The Contractor will be allowed an additional markup equal to 5 percent of the total cost computed for labor, material, Equipment, mobilization, Subcontractor’s markup, and Contractor’s markup on Subcontractor’s markup (per Sections 1-09.6(2) through 1-09.6(7) above) for insurance, B&O tax, and bonding.

1-09.7 PAYMENT FOR MOBILIZATION

Mobilization shall consist of pre-construction expenses and costs of preparatory work and operations performed by the Contractor which occur before 10% of the Awarded Contract Price is earned from other Bid items. Costs which are not to be included in the item of “Mobilization” include but are not limited to:

1. Any portion of the Work covered by a specific Bid item or incidental work which is to be included in a Bid item or items.
2. Profit, interest on bond money, overhead or management costs.

Based on the lump sum Bid item price for “Mobilization” partial payments will be made as follows:

1. When 5% of the Awarded Contract Price is earned, excluding mobilization and amounts paid for materials on hand, 50% of the amount Bid for mobilization or 5% of the Awarded Contract Price whichever is less will be paid.
2. When 10% of the Awarded Contract Price is earned from other Bid items, excluding mobilization and amounts paid for materials on hand, 100 percent of the amount Bid for mobilization or 10% of the Awarded Contract Price whichever is less will be paid.
3. When the Physical Completion Date has been established for the Project, payment of any amount Bid for mobilization in excess of 10% of the Awarded Contract Price will be paid.

On projects having Bid items subject to both State Sales Tax Rule 171 and another State Sales Tax Rule which requires the retail sales tax be collected on the full price of the work not just the material costs (Example: State Sales Tax Rule 170), the amount of Mobilization to be taxed according to each rule shall be determined by the percentage of the total cost associated to each rule versus the Awarded Contract Price.

1-09.8 PAYMENT FOR MATERIAL ON HAND

Partial payments, to a maximum of 90% of the invoiced cost of materials excluding taxes or the unit Bid item price, whichever is less, may be made on monthly estimates for materials not yet incorporated into the Work if the materials:

1. Meet the requirements of the Contract based upon inspections or testing by the Engineer.
2. Are delivered to Project Site or are stockpiled at an offsite storage facility approved by the Engineer.
3. Are properly stored and protected.
4. Are insured against loss or damage.
In addition to the requirements above, material delivered to an off-site storage facility as permitted in 2 above will be considered for partial payment only if the following additional conditions are met:

1. The storage of materials is required for more than 30 days.
2. The material is segregated from materials for any other project.
3. The material is tagged, labeled, or otherwise identified as belonging to the Project.
4. The cost of transportation to the Project Site is excluded from payment or other provisions acceptable to the Engineer are made with regard to eventual delivery to the Project Site.

The cost of materials on hand will be determined by invoices from a Materialmen in sufficient detail to determine the actual cost. The Contractor shall furnish the Engineer an invoice marked “paid” within 60-days of the initial payment by the Owner for the material on hand. If the paid invoice is not furnished in the prescribed time, and the material has not been incorporated in the Work, a payment that has been made will be deducted from the next progress estimate and the material will not be eligible for future payment as material on hand.

Requests for payment for individual items or group of items of material on hand, amounting to an invoice total of less than $2000 will not be considered by the Engineer for partial payments. Payment for sales taxes due on the purchase of such material or equipment will not be made unless said taxes were paid by the Contractor to the Materialman or fabricator for transmittal to the State by the Materialman or fabricator and such tax is included on the bill of sale issued by the Materialman.

Payment for materials will not constitute acceptance. Faulty material will be rejected even though payment may have been made for such material in a progress payment.

Deductions at the same rates and equal in amount to the payment for material on hand will be made to future progress payments as material is incorporated into the Work and paid at the Bid unit item price or, for a lump sum item, the estimates percentage of the lump sum price. Deductions, at the same rates and equal in amount to the payment for material on hand, will also be made for material on hand which is rejected after a payment was made.

1-09.9 PAYMENTS

1-09.9(1) PROGRESS PAYMENTS

Progress payments for completed work and material on hand will be based upon progress estimates prepared by the Engineer and signed by the Contractor. A progress estimate cutoff date will be established at the preconstruction meeting.

Within 3 days after the progress estimate cutoff date (but not more often than once a month) the Contractor shall submit to the Engineer for review, an Application for Payment. The Application, filled out and signed by the Contractor, shall cover the work completed prior to the progress estimate cutoff date. Application for Payments that include Force Account work shall be accompanied by documentation supporting the claim for payment.

If payment is requested for materials and equipment not incorporated in the Work, but delivered and stored at approved sites pursuant to the Contract Documents, the Application for Payment shall be accompanied by a bill of sale, invoice, or other documentation warranting that the Contractor has received the materials and equipment and evidence that the materials and equipment are covered by appropriate property insurance or other arrangements to protect the Owner’s interest therein.

The initial progress estimate will be made not later than 30 days after the Contractor commences the Work, and successive progress estimates will be made every month thereafter until the Completion Date. Progress estimates made during progress of the Work are tentative, and made only for the purpose of determining progress payment. The progress estimates are subject to change at any time prior to the calculation of the final payment.

The value of the progress estimate will be the sum of the following:

1. **Unit Price Items in the Bid Form**: The approximate quantity of acceptable units of Work completed multiplied by the Unit Price.
2. **Lump Sum Items in the Bid Form**: The estimated percentage complete multiplied by the Bid Forms amount for each Lump Sum item.
3. **Materials on Hand**: Ninety percent (90%) of invoiced cost of material delivered to the Project Site or other storage area approved by the Engineer pursuant to Section 1-09.8.

4. **Change Orders**: Entitlement for approved extra cost or completed extra work as determined by the Engineer.

Progress payments will be made in accordance with the progress estimate less:

1. Five percent (5%) for retained percentage.
2. The amount of Progress Payments previously made.
3. Funds withheld by the Owner for disbursement in accordance with the Contract Documents.

Progress payments for work performed shall not be evidence of acceptable performance or an admission by the Engineer that any work has been satisfactorily completed.

Payments will be made by warrants, issued by the Owner’s fiscal officer, against the appropriate fund source for the Project.

Payments received by the Contractor on account of work performed by a Subcontractor are subject to the requirements of RCW 39.04.250.

1-09.9(2) RETAINAGE

Pursuant to Chapter 60.28 RCW there will be reserved and retained from monies earned by the Contractor on progress estimates during the progress of the Work, a sum not to exceed five percent (5%) of the monies earned by the Contractor. Such retainage shall be used as a trust fund for the protection and payment of:

1. Claims by the State with respect to taxes imposed pursuant to Title 82 RCW that may be due from such Contractor; and
2. The claims of any person or persons, mechanic, Subcontractor or Materialman who shall perform any labor under such Contract or the doing of said Work, and all persons who shall supply such person or persons or Subcontractors with provisions or Supplies for carrying on such Work.

Monies reserved under provisions of Chapter 60.28 RCW shall, at the option of the Contractor, be:

1. **Retained in a non-interest-bearing fund by the Owner; or**
2. **Deposited by the Owner in an interest bearing account in a bank, mutual savings bank, or savings and loan association. Interest on moneys reserved by the Owner under the provisions of a public improvement contract shall be paid to the Contractor; or**
3. **Placed in escrow with a bank or trust company by the Owner. When the monies reserved are to be placed in escrow the Owner will issue a check representing the sum of the monies reserved payable to the bank or trust company and the Contractor jointly. Such check shall be converted into bonds and securities chosen by the Contractor and approved by the Owner and the bonds and securities held in escrow. Interest on the bonds and securities may be paid to the Contractor as the interest accrues.**

Retainage will not be reduced for any reason below the minimum limit provided by law.

The Contractor shall designate the option desired on the Form of Agreement at the time the Contractor executes the Contract with the Owner. The option selected shall be considered part of the Contract. The Contractor in choosing option 2 or 3 agrees to assume full responsibility to pay all costs that may accrue from escrow services, brokerage charges or both, and further agrees to assume all risks in connection with the investment of the retained percentages in securities.

Release of retained percentage will be made **60 days following the Completion Date pursuant to the provisions of Chapters 39.12 RCW, 39.76 RCW, and 60.28 RCW** provided the following conditions are met:

1. On Contracts totaling more than $20,000.00, a release has been obtained from the Washington State Department of Revenue (RCW 60.28.051).
2. No claims, as provided by law, have been filed against the retained percentage (RCW 60.28.021).
3. **Affidavit of Wages Paid is on file with PWCC for the Contractor, each Subcontractor regardless of tier, and for any other individual or firm covered under Chapter 39.12 RCW (or WAC 296-127-010) that provided work and materials for completion of the Contract.**
In the event claims are filed the Contractor will be paid such retained percentage less an amount sufficient to pay any such claims together with a sum determined by the Engineer sufficient to pay the cost of foreclosing on claims and to cover attorney's fees.

Pursuant to Sections 1-07.9(5) and 1-07.18(8) the Contractor is responsible for submitting to the State L&I a “Request for Release” form in order for the Owner to obtain a release from that department with respect to the payments of industrial insurance medical aid premiums. The Owner will ensure the Washington State Employment Security Department and City of Seattle Finance Division of the Executive Services Department are notified of Contract completion in order to obtain releases from those departments.

1-09.9(3) OWNER’S RIGHT TO WITHHOLD AND DISBURSE CERTAIN AMOUNTS

In addition to monies retained pursuant to Chapter 60.28 RCW and subject to RCW 39.04.250, Chapter 39.12 RCW, and Chapter 39.76 RCW, the Contractor authorizes the Engineer to withhold, deduct, or nullify the whole or a part of any final or progress payments a dollar amount which, in the Engineer's opinion, may be necessary to cover the costs for or to remedy the following situations:

1. Damage to another contractor when there is evidence thereof and a claim has been filed.
2. When the Contractor has not paid fees or charges to public authorities or municipalities the Contractor is obligated to pay.
3. Utilizing material, tested and inspected by the Engineer, for purposes not connected with the Work (Section 1-05.6)
4. Landscape damage assessments per Section 1-07.16.
5. For overtime work performed by Owner personnel per Section 1-08.1(4).
6. Anticipated or actual failure of the Contractor to complete the Work on time:
 a. Per Section 1-08.9 Liquidated Damage.
 b. When there is a lack of construction progress based upon the Engineer’s review of the Contractor’s accepted critical path schedule in effect at the time that indicates the Work will not be completed within the Contract Time. When calculating an anticipated time overrun, the Engineer will make allowances for weather delays, approved delays, and suspensions of the Work. The amount withheld under this subparagraph will be based upon the Liquidated Damages amount for each Working Day set forth in Section 4, Form of Agreement multiplied by the number of Working Days the Contractor’s accepted critical path schedule, in the opinion of the Engineer, indicates the Contract may exceed the Contract Time.
7. Failure of the Contractor to perform any of the Contractor’s other obligations under the Contract, including but not limited to:
 a. Failure of the Contractor to provide the Engineer with a field office when required by the Project Manual.
 b. Failure of the Contractor to keep up-to-date as-built records or provide a final as-built record set as required in Section 1-05.3(4).
 c. Failure of the Contractor to protect survey stakes, markers, etc., or to provide adequate survey work as required by Section 1-05.5.
 d. Failure of the Contractor to correct defective work (Section 1-05.7).
 e. Failure of the Contractor to furnish a Manufacture’s Certificate of Compliance in lieu of material testing and inspection as required by Section 1-06.3.
 f. Failure of the Contractor to pay worker’s benefits (Title 50 and Title 51 RCW) as required by Section 1-07.18(8).
 g. Failure of the Contractor to submit and obtain acceptance of a critical path schedule per Section 1-08.3.
 h. Failure to submit weekly payrolls within the time required by WAC 296-127-320 and when requested by the Owner or Engineer, or correct underpayments to Contractor or Subcontractors employees.

The Contractor authorizes the Engineer to act as agent for the Contractor disbursing such funds as have been withheld pursuant to this section to a party or parties who are entitled to payment. Disbursement of such funds, if the Engineer elects to do so, will be made only after giving the Contractor 15-days prior Written Notice of the Owner’s intent to do so, and if prior to the expiration of the 15-day period:
1. No legal action has commenced to resolve the validity of the claims.
2. The Contractor has not protested such disbursement.

A proper accounting of all funds disbursed on behalf of the Contractor in accordance with this section will be made. A payment made pursuant to this section shall be considered as payment made under the terms and conditions of the Contract. The Owner shall not be liable to the Contractor for such payment made in good faith.

If legal action is instituted to determine the validity of the claims prior to expiration of the 15-day period mentioned above, the Owner will hold the funds until determination of the action or written settlement agreement of the parties.

1-09.9(4) FINAL PAYMENT

Upon issuance of the Certificate of Completion by the Owner the Final Contract Price will be calculated based upon a final progress estimate made by the Engineer. Acceptance by the Contractor of the final payment shall be and shall operate as a release:

1. To the Owner of all claims and all liabilities of the Contractor, other than claims in stated amounts as may be specifically excepted in writing by the Contractor;
2. For all things done or furnished in connection with the Work;
3. For every act and neglect by the Owner; and
4. For all other claims and liability relating to or arising out of the Work.

A payment (monthly, final, retainage, or otherwise) shall not:

1. Release the Contractor or the Contractor's Surety from any obligation required under the terms of the Contract Documents or the Contract Bond; or
2. Preclude the Owner from recovering damages, setting penalties, or obtaining such other remedies as may be permitted by law.

Before the establishment of the Completion date by the Owner, the Contractor shall satisfy the final Contracts reporting requirements of Section 1-08.1(3).

1-09.10 RESERVED

1-09.11 RESERVED

1-09.12 AUDITS

1-09.12(1) GENERAL

The Contractor’s wage, payroll, and cost records on this Contract shall be open to inspection or audit by representatives of the Owner during the life of the Contract and for a period of not less than three years after the Completion Date. The Contractor shall retain these records for that period. If requested, the Contractor shall promptly furnish copies of these records to the Owner. The Contractor shall also guarantee that the wage, payroll, and cost records of all Subcontractors, regardless of tier, be retained and open to similar inspection or audit for the same period of time.

The audit may be performed by employees of the Owner or by an auditor under contract with the Engineer or Owner. The Contractor and Subcontractors of any tier shall provide adequate facilities, acceptable to the Owner, for the audit during normal business hours and shall make a good faith effort to cooperate with the auditors.

If an audit is to be commenced more than 60-days after the Completion Date, the Contractor will be given 20-days Written Notice of the time when the audit is to begin. If any litigation, claim, or audit arising out of, in connection with, or related to this Contract is initiated, the wage, payroll, and cost records shall be retained until such litigation, claim, or audit involving the records is completed.
1-09.12(2) CLAIMS

All claims, and documentation for mediation, filed against the Owner shall be subject to audit at any time following the filing of the claim. Failure of the Contractor or, if applicable, a Subcontractor of any tier to maintain and retain sufficient records to allow the auditors to verify all or a portion of the claim, and documentation for mediation when applicable, or to permit the auditor access to the books and records of the Contractor (or Subcontractor of any tier) Subcontractors, or agents to the Subcontractors shall constitute a waiver of a claim and shall bar any recovery thereunder.

The Contractor shall make available all documents requested by the auditors including, but not limited to, the following documents:

1. Daily time sheets and supervisor’s daily reports.
2. Union agreements.
3. Insurance, welfare, and benefits record.
4. Payroll registers.
5. Earnings records.
6. Payroll tax forms.
7. Material invoices and requisitions.
9. Equipment records (list of company equipment, rates, etc.).
10. Vendors, rental agencies, Subcontractors, and agents invoices.
11. Subcontractor agreements and, pursuant to Section 1-07.12, payment certifications (including those of 2nd and lower tier Subcontractors when applicable).
12. Cancelled checks (payroll and Vendors).
15. General ledger.
17. Financial statements for all years that reflect the operations on this Contract. In addition, City auditors may require, if it deems appropriate, additional financial statements for 3 years preceding execution of the Contract and 3 years following the Completion Date.
18. Depreciation records on all company equipment whether these records are maintained by the company involved, its accountant, or others.
19. If a source other than depreciation records is used to develop costs for the Contractor’s internal purposes in establishing the actual cost of owning and operating equipment, all such other source documents.
20. All documents that relate to each and every claim together with all documents that support the amount of damages as to each claim.
21. Worksheets used to prepare the claim establishing the cost components for items of the claim including but not limited to labor, benefits and insurance; materials, equipment, Subcontractors; all documents which establish the time periods, individuals involved, the hours for the individuals, and the rates for the individuals; and home office overhead.

1-09.13 RESERVED

1-09.14 PROMPT PAYMENT TO SUBCONTRACTORS AND MATERIALMEN

1-09.14(1) GENERAL

The purpose of this Section is to provide an additional mechanism for Subcontractors, Materialmen, and Suppliers (collectively referred to in this Section as “Subcontractors”) to be paid promptly by the Contractor, for work satisfactorily completed, after the Contractor has received payment from the Owner. It is not the Owner’s intent to monitor and enforce contractual obligations between the Contractor and Subcontractors, or to require any additional documentation to be submitted to the Owner to implement the provisions of this Section. Nothing in this Section shall be construed to negate the rights or importance of Subcontractors filing a claim against the bond or retainage in accordance with the provisions of State law in order to protect their legal rights.
1-09.14(2) PROGRESS PAYMENTS

Within 10 Working Days of receipt of a progress payment from the Owner that include dollars for work performed by a Subcontractor, the Contractor shall pay such Subcontractor, less any applicable retainage, out of such amounts as are paid by the Owner, for all work satisfactorily completed by the Subcontractor, provided that the Subcontractor has complied with the applicable terms of its subcontract with the Contractor. If the Contractor fails or neglects to make such payment within ten Working Days, the Contractor shall pay to the Subcontractor an interest penalty computed at one percent per month on amounts due for the period beginning on the day after the required payment date and ending on the day on which payment of the amount due is made.

1-09.14(3) UNSATISFACTORY PERFORMANCE BY SUBCONTRACTOR

If the Contractor determines that the Subcontractor did not satisfactorily perform all or a portion of the work identified in the progress payment, the Contractor shall, consistent with RCW 39.76.011, provide written notification to the Subcontractor and Owner of the remedial actions that must be taken by the Subcontractor as soon as practicable after determining the cause for withholding payment to the Subcontractor, but before the due date for the Subcontractor payment. The Contractor shall pay the Subcontractor within eight Working Days after the Subcontractor satisfactorily completes the remedial action identified in the Written Notice. If the Contractor does not comply with the remedial action notice and payment requirements of this Section, the Contractor shall pay the Subcontractor interest on the withheld amount from the eighth Working Day at an interest rate that is equal to the amount set forth in RCW 39.76.011(1) until payment is made.

1-09.14(4) RETAINAGE PAYMENT

Within ten Working Days of receipt of retainage from the Owner, the Contractor shall pay each Subcontractor any retainage that may be due to them, provided that the Subcontractor has complied with the applicable terms of its subcontract with the Contractor. If the Contractor fails or neglects to make such payment within ten Working Days, the Contractor shall pay to the Subcontractor an interest penalty computed at one percent per month on amounts due for the period beginning on the day after the required payment date and ending on the day on which payment of the amount due is made.

1-09.14(5) INCORPORATION OF PROVISIONS

The Contractor shall include either specifically in each of its subcontracts a provision setting forth the payment and interest penalty clause of this paragraph, 1-09.14, or in each of its subcontracts a provision incorporating by reference all the terms of its contract with the Owner. In addition, the Contractor shall require its Subcontractors to include such a payment and interest penalty clause in each of their subcontracts and to require each of their Subcontractors to include such clauses in their subcontracts with each lower tier Subcontractor, either specifically or by reference.

1-09.14(6) OTHER SUBCONTRACT PAYMENT PROVISIONS

Any subcontract agreement, at any tier, with provisions for Subcontractor payment sooner than those specified in this Section, or interest payments greater than those specified in this Section, shall take precedence over the provisions of this Section.

1-09.14(7) MEDIATION TO RESOLVE PAYMENT DISPUTES

If a Contractor fails to pay a Subcontractor as required by this Section, a Subcontractor may require that the dispute be submitted to mediation for resolution. Upon request, the Engineer shall provide a Subcontractor with a list of potential mediators to contact. The cost of such mediation shall be paid by the non-prevailing party, or the cost shall be paid by the Contractor and Subcontractor based on the results of the mediation.

SECTION 1-10 TEMPORARY TRAFFIC CONTROL

1-10.1 GENERAL

Installation and maintenance of temporary traffic control for pedestrian and vehicular traffic within the public Right of Way shall be performed in accordance with the "Manual on Uniform Traffic Control Devices for Streets and Highways" (MUTCD) as supplemented by the current edition of The City of Seattle "Traffic Control Manual for In-Street Work" (hereinafter referred to as the "Seattle Traffic Control Manual") and such additional
requirements as may be included in the Contract Documents. The Manual on Uniform Traffic Control Devices for Streets and Highways" may be obtained from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. The City of Seattle "Traffic Control Manual for In-Street Work" may be obtained from the office of the SEATRAN, at 684-5087.

The Contractor shall:

1. Provide flaggers, signs, and other traffic control devices not otherwise specified as being furnished by the Engineer.
2. Not work on or adjacent to the Roadway until all necessary signs and traffic control devices are in place.
3. Unless the section of street is to be completely closed to vehicular traffic, schedule and plan the work to permit:
 a. The maximum number of traffic lanes normally available to be opened in the direction of the heaviest flow of traffic during the peak hours.
 b. Maintain 2-way traffic at all times except on "one-way" streets. Additional width for facilitating traffic flow may be obtained by requesting on-street parking to be prohibited adjacent to the work zone.
 c. Maintain traffic on a paved surface whenever possible. In the event that a graveled or dirt surface must be used as a detour, maintain a smooth surface and control dust.
 d. Clean up spillage from trucks on the pedestrian or driving surface adjacent to the work area. See Section 1-07.23.
 e. Provide safe and protected pedestrian ways. See Section 1-07.23.
 f. Not park or place construction Equipment to create an unnecessary sight distance or other safety obstruction to vehicular or pedestrian traffic.
 g. Maintain work area traffic control devices in a proper condition on an "around the clock" basis whether or not work is actively being pursued. In addition, the Contractor shall assure that tools and Equipment are properly stored and excavation bridging is secure and adequately covering excavation.
4. Erect and maintain all construction signs, warning signs, detour signs, and other traffic control devices necessary to warn and protect the public at all times from injury or damage resulting from the Contractor's operations.
5. Be liable for injuries and damages to persons and property suffered by reason of the Contractor's operations or any negligence in connection therewith.
6. Construct, maintain in a safe condition, keep open to traffic, and remove when no longer needed detours and temporary approaches that will accommodate traffic diverted from the Roadway, walkway or bridge during construction. On-site or off-site detours required or necessitated by the work, including side street crossings, temporary bridges, utilization of one or more lanes of the construction area for maintenance of through traffic, and related traffic control shall be the responsibility of the Contractor.

1-10.2 TRAFFIC CONTROL MANAGEMENT

1-10.2(1) GENERAL

All construction projects in street areas will be inspected with regard to type and placement of pedestrian and vehicular traffic control devices. Traffic control devices not meeting the requirements of the Seattle Traffic Control Manual shall be considered non-standard. Non-standard traffic control devices shall not be used unless specifically approved for use, in writing, by the Engineer.

The Contractor shall patrol the traffic control area as often as necessary, but at least daily, and reset all disturbed signs and traffic control devices. Signs and other traffic control devices shall be removed or covered during periods when they are not necessary.

Before beginning work on the Project, the Contractor shall designate an individual or individuals to perform the duties of Traffic Control Manager (TCM) and Traffic Control Supervisor (TCS). These individuals shall be in continuous responsible charge of traffic control. A TCM and TCS are required on all projects that require traffic control. The TCM can also perform the duties of the TCS. The Contractor shall identify no more
than six alternate employees that can assume the duties of the assigned or primary TCM and TCS in case of the primary person’s inability to perform. Such alternates shall be adequately trained and certified to the same degree as the primary TCM and TCS.

The Contractor shall maintain 24-hour telephone numbers at which the TCM and TCS can be contacted and be available upon the Engineer’s request at other than normal working hours. The TCM and TCS shall have the appropriate personnel, equipment, and material available at all times to correct any deficiency in the traffic control system. The Engineer will furnish the Contractor a similar list of the Engineer’s employees and their telephone numbers.

1-10.2(2) TRAFFIC CONTROL MANAGER (TCM)

The duties of the TCM shall include:

1. Discussing proposed traffic control measures and coordinating implementation of the Contractor-adopted traffic control plan(s) with the Engineer.
2. Coordinating all traffic control operations, including those of Subcontractors, Suppliers, and any adjacent construction or maintenance operations.
3. Coordinating the Project’s activities (such as ramp closures, road closures, and lane closures) with appropriate police, fire control agencies, city or county engineering, medical emergency agencies, school districts, disposal companies, and transit companies.
4. Overseeing all requirements of the Contract that contribute to the convenience, safety, and orderly movement of vehicular and pedestrian traffic.
6. Attending all Project meetings where traffic management is discussed.
7. Review TCS’s diaries daily and be responsible for knowing “field” traffic control operations.

1-10.2(3) TRAFFIC CONTROL SUPERVISOR (TCS)

A TCS shall be on the Project whenever traffic control labor is required or as authorized by the Engineer. The TCS shall personally perform all the duties of the TCS. During non-work periods, the TCS shall be able to be on the Job Site within a 45-minute period after notification by the Engineer.

The TCS’s duties shall include:

1. Inspecting traffic control devices and nighttime lighting for proper location, installation, message, cleanliness, and effect on the traveling public. Traffic control devices shall be inspected each work shift except that Class A signs and nighttime lighting need to be checked only once a week. Traffic control devices left in place for 24 hours or more should also be inspected once during the non-working hours when they are initially set up (during daylight or darkness, whichever is opposite of the working hours).
2. Preparing a daily traffic control diary, which shall be submitted to the Engineer no later than the end of the next Working Day to become a part of the Project records. The Contractor may use WSDOT Forms 421-040A and 421-040B or the Contractor’s own form if it is approved by the Engineer. The TCS shall include in the diary such items as:
 a. When signs and traffic control devices are installed and removed,
 b. Location and condition of signs and traffic control devices,
 c. Revisions to the traffic control plan,
 d. Lighting utilized at night, and
 e. Observations of traffic conditions.
3. Ensuring that corrections are made if traffic control devices are not functioning as required. The TCS may make minor revisions to the traffic control plan to accommodate site conditions as long as the original intent of the traffic control plan is maintained and the revision has concurrence of the Engineer.
4. Attending traffic control coordinating meetings or coordination activities as authorized by the Engineer.
The TCS may perform the work described by the Bid item for "Maintenance and Protection of Traffic Control" as long as the duties of the TCS are accomplished. Possession of a current flagging card by the TCS is mandatory.

A reflective vest and a hard hat shall be worn by the TCS.

1-10.2(4) CONTRACTOR’S REFUSAL OR FAILURE TO ACT

Upon failure or refusal of the Contractor to:

1. Provide adequate flaggers.
2. Provide, erect, maintain, and remove, as applicable, barricades, signs, lights, on-site or off-site detours or detour bridges.
3. Provide any work required by Section 1-07.23.
4. Follow the Engineer's order to do 1, 2, or 3, the Engineer shall have the option to do one or any combination of the following:
 a. Suspend all work without further notice to the Contractor or the Contractor's Surety until the Contractor complies with the Engineer's order.
 b. Immediately provide an off-duty uniformed peace officer.
 c. Provide, erect, maintain and remove barricades, signs and lights at the Contractor's expense by Owner forces or others.
 d. Deduct all costs related to items 1, 2, and 3 from any payments due or coming due the Contractor.

The above options shall not bar the Owner from exercising other remedies because of the Contractor's failure or refusal to comply with a contractual obligation.

1-10.2(5) TRAFFIC CONTROL PLANS

1-10.2(5)A CONTENT AND SUBMITTAL REQUIREMENTS

Based on the Contractor's intended method of performing the Work the Contractor shall develop, adopt, and submit to the Engineer a specific traffic control plan or plans for protecting and controlling pedestrian and vehicle traffic during construction operations. A separate Traffic Control Plan is required for each work location within the street Right of Way. Typical plans may be submitted for areas with identical traffic requirements. Typical plans shall be clearly labeled to indicate all locations the plan is to represent. Traffic control plans shall take into consideration any street and lane closure or other restrictions that may be specified in the Contract Documents.

Submittal shall be made at least 10 Working Days before planned implementation to allow for Engineer evaluation of the proposed vehicular and pedestrian routing, flagging, and placement of signing and other traffic control devices. The Contractor shall not begin work in the street Right of Way until an approved Traffic Control Plan for the specific location has been returned by the Engineer. Submittal shall be in accordance with Section 1-05.3 except no more than two reproductions will be required for any Plan size.

Traffic Control Plans shall indicate:

1. Vehicular and pedestrian traffic routing.
2. Proposed location of flaggers, barricades, lighting, signing, and other traffic control devices in relation to existing roadway edges and lane markings.
3. Proposed number of working hours.
4. Arrangements for access to buildings within and immediately adjacent to construction site.
5. Arrangements for emergency exiting from buildings within and immediately adjacent to construction site.
6. Anticipated driveway blockage resulting from construction operations.
7. Restrictions to on-street parking within immediate vicinity of site, including arrangements for hooing parking meters as necessary.
8. Arrangements for temporary passenger and commercial loading and unloading zones, and temporary bus stop zones.
9. Identification and description of temporary lateral relocations of trolley overhead wire system if necessary to maintain trolley service.

When the signing of a particular area will be provided as detailed on one or more of the figures included in the Seattle Traffic Control Manual without modification, the Contractor may reference the applicable figure number, shown in the manual, at the appropriate location on the Drawings. When this procedure is used, variable distances such as minimum length of taper shall be specified by the Contractor. The spacing proposed for barricades and cones shall also be specified.

If the Contractor’s proposed pedestrian or traffic control measures differ from the traffic control requirements in the Seattle Traffic Control Manual, the Contractor’s alternate traffic control plan shall detail the specific location of each necessary construction sign, flagger, and other traffic control device required. The Contractor’s alternate method for traffic and pedestrian control shall be developed in accordance with the same established standards for plan development demonstrated by the figures in the Seattle Traffic Control Manual. Acceptance of alternative traffic control measures shall be entirely at the discretion of the Engineer. The Contractor shall have no claim for an equitable adjustment:

1. For using alternative measures.
2. If the proposed alternate measures are rejected or modified.
3. If requests to use non-standard traffic control devices are rejected or modified.

The Contractor shall plan and schedule Contractor work activities to conform to and allow time for notifications, reviews, approvals, acceptances, and other conditions of the Contract Documents. Most notifications are located in Section 1-07.28.

1-10.2(5)B CONFORMANCE TO ESTABLISHED STANDARDS

The condition of signs and traffic control devices shall be new or “acceptable” as defined in the book Quality Standards for Work Zone Traffic Control Devices, and will be accepted based on a visual inspection by the Engineer. The Engineer’s decision on the condition of a sign or traffic control device shall be final. When a sign or traffic control device becomes classified as “unacceptable” it shall be removed from the Project and replaced with 12 hours.

Requests to use non-standard traffic control devices shall be submitted with the traffic control plans or by submitting a modification to the traffic control plan.

1-10.2(5)C TRAFFIC CONTROL RESTRICTIONS

In addition to any street and lane closure restrictions specified in the Project Manual, traffic control plans shall be developed to comply with the following restrictions:

1. **Arterial Paving:** Arterial street approaches to the streets being paved shall remain open to vehicular traffic for their full roadway widths except when paving across arterial street crossings. During such periods, the cross streets may be closed for a minimum amount of time as approved by the Engineer. Prior to the closure of any arterial cross street the Contractor shall submit to the Engineer a traffic control plan for the location detailing the traffic controls to be used to reroute traffic. Traffic shall not be rerouted without approval of the traffic control plan by the Engineer. The Contractor shall have no claim because of the traffic control plan being rejected or modified by the Engineer.

2. **Time of Work:** Except as may be otherwise itemized in the street and lane closure restrictions specified in the Project Manual, no work shall be scheduled in the traveled way on arterial streets during “peak traffic hours” without written authorization from the Engineer. Unless otherwise specified “Peak Traffic Hours” are from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM with the following exceptions:
 a. For the Central Business District peak hours are from 6:00 AM to 9:00 AM and 3:00 PM to 6:00 PM.
b. For Aurora Avenue peak hours are from 6:00 AM to 9:00 AM and 3:00 PM to 7:00 PM. The Contractor shall discontinue work if conflict exists with special events such as parades, sporting events, miscellaneous rallies, and large public meetings or with seasonal conditions, such as Christmas. Information concerning such events can usually be obtained from 684-5098.

No construction activities will be allowed on any portions of a Project that lies within the Central Business District or the Pioneer Square area during the Christmas season, Thanksgiving Day through New Year's Day inclusive.

The Central Business District is that area within the boundaries of Interstate 5 on the east, Seneca Street on the south, 1st Avenue on the west, Virginia Street and Denny Way (east of Fairview Avenue) on the north.

The Pioneer Square Area is that area within the boundaries of Alaskan Way on the west, 2nd Avenue and 2nd Avenue South on the east, Columbia Street on the north and King Street on the south.

3. Parking: Where parking restricts traffic flow or is a hazard to through traffic or to the construction work, parking may be restricted either entirely or during the time when it creates a hazard. Parking restrictions may be requested by the Contractor and upon approval of the Engineer be established within construction and maintenance areas. In areas where parking meters are present, the Contractor shall apply to SEATRAN (684-5086) at least 48 hours in advance for installation of meter covers restricting such parking. Where no meters are present, the Contractor shall contact SEATRAN at least 48 hours in advance so that the Contractor may install "NO PARKING" (T-39) easel signs. Signs must be inspected by a parking enforcement officer or uniformed police officer 24 hours prior to enforcement.

"NO PARKING" signs shall conform in message, dimension and color as indicated in Part V of the "Seattle Traffic Control Manual". Spacing of signs shall be in accordance with conditions.

"NO PARKING" (T-39) easel signs should be installed at an approximate interval of 50 feet to 75 feet, with a minimum of four units, per each full block. For partial block parking prohibition, R-101's or T-39's should be installed at approximately 50-foot intervals with R-160 signs at the terminus as shown in Figure V-1 of the "Seattle Traffic Control Manual".

The employees of the Contractor shall not park their private vehicles on the street, at the Job Site, or in commercial areas where general parking has been prohibited for construction or safety purposes.

1-10.3 FLAGGING, SIGNS, AND OTHER TRAFFIC CONTROL DEVICES

1-10.3(1) FLAGGING

1-10.3(1)A GENERAL

Flaggers shall have a current certification (flagging card) from the State Department of Labor and Industries (WAC 296-155-305), except where the flagging job requires a uniformed off-duty peace officer. The Contractor shall furnish all personnel for flagging and for the setup and removal of all temporary traffic control devices and construction signs necessary to control traffic during construction operations. Prior to performing any traffic control work on the Project, these personnel should be trained with the video, “Safety in the Work Zone” produced jointly by WSDOT and Laborers’ International Union of North America. The video is available from WSDOT’s Engineering Publications Office, Transportation Building.

Pursuant to WAC 296-155-305, flaggers and spotters shall possess a current flagging card issued by the State of Washington Department of Labor and Industries. Current flagging cards from Oregon and Idaho are also acceptable. The flagging card shall be immediately available and shown to the Engineer upon request.

Workers engaged in flagging or traffic control shall wear reflective vests and hard hats. During hours of darkness, white coveralls or white or yellow rain gear shall also be worn. The vests and other apparel shall be in conformance with Section 1-10.3(1)C. During hours of darkness flagger stations shall be illuminated to ensure that flaggers can easily be seen without causing glare to the traveling public. The Contractor shall furnish the
MUTCD standard Stop/Slow paddles (18 inches wide, letters 6 inches high, and reflectorized) for the flagging operations.

1-10.3(1)B TRAFFIC CONTROL LABOR (PEACE OFFICERS)

Only an off-duty uniformed peace officer shall be used as a flagger to:

1. Countermand a traffic signal indication at a signalized intersection.
2. Direct vehicle and pedestrian traffic when a traffic signal indication is turned off or inoperative.

Officers are also required for new traffic signal work, see Section 8-31.3(1)A. The off-duty uniformed peace officer shall be provided by the Contractor.

1-10.3(1)C HIGH VISIBILITY APPAREL AND EQUIPMENT

The Contractor shall furnish for the use of flaggers, reflective vests and hard hats for the flagging and control of traffic. This equipment shall be used by the flaggers while actually flagging traffic. The Contractor shall also provide any such equipment used that is necessary or desirable to protect personnel engaged in other activities.

The Contractor shall require all personnel at the work site under their control (including Subcontractors and lower tier Subcontractors) to comply with the following:

1. To wear reflective vests, except that during daylight hours, orange clothing equivalent to "Ten Mile Cloth" or hunter orange may be worn in lieu of reflective vests,
2. To wear white coveralls at night,
3. Whenever rain gear is worn during hours of darkness, it shall be white or yellow, and
4. The reflective vests shall always be the outermost garment.

Exceptions to the above requirements are:

1. When personnel are out of view of and not exposed to traffic.
2. When personnel are inside a vehicle.
3. Where it is obvious that such apparel is not needed for the employee’s safety from traffic.

Reflective vests shall have a minimum of 100 square inches of reflective surface distributed 30 percent on the front and 70 percent on the back. The retro-reflection value at an entrance angle of -4 degrees and an observation angle of 0.2 degrees shall be a minimum 500 candle power for the reflective surface of the vest. Reflective vests, hard hats, white coveralls, rain gear, and other apparel shall be furnished and maintained in a neat, clean, and presentable condition at no expense to the Owner.

1-10.3(2) TRAFFIC CONTROL VEHICLES

The traffic control vehicle shall be equipped with a roof or post-mount flashing amber light visible for 360 degrees. Truck and construction Equipment that encroach onto the traveled Roadway for any reason shall also be equipped with flashing yellow warning lights. Unless one or more flagmen are present to control traffic, supplementary traffic control devices shall be placed to warn, slow down, and if necessary divert traffic around such Equipment.

1-10.3(3) CONSTRUCTION SIGNS

1-10.3(3)A GENERAL

The Contractor shall furnish, install and maintain all traffic control signs required by the Contract Documents or a Contractor’s approved traffic control plan. These include:

2. Any permanent signs located in the construction area that are temporarily relocated, damaged or destroyed by the Contractor or a third party prior to the Physical Completion Date.

When all or some of the necessary signs or traffic control devices are to be furnished by the Engineer, it will be so specified in the Contract Documents.
The Contractor shall:
1. Provide the posts or supports.
2. Erect and maintain the signs in a clean, neat, and presentable condition until the Engineer approves their removal.
3. Take these signs, posts, or supports down when the need for these signs has ceased. All posts and supports shall be removed from the Project and shall remain the property of the Contractor.
4. Remove all non-applicable signs, or completely cover with metal or plywood, during periods when they are not needed.
5. Return to the Engineer in good condition any Engineer-furnished signs. All such signs lost, stolen, damaged, or destroyed shall be replaced by the Contractor in kind at the Contractor’s expense or their value will be deducted from the Contractor’s payments.

All control signs necessary for nighttime traffic control shall be fully reflectorized.

Existing traffic control and street name signs that interfere with construction shall be relocated or removed by the Contractor and temporarily stored in a safe place. All "STOP," "YIELD," and "ONE-WAY" signs shall be removed or relocated only upon approval of the Engineer (See Section 8-21.3(4) Sign Relocation). Existing signs shall not be removed until the Contractor has provided temporary measures sufficient to safeguard and direct traffic after the existing signs have been removed. Except as otherwise provided in the Contract Documents, preservation and maintenance of traffic control and street name signs shall be the sole responsibility of the Contractor.

As Work progresses and as conditions permit, temporarily relocated or removed traffic and street name signs shall be reset in their permanent location by the Contractor (see Standard Plans titled "Street Name Signs" and "Traffic Sign and Post Installation"). Signs and other traffic control devices damaged or lost by the Contractor shall be replaced by the Contractor at no cost to the Owner. The option whether a sign can be repaired or shall be replaced shall be the Engineer's, and such decision shall be final and binding on the Contractor.

Traffic control signs, other than parking prohibition signs, which are required to be installed ahead of construction activities, shall be installed immediately before the work begins. The Contractor may elect, as a matter of convenience in advance of the scheduled work, to install and effectively cover the signs until work begins. See Section 8-21.3(3) Sign Covering.

Construction signs shall be divided into two classes – Class A and Class B. In case of disputes, the Engineer will determine if a construction sign is considered as a Class A or B construction sign.

When Class A or B construction signs are required, the work to provide these signs shall be:
1. Furnishing, removing, and disposing of the posts or supports for the signs.
2. Initial acquisition from the Engineer and ultimate return to the Engineer of the required Engineer-furnished signs.
3. Initial installation and subsequent removal of both Class A and B construction signs.
4. All other incidentals necessary for providing Class A or B construction signs according to the approved traffic control plan(s).

1-10.3(3)B CLASS A SIGNS

Class A construction signs shall be installed where shown in the Contract Documents. Class A construction signs are those signs that remain in service throughout the construction or during a major phase of the work. They are mounted on posts, existing fixed Structures, or substantial supports of a semi-permanent nature. Sign and support installation for Class A signs shall be in accordance with the Contract Drawings or the Standard Plans.

1-10.3(3)C CLASS B SIGNS

Class B construction signs are those signs that are placed and removed daily, or are used for short durations that may extend for one or more days. They are mounted on portable or temporary mountings. If it is necessary to add weight to the signs for stability, only a bag of sand that will rupture on impact shall be used. The bag of sand shall:
1. Be furnished by the Contractor.
2. Have a maximum weight of 40 pounds.
3. Be suspended no more than 1 foot from the ground.

No separate Bid item will be provided in the Bid Form for Class B construction signs. All costs for the work to provide, maintain, and remove Class B construction signs shall be included in the Contract unit price for “Maintenance and Protection of Traffic”. Signs, posts, or supports that are lost, stolen, damaged, destroyed, or which the Engineer deems to be unacceptable, while their use is required on the Project, shall be replaced by the Contractor without additional compensation.

For special sign requirements for new traffic signals, see Section 8-31.3(1)A.

Sign materials shall conform with the requirements of Section 9-28.

Signs used during the hours of darkness shall be properly reflectorized (see Section 9-28) except for parking and pedestrian prohibition signs. Paint impregnated with glass beads shall not be used. Where reflectorization is rendered ineffective due to extraneous light sources, the sign shall be illuminated either externally or internally. Where external illumination is used, the source shall be properly shielded to reduce glare. Street or Highway lighting shall not be considered adequate for illuminating signs. All reflectorized or illuminated signs should be checked by the Contractor during the hours of darkness to insure that they are functioning properly.

Signs shall be constructed from material that will not deteriorate abnormally under normal weather conditions. Sign blanks shall be weatherproof plywood or non-corrosive metal (see Section 9-28). Roll-up signs fabricated from vinyl-coated nylon or vinyl-coated nylon mesh may also be used. Only reflectorized signs shall be used at night.

1-10.3(4) TEMPORARY TRAFFIC CONTROL DEVICES

1-10.3(4)A GENERAL

Traffic control devices shall be installed so that they are readily visible to approaching traffic. Traffic control devices shall be placed such that they allow the driver to see from one device to the next and are in the same position on successive days unless changes in construction work dictate otherwise.

When the Bid Form includes an item for “Maintenance and Protection of Traffic” the work shall include furnishing barricades, flashers, cones, traffic safety drums, and other temporary traffic control devices and work as follows.

1-10.3(4)B HIGH LEVEL WARNING DEVICE

A "High Level Warning Device" shall be required for each separate work site in the Roadway. Device materials and usage shall conform to the Seattle Traffic Control Manual. A high level warning device shall be installed for all temporary work in the Roadway and as a supplement to warning signs. Depending on the situation, high level flags may be attached to a service vehicle or placed directly on the Roadway in advance of the obstruction. The device shall be placed in the middle of the closed lane and shall always be placed behind appropriate channeling devices. Normally, one unit should be used for each lane closed; however, additional units may be used if appropriate. A high level warning device should always be the first traffic control equipment to be placed as it will provide a degree of protection during the positioning of other devices.

1-10.3(4)C PAINT LINES AND LEGENDS

When paint lines are obliterated due to construction activities or pavement restoration, temporary pressure-sensitive pavement marking tape, traffic buttons, or delineators shall be installed where designated by the Engineer. These temporary features shall be removed only upon installation of permanent traffic channelization.

Temporary centerline striping shall consist of placing strips of pressure-sensitive pavement marking tape at 10-15 foot intervals along the centerline. Temporary marking tape shall be placed in sets of two 12-inch strips of yellow 4-inch wide marking tape set 4 inches apart and parallel to the center line with each set of 1-foot double line spaced 10 to 15 feet along the center line of the Roadway. Additional temporary striping shall be installed wherever designated by the Engineer.
Temporary stop bars shall consist of a 12-inch wide stop bar made up of three parallel 4-inch strips of temporary pavement marking tape placed at locations designated by the Engineer. All other temporary pavement markings utilizing pavement-marking tape shall be designated by the Engineer.

Pressure-sensitive pavement marking tape used on the wearing course prior to installation of permanent lane markers, traffic buttons, or permanent paint striping shall be removed from the pavement current with, or immediately subsequent to, the installation of permanent pavement markings.

Temporary pavement markings shall be maintained in serviceable condition by the Contractor for the duration of time it is in use. Layout and marking in preparation for application and the application and removal of the temporary striping shall be the Contractor's responsibility. The Engineer will do the layout for permanent lane markings as specified in Section 8-22.3(1).

Temporary pavement marking tape shall meet the requirements of Section 9-29.4.

1-10.3(4)D BARRICADES AND CHANNELIZING DEVICES

The Contractor shall place and maintain necessary barricades, vertical barricades, drums, cones or other channeling devices as are needed to warn and alert drivers and pedestrians on or near the Traveled Way or construction area, and to guide and direct them safely past.

1-10.3(4)E LIGHTING DEVICES

Roadway and pedestrian illumination systems shall be maintained in operation for all Traveled Ways open to traffic. See Section 8-30.3(1).

Barricades or drums used at night shall be equipped with approved yellow warning lights. The Contractor shall keep existing traffic signal systems and pedestrian and street lighting systems in operation for the benefit and safety of the traveling public during progress of the Work, unless otherwise directed by the Engineer. The Owner will continue the routine maintenance of traffic signal, pedestrian and street lighting systems. The Contractor shall be responsible for replacing missing or damaged signs and posts.

1-10.3(4)F SPEED AND PARKING CONTROL

In those areas where construction operations have changed road conditions, such additional hazards as reduced lane width, open trenches, temporary Roadway, etc., may be considered as evidence of need for an alteration of the legal (or posted) speed limit. Requests for alteration of the legal speed limits on City streets must be submitted to the Engineer. Costs related to speed limit revisions and parking control shall be borne by the Contractor.

1-10.3(5) CONSTRUCTION AND MAINTENANCE OF DETOURS

Unless otherwise approved, the Contractor shall maintain two-way traffic during construction. The Contractor shall build, maintain in a safe condition, keep open to traffic, and remove when no longer needed:

1. Detours and detour bridges that will accommodate traffic diverted from the Roadway or bridge during construction.
2. Detour crossings of intersecting streets.
3. Temporary approaches.

All on-site or off-site detours required or necessitated by the work, including side street crossings, temporary bridges over freshly placed concrete, utilization of one or more lanes of the construction area for maintenance of through traffic, and related traffic control shall be the responsibility of the Contractor.

Any detour proposed by the Contractor shall not be built until the Engineer approves. Surfacing and paving shall be consistent with traffic requirements.

1-10.4 MEASUREMENT

Measurement for "Maintenance and Protection of Traffic Control" will be by the lump sum.

Measurement for "Traffic Control Labor" will only be made for the actual hours worked by a uniformed off-duty peace officer or certified flagger when the services of the:
1. Uniformed off-duty peace officer is used to countermand an operating signal, or to direct traffic in an intersection where the signal is de-energized.

2. Flaggers are used at both ends of a 2-way, single lane operation.

Daily time cards showing such officer or flagger hours shall be furnished to the Engineer.

Measurement for "Construction Signs Class A" will be by the square foot of panel area. A Class A construction sign may be used in more than one location, however, the sign will be considered for measurement one time only. Sign posts or supports will not be measured for payment.

Class B construction signs will not be measured for payment.

No specific unit of measurement will apply to temporary traffic control devices, the position of TCM and TCS, the use of vehicles used to perform traffic control work. Such work will be considered incidental to the item "Maintenance and Protection of Traffic Control".

1-10.5 PAYMENT

No payment, other than provided for hereinafter, will be made for temporary traffic control. Compensation for the cost necessary to complete the work described in Section 1-10 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. "Maintenance and Protection of Traffic Control," lump sum shall be full compensation for all labor, Equipment, material, and incidentals necessary to provide the work specified in Sections 1-07.23 and 1-10 for temporary traffic control and not included in the Bid items for “Traffic Control Labor” and “Construction Signs, Class A”. Payment is limited to the following areas:
 a. The entire Project area under the Contract and for a distance to include the initial warning signs for the beginning of the Project and the end of construction sign. Warning signs for side roads on the approved traffic control plan are also included. If the Project consists of two or more sections, the limits will apply to each section individually.
 b. A detour provided in the plans or approved by the Engineer for by-passing all or any portion of the construction, irrespective of whether or not the termini of the detour are within the limits of the Contract.

Progress payment of the lump sum item "Maintenance and Protection of Traffic Control" will be made as follows:
 a. The Contractor shall submit a breakdown schedule of estimated costs in a form acceptable to the Engineer before partial payments will be made for such items. This detailed cost breakdown shall be submitted to the Engineer within 14-days after Award. Partial payments will be made only after such maintenance and protection occurs on the work site. Payment will be made on a pro-rata basis in accordance with total job progress, and adjusted by the Engineer based on the quality and timeliness of performing needed work.
 b. The item "Maintenance and Protection of Traffic Control" will not be considered as a major item regardless of the total amount Bid for the item on the Bid Form. However, if the total Contract costs of all the work under the Contract increases or decreases by more than 25 percent, an equitable adjustment will be considered to address the increase or decrease as provided in Sections 1-04.4 and 1-04.6. With the exception of the item "Maintenance and Protection of Traffic Control", the provisions of Section 1-04.6 will not apply to any traffic control or traffic control items.

2. "Traffic Control Labor," per hour shall be full pay for all costs for labor actually used by:
 a. A uniformed off-duty peace officer to countermand an operating signal, or to direct traffic in an intersection where the signal is de-energized.
 b. Flaggers used at both ends of a 2-way, single lane operation.

Payment will only be made for hours actually used to perform the above tasks. "Show-up time" will not be counted. All other costs for flagging or off-duty uniformed peace officer labor shall be included in the lump sum Bid for "Maintenance and Protection of Traffic Control."

3. "Construction Signs Class A," per square foot shall be full compensation for all costs of labor, materials, Equipment, and vehicles necessary for the:
a. Initial acquisition.
b. Initial installation of all Class A construction signs.
c. Removal of Class A signs when the need for the signs has ceased.
d. Ultimate return of all Engineer-furnished signs

Payment will not be made for signs delivered to, or removed from, the Project without the approval of the Engineer. Construction signs that are lost, stolen, destroyed, or that the Engineer deems to be unacceptable, while their use is required on the Project, shall be replaced by the Contractor without additional compensation. Payment will not be made for signs delivered to, or removed from, the Project Site without the approval of the Engineer. Payment for "Construction Signs Class A" shall be limited to the Advance Notification Sign. Any other signs needed during the course of construction (i.e., Local Access Only or detour signage) shall be considered Class B signs. No separate payment will be made for Class B signs.

When the Contractor's employees are called out to provide emergency traffic protection during non-working hours, payment for labor, Equipment, and materials deemed necessary by the Engineer will be made in accordance with Section 1-09.6 Force Account.

The lump sum Contract price for "Maintenance and Protection of Traffic" shall be full payment for all costs to build, maintain, and remove any other detours, whether built for the Contractor's convenience or to facilitate construction operations.
This page intentionally blank.
DIVISION 2 EARTHWORK

SECTION 2-01 CLEARING, GRUBBING, AND ROADSIDE CLEANUP

2-01.1 DESCRIPTION

The Contractor shall clear, grub, and clean up those areas staked by the Engineer or described in the Project Manual. This Work includes protecting from harm all trees, bushes, shrubs, or other objects selected to remain.

Clearing Work shall consist of removing and disposing of trees, vegetation or other unwanted materials from the ground surface. Grubbing Work shall consist of removing and disposing of such materials from below the ground surface. Roadside cleanup shall consist of Work done to give the roadside an attractive finished appearance.

2-01.2 BORROW AND DISPOSAL SITES

Unless otherwise specified in the Project Manual, waste sites for the disposal of debris from clearing, grubbing and roadside cleanup shall be provided by the Contractor.

The Contractor shall be allowed to sell all usable material such as timber, chips or firewood produced by clearing, grubbing, or roadside cleanup. The Contractor shall not allow the public to fell trees.

At the Pre-Construction Conference, the Contractor shall submit to the Engineer a list of Waste sites, borrow sites, and reclamation plans for pits including copies of permits the Contractor proposes to use during the course of construction. The list shall identify each location, the estimated quantities and type of material to be wasted at each site or removed from each site. Should additional or alternate sites become necessary during the life of the Contract, the locations and information for each site shall be submitted to the Engineer for approval at least 10 Working Days prior to their use.

The selection of Waste and borrow sites and their operation shall at all times be subject to the approval of the Engineer. No waste or borrow site shall be utilized by the Contractor until the proper grading permits and property owner agreements have been obtained by the Contractor and copies submitted to the Engineer. Utilization of a site without a legal grading permit, a consent Agreement from the property owner, and approval of the Engineer will be considered unauthorized.

Waste sites located within the City limits of Seattle are subject to the rules and regulations set forth in Seattle Grading and Drainage Control Ordinance (Ord. No. 108080 as amended by Ord. No. 111043, or as otherwise provided in the Seattle Municipal Code 22.800) and shall require a grading permit issued to the property owner by the Director of Construction and Land Use.

Waste sites located outside the City limits of Seattle but within unincorporated King County, shall be subject to the rules and regulations set forth in the King County Grading Ordinance (Ord. No. 1488). Sites may also be subject to rules and regulations of a local governmental authority if located within its jurisdiction.

Effective June 1, 1991 and in accordance with SMC 21.36 as amended by Ordinance 115589, no Waste generated within the City of Seattle shall be deposited in a Waste disposal facility owned and operated by King County.

Waste that is Unacceptable Waste must be disposed of in accordance with all applicable local, State and federal regulations. Waste that appears to be an Unacceptable Waste must obtain a Waste Clearance through the Seattle-King County Department of Public Health (SKCDPH). A sample of the Waste Clearance Program Instructions and forms is provided in the Appendix. Additional copies of the forms or information regarding the forms may be obtained by calling SKCDPH at 296-4633.

A list of some disposal options and approximate rates will be provided in the Appendix of the Project Manual. Also provided will be a list of recycling and disposal sites. The information provided is for the convenience of the Contractor. It is the responsibility of the Contractor to verify the accuracy of this information prior to Bid.
2-01.3 CONSTRUCTION REQUIREMENTS

2-01.3(1) CLEARING

Clearing shall consist of removing and disposing of all unwanted material from the surface including, but not limited to, trees 6 inch and less in diameter measured at a point one foot above the ground, brush, downed timber and rotted wood, rubbish, etc.; removing building sheds, fences, and other obstructions interfering with the Work when removal and disposal of such surface obstructions are not specifically provided for in Section 2-02; and protecting from all harm any trees, bushes, shrubs, or other existing improvement which are to remain. Trees greater than 6 inch in diameter measured one foot above the ground shall remain unless marked for removal on the Drawings or otherwise directed by the Engineer (see Section 2-02.3(3)I).

If branch trimming is required of trees that are to remain, it shall be done in accordance with Section 1-07.16(2).

Trees marked for removal shall be felled within the area to be cleared. Where the tree limb structure interferes with utility wires, or where the tree to be felled is in close proximity to utility wires, the Contractor shall comply with the requirements in Section 2-02.3(3)I.

All buildings, fences, lumber piles, trash, and obstructions, except utility poles, within the area to be cleared shall be removed and disposed of by the Contractor. No burning shall be allowed.

The refuse resulting from the clearing operation shall be disposed by the Contractor. Refuse material shall not be left on the Project Site, shoveled onto abutting private properties, or be buried in embankments or sewer trenches on the Project Site. Debris shall not be deposited in any stream or body of water or in any street or alley or upon any private property except by written consent of the private property owner.

2-01.3(2) GRUBBING

The Work shall consist of removing and disposing of all unwanted vegetative matter from below the surface including, but not limited to, stumps, roots, buried logs and timber, etc.; and removing and disposing of drains, culverts, wood catch basins, foundations, stairways, steps, and such other obstructions that interfere with the Work but whose removal and disposal are not specifically provided for in Section 2-02.

All stumps, roots, foundations and planking embedded in the ground within the limits described in the Drawings shall be removed to a minimum depth of 2 feet below Subgrade or 2 feet below existing ground level, whichever is lower. Disposal requirements for grubbing shall be the same as those described for clearing.

Removal of tree stumps in improved areas as part of grubbing operations shall comply with the requirements of Section 2-02.3(3)I.

2-01.3(3) LIMITS OF CLEARING AND GRUBBING

The limits of clearing and grubbing shall be as indicated on the Drawings.

2-01.3(4) ROADSIDE CLEANUP

From time to time or as may be ordered by the Engineer and immediately after completion of the Work, the Contractor shall clean up and remove all refuse and unused materials of any kind resulting from the Work. Upon failure to do so within 24 hours after request by the Engineer, the Work may be done by the Owner and the cost thereof charged to the Contractor and deducted from the Contractor’s final estimate. See Section 1-04.11.

The various Sections of Contract Specifications may have additional cleanup requirements.

2-01.3(5) PROTECTION OF EXISTING IMPROVEMENTS

See Section 1-07. See Section 2-02.3(3)I for requirements regarding tree trimming or removal when within 10 feet of overhead utility lines.

2-01.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.
Measurement for “Clearing”, “Grubbing”, or “Clearing and Grubbing” will be by lump sum or by the square
foot, depending on the choice used in the Bid Form.

2-01.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 2-01 will be made at the
Contract unit prices Bid only for the pay items listed or referenced below:

1. “Clearing,” per square foot, or lump sum.
2. “Grubbing,” per square foot, or lump sum.
3. “Clearing and Grubbing,” per square foot, or lump sum.

The lump sum or Contract unit price for “Clearing”, “Grubbing”, or “Clearing and Grubbing” shall include
all costs to complete the Work as specified in Section 2-01.

If the Bid Form does not include a pay item pertaining to the Work of “Clearing”, “Grubbing”, or “Clearing
and Grubbing”, then the Work specified shall be considered as incidental to the construction of the Project and all
costs incurred by the Contractor shall be included in the prices Bid for other items of the construction.

Roadside cleanup shall be considered as incidental to the construction of the Project.

All costs and expenses involved in securing, operating and maintaining any Waste or borrow site
(including final cleanup and any erosion or anti-pollution controls required in the permits, property Owner
agreements, grading regulations, and other Contract documents) will be considered incidental to the Contract,
and such costs and expenses shall be included in the Contract Prices for the various pay items shown in the Bid
Form.

SECTION 2-02 REMOVE, ABANDON, OR RELOCATE STRUCTURES AND OBSTRUCTIONS

2-02.1 DESCRIPTION
This Work shall consist of removing and disposing of, or salvaging or abandoning selected items of
improvements listed in the Bid Form and identified on the Drawings, and which are located within an improved
Right-of-Way or an area of existing improvement. The Work involves backfilling of trenches, holes or pits
resulting from the removal of such existing improvements. Care must be exercised to prevent damage to existing
utilities or to portion of improvements that are to remain.

2-02.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Cement Concrete Pavement</th>
<th>5-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregates</td>
<td>9-03</td>
</tr>
</tbody>
</table>

Concrete for plugging pipe ends and for filling inlets shall be a minimum of Class 5 (3/4) Mix meeting the
requirements of Section 5-05.3(1).

Backfill Material for filling structure voids and Structures (other than inlets) shall be mineral aggregate
Type 9 or Type 17 meeting the requirements of Section 9-03.16; selected Material excavated on the Project Site;
or such other Material as designated by the Engineer.

2-02.3 CONSTRUCTION REQUIREMENTS

2-02.3(1) GENERAL REQUIREMENTS
With certain exceptions, the Contractor shall raze, remove, and dispose of all buildings and foundations,
structures, fences, and other obstructions that lie wholly or partially within the Right of Way. The exceptions are
defined as public and private utility-owned equipment and any other items the Engineer may direct the Contractor to leave
intact.

The Contractor shall:

1. Remove foundations to a depth of at least 5 feet below finished ground elevation or Subgrade
elevation, whichever is lower.
2. Break up basement floors to promote drainage.
3. Fill basements or other cavities left by the removal of Structures. The fill shall match the level of surrounding ground. Any such fill within the slopes of the Roadbed shall be compacted to meet the requirements of Section 2-03.3(14)D, Method B.
4. Notify the Engineer of construction near existing monumentation, or removal of pavement containing existing monumentation, as required in Section 1-07.16.

When salvageable material is to remain Owner property, the Project Manual or these Specifications will identify the material and describe how the Contractor shall remove it. Such material shall be stored on the Project Site, as the Engineer directs, or delivered to location identified in these Specifications or in the Contract.

Any material not named in these Specifications or the Contract as Owner property will belong to the Contractor. The Contractor shall store or dispose of such material so that it cannot be seen from any public Highway.

The Contractor shall dispose of surplus or Waste material per Section 2-01.2. The Contractor shall not under any circumstance dispose of surplus or waste material within a wetland as defined in Section 2-03.3(7). Costs of disposal shall be included in the Bid prices for Work identified in the Bid Form.

Trench excavation over 4 foot in depth shall comply with the requirements of Section 7-17.3(1)A7a.

2-02.3(2) REMOVAL OF BRIDGES, BOX CULVERTS AND OTHER DRAINAGE STRUCTURES

In salvaging any steel or wooden bridge that will remain Owner property, the Contractor shall prevent unnecessary damage to the material. Steel members shall be match-marked.

Unless otherwise directed, the Contractor shall remove foundations of existing Structures to a point 2 feet below the finished ground level, the adjacent ground level, or the natural stream bottom whichever is deepest. If a foundation lies wholly or partially on the site of a new structure, it shall be removed to a level that accommodates building the new structure.

Any blasting shall be subject to the Engineer’s approval (See Section 1-07.22). The Contractor must complete all blasting before the placement of new Work.

2-02.3(3) REMOVAL OF EXISTING STREET IMPROVEMENTS

2-02.3(3)A REMOVE NON-RIGID PAVEMENT AND UNTREATED ROADWAY SURFACES

Non-rigid pavements shall be streets, driveways, alleys, sidewalks or other surfaces constructed from a bituminous mix, or any combination of bituminous mixes or surface treatments, upon an earth or granular base. Untreated Roadway surfaces shall be oil mat, crushed rock, and gravel surfaces. Untreated Roadway surfaces shall not be considered pavements.

Removal of non-rigid pavements and untreated Roadway surfaces shall be considered part of the Work of excavation. Removal shall be to the neat line trench width with the following exceptions:

1. At least 3 feet of non-rigid Roadway pavement shall be removed where an open cut straddles the Roadway edge;
2. Removal shall be to the edge of Roadway if the asphalt strip remaining between the edge of Roadway and trench neat line is less than 3 feet in width.

Non-rigid pavement shall be precut prior to removal by use of an asphalt cutting wheel, sawcutting, or line drilling at the Contractor’s option to ensure a neat straight line. Cutting shall be completely through the non-rigid pavement.

If the Contractor’s Work and Equipment causes damage beyond the cut line, the Contractor shall repair the damage, and replacement of asphalt shall be to the width as directed by the Engineer at the Contractor’s sole expense.

2-02.3(3)B REMOVE ASPHALT OVERLAY

When removing an asphalt overlay from a rigid base pavement, the Contractor shall use methods and Equipment that do not structurally damage the existing rigid base.
SECTION 2-02 REMOVE, ABANDON, OR RELOCATE STRUCTURES AND OBSTRUCTIONS

2-02.3(3)C REMOVE RIGID PAVEMENT

Rigid pavements are streets, driveways, alleys and other rigid slabs over 4 inches in thickness, constructed from cement concrete with or without brick, cobblestone or asphalt overlay or any combination of these materials.

In trenching operations, rigid pavement shall be removed to a width equal to the neat line trench width as shown in Standard Plan No. 404 and the requirements of the Street and Sidewalk Pavement Opening and Restoration Rules.

After removal and before restoration, the Contractor shall trim the edges of the remaining pavement leaving clean vertical faces.

Rigid pavement shall be line drilled, or saw cut (see Section 2-02.3(6)) at the Contractor’s option unless specifically required in the Contract. No sawing or line drilling is required where pavement removal extends to joints or cracks.

After line drilling or saw cutting the pavement, the Contractor shall not proceed with pavement removal until the Contractor has demonstrated to the satisfaction of the Engineer, the method used to break and remove the concrete pavement does not damage existing utilities or pavement that is to remain in place. A backhoe may be used to remove broken concrete only after the concrete portion that is to be removed is clearly broken away from the pavement that is to remain in place.

Use of a “headache ball” to break concrete pavement will not be permitted.

2-02.3(3)D REMOVE CATCH BASIN, SANDBOX, VALVE CHAMBER, MANHOLE, OR INLET

The Contractor shall excavate and completely remove the structure including casting and outlet trap, concrete encasement, and bricks, as applicable to each removal item listed in the Bid Form.

Connecting pipes shall be plugged in accordance with Section 2-02.3(5). Backfill shall be with selected material, or with mineral aggregate Type 17, as directed by the Engineer, compacted to meet the requirements of Section 7-17.3(3)A.

2-02.3(3)E REMOVE CURB, CURB AND GUTTER

Curb removal shall be classified as Class A or Class B. Class A is removal and preserving the slab or base material below the curb. Class B is removal at the face of the curb and removing the curb with the underlying pavement.

Except as otherwise specified, removal of curb placed on top of rigid pavement or base shall be Class A, and removal of full depth curb shall be Class B. Removal of curb for construction of curb ramps, driveways, and monolithic curb and sidewalk shall be Class B irrespective of the type of curb to be removed.

Curb shall be sawcut (see Section 2-02.3(6)) at the neat line limits of removal, or removed to the nearest joint at the Engineer’s option.

See Section 2-02.3(7)E for additional requirements when applicable.

2-02.3(3)F REMOVE SIDEWALK

For removal purposes, all concrete slabs that average 4 inches or less in thickness shall be considered as sidewalk removal.

Sidewalk removal shall be as indicated on the Drawings unless directed otherwise by the Engineer.

Where required, saw cut shall comply with the requirements of Section 2-02.3(6). Saw cuts shall leave straight edges and vertical faces.

Asphalt sidewalk shall be removed to the limits indicated on the Drawings.

2-02.3(3)G REMOVE ELECTRICAL AND TRAFFIC CONTROL DEVICES

The Contractor shall submit a written schedule for removing the existing traffic systems to the Engineer for approval at least 5 Working Days prior to proceeding with the removal.

The Contractor shall notify the Engineer 3 Working Days prior to any removal of traffic signals in which no traffic signal devices are to be reinstalled. Within 3 Working Days after the removal, the Contractor shall again notify the Engineer, in writing, stating the location, exact date and time of the actual removal.
The Contractor shall remove Equipment from the span wire before the span wire is disconnected from the poles. Existing span wire shall not be cut without first releasing the tension in the span.

2-02.3(3)H REMOVE GUARD RAIL

Removal of the various types of guardrail and anchors shall include removal of the rail, cable elements, hardware, posts, concrete bases, and steel tubes. All holes resulting from the removal of the guardrail posts and anchors shall be backfilled with native Material in 6” layers and compacted to the satisfaction of the Engineer. *The removed guardrail items, if reusable as determined by the Engineer, shall be delivered to either the Charles Street or Haller Lake yards as directed by the Engineer.* Damaged and unusable items shall be disposed of by the Contractor.

2-02.3(3)I REMOVE TREE

Trees which are greater than 6 inch in diameter at one foot above the ground and marked for removal will be indicated on the Drawings. The Contractor shall notify the Engineer at least 2 Working Days in advance of tree removal.

The Contractor shall make the notification specified in Section 1-07.28 whenever any tree to be trimmed or removed is within 10 feet of overhead wires.

In unimproved areas, removal of the tree shall include complete removal of the stump.

In improved areas, stump removal shall be by grinding and removing the stump to an 18 inch depth below finished grade, unless approved otherwise by the Engineer.

2-02.3(4) ABANDON CATCH BASIN, VALVE CHAMBER, MANHOLE, OR INLET

As applicable to each abandon item *indicated on the Drawings*, the Contractor shall remove the casting and debris; dewater; break down the structure to a depth of the cone sections, or 4 feet below the surface, whichever is greater, and plug the outlet pipe *as specified in Section 2-02.3(5)*; and fill the remaining structure and void with mineral aggregate or concrete as specified below.

Valve chambers, catch basins, and manholes shall be filled with mineral aggregate Type 9 or Type 17 or crushed concrete compacted to 95% of maximum dry density per Section 2-03.3(14)E. Old Type 164 inlets shall be filled with Class 5 (3/4) concrete *(see Section 5-05.3(1))*. Inlet grates shall be delivered to the Owner.

The upper portion of abandoned structure shall be replaced with the pavement system indicated on the Drawings.

2-02.3(5) ABANDON AND FILL, AND PLUG PIPE

2-02.3(5)A ABANDON AND FILL PIPE

Pipes designated on the Drawings to be abandoned and filled shall be filled with a pumpable, flowable cement slurry completely filling the pipe *(See section 9-05.23)*.

2-02.3(5)B PLUG PIPE

At each end of the pipe designated “abandon and fill” or “plug” on the Drawings, the pipe shall be plugged with Cement Concrete, Class 5 (3/4) *(see Section 5-05.3(1))* for a minimum length of 12 inches completely filling the pipe end with no voids.

2-02.3(6) SAWING AND LINE DRILLING

When saw cutting concrete pavement, driveway or sidewalk, with or without asphalt overlay, the minimum depth of sawcut shall be such that one-half the thickness of the Portland cement concrete is cut. The maximum depth of saw cut shall be such that no more than three-fourths of the thickness of the *cement concrete*.

For pavements with a rigid concrete base supporting mortared decorative or special pavement units such as *brick or cobblestone or paver block*, the depth of saw cut shall be such that no more than three-fourths the thickness of the concrete base is cut along a neat line with intent to salvage as many special pavement units as possible.

Curb shall be saw cut full height and width.
Asphalt shall be saw cut full depth.

When line drilling, spacing of drilled holes center to center shall be 6 inches maximum and hole diameters shall be 1-1/2 inches minimum. Holes shall be perpendicular to the surface and shall penetrate completely through the pavement.

Saw cutting shall be the required method for the following:

1. When the Contract requires.
2. When required by the permit for Work in the street Right-of-Way and as approved by the Engineer.

To thoroughly clean sawcuts, the Contractor shall employ methods acceptable to the Engineer either using, or as effective a method as using, high pressure water (water under at least 1400 psi.) to thoroughly flush the sawcuts of all debris and contaminants. See Section 1-07.5 for prevention of environmental and preservation of public natural resources requirements, and for payment responsibility.

2-02.3(7) SALVAGE

2-02.3(7)A GENERAL

Unless otherwise indicated, all materials of recoverable value removed from the Project shall be carefully salvaged and delivered to the Owner in good condition and in such order of salvage as the Engineer may direct. Materials and things deemed of no value by the Engineer shall be removed by the Contractor and become his property to be disposed of as he wishes.

All castings and other materials removed from the Project which are not to be re-used elsewhere on the Project, and which in the opinion of the Engineer are suitable for salvage, shall have excess concrete, debris and dirt removed and shall be delivered to the location designated by the Engineer. Contact SEATRAN Traffic Shops at 206-386-1206, at least 2 Working Days in advance of delivery, for coordination.

2-02.3(7)B WATER MAINS AND APPURTEANCES

The Contractor shall excavate and completely remove hydrants, valves, and any other item indicated on the Drawings, using care not to damage those items to be salvaged. Cast iron Water Main designated for removal shall be disposed of by the Contractor. Backfill shall be with mineral aggregate Type 17 and shall be compacted to meet the requirements of Section 7-17.3(3)B.

2-02.3(7)C ILLUMINATION, SIGNALS, AND ELECTRICAL

Electrical and traffic items to be salvaged shall include the following:

1. High pressure sodium luminaries, lamps and photo cells.
2. Aluminum bracket arms.
3. Aluminum lighting poles.
4. Wood and metal lighting poles.
5. Traffic poles, including joint lighting and traffic poles.
7. Pedestals.
8. Traffic signal cabinets.
10. Illuminated signs.
11. Handholes.
13. Traffic signs - overhead.
15. Designated signal appurtenances.
16. Miscellaneous channelization items.
Items 1 through 4 shall be delivered by the Contractor to City Light South Service Center at 4th Avenue South and South Spokane Street. Call 206-386-1766 prior to delivery of wood poles, or 206-386-1704 prior to delivery of metal poles, high pressure sodium luminaries, lamps, photo cells, and aluminum bracket arms.

Items 5 through 16 shall be returned to SEATRAN Traffic Shops at 4200 Airport Way South. Call 206-386-1206 a minimum 2 Working Days prior to delivery.

2-02.3(7)D REINSTALLING SALVAGED ELECTRICAL MATERIAL
See Section 8-30.3(4).

2-02.3(7)E GUTTER BRICK, PAVEMENT BRICK AND COBBLESTONE, AND GRANITE CURB
The Contractor shall exercise reasonable care in the removal and salvage of existing gutter brick, pavement brick and cobblestone, and granite curb encountered during removal operations. The method of removal shall not damage the brick, cobblestone, or granite curb. If necessary, the Contractor shall hand excavate to ensure these materials are not damaged. The Contractor shall coordinate the loading operations with the SEATRAN Pavement Supervisor by giving at least 24 hours advance notice of the impending removal operations. Where removal takes place south of Denny Way, the Contractor shall call 206-386-1223. Where removal takes place north of Denny Way, the Contractor shall call 206-684-4660. See Section 8-14.3(8) for existing granite curb and new wheelchair ramps.

2-02.3(8) STREET SADDLES AND STEEL PLATES

2-02.3(8)A GENERAL
When excavations or other openings in the Right of Way cannot be completely backfilled at the end of the Working Day, street saddles or steel plates meeting the requirements below shall be used to temporarily cover the excavation or opening, unless other measures acceptable to the Engineer are employed.

2-02.3(8)B STREET SADDLES
Saddle board shall be made of 4-inch roughcut, construction grade timbers with no warp. Saddle iron flanges shall be 6 inches wide x 8 inches long. They shall be made of 3/4-inch steel and have chamfered edges. The support iron shall be of adequate size so that there is no significant deflection with traffic. At any time the saddle iron flanges do not get full bearing on the Roadway surface, shims shall be used. Saddle boards and irons may be bolted together provided that hoist Equipment is furnished to the Engineer for their removal.

Saddle irons and boards shall be firmly wedged on sides and ends. The boards shall be flush with the Roadway surface. All holes shall be cut to provide a good fit and without excessive openings. Saddle boards shall be notched to receive the irons, or scabbing shall be added to the sides of the board so that the board is flush along the pavement opening. There shall be no more than 3 feet of unsupported board between irons. Saddle boards and irons shall be used only on those streets which have a concrete or other surface which can safely support them.

2-02.3(8)C STEEL PLATES
Where a steel plate covers an excavation, each side of the steel plate bearing Steel plates shall have a minimum of 12 inches bearing on sides of a cut and shall be anchored by driving steel pins on all corners or by an Alternate method approved by the Engineer.

Flanges or angle irons shall be welded to the underside conforming basically to the size of the street opening. Where the street surface is uneven, plates shall be bedded on MC250 asphaltic mix. Steel plates shall be capable of carrying a minimum of H20 loading.

All steel plates or saddles located in pedestrian crosswalks or within 3 feet of pedestrian crosswalks shall have a tapered transition of cold asphalt mix placed against all vertical edges of the plate. The Engineer may require, in certain areas, that the tapered transition be highlighted with paint stripes. Paint stripes shall be Omaha Orange, approximately 2 inches wide and located on 16 inch centers.
Steel plates in crosswalks or sidewalks shall have a non-skid surface in dry and wet conditions acceptable to the Engineer. Any pedestrian crosswalk containing steel plates or saddles may be closed at the discretion of the Engineer.

2-02.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for saw cutting when required by Section 2-02.3(6) will be made by the linear foot along the slope of the surface cut. No measurement will be taken for line drilling. This Work shall be considered incidental to Pavement Removal.

During trench excavation, measurement for removal of street improvements will be based on the removal and replacement limits indicated on Standard Plan Nos. 404.1a and 404.1b modified by the extended limits of restoration required to meet the "Street and Sidewalk Pavement Opening and Restoration Rules".

Abandon pipe will not be measured.

Measurement for “Abandon and Fill Pipe” shall be by the actual number of linear feet of pipe abandoned and filled.

Measurement for “Remove Paint Striping” and “Remove Thermoplastic Striping” will be by the actual linear feet of pavement marking removed.

Removal of monolithic curb and sidewalk shall be considered sidewalk removal by the square yard, measured from the back of the walk to a point 6 inches from the face of the curb, and as curb removal per linear foot for that portion lying within 6 inches of the curb face.

Measurement for mineral aggregates shall be in accordance with Section 4-01.4.

Measurement for “Abandon Existing Water Service,” will be per each service permanently retired and disconnected from the existing Water Main, when directed by the Engineer.

2-02.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 2-02 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Remove (Item),” per square yard.
2. “Remove (Item),” per linear foot.
3. “Remove (Item),” per each.
4. “Remove (Item),” per lump sum.

The Contract unit price for “Remove (Item)” shall include all costs for the Work required to completely remove and dispose of or salvage the item as applicable.

Removal of items not listed in the Bid Form shall be considered as incidental to the construction, and the costs thereof shall be included in the various items comprising the improvement.

Removal of non-rigid pavement less than or equal to 6 inches in average thickness over granular base will be measured and paid as “Common Excavation” in accordance with Section 2-03, with the following exceptions:

a. When excavating through non-rigid pavement averaging less than or equal to 6 inches in thickness over granular base to install underground improvements, the costs of removal of non-rigid pavement shall be considered as incidental to the Bid item cost of installing the new improvement. When excavating through non-rigid pavement greater than 6 inches in average thickness, the costs of removal of non-rigid pavement will be as specified in section 2-02.4.

b. Removal of non-rigid pavement over granular base on street improvement Projects shall be paid as “Remove Pavement” if the average thickness of the pavement as determined by the Engineer is greater than 6 inches as specified in Section 2-02.4.

c. When the Project Manual has been amended to make removal of non-rigid pavement incidental to a particular Bid item within the Project, no separate payment will be made.
Removal of non-rigid pavement without removal of any underlying cement concrete base will be paid as “Remove Asphalt Overlay.”

Removal of sidewalk thickened edge shall be considered incidental to the cost of removing sidewalk.

When rigid base is to be removed, the removal of the asphalt overlay from edge of step-back to edge of step-back on each side of the trench shall be considered incidental to the Bid item “Remove Pavement.”

Payment for removal of rigid base averaging greater than 4 inches will be paid as “Remove Pavement” measured in accordance with Section 2-02.4.

Removal of trees within the limits of clearing and grubbing shall not be paid under a “Remove Tree” Bid item, but shall be paid as specified in Section 2-01.5. Removal of trees 6 inches or smaller in caliper measured 1 foot above the base of the trunk shall be considered incidental to the various Bid items comprising the improvement.

All minor utility devices such as meter boxes, handholes, inlets, sandboxes and pipe marked for removal on the Drawings and which are located within the excavation area between pipe trench neat lines or within the neat line area of a structural excavation shown on the Drawings, shall be considered as incidental to the Bid price for installation of pipe or to structure excavation. Removal of catch basin and manhole shall be paid for at the unit price Bid for their removal.

Removal of cast-in-place curb will be paid as “Remove Curb,” regardless of whether removal is Class A or Class B. All costs for removing other types of curb, such as traffic curb, shall be included in the prices Bid for the various Bid items shown in the Bid Form. All costs for removal of curb when underlying pavement is being removed shall be considered incidental to “Remove Pavement”.

Removal of traffic buttons or traffic islands shall include all costs to restore the surface if required. If there is no specific Bid item listed for the removal of existing traffic buttons or lane markers, the cost shall be considered incidental to the various Bid items comprising the improvement.

Removal of traffic sign posts shall include all costs for the removal of the post, traffic sign, mounting hardware and restoration of the surface where sign posts were removed, or in some cases reset.

The Contract unit price for “Remove Paint Striping,” “Remove Paint Legend/Symbol,” “Remove Thermoplastic Striping,” and “Remove Thermoplastic Legend/Symbol” shall include all costs for the Work required to remove pavement markings as indicated on the Drawings or as directed by the Engineer and to restore the surface if required.

The Contract unit price for “Remove Luminaire” and “Remove Luminaire and Bracket Arm” shall be full compensation for removal of the existing luminaire, or luminaire and bracket arm and its ballast, wiring and appurtenances.

The Contract unit price for “Remove Pole, Metal,” shall be full compensation for all Work to remove and salvage the pole.

The Contract unit price for “Remove Pole, Wood” shall include costs of all the Work required to remove and salvage the pole, and to backfill and compact the void left after pole removal.

The Contract unit price for “Remove Foundation, (Type)” shall include costs of all Work required to remove and dispose the foundation, and to backfill and compact the void left after removing the foundation.

5. **“Saw Concrete, 2 Inch Minimum Depth,”** per linear foot.

6. **“Saw Asphalt, Full Depth,”** per linear foot.

The Contract unit price for sawcutting shall include all costs for the Work required to saw cut concrete, or asphalt only at the locations specifically indicated on the Drawings or in the Specifications, or designated by the Engineer. No payment will be made for sawcutting concrete or asphalt which is done at the option of the Contractor, and is not indicated in the Contract or directed by the Engineer.

In sawcutting of the rigid base, sawcutting through the asphalt overlay will not be measured as a separate item of Work and shall be included in the Contract unit price of the Bid item “Saw Concrete, 2 Inch Minimum Depth.”

When the Drawings or the Engineer requires sawcutting to neat edge to remove the asphalt overlay step-back, all costs for the Work shall be paid in accordance with the Bid item “Saw Asphalt, Full Depth.”

7. **“Abandon (Item),”** per each.
The Contract unit price for “Abandon (Item)” shall include all costs for the Work required to abandon the utility structure as specified.

The Contract unit price for “Abandon and Fill Pipe”, shall be full compensation for all Work including plugging the pipe where indicated on the Drawings, furnishing and filling the pipe with cement slurry, and incidental Work necessary to complete the Work specified.

No payment will be made to abandon pipe or other subsurface items identified on the Drawings and for which no Work is required. Plugging the exposed or open ends of pipes to be abandoned shall be considered incidental to the installation of new pipe.

9. “Remove Signalization (Location),” per lump sum.

The lump sum payment for “Remove Signalization (Location)” shall be full compensation for all labor, Material and Equipment required to complete the removal, disposal, and salvage Work as specified and shown on the Drawings, and shall include salvaging, stockpiling and delivering Equipment as determined by the Engineer and shall include disposal of removed items not salvaged.

10. Other payment information

When existing Type 164 Inlet (see Std. Plan 268) is to be removed with the removal of concrete pavement, the removal of the inlet shall be considered incidental to the cost of “Remove Pavement.”

Removal of curb that is monolithic with sidewalk will be paid as “Remove Curb.”

Removal of asphalt traffic islands, either over pavement or over granular Material, will be paid as “Common Excavation” and shall include removal of asphalt, granular Material under asphalt, and precast curbs around the island.

All costs for delivering removed guardrail determined reusable by the Engineer to the designated facility shall be incidental to the Bid Item (see Section 2-02.3(3)H).

All costs for coordination and delivery of salvageable material shall be included in the various Bid Items.

SECTION 2-03 ROADWAY EXCAVATION AND EMBANKMENT

2-03.1 DESCRIPTION

2-03.1(1) GENERAL
This Work shall consist of excavating and grading the Roadway; excavating below grade; removing and replacing slide material; furnishing, placing, temporarily stockpiling, and compacting select or other backfill Material; removing and disposing of unsuitable or excess material; and all Work necessary for the construction and completion of cuts, embankments, slopes, Roadway ditches, side street approaches, alley and alley approaches, driveways and driveway approaches, sidewalks and planting areas, and such subsidiary Work described in this section and not otherwise provided for separately in other Sections of these Specifications.

This Work shall be performed in reasonably close conformity with the lines, grades, and cross sections indicated in the Contract Documents or established by the Engineer.

2-03.1(2) CLASSIFICATION

Roadway excavation shall be classified as common excavation, solid rock excavation and unsuitable foundation excavation. Trench excavation shall be as specified elsewhere.

Solid Rock Excavation shall consist of the removal and disposal of solid rock, i.e. ledge rock that requires systematic drilling and blasting for its removal and also boulders exceeding 1/2 cubic yard in volume as determined by the Engineer. Hard pan, hard clay or glacial till shall not be classified as solid rock excavation. Sandstone, siltstone, shale or other sedimentary rocks which are soft, weathered or extensively fissured shall not be classified as solid rock excavation. Soft rock is defined as one which has a modulus of elasticity of less than 200,000 psi.

Unsuitable Foundation Excavation shall consist of the removal and disposal of unstable material including, but not limited to, peat, muck, swampy or other unsuitable materials such as buried logs and stumps, but only when the removal is as specified in Section 2-03.3(14)F or 2-03.3(14)G and such methods are specified
in the Project Manual and included in the Bid Form or are specifically ordered in writing by the Engineer. Removal of soft or spongy spots in the prepared Subgrade shall be considered excavation below grade pursuant to Section 2-03.3(3).

Common Excavation shall consist of all other material not classified as solid rock excavation, unsuitable foundation material excavation, or excavation which is considered to be incidental to other Contract Bid items in the Contract. The widening of Roadway cuts and ditches and excavation below the designated Subgrade when ordered by the Engineer shall be considered as common excavation.

2-03.1(3) PROTECTION OF EXISTING IMPROVEMENTS

In addition to the requirements of Section 1-07, the Contractor shall insure that mineral aggregates, debris from the Work area, and materials from Roadway excavation, are prevented from entering existing manholes. Manholes in the vicinity of Roadway excavations or Material stock piles shall have shields placed over the manhole channel. Shields shall remain in place until excavation and grading operations are complete. Within 24 hours thereafter, any material which has collected on the shields shall be removed. Removal shall be such that no debris or material falls into the channel.

2-03.2 RESERVED

2-03.3 CONSTRUCTION REQUIREMENTS

2-03.3(1) WIDENING OF CUTS

If routine cuts do not supply enough Material to form the embankment, the Contractor shall obtain more fill from cuts inside or outside the Right of Way as the Engineer may direct or from widening one or both sides of existing cuts as staked by the Engineer.

In either case, the Contractor shall dress the sides of the cuts to any slopes the Engineer may require.

2-03.3(2) ROCK CUTS

2-03.3(2)A PRESERVING ROCK BELOW SUBGRADE

The Contractor shall take care not to break down, loosen, or damage the rock under the Subgrade line except as provided by Section 2-03.3(3). Normally, cuts shall be made from the top, lift by lift, to protect the rock bench that remains. The Contractor shall be responsible for methods used and for any damage caused to the Roadbed, regardless of any previous approvals by the Engineer.

2-03.3(2)B SCALING AND DRESSING

To leave rock cuts in a safe, stable condition, the Contractor shall scale and dress them, removing all loose fragments and rocks not firmly fastened to the rock slope. The Contractor shall also remove any overhanging rock the Engineer sees as a hazard to Roadway users.

If the Engineer requires it, the Contractor shall remove loose fragments and rocks lying outside the slope stakes. Payment for such extra Work shall be by force account as provided in Section 1-09.6. The Owner will pay for loading and hauling these materials at the Contract unit prices that apply or as provided in Section 1-04.4.

2-03.3(2)C RESERVED

2-03.3(2)D RESERVED

2-03.3(2)E RESERVED

2-03.3(3) EXCAVATION BELOW GRADE

When the Contractor finds rock or other hard Material at the Subgrade elevation, it shall be excavated the full width of the Roadbed to at least 6 inches below Subgrade, then backfilled with rock fragments, gravel, or other free-draining Material not more than 4 inches in diameter.
If the Contractor uses a Subgrade trimmer, the backfill shall be rock, gravel, or other free-draining Material not more than 2 inches in diameter. The Contractor shall save the finer granular Material from excavations or borrow pits to use in backfilling the top 6 inches of the Subgrade. All such Material shall be approved by the Engineer.

Draining rock pockets. If blasting below Subgrade leaves a rock pocket that does not drain, the Contractor shall, at his cost, dig a trench from the pocket bottom to the roadside ditch, then backfill both the pocket and the trench with rock fragments, gravel, or other Material approved by the Engineer.

Compaction. If the density of the natural earth under any area of the Roadway is less than that required in Section 2-03.3(14)D, Method B, the Engineer may direct the Contractor to:

1. Scarify the earth to a depth of 6 inches.
2. Aerate or water.
3. Compact the scarified area to the required density.
4. Excavate to a specific depth.
5. Backfill the excavated area in layers, using the previously excavated Material or other Material.
6. Compact each layer to meet the compaction requirements for embankments.

2-03.3(4) SLUICING

The Contractor shall not excavate by sluicing unless the Project Manual specifically calls for it.

2-03.3(5) SLOPE TREATMENT

The tops of all Roadway cut slopes, except solid rock cuts, shall be rounded in accordance with Standard Plan No. 140. Unless otherwise noted in the Contract, Class A slope (Class A slope refers to WSDOT Standard H-8 treatment) shall be utilized.

If a layer of earth covers a rock cut, the slope shall be rounded above the rock as if it were an earth slope. When the Contractor removes stumps or any embedded Material from the rounded area, the void shall be backfilled and stabilized to prevent erosion.

2-03.3(6) DEPOSIT OF ROCK FOR OWNER’S USE

At the Engineer’s direction, the Contractor shall deposit excavated rock at the roadside or elsewhere. If this requires the Contractor to use Material that would otherwise have gone into an embankment, the Owner will pay for the extra cubic yards of excavation needed to complete the embankment. Any such rock deposit shall be Owner property. The Contractor shall be responsible for safe-keeping the deposit until the Owner has removed it or until the Contract is completed.

2-03.3(7) DISPOSAL OF SURPLUS MATERIAL

Material obtained from all excavation within the Project boundary shall not be wasted unless the excavated material is designated by the Engineer as unsuitable for use in embankment construction, trench backfill, or for other purposes.

Disposition of surplus material from trench excavation shall be as specified in Section 2-03.3(10). Wetlands are defined as those areas inundated or saturated by ground or surface water at a frequency and duration sufficient to support, and, under normal circumstances, do support a prevalence of vegetation typically adapted to life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

Material which is surplus to the needs of the Project or determined to be unsuitable by the Engineer shall be disposed of in accordance with the requirements noted herein and in Section 2-01.2.

The Contractor shall acquire all permits and approvals required for the use of the disposal site. The cost of any such permits and approvals shall be included in the Bid prices for other Work.

The Contractor shall, if requested by the Engineer, provide the Engineer the location of all disposal sites to be used and also provide copies of the permits and approvals for such disposal sites.

Disposal of excess material within a wetland area will not be allowed without a Section 404 permit issued by the U.S. Corps of Engineers and approval by the local agency with jurisdiction over the wetland. Wetlands are
defined as those areas inundated or saturated by ground or surface water at a frequency and duration sufficient to support, and that under normal circumstance do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

Any action required to satisfy any permit and/or any approval requirements in a Contractor-provided disposal site shall be performed by the Contractor at no additional expense to the City.

Reclamation of a Contractor-supplied Waste site must conform to the requirements of Section 3-03.

2-03.3(8) WASTING MATERIAL
If the Contractor wastes excavated material which is deemed suitable by the Engineer for embankments or other backfills, and Material is later needed for embankments or fills, the Contractor shall, at his own cost, replace the wasted material with Material meeting the Engineer’s approval.

2-03.3(9) ROADWAY DITCHES
At each transition from cut to embankment fill, the Contractor shall divert any Roadway ditch away from the embankment in natural ground. Ditches shall never permit water to flow into or upon embankment Material.

All ditches shall be constructed as shown on the Drawings and shall be graded to direct the flow of the water to catch basins, Culverts or channels. (See Sections 1-07.5 and 1-07.15 for pollution, erosion, and other control requirements.)

2-03.3(10) SELECTED MATERIAL
Selected Material shall be considered as that Material designated by the Engineer as suitable for selected fill applications which is obtained from the excavation or widening of the Roadway prisms, or any other excavation within the street Right of Way, including trench excavation. Selected Material shall be used first before new borrow Material is imported for construction of Project embankments, finishing the top portion of the Subgrade, structure backfill, or such other backfill applications the Engineer may designate.

Selected Material shall be used for any of the following purposes as determined by the Engineer:
1. Embankment construction.
2. In lieu of mineral aggregate (Type) meeting the requirements of Section 9-03.
3. Trench backfill.
4. Planting soil.
5. Other selected uses as determined by the Engineer.

Excavated material which is in excess of the needs of the Project shall be disposed of per Section 2-01.2.

Selected Material shall be placed and compacted in accordance with the requirements for the type of Work for which the Material is being used.

Unless the Project Manual specifies otherwise, the Engineer may identify as “selected” any Material excavated within the right-of-way, including the excavation of local borrow.

If necessary, stockpiling of selected Material shall be at locations approved by the Engineer. Thereafter, such Material shall be removed from stockpile and used when needed. Excavated Material stockpiled for use as selected materials shall be protected from contamination by other materials and from damage by weather by covering with waterproof sheeting or such other means as the Contractor deems necessary. Materials stockpiled and later found unsuitable by the Engineer shall be disposed of and replaced with Material acceptable to the Engineer.

2-03.3(11) SLIDES
The Contractor shall slope the sides of cuts and embankments to comply with lines staked or reestablished by the Engineer. If a slide occurs on a finished slope before final acceptance of the Work, the Contractor shall remove or replace the slide Material. The Contractor shall also refinish the slope to the condition and with the Materials required by the Engineer.

The Owner will pay for the excavation at the Contract unit price and for resloping on a force account basis. The Engineer may authorize payment for the excavation by agreed price or force account if:
1. The slide material cannot be measured accurately; or
2. Excavation of slide material requires Equipment not available on the Project.

If the Contractor undercuts or destroys a slope, it shall be resloped to the original alignment or to a new one established by the Engineer.

No separate payment shall be made for selected Materials unless a bid item is printed in the Project Bid Forms or as determined by the Engineer.

2-03.3(12) OVERBREAK

Overbreak includes that part of any material excavated, displaced, or loosened outside the staked or reestablished slope or grade. Such material is considered overbreak whether its movement resulted from blasting, from the character of the material itself, or from any other cause. Overbreak, however, does not include material from slides as described in Section 2-03.3(11).

If the Engineer does not approve use of the overbreak, the Contractor shall remove, haul, and dispose of it, at no expense to the Owner. In this case the Contractor shall follow the procedure for handling surplus Material described in Section 2-03.3(7).

If the Engineer approves, the Contractor may use overbreak:

1. To complete an embankment when the excavated material unexpectedly falls short of the amount required;
2. To replace borrow excavation originally planned for an embankment.

2-03.3(13) BORROW

Borrow is imported Material obtained from sources other than the Roadway prism, trench excavation, or other excavation on the Project. When suitable native excavated Material is insufficient, borrow shall be used to construct embankments, Subgrade, Shoulders, other Roadway components to the neat lines shown on the Drawings. Sources of borrow Material shall be approved by the Engineer.

Borrow shall be classified as “Unclassified Borrow” or “Borrow (Type)” as follows:

1. Unclassified Borrow shall be an imported soil which meets the suitability requirements set forth in Section 2-03.3(14).
2. Borrow (Type) shall be an imported soil which meets the suitability requirements set forth in Section 2-03.3(14) and in addition, meets all gradation and other requirements listed in Section 9-03.16 for the type of mineral aggregate specified (e.g., “Borrow, Type 17,” etc.)

2-03.3(14) EMBANKMENT CONSTRUCTION

2-03.3(14)A GENERAL

The Owner classifies embankment construction as:

1. **Rock embankment** - in which the Material in all or any part of an embankment contains 25 percent or more, by volume, gravel or stone 4 inches or more in diameter. Section 2-03.3(14)B.
2. **Earth Embankment** - made of any Material other than that used in rock embankment. Section 2-03.3(14)C.
3. **Unstable Base** - If the Engineer believes the natural earth base impairs an embankment or makes it unstable, the Contractor shall stabilize or remove and dispose of the base Material in keeping with this Section or Sections 2-03.3(14)F.
4. **Hillside Terraces** - Unless the Engineer directs otherwise, the Contractor shall terrace the original ground or embankment on hillsides, on the sides of existing embankments and in transitions from cuts to fills. Each terrace shall penetrate the slope at least 5 feet and shall not be more than 5 feet high. The horizontal face of the terrace shall slope outward at approximately .05 foot per foot. The Engineer may order the Contractor to place gravel backfill, pipe drains or both to drain any seepage.
5. **Soft Base** - On wet or swampy ground, the Contractor shall haul and spread embankment Material by methods that cause minimal disturbance to the base. If the Engineer approves, the
Contractor may place the lower part of the fill by dumping and spreading successive loads to form a uniform layer just thick enough to support Equipment used to place and compact upper layers.

Normally the Contractor shall not increase the planned depth of the embankment over a soft base merely to permit the use of heavier Equipment. However, if the Contractor can demonstrate that the planned depth can not support light hauling vehicles, the Engineer may approve a deeper fill. The Contractor shall not claim extra pay if these restrictions require the use of light Equipment or different construction methods than originally planned for use on the soft base.

In the order of priority, Material used for embankment shall be:

1. Selected Material obtained from Common Excavation and Trench Excavation; and
2. Borrow of the type specified.

Selected excavated Material shall be used for the construction of all required Project embankments per Section 2-03.3(10).

Excavated Material will be considered suitable for general fill applications which do not require a Material meeting specific mineral aggregate Specifications found in Section 9-03 if it:

1. Is capable of attaining the degree of compaction specified in Section 2-03.3(14)D;
2. Is within plus or minus 3 percent of optimum moisture content as determined in accordance with ASTM D698;
3. Is free from deleterious Material and does not contain more the 5% total by volume of organic Material; clay; frozen lumps; and rocks, concrete, asphalt, or other debris and rubble having a dimension greater than 6 inches.

Embankment Material which contains less moisture than required for proper compaction with the compacting Equipment being used shall be watered in the amount ordered by the Engineer. Compaction of embankment Material which contains excessive moisture shall not be started until the moisture content is reduced to the maximum amount specified above.

2-03.3(14)B ROCK EMBANKMENT CONSTRUCTION

The Contractor shall build rock embankments in horizontal layers. No layer shall be deeper than 18 inches unless the rocks in the fill Material average more than 18 inches in diameter. The Contractor shall separate and distribute the larger pieces of rock and fill the spaces between them with smaller rocks and earth. With the Engineer’s approval, the Contractor may dispose of rocks larger than the average size instead of placing them in the embankment.

Compacting. The Contractor shall use a 50-ton compression roller or a vibratory roller having a dynamic force of at least 40,000 pounds impact per vibration and at least 1,000 vibrations per minute. In either case, the roller shall make one full coverage for each 6 inches, or any fraction of 6 inches, or lift depth.

When the depth is 18 inches or less, the Contractor may use a 10-ton compression roller or a vibratory roller having a dynamic force of at least 30,000 pounds impact per vibration and at least 1,000 vibrations per minute. In either case, the roller shall make four full coverages for each 6 inches, or any fraction of 6 inches, or lift depth.

Rollers must exert reasonably even pressure over the area covered. The Contractor shall limit the speed of compression rollers to no more than 4 miles per hour, and the speed of vibratory rollers to no more than 1.5 miles per hour.

If possible, the Contractor shall compact the Material even further by routing empty and loaded hauling Equipment evenly over the entire width of the embankment.

When the Engineer believes rolling to be physically impractical, rolling may be omitted on part or all of a layer.

Should excessive moisture threaten the stability of the embankment the Engineer may order the Contractor to alter the operation. This may include alternating layers of wet and dry Materials, drying Materials before placing, or halting Work in the problem areas.
Top layer. The Contractor shall build each rock embankment up to 6 inches below Subgrade. The top 6-inch layer of embankment shall be of rock, gravel, or other free-draining that does not exceed 4 inches in diameter. When the Drawings require use of a Subgrade trimmer, these Materials in the top layer may not exceed 2 inches in diameter.

When practical, and as approved by the Engineer, the Contractor shall save the finer granular Material from excavations or borrow pits for use in topping rock fills.

2-03.3(14)C EARTH EMBANKMENT CONSTRUCTION

The Contractor shall place earth embankments in horizontal layers of uniform thickness. These layers shall run full width from the top to the bottom of the embankment. Slopes shall be compacted to the required density as part of embankment compaction.

During grading operations, the Contractor shall shape the surfaces of embankments and excavations to uniform cross-sections and eliminate all ruts and low places that could hold water.

On a tangent, the Contractor shall raise the center of the embankment above the sides. On a sidehill, the high point of any layer shall intersect the original ground and shall slope uniformly toward the lower side. This slope shall not exceed 1 foot in 20 feet.

2-03.3(14)D COMPACTING EARTH EMBANKMENTS

This section describes three methods (A, B, and C) for building earth embankments. The Contractor shall use Method B unless the Project Manual requires another method.

Method A. Each embankment shall be made of layers no more than 2 feet thick. The Contractor shall compact each layer by routing loaded haul Equipment over its entire width. If the Engineer approves, the Contractor may use end dumping to begin placing a sidehill fill too narrow for hauling Equipment. When the fill is wide enough, the remaining layers shall be compacted by the loaded hauling Equipment.

Method B. The top 2 feet of each embankment shall be compacted to 95 percent of the maximum density as determined by the compaction control tests described in Section 2-03.3(14)E. All Material below the 2-foot level shall be compacted to 90 percent of the same maximum density.

In the top 2 feet, horizontal layers shall not exceed 4 inches in depth before compaction. No layer below the top 2 feet shall exceed 8 inches in depth before compaction.

The Contractor shall use compacting Equipment approved by the Engineer.

Method C. Each layer of the entire embankment shall be compacted to 95 percent of the maximum density as determined by the compaction control tests described in Section 2-03.3(14)E.

In the top 2 feet, horizontal layers shall not exceed 4 inches in depth before compaction. No layer below the top 2 feet shall exceed 8 inches in depth before compaction.

The Contractor shall use compacting Equipment approved by the Engineer.

Under Methods B or C, the Engineer may permit the Contractor to increase layer thickness up to 18 inches before compaction, provided:

1. The layer is more than 2 feet below the top of the embankment.
2. An approved vibratory roller is used, and
3. The required density is obtained throughout the full depth and width of each layer.

Whatever the method used, any embankment inaccessible to large compacting Equipment shall be compacted with small mechanical or vibratory compactors.

Moisture content. Within the limits described below, the Contractor shall adjust moisture content during compaction to produce a firm, stable embankment. The Contractor shall not begin compaction until the moisture content is so adjusted.

Under Method B, the moisture content of the Material shall not exceed 3 percent above the optimum determined by the tests described in Section 2-03.3(14)E. If the Material contains too little moisture to compact properly, the Engineer may order the Contractor to water the Material in specific amounts. See Section 2-07.

Under Method C, the moisture content shall not vary more than 3 percent above or below optimum determined by the tests described in Section 2-03.3(14)E.

The Engineer may permit the Contractor to place Materials having a higher moisture content than specified in this Section if:

1. The Material consists of free-draining rock, gravel, or sand that produces a firm, stable embankment, and
2. The excess moisture does not result in impairing the embankment.

However, the Engineer may at any time require the Contractor to return to normal moisture-content Specifications.

The Owner will consider all costs of drying embankment Material to be incidental to other Work. If, however, the Agreement includes an aeration item, the Owner will pay for such Work as specified in Sections 2-03.4 and 2-03.5.

If weather prevents drying excavation or borrow Materials to the required moisture content, the Engineer may order the Contractor to alter normal procedures or Equipment to prevent damage to the partial or complete embankment. In this case, the Owner will not increase payment, but will pay the Contract unit prices for the pay items that apply.

The Contractor shall repair any partial or complete embankment that loses stability because of continued hauling across it. Evidence of lost stability shall include pumping or rutting. The Contractor shall also alter hauling Equipment or procedures to prevent further damage.

If it appears that rain or snow is likely to soak an area that has been aerated, the Contractor shall temporarily seal it against the weather. Should the Contractor fail to do so, any additional aeration required to restore the area to its previous condition shall be done at no expense to the Owner.

2-03.3(14)E COMPACTION CONTROL TESTS

In-place density will be determined by one or more of the following methods:

1. ASTM D1556, Test for Density of Soil In-place by the sand cone method
2. ASTM D2167, Test for Density of Soil In-place by the rubber balloon method
3. ASTM D2922, Test for Density of Soil In-place by the nuclear method

Laboratory densities may be determined by one of the following methods:

1. ASTM D698, Moisture-Density Relations of Soils and Soil-Aggregate Mixtures
2. ASTM D4253, Maximum Index Density of Soils using a Vibratory Table

ASTM D698 will be used for computing the maximum density of all fill soils except for those granular soils yielding, in the opinion of the Engineer, an unsatisfactory moisture-density curve. In that case the maximum density will be determined by the method specified in ASTM D4253.

The Contractor shall excavate pits for density sampling at locations designated by the Engineer. Density sampling will be performed by Owner forces.

Degree of compaction in trench backfill shall be as specified in Section 7-17.3(3)B. All other fills and earth embankments shall be as specified in Section 2-03.3(14)D.

2-03.3(14)F UNSUITABLE FOUNDATION EXCAVATION

When the Contract or the Engineer requires it, the Contractor shall excavate unstable natural ground before building any embankment over it. This unstable material may include peat, muck, swampland, buried logs and stumps, or other material not fit for an embankment base. The Contractor shall excavate such material to the boundaries set by the Engineer.

The Work will not be considered unsuitable foundation excavation if the materials:

1. Came from the Roadway cut, ditch, or channel-change prisms as defined by Section 2-03.1(2).
2. Resulted from structure excavation.
3. Are covered in Section 2-03.3(3).

Materials excavated from the Roadway or channel change prisms will not be classified as unsuitable foundation excavation as defined by Section 2-03.1(2) unless the removal is accomplished by dragline operation.
2-03.3(14)G DISPLACEMENT OF UNSUITABLE FOUNDATION MATERIALS

If the Contract requires it, the Contractor shall displace or remove any overburden of peat, muck, or other unstable material to permit placing the embankment on underlying firm ground. The Engineer will determine the elevation at which the ground is firm enough to support the embankment.

To displace such material, the Contractor shall use explosives or any other method the Engineer requires. If this Work upheaves overburden material outside the slopes of the new fill, the Contractor shall level the Material to make it presentable or to make final grade.

2-03.3(14)H BACKFILLING

When water fills an area after the removal of soft or unstable materials, the Contractor shall, if possible, drain the site so that he may compact any backfill. If drainage is not possible, the Contractor shall use granular Material for backfilling in water, including areas where blasting has displaced the soft material. The Project Manual may require other backfilling methods.

2-03.3(14)I PREFABRICATED VERTICAL DRAINS

If the Contract requires it, the Contractor shall install prefabricated vertical drains and a sand drainage blanket to stabilize the soft or unstable Material that overlays firm ground.

The Contractor shall furnish all necessary labor, Equipment and Materials, and perform all operations necessary for the installation of prefabricated vertical drains in accordance with the details shown on the Drawings and with the requirements of these Specifications.

The prefabricated drain shall consist of a continuous plastic drainage core wrapped in a non-woven geotextile Material as specified in the Contract.

The drains shall be free of defects, rips, holes, or flaws. During shipment and storage, the drain shall be wrapped in a heavy duty protective covering. The storage area shall protect the drain Material from sunlight, mud, dirt, dust, debris, and detrimental substances. Manufacturer certification shall be provided for all drain Materials delivered to the Project.

Vertical drains shall be staked by the Contractor and constructed prior to embankment construction.

Prior to installation of vertical drains, a sand drainage blanket shall be placed on the ground surface for use as a Working platform. This platform shall have a minimum depth of 2 feet and shall consist of uncompacted Material meeting the requirements of Section 9-03.13(2).

Vertical drains shall be installed with Equipment which cause a minimum of subsoil disturbance. A mandrel or sleeve shall be advanced through the subsoil using vibratory, constant load, or constant rate of advance methods. The mandrel shall have a maximum cross-sectional area of 14 square inches, shall protect the prefabricated drain Material from tears, cuts, and abrasions during installation, and shall be provided with an “anchor” plate or rod. The “anchor” plate or rod shall provide sufficient strength to prevent the soil from entering the bottom during installation and shall anchor the bottom of the drain at the required depth when the mandrel is removed. Use of falling weight impact hammers or jetting will not be allowed within the compressible subsoil to be drained.

The prefabricated drains shall be installed vertically from the working surface to the required elevations and in a sequence that do not require Equipment to travel over previously installed drains. The Contractor shall provide the Engineer with a suitable means of verifying the Equipment is plumb, and determining the depth of the drain at any time. The Equipment shall not deviate more than 0.25 inch per foot from plumb.

Splices or connections in the prefabricated drain Material shall be done in a professional manner to ensure continuity of the wick Material. The prefabricated drain shall be cut to leave at least 6 inches protruding above the Working platform at each drain location.

Where obstructions are encountered which cannot be penetrated the Contractor shall abandon the hole. A maximum of two attempts shall be made to install a new drain within 18 inches of the obstructed hole. Drains that otherwise deviate from the Drawing location by more than 6 inches, or that are damaged or improperly installed, will be rejected.
Installation of the drains should consider and be coordinated with the geotechnical instrumentation shown on the Drawings. Special care shall be taken when installing drains near instrumentation already in place. Replacement of instrumentation damaged by the Contractor shall be the responsibility of the Contractor.

The Contractor shall demonstrate that the Equipment, method, and Materials produce a satisfactory installation in accordance with these Specifications. For this purpose, the Contractor shall be required to install trial drains at different locations within the Work area.

At least 2 weeks prior to the installation of the drainage wicks, the Contractor shall submit to the Engineer, for review and approval, details of the sequence and method of installation. The submittal shall, at a minimum, contain the dimensions and length of mandrel, a detailed description of the proposed method(s) for overcoming obstructions, and the proposed method(s) for splicing drains.

Approval by the Engineer does not relieve the Contractor of the responsibility to install prefabricated vertical drains in accordance with the Drawings and Specifications. If, at any time, the Engineer considers the method of installation does not produce a satisfactory drain, the Contractor shall alter the method and Equipment as necessary.

2-03.3(14)J EMBANKMENTS AT BRIDGE AND TRESTLE ENDS

This Work consists of filling around the ends of trestles and bridges, the area defined in Section 1-01.3 as Bridge Approach Embankment. The Contractor shall begin and complete this Work as soon as possible after each bridge is completed or when the Engineer requires.

The Contractor shall select fill Material from the excavation sources elsewhere on the Project. Bridge approach embankments shall be compacted to at least 95 percent of the maximum density as determined by the tests described in Section 2-03.3(14E). In any embankment area where piles are to be installed, the Contractor shall remove all solid material, rocks, broken concrete, etc., larger than 3 inches across that would interfere with pile driving.

To prevent the bridge from being distorted or displaced, the Contractor shall place Material evenly around all sides and parts of the structure. The Contractor shall not backfill any abutment prior to placing the Superstructure. After the Superstructure is in place, use of small compactors may be required and embankments must be layered and compacted concurrently at either end of the structure. The difference in embankment height from one end to the other must never exceed 2 feet.

The Contractor shall build the embankment under the bridge to the dimensions shown in WSDOT Standard Plan No. H-9 or detailed in the Drawings.

2-03.3(14K) GRAVEL BORROW INCLUDING HAUL

When required by the Drawings or the Engineer, the Contractor shall use gravel borrow meeting the requirements of Section 9-03.14 to:

1. Build embankments.
2. Backfill excavation of unsuitable foundation material.

2-03.3(15) AERATION

The Contractor shall use methods known to be effective in building embankments with wet Materials. Such methods include open ditching to drain excavation areas or alternating layers of wet and dry Materials.

Aeration Equipment. The Engineer may direct the Contractor to use aeration Equipment in these areas: Roadway excavation, borrow sites, or embankments. The Owner does not guarantee the moisture-reducing effectiveness of any single type of Equipment. The Engineer may, however, require the use of any type Equipment believed to be the best to aerate a given area.

If the Contractor uses any of the following types of Equipment, it shall meet these minimum requirements:

Heavy duty power grader. This machine shall have a moldboard measuring 12 feet long, 24 inches high, and 3/4 inch thick. Each grader shall carry its maximum number of standard scarifier-rippers or discs.

Heavy duty gang plow. It shall have at least five 16-inch bottoms. Its tractor shall be able to move no less than 1-1/2 miles per hour while plowing at least 9 inches deep through fairly wet Material.
Heavy duty tandem discs. This machine shall cut a swath at least 8 feet wide with discs no less than 28 inches in diameter. Its tractor shall be able to turn fairly wet Material at least 6 inches deep while moving at 2 miles per hour or more.

Heavy duty self-propelled, rotary pulverizer. This machine shall have paddles attached to a transverse shaft. It shall travel 1-1/2 miles per hour or more while aerating a swath at least 6 feet wide to a depth of 6 inches.

The Contractor shall not use any aerating Equipment listed above in tandem nor use any of this Equipment to carry out other Bid items of Work while aerating.

The Engineer may halt aerating Work when weather conditions prevent satisfactory results.

2-03.3(16) END SLOPES
The Engineer will determine when and where to build end slopes, whether these occur at the beginning or end of a Project, at the borders of excavation or embankments, at bridge ends, or elsewhere. The Contractor shall build end slopes not detailed in the Drawings to the line and grade staked by the Engineer regardless of center line limits shown in the Drawings. All Work to complete and maintain these end slopes shall be considered as Work to be performed under the Contract.

2-03.3(17) SNOW REMOVAL
If snow is deep enough to interfere with the Work that covers a cut or an embankment, the Contractor shall remove and deposit it outside the slope stakes. Snow removal must be done at least 100 feet ahead of excavation and embankment Work.

2-03.3(18) STEPPED SLOPE CONSTRUCTION
When the Drawings or the Engineer requires it, the Contractor shall shape slopes cut in soft rock to a stepped pattern conforming closely to the typical cross-section in the Drawings. Stepped slopes shall meet these requirements:

1. Each step shall be 1 to 2 feet high.
2. The horizontal depth of each step depends on its relationship to the staked slope ratio. The approximate midpoint of each horizontal tread shall occur on the staked slope line.
3. The treads shall be approximately level in all directions.
4. The ends of the steps shall be blended into the natural ground, with loose Material removed from transitional areas.
5. If the Contractor cannot rip a rock outcropping within a cut, the steps shall be blended into the rock.
6. Large rocks and Material that may fall into the ditch line or onto the Roadway shall be removed, but scaling is not required.

The compaction and seeding requirements of Section 8-01.3(1)B shall not apply to stepped slope construction.

The Owner will measure stepped slope excavation by the area defined by the staked slope line. The Contract unit price per cubic yard for Roadway or borrow excavation shall be full pay for all labor and Equipment required to build stepped slopes.

2-03.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Excavation of the class specified will be measured by the cubic yard in its original position by cross sectioning or through the use of digital terrain-modeling techniques. Quantities will be computed to the neat lines of the cross sections as staked or thereafter modified by the Engineer, except where such modification is the result of excavating beyond the limits established to remove and replace Roadway Material which has become unsuitable because of the Contractor’s neglect, negligence or method of operation.
Borrow will be measured by the ton at the point of delivery in accordance with Section 1-09.1.

Unsuitable foundation excavation will be measured by the cubic yard in its original position by cross sectioning.

Prefabricated vertical drains will be measured by the vertical foot from the top of the Working table to the bottom of the holes.

Sand borrow for drainage blanket will be measured by the cubic yard or by the ton as indicated on the Bid Form, provided that moisture in excess of 8 percent will be deducted in ascertaining the pay quantities when measured by the ton.

Embankment compaction will be measured by the cubic yard of embankment Material compacted pursuant to Section 2-03.3(14)B or Method B or C in Section 2-03.3(14)D. Quantities will be computed based upon measurements taken to the neat lines of the staked cross section and no allowance will be made for settlement.

When existing Material in a cut section is stabilized by scarifying, aerating and compacting, measurement for the embankment compaction will be based upon the length and width of cut section compacted and a maximum depth of 6 inches.

2-03.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 2-03 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Common Excavation,” per cubic yard.
2. “Solid Rock Excavation,” per cubic yard.

The Contract unit price for “Common Excavation” and “Solid Rock Excavation” shall include the costs for all Work described in Section 2-03 and not otherwise provided for hereinafter. When excavation below the designated Subgrade elevation is ordered by the Engineer, that portion of the excavation 3 feet or less below Subgrade will be considered as “Common Excavation.” If the Engineer orders excavation more than 3 feet below Subgrade that portion below Subgrade will be paid as extra Work per Section 1-09.4. Payment for such types and classes of excavation listed above shall be full compensation for excavating, loading, hauling, stockpiling, placing as backfill, or otherwise disposing of the Material as shown on the Drawings, as specified herein, or as directed by the Engineer.

Excavation or embankment Work required to bring the Subgrade in sidewalk areas to the level of the top of the sidewalk will be paid per Section 2-03.5. Excavation of the Subgrade to the depth of the sidewalk will be paid per Section 8-14.

Where earthwork is required and a bid item is not provided in the Bid Form, all costs for excavation shall be included in the prices Bid for the various Bid items shown in the Bid Form.

Where solid rock is encountered on a Project for which a pay item “Solid Rock Excavation” is not included in the Bid Form, then the Work and materials involved in the excavation of the solid rock shall be considered as Extra Work and be paid for in accordance with Section 1-09.4.

4. “Borrow (Type),” per ton.

The Contract unit price for “Unclassified Borrow” or “Borrow (Type)” shall include all costs required to excavate, haul, stockpile, and place the Material as shown on the Drawings or as directed by the Engineer. Compaction of borrow Material will be paid as “Embankment Compaction.”

5. “Embankment Compaction,” per cubic yard.

The Contract unit price for “Embankment Compaction” shall include all costs for the Work necessary to compact embankments per Section 2-03.3(14) and earth embankments by Methods B or C per Section 2-03.3(14)D.

Compaction of approved on-site excavated native Material used for backfill and compaction of borrow shall be paid as “Embankment Compaction” per cubic yard, as indicated above.

The Contract unit price for "Unsuitable Foundation Excavation" shall include all costs for the excavation or displacement of unsuitable foundation Material only by the methods set forth in Section 2-03.3(14)F and 2-03.3(14)G. Costs shall include disposal of the unsuitable Material, and leveling the upheaved Material outside of the embankment slopes when the unsuitable Material is displaced. Replacement Material will be paid separately.

If the Bid Form does not have a bid item for unsuitable foundation excavation, the Owner will pay as provided in Section 1-04.4.

 The Contract unit price for "Drain, Vertical Sand" shall be full compensation for excavating the drain holes and for selecting, loading, hauling and placing the Material.

8. "Drainage Blanket, Sand," per ton or per cubic yard.
 The Contract unit price for "Drainage Blanket, Sand," shall include all costs for processing, hauling, and placing the Material.

9. Other payment information
 All costs for excavation, backfill, and recompaction of sampling pits shall be considered incidental to the various bid items in the Bid Form and no separate payment will be made.

 Density testing by Owner forces will be performed at no charge to the Contractor for the first test series at a designated location. If these tests indicate a failure to achieve required densities, re-testing shall take place after recompaction. The Contractor will be charged $55 for each additional test required until the testing indicates the required densities have been achieved. These charges will be deducted from moneys due or to become due the Contractor on Monthly Estimates.

 Payment for overbreak Material used in lieu of borrow will be made either at the Contract unit price for the class of Roadway excavation which is applicable or the Contract unit price for the type of borrow specified, whichever proves to be most economical to the Owner.

 If the Contractor has dressed a cut per Section 2-03.3(1) before the Engineer orders it widened, the Owner will pay for the resloping as provided in Section 1-04.4.

 Excavation below grade required to remove a portion of the Subgrade made unsuitable by the Contractor's operations or failure to adequately protect the Subgrade shall be at the Contractor's cost.

 All Work required to complete slope treatment, including excavation, haul, and slope rounding, shall be included in the unit Bid price for Roadway excavation.

 All costs for building terraces as specified in Section 2-03.3(14)A shall be included in the prices for other Work.

 All costs and expenses involved in drying embankment Materials with whatever method is appropriate shall be considered incidental to the various Contract unit prices.

 If the Bid Form does not include mineral aggregates for rock embankment construction, payment will be as provided in Section 1-09.4.

 The costs of pumping or digging temporary drainage ditches as required per Section 2-03.3(14)H shall be incidental to and included in other items of Work that apply.

 Cost related to all Work described in Section 2-03.3(14)J shall be incidental to other Work and included in the Contract unit prices that apply.

 All costs to remove, haul, and dispose of overbreak material which is not approved to be used by the Engineer shall be borne by the Contractor.

 If aeration is required, its cost shall be incidental to and included in the excavation and embankment items.

 When excavated Material unexpectedly falls short of the amount required to complete an embankment, the Owner will pay the Roadway excavation Contract price for the volume of Material the overbreak replaces. However, no payment will be made if overbreak is used when other Material is available within the neat lines of the Roadway prism.
If an undue amount of excavated material deemed suitable by the Engineer is wasted, the Contractor shall secure and furnish borrow of the type acceptable to the Engineer to replace the wasted suitable material at the Contractor’s own cost.

Any partially or fully completed embankment that loses stability from continued hauling across it in the course of the Contractor’s operations, shall be fully restored by the Contractor at his own expense.

Should the Contractor fail to protect an aerated area prior to onset of inclement weather, additional aeration required to restore the area to its previous condition as specified shall be at the Contractor’s expense.

Snow removal shall be at the cost of the Contractor.

SECTION 2-04 HAUL

2-04.1 DESCRIPTION
This Work shall consist of transporting excavated material from its original site to its final resting place on the Project Site or at a Waste site.

2-04.2 RESERVED

2-04.3 CONSTRUCTION REQUIREMENTS
Off-Highway earthmoving Equipment shall not haul on or across any street not being improved in the Contract.

2-04.4 MEASUREMENT
Haul Work will not be measured.

2-04.5 PAYMENT
All costs for the Work described in Section 2-04 will be considered incidental to excavation. All costs for haul shall be included in the costs associated with the excavation.

SECTION 2-05 RESERVED

SECTION 2-06 SUBGRADE PREPARATION

2-06.1 DESCRIPTION
This Work shall consist of the preparation of Subgrade for new and existing streets, alleys, driveways, sidewalks or other public places, upon which surfacing is to be placed, or the preparation of the surfaced Roadbed, either new or existing, upon which cement concrete pavement is to be placed. All Work shall be in accordance with the Contract Documents and in close conformity with the lines, grades, and typical cross sections indicated in the Drawings or as established and staked by the Engineer.

2-06.2 MATERIALS
Materials shall meet the requirements of the following section:

| Geotextile 9-22 |

The geotextile used for Subgrade stabilization shall be as specified in Section 9-05.22, Geotextile – Soil Stabilization.

2-06.3 CONSTRUCTION REQUIREMENTS

2-06.3(1) SUBGRADE FOR SURFACING

In preparing the Roadbed for surfacing, the Contractor shall:

1. Remove from the Roadbed, immediately before placing surfacing Materials, all brush, weeds, vegetation, grass and other debris.
2. Dispose of all debris as the Engineer directs.
3. Drain water from all low spots or ruts.
4. Shape the entire Subgrade to a uniform surface running reasonable true to the line, grade, and cross-section staked by the Engineer.
5. If necessary, the Contractor shall process the Subgrade in cut areas to remove materials too coarse for mechanical trimming and recompaction.
6. Compact the Subgrade to a depth of 6 inches. Compaction shall achieve 95 percent of maximum density determined by tests described in Section 2-03.3(14)E. All portions of the surface on the Subgrade which are inaccessible to large compactor units shall be thoroughly compacted with smaller compactor units or mechanical tampers.
7. Remove excess Material that does not drift to low spots during blading and shaping. The Contractor shall dispose of this excess by placing it where the Subgrade lacks Material or by wasting it, as the Engineer directs.
8. Add Materials as the Engineer directs where the Subgrade needs more to bring it up to grade. The Contractor shall water and compact these added Materials as needed to produce a true finished Subgrade.
9. Underground Work in the area of the Subgrade shall be completed and properly backfilled and compacted before Subgrade Work is started. This shall include Contract Work and Work performed by the Owner or others.
10. If the underlying Subgrade is soft, spongy, or yielding and does not permit proper compaction, the Contractor shall stabilize the Subgrade per Section 2-06.3(3).
11. Where normal crown sections are being constructed, stakes will be set at convenient offsets at intervals not to exceed 50 feet and at closer intervals where necessary, such as at street and alley intersections. It shall be the responsibility of the Contractor to set centerline grades which may be needed except in cases where the street grades are warped or otherwise do not conform with the typical section, in which case the Engineer will set the stakes.
12. The full width of the Roadway shall be kept well sprinkled with water before and during process of rolling the Subgrade.
13. Grade and line, throughout the stages of constructing the Subgrade, shall be secured from the reference stakes. The Subgrade shall be maintained in the finished condition until the first course of surfacing is placed upon it.

If the Contract requires a trimming machine, it shall:

1. Maintain the grade and transverse slopes automatically through sensors that respond to reference lines on both edges of each Roadway.
2. Create a smooth, uniform surface free from chatter and ripples.
3. Be subject to the Engineer’s approval.

2-06.3(2) SUBGRADE FOR PAVEMENT

When Drawings call for concrete pavement to be placed directly on the Subgrade, the Contractor shall prepare the Subgrade as outlined in Section 2-06.3(1). This Work shall include:

1. Removal of Subgrade for increased thickness of pavement, for pavement headers, and for increased thickness at pavement edges. This may be done just before the concrete is placed.
2. When the pavement is to be constructed over an old Roadbed composed of gravel and macadam, the old gravel or macadam shall be scarified and the Material shall be uniformly spread and thoroughly compacted.
3. Compaction of Subgrade shall extend to at least 1 foot beyond the pavement edge or to a width that accommodates the paving machine without visible distortion of the Subgrade.
4. Thoroughly wetting down the Subgrade with water from 12 to 48 hours before the concrete is to be placed; it shall be wet when the concrete is placed. The Work of saturating the Subgrade shall be started and continued at the direction of the Engineer.
5. The Subgrade shall be compacted both before and after the forms are set.
2-06.3(3) SUBGRADE STABILIZATION

When the density of the native earth in a Roadway section is determined by the Engineer to be less than that required for the method of compaction specified for the earth embankment, or where the nature or condition of the earth below the designated Subgrade is such that it may impair the stability of the Subgrade, the Contractor shall stabilize the Subgrade by the method selected by the Engineer from among the following:

Method A: Thoroughly loosen the earth to a depth of 6 inches by scarifying, aerating or watering as applicable, and compact to the required density, or;

Method B: Excavate below grade to the limits and depth designated by the Engineer and by whose direction the excavated Material shall be temporarily stockpiled for use as backfill, placed in adjacent embankments, or, if unsuitable, wasted and replaced with selected or other designated backfill Material. If deemed necessary by the Engineer, the earth at the bottom of the excavation shall be loosened to a depth of 6 inches by scarifying, aerating or watering, as applicable, and compacted to the required density. The excavated area shall then be backfilled with the previously excavated and stockpiled or selected Material or with such other mineral aggregate backfill as may be ordered by the Engineer. Backfill shall be placed and compacted in successive layers in accordance with the compaction method required for embankments under the provisions of the Contract. Excavation below finish grade as set forth above shall be classified the same as the excavation above final grade.

Method C: Bring the exposed soil surface to the required line, grade and cross section. All protruding objects (rocks, sticks, debris) shall be removed and all holes and depressions filled. The Engineer may require additional depth of excavation and shaping the soil to the required line, grade and cross section. The geotextile, specified in the Contract (see Section 9-05.22), shall be placed as shown on the Drawings or as directed by the Engineer and shall extend a minimum of 2 feet beyond the placement of the fill Material. The geotextile sheets shall overlap a minimum of 2 feet and shall be placed in a manner such that the preceding roll overlaps the following roll in the direction of fill Material placement. If a geotextile is torn or damaged during construction, the damaged area shall be repaired by placing a large enough piece of geotextile to cover the damaged area and meet the overlap requirement in a manner acceptable to the Engineer. Fill Material shall be placed first on the top layer of geotextile to prevent Material from entering between and separating the overlapping geotextile layers. See Section 2-12 for geotextile construction requirements. Construction vehicles shall be limited in size and weight such that the rutting depth in the initial lift of fill above the geotextile is not greater than 2 inches. Compaction of the overlying fill shall be done in the static or non-vibratory mode. Wrinkles, folds or creases shall be kept to a minimum. The Engineer will approve the geotextile installation before it is covered with fill.

NOTE: There are other alternate methods of sub-grade stabilization which include the addition of lime or Portland cement mixed into sub-grade material. The Contractor may propose an alternate by submitting the alternate method to the Engineer for approval at least 3 Working Days in advance. Should a Bid item not exist for the alternate method, payment shall be in accordance with Section 1-09.4.

2-06.3(4) MAINTENANCE AND PROTECTION OF SUBGRADE

Once prepared, the Subgrade for surfacing shall be maintained in a finished condition until the first course of crushed rock base or the concrete pavement is ready to be placed. The Contractor shall maintain the Subgrade by blading and compacting as frequently as may be necessary. All cuts, ruts, and breaks in the surface of the Subgrade shall be repaired in a manner acceptable to the Engineer prior to placing surfacing, treated base, or paving Materials.

The Contractor shall take whatever steps are necessary to protect the prepared Subgrade from inclement weather, the Contractor’s operations, and public traffic prior to the placement of crushed surfacing, gravel base, pavement, etc. These steps shall include, but are not limited to, the use of plastic sheeting to protect the Subgrade from inclement weather, planking to protect the Subgrade from the Contractor’s Equipment, and the placing of paving Materials or base Materials from an adjacent lane in lieu of operating Equipment over the prepared Subgrade. Traffic detours shall be in accordance with Section 1-07.23 and Section 1-10.

Hauling over the finished Subgrade shall be limited to that which is essential for construction purposes. Equipment used for transporting Materials over the prepared Subgrade shall be equipped with pneumatic tires. Equipment used for hauling over the prepared Subgrade which, in the opinion of the Engineer, causes undue damage to the Subgrade or to the underlying Materials shall be removed from the Work upon request of the
Engineer. If ordered by the Engineer, the Contractor shall plank the Subgrade before hauling Materials or operating Equipment over it.

During extended periods of seasonal inclement weather in which the Engineer deems it impractical or infeasible to protect the prepared Subgrade with plastic sheeting or planking and where the Contractor is required to operate Equipment over the prepared Subgrade in order to construct a crushed surfacing base course, treated base, or finished pavement, the Engineer may order the use of a ballast Material to stabilize and protect the Subgrade prior to paving. Stabilization shall be by Method B of Section 2-06.3(3) except the Roadway ballast shall be either mineral aggregate Type 2 or Type 14, whichever is designated by the Engineer. Roadway ballast shall be used for Subgrade stabilization only when specifically authorized by the Engineer.

2-06.4 MEASUREMENT

Preparation of the Subgrade is incidental to the various items included in the Contract and no separate measurement will be made.

Subgrade stabilization by Method A in Section 2-06.3(3) will be measured by the cubic yard of embankment compaction in accordance with Section 2-03.4.

Subgrade stabilization by Method B in Section 2-06.3(3) will be measured by the cubic yard of the same class of excavation as that above grade, in accordance with Section 2-03.4.

Subgrade stabilization by Method C with geotextile in Section 2-06.3(3) will be measured by the square yard installed. Measurement will not be made for extra fabric required to meet overlap requirements. Additional excavation, if required in Method C, will be measured by the cubic yard in accordance with Section 2-03.4.

The imported mineral aggregate of the type specified when ordered by the Engineer, used in lieu of select native Material will be measured by the ton in accordance with Section 4-01.

2-06.5 PAYMENT

Unless otherwise specified, all costs for the Subgrade preparation shall be included in the prices Bid for the various items included in the Contract.

Subgrade stabilization by Method A in Section 2-06.3(3) will be paid as embankment compaction in accordance with Section 2-03.5.

Subgrade stabilization by Method B in Section 2-06.3(3) will be paid as excavation of the same class as the excavation above grade, in accordance with Section 2-03.5.

Payment for the geotextile for stabilization will be made in accordance with Section 2-12.5

Mineral aggregate backfill of the type ordered by the Engineer used in lieu of select native Material will be paid as mineral aggregate in accordance with Section 4-01.5.

SECTION 2-07 WATERING

2-07.1 DESCRIPTION

This Work shall consist of furnishing, hauling, and applying water for compacting embankments, constructing Subgrade, placing of crushed surfacing, dust control, flushing, testing, and as the Engineer requires.

2-07.2 RESERVED

2-07.3 CONSTRUCTION REQUIREMENTS

2-07.3(1) GENERAL

The Contractor shall apply water upon streets by means of tank trucks equipped with spray bars. Spray controls shall ensure that the water is applied uniformly and at a rate acceptable to the Engineer. The Engineer may direct that the Contractor apply water at night or early in the morning to reduce evaporation losses.

When the source of water is hydrants within the Work area, the Contractor may, with approval of the Engineer, apply water by means of a hose and reduced pressure backflow assembly device approved by the Washington State Department of Health directly connected to the hydrant. The Contractor shall have a copy of
the certification on board the vehicle drawing water from the hydrant. Contractor shall furnish hose, Equipment, or tank truck necessary to do the required watering, and strictly comply with the provisions of the permit.

2-07.3(2) SOURCE OF WATER SUPPLY AND REGULATIONS PERTAINING TO HYDRANT USE

Within the SPU Water Operations direct service area, the source of water to be used on a Project is subject to approval by the Engineer. When the source of water is to be a hydrant, a hydrant use permit shall be obtained from, and use fees paid, when applicable, to the Water Service Section SPU Water Operations.

The Contractor shall use only those water sources approved or hydrants designated by the Engineer, and shall be in strict accordance with the requirements of City of Seattle Ordinance 65877 and the conditions of the permit.

2-07.4 MEASUREMENT

Water used in conjunction with Work involving the water distribution system will not be measured.

Water used in conjunction with Work other than the water distribution system will be measured.

2-07.5 PAYMENT

All costs associated with obtaining a hydrant use permit and providing and applying water to Work not involving the water distribution system shall be considered incidental to the various bid items comprising the improvement. No separate or additional payment will be made.

All costs associated with providing and applying water to Work involving the water distribution system will be borne by the Owner including the hydrant use permit fee.

Where the Work involves both water distribution Work and other Work, no reimbursement of the hydrant permit fee will be made. This cost shall be incidental to the various non-water distribution Bid items and no separate or additional payment will be made.

Water costs will be based on the prevailing rates as listed in SPUs current standard charges.

SECTION 2-08 ROCK FACING

2-08.1 DESCRIPTION

This Work shall consist of constructing, rebuilding, and relocating rock facings used for erosion control or the containment of cuts and embankments. Work shall be performed in accordance with these Specifications and Standard Plan No. 141, or as designated by the Engineer.

2-08.2 MATERIALS

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Facing Material</td>
<td>9-03.17</td>
</tr>
<tr>
<td>Drainage Material, mineral aggregate Type 13</td>
<td>9-03.9(2)</td>
</tr>
<tr>
<td>Quarry Spalls</td>
<td>9-13.7</td>
</tr>
</tbody>
</table>

Crushed gravel with at least 90% having two or more fractured surfaces and which meets the grading requirements of mineral aggregate Type 13 or quarry spalls may be used in lieu of ledge rock.

2-08.3 CONSTRUCTION REQUIREMENTS

2-08.3(1) ROCK FACING

2-08.3(1)A GENERAL

Rock facings shall be constructed, rebuilt, or relocated at the locations and to the limits indicated on the Drawings or designated by the Engineer and shall be limited to 8 feet in height. The Subgrade elevation and location of the rock facing shall be staked by the Engineer or, in the absence of such staking, shall be as shown on the Drawing or as described in the Project Manual.
Rock facing up to a 5-foot high wall will require rock from an approved source. Rock facing over 6 feet high will require rocks to be tested for quality as specified in Section 9-03.17.

Rock facing shall be used only against a slope which is verified stable without the addition of rock facing. This verification shall meet the requirements of Section 1-05.3(2)F.

2-08.3(1)B ROCKERY KEYWALL

The first step in rock facing construction, after clearing and general site preparation, is to excavate a keyway in which the base course of rock facing shall be placed. The keyway shall be 3 to 12 inches deep (as shown on Standard Plan 141.1) and extend over the entire length of the rock facing; it shall incline slightly downward toward the face of the cut or fill being protected. The keyway width shall be 40% of the height of the proposed rock facing.

2-08.3(1)C ROCK SELECTION

The Contractor shall have sufficient Working space so he can select from a number of stockpiled rocks to satisfy the needs of the Project. The stockpile area shall not be placed on traffic lanes or driveways. Rocks shall be of a generally cubical, tabular or rectangular shape, as opposed to rounded or tetrahedral forms, and shall be placed to match as closely as possible the spaces afforded by the next lower course of rocks. One-man rocks shall not be used on rock facings more than 3 feet high.

2-08.3(1)D ROCK PLACEMENT

The thickness of the rock facing, including the filter layer behind it, shall be approximately 40% of its height. Where required by the Engineer, a 6-inch drain pipe shall be installed in a keyway behind the rock facing, with sufficient gradient to initiate flow, and be piped to the curb or nearby catch basin.

The Contractor shall place the first course of rock on firm, unyielding soil (having a minimum load bearing capacity of 2000 pounds per square foot) at base elevations specified in Standard Plan No. 141. There shall be full contact between the rock and soil. This may require shaping of the ground surface or slamming or dropping the rocks into place so that the soil foundation conforms to the shape of the rock face bearing on it. As an alternative, it may be necessary to place and compact crushed rock into the Subgrade to increase its load bearing capacity. Before placing the next level of rock facing, the Contractor shall place and compact filter Material behind and to the top of the rocks last placed.

The Contractor shall use rock sizes as specified in Section 9-03.17, using the largest rocks at the bottom and progressively smaller rocks toward the top. The rocks shall be placed so that there are no continuous joint planes in either the vertical or lateral direction. Each rock shall bear on at least two rocks below it and have at least 3 contact points to provide maximum stability.

Rocks shall be placed in a manner that there is some bearing between flat rock faces rather than on joints. Horizontal joints between rock courses shall slope downward away from the face of the rock facing, towards the Material being protected.

The batter of the rock facing shall be 1:4 (horizontal to vertical) and shall be uniformly the same throughout the length of the rock facing. The face of individual rocks may vary no more than 3 inches from the batter or slope line of the rock facing.

Where voids, greater than four inches in dimension, exist in the face of the rock facing, they shall be visually examined to determine if contact between the rocks exists within the thickness of the rock facing. If there is contact, no further action is required. But if there is no rock contact within the rock facing thickness, some resetting is required. If there is a void measuring six inches or more near the inside face of the rock facing, the void shall be “chinked” with a smaller piece of rock. This filler rock shall be placed with the longest dimension toward the inside face.

If stability of an unprotected cut slope is of concern, the rock facing shall be constructed in short sections as determined by the Engineer. The final course shall be an even appearance and shall be placed so as to minimize erosion of the backfill Material.
2-08.3(1)E FILTER MATERIAL

The Contractor shall construct a drainage filter of mineral aggregate Type 13 between the face of the embankment and the rear of the rock facing being constructed. The filter blanket shall be at least 6 inches thick and shall be composed of quarry spalls meeting the requirement of Section 9-13.7 at the back face of the rock facing over 4 feet in height and mineral aggregate Type 13, or Material approved by the Engineer for rock facing under 4 feet in height.

2-08.3(1)F SLOPE ABOVE ROCK FACING

The slope of the terrain above the rock facing shall be no steeper than 3:1 (horizontal to vertical) to eliminate an earth surcharge on the rock facing, unless authorized by the Engineer. Such a surcharge or one from a nearby building or from the traffic on a Roadway above the rock facing shall require rock facing design by a licensed civil engineer in accordance with Section 1-05.3(2)F. The unimproved area above the rock facing shall be hydrospeeded for erosion control.

2-08.3(2) REBUILD ROCK FACING

This Work shall consist of dismantling an existing rock facing and reconstructing the facing in the same location. Reconstruction Work shall be in accordance with the requirements of Section 2-08.3(1). Rock dismantled from the existing facing shall be used in reconstructing the rock facing if the rock is approved by the Engineer as meeting the rock quality requirements of Section 9-03.17. Additional rock ordered by the Engineer to complete the facing shall be furnished by the Contractor and shall meet the requirements of Section 2-08.2.

The Contractor shall sequence the removal and rebuild in such a manner as to limit the length of exposed slope. Each Working Day, a length of up to twice the height of the existing rock facing may be removed, unless approved otherwise by the Engineer. Each Working Day, rebuilding the rock facing shall proceed in a manner providing the shortest length of unfinished rock facing full height. The removal and rebuild shall be coordinated as to limit the exposure of unrocked slope.

2-08.3(3) RELOCATE ROCK FACING

This Work shall consist of dismantling an existing rock facing and rebuilding a similar rock facing in a different location using the rock obtained from the dismantled facing. Work shall be in accordance with the requirements of Sections 2-08.3(1) and 2-08.3(2). Additional rock ordered by the Engineer to complete the facing shall be furnished by the Contractor and shall meet the requirements of Section 2-08.2.

2-08.3(4) CONTRACTOR QUALIFICATIONS

The rock facing contractor shall furnish evidence of ten years of experience as a prime contractor in rock facing construction and shall invite inspection of at least two major contracts he has completed in the past 5 years.

2-08.4 MEASUREMENT

Bid items of Work completed pursuant to the Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Rock Facing” and “Relocate Rock Facing” will be by the square foot of rock face for the new rock facing or the relocated rock facing.

Measurement for “Rebuild Rock Facing” will be by the square foot based on measurement of the existing rock facing before dismantlement.

Measurement will include that portion of the rock facing constructed below the existing ground elevation.

Mineral aggregate of the type specified for drainage filter Material will be measured by the ton in accordance with Section 1-09.1.

2-08.5 PAYMENT

Compensation for the costs necessary to complete the Work described in Section 2-08 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:
SECTION 2-08 ROCK FACING

1. “Rock Facing,” per square foot.
 The Contract unit price for “Rock Facing,” shall include all costs for materials and the cost for the Work required to furnish and place the rock, including excavation of keyway for the base course.
 Payment for drainpipe, when called for on the Drawing or by the Engineer, shall be paid as Subsurface Drain per Section 7-01.

2. “Rebuild Rock Facing,” per square foot.

 The Contract unit price for “Rebuild Rock Facing” or “Relocate Rock Facing,” shall include all costs for the Work required to dismantle and reconstruct the rock facing as specified using the existing rock. It also includes temporary stockpiling of the rock and such excavation as may be necessary to rebuild or relocate the rock facing.
 Costs required to import and place additional rock in order to rebuild the rock facing to original condition shall be included under this item.

4. Other payment information
 Additional new rock facing area ordered by the Engineer during rebuilding or relocation of an existing rock facing will be paid in accordance with Section 1-09.4.
 Payment for mineral aggregate of the type specified for drainage filter Material will be made in accordance with Section 4-01.5.

SECTION 2-09 STRUCTURE EXCAVATION

2-09.1 DESCRIPTION
 This Work shall consist of excavating, removing, and disposing of all formations, debris, and materials, natural or man-made, irrespective of nature or condition, encountered within the neat line limits defined in Section 2-09.4, such Work being necessary for the construction of foundation Structures required to support pump stations, water tanks, transmission towers, bridges, retaining walls, sign support Structures, and other Structures called for in the Contract Drawings. All excavation Work shall be done in reasonable conformity with the lines, grades, and dimensions indicated on the Drawings or staked by the Engineer. This Work also includes stockpiling, hauling, and placing suitable excavated Material in fill areas, and disposing of excess or unsuitable material.
 This Work shall also include the construction and subsequent removal of shoring or cofferdams, along with necessary pumping, sealing, and dewatering of the excavated area, the furnishing, stockpiling, placing and compacting of select excavated or imported Material over and around the completed Structure.
 Excavation for Roadways, sanitary Sewers, Water Mains and their appurtenances, manholes, inlets, catch basins, conduits, utility Structures, and such other related miscellaneous Work are covered elsewhere in these Specifications and shall not be considered as structure excavation.

2-09.2 MATERIALS
 Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Fine Aggregate for Portland Cement Concrete</td>
<td>9-03.1(2)</td>
</tr>
<tr>
<td>Admixture for Concrete</td>
<td>9-23.6</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>9-23.9</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
</tbody>
</table>

2-09.3 CONSTRUCTION REQUIREMENTS

2-09.3(1) GENERAL REQUIREMENTS
 All structure excavation, trenching, and shoring shall be performed in strict compliance with Chapter 296-155 WAC as well as all other applicable local, State, and Federal laws and regulations.
2-09.3(1)A STAKING, CROSS-SECTIONING, AND INSPECTING

The Contractor shall not begin excavating until after the Engineer has set stakes to locate and/or outline the structure and taken cross-sections to determine how much Material to remove. The Engineer will occasionally inspect material taken from and material remaining in the excavation.

When any foundation excavation is completed, the Contractor shall notify the Engineer, and no concrete or other permanent structural Material shall be placed therein until permission to proceed is given by the Engineer.

2-09.3(1)B DEPTH OF EXCAVATION

The Contractor shall excavate foundation pits to the depth the Drawings require, or to any revised depth ordered by the Engineer.

2-09.3(1)C REMOVAL OF UNSTABLE BASE MATERIAL

When the material at the bottom of an excavation is not stable enough to support the Structure as determined by the Engineer, the Contractor shall excavate below grade and replace the unstable material with gravel backfill.

Gravel backfill shall meet the requirements of Section 9-03.12. It shall be placed in layers not more than 6 inches thick with each layer compacted to 95 percent of the maximum density determined by the Compaction Control Test, Section 2-03.3(14)E.

2-09.3(1)D DISPOSAL OF EXCAVATED MATERIAL

The Material obtained from structure excavation shall be used for backfilling over and around the Structures after they are complete. Material not required for this purpose shall be used in the construction of embankments, stockpiled per Section 2-03.3(10), or if deemed unsuitable by the Engineer per Section 2-03.3(14)F, wasted per Section 2-01.2. Material which meets the requirements for mineral aggregate Type 17 shall be selectively stockpiled for use as wall or abutment backfill.

2-09.3(1)E BACKFILLING

Openings made for Structures shall be backfilled with selected Material from the structure excavation or from other excavations. In general, selected backfill Material from the excavation shall be as defined in Section 2-03.3(10).

Alternative Source. When Material from structure excavation is unsuitable for use as backfill, the Engineer may: require the Contractor to obtain Material elsewhere; require the Contractor to substitute selected Material in accordance with Section 2-03.3(10); or require the Contractor to use other Material covered by the Contract, if such substitution involves Work that does not differ greatly from what would otherwise have been required. The Contractor shall provide backfill Material as provided in Section 1-04.4 if neither selected materials nor other Contract materials are available.

Stockpiling. The Engineer may require the Contractor to selectively remove and stockpile any usable Material excavated for a structure. If this Material meets the requirements for gravel backfill for walls it may replace gravel as wall or abutment backfill.

If the Contractor stockpiles excavated Material for use as backfill, it shall be protected with plastic sheeting or similar cover from weather damage and from being tainted by intermingling with other materials. If the Material in the stockpile becomes too wet or intermixed with inferior Material, the Contractor shall dispose of it and replace it with an equal amount of suitable Material.

Compaction. Backfill from structure excavation shall be placed and compacted in keeping with these requirements:

1. Backfill supporting Roadbed, Roadway embankments, or any Structure shall be placed in horizontal layers no more than 6 inches thick with each layer compacted to 95 percent of the maximum density determined by the Compaction Control Test, Section 2-03.3(14)E.

2. Gravel backfill for drains shall be placed in horizontal layers no more than 12 inches thick, with each layer compacted by at least 3 passes of a vibratory compactor approved by the Engineer.
3. All other structure excavation backfill shall be placed in layers no more than 2 feet thick (loose), with each layer compacted and graded so that final settling leaves the backfill flush with surrounding ground.

Timing. Backfill shall not be placed against any concrete structure until the concrete has attained 90 percent of its design strength and has cured for at least 14 Days. However, the Contractor may backfill footings and columns as soon as forms have been removed, so long as the backfill is brought up evenly on all sides.

The Engineer may order the Contractor to use Controlled Density Fill; or require the Contractor to obtain Material elsewhere. Material obtained elsewhere will be paid for in accordance with Section 1-04.4.

Controlled Density Fill shall meet the following requirements:

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Amount per cubic yard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>50lb.</td>
</tr>
<tr>
<td>Fine Aggregate Class 1 or 2</td>
<td>3,300 lb. (3,500 lb. When Fly Ash Class C is used)</td>
</tr>
<tr>
<td>Air Entrainment Admixture</td>
<td>Per manufacturer’s recommendation</td>
</tr>
<tr>
<td>Fly Ash Class F or Fly Ash Class C</td>
<td>300 lb. 150 lb.</td>
</tr>
<tr>
<td>Water</td>
<td>300 lb. (maximum)</td>
</tr>
</tbody>
</table>

The Materials consistency shall be flowable (approximate slump 3 to 10 inches). If requested by the Contractor, the proportions may be adjusted with the approval of the Engineer.

The producer shall provide a Manufacturer’s Certificate of Compliance for each truckload of Controlled Density Fill. The Manufacturer’s Certificate of Compliance shall verify that the delivered Material is in compliance with the mix design and shall include:

1. Agency Contract No.
2. Date
3. Truck No.
4. Batched Weights of Each Ingredient

The certification shall be signed by a responsible representative of the producer, other than the driver, affirming the accuracy of the information provided. Compaction of Controlled Density Fill will not be required.

If water is present and prevents the Contractor from properly placing and compacting backfill as determined by the Engineer, it shall be removed by pumping or other means.

Special precautions shall be taken to prevent any wedging action against abutments and wing walls. If the excavation has sloping sides, the slopes shall be broken up by stepping or serrating to prevent wedge action before the backfill is placed. Fill placed around Culverts, piers or underground utilities shall be deposited on both sides to approximately the same elevation at the same time.

Backfill Material for walls shall conform to the requirements for mineral aggregate Type 17. It shall be placed in layers not to exceed 12 inches thick, and shall be compacted to 95% of maximum dry density. Compaction control tests shall be performed per Section 2-03.3(14)E.

Foundation backfill conforming to the requirements for mineral aggregate Type 2 or Type 14 (per Section 9-03.16) shall be placed in layers not to exceed 6 inches, with each layer being thoroughly compacted in accordance with Method C as described in Section 2-03.3(14)D before the next succeeding layer is placed.

If the Material used in making the backfill is too dry to permit proper compaction, sufficient water shall be added to allow satisfactory compaction results.

2-09.3(2) CLASSIFICATION OF STRUCTURE EXCAVATION

Structure excavation will not be further classified into solid excavation.

2-09.3(3) STRUCTURE EXCAVATION

2-09.3(3)A PRESERVATION OF CHANNEL

When foundations or Substructures are to be built in or next to running streams, the Contractor shall:
1. Excavate inside cofferdams, caissons, or sheet piling unless dredging or open pit excavation is permitted.
2. Never disturb the natural stream bed next to the Structure.
3. Backfill after foundations are placed inside cofferdams and any open pit or dredged area behind sheet piling. This backfill shall be level with the original stream bed and shall prevent scouring.
4. Remove any excavation material that may have been deposited in or near the stream so that the stream bed is free from obstruction.
5. Maintain water depth and horizontal clearances required for traffic to pass on navigable streams, furnishing any channel signals or lights required during construction.
6. Place riprap around the outside of cofferdams to repair local scour.

2-09.3(3)B EXCAVATION IN OPEN PITS - EXTRA EXCAVATION

The Contractor may dig open pits or perform extra excavation without shoring or cofferdams if:

1. Footings can be placed in dry material away from running water.
2. The integrity of the completed Structure and its surroundings is not reduced.
3. Worker safety is ensured as required by law.
4. The excavation does not disturb the existing pavement or any other adjacent facilities.

If a slide occurs in an open pit, the Contractor shall remove the slide material. If the slide disturbs an area over which a Roadway is to be built, the Contractor shall backfill and compact the site to the original ground line as the Engineer directs.

The Contractor shall drain or pump any water from the pit, taking care not to soften or adversely impact the pit bottom. If Equipment in the pit or inadequate water removal makes the foundation Material unstable, the Contractor shall, at no expense to the Owner, remove and replace it with Material the Engineer approves.

When the Engineer believes ground water flow may impair a concrete footing, the Contractor shall place under it a layer of gravel at least 6 inches thick. Before placing the gravel, the Contractor shall excavate to whatever grade the Engineer requires. This provision shall not apply to the building of concrete seals.

The Contractor may omit forms when the earthen sides of a footing excavation can stand vertically. In this case, the Contractor may excavate to the neat line dimensions of the footing and pour concrete against the undisturbed earth. If the hole is larger than neat line dimensions, the Contractor shall bear the cost of the extra concrete.

2-09.3(3)C PREPARATION FOR PLACING FOUNDATIONS

When a foundation is to rest on rock, excavation shall penetrate it at least 1 foot, or more if the Drawings require, to form a key for the footing. The Contractor shall cut the bottom of the excavation to a firm surface, level, stepped, or serrated as the Engineer directs, and remove all loose Material.

For an arch abutment, the back face shall be trimmed to true lines so that concrete can be poured against undisturbed Material.

If concrete is to rest on any excavated surface other than solid rock, the Contractor shall not disturb the bottom of the excavation. The Contractor shall also remove all loose or soft Material just before pouring the concrete.

Upon completing any foundation excavation, the Contractor shall notify the Engineer. No concrete or other permanent part of the structure may be placed until the Engineer has given permission to proceed.

2-09.3(3)D SHORING AND COFFERDAMS

The Contractor shall provide Shop Drawings prepared by a professional engineer showing proposed methods and construction details of shoring or cofferdams in accordance with Section 1-05.3(2)F. The Contractor shall not begin construction until approval has been given by the Engineer. The Contractor shall remain responsible for satisfactory results.

All excavations within 15 feet of the Traveled Way and 4 feet or more in depth shall be shored, or protected by cofferdams. All other excavation 4 feet or more in depth shall be shored, or protected by cofferdams or shall meet the open-pit requirements of Section 2-09.3(3)B.
The Contractor shall use cofferdams in all excavation that is under water or affected by ground water. In using cofferdams or shoring, the Contractor shall:

1. Extend them well below the bottom of the excavation.
2. Provide enough clearance for building forms, inspecting concrete exteriors, and pumping water that collects outside the forms. If cofferdams or shoring tilt or move laterally during placement, the Contractor, at no expense to the Owner, shall straighten or enlarge them to provide the required clearance.
3. Secure the shoring or cofferdam in place to prevent tipping or movement.
4. Place shoring and cofferdams so that they do not interfere with any pile driving required.
5. Vent cofferdams at the elevation commensurate with seal weight design, or as shown in the Drawings or approved by the Engineer.
6. Remove any bracing that would extend into the concrete being placed.

When the Work is completed, the Contractor shall:

1. Remove all shoring to at least 2 feet below finished ground line.
2. Remove all cofferdams to the natural bed of the waterway.

Cofferdams shall be classified as any watertight enclosure that surrounds the excavated area of the structure and which is used in conjunction with a concrete footing seal. Within the protection of the cofferdam the excavation is carried to the desired level and the concrete seal is poured, the enclosure is dewatered and the structure is constructed.

If the Contract Documents require cofferdam and should water conditions at the time of construction be such that in the opinion of the Engineer, seals are not required, the Engineer may specify that seals be omitted.

Excavation outside the cofferdam shall not continue below the elevation of the top of the seal, or if no seal is used, below the top of the footing, except with the written permission of the Engineer. If permission is given, it shall not relieve the Contractor of his obligation to anchor or otherwise hold the shoring or cofferdam in place and secure it against tipping or displacement.

Cofferdams shall be constructed so as to protect green concrete against damage from sudden rising of the water and to prevent damage to the foundation by scour, erosion, or uplift. No timber or bracing shall be left in the cofferdams in such a way as to extend into the Substructure without permission of the Engineer.

Calculations supporting the shoring design must be submitted with the shoring Plans and shall comply with the requirements of Section 1-05.3(2)F. The shoring Plans shall contain details such as member sizes, plate thickness, weld details, bolted connections, etc. and shall be based on AASHTO Specifications.

2-09.3(E) BEARING TESTS
The Engineer may stop the excavation to make bearing tests at any time. The Contractor shall assist with these tests in any way the Engineer requires.

During any test period, the Contractor shall, at no expense to the Owner, maintain ordinary Working conditions at the bottom of the hole. A single test shall not exceed 72 hours.

2-09.3(F) DEWATERING
When conditions are encountered which, in the opinion of the Engineer, make it impracticable to dewater the foundation pit before placing concrete, he may require the construction of a concrete foundation seal in accordance with Section 6-02.3(6)C “Placing Concrete in Foundation Seals”, and dewatering in accordance with Section 6-02.3(6)D, “Dewatering Concrete Seals and Foundation”.

2-09.3(4) CONSTRUCTION REQUIREMENT FOR TRENCH (OR OTHER EXCAVATIONS) 4 FEET OR MORE IN DEPTH
The requirements of Section 2-09 shall apply to all types of excavation in so far as they do not conflict with the excavation requirements found in other Sections of the Contract Documents for a specific kind of Work (see Division 7).
If Workers enter any trench or other excavation 4 feet or more in depth that does not meet the open pit requirements of Section 2-09.3(3)B, it shall have a protective system. For safety systems required for trench excavation refer to Section 7-17.3(1)A7a. The Contractor alone shall be responsible for Worker safety and the Owner assumes no responsibility.

2-09.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

The materials excavated will be measured in their original position by volume in cubic yards. The quantity measured for payment will include only the Material excavated from within the neat line shown on the Drawings, regardless of whether the excavation is made within a cofferdam enclosure or in an open pit.

The vertical neat line limits for measuring the excavation will be a vertical plane 1 foot (measured horizontally) outside of and parallel to the neat line of a pile cap, footing, or seal. No measurement as structure excavation will be made for Material removed (1) outside of vertical planes 1 foot outside of and parallel to the neat lines of a pile cap, footing, or seal, (2) more than 3 feet beyond the Roadway side of a wing wall, and (3) more than 1 foot beyond the other sides and end of a wing wall.

The bottom limits for measuring the excavation for pile caps, footings, or seals will be the bottom elevation as shown in the Drawings or as otherwise established by the Engineer. In pile foundations, the Material resulting from the swell due to driving piles will not be included in the measured quantity. The bottom limit for a wing wall will follow a line 1 foot below and parallel to the bottom.

The upper limit for measuring excavation will be the top surface of the ground, or the bed of the stream as it exists at the time the excavation is started. When the Contract designates removal of the materials through a graded section above the structure excavation, and when there is a designated pay item in the Contract for the excavation above, the upper limit for structure excavation will be the lower neat lines of the designated grading section, as shown in the Drawings.

Measurement for imported mineral aggregate, when ordered for backfill in lieu of native Material by the Engineer, will be by the cubic yard based on the neat line excavation area shown on the Drawings for the depth designated by the Engineer.

Backfill for foundations, drains, and walls will be measured by the cubic yard per Section 1-09.1. Measurement for concrete seal will be as “Concrete (Class) (Use)” as specified in Section 6-02.4. Controlled density fill will be measured by the cubic yard for the quantity of Material placed per the producer’s invoice.

2-09.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 2-09.5 will be made at the Contract unit prices Bid only for the pay items listed and referenced below:

1. “Structure Excavation,” per cubic yard.

The Contract unit price for “Structure Excavation,” shall include all costs for the Work specified in Section 2-09 but not otherwise provided for in this payment section and which is necessary to complete the excavation within the neat line limits specified. Any additional excavation outside these limits, having been made for the Contractor’s benefit, shall be considered incidental to the various items comprising this improvement. All costs for preserving and protecting excavated materials to be used for backfilling structure excavation and all costs for disposal (including haul) of Material obtained from structure excavation which is not used for backfill shall be incidental to and included in the Contract unit price for “Structure Excavation”.

All costs for storing, protecting, rehandling, and placing stockpiled Material as specified in Section 2-09 shall be included in the Contract unit price for structure excavation.

Payment for structure excavation carried below the elevations shown in the Drawings, when ordered by the Engineer, will be made at the Contract unit price for “Structure Excavation”.

2. “Shoring or Extra Excavation,” lump sum.
The lump sum Contract Price for “Shoring or Extra Excavation” shall include all costs for the construction and subsequent removal of all shoring.

No change will be made to the lump sum Contract Price for “Shoring or Extra Excavation” for increased depth, to and including a depth of 3 feet below the elevations shown in the Drawings. If depths greater than 3 feet below the elevations shown are required by the Engineer, allowance for extra costs will be made in accordance with Section 1-09.4.

When extra excavation is used in lieu of constructing the shoring, cofferdam or caisson, the lump sum Contract Price shall be full pay for all excavation, backfill, compaction, and other Work required.

If select backfill Material is required for backfilling within the limits of structure excavation, it shall also be required as backfill Material for the extra excavation at the Contractor’s cost.

Shoring or extra excavation for other classes of excavation shall be incidental to and included in the Contract unit price for Bid Items requiring the excavation and shall include removal of the shoring or backfilling of the extra excavation.

The lump sum Contract Price for "Cofferdam" shall include all costs for the construction, dewatering and subsequent removal of the cofferdam.

4. Other payment information.

Payment for safety systems required for trench excavation Work shall be made in accordance with Section 7-17.5.

Payment for imported mineral aggregate backfill shall be per Section 4-01.5.

Concrete seal will be paid as “Concrete (Class) (Use)” per Section 6-02.5.

Payment for reconstruction of surfacing and paving within the limits of structure excavation will be at the applicable unit prices for the items involved.

Stockpiled excavated Material for use as backfill that is intermingled with unsuitable Material and/or weather damaged shall be disposed of and replaced with sound, untainted fill Material at the Contractor’s own cost.

Whenever excavation is carried below the elevation shown on the Drawings without written approval from the Engineer, all costs for Materials, labor and Equipment necessary to bring excavation back to plan elevation, shall be borne by the Contractor. Replacement shall be made with concrete or other Material acceptable to the Engineer.

When ordered by the Engineer to use Controlled Density Fill in backfilling around piers and in front of abatements and walls, the Owner pay as: “Controlled Density Fill” per cubic yard.

If a slide occurs in an open pit as described in Section 2-09.3(3)B, the Contractor shall pay all costs related to removing slide Material and restoring a slide area.

The Owner will pay by force account for all labor and Materials the Contractor Supplies for the bearing tests as specified in Section 2-09.3(3)E.

All costs not defined in Section 2-09.3(1)E that relate to providing, placing, and compacting backfill shall be at the Contractor’s cost.

SECTION 2-10 DITCH AND CHANNEL EXCAVATION

2-10.1 DESCRIPTION

This Work shall consist of excavating ditches and making channel changes to the required lines, grades, and cross-sections, and the installation of geotextile, filter blanket and riprap protection when specified on the Drawings or requested by the Engineer. The Work shall also include disposing of excess and unsuitable excavated Material.

Ditch excavation: Includes all excavation for open ditches less than 8 feet wide at the bottom, but excludes ditches that are part of the Roadway.

Channel excavation: Includes all excavation for open ditches 8 or more feet wide at the bottom.
2-10.2 MATERIALS

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Material</td>
<td>9-03.16</td>
</tr>
<tr>
<td>Geotextile</td>
<td>9-05.22</td>
</tr>
</tbody>
</table>

The geotextile shall be as specified in Section 9-05.22, Geotextile – Ditch Lining.
The filter blanket shall meet the gradation requirements for ballast.

2-10.3 CONSTRUCTION REQUIREMENTS

Before excavating any ditch, the Contractor shall clear and grub the area as required by Section 2-01.

The Contractor may build dikes or berms with excavated Material, or he may dispose of it.

When the use of a geotextile for Scour and Erosion Control is called for in the Drawings or ordered for this purpose by the Engineer, the area of soil to be protected shall be graded to as smooth and uniform a surface as possible. All protruding objects (rocks, sticks, debris) shall be removed and all holes shall be filled with suitable Material.

Unless otherwise specified in the Contract, the geotextile shall be overlapped a minimum of 2 feet at all longitudinal and transverse joints. The geotextile shall be placed so that the upstream geotextile overlaps the downstream geotextile. When placed on slopes, the upslope geotextile shall overlap the downslope geotextile. When the geotextile is placed against a structure, it shall extend 2 feet beyond the structure and shall be held in place with a filter blanket, if called for, and with riprap. A geotextile in an active water environment shall always be adequately protected with a filter blanket and/or riprap. See Section 2-12 for geotextile construction requirements.

Placement of a filter blanket, riprap, or both, on the geotextile shall start at the toe of the slope and proceed upwards. The geotextile shall be keyed at the top and toe of the slope as shown on the Drawings. The geotextile shall be secured to the slope loosely enough so that it does not tear when riprap is placed on top of it. The geotextile shall not be keyed at the top of the slope until the riprap is in place to the top of the slope.

All voids in the riprap face that allow the geotextile to be visible shall be backfilled with quarry spalls or other appropriately sized stones, as designated by the Engineer, until the geotextile is completely covered. When a filter blanket is required between the geotextile and the riprap, it shall have a minimum thickness of 12 inches, or as called for on the Drawings. A filter blanket will be required when hand-placed riprap, sack riprap, or concrete slab riprap is used with the geotextile. See Section 2-12 for geotextile construction requirements.

Grading of slopes after placement of the riprap will not be allowed if grading results in stone movement directly on the geotextile. Riprap shall not be dropped from a height greater than 1 foot above the geotextile.

2-10.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

The Owner will measure ditch and channel excavation by the cubic yard in its original site and will calculate quantities by the neat lines of the staked cross-sections.

The geotextile shall be measured in accordance with Section 2-12.4.

The filter Material shall be measured by the cubic yard.

2-10.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 2-10 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

2. “Channel Excavation,” per cubic yard.

The Contract unit price for “Ditch Excavation” and “Channel Excavation” shall be full pay for excavating, loading, placing, or otherwise disposing of the Material.
3. **Other payment information**

Filter Material, when required, will be paid as “Mineral Aggregate, (Type)” of the type specified in the Project Manual and described in Section 4-01.5.

Payment for geotextile shall be in accordance with Section 2-12.5.

SECTION 2-11 TRIMMING AND CLEANUP

2-11.1 **DESCRIPTION**

This Work shall consist of dressing and trimming the entire Roadway(s) improved under the Contract, including Frontage Roads, connecting ramps, Auxiliary lanes, and approach roads. This Work extends to Roadbeds, shoulders, and ditches.

2-11.2 **VACANT**

2-11.3 **CONSTRUCTION REQUIREMENTS**

The Contractor shall:

1. Trim shoulders and ditches to produce smooth surfaces and uniform cross-sections that conform to the grades set by the Engineer.
2. Open and clean all channels, ditches, and gutters to ensure proper drainage.
3. Dress the back slope of any ditch or borrow pit that remains adjacent to the Roadway. Round off the top of the back slope and distribute the Material evenly along its base.
4. Remove and dispose of all weeds, brush, refuse, and debris that lie on the Roadbed, shoulders, ditches, and slopes.
5. Remove from paved shoulders all loose rocks and gravel.
6. Distribute evenly along the embankment any Material not needed to bring the shoulders to the required cross-section.

The Contractor shall not:

1. Use heavy Equipment (tractors, graders, etc.) to trim the shoulders of an existing or new bituminous surface.
2. Drag, push, or scrape Shoulder Material across completed surfacing or pavement.

When the Contract requires the Contractor to rebuild part of a Roadway only the rebuilt areas shall be trimmed and cleaned up. If the Contractor’s Work obstructs ditches or side roads, they shall be cleared and the debris disposed of as the Engineer directs.

2-11.4 **MEASUREMENT**

Work described in Section 2-11 will not be measured for payment.

2-11.5 **PAYMENT**

The Work of trimming and cleanup shall be incidental to the various Bid items comprising the Project.

SECTION 2-12 CONSTRUCTION GEOTEXTILE

2-12.1 **DESCRIPTION**

This work shall consist of furnishing and placing construction geotextile as indicated on the Drawings.

2-12.2 **MATERIALS**

Materials shall meet the requirements of the following section:

| Construction Geotextile | 9-05.22 |
Geotextile roll identification, storage, and handling shall be in conformation to ASTM D 4873. During periods of shipment and storage, the geotextile shall be stored off the ground. The geotextile shall be covered at all times during shipment and storage such that it is fully protected from ultraviolet radiation including sunlight, site construction damage, precipitation, chemicals that are strong acids or strong bases, flames including welding sparks, temperatures in excess of 160 °F, and any other environmental condition that may damage the physical property values of the geotextile.

Unless specified otherwise on the Drawings, the geotextile required for underground drainage shall be “Moderate Survivability” and “Drainage Class C” and permanent erosion control applications shall be “High Survivability” and “Drainage Class C.”

2-12.3 CONSTRUCTION REQUIREMENTS

2-12.3(1) GENERAL

The area to be covered by the geotextile shall be graded to a smooth, uniform condition free from ruts, potholes, and protruding objects such as rocks or sticks. The geotextile shall be spread immediately ahead of the covering operation. The geotextile shall not be left exposed to sunlight during installation for a total of more than 14 calendar days. The geotextile shall be laid smooth without excessive wrinkles. Under no circumstances shall the geotextile be dragged through mud or over sharp objects which could damage the geotextile. The cover material shall be placed on the geotextile such that the minimum initial lift thickness required remains between the equipment tires or tracks and the geotextile at all times. Construction vehicles on the first lift above the geotextile will not be permitted.

Soil piles or the manufacturer's recommended method, shall be used as needed to hold the geotextile in place until the specified cover material is placed.

Should the geotextile be torn, punctured, or the overlaps or sewn joints disturbed, as evidenced by visible geotextile damage, subgrade pumping, intrusion, or roadbed distortion, the backfill around the damaged or displaced area shall be removed and the damaged area repaired or replaced by the Contractor at no expense to the Owner. The repair shall consist of a patch of the same type of geotextile placed over the damaged area by the minimum required overlap for the application.

If geotextile seams are to be sewn in the field or at the factory, the seams shall consist of one row of stitching unless the geotextile where the seam is to be sewn does not have a selvage edge. If a selvage edge is not present, the seams shall consist of two parallel rows of stitching, or shall consist of a J-seam, Type SSn-1, using a single row of stitching. The two rows of stitching shall be 1.0 inch apart with a tolerance of plus or minus 0.5 inch and shall not cross except for restitching. The stitching shall be a lock-type stitch. The minimum seam allowance, i.e., the minimum distance from the geotextile edge to the stitch line nearest to that edge, shall be 1-1/2 inches if a flat or prayer seam, Type Ssa-2, is used. The minimum seam allowance for all other seam types shall be 1.0 inch. The seam, stitch type, and the equipment used to perform the stitching shall be as recommended by the manufacturer of the geotextile and as approved by the Engineer.

The seams shall be sewn in such a manner that the seam can be inspected readily by the Engineer or a representative. The seam strength will be tested and shall meet the requirements stated herein.

2-12.3(2) UNDERGROUND DRAINAGE

Trench walls shall be smooth and stable. The geotextile shall be placed in a manner which ensures intimate contact between the soil and the geotextile (i.e., no voids, folds, or wrinkles).

The geotextile shall either be overlapped a minimum of 12 inches at all longitudinal and transverse joints, or the geotextile joints shall be sewn for medium survivability drainage applications. In those cases where the trench width is less than 12 inches, the minimum overlap shall be the trench width.

In moderate survivability geotextile underdrain applications, the minimum overlap shall be 12 inches, or the geotextile joints shall be sewn, except where the geotextile is used in area drains. An area drain is defined as a geotextile layer placed over or under a horizontal to moderately sloping layer of drainage aggregate. For area drains, the geotextile shall be overlapped a minimum of 2 feet at all longitudinal and transverse joints, or the geotextile joints shall be sewn together. The minimum initial lift thickness over the geotextile in the area drain shall be 12 inches.

In all cases, the upstream geotextile sheet shall overlap the next downstream sheet.
2-12.3(3) SEPARATION

The geotextile shall either be overlapped a minimum of 2 feet at all longitudinal and transverse joints, or the geotextile shall be sewn together. The initial lift thickness shall be 6 inches or more.

2-12.3(4) SOIL STABILIZATION

The geotextile shall either be overlapped a minimum of 2 feet at all longitudinal and transverse joints, or the geotextile joints shall be sewn together. The initial lift thickness shall be 12 inches or more. Compaction of the first lift above the geotextile shall be by Method A (Section 2-03.3(14)D). No vibratory compaction will be allowed on the first lift.

2-12.3(5) PERMANENT EROSION CONTROL AND DITCH LINING

Unless otherwise specified on the Drawings, the geotextile shall either be overlapped a minimum of 2 feet at all longitudinal and transverse joints, or the geotextile joints shall be sewn together. If overlapped, the geotextile shall be placed so that the upstream strip of geotextile overlaps the next downstream strip. When placed on slopes, each strip shall overlap the next downhill strip.

Placement of aggregate and riprap of other cover material on the geotextile shall start at the toe of the slope as shown on the Drawings. The geotextile shall be keyed at the top and the toe of the slope as shown on the Drawings. The geotextile shall be secured to the slope, but shall be secured loosely enough so that the geotextile does not tear when the riprap or other cover material is placed on the geotextile. The geotextile shall not be keyed at the top of the slope until the riprap or other cover material is in place to the top of the slope.

All voids in the riprap or other material that allow the geotextile to be visible shall be backfilled with quarry spalls or other small stones, as designated by the Engineer, so that the geotextile is completely covered. When an aggregate cushion between the geotextile and the riprap or other cover material is required, it shall have a minimum thickness of 12 inches.

An aggregate cushion will be required to facilitate drainage when hand placed riprap or sack riprap, as specified in Sections 9-13.3 or 9-13.4, respectively, is used with the geotextile.

Grading of slopes after placement of the riprap or other cover material will not be allowed if grading results in stone movement directly on the geotextile. Under no circumstances shall stones with a weight of more than 100 pounds be allowed to roll downslope. Stones shall not be dropped from a height greater than 3 feet above the geotextile surface if an aggregate cushion is present, or 1 foot if an aggregate cushion is not present. Lower drop heights may be required if geotextile damage from the stones is evident, as determined by the Engineer. If the geotextile is placed on slopes steeper than 2H:1V, the stones shall be placed on the slope without free-fall for moderate survivability, high survivability, and ditch lining geotextiles.

2-12.3(6) TEMPORARY SILT FENCES

The Contractor shall install and maintain silt fences at the locations shown on the Drawings. The silt fences shall be constructed in the areas of clearing, grading, or drainage prior to starting those activities. A silt fence shall not be considered temporary if the silt fence must function beyond the life of the Contract. The silt fence shall prevent soil carried by runoff water from going beneath, through, or over the top of the silt fence, but shall allow the water to pass through the fence. The minimum height of the top of silt fence shall be 2-1/2 feet and the maximum height shall be 3 feet above the original ground surface. Damaged or otherwise improperly functioning portions of silt fences shall be repaired or replaced by the Contractor at no cost to the Owner, as determined by the Engineer. The silt fence shall be maintained until vegetation has been established.

The geotextile shall be attached on the up-slope side of the posts and support systems with staples, wire, or in accordance with the manufacturer’s recommendations. The geotextiles shall be attached to the posts in a manner which reduces the potential for geotextile tearing at the staples, wire, or other connection device. Silt fence back-up support for the geotextile in the form of wire or plastic mesh is optional, depending on the properties of the geotextile selected for use in Table 6 in Section 9-05.22. If wire or plastic back-up mesh is used, the mesh shall be fastened securely to the up-slope of the posts with the geotextile being up-slope of the mesh back-up support.

The geotextile shall be sewn together at the point of manufacture, or at an approved location as determined by the Engineer, to form geotextile lengths as required. All sewn seams shall be located at a support post. Alternatively, two sections of silt fence can be overlapped, provided the Contractor can demonstrate, to the
satisfaction of the Engineer, that the overlap is long enough and that the adjacent fence sections are close enough together to prevent silt laden water from escaping through the fence at the overlap.

The geotextile at the bottom of the fence shall be buried in a trench to a minimum depth of 6 inches below the ground surface. The trench shall be backfilled and the soil tamped in place over the buried portion of the geotextile as shown on the Drawings, such that no flow can pass beneath the fence nor scour occur. When wire or polymeric back-up support mesh is used, the wire or polymeric mesh shall extend into the trench a minimum of 3 inches. The fence posts shall be placed or driven a minimum of 1-1/2 feet into the ground. Fence post depths shall be increased by 6 inches if the fence is located on slopes of 3H:1V or steeper and the slope is perpendicular to the fence. If required post depths cannot be obtained, the posts shall be adequately secured by bracing or guy ing to prevent overturning of the fence due to sediment loading, as approved by the Engineer.

Silt fences shall be located on contour as much as possible, except at the ends of the fence, where the fence shall be turned uphill such that the silt fence captures the runoff water and prevents water from flowing around the end of the fence as shown on the Drawings. If the fence must cross contours, with the exception of the ends of the fence, gravel check dams placed perpendicular to the back of the fence shall be used to minimize concentrated flow and erosion along the back of the fence. The gravel check dams shall be approximately 1 foot deep at the back of the fence and be continued perpendicular to the fence at the same elevation until the top of the check dam intercepts the ground surface behind the fence as shown on the Drawings. The gravel check dams shall consist of crushed surfacing base course gravel backfill for walls, or shoulder ballast. The gravel check dams shall be located every 10 feet along the fence where the fence must cross contours. The slope of the fence line where contours must be crossed shall not be steeper than 3H:1V.

Either wood or steel posts shall be used. Hardwood posts shall have minimum dimensions of 1-1/4 inches by 1-1/4 by the minimum length shown on the Drawings, and shall be free of defects such as knots, splits, or gouges. If fir or hemlock is used (stud grade), the posts shall have minimum dimensions of 1-1/2 inches by 3 inches. Steel posts shall consist of either: ASTM A 53 steel pipe with a minimum diameter of 1 inch; U, T, L, or C shape steel posts with a minimum weight of 1.35 lbs./ft; or other steel posts having equivalent strength and bending resistance to the post sizes listed. The spacing of the support posts shall be a maximum of 6 feet as shown on the Drawings.

Fence back-up support, if used, shall consist of steel wire with a maximum mesh spacing of 2 inches, or a prefabricated polymeric mesh. The strength of the wire or polymeric mesh shall be equivalent to or greater than that required in Table 6 for unsupported geotextile (i.e., 180 lbs. grab tensile strength). The polymeric mesh shall be as resistant to ultraviolet radiation as the geotextile it supports.

Sediment deposits shall either be removed when the deposit reaches approximately one-third the height of the silt fence, or a second silt fence shall be installed, as determined by the Engineer.

2-12.4 MEASUREMENT

Bid items of work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Construction geotextile, with the exception of temporary silt fence geotextile and underground drainage geotextile used in trench drains, will be measured by the square yard for the ground surface area actually covered. No additional measurement will be made for overlap.

Temporary silt fence geotextile will be measured by the linear foot of completed fence along the ground line.

Underground drainage geotextile used in trench drains will be measured by the square yard for the perimeter of drain actually covered.

2-12.5 PAYMENT

Compensation for the cost necessary to complete the work described in Section 2-12 will be made at the Contract unit price Bid only for the pay items listed or referenced below:

5. "Construction Geotextile for Ditch Lining", per square yard.

The Contract unit price for "Construction Geotextile (Use)" shall include all costs for the work required to furnish and install the geotextile as specified.

7. **Other payment information.**

 Sediment removal behind silt fences will be paid by force account under temporary water pollution/erosion control. If a new silt fence is installed in lieu of sediment removal, the silt fence will be paid for at the Contract unit price per linear foot for "Construction Geotextile for Temporary Silt Fence."
DIVISION 3 PRODUCTION FROM QUARRY AND PIT SITES AND STOCKPILING

SECTION 3-01 PRODUCTION FROM QUARRY AND PIT SITES

3-01.1 DESCRIPTION

This Work shall consist of manufacturing and producing crushed and screened aggregates including pit run aggregates of the kind, quality, and grading specified for use in the construction of Portland cement concrete, asphalt concrete, asphalt treated base, crushed surfacing, maintenance rock, ballast, gravel base, gravel backfill, gravel borrow, riprap, and bituminous surface treatments of all descriptions.

The requirements specified shall apply whether the source is ledge rock, talus, gravel, sand, or any combination thereof.

3-01.2 MATERIALS

3-01.2(1) GENERAL SOURCE

3-01.2(1)A APPROVAL OF SOURCE

Material sources must be approved in advance of use in the Work in accordance with the requirements of Section 1-06.

3-01.2(1)B STRIPPING QUARRIES AND PITS

Stripping of quarries and pits shall consist of the removal, after clearing and grubbing, of the surface Material and overburden which is unsuitable for the kind of Material to be borrowed or produced for use. Materials from stripping, to be used later as provided on the site reclamation plan specified in Section 3-03, shall be deposited within the quarry or pit site at such a location as not to interfere with future development within the site.

3-01.2(1)C PREPARATION OF SITE

The portion of the quarry or pit site to be used shall be cleared and grubbed, and the area from which Materials are to be taken shall be stripped of overburden as provided in Section 3-01.2(2). All combustible debris resulting from these operations shall be disposed of by the Contractor in a manner acceptable to the Engineer.

3-01.2(1)D PRODUCTION REQUIREMENTS

All oversize stones, rock fragments, or boulders occurring in the source, up to and including those measuring 18 inches in the greatest dimension, shall be utilized in the manufacture of crushed Material.

If the grading or quality of raw Material in sources used for the manufacture of products covered by this Section is such that the fracture, grading, or quality of the product specified cannot be obtained by utilizing the natural Material, fine portions of the raw Material shall be rejected to the extent necessary to produce products meeting all requirements of these Specifications. Failure of the Owner to include a scalping requirement in the Project Manual shall not relieve the Contractor of the responsibility for rejecting fine portions of the Material if such becomes necessary to produce products meeting all requirements of these Specifications. Scalping shall be performed after the pit-run or quarry-run Material has passed through the primary crusher.

When scalping over a screen of a specified size is required in the Project Manual, the scalping screen shall be of such size and capacity that enough of the fine Material will be removed to produce Material as specified.

Washing and reclaiming of the reject Material and subsequent addition of this Material to any finished products will not be allowed unless specifically authorized in writing by the Engineer.

Surplus screenings accumulated during the crushing and screening of specified roadway Materials will be considered separate and distinct from reject Material resulting from scalping operations.

Both fine and coarse concrete aggregates shall be thoroughly washed in order to remove clay, loam, alkali, bark, sticks, organic castings, or other deleterious matter. Washing will be required in the production of other Materials if necessary to produce products meeting all the quality requirements of these Specifications.

When producing screened gravel or sand Materials, the Contractor shall remove all oversize Material by screening at the pit site. The Contractor's operations in the pit shall be conducted so that the grading of individual
loads will be reasonably uniform. In general, the Contractor shall utilize the most suitable Materials available and shall make as many moves of the loading Equipment as may be necessary to fulfill these requirements.

Where pit-run Materials meet the requirements of the Specifications, screening or processing will not be required.

3-01.2(1)E FINAL CLEANUP

Upon completion of the Contractor's operation, the quarry or pit shall be cleared of all rubbish, temporary Structures, and Equipment, and shall be left in a neat and presentable condition. The pit or quarry shall be reclaimed in accordance with the approved site reclamation plan specified in Section 3-03.

3-01.2(2) CONTRACTOR-FURNISHED MATERIAL SOURCE

If the Contractor chooses to provide a source of Materials, or if the Contractor elects to use Materials from other private sources, the Contractor shall, at no expense to the Owner, make all necessary arrangements for obtaining the Material and shall provide evidence that the needed quantity of suitable Material (satisfying the requirements of Section 1-06) is available. Use of Materials from such sources will not be permitted until representative samples taken by the Engineer have been tested, the source approved, and authority granted for the use thereof. Before the samples are taken by the Engineer, the Contractor shall, at no expense to the Owner, have done enough testing of the proposed site to enable the Engineer to obtain a sample that is representative of the Materials in the source.

Approval of a Contractor’s source offered in lieu of Owner pre-approved sources will be contingent upon the Material therein being of equal quality, and no additional costs will accrue to the Owner as a result of such approval. Equivalency of quality will be based on those test values listed in the Project Manual as being representative of Material in the Owner pre-approved source. If no such values are listed, the minimum specification requirements will apply.

The Contractor shall notify the State Departments of Ecology, Fish and Wildlife Game, and Natural Resources, in writing, of the intent to furnish the source, and shall, at no expense to the Owner, make all necessary arrangements with these agencies for the determinations of regulations which might be imposed upon the Contractor during removal of Materials from the source. When the Contractor intends to operate a source under the Owner’s blanket surface mining permit, the Contractor shall submit a reclamation plan for approval 10 Working Days in advance. No Work shall begin in the pit or quarry before the reclamation plan is approved by the Engineer.

The source shall be selected so that, after the Materials have been removed, the pit will drain to a natural drainage course and no ponding will result. Should the source selected by the Contractor be one which would not drain as outlined herein, permission shall be obtained by the Contractor from the governing body of the city or county for the removal of Materials from the pit or quarry, and provide a copy to the Engineer.

The Contractor shall not operate a pit or a quarry site visible from any State Highway unless it can be demonstrated to the complete satisfaction of the Engineer that no unsightly condition will result from or remain as a result of the Contractor’s operations. If, in the opinion of the Engineer, unsightly conditions exist after removal of Materials from the site, the Contractor shall correct such unsightly conditions as hereinafter provided.

Following removal of Materials from the pit, the entire site shall be cleared of all rubbish, temporary Structures, and Equipment which have resulted from the Contractor’s occupancy and operations. The Contractor shall obliterate or screen to the satisfaction of the Engineer any unsightly conditions that remain. The Contractor shall secure a written release from the permitter upon fulfillment of these requirements. All costs for cleaning up the pit site and for the installation or erection of screening or for other Work required to correct unsightly conditions shall be at the Contractor’s expense. The requirements of this paragraph shall not apply to pits being operated commercially.

All costs in connection with acquiring the rights to take Materials from the source, for exploring and developing the site, for complying with the regulations of the aforesaid State agencies, for preparing the site as provided in Sections 3-01.2(1)C and 3-03, for cleaning up the site, and for correcting unsightly conditions, shall be included in the Contract unit prices for the various pay items of Work involved.

The grading and quality shall meet the requirements specified in Section 9-03 or as otherwise specified.
3-01.4 MEASUREMENT

All crushed, screened, or other quarry Materials will be measured by the tonnage of total weight of Material source minus water which is in excess of naturally occurring amounts.

For payment purposes, all crushed, screened, or naturally occurring Materials that are to be paid for by the ton, dependent on their grading, will be limited to the following water contents naturally occurring in the Material source:

<table>
<thead>
<tr>
<th>% By Weight Passing 1/4-inch Sieve</th>
<th>Maximum Water Content % By Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 20%</td>
<td>4%</td>
</tr>
<tr>
<td>20% or more</td>
<td>8%</td>
</tr>
</tbody>
</table>

3-01.5 PAYMENT

Unless otherwise specified, all costs in connection with the production of Materials meeting the quality requirements of these Specifications shall be included in the Contract unit prices of the various bid items involved.

Payment for the particular Materials or aggregates to be produced will be as specified in the appropriate sections of these Specifications.

SECTION 3-02 RESERVED

SECTION 3-03 SITE RECLAMATION

3-03.1 DESCRIPTION

This Work shall consist of reclaiming land used for borrowing Material, mining for aggregates, sorting or wasting Materials as specified.

3-03.2 GENERAL REQUIREMENTS

3-03.2(1) RESERVED

3-03.2(2) SITES

3-03.2(2)A CONTRACTOR-PROVIDED SITES

All borrow, quarry, and pit sites larger than three acres in size of disturbed land, or resulting in pit walls more than thirty feet high and steeper than a one to one slope which are owned or furnished by the Contractor, shall be reclaimed in accordance with the conditions and requirements of an approved operating permit acquired from the Department of Natural Resources. When Material is acquired exclusively for use on this Contract, the Seattle Public Utilities may approve reclamation plans as allowed by the Surface-Mined Land Reclamation Act of Washington and the rules and regulations adopted by the Department of Natural Resources.

When the Contractor obtains an operating permit from the Department of Natural Resources, evidence of such approval shall be furnished to the Engineer at least 3 Working Days prior to any Work within the site.

Ultimate reclamation plans are not required for borrow, quarry, or pit sites not meeting the above criteria or for stockpile Waste sites. However, all such sites shall be reclaimed to the extent necessary to control erosion and provide satisfactory appearance consistent with anticipated future use.

Compliance with the State Environmental Policy Act (SEPA) is required for sites involving more than 100 cubic yards of excavation, or fill, throughout the lifetime of the site unless the local agency in which the Project is located establishes a greater amount. Sites involving more than 500 cubic yards of excavation or landfill throughout the lifetime of the site always require compliance with SEPA. Reclamation plans to be approved by Seattle Public Utilities shall be prepared and submitted for approval as hereinafter specified.

Under no circumstance will the Contractor be allowed to waste Material within a wetland as defined in Section 2-03.3(7).

3-03.2(2)B OUT OF STATE SITES

All out-of-State borrow, quarry or pit, stockpile, and Waste sites which are furnished by the Contractor exclusively for use on this Contract shall be reclaimed in accordance with an approved reclamation plan that is in compliance with local area restrictions.
3-03.2(3) RECLAMATION PLANS

3-03.2(3)A RESERVED

3-03.2(3)B PLANS FOR CONTRACTOR-PROVIDED SITES

A plan will not be required except on specific request for those sources of Material for which the Contractor has obtained a valid surface mining operating permit issued by the Department of Natural Resources and has paid all required fees.

If the Contractor elects to apply for an approved reclamation plan from Seattle Public Utilities, the following requirements shall apply:

1. The Contractor shall prepare his own plan but may use the Standard Plans as a guide.
2. Reclamation plans shall be approved in advance of any Work within the site.
3. The Standard Plans include a list of minimum design requirements which must be considered in preparing reclamation plans. The Contractor shall meet or exceed these minimum requirements for the various types of sites described in the Standard Plans. The Owner reserves the right to accept or reject reclamation plans.
4. All plans shall be drawn on reproducible sheets 22 or 24 inches wide by 36 inches long in overall dimensions.
5. The Contractor shall furnish to the Engineer for approval 6 copies of the reclamation plan which shall include but not be limited to the following details:
 a. Site boundaries and pertinent topographic features.
 b. Location of the site. The plan shall provide sufficient information to permit the site to be located on quadrangle or county maps.
 c. Proposed finished ground contours or cross-sections and all final slopes.
 d. Site drainage; restoration of stream beds.
 e. Methods by which contaminants are controlled.
 f. Planned lakes, ponds or other bodies of water which would be beneficial for residential, recreational, game or wildlife purposes.
 g. Local zoning and planning, if any.
 h. Type of vegetative cover.
 i. Proposed stockpiles or buildings.
 j. Any proposed development of the site which will be affected within 2 years after depletion or abandonment of the site.
 k. A statement of the proposed subsequent use of the land after reclamation and satisfactory evidence that all owners of a possessory interest in the land concur with this proposed use.
 l. Any other feature which contributes to the final appearance of the land subsequent to restoration measures.
6. The Contractor shall furnish, together with the 6 copies of the reclamation plan which shall include but not be limited to the following details:
 a. Site boundaries and pertinent topographic features.
 b. Location of the site. The plan shall provide sufficient information to permit the site to be located on quadrangle or county maps.
 c. Proposed finished ground contours or cross-sections and all final slopes.
 d. Site drainage; restoration of stream beds.
 e. Methods by which contaminants are controlled.
 f. Planned lakes, ponds or other bodies of water which would be beneficial for residential, recreational, game or wildlife purposes.
 g. Local zoning and planning, if any.
 h. Type of vegetative cover.
 i. Proposed stockpiles or buildings.
 j. Any proposed development of the site which will be affected within 2 years after depletion or abandonment of the site.
 k. A statement of the proposed subsequent use of the land after reclamation and satisfactory evidence that all owners of a possessory interest in the land concur with this proposed use.
 l. Any other feature which contributes to the final appearance of the land subsequent to restoration measures.
7. The Contractor shall submit the original tracing of the plan or a reproducible of the plan for all borrow, quarry and pit sites. These approved Plans shall be submitted to the Engineer within 10 Days after receiving approval of the plan. If the plan is approved as noted, it shall be modified by the Contractor before submission of the plan to the Engineer.
8. When the reclamation plan is approved by the Engineer for sites involving more than 3 acres of disturbed land, or resulting in pit walls more than 30 feet high and steeper than a one to one slope, the Contractor will be allowed to operate under the Seattle Public Utilities’ combined
9. Operating permit subject to continuing approval and inspection by the Engineer and the Department of Natural Resources.
10. Form No. SM-3 shall be completed by the Contractor and forwarded to the Department of Natural Resources through Seattle Public Utilities upon completion of all seeding and planting.
Form No. SM-7 shall be completed by the Contractor and forwarded to the Department of Natural Resources through the Seattle Public Utilities immediately upon completion of mining operations and site reclamation.
Forms No. SM-3 and SM-7 are not required on sites of 3 acres or less of disturbed land and resulting in pit walls 30 feet high or less and a one to one or flatter slope.

11. The Engineer will notify the Contractor if environmental requirements must be satisfied. To meet the requirements, the Contractor shall furnish a completed environmental checklist in the SEPA guidelines. The SEPA checklist will then be reviewed under existing Seattle Public Utilities procedures. Any landfill or excavation of 100 cubic yards or less is exempt from SEPA requirements.

3-03.3 CONSTRUCTION REQUIREMENTS

3-03.3(1) EROSION CONTROL

All sites owned or furnished by the Contractor shall, if specified on a reclamation plan approved by the Engineer, require erosion control in accordance with Section 8-01 or plant Materials in accordance with Section 8-02.

3-03.3(2) DEVIATIONS FROM APPROVED RECLAMATION PLANS

Reclamation of any site which deviates from the approved reclamation plan will not be permitted without first revising the approved reclamation plan and obtaining the approval of the Engineer. The Contractor shall allow 5 Working Days review time by the Engineer.

3-03.4 RESERVED

3-03.5 PAYMENT

For Contractor-provided sites, all costs involved in complying with the requirements of an operating permit acquired from the Department of Natural Resources, complying with the requirements of a reclamation plan approved by the Engineer, or with reclaiming sites to the full extent required by the Contract shall be included in the costs of other items of Work involved in the Project.
DIVISION 4 BASES

SECTION 4-01 MINERAL AGGREGATES

4-01.1 DESCRIPTION
This section addresses all mineral aggregates not addressed elsewhere in the Standards.

4-01.2 MATERIALS
Grading of all mineral aggregates shall meet the requirements of the Mineral Aggregate Table in Section 9-03.16. At the option of the Contractor, recycled concrete crushed to the requirements of Section 9-03.16 will be permitted as a substitute for mineral aggregate with the following exceptions:

1. In exposed areas.
2. Where free drainage is required.
3. For pavement base and Subbase when wet conditions exist.

Recycled aggregates include recycled concrete and recycled asphalt concrete. At least 10 Working Days in advance, the Contractor shall submit to the Engineer for approval as indicated below.

A 75 pound sample of adequately broken recycled Portland cement concrete shall be submitted to the Engineer for approval (note - testing for Determination of Degradation Value and Abrasion of Coarse Aggregates by Use of the Los Angeles Machine will be done in accordance with Section 9-03.15). In addition, the source of any native material that may be blended with the recycled Portland cement concrete rubble shall also meet these same requirements for the type aggregate being used.

A 75 pound sample of recycled asphalt concrete shall be submitted to the Engineer for approval. A maximum of 15 percent by weight of recycled asphalt concrete pavement may be used in the blended product. The asphalt concrete content is calculated as the amount of asphalt particles retained on all screens ¼ inch and above for the mineral aggregate being used.

The recycled aggregates shall be stockpiled in such a manner that each certified test report can be identified with a single stockpile of not more than 10,000 tons.

The Contractor shall submit a Manufacturer’s Certificate of Compliance including certified laboratory test reports certifying that the recycled material is neither hazardous nor toxic. This certification shall address the toxicity characteristics, and sampling and testing in accordance with WAC 173-303. Sampling and testing shall be one sample per 10,000 or less tons from any single source, and not less than one sample from any single source.

Gradation, sand equivalent, and fracture requirements for each mineral aggregate shall be per Section 9-03.

Substitution of mineral aggregates Type 1G and Type 2G for mineral aggregates Type 1 and Type 2 respectively, will be permitted where specified in other Specification Sections. The Contractor shall provide written notification as required in Section 1-06.

4-01.3 RESERVED

4-01.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for minor and local quantities of backfill for drains surrounding weep holes for concrete in place per Section 6-02.5 will not be made.

4-01.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 4-01 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Mineral Aggregate, (Type),” per ton.
2. “Mineral Aggregate, (Type),” per cubic yard.
The Contract unit price for “Mineral Aggregate, (Type)” shall include all costs for the Work required of furnishing, hauling, stockpiling, placing, grading, and compacting the mineral aggregate or crushed concrete.

The Contract unit price for roadway ballast shall include all costs for the Work required of removal and disposal of unsuitable Material.

The Contract unit price for backfill for walls shall include all costs for the Work required by the cubic yard in place as determined by the neat lines indicated on the Drawings where indicated, or by the neat lines indicated on the Standard Plans where indicated with the following exception:

the volume of pipes and Structures will be deducted; however, volumes of pipes 6 inch inside diameter or less, and other minor structural features each less than one cubic yard will not be deducted.

Payment for backfill for foundations, and for drains other than behind a wall, shall include all costs for the Work required by the cubic yard in place as determined by the neat lines indicated on the Drawings or by the neat lines indicated on the Standard Plans. Payment for minor and local quantities of backfill for drains surrounding weep holes of 1 cubic yard or less shall be included in the Contract unit price for concrete in place per Section 6-02.5 and no separate or additional payment will be made.

Payment for drainage filter layer behind rock facings will be by the Bid Item “Mineral Aggregate, (Type)” by the ton (see Section 2-08.5).

When mineral aggregates Type 1G or Type 2G are permitted as substitute mineral aggregates for mineral aggregates Type 1 or Type 2 respectively, payment for this substitution shall be in accordance with section 1-09.4.

Where mineral aggregate is required in the Contract Documents or is directed by the Engineer as backfill, all costs associated with furnishing, handling, placing, and compacting the mineral aggregate, and handling or disposing of excavated material, shall be included in “Mineral Aggregate, (Type)” and no separate or additional payment will be made therefore.

When recycled material is permitted as substitute mineral aggregate Type, no separate or additional payment, and no change in Contract unit price, will be made for recycled material.

SECTION 4-02 RESERVED

SECTION 4-03 RESERVED

SECTION 4-04 BALLASTING AND CRUSHED SURFACING

4-04.1 DESCRIPTION

This Work shall consist of constructing one or more courses of crushed aggregate Material upon an existing Roadway surface, or upon a Subgrade properly prepared in accordance with the provisions of Section 2-06.

This Work shall also consist of constructing one or more layers of gravel base upon a prepared Subgrade in accordance with these Specifications and in conformity with the lines, grades, depth, and typical cross-section indicated on the Drawings or as established by the Engineer.

4-04.2 MATERIALS

Materials shall meet the requirements in the following Sections:

<table>
<thead>
<tr>
<th>Roadway Ballast</th>
<th></th>
<th>Shoulder Ballast</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Aggregate</td>
<td>Type 2</td>
<td>Mineral Aggregate</td>
<td>Type 13</td>
</tr>
<tr>
<td></td>
<td>9-03</td>
<td></td>
<td>9-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base Course (1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Aggregate</td>
<td>Type 2</td>
</tr>
<tr>
<td></td>
<td>9-03</td>
</tr>
</tbody>
</table>
Crushed Surfacing

<table>
<thead>
<tr>
<th>Mineral Aggregate Type</th>
<th>9-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Rock</td>
<td></td>
</tr>
<tr>
<td>Sand Filler</td>
<td></td>
</tr>
<tr>
<td>Dust Palliative Sand</td>
<td></td>
</tr>
<tr>
<td>Dust Palliative Oil</td>
<td></td>
</tr>
<tr>
<td>Gravel Base</td>
<td></td>
</tr>
</tbody>
</table>

Crushed Gravel, mineral aggregate Type 1G and 2G, may be used in lieu of Crushed Rock, mineral aggregate Type 1 and 2:

1. only when specified in the Contract Documents for specific locations or uses;
2. meets the requirements of Section 4-01.

Recycled concrete crushed to the requirements of Section 9-03.16 and proposed for pavement base or Subbase where wet conditions do not exist, will be permitted as a substitute for gravel base when approved by the Engineer, and shall meet the requirements of section 4-01.

4-04.3 CONSTRUCTION REQUIREMENTS

4-04.3(1) EQUIPMENT

All Equipment necessary for the satisfactory performance of this construction shall be on the Project and approved by the Engineer prior to beginning Work. If central mix plant methods are used, the central mixing plant shall comply with the following requirements:

1. The cold aggregate feeder shall be mechanically operated and adjustable to the extent necessary to provide a uniform and continuous flow of Materials. These Materials shall be deposited in an approved mixer with a sufficient amount of water being added to obtain the required density when spread and compacted. The water shall be weighed or metered, and dispensed through a device providing uniform dispersion across the mixer.
2. The mixing plant shall be provided with weighing or calibrating devices, feeders, provisions for sampling, and other devices and Equipment so designed, coordinated, and operated to produce a uniform mixture, and to permit the sampling of the Materials before and after mixing. The mixer shall be kept in good condition, and mixing blades or paddles shall be of proper size, adjustment, and clearance to provide positive and uniform mixing of the mixture at all times.
3. The capacity of the plant and Equipment furnished for the Work shall be adequate at all times to provide for efficient and continuous operations insofar as practical.

The minimum amount and type of heavy Equipment considered necessary for the proper execution of the Work described herein shall meet or exceed the following:

1. One heavy duty self-propelled grader, of an approved type, equipped with scarifier, broom, and an adjustable blade not less than 8 feet long capable of conforming to the indicated grade.
2. One 10-ton self-propelled three-wheel roller, one vibratory roller, or one pneumatic-tired roller. Roller wheels may be weighted if necessary to secure specified weight per linear inch of tire width. Vibratory rollers shall meet the requirements of Section 5-04.3(4)B.

Other combinations and types of Equipment may be substituted for the above if approved by the Engineer. Additional Equipment shall be supplied if required by the Engineer. Such Equipment includes, but is not limited to, bottom-dump hauling Equipment with transfer spreading facilities; self-propelled spreading and
leveling machines; and spreader boxes equipped with wheels or so constructed as to preclude any damage to the Subgrade or underlying courses.

The Equipment used for the Work shall be subject to the Engineer’s approval.

4-04.3(2) SUBGRADE

The Subgrade shall be prepared as specified in Section 2-06 and shall be approved by the Engineer before placing ballast or surfacing Materials.

Gravel base shall be uniformly spread upon the prepared Subgrade to the depth, width, and cross-section indicated on the Drawings.

4-04.3(3) MIXING

Unless otherwise specified, the Contractor may use either, or both, of the following described methods:

1. **Central Plant Mix Method.** The surfacing Material and water shall be mixed in an approved mixing plant as described in Section 4-04.3(1). The completed mixture shall be a thoroughly mixed combination of proportioned Materials and water, uniform in distribution of particle sizes and moisture content. A mixture containing water in excess of the proportion established by the Engineer will not be accepted.

2. **Road Mix Method.** After Material for each layer of surfacing has been placed, the Material shall be mixed until uniform throughout by motor graders or other Equipment approved by the Engineer. Water to facilitate mixing and compacting shall be added in amounts acceptable to the Engineer.

4-04.3(4) PLACING AND SPREADING

Street areas to be paved with asphalt concrete pavement, crushed surfacing shall be placed to a compacted depth of 6 inches.

Spreading of the first course of surfacing or ballasting shall begin at points nearest to the point of loading and successive courses shall begin at points farthest from the point of loading. Each course shall be constructed continuously from the beginning point of the course. The first course of surfacing or ballasting Material shall be placed on the entire available Subgrade before placing the succeeding course. If the Engineer deems it necessary, a succeeding course shall be placed over a section of a previously placed course before the final completion (Physical Completion Date) of that course.

Crushed surfacing, Base Course and top course shall be constructed in layers not to exceed 4 inches in depth. Ballast shall be constructed in layers with each layer not to exceed 6 inches in depth.

Each layer of surfacing and ballasting Material shall be placed and spread by Equipment approved for use by the Engineer. The surfacing and ballasting shall be spread by any method that results in an even distribution of the Material upon the roadway without perceptible separation in gradation. The Material shall be spread and screeded to a depth and surface uniformity which permits compaction to a reasonably true line, grade, depth, course, and cross section without further shaping.

Should there occur during any stage of the placing and spreading operation a separation of the coarser from the finer Materials, causing, in the opinion of the Engineer, serious lack of uniformity in the grading, the Contractor shall immediately, upon request of the Engineer, make such changes in the method of handling the Material which prevents separation.

There shall be a distance of not less than 1 block nor more than 1/2 mile between the construction of any two courses of surfacing or ballast. Uniform gradations of mineral aggregates shall be used for surfacing on Roadways.

Before placing any layer, the preceding layer shall be properly bound, and all floating or loose stone shall be removed from the surface.

4-04.3(5) SHAPING AND COMPACTION

Following spreading and shaping of each layer, the layer shall be compacted to a minimum 95 percent of the maximum density determined in accordance with Section 2-03.3(14)E before the next succeeding layer of surfacing or pavement is placed.
When necessary, a mist or spray of water shall be applied to replace moisture lost by evaporation should the Engineer determine inadequate moisture is indicated. Each completed layer shall have a smooth, bound, uniform surface true to the line, grade, and cross-section indicated on the Drawings, or as staked by the Engineer.

When the thickness of a layer is less than 2 inches, density testing will not be required and the Engineer will determine the number of Equipment applications required for the particular compaction Equipment available. Each course of surfacing shall be compacted until the Material does not creep or yield under the compaction Equipment before a succeeding course of surfacing Material is applied. All compaction shall begin at the outer edges of the surfacing and continue towards the center.

4-04.3(6) RESERVED
4-04.3(7) MISCELLANEOUS REQUIREMENTS

The surface of each layer of surfacing Material shall be maintained true to line, grade, and cross-section by blading, watering or aerating as required, and rolling until placing the next succeeding course or the final paving surface. The first course of surfacing Material shall be placed on all available Subgrade before placing the next overlay course. There shall be a distance of not less than one hundred feet between the construction of any two courses of surfacing or ballast.

Should irregularities develop in any layer surface during or after compaction, they shall be remedied by loosening the surface and correcting the defects after which the entire area including the surrounding surface shall be thoroughly re-compacted. The completed surface shall be true to line, grade, and crown before proceeding with the surfacing or final paving.

4-04.3(8) WEATHER LIMITATIONS

See Unworkable Day in Section 1-01.3, and Sections 1-05.1 and 1-08.

When, in the opinion of the Engineer, the weather is such that satisfactory results cannot be obtained, the Contractor shall suspend operations until the weather is favorable. No surfacing materials shall be placed in snow or on a soft, muddy, or frozen Subgrade.

4-04.3(9) HAULING

Hauling Equipment shall be routed over the Roadway in a manner to be most effective in the compacting of the surfacing. Hauling over any of the surfacing in the process of construction will not be permitted when, in the opinion of the Engineer, hauling adversely impacts the Roadway.

4-04.3(10) HOURS OF WORK

See Section 1-08.1(4).

4-04.3(11) SHOULDER BALLAST

Shoulder ballast shall not be placed until the abutting pavement has been completed. Shoulder ballast shall be placed through a spreader box in one lift. Processing of the Shoulder ballast course on the Roadway will not be permitted. Compaction shall be accomplished by making a minimum of three passes over the aggregate with a vibratory compactor of a type acceptable to the Engineer. The density requirements of Section 4-04.3(5) shall not apply.

4-04.3(12) APPLICATION OF DUST PALLIATIVE

Completed crushed rock surfacing courses or Roadways shall be given two or more applications of dust palliative oil to the limits specified. Dust palliative shall be CMS-2 and shall be uniformly applied by an approved pressure-type distributor at the rate of 0.3 gallons of emulsion per square yard of surface to be treated. Before succeeding applications of dust palliative are applied, the preceding application shall have thoroughly dried, as approved by the Engineer.

Dust palliative shall not be applied upon a wet surface nor when the temperature is below 60°F.

The Contractor shall furnish and place Type 6 sand on newly oiled streets to such limits indicated on the Drawings to prevent tracking of oil onto adjacent surfaces. Sand shall also be used where, in the opinion of the Engineer, the oil penetration is unsatisfactory.
4-04.3(13) RESURFACING OF OIL MAT AND GRAVEL STREETS

The surface of existing oil mat and graveled streets shall be scarified and bladed to a minimum width of 21 feet, unless indicated otherwise or directed otherwise by the Engineer, until it has a uniform grade and cross section with a 3-inch to 5-inch crown at the center line. No attempt shall be made to apply oil to the street surface disturbed by construction operations without first scarifying and blading the entire Roadway. Preparation Work on the street surface shall produce a smooth, crowned surface, without residual ripples, ridges, or irregularities as determined by the Engineer. All stones, lumps, broken concrete or asphalt, bricks, or other mineral matter which in the opinion of the Engineer will not pass a 3-inch standard sieve size shall be removed. All wood, peat, organic matter, or other deleterious matter shall also be removed prior to the application of the crushed surfacing. In shaping the existing surfacing, all Material that may have been displaced by traffic, or by other means, shall be bladed into the newly formed surfacing section.

Crushed Surfacing, mineral aggregate Type 1, shall be applied only after the newly prepared street surface has been approved by the Engineer. Crushed surfacing shall then be spread to a minimum depth of 2 inches by any method that results in an even distribution of the Material upon the Roadway without perceptible separation in gradation. Where separation does occur, correction shall be made according to Section 4-04.3(4). During or after spreading operations, the newly spread crushed surfacing shall be shaped by blading to conform to the depth, line, grade, and cross section indicated on the Drawings. The Contractor shall comply with the requirements of Section 1-07.5 regarding the control of dust.

After final grading has been completed and approved by the Engineer, dust palliative oil shall be applied as specified in Section 4-04.3(12). Prior to opening the newly oiled streets to traffic, warning signs shall be placed at locations on all routes leading to the freshly oiled roadways as approved by the Engineer. These signs shall say “Caution - Fresh Oil”, be of a size and Material with adequately sized lettering and bordering meeting the “General Requirements” and requirements for “Warning Signs” of the City of Seattle Traffic Control Manual for In-Street Work as approved by the Engineer, and shall remain at the designated locations until directed otherwise by the Engineer (see Section 1-07.23 and Section 1-10).

4-04.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Crushed rock surfacing, top course and Base Course; ballast; and gravel base will be measured by the ton in accordance with Section 1-09.1.

“Mineral Aggregate, (Type)” for gravel base will be measured by the ton in accordance with Section 1-09.1.

4-04.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 4-04 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Dust Palliative,” per gallon.

 The Contract unit price for “Dust Palliative” shall include all costs for the Work required to furnish and place dust palliative as specified.

 Payment for mineral aggregate of the type specified shall be in accordance with Section 4-01.5.

 If the Engineer directs the Contractor to change the type of mineral aggregate from that specified, then any additional compensation resulting from the substitution will be limited to the actual additional unit cost of the substituted mineral aggregate based upon invoices from the Supplier. Additional payment for Contractor requested changes in mineral aggregate type which are approved by the Engineer will not be made.

SECTION 4-05 FULL DEPTH ASPHALT PAVEMENT RECYCLING

4-05.1 DESCRIPTION

This Work shall consist of recycling existing pavement by a technique in which existing full depth asphalt pavement and a predetermined portion of the underlying Materials are pulverized, blended, mixed, and
compacted resulting in a uniformly mixed Base Course. Increased stabilization is obtained by mixing with additives. A final wearing surface of asphalt concrete per Section 5-04 shall follow.

4-05.1A SUBMITTAL
At least 10 Working Days prior to intended use, the Contractor shall submit a mix design to the Engineer for approval. This mix design shall indicate the amount of each additive applied per square yard of pulverized surface area to obtain the desired mix proportion with the pulverized Materials to the depth indicated on the Drawings. Laboratory analyses and locations of borings in the Project area to be treated will be provided in the Project Manual.

4-05.2 MATERIALS
Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Asphalt Emulsion</td>
<td>9-02</td>
</tr>
<tr>
<td>Mineral Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
</tbody>
</table>

Lime shall be a hydrated (not agricultural) lime.

4-05.3 CONSTRUCTION REQUIREMENTS

4-05.3(1) EQUIPMENT
The Contractor has the option to use whatever Equipment can effectively pulverize and blend the Materials. The Equipment to be used must have the capability of introducing liquid additives uniformly and accurately.

The mixing Equipment shall be equipped with a foot per minute indicator which is integral with the variable speed pump controller ensuring that asphalt emulsion can be added only when the machine is moving.

The metering system shall include a totalizer so that the amount of asphalt emulsion used during any given period can be read directly and shall also include a gallons per minute gauge to indicate the instantaneous flow rate during the mixing operation.

Equipment acceptable to the Engineer for both pulverizing and mixing is the CMI RS-500 Reclaimer / Stabilizer or approved equal.

The compaction Equipment shall be a vibratory roller compactor weighing a minimum 15 tons.

4-05.3(2) CONSTRUCTION METHOD

4-05.3(2)A REMOVAL OF OBSTACLES
Before the asphalt pavement reclamation process begins, existing utility castings within the pavement area to be reclaimed shall be temporarily removed and the opening securely covered so that the pavement reclamation process does not adversely impact the existing utility and the existing utility does not adversely impact the reclamation Equipment. The depth of removal must provide adequate unobstructed clearance between the top of the temporary utility cover and the existing pavement surface to accommodate the pavement reclamation operation. The temporary cover for the utility opening shall have sufficient strength and shall be adequately secured to the exposed utility opening to withstand the stresses of the reclamation process. The location of existing utilities which have had castings removed and then covered shall be “tied in” so that after reclamation, the covered utility can be located and reinstalled to finished grade.

All other obstacles identified on the Drawings shall be removed as necessary.

4-05.3(2)B PULVERIZATION
The existing pavement and base Material shall be pulverized and blended to the depth indicated on the Drawings so the entire mass of Material shall be uniformly graded. The pulverized Material shall have a minimum 95% passing the 1-1/2 inch sieve size. Material gradation may vary due to local aggregates and conditions; however, acceptance of the pulverized Material will be based on visual inspection by the Engineer. The Contractor should be prepared to remove all rock larger than 3 inches and all deleterious Material. The pulverizing operation shall be completed prior to the mixing operation. If any pulverized section is to be temporarily opened to traffic, it shall first be shaped and compacted as approved by the Engineer.
PORTLAND CEMENT OR LIME, if required as an additive to the emulsion treated base, shall be lightly dusted onto the pulverized surface at a uniform rate of application. The application of Portland cement or lime shall be prior to the application of asphalt emulsion and the mixing operation.

The emulsified asphalt shall be uniformly distributed and mixed with the pulverized material and any imported material as specified. The mixing operation may be accomplished by using either the same equipment used for the pulverizing operation or a separate machine designed for in-place continuous mixing. Regardless of which method is used, a positive displacement variable speed pump and control system capable of metering the emulsion application rate to a tenth of a gallon per square yard shall be used.

The application rate of the emulsified asphalt shall be expressed in gallons per square yard. This rate shall be calculated from the designated percent of emulsion based on the dry unit weight of the unmixed in-place material as determined by the Engineer.

The mixing operation shall be completed in continuous segments. Each segment must be processed and compacted by the end of each day and be ready to open to traffic.

A density of the compacted material satisfactory to the Engineer will be determined as follows:

After each pass of the vibratory roller, nuclear densometer readings of the compacted material will be taken to the depth indicated on the drawings. These nuclear densometer readings will be taken at several locations so as to determine a relationship indicating "measured density" vs. "number of passes" of the vibratory roller. When the change in density readings between successive passes of the roller at a given test location increases by less than 2% of the previous density reading at that same location then the compaction of the material at that location will be considered acceptable.

4-05.3(2)D FINAL SURFACE PREPARATION

The emulsion treated base shall be allowed to cure for a minimum of 10 days prior to the application of the wearing surface. The length of time necessary for proper curing may vary dependent on the weather and environmental conditions.

4-05.4 MEASUREMENT

Bid items of Work completed pursuant to contract Documents will be measured as provided in Section 1.09.1 Measurement of Quantities unless otherwise provided for by individual measurement paragraphs herein this Section.

Measurement for "reset casting for pavement recycling" will be per each.

Measurement for "full depth pavement recycling" will be by the square yard of existing asphalt pavement pulverized, to the depth and within the limits called out on the drawings as specified.

Measurement for "Portland cement for pavement recycling" will be by the ton of Portland cement applied to the surface of pulverized pavement as specified.

Measurement for "lime for pavement recycling" will be by the ton of hydrated lime applied to the surface of the pulverized pavement as specified.

Measurement for "emulsified asphalt for pavement recycling" will be by the ton of emulsified asphalt used during the mixing process as specified.

4-05.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 4-05 will be made at the contract unit prices bid only for the pay items listed or referred below:

1. "reset casting for pavement recycling," per each.

The contract unit price for "reset casting for pavement recycling", per each, shall include all costs for the materials and work required to temporarily remove utility casting and sufficient upper portion of collar and leveling material as necessary; securely place a temporary cover, and replace permanent casting, and collar and leveling material, as specified.

2. "full depth pavement recycling," per square yard.
The Contract unit price for "Full Depth Pavement Recycling", per square yard, shall include all costs for the Work required to furnish the Equipment and pulverize the existing asphalt pavement as specified to the depth and to the limits indicated on the Drawings, to apply and mix the additives to the depth indicated on the Drawings; to grade, shape and compact; and apply fog seal as specified. The application of water as necessary, will be considered incidental to this Bid item and no separate payment will be made.

3. "Portland Cement for Pavement Recycling," per ton
 The Contract unit price for "Portland Cement for Pavement Recycling" shall include all costs for the Work and Materials required to furnish and apply the Portland cement to the pulverized surface as specified.

 The Contract unit price for "Lime for Pavement Recycling" shall include all costs for the Work and Materials required to furnish and apply the lime to the pulverized surface as specified.

 The Contract unit price for "Emulsified Asphalt for Pavement Recycling" shall include all costs for the Work and Materials to furnish and apply the emulsified asphalt as specified.

SECTION 4-06 ASPHALT TREATED BASE

4-06.1 DESCRIPTION
Asphalt treated base consists of a compacted course of base Material which has been weatherproofed and stabilized by treatment with an asphalt binder.

The Work shall consist of one or more courses of asphalt treated base placed on the Subgrade in accordance with these Specifications and in conformity with the lines, grades, thickness, and typical cross-sections shown in the Drawings or staked by the Engineer.

4-06.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>9-02</td>
</tr>
<tr>
<td>Anti-Stripping Additive</td>
<td>9-02</td>
</tr>
<tr>
<td>Aggregates</td>
<td>9-03</td>
</tr>
</tbody>
</table>

The grade of paving asphalt shall be PG 64-22 meeting the requirements of Section 9-02.1(4).

4-06.3 CONSTRUCTION REQUIREMENTS

4-06.3(1) ASPHALT MIXING PLANT
Asphalt mixing plants for asphalt treated base shall meet the following requirements:

1. **Heating:** The plant shall be capable of heating the aggregates to the required temperature.
2. **Proportioning:** The mixing plant shall be capable of proportioning the aggregates to meet the specified requirements, and of producing asphalt at the rate specified by the Engineer. If the aggregates are supplied in two or more sizes, means shall be provided for proportioning or blending the different sizes of aggregates to produce Material meeting the specified gradation and other requirements.
3. **Mixing:** The mixer shall be capable of producing a homogeneous mixture of uniformly coated aggregates meeting the specified requirements.

4-06.3(2) PREPARATION OF AGGREGATES
Aggregates for ATB shall be heated to a temperature between the limits of 350°F and 375°F, unless directed otherwise by the Engineer.
4-06.3(2)A MIX DESIGN
The mix design requirements for asphalt treated base shall be as described in Section 5-04.3(7)B.

4-06.3(3) HEATING OF ASPHALT MATERIAL
Heating of the asphalt Material shall conform to the requirements of Section 5-04.3(6).

4-06.3(4) MIXING
The asphalt treated base shall be mixed in accordance with the requirements of Section 5-04.3(8).

4-06.3(5) HAULING EQUIPMENT
Hauling Equipment for asphalt treated base shall conform to the requirements of Section 5-04.3(2).

4-06.3(6) SPREADING AND FINISHING
4-06.3(6)A GENERAL
Asphalt treated base shall be spread with a spreading machine equipped with a stationary, vibratory, or oscillating screed or cut-off device, subject to the approval of the Engineer. The Engineer’s approval of the Equipment will be based on a demonstration that the finished product meets all requirements specified. Automatic controls are not required.

The temperature of the mixture at the time compaction is achieved shall be a minimum of 185°F.
When the total depth of ATB exceeds 3 inches, the ATB Material shall be placed in two or more equal courses with each not to exceed 3 inches in thickness.

4-06.3(6)B SUBGRADE PROTECTION COURSE
The Contractor shall place the first course of ATB as a protection for the prepared Subgrade as soon as possible after the Subgrade has been completed.

The surface of the Subgrade protection layer when constructed on a grading Project shall conform to grade and smoothness requirements that apply to the Subgrade upon which it is placed.

4-06.3(6)C FINISH COURSE
The final surface course of the asphalt treated base, excluding Shoulders, shall not deviate at any point more than 3/8-inch from the bottom edge of a 10-foot straightedge laid on the surface in any direction on either side of the Roadway crown. Failure to meet this requirement shall necessitate corrective measures acceptable to the Engineer to achieve the required tolerance, at no expense to the Owner.

When Portland cement concrete pavement is placed on asphalt-treated base, the surface tolerance of the asphalt-treated base shall be such that no elevation lies above the plan grade minus the specified plan depth of Portland cement concrete pavement. Prior to placing the Portland cement concrete pavement, any such irregularities shall be brought to the required tolerance by grinding or other means approved by the Engineer, at no expense to the Owner.

4-06.3(7) DENSITY
The asphalt treated base shall be compacted to a density of not less than 80 percent of the maximum theoretical density established for the mix by WSDOT Test Method 705. The density of the base shall be determined by means specified in Section 5-04.3(10)B. The frequency of these tests shall be at the discretion of the Engineer, but in no case shall it be less than one control lot for each normal Day’s production. The use of Equipment which results in damage to the Materials or produces substandard workmanship will not be permitted.

4-06.3(8) ANTI-STRIPPING ADDITIVE
An anti-stripping additive shall be added to the asphalt Material in accordance with Section 9-02.4, when directed by the Engineer.

4-06.3(9) COMPACTION
The method of compaction shall be as specified in Section 5-04.3(10).
4-06.4 **MEASUREMENT**

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Asphalt treated base will be measured by the ton in accordance with Section 5-04.4.

4-06.5 **PAYMENT**

Compensation for the cost necessary to complete the Work described in Section 4-06 will be made at the Contract unit price Bid only for the pay item listed or referenced below:

1. "**Pavement Base, Asphalt Treated (ATB),**" per ton.

 The Contract unit price for "Pavement Base, Asphalt Treated (ATB)" shall include the cost of all Work described in Section 4-06 and not otherwise provided for separately and necessary to furnish and construct the asphalt treated base on a prepared Subgrade to the lines, grades, and cross sections required.

2. "**Anti-Stripping Additive**, payment will be in accordance with Section 1-09.4.

 Payment for Roadway excavation and Subgrade preparation including excavation and disposal of unsuitable Material shall be in accordance with applicable Sections.

SECTION 4-07 FULL DEPTH PAVEMENT RECLAMATION

4-07.1 **DESCRIPTION**

The Work consists of pulverizing the existing asphalt concrete pavement and a portion of the underlying base Material to the depth and width indicated on the Drawings; grading the pulverized Roadway in reasonably close conformance with the slopes and the grades indicated on the Drawings; adding Portland cement and water at the specified rates; in-place mixing of the pulverized Roadway Materials and additives to the depth specified; regrading in conformance with the slopes and grades indicated on the Drawings; and compacting the mixed stabilized base as specified. A portion of the bottom section of pulverized base Material shall not be mixed with Portland cement.

4-07.1A **SUBMITTAL**

For this Project and at least 10 Working Days prior to intended use, the Contractor shall submit a mix design to the Engineer for approval. This mix design shall indicate the amount of each additive applied per square yard of pulverized surface area to obtain the desired mix proportion with the pulverized Materials to the depth indicated on the Drawings. Locations of borehole samples within the existing area of pavement to be treated, will be provided in the Project Manual.

4-07.2 **MATERIALS**

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
<tr>
<td>Curing Materials and Admixtures</td>
<td>9-23</td>
</tr>
<tr>
<td>Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Joint Filler and Sealants</td>
<td>9-04</td>
</tr>
</tbody>
</table>

4-07.3 **CONSTRUCTION REQUIREMENTS**

4-07.3(1) **EQUIPMENT**

Equipment acceptable to the Engineer for both pulverizing and mixing is the CMI RS-500 Reclaimer / Stabilizer or approved equal. The Contractor shall submit information describing the Equipment to be used for this Work to the Engineer for approval at least 5 Working Days in advance.

The compaction Equipment shall be a vibratory roller compactor weighing a minimum 15 tons.
4-07.3(2) CONSTRUCTION METHOD

4-07.3(2)A PULVERIZING

The Contractor shall pulverize existing pavement and underlying Base Course Materials to the width and depth indicated on the Drawings. The Contractor shall make as many passes as necessary to blend all pulverized Materials to the width and depth indicated on the Drawings. The blended Material shall conform to the following gradation:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing (by weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2 Inch Square Opening</td>
<td>96%</td>
</tr>
</tbody>
</table>

Acceptance of the gradation will be based on visual inspection of the Engineer. The blended Material shall be shaped and rolled to the satisfaction of the Engineer to allow for temporary use of traffic, as necessary. Shaping shall be continued until a uniform Roadway section is developed. The surface shall be within 0.10± feet of the finished grade and the Materials shall have a uniform and consistent gradation. All rocks larger than 3 inches and all other deleterious Material shall be removed and disposed.

4-07.3(2)B DISTRIBUTING ADDITIVES

After the pulverizing and initial shaping and rolling operations are completed, additives shall be placed on the Roadway surface for mixing with underlying roadway Materials to the depth indicated on the Drawings. The Portland cement shall be distributed onto the prepared Roadway surface at a rate to obtain the approved mix design proportions after mixing and blending water shall be applied to the Roadway surface at a rate such that the moisture content of the mixed Material does not exceed the optimum moisture content for the mixed Material by more than 2%.

Portland cement and water shall not be placed so far ahead of the mixing Equipment such that the soil-cement pavement base cannot be mixed, graded, and compacted within 90 minutes after placement of the Portland cement and water. Traffic shall not be permitted on the treated surface for a minimum of 3 Days to allow for curing.

See Section 2-07 regarding watering except payment for water shall be in accordance with Section 4-07.5.

4-07.3(2)C MIXING

The mixing operation shall consist of thoroughly mixing the distributed additives with the pulverized Materials to the total combined depth indicated on the Drawings. The mixing Equipment shall be the same Equipment used for the pulverizing unless otherwise approved by the Engineer. The Contractor shall be prepared to provide additional additives or cross mixing or both, as determined by the Engineer, to localized areas to achieve a property mixed base. All rocks and Material larger than 3 inches which are exposed by the mixing operation shall be removed by the Contractor. Traffic shall not be permitted on the treated surface for a minimum of 3 Days to allow for curing.

4-07.3(2)D FINAL GRADING COMPACTING AND CURING

The mixed and stabilized Roadway Material shall be final graded and compacted within 90 minutes after the addition of Portland cement and water. The finished grade shall be as indicated on the Drawings unless directed otherwise by the Engineer (see Section 1-04.4). A density of the compacted soil-cement satisfactory to the Engineer will be determined as follows:

After each pass of the vibratory roller, a nuclear densometer reading of the compacted Material will be taken to the depth indicated on the Drawings. These nuclear densometer readings will be taken at several locations so as to determine a relationship indicating “Measured Density” vs. “Number of Passes” of the roller. When the change in density readings between successive passes of the roller at a given test location increases by less than 2% of the previous density reading at that same location, then the compaction of the Material at that location will be considered acceptable.

The completed Base Course shall be allowed to cure for a minimum of 3 Days before allowing traffic access. The compacted soil cement shall not be allowed to dry. The Contractor may use the water truck or may
use any other method of supplying water to keep the finished surface moist and prevent lost of moisture from the treated Material. The Contractor shall apply a tack coat of as soon as practical after final compaction in accordance with Section 5-04.3(5)B4. The Class A asphalt wearing course shall be applied as soon as practicable after the 3 Day-curing period and before opening the treated pavement to traffic.

4-07.3(2)E PATCHING AND CORRECTION OF DEFECTS

Any areas in the completed and stabilized base which appear non-uniform in any way including: segregation of aggregates; insufficient or excessive Portland cement or water; insufficient compaction; or an improper surface tolerance shall be removed and reprocessed, or replaced at the Engineer's direction.

4-07.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1 Measurement of Quantities unless otherwise provided for by individual measurement paragraphs herein this Section.

Measurement for "Full Depth Pavement Reclamation" will be by the square yard.
Measurement for "Portland Cement for Pavement Reclamation" will be by the ton.
Measurement for "Water" will be by the 1,000 gallons (Mgal).

4-07.5 PAYMENT

Compensation for the cost necessary to compete the Work described in Section 4-07 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Full Depth Pavement Reclamation,” per square yard.

 The Contract unit price for “Full Depth Pavement Reclamation”, per square yard, shall include all costs for the Work required to perform full depth Pavement reclamation, except Portland cement and water, as specified In Section 4-07. Payment for the tack coat shall be considered incidental to the Bid item “Full Depth Pavement Reclamation” and no separate or additional payment will be made therefore.

 The Contract unit price for "Portland Cement for Pavement Reclamation", per ton, shall include all costs for the Work required to furnish and apply Portland cement as specified In Section 4-07.

3. "Water", per 1,000 gallons (Mgal).

 The Contract unit price for "Water", per 1,000 gallons (Mgal), shall include all costs for the Work required to furnish and apply the water as required in Section 4-07.
DIVISION 5 SURFACE TREATMENTS AND PAVEMENTS

SECTION 5-01 SUBSEALING

5-01.1 DESCRIPTION
This Work shall consist of filling voids under existing cement concrete pavement and rigid base asphalt pavements by pumping a mixture of Portland cement, pozzolan, or fly ash, and water under the slabs in accordance with these Specifications.

5-01.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>9-23.9</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
<tr>
<td>Pozzolan</td>
<td>9-01.6</td>
</tr>
</tbody>
</table>

5-01.3 CONSTRUCTION REQUIREMENTS

5-01.3(1) PROPORTIONING MATERIALS
The standard mix design for subsealing is as follows:

<table>
<thead>
<tr>
<th>Proportion</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 part (by volume)</td>
<td>Portland cement Type I or II</td>
</tr>
<tr>
<td>3 parts (by volume)</td>
<td>pozzolan (natural or artificial)</td>
</tr>
<tr>
<td>2.25 parts (by volume)</td>
<td>water</td>
</tr>
</tbody>
</table>

Any deviation from the above mix design shall be approved by the Engineer. The water content may be varied by the Contractor as required for local conditions.

5-01.3(2) EQUIPMENT
All Equipment used in performance of the Work shall be subject to the approval of the Engineer and shall be maintained in satisfactory working condition at all times.

Air compressors to be used for operating air hammers, and for blowing air into the cavities beneath the pavement, shall be of sufficient size and capacity to perform the Work to the satisfaction of the Engineer.

Air hammers shall be equipped with drills that are capable of cutting 1-1/2 inch diameter holes through the pavement. The Equipment shall be in good working condition and operated in such a manner that out-of-round holes shall not be produced.

The grout plant shall consist of a cement injection pump and a high speed colloidal mixing machine. The colloidal mixing machine shall operate at a minimum speed of 1,200 rpm and shall consist of a rotor operating in close proximity to a stator, creating a high shearing action and subsequent pressure release to make a homogeneous mixture.

The dry Material shall be accurately measured, and the water shall be batched through a meter or scale with a totalizer for the day's consumption.

Wooden cylindrical plugs or other devices approved by the Engineer shall be provided to temporarily plug the application holes until the Material has set. The plugs shall be slightly tapered on one end for ease in driving.

5-01.3(3) CONSTRUCTION
Subsealing shall not be done when the pavement is wet, or when water is present under the pavement. Application holes shall be drilled through the cement concrete pavement in the approximate pattern as indicated on the Drawings.

Application holes shall be approximately 1-1/2 inches in diameter unless approved otherwise by the Engineer, and shall be perpendicular to the pavement surface. The Contractor shall not drill more holes in a day than can be filled or temporarily plugged during the same day. To prepare the cavity for injection of the subsealing mix Materials, compressed air shall be blown through the application holes for not less than 15 seconds nor more than 60 seconds, as determined by the Engineer. After the application holes are blown out
and the nozzle is firmly wedged into the hole, the subsealing mix shall be pumped into the application hole until all cavities are filled, or until any one of the following occurs:

1. A pavement slab or portion of a slab starts to rise.
2. Subsealing mix extrudes from adjacent application holes, or along or outside the longitudinal edges of the pavement.
3. The Engineer orders application of subsealing mix stopped. Immediately upon removal of the nozzle, the plug shall be inserted and firmly driven into the application holes.

Following the application and after the mix has set, the wooden plugs shall be removed and the application holes immediately filled with subsealing mix.

Subsealing shall be continued progressively through the entire Project.

Traffic shall not be allowed upon any subsealed area until the subseal has hardened.

In the event the Engineer determines that continued injection at any specific location is no longer economically feasible, the Contractor shall cease operations and move to a new location. The Contractor will be paid at the Contract unit price for Materials used to that point.

5-01.4 MEASUREMENT
Measurement for “Pavement Subseal” will be by the cubic foot of dry Materials used before the addition of water or other additives.

Measurement for “Drill Hole for Subsealing” will be by each hole drilled completely through the pavement.

5-01.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 5-01 will be made at the Contract unit prices Bid only for the payment items listed or referenced below:

1. “Drill Hole for Subsealing,” per each.
 The Contract unit price for “Drill Hole for Subsealing” shall include all costs for the Work required to drill the holes as specified.

2. “Pavement Subseal,” per cubic foot.
 The Contract unit price for “Pavement Subseal” shall include all costs for the Work required to complete the subsealing operation as specified.

SECTION 5-02 BITUMINOUS SURFACE TREATMENT
5-02.1 DESCRIPTION
5-02.1(1) GENERAL
This Work shall consist of constructing a single or multiple course bituminous surface by treating existing crushed rock, screened gravel or bituminous Roadway surfaces with liquid asphalt and covering with a mineral aggregate thoroughly cemented to the Roadway to obtain a wearing surface with good riding and nonskid qualities.

Roadway surfaces shall be classified as treated or untreated Roadway surfaces. A treated surface is defined as a paved surface consisting of asphalt concrete, cement concrete, brick, or seal coat. An untreated surface is defined as an unpaved surface which may consist of gravel, crushed rock or oil mat surfaces. Surfaces may be existing or new construction.

The method of treatment to be used on any particular Project shall be bituminous surface treatment, Class B.

5-02.1(2) BITUMINOUS SURFACE TREATMENT CLASS A
This method of treatment requires two applications of asphalt and three applications of aggregate. The second application (tack coat) shall be applied after the first application of prime coat has cured and all loose aggregate has been removed.
5-02.1(3) BITUMINOUS SURFACE TREATMENT CLASSES B, C, AND D

These methods require the placing of one application of asphalt and one or more sizes of aggregate as specified to an existing asphalt Roadway to seal and rejuvenate the surface and to produce a uniform Roadway surface with good nonskid characteristics.

5-02.2 MATERIALS

Materials shall meet the requirements of the following Sections:

- Asphalt (grade specified) 9-02
- Anti-Stripping Additive 9-02
- Aggregates 9-03

The grade of asphalt shall be Cationic Emulsified Asphalt (CRS-2) meeting the requirements of Section 9-02.1(6).

Mineral aggregate for Bituminous Surface Treatment Class A or B shall be Mineral aggregate Type 24, Chip Rock, meeting the requirements set forth in Section 9-03.

When cutback asphalts are specified or ordered by the Engineer for BST Class A, construction shall not begin until the need for anti-stripping Additive has been determined. The Contractor shall allow a minimum of seven Working Days after the necessary aggregate, asphalt, and additive samples have been received in the SPU Materials Laboratory for the necessary tests. Additional time will be required if the Contractor has requested more than one source of asphalt or additive be approved.

5-02.3 CONSTRUCTION REQUIREMENTS

5-02.3(1) EQUIPMENT

The Equipment used by the Contractor shall include scarifying, mixing, spreading, finishing and compacting Equipment, an asphalt distributor, and Equipment for heating asphalt Material, and shall be subject to approval by the Engineer before its use on the Work.

The distributor shall have a capacity of not less than 1,000 gallons, and shall be so designed, equipped, maintained, and operated that asphalt Material of an even heat shall be uniformly applied at the required rate. It shall be equipped with a 10-foot spray bar with extensions, pressure pump and gauge, volume gauge so located as to be observed easily by the Engineer from the ground, a tachometer to control accurately the speed and spread of asphalt, and two thermometers, one installed permanently in the tank to indicate temperatures of the asphalt at all times. The power for operating the pressure pump shall be supplied by a power unit which provides a uniform spray from each of the nozzles across the spray bar and extensions.

Rollers shall be self-propelled pneumatic-tired or smooth-wheeled rollers, each weighing not less than 10 tons.

Spreading Equipment shall be self-propelled, supported on at least four pneumatic tires, with an approved device for accurately metering and distributing the aggregate uniformly over the Roadway surface.

Brooms shall be motorized with a positive means of controlling vertical pressure.

Other Equipment necessary to satisfactorily perform the Work as specified herein shall be subject to approval by the Engineer before its use on the Work.

Additional units shall be placed on the Work when, in the opinion of the Engineer, it is considered necessary in order to fulfill the requirements of these Specifications, or to complete the Work within the time specified.

Both the asphalt distributor and the self-propelled chip spreader shall be calibrated prior to their use to insure applications within the coverage limits specified. Adjustment of the asphalt distributor spray bar height shall be such as to obtain a triple lap of spray fans from bars with a 4-inch nozzle spacing and a double lap from bars having a 6-inch nozzle spacing.

The Contractor shall frequently check and adjust, if necessary, the height of the spray bar during asphalt application to insure the height above the pavement surface does not vary more than 1 inch as the truck load lightens.
5-02.3(2) PREPARATION OF ROADWAY SURFACE

5-02.3(2)A UNTREATED SURFACES
Refer to Section 5-04.3(5)C.

No traffic will be allowed on the repaired surface until the prime coat of asphalt and aggregate is applied.

5-02.3(2)B TREATED SURFACES
Refer to Section 5-04.3(5)B.

5-02.3(2)C SOIL RESIDUAL HERBICIDE
Where shown in the Drawings, soil residual herbicide shall be applied in accordance with Section 5-04.3(5)E. All other provisions of Section 5-04 pertaining to soil residual herbicide shall apply.

5-02.3(3) APPLICATION OF ASPHALT
Upon the properly prepared Roadway surface, Cationic Emulsified Asphalt (CRS-2) shall be applied at the rate of 0.35 to 0.40 gallons per square yard (0.38 to 0.45 gallon per square yard in shaded areas) at a distributor spraying temperature between 140°F and 185°F. The Engineer may vary the amount of asphalt to be applied that in his judgment will give the best results.

To ensure uniform distribution of asphalt prior to beginning work, the distributor bar shall be operated over a pit or vat. To avoid gaps and ridges at transverse junctions of separate applications of asphalt, the Contractor shall spread sufficient building paper over the treated surface to make sure that the spray jets function normally when the untreated surface is reached.

The pattern of application of shots, and width and length of application of shots of asphalt Material shall be such as to provide proper coverage of crushed Material within the times specified, provide proper widths to such dimensions as to facilitate the most satisfactory coverage with crushed cover stone, and provide lapping of subsequent adjacent applications.

Asphalt shall be applied to spandrels of intersections and driveways immediately ahead of, or immediately behind the adjacent longitudinal street application.

Omissions (skips) by the distributor shall be immediately covered by hand application with the same grade of hot asphalt.

Any one spread of asphalt shall cover no more area than can be covered with mineral aggregate within 3 minutes from the time of application, upon any part of the spread.

Unless otherwise directed by the Engineer, asphalt shall be spread toward the source of mineral aggregate to avoid injury to the freshly treated surface. No asphalt shall be spread until adequate supplies of mineral aggregate are on hand on the site.

Where earth curbs or no curbs exist, the application of asphalt shall extend 4 inches beyond the gutter line. Where concrete curb and gutter exist, the application shall lap onto the gutter section, but shall not exceed 2 inches. Where concrete curb exists, the application shall be placed as closely as possible to the vertical surface without excessive splash onto the curb. Where concrete curb or curb and gutter exist, the distributor shall be equipped with a splash board designed to prevent spraying thereon.

All castings shall be covered with heavy building paper and weighed down with sand or crushed Material.

Hand sprayers shall be used to apply asphalt around castings, and to areas where coverage is insufficient.

5-02.3(4) CHANGE IN GRADES OF ASPHALT
At any time during the progress of the Work, the Engineer may order the use of other grades of asphalt Materials in substitution of the grades specified in the Contract if the intent of the Specifications will be better attained.

5-02.3(5) APPLICATION METHOD OF AGGREGATES
Any method of handling the mineral aggregate which causes segregation of the various sizes of aggregate particles shall be corrected by the Contractor upon the request of the Engineer so that a uniform product is incorporated in the Work.
After applying the asphalt evenly over the Roadway surface, aggregate of the type specified shall be evenly applied to the Roadway surface at a rate of 25 to 33 pounds per square yard by spreader Equipment. The quantity of aggregate to be applied shall be such that the asphalt shall be uniformly covered and shall not pick up under traffic. The aggregate shall be applied over the freshly spread asphalt by trailer-type or self-propelled spreader boxes of an approved design. The aggregate shall be applied so that trucks and spreader boxes do not travel on the fresh asphalt and the aggregate layer shall be spread in one operation for each application of asphalt. Spandrels of intersections, driveways, and bare spots shall be covered by hand spreading from trucks immediately behind the box application. Aggregate shall be spread in such a manner as to provide an 8-inch strip of asphalt exposed to provide a lap with the next application of asphalt.

The aggregate shall be damp and shall be free of dust and impurities, when applied to the Roadway. If the aggregate is dry or dusty or both dry and dusty as determined by the Engineer, the Contractor shall spray the aggregate with water to obtain a damp and dust free condition acceptable to the Engineer. Dusty or dry aggregate which compromises adhesion of the aggregate to the substrate will not be allowed.

As soon as the aggregate has been applied to the surface, the aggregate shall be well rolled with a pneumatic-tired roller. Places inaccessible to the pneumatic-tired roller, such as spandrels of intersections and private driveways, shall be rolled with a self-propelled smooth-wheel roller.

Where excess aggregate has been applied, it shall either be removed or be drifted uniformly over the adjacent Roadway by using a motor patrol grader equipped with a wire broom mold board, subject to approval of the Engineer. This type of brooming shall be held to a minimum, and where necessary it shall be very carefully performed so as not to disturb the mat in any way. Thin or bare spots in the spread of aggregate shall be corrected by hand spreading or by use of a grader as described above.

Rolling and brooming shall continue until the Roadway is evenly covered and the aggregate is well compacted and “set” into the asphalt. This operation shall continue, as directed, until the asphalt has cured to the extent that it does not “pick up” under traffic. Primarily, all rolling shall be performed with pneumatic rollers, except as otherwise described above, and the final rolling shall be performed with a self-propelled smooth-wheel roller.

During the maintenance period following the application of the Bituminous Surface Treatment, the Contractor shall perform brooming, spotting, and rolling as may be necessary to prevent “pick up” or other damage to the surface.

At any time during the progress of the Work, the Engineer may order the use of a different aggregate grading in lieu of the mineral aggregate specified if in the Engineer’s judgment the results contemplated by the Specifications will thereby be better attained.

5-02.3(6) ADDITIONAL ASPHALT AND AGGREGATE

If the application of asphalt or aggregate, or both, is insufficient or excessive for the required results, the Engineer may require the Contractor to make an additional application of one or both Materials in accordance with these Specifications, or at the direction of the Engineer.

5-02.3(7) PATCHING AND CORRECTION OF DEFECTS

Omissions by the distributor or damage to the treated surface of any coat shall be immediately covered by hand application with asphalt in adequate quantities. Holes which develop in the surface shall be patched in the same manner as specified in Section 5-04.3(5C).

Defects such as raveling, lack of uniformity, or other imperfections caused by faulty workmanship shall be corrected and new work shall not be started until such defects have been remedied.

All improper workmanship and defective Materials resulting from overheating, improper handling or application, shall be removed from the Roadway by the Contractor and shall be replaced with approved Materials and workmanship.

If the Engineer determines a fog seal is necessary at any time during the life of the Contract, the Contractor shall apply a fog seal of CSS-1 at the rate of 0.07 to 0.18 (0.02 to 0.05 residual) gallons per square yard. The emulsified asphalt shall be diluted with water at a rate of one part water to one part emulsified asphalt unless otherwise directed by the Engineer.
5-02.3(8) PROGRESS OF WORK

The Contractor shall organize the Work such that the entire operation progresses in an orderly and expeditious manner satisfactory to the Engineer.

The sequence of operation for placing Bituminous Surface Treatments shall be as follows:

1. Apply asphalt emulsion on a properly prepared Roadway surface resulting in a uniform application.
2. Apply mineral aggregate by spreader boxes or other means resulting in a uniform application.
3. Roll with pneumatic-tired and/or self-propelled smooth-wheeled roller.
4. Allow a minimum of 48 hours set time.
5. Sweep with an approved road broom to pick up and remove excess aggregate. This work shall be accomplished in the early morning hours before the heat from the sun has warmed the pavement.
6. Maintain Roadway surface for 5 calendar Days by sweeping and patching as necessary on a daily basis, maintaining traffic signing, etc.

Ten (10) Calendar Days after the final application, the Contractor shall make a final sweep with a mechanical broom, using the pick up broom only, to clear off any remaining loose aggregates. Gutter brooms shall not be used. The Contractor shall dispose of the excess aggregates.

5-02.3(9) PROTECTION OF STRUCTURES

All bridge handrails, guardrails, curbs, road signs, or other facilities shall be protected from splashing and overspray of the asphalt.

5-02.3(10) UNFAVORABLE WEATHER

Asphalt shall not be applied to excessively wet Material. Asphalt shall not be applied during rainfall, sand or dust storms, or before any imminent storms that might adversely impact the construction. The Engineer will determine whether the surface and Materials are acceptable for the construction in inclement weather.

The application of any asphalt to the Roadway shall be restricted to the following conditions:

1. The Roadway surface temperature shall be at least 60°F and the air temperature at least 60°F and either holding or rising, or
2. The air temperature shall be not less than 70°F when falling and the wind shall be less than 10 miles per hour as estimated by the Engineer.

No asphalt shall be applied which cannot be covered one hour before darkness. The Engineer may require the Contractor to delay application of asphalt until the atmospheric and Roadway conditions are satisfactory.

Construction of bituminous surface treatments on any Traveled Way shall not be carried out before May 15 or after September 1 of any year except upon written order of the Engineer.

5-02.3(11) ANTI-STRIPPING ADDITIVE

When directed by the Engineer, an anti-stripping additive shall be added to the asphalt Material in accordance with Section 9-02.4.

5-02.3(12) UNTREATED ROADWAY SURFACES

Existing crushed rock, gravel, and oil mat streets shall be restored with mineral aggregate Type 1, to a compacted depth of 4 inches. Final surfacing shall be constructed as specified in Section 5-04.3(5)C2.

5-02.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Asphalt (Grade)” will be made by the gallon or ton before dilution in accordance with Section 1-09.1.
The measurement of aggregates will be by the ton that is being placed in each truck, in accordance with Section 4-01.4.

5-02.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 5-02 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. **"Asphalt, (Grade),"** per gallon or ton.
 The Contract unit price for "Asphalt, (Grade)" shall include all costs for the Work required to construct a single or multiple course bituminous surface treatment as specified.

2. Other payment information.
 Payment for mineral aggregate will be made in accordance with Section 4-01.5

 In accordance with Section 5-02.3(4), the Engineer may order the use of other grades of asphalt Materials in substitution of the grades specified in the Project Manual. If the market price of the grade substituted is higher than that of the grade specified, the difference will be added to the Contract unit price for asphalt, or if lower, it will be deducted from the Contract unit price.

 All costs for the Work required to coat omissions or patch defects as specified in Section 5-02.3(7) shall be at the Contractor's expense.

 All costs for providing protection from splashing of asphalt in accordance with Section 5-02.3(9) shall be included in the Contract unit price for "Asphalt, (Grade)".

 All costs for Roadway preparation shall be paid in accordance with Section 5-04.5.

 All costs for water shall be in accordance with Section 2-07.5.

SECTION 5-03 RESERVED

SECTION 5-04 ASPHALT CONCRETE PAVEMENT

5-04.1 DESCRIPTION

This Work shall consist of one or more courses of plant mixed asphalt concrete placed on a prepared foundation or base in accordance with these Specifications and in conformity with the lines, grades, thicknesses, and typical cross-sections shown in the Drawings or established by the Engineer.

Asphalt concrete shall be composed of asphalt and aggregate which, with or without the addition of mineral filler and blending sand as may be required, shall be mixed in the proportions specified to provide a homogeneous, stable and workable mixture.

Asphalt concrete Class A, Class B, Class D, Class F and Class G are designated as leveling or wearing courses. Asphalt concrete Class E is designated as a pavement Base Course. With the exception of asphalt concrete Class D, all mixtures are considered dense graded asphalt concrete.

5-04.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>9-02</td>
</tr>
<tr>
<td>Anti-Stripping Additive</td>
<td>9-02</td>
</tr>
<tr>
<td>Aggregates</td>
<td>9-03</td>
</tr>
<tr>
<td>Blending Sand</td>
<td>9-03</td>
</tr>
<tr>
<td>Mineral Filler</td>
<td>9-03</td>
</tr>
<tr>
<td>Rejuvenating (Recycling) Agent</td>
<td>9-02.1(5)</td>
</tr>
<tr>
<td>Temporary Pavement Marking</td>
<td>9-29.4</td>
</tr>
</tbody>
</table>

The various mineral Materials may be furnished in whole or in part by the Owner for the manufacture of asphalt concrete, or the Contractor may be required to furnish them. If any of these mineral Materials are not provided by the Owner, it shall be understood that the Contractor shall furnish such mineral Materials in the
amounts required for the designated mix. Mineral Materials include coarse and fine aggregates, blending sand, and mineral filler.

Upon approval of the Engineer, the Contractor may have the option of utilizing asphalt concrete removed under the Contract, if any, or old asphalt concrete from an existing stockpile, or supplying all new Materials in the production of the asphalt concrete pavement, or any combination of the foregoing. If removed from an existing stockpile, the old asphalt concrete used must be uniform in gradation, asphalt content, and asphalt viscosity. If not from an identified and approved source, the aggregates must meet degradation and hardness requirements. Should the Contractor elect to use 20 percent or less of recycled Materials, the recycled Materials need not be uniform as long as the asphalt concrete meets the Specifications for the class specified. Recycled Materials shall not be used in asphalt concrete Class D.

When aggregates or a source for the production of aggregates is provided by the Owner, the approximate percentage of asphalt required in the mixture for the particular class of pavement will be set forth in the Contract Documents. The percentage is based upon a midline gradation mix design for the source provided.

The grade of asphalt for tack coats shall be Cationic Emulsified Asphalt CRS-2 or STE-1 meeting the requirements of Section 9-02.1(6).

The grade of asphalt for sealing joints and other meet lines shall be STE-1. Asphalt for crack sealing shall be as specified in Section 5-04.3(5)D.

Production of aggregates shall comply with the requirements of Section 3-01.

Unless otherwise specified on the Drawings or in the Project Manual, asphalt concrete pavement in all street areas shall be Asphalt Concrete Class A installed in 2 equal lifts to a total compacted thickness of 3 inches.

Asphalt concrete pavement patch shall be Class A meeting the requirements of this section.

Asphalt for temporary pavement patch shall be MC-250 meeting the requirements of Section 9-02. Mineral aggregates used in MC-250 asphalt mix shall meet the same requirements as the aggregates used in Asphalt Concrete Class A.

5-04.3 CONSTRUCTION REQUIREMENTS

5-04.3(1) ASPHALT MIXING PLANT

Sufficient storage space shall be provided for each size of aggregate. The different aggregate sizes shall be kept separated until they have been delivered to the cold elevator feeding the plant except that aggregates produced meeting the requirements of Section 9-03.8(3)B need not be separated. The storage yard shall be maintained neat and orderly and the separate stockpiles shall be readily accessible for sampling.

Plants used for the preparation of asphalt concrete shall conform to all requirements of Section 5-04.3(1)A except that scale requirements shall apply only where weight proportioning is used. In addition, batch plants shall conform to the requirements of Section 5-04.3(1)B; continuous mix plants shall conform to the requirements of Section 5-04.3(1)C; and rotary drum plants shall conform to the requirements of Section 5-04.3(1)D.

5-04.3(1)A REQUIREMENTS FOR ALL PLANTS

Except as noted in Section 5-04.3(1)E, all plants shall meet the following requirements:

1. The asphalt plant shall have a minimum capacity rating by the manufacturer as follows:
 For Projects involving 5,000 tons or more:
 - Batch plants — 2,000 lbs. per batch.
 - Continuous mix and rotary drum plants — 100 tons per hour.
 For Projects involving less than 5,000 tons:
 - Batch plants — 1,000 lbs. per batch.
 - Continuous mix and rotary drum plants — 45 tons per hour.

2. Smoke and dust control. When the asphalt plant is erected at a site for the primary purpose of producing mixtures for a specific project, dust and smoke from the plant shall be eliminated to the extent that they cause no inconvenience to property owners in the area or damage to their property. The Contractor shall be required to install supplemental Equipment, when necessary, to control the dust and smoke to meet the requirements of Section 1-07.1.

3. Scales. Plant and truck scales shall meet the requirements of Section 1-09.2.
4. Equipment for preparation of asphalt Material. Tanks for the storage of asphalt Material shall be equipped to heat and hold the Material at the required temperatures. The heating shall be accomplished by steam coils, electricity, or other approved means so that no flame shall be in contact with the tank. The circulating system for the asphalt Material shall be designed to ensure proper and continuous circulation during the operating period. Provision shall be made for measuring the asphalt in the storage tank and a valve shall be placed in the supply line to the mixer for sampling the Material.

5. Feeder for drier or drum mixer. The plant shall be provided with accurate mechanical means for uniformly feeding the aggregate into the drier so that uniform production and uniform temperature are maintained. The feeder for blending sand, when required, shall be capable of providing a consistent, uniform flow in the amount designated by the Engineer.

6. Screens. Plant screens, capable of screening all aggregates to the specified sizes and proportions and having normal capacities in excess of the full capacity of the mixer, shall be provided.

7. Bins. The plant shall include storage bins of sufficient capacity to supply the mixer when it is operating at full capacity. Bins shall be arranged to ensure separate and adequate storage of appropriate fractions of the aggregates. Separate dry storage shall be provided for mineral filler when used and the plant shall be equipped to feed such Material into the mixer. Each bin shall be provided with overflow pipes, sized and located to prevent Material backing up into other compartments or bins. Each compartment shall be provided with an outlet gate, constructed so there shall be no leakage when closed. The gates shall close quickly and completely. Bins shall be constructed so samples can be readily obtained. Bins shall be equipped with adequate tell-tale devices to indicate the level of the aggregates in the bins at the lower quarter points.

8. Asphalt control unit. Satisfactory means, either by weighing or metering, shall be provided to obtain the proper amount of asphalt Material in the mix. Means shall be provided for checking the quantity or rate of flow of asphalt Material into the mixer. The asphalt may also be proportioned by a device which sprays the asphalt into the mixer through six or more nozzles, and which weighs or proportions the Material for each batch by a positive rotating meter which is calibrated in pounds. The metering device shall have an established background of service and shall be approved by the Engineer.

9. Thermometric Equipment. An armored thermometer of adequate range in temperature reading shall be fixed in the asphalt feed line at a suitable location near the charging valve at the mixer unit. The plant shall also be equipped with either an approved dial-scale, a mercury actuated thermometer, an electric pyrometer, or other approved thermometric instrument placed at the discharge chute of the drier to automatically register or indicate the temperature of the heated aggregates. This device shall be in full view of the plant operator. The Engineer may require replacement of any thermometer with an approved temperature-recording apparatus for better regulation of the temperature of aggregates.

10. Dust collector. The plant shall be equipped with a dust collector constructed to waste or return uniformly to the hot elevator all or any part of the Material collected. When a baghouse is used for dust control, the Contractor shall be able to introduce the Material returned from the baghouse into the mixture at a uniform and continuous rate. Accurate mechanical means shall be provided for uniformly feeding the fines into the aggregate stream. To accomplish this, the Contractor shall provide a surge hopper with a holding capacity sufficient to accumulate the baghouse fines or shall have a variable speed mechanical feed interlocked to the plant which prevents any variance in feed into the aggregate stream. Either method shall provide uniform and continuous return of the well-graded fine Materials and be provided with a method of withdrawing the surplus fines independently for disposal.

11. Burner fuel. The plant burner fuel shall be restricted to the use of propane, butane, natural gas, methane, coal, No. 1 or No. 2 fuel oil, or other acceptable burner fuel as determined by the Engineer.
5-04.3(1)B REQUIREMENTS FOR BATCH PLANTS

In addition to the requirements listed under Section 5-04.3(1)A, batch plants shall meet the following requirements:

1. **The plant shall include a drier or driers which continuously agitate the aggregate during the heating and drying process, and be capable of preparing aggregates to specification requirements.**

2. **Weigh box or hopper.** The Equipment shall include a means for accurately weighing each size of aggregate in a weigh box or hopper suspended on scales and of ample size to hold a full batch without hand raking or running over. The gate shall close tightly so that no Material is allowed to leak into the mixer while a batch is being weighed.

3. **Asphalt control.** The Equipment used to measure the asphalt Material shall be accurate to plus or minus 0.5 percent. The asphalt bucket shall be a nontilting type with a loose sheet metal cover. The length of the discharge opening or spray bar shall be not less than 75 percent of the length of the mixer and it shall discharge directly into the mixer. The asphalt bucket, its discharge valve or valves and spray bar shall be adequately heated. Steam jackets, if used, shall be efficiently drained and all connections shall be constructed so they do not interfere with the efficient operation of the asphalt scales. The capacity of the asphalt bucket shall be at least 15 percent in excess of the weight of asphalt Material required in any batch. The plant shall have an adequately heated quick-acting, nondrip, charging valve located directly over the asphalt Material bucket. The indicator dial shall have a capacity of at least 15 percent in excess of the quantity of asphalt Material used in a batch. The controls shall be constructed so they may be locked at any dial setting and automatically reset to that reading after the addition of asphalt Material to each batch. The dial shall be in full view of the mixer operator. The flow of asphalt Material shall be automatically controlled so it begins when the dry mixing period is over. All of the asphalt Material required for one batch shall be discharged in not more than 15 seconds after the flow has started. The size and spacing of the spray bar openings shall provide a uniform application of asphalt Material the full length of the mixer. The section of the asphalt line between the charging valve and the spray bar shall be provided with a valve and outlet for checking the meter when a metering device is substituted for an asphalt Material bucket.

4. **Mixer.** The batch mixer shall be an approved type capable of producing a uniform mixture meeting the requirements of these Specifications. If not enclosed, the mixer box shall be equipped with a dust hood to prevent loss of dust. Clearance of the blades from all fixed and moving parts shall not exceed 1 inch unless the maximum diameter of the aggregate in the mix exceeds 1-1/2 inches, in which case the clearance shall not exceed 1-1/2 inches.

5. **Mixing time.** The plant shall be capable of regulation of the mixing time as specified in Section 5-04.3(8) in 5 second increments.

6. **Automatic controls.** All Projects using a batch mixer involving 5,000 tons or more of asphalt concrete shall conform to the following provisions. Automatic control of batch mixing operations may be used providing the requirements of this section are met. The proportioning and timing devices shall be automatic to the extent that the only manual operation required for the proportioning and mixing of Materials for a batch shall be a single operation of a switch or starter. The mixing plant shall be equipped with automatic weight proportioning devices to monitor and control the weights of the several components of aggregates and of the asphalt, plus timing lock devices to monitor and control the position of the aggregate weigh hopper dump gate, the asphalt bucket discharge valve, and the mixer discharge gate. Withdrawal from the aggregate bins and the discharge of the weigh hopper shall be so interlocked that the weigh hopper cannot discharge until the required quantity of aggregate from each bin has been deposited therein. The weigh hopper may be a single compartment, individual weight control type, or of the divided compartment, preset volume type. When the single compartment, individual weight control type is used, the automatic scale weight system shall discharge and weigh Material from one bin at a time. When the preset volume weigh hopper is used, the automatic control system shall check the total weight of each aggregate batch and provision shall be made to allow the Engineer to check easily and quickly the individual aggregate weights at any time. The timing lock devices shall be actuated by the opening of the aggregate weigh hopper dump gate. They shall lock the asphalt bucket discharge valve until preset dry mixing.
time is expired and shall lock the mixer discharge gate throughout the preset dry and wet mixing periods. The control of the timing shall be flexible and capable of being set at intervals of not more than 5 seconds throughout cycles up to 60 seconds. The dials of the timing locks and automatic weighing controls shall be so arranged that the time interval and mass proportion controls may be locked by the Engineer.

5-04.3(1)C REQUIREMENTS FOR CONTINUOUS MIX PLANTS

In addition to the requirements listed under Section 5-04.3(1)A, continuous mix plants shall meet the following requirements:

1. **Aggregate proportioning.** The plant shall include a means for accurately proportioning each size of aggregate. The plant shall have a feeder mounted under each compartment bin. Each compartment bin shall have an accurately controlled individual gate to form an orifice for volumetrically measuring the Material drawn from each compartment. The feeding orifice shall be rectangular with one dimension adjustable by positive mechanical means provided with a lock. Indicators shall be provided for each gate to show the respective gate opening in inches. The feeder belt or drive system shall be adjustable to various speeds and calibrated with various gate openings for the Material to be used.

2. **Weight calibration of aggregate feed.** The plant shall include a means for calibration of gate openings by weighing test samples. Provision shall be made so that Materials fed out of individual orifices may be bypassed to individual test boxes. The plant shall be equipped to conveniently handle individual test samples weighing not less than 200 pounds.

3. **Synchronization of aggregate feed and asphalt Material feed.** Satisfactory means shall be provided to afford positive interlocking control between the flow of aggregate from the bins and the flow of asphalt Material from the meter or other proportioning device. This control shall be accomplished by interlocking mechanical means or by any other positive method satisfactory to the Engineer. A warning device shall be provided to alert the plant operator any time the level of Material in any one bin is so low that uniform feed is discontinued.

4. **Mixer.** The plant shall include a continuous mixer of an approved type, adequately heated and capable of producing a uniform mixture meeting the requirements of these Specifications. It shall be equipped with a discharge hopper with dump gates which permit rapid and complete discharge of the mixture. The paddles shall be adjustable for angular position on the shafts and reversible to retard the flow of the mix. The mixer shall have a manufacturer's plate giving the net volumetric contents of the mixer at the several heights inscribed on a permanent gauge. Charts shall be provided showing the rate of feed of aggregate per minute for the aggregate being used.

5-04.3(1)D REQUIREMENTS FOR ROTARY DRUM PLANTS

In addition to the requirements listed under Section 5-04.3(1)A, rotary drum plants all meet the following requirements:

1. The plant shall have a feeder capable of uniformly introducing the aggregate into the drum. The aggregate feeder shall be synchronized with the asphalt Material feed. Satisfactory means shall be provided to afford positive interlocking control between each aggregate cold feed bin, aggregate feed, and the asphalt feed so the plant automatically activates a warning device if the feed of either aggregate or asphalt is interrupted.

2. The plant shall have the mixing capability to provide a uniform mixture meeting the requirements of these Specifications.

3. The asphalt Material feed shall have positive recording capabilities so the amount of asphalt incorporated into the mix during any given period of time may be read directly.

5-04.3(1)E SCREENLESS PLANTS

If the Contractor elects to produce aggregate in accordance with Section 9-03.8(3)B, then Item 6 — Screens and Item 7 — Bins of Section 5-04.3(1)A will not be required provided the completed mixture meets the Specifications as listed in Section 9-03.8(6) for the class of mix being produced.
5-04.3(2) HAULING EQUIPMENT

Trucks used for hauling asphalt concrete mixtures shall have tight, clean, smooth metal beds which have been thinly coated with a minimum amount of paraffin oil, or other approved material to prevent the mixture from adhering to the beds. Each truck shall have a cover of canvas or other suitable material of sufficient size to protect the mixture from the weather.

When dump truck beds are sprayed with oil, the excess oil shall be drained prior to filling with the asphalt mixture. For hopper trucks, the conveyor shall be in operation during the process of oiling the bed.

The asphalt concrete mixture shall leave the mixing plant at a temperature between 260°F and 350°F, and when deposited on the road shall have a minimum temperature of 250°F. The exact temperature range within the above limits will be as directed by the Engineer.

5-04.3(3) RESERVED

5-04.3(4) ASPHALT EQUIPMENT

5-04.3(4)A ASPHALT PAVERS

Asphalt pavers shall be self-contained, power-propelled units, provided with an activated screed or strike-off assembly, heated if necessary, and capable of spreading and finishing courses of asphalt plant mix material in lane widths applicable to the specified typical section and thicknesses shown in the Drawings.

The screed or strike-off assembly shall effectively produce a finished surface of the required evenness and texture without tearing, shoving, segregating, or gouging the mixture. Any bolt-on or hydraulic extensions shall produce the same results including ride, density, and surface texture as the screed or strike off assembly. Hydraulic extenders without screeds, augers, and vibration shall not be used in the Traveled Way.

When laying mixtures, the paver shall be operated at a uniform forward speed consistent with the plant production rate and roller train capacity to result in a continuous operation. The auger speed and flight gate opening shall be adjusted to coordinate with the operation.

The paver shall be equipped with automatic screed controls with sensors for either or both sides of the paver. The controls shall be capable of sensing grade from an outside reference line, sensing the transverse slope of the screed, and providing automatic signals which operate the screed to maintain the desired grade and transverse slope. The sensor shall be constructed so it operates from a reference line or a multi-footed ski-like arrangement.

The transverse slope controller shall be capable of maintaining the screed at the desired slope within plus or minus 0.1 percent. The paver shall be equipped with automatic feeder controls, properly adjusted to maintain a uniform depth of material ahead of the screed.

Manual operation will be permitted in the construction of irregularly shaped and minor areas. These areas, as determined by the Engineer, may include, but are not limited to, gore areas, road approaches, left-turn channelizations, and tapers.

When specified in the Contract, reference lines will be required for both outer edges of the Traveled Way for each main line roadway for vertical control. Horizontal control utilizing the reference line will be permitted. The grade and slope for intermediate lanes shall be controlled automatically from reference lines or by means of a multi-footed ski and a slope control device. When the finish of the grade prepared for paving is superior to the established tolerances, and, when in the opinion of the Engineer, further improvement to the line, grade, cross-section, and smoothness can best be achieved without the use of the reference line, a multi-footed ski-like arrangement may be substituted subject to the continued approval of the Engineer. After paving the first lane, a joint matcher may be used subject to the approval of the Engineer. The use of the reference line shall be reinstated immediately whenever the Contractor fails to maintain a superior pavement, or rhythmic undulations occur, or the surface smoothness of the course being paved fails to meet the requirements for wearing course. The reference line may be removed after the completion of the first course of asphalt concrete when approved by the Engineer and subject to reinstallation at the Contractor’s expense. The Contractor shall furnish and install all pins, brackets, tensioning devices, wire, and accessories necessary for satisfactory operation of the automatic control equipment. The Contractor shall submit samples of the above items along with the methods and procedures to the Engineer for approval at least 5 working days prior to installation.

On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the paving may be done with other equipment or by hand.
ROLLERS

Rollers shall be of the steel wheel, vibratory, or pneumatic tire type, in good condition, capable of reversing without backlash, and shall be operated at speeds slow enough to avoid displacement of the mixture. The number and weight of rollers shall be sufficient to compact the mixture as required in Section 5-04.3(10). The use of Equipment which results in excessive crushing of the aggregate will not be permitted. Rollers producing pickup, washboard, uneven compaction of the surface or other undesirable results will be rejected by the Engineer.

The following Specifications shall apply to the various types of rollers:

1. **Vibratory Rollers**
 a. A variable amplitude will be required, with at least 2 settings.
 b. A variable frequency with a 2,000 VPM minimum.
 c. The maximum rate of travel under vibration shall be limited to 3 mph.
 d. Pneumatic propulsion on Surface Courses shall be limited to smooth tires that do not leave visible tracks.

2. **Pneumatic Tired Rollers**
 a. The maximum rate of travel shall be limited to 5 mph.
 b. Skirts shall be firmly affixed to the perimeter of the roller and shall uniformly extend to within 1 inch of the pavement surface.

3. **Steel Wheel Rollers**
 a. The maximum rate of travel shall be limited to 4 mph.

On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing Equipment impractical, the paving may be done with other Equipment or by hand.

PLANERS

Planing shall be by the cold planing method only. Equipment shall be of a type that has operated successfully on work comparable to that in the Contract and shall be subject to the Engineer’s approval prior to use. Equipment shall be maintained in good working condition while in use. The storage of Equipment and volatile Material shall be off-street and in compliance with Seattle Fire Department regulations.

Cold planers shall be milling type Equipment capable of cutting at least a 5 foot chord to a depth of 4 inches in one pass. Smaller planers may be used for cutting around utility castings and making taper cuts for butt joints.

For mainline cold planing operations, the Equipment shall have automatic controls with sensor for either or both sides of the Equipment capable of sensing the proper grade from an outside reference line. The automatic controls shall also be capable of maintaining the desired transverse slope. The sensor shall be so constructed that it operates from a reference line or multi-footed ski-like arrangement. The transverse slope controller shall be capable of maintaining the screed at the desired slope within plus or minus 0.1 percent.

On areas where irregularities or unavoidable obstacles make the use of mechanical planing Equipment impractical, the planing may be done with other Equipment or by hand.

DISTRIBUTORS

Distributors shall meet the requirements of Section 5-02.3(1).

On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing Equipment impractical, the paving may be done with other Equipment or by hand.

PREPARATION OF STREET SURFACES

Street surfaces shall be classified as treated and untreated surfaces. Treated surfaces shall be cement concrete, asphalt concrete, brick, seal coat or other bituminous surface treatments. Untreated surfaces shall be crushed rock, gravel, or oil mat surfaces.

The Work of preparing existing street surfaces prior to the addition of one or more courses of asphalt concrete or other bituminous Material shall be classified as “surface preparation” for treated street surfaces, and “Roadway preparation” for untreated street surfaces.
5-04.3(5)B SURFACE PREPARATION - TREATED SURFACES

5-04.3(5)B1 GENERAL

When an existing treated surface is to be used as a base for one or more courses of new asphalt concrete or other surfacing, the treated surface shall first be swept, cleaned, and patched as follows:

1. Treated surfaces shall be swept with a power broom until free from dirt and other foreign matter. Hand brooms shall be used to clean omissions of the power broom. Fatty asphalt patches, grease drippings and other objectionable Material shall be removed from the existing pavement.

2. Excess asphalt joint filler shall be completely removed and premolded joint filler shall be removed to at least 1/2-inch below the surface of the existing pavement.

3. In order to obtain a base having uniform grade and cross section, all surface irregularities in the existing treated surface shall be corrected prior to placement of the new asphalt concrete or other bituminous surface treatment. Correction shall be by patching and if necessary, preleveling unless planing or heater-scarifying is specified. Although patching and preleveling may be necessary after planing, such work, after planing, shall be performed only when specified in the Contract Documents or designated by the Engineer.

5-04.3(5)B2 PRELEVELING

When a surface of the existing pavement or old base is irregular, it shall be brought to a uniform grade and cross section by preleveling.

As soon as the existing surface has been thoroughly cleaned, holes and discontinuities in the surface and edges and edge breaks shall be patched. Asphalt used for patching shall be Class A Asphalt concrete mix, heated to the temperature specified in Section 5-04.3(6). Before placing the premixed patch Material in the hole, the bottom and edges of the hole shall be tack coated. The patch Material shall be thoroughly compacted.

Patching shall be accomplished prior to preleveling or installation of the first asphalt course, whichever is applicable. Preleveling of uneven or broken surfaces shall be accomplished by placing asphalt concrete of the class specified with a motor patrol grader, by hand-raking, by Miller box, or by such other method as may be approved by the Engineer. After placement, the asphalt concrete shall be thoroughly compacted.

In some cases spot planing to remove high areas caused by rutting, etc., shall be performed prior to preleveling. Locations to be planed prior to preleveling will be as directed by the Engineer.

Unless specified otherwise in the Contract, preleveling Materials shall be the same class of asphalt concrete as the wearing course except that when asphalt concrete Class G is being used to construct the wearing course overlay, asphalt concrete Class A or Class B may, upon approval of the Engineer, be used as an Alternate for preleveling provided there is no increase in cost to the Owner for substituting one of the Alternate mixes.

5-04.3(5)B3 PLANING BITUMINOUS PAVEMENTS

When planing is specified, the surface of designated pavements or the top surface of subsurface courses shall be removed or reshaped by planing to remove irregularities and produce a prepared Subgrade acceptable for receiving an asphalt concrete overlay. Planing shall be by the cold milling method unless heater planing is specifically designated. The planer shall not be used on the final wearing course of new asphalt concrete construction.

Planing operations shall be conducted in a manner that do not tear, break, burn or otherwise damage the surface which is to remain. The finished planed surface shall be slightly grooved or roughened and shall be free from gouges, deep grooves, ridges, or other imperfections.

A tapered wedge cut shall be made longitudinally along curb lines sufficient to provide a minimum of 4 inches of curb reveal after placement and compaction of the final wearing course. A tapered wedge cut shall also be made at transitions to adjoining pavement surfaces (meet lines) where butt joints are indicated on the Drawings. Butt joints shall be cut in a straight line with vertical faces 2 inches or more in height and shall produce a smooth transition to the existing adjoining pavement.

After planing is complete or when designated by the Engineer, the planed surfaces shall be swept, cleaned, and if required by the Contract Documents or Engineer, patched and preleveled.
When the planed street surface is opened to traffic prior to asphalt concrete paving operations, the Contractor shall install, maintain and subsequently remove temporary pavement markings as specified in Section 5-04.3(17) and as directed by the Engineer.

Tapered sections of Temporary Asphalt (MC 250) shall be placed around each utility casting that protrudes more than 1 inch above the surface in the traveled Roadway, or any other area which can be a safety hazard to vehicular traffic. These temporary tapered sections shall be removed prior to laying the asphalt overlay.

5-04.3(5)B4 TACK COAT

A tack coat of asphalt, applied at the rate of 0.02 to 0.08 gallons per square yard of retained asphalt, shall be applied by a mechanical distributor, approved by the Engineer and meeting the requirements of Section 5-02.3(1), to all surfaces on which any course of asphalt concrete is to be placed or abutted including prior to preleveling. The distributor Equipment shall be capable of distributing asphalt uniformly over an area in controlled amounts and shall be equipped with hand operated spray Equipment for use only on inaccessible and irregularly shaped areas. When asphalt concrete pavement Class D is being constructed, the tack coat shall be applied to the existing surface at a rate of 0.12 to 0.20 (0.08 to 0.12 residual) gallons per square yard.

Where the new asphalt concrete abuts a curb or gutter, cold pavement joint, trimmed meet line, or any metal surface, a thin tack coat of asphalt shall be applied on the vertical face of the abutting surface by hand painting prior to paving. The application on the contact surfaces shall be thin and uniform in order to avoid an accumulation of excess asphalt in puddles. The Contractor shall not apply the tack coat on vertical contact surfaces above the finished height of the asphalt concrete being placed.

Where it is necessary to remove sections of existing pavements, the removal shall be performed in accordance with Section 2-02.

5-04.3(5)C SURFACE PREPARATION OF UNTREATED SURFACES

5-04.3(5)C1 GENERAL

Untreated Roadway surfaces, including intersections and side Roadway approaches which are to receive asphalt concrete pavement or other surfacing shall be shaped to a uniform grade and cross-section, conforming as nearly as possible to that which exists except:

1. When new lines and grades are indicated in the Contract Documents or staked by the Engineer; or
2. Where the height of the centerline crown above the gutterline or edge of Roadway, exceeds 2 percent of the distance of half the Roadway width, then the crown and adjacent Roadway shall be corrected by excavation, or scarifying and blading, to bring about a cross section having a revised crown height 2 percent of half the Roadway width distance, unless directed otherwise by the Engineer.

Lines and grades will not be set by the Engineer in item 2. immediately above. The basis for establishing final line and grade in such cases shall be curbs, curbs and gutters, existing pavement, or pavement edges or other existing street improvements. Existing driveways shall be graded as necessary to provide a smooth transition to the final grade of the new pavement surface including such grading as may be necessary to permit driveway adjustment with Class A Asphalt.

Where no curbs or curbs and gutters exist and where none are presently required, Subgrade preparation shall extend one foot on each side of the Roadway beyond the final asphalt paving width indicated on the Drawings or to such greater width as the Engineer may require. At street intersections the minimum radius of curve at edge of pavement shall be 20 feet.

The grade shall be shaped so that all frame castings for manholes, monument boxes, gate valve boxes, catch basins, etc. within the Roadway section to be treated extend above the prepared surface, such that the casting is flush with the final surface. Where existing asphalt or cement concrete pavement is being met with new asphalt surfacing, sufficient existing Material shall be removed to permit the forming of a butt joint. The end results shall be a smooth level Roadway surface by using a 10’ straight edge as specified in Section 5-04.3(13).

Those areas and surfaces which are to be prepared for the placement of asphalt concrete pavement or other surfacing shall be considered Subgrade for the new construction. See Section 2-06 for Subgrade preparation requirements. Excess native Material deemed suitable by the Engineer shall be stockpiled by the Contractor or bladed to the Roadway edge and used as needed for fill or Shoulder restoration following
completion of the paving. The scarified or excavated Material shall be used to the fullest extent possible as sub-base Material prior to the placement of new crushed rock.

During the operation of blading and rolling, water shall be applied in the amount and at locations designated by the Engineer.

If there is a surplus of stockpiled Material after construction is complete, the Contractor shall clean up the stockpile site and remove and dispose of the surplus Material.

When, in the opinion of the Engineer, insufficient Roadway Subgrade Material is available, the Contractor shall furnish, place, and compact a maximum of 2 inches of mineral aggregate Type 1 on the Subgrade. The Material shall not be placed unless specifically ordered in writing by the Engineer.

The Contractor shall insure that a 6 inch minimum depth of select and suitable native Material, or procured crushed rock base acceptable to the Engineer is provided for the asphalt paving.

The full width of the Roadway shall be sprinkled with water, when ordered by the Engineer, to alleviate dust and to keep the Subgrade Material moist as an aid to compaction. Immediately before the prime coat of asphalt is applied, the Roadway surface shall be stable and unyielding, in dry to medium damp condition, free from irregularities and Material segregation, and true to line, grade, and cross section.

In the event the compacted aggregates are of such gradation as to resist penetration of the asphalt, the Contractor shall loosen no more than the upper 1/2 inch of surface and regrade it without compaction immediately before the prime coat application. Following the application of aggregate on the prime coat, rolling shall be performed as specified above.

5-04.3(5)C2 PRIME COAT TREATMENT

Unless otherwise specified, a prime coat treatment of asphalt in accordance with the requirements of Section 5-02.3(3) for existing gravel, crushed rock, or oil mat streets shall be required prior to being paved with asphalt concrete.

The prime coat shall be applied over the full length of the Project, and asphalt concrete pavement shall not be placed until the prime coat has cured for a full 5 days.

The Contractor shall maintain the completed prime coat by blading or brooming until the asphalt concrete is placed. Should any holes, breaks, or irregularities develop in the Roadway surface after the prime coat has been applied, they shall be patched or repaired in accordance with Section 5-04.3(5)C1 immediately in advance of placing the asphalt concrete pavement.

Immediately prior to tacking and placing the asphalt concrete pavement, the surface of the prime coat shall be swept clean of all dirt, dust, and other foreign matter.

In areas used as turnouts or which receive heavy service, the Engineer may order a change in the Subgrade elevation to provide a greater depth of pavement.

The Contractor shall prepare untreated Shoulders and traffic islands by blading and compacting to provide a sound base for paving. The prime coat treatment shall be omitted, and the asphalt concrete pavement shall be constructed on the prepared Subgrade after tacking in accordance with Section 5-04.3(5)B4.

When prime coat treatment is not required, the Contractor shall prepare the untreated Roadway as specified above except for the prime coat of asphalt and aggregate. The asphalt concrete pavement shall be constructed on the prepared Subgrade and tacked in accordance with Section 5-04.3(5)B4.

5-04.3(5)D CRACK SEALING

When the Bid Form includes a pay item for “Crack Sealing”, all cracks and joints shall be cleaned with a stiff-bristled broom and compressed air. After cleaning, all cracks less than 1/4 inch in width shall be filled with straight CSS-1 emulsified asphalt and topped with sand. All cracks and joints greater than 1/4 inch and less than 3/4 inch in width shall be filled with either a sand slurry or rubberized asphalt. Cracks larger than 3/4 inch in width shall require preparation by routing prior to cleaning and then shall be filled with a sand slurry. Application of the sand slurry or rubberized asphalt shall be as follows:

1. **Sand Slurry:** The sand slurry shall consist of approximately 20 percent CSS-1 emulsified asphalt, approximately 2 percent Portland cement, water (if required), and the remainder clean 1/4 inch - 0 paving sand. The mixture shall be poured into the cracks and joints until full. The
following Day, any cracks or joints which are not completely filled shall be topped off with the slurry. After sealing, the filler shall be broomed or squeegeed flush with the existing pavement surface and allowed to cure prior to constructing the asphalt concrete overlay.

2. Rubberized Asphalt: The sealant Material shall meet the requirements of Section 9-04.10 and shall be applied in accordance with the manufacturer’s recommendations. These recommendations shall be furnished to the Engineer by the Contractor prior to the start of work and shall include recommended heating time and temperature, allowable storage time and temperatures after initial heating, allowable reheating criteria, and application temperature range. The cracks shall be completely dry before being filled with the rubberized asphalt. Filling shall be controlled to confine the Material within the crack or joint. If, in the opinion of the Engineer, the Contractor’s method of filling results in an excessive amount of sealant on the pavement surface, filling shall be stopped and the method changed. Any overflow shall be cleaned from the pavement surface.

5-04.3(5)E SOIL RESIDUAL HERBICIDE

Unless indicated otherwise in the Contract, prior to installing asphalt driveways or sidewalks, the driveway and sidewalk Subgrade shall be treated with one application of an approved soil residual herbicide. The soil residual herbicide to be used shall not damage or have a detrimental chemical reaction to the asphalt concrete. Application of the herbicide shall be by a uniform spray in accordance with the manufacturer’s recommendations. Paving shall begin within 24 hours after application of the herbicide. Areas not paved within that time limit or that have been rained on shall be retreated at the Contractor’s expense.

The Material to be used shall be registered for use under pavement in the State of Washington by the Washington State Department of Agriculture. The following information shall be included in the submittal at least 5 Working Days prior to intended application: Chemical and commercial name of the soil residual herbicide, State registration number, manufacturer, and proposed rate of application.

Application of the herbicide shall be performed in accordance with Section 8-02.3(3).

5-04.3(6) HEATING OF ASPHALT MATERIAL

The asphalt shall be heated to a maximum of 350°F. The asphalt shall be heated in a manner that avoids local overheating and provide a continuous supply of asphalt Material to the mixer at a uniform temperature plus or minus 25°F from the temperature ordered by the Engineer.

5-04.3(7) PREPARATION OF AGGREGATES

5-04.3(7)A GENERAL

The aggregates shall be stockpiled according to the requirements of Section 9-03.8(3). The aggregates shall be removed from stockpile(s) in a manner to ensure a minimum of segregation when being moved to the asphalt plant for processing into the final mixture.

5-04.3(7)B MIX DESIGN

Once the crushing operation has stabilized to the satisfaction of the Engineer, a representative sample will be obtained from the stockpiled aggregates. A sample of the stockpiled blending sand, if needed, will also be required at this time. The Contractor shall submit for approval at least 15 Working Days in advance a production mix gradation which shall be the basis for the job mix formula for the mix design. The proposed gradation may vary from the production values from aggregate production to reflect anticipated plant operations and adjustments as necessary to ensure compatibility. Paving operations shall not proceed until a mix design is approved by the Engineer. The Contractor’s submittal shall also include a mix design from an ASTM accredited test laboratory approved by the Engineer based on the requirements of Section 9-03.8(2). Additional time will be required, and a separate mix design submittal required, if the Contractor has requested that more than one source of asphalt cement be approved.

When old asphalt concrete is proposed for inclusion in the mix, the Contractor shall submit a design for approval, including representative samples taken in the presence of the Engineer, and the approximate proportions of the various Materials (old asphalt concrete, new aggregate, recycling agent, new paving asphalt) to be used. Upon tentative approval of the approximate proportions proposed by the Contractor, the Materials shall be proportioned together for a job mix design. Approval of the mix design will be based upon meeting the specification requirements of Section 9-03.8(2) for the specified Class of ACP, unless indicated otherwise in the
Contract. In addition, for mix design approval, the blend of recovered paving asphalt plus recycling agent and additional paving asphalt shall meet the requirements for PG 64-22. The Contractor shall allow 15 Working Days for this approval and design once the Material has been received at the SPU Materials Laboratory. Additional time may be required if the proportions do not make an adequate design as determined by the Engineer, or if the Contractor requests more than one recycling agent or paving asphalt source approval. The Contractor is also advised that production of the asphalt concrete shall not commence until the job mix design has been established and approved.

The Contractor shall obtain the Engineer’s approval prior to changing the source of asphalt cement during the production of asphalt concrete as specified above. Blending of asphalt from different sources will not be permitted.

5-04.3(8) MIXING

The prepared aggregates shall be combined in the mixer in the amount of each fraction of aggregates as specified or as directed by the Engineer. The asphalt Material shall be measured or gauged and introduced into the mixer in the amount determined by the Engineer.

After the required amounts of aggregate and asphalt Material have been introduced into the mixer, unless otherwise specified, the Materials shall be mixed until a complete and uniform coating of the particles and a thorough distribution of the asphalt Material throughout the aggregate is ensured. Wet mixing time shall be sufficient to produce 95 percent coated particles as determined by WSDOT Test Method No. 714.

When discharged, the temperature of the mix shall not exceed 325°F except that the temperature for mixes designed for asphalt concrete Class D shall not exceed 260°F. A maximum water content of 2 percent in the mix, at discharge, will be allowed providing the water causes no problems with handling, stripping, or flushing. In this case, the moisture content shall be reduced as directed by the Engineer.

Storing or holding of the asphalt concrete mixture in approved storage facilities will be permitted during the daily operation but in no event shall the Materials be held for more than 24 hours. Materials held for more than 24 hours after mixing shall be rejected and disposed of by the Contractor at no expense to the Owner. The storage facility shall have a visible device located at the top of the cone or about the third point to indicate the amount of Material in storage. No Material shall be accepted from the storage facility when the Material in storage is below the top of the cone of the storage facility, except at the end of the Working Day.

5-04.3(9) SPREADING AND FINISHING

5-04.3(9)A GENERAL

The asphalt concrete mixture shall be laid at a temperature of not less than 250°F and not less than the asphalt pavement manufacturer’s recommended temperature whichever is greater, upon an approved surface, then spread and struck off to the grade and elevation established. Asphalt pavers complying with Section 5-04.3(4)A shall be used to distribute the mixture. The nominal compacted depth of any layer of any course shall not exceed the following depth limits:

<table>
<thead>
<tr>
<th>Asphalt Concrete Class</th>
<th>Min. Depth</th>
<th>Max. Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.25 foot (3 inches)</td>
<td>0.35 foot (3 ¼ inch)</td>
</tr>
<tr>
<td>A & B when used for Base Course</td>
<td>0.25 foot (3 inches)</td>
<td>0.35 foot (3 ¼ inch)</td>
</tr>
<tr>
<td>A, B, & F</td>
<td>0.16 foot (2 inches)</td>
<td>0.25 foot (3 inches)</td>
</tr>
<tr>
<td>G</td>
<td>0.10 foot (1-1/2 in)</td>
<td>0.10 foot (1 ¼ inch)</td>
</tr>
<tr>
<td>D</td>
<td>0.08 foot (1 inch)</td>
<td>0.08 foot (1 inch)</td>
</tr>
</tbody>
</table>

When more than 1 course is necessary to meet the final paving grade, the first course shall include any widening of the existing Roadway and preleveling of the existing pavement surface. The preleveling course or courses shall be constructed so that the final wearing course has a uniform compacted depth and conforms to the finished grade and cross section elevations specified.

Construction of 1 course upon another shall not proceed until the underlying course has completely cooled and set.

No hauling shall be done over freshly placed pavement.
On areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the paving may be done with other equipment or by hand.

The placing of asphalt mixtures at night will not be permitted.

When the asphalt mixture is being produced by more than one asphalt plant, the material produced by each plant shall be placed by separate spreading and compacting equipment.

The internal temperature of the mix should not be less than 185°F upon achieving density requirements in accordance with the applicable specifications. Should the Contractor not achieve specification densities at temperatures of 185°F or above 185°F, the Contractor will be permitted to continue to compact with steel wheeled rollers or a pneumatic tired roller provided that future compaction operations are adjusted to meet the density requirements at the aforementioned temperature. The vibratory roller, in the vibratory mode, shall not be used under any circumstances whenever the internal temperature of the mixture is below 175°F.

5-04.3(9)B UTILITY ADJUSTMENTS

Utility castings shall be adjusted to finished grade prior to the construction of the final wearing course. See Section 7-20.

5-04.3(10) COMPACTION

5-04.3(10)A GENERAL

Immediately after the asphalt concrete mixture has been spread, struck off, and surface irregularities adjusted, it shall be thoroughly and uniformly compacted. The completed course shall be free from ridges, ruts, humps, depressions, objectionable marks, or irregularities and in conformance with the line, grade, and cross-section shown on the Drawings, or as established by the Engineer. If necessary, the mix design may be altered to achieve desired results.

Compaction shall take place when the mixture is in the proper condition so that no undue displacement, cracking, or shoving occurs. All compaction equipment shall be operated to produce the required compaction. Areas inaccessible to large compaction equipment shall be compacted by mechanical or hand tampers. Any asphalt concrete that becomes loose, broken, contaminated, shows an excess or deficiency of asphalt, or is in any way defective, shall be removed and replaced at no additional cost with fresh hot mix which shall be immediately compacted to conform with the surrounding area.

The type of rollers to be used and their relative position in the compaction sequence shall generally be the Contractor’s option, provided specification densities are attained. An exception shall be that the pneumatic tired roller shall be used between October 1 and April 1. Coverages with a vibratory or steel wheel roller may precede pneumatic tired rolling. When asphalt concrete pavement Class D is being constructed, the use of pneumatic rollers will not be required.

Vibratory rollers shall not be operated in the vibratory mode when the internal temperature of the mixture is less than 175°F or when checking or cracking of the mat occurs at a greater temperature. Vibratory rollers in the vibratory mode are also prohibited on bridge decks, brick bases, and block bases.

5-04.3(10)B CONTROL

For asphalt concrete Classes A, B, E and F, where paving is in the traffic lanes, including lanes for ramps, truck climbing, weaving, speed changes, and left turn channelization, and the specified compacted course thickness is greater than 0.10 foot, the acceptable level of compaction shall be a minimum of 91 percent of the maximum density as determined by WSDOT Test Method 705. The level of compaction attained will be determined as the average of not less than 5 nuclear density gauge tests taken on the Day the mix is placed (after completion of the finish rolling) at randomly selected locations within each lot. The quantity represented by each lot will be no greater than a single Day’s production or approximately 400 tons, whichever is less.

Control lots not meeting the prescribed minimum density standard shall be removed and replaced.

Cores may be used as an Alternate to the nuclear density gauge tests. When cores are taken by the Engineer at the request of the Contractor, the request shall be made by noon of the first Working Day following placement of the mix. The Engineer shall be reimbursed for the coring expenses at the rate of $85 per core when the core indicates the acceptable level of compaction within a lot has not been achieved.

At the start of paving, if requested by the Contractor, a compactibility test section shall be constructed as directed by the Engineer to determine the compactibility of the mix design. Compactibility shall be based on the
ability of the mix to attain the specified minimum density (91 percent of the maximum density determined by WSDOT Test Method 705). Following determination of compactibility, the Contractor is responsible for the control of the compaction effort. If the Contractor does not request a test section, the mix will be considered compactible.

Asphalt Concrete Classes A, B, E and F, constructed under conditions other than listed above shall be compacted on the basis of a test point evaluation of the compaction train. The test point evaluation shall be performed in accordance with instructions from the Engineer. The number of passes with an approved compaction train, required to attain the maximum test point density, shall be used on all subsequent paving.

Asphalt concrete Class D and preleveling mix shall be compacted to the satisfaction of the Engineer.

In addition to the randomly selected locations for tests of the control lot, the Engineer reserves the right to test any area which appears defective and to require the further compaction of areas that fall below acceptable density readings. These additional tests shall not impact the compaction evaluation of the entire control lot.

5-04.3(11) JOINTS

5-04.3(11)A LONGITUDINAL AND TRANSVERSE JOINTS

The placing of the top or wearing course shall be as nearly continuous as possible, and the roller shall pass over the unprotected end of the freshly laid mixture only when the laying of the course is discontinued for such length of time as to permit the mixture to become chilled. When the Work is resumed, the previously compacted mixture shall be cut back to produce a slightly beveled edge for the full thickness of the course.

Where a transverse joint is being made in the wearing course, strips of heavy wrapping paper shall be used. The wrapping paper shall be removed and the joint trimmed to a slightly beveled edge for the full thickness of the course prior to resumption of paving.

The Material which is cut away shall be Wasted and new mix shall be laid against the fresh cut. Rollers or tamping irons shall be used to seal the joint.

The longitudinal joint in any one layer shall be offset from the layer immediately below by not more than 6 inches nor less than 2 inches. All longitudinal joints constructed in the top layer shall be at a lane line or edge line of the Traveled Way. However, on one-lane ramps a longitudinal joint may be constructed at the center of the traffic lane, subject to approval by the Engineer, if:

1. The ramp remain open to traffic, or,
2. The ramp is closed to traffic and a hot lap joint is constructed.

If a hot lap joint is allowed, two paving machines shall be used; a minimum average compacted density of 92 percent of the maximum density shall be achieved throughout the traffic lane; and construction equipment shall not impact any uncompacted mix.

Immediately following the compaction of the top wearing course, meet line joints where the new asphalt concrete abuts existing asphalt concrete pavements, Portland cement concrete pavements, oil mats, concrete curbs and gutter, etc., shall be sealed with STE-1 asphalt per Section 5-04.3(11)B.

5-04.3(11)B CONNECTIONS WITH EXISTING FACILITIES

Where construction of new asphalt concrete pavement connects with an existing Roadway surface, driveway, bridge, railway crossing, or other similar facility, the Contractor shall provide a smooth riding transition between the new and existing surface. Such work may require the modification of the existing Roadway profile by burning, planing or milling in order to achieve the desired smooth riding transition or may require other adjustment of the connecting surface.

Where butt joints are required at the meet lines of new construction and existing surfaces, the existing abutting pavement shall be trimmed by chipping, planing, milling or such other method as may be approved by the Engineer in order to insure a minimum depth of 2 inches of compacted asphalt concrete at the point of connection. Meet lines shall be trimmed straight and the edges vertical. Waste Material resulting from such trimming or chipping shall be disposed of by the Contractor. Butt joints will be required only at locations designated on the Drawings. Unless the existing Roadway profile requires modification by planing, all other connections shall be made by shimming or feathering to provide the necessary smooth riding connection.

Where the transition is to be made by shimming or feathering, it shall be accomplished at the time the final course is being constructed by raking out the oversize aggregates of the asphalt concrete mix being used. The Contractor shall not leave the asphalt open graded when feathering and shimming down to an existing
section. If approved by the Engineer, shimming and feathering may be accomplished at a later date. In such case, asphalt concrete Class G shall be used.

Surfaces to be in contact with the new asphalt shall be tacked in accordance with the requirements of Section 5-04.3(5)B4.

Meet lines shall be sealed while the new asphalt concrete is still warm by painting with Special Tack Coat (STE-1) asphalt and immediately covering the asphalt paint strip with clean, dry paving sand meeting the requirements of Section 9-03.8(1).

5-04.3(12) SAMPLES

The Engineer reserves the right to have samples cut or cored from the completed pavement or the individual courses. Additionally, the Engineer may take samples of the uncompressed asphalt concrete mixtures as well as all Materials incorporated in the Work. Where samples have been taken from the uncompressed asphalt concrete, new Material shall be placed and compacted to conform with the surrounding area.

5-04.3(13) SURFACE SMOOTHNESS

The completed surface of all courses shall be of uniform texture, be smooth, have a continuous “plane” crown and grade, and be free from defects of all kinds. The completed surface of the wearing course shall not vary more than 1/8-inch from the lower edge of a 10-foot straightedge placed on the surface parallel to the centerline. The transverse slope of the completed surface of the wearing course shall vary not more than 1/4-inch in 10 feet from the rate of transverse slope shown in the Drawings.

When deviations in excess of the above tolerances are found, the pavement surface shall be corrected by the addition of asphalt concrete mixture of an appropriate class as determined by the Engineer to low places or the removal of Material from high places by grinding with an approved grinding machine and shall be sealed, or by removal and replacement of the wearing course of asphalt concrete. Correction of defects shall be carried out until there are no deviations anywhere greater than the allowable tolerances.

All areas in which the surface of the completed pavement deviates more than twice the allowable tolerances described above shall be removed and replaced to the satisfaction of the Engineer.

However, if deviations are found which exceed the allowable tolerances but are not in excess of twice the allowable tolerances described above, and, in the opinion of the Engineer, correction by means of any of the methods specified above do not produce satisfactory results as to smoothness and serviceability, the Engineer may accept the completed pavement and shall deduct from monies due or that may become due to the Contractor the sum of $500.00 for each and every section of single traffic lane 100 feet in length in which any deviations as described above are found. Under the circumstances described above, the decision whether to accept the completed pavement or to require corrections as described above shall be vested entirely in the Engineer.

All costs involved in making the corrections of defects described above shall be borne by the Contractor and no compensation will be made for this work.

When Portland cement concrete pavement is placed on asphalt concrete pavement, the surface tolerance of the asphalt concrete pavement shall be such that no elevation lies above the plan grade minus the specified plan depth of Portland cement concrete pavement. Prior to placing the Portland cement concrete pavement, any such irregularities shall be brought to the required tolerance by grinding or other means approved by the Engineer, at no expense to the Owner.

5-04.3(14) RESERVED

5-04.3(15) ASPHALT CONCRETE DRIVEWAYS

Asphalt driveways shall be constructed as shown on the Drawings.

The Contractor shall complete the necessary earthwork and provide a 3 inch compacted Asphalt Concrete, Class A over 6 inches of compacted mineral aggregate Type 2.

The Subgrade shall be treated with soil residual herbicide in accordance with requirements of Section 5-04.3(5)E.
5-04.3(16) WEATHER LIMITATIONS

Asphalt for prime coat shall not be applied when the ground temperature is lower than 50°F, without written permission of the Engineer.

Asphalt concrete Class D shall not be placed when the air temperature is less than 60°F. Asphalt concrete shall not be placed on any wet surface, or when the average surface temperatures are less than those specified in the following table, or when weather conditions otherwise prevent the proper handling or finishing of the bituminous mixtures:

<table>
<thead>
<tr>
<th>Compacted Thickness</th>
<th>Surface Course</th>
<th>Sub-Surface Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 0.10 feet</td>
<td>55°F</td>
<td>55°F</td>
</tr>
<tr>
<td>0.10 to 0.20 feet</td>
<td>45°F</td>
<td>35°F</td>
</tr>
<tr>
<td>0.21 to 0.35 feet</td>
<td>35°F</td>
<td>35°F</td>
</tr>
<tr>
<td>More than 0.35 feet</td>
<td>D.N.A.¹</td>
<td>25°F²</td>
</tr>
</tbody>
</table>

¹Does not apply.
²Only on dry Subgrade, not frozen and when air temperature is rising.

5-04.3(17) PAVING UNDER TRAFFIC

When the Roadway being paved is open to traffic the following requirements shall apply:

1. The Contractor shall keep intersections open to traffic at all times except when paving through the intersection. Such closures shall be kept to the minimum time required to place and compact the mixture and shall include advance warning to traffic of the intersection closure. Work shall be scheduled so that consecutive intersections shall not be closed at the same time. The asphalt shall cool to ambient temperature before any traffic is allowed on the new pavement. Traffic shall not be allowed on newly placed asphalt until approval has been obtained from the Engineer. The installation of advance warning signs, detours, and the maintenance of traffic shall be as specified in Section 1-07.23, Section 1-10, and the “Traffic Control Manual for In-Street Work”.

2. During paving operations, center line stripes shall be maintained throughout the Project by applying temporary pavement marking tape each day to the Roadway that was paved that day. Temporary centerline striping shall consist of placing strips of pressure-sensitive pavement marking tape at 10-15 foot intervals along the center line. Temporary marking tape shall be placed in sets of two 12-inch long strips of yellow 4-inch wide marking tape set 4 inches apart and parallel to the center line with each set of 1-foot double line spaced 10 to 15 feet along the center line of the Roadway. Additional temporary striping shall be installed wherever designated by the Engineer.

3. Temporary stop bars shall consist of a 12-inch wide stop bar made up of three parallel 4-inch strips of temporary pavement marking tape placed at locations designated by the Engineer. All other temporary pavement markings utilizing pavement marking tape shall be designated by the Engineer.

4. Pressure-sensitive pavement marking tape used on the wearing course prior to installation of permanent lane markers, traffic buttons, or permanent paint striping shall be removed from the pavement current with, or immediately subsequent to, the installation of permanent pavement markings. Damage to the pavement resulting from removal of temporary marking tape, including the use of high heat sources, shall be repaired by the Contractor at no expense to the Owner.

5. Temporary pavement markings shall be maintained in serviceable condition by the Contractor during the interval of time it is in use. Layout and marking in preparation for application and the application and removal of the temporary striping shall be the Contractor’s responsibility. The Engineer will do the layout for permanent lane markings as specified in Section 8-22.3(1).

6. Within five days, weather permitting, after the preliminary layout of pavement marking control points has been completed by the Engineer, the Contractor shall install all permanent pavement markings. Installation shall be pursued vigorously thereafter until all permanent pavement markings and traffic channelization work is complete.
5-04.3(18) CHANGE IN GRADE OF ASPHALT

If the Engineer orders a change in grade of paving asphalt, see Section 1-04.4.

5-04.3(19) SEALING OF DRIVING SURFACES

Any wearing course or other pavement course to be used for the driving surface will be evaluated by the Engineer to determine whether a fog seal is required. When the results of nuclear or core density testing show that a seal is needed, or when the Surface Course is asphalt concrete Class D, the Contractor shall apply a fog seal of CSS-1 at the rate 0.05 to 0.10 (0.03 to 0.05 residual) gallons per square yard. Unless otherwise approved by the Engineer, fog seal shall be applied prior to opening to traffic.

5-04.3(20) ANTI-STRIPPING ADDITIVE

When directed by the Engineer, an anti-stripping Additive shall be added to the asphalt Material in accordance with Section 9-02.4.

5-04.3(21) SHOULDERS

Shoulders, if required, shall be constructed to the lines, grades, and cross-sections specified. Material for building up Shoulders shall be mineral aggregate Type 1.

5-04.3(22) ASPHALT CONCRETE SIDEWALK

Asphalt walkways shall be constructed at the locations and to the width specified on the Drawings.

Asphalt walkways shall be constructed with a 4 inch section of compacted crushed rock mineral aggregate Types No 2 and 2 inches of compacted Class A asphalt concrete. The Subgrade shall be treated with a soil residual herbicide in accordance with the requirements of Section 5-04.3(5)E.

5-04.3(23) ASPHALT CONCRETE PAVEMENT PATCHING

5-04.3(23)A GENERAL

The minimum width of any pavement repair area shall be 3 feet.

The placing and compaction of the trench backfill shall be as specified in Section 7-17.3(3)B. The preparation and compaction of the Subgrade shall be in accordance with Section 2-06.

Before the patch is constructed, all pavement cuts shall be trued so that the marginal lines of the patch form a rectangle with straight edges and vertical faces. The use of a concrete saw will not be required unless specified in the Contract. Cutting asphalt shall be in accordance with Section 2-02.3(3)A.

The use of proper signs, barricades, lights and other warning devices, shall be as specified in Sections 1-07.23 and 1-10.

On all public works Contracts, the Contractor shall restore pavement cuts with patching unless approved otherwise by the Engineer.

Compaction of the Subgrade shall be completed prior to the required patching.

5-04.3(23)B RIGID PAVEMENT RESURFACED WITH ASPHALT CONCRETE

Asphalt concrete or bituminous plant mix shall not be placed until the cement concrete has met the requirements of Section 5-05.3(17). The edges of the existing asphalt pavements and castings shall be painted with STE-1 cationic special tack emulsion immediately before placing the asphalt patching Material (see Section 5-04.3(5)C2 for prime coat requirements. The asphalt concrete pavement shall then be placed, leveled, and compacted to conform to the adjacent paved surface. Immediately thereafter, all joints between the new and original asphalt pavement shall be painted with STE-1 asphalt emulsion and be covered with dry paving sand before the asphalt solidifies. Sealing of asphalt concrete patches shall be in accordance with the requirements of Section 5-04.3(19).

5-04.3(23)C ASPHALT CONCRETE ON GRANULAR BASE

After the Subgrade and Base Course have been prepared, asphalt concrete pavement Class A shall be placed to a thickness of the existing asphalt pavement depth, or to a minimum of 3 inches, whichever depth is the greater, and compacted in the manner specified in this section. The finished surface shall be in the same plane as existing Roadway surface with smooth transition between the two surfaces.

SECTION 5-04 ASPHALT CONCRETE PAVEMENT

Restoration of asphalt concrete roadway pavement on granular base shall consist of “Mineral Aggregate Type 2” to a compacted depth of 6 inches. “Pavement, Asphalt Concrete Cl A” shall be compacted as specified in Section 5-04.3(10).

Restoration of MC 800 paved roadway surfaces, or seal coats, on a granular base shall consist of “Mineral Aggregate, Type 2” to a compacted thickness of 4 inches and “Pavement, Asphalt Concrete Cl A” to a compacted thickness of 3 inches.

Restoration of asphalt driveways shall be the same as specified above for MC 800 pavements.

5-04.3(23)D RESERVED

5-04.3(23)E TEMPORARY PAVEMENT PATCHING

The Contractor shall furnish, place and maintain a 2 inch thick crushed rock surfacing and a 2 inch thick MC 250 patch over trench areas as approved by the Engineer. Such temporary asphalt patching will be required where roadway or walk is needed for vehicular or pedestrian traffic and permanent pavement cannot be placed immediately. The trench backfill shall be compacted as specified in Section 7-17.3(3)B and the MC 250 tamped and leveled to coincide with adjacent surfaces. In the event that the temporary surface subsides after the initial placement, additional MC 250 and crushed surfacing shall be applied to maintain the surface. Stockpile of the plant mix and crushed surfacing shall be provided on the site by the Contractor. Prior to final restoration of the pavement, the Contractor shall remove the temporary asphalt and crushed rock, clean the exposed face of the existing pavement and restore the pavement.

5-04.4 MEASUREMENT

Measurement for asphalt concrete pavement of the class specified will be by the ton whether the asphalt concrete is used for pavement, sidewalk, driveway, shims, feathering, or preleveling. The net weight of asphaltic concrete Materials being delivered to the Job Site shall be weighed in the transport Equipment on a certified platform scale which automatically prints the net weight on a load ticket. Only load tickets from automatic printing platform scales will be acceptable. Alternately, the Contractor may use a commercial certified platform scale having an automatic weight printing capability. The Engineer will periodically observe and check such weighing operations. The weigher shall record on the load ticket the weight and other required information such as time, date, truck number, etc. The tare weight of each truck shall be recorded at least daily and recorded on a tare sheet. Tare weight is the weight of a truck without a load.

Measurement will be based upon the actual quantity incorporated into the Work as determined by the Material load tickets received and approved by the Engineer on the day the Material was delivered and incorporated into the Work. Deductions will be made for any asphaltic Material included in the measurement that is not incorporated into the Work on the day delivered.

The Owner reserves the right to make random checks at independent weigh stations of the gross and tare weights of transport Equipment hauling asphaltic concrete Material to the Job Site. In the event these random checks result in net weights that are different by more than 1 percent of the smaller net weight, the Contractor shall, at the Engineer’s option, thereafter utilize a certified scale of the Engineer’s choice. If the random check indicates the Contractor’s scales have been underweighing, no additional payment to the Contractor will be allowed for Materials previously weighed and recorded. Should the random check indicate the Contractor’s scales were overweighing (indicating more than true weight) by more than 1 percent of the smaller net weight, then all Materials received subsequent to the last previous random check will be reduced by the percentage of error in excess of the 1 percent.

Measurement for “Roadway Preparation” will be made by the linear foot once along the centerline of the main Roadway being prepared. All related intersections, side street approaches, and irregular shaped areas thereto will be incidental. Measurement will be to the nearest whole linear foot.

Measurement for “Surface Preparation, Plane Bituminous Pavement” will be by the square yard and will be based on the average depth, shown on the Drawings plus any additional depth up to 4 inch maximum, to cover removal of high spots and the extra depth required to provide a 4 inch reveal along the curb line as specified in Section 5-04.3(5)B3. Should the Drawings indicate or the Engineer order an area to be planed in excess of 4 inches, the square yards of surface planed will be increased by the actual area of surface planed in excess of 4 inches. If the Engineer directs an additional planing beyond the depth required above, the total quantity of planed surface will be increased to include area replaned. The Engineer will determine depth of planing during each planing operation.
Measurement for “Surface Preparation, Prelevel” will be by the ton of asphalt concrete placed for preleveling surfaces based on the actual quantity incorporated into the Work as determined by the Material load tickets received and approved by the Engineer on the day the Material was delivered and placed.

Measurement for “Plasticizing Rejuvenator” will be by the gallon. Measurement of quantities will be based upon the actual quantities incorporated into the Work.

Measurement of pavement patching will be by the ton for asphalt concrete and temporary MC 250 pavement patching. Quantities for surface restorations for Sewers, drains and Water Mains will be based upon computations made by the Engineer using the required pavement patch thickness and the pavement and sidewalk removal criteria specified in Section 2-02.4.

Measurement of temporary pavement patch will be made for the initial placement only. Additional MC 250 and crushed rock surfacing required to maintain the surface of the temporary patch level with adjacent Roadway surfaces will not be measured.

5-04.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 5-04 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Pavement, Asphalt Concrete (Class),” per ton.

The Contract unit price for “Pavement, Asphalt Concrete (Class)” shall include all costs for the Work required to furnish, haul, place and compact the asphalt concrete mix as specified in Section 5-04, including asphalt for tack coat, fog seal and sealing joints and meet lines, sand for joints and meet lines, sweeping and other preliminary surface preparation, and such other work as may be necessary according to this section and not otherwise set forth as a separate Bid item on the Bid Form.

All costs for the temporary pavement marking work specified in Section 5-04.3(5)B3 and 5-04.3(17) including installation, maintaining, and removing shall be included in the Contract unit price Bid for “Pavement, Asphalt Concrete (Class).”

Asphalt concrete driveways, sidewalks, tapers, and feathered sections will be paid for as “Pavement, Asphalt Concrete (Class).” All costs for treating or retreating soil residual herbicide as required by Section 5-04.3(5)E shall be considered incidental to the Bid item, “Pavement, Asphalt Concrete (Class).”

If the Engineer orders a change in grade of paving asphalt, any additional compensation will be limited to the actual additional cost of the asphalt based on invoices from the Supplier. If the cost of the substituted paving asphalt is lower, the difference in its cost and that of the original Material specified, based on invoices from the Supplier, shall be deducted from monies due the Contractor.

The Contract unit price for “Roadway Preparation” shall include all costs for the Work required to prepare the untreated Roadway, including scarifying, blading, shaping, and compacting to remove irregularities and secure a uniform surface, and such other work as specified in Section 5-04.3(5)C1, except prime coat treatment which will be paid in accordance with Section 5-02.

3. “Surface Preparation, Prelevel,” per ton.

The Contract unit price for “Surface Preparation, Prelevel” shall include all costs for the Work required to prelevel uneven or broken surfaces by placing asphalt, by spot planing or such other work as specified in Section 5-04.3(5)B2.

4. “Surface Preparation, Plane Bituminous Pavement,” per square yard.

The Contract unit price for “Surface Preparation, Plane Bituminous Pavement” shall include all costs for the Work required to prepare the surface as specified including milling and planing, reworking or recycling existing surfacings, removing and disposing of cuttings, extra planing for butt joints, and feathering meet areas in preparation for an asphalt overlay of either leveling course or wearing course.

5. “Plasticizing Rejuvenator,” per gallon.
The Contract unit price for "Plasticizing Rejuvenator" shall include all costs for the Work required to rejuvenate the scarified Material as specified in Section 5-04.3(5)B4.

 The lump sum Contract Price for "Crack Sealing" shall include all costs for the Work required to clean and fill the cracks and joints as specified in Section 5-04.3(5)D.

7. “Pavement Patch, Asphalt Concrete, (Class),” per ton.
 The Contract unit price for asphalt pavement patching shall be limited to the minimum pay width as shown on Standard Plan Nos. 404.1a and 404.1b, and shall include the costs for all Work required to permanently restore pavements or other traffic bearing surfaces which have been opened by trench excavation or similar work. All incidental work required to complete the patching of street surfaces as specified including all costs for tack coat shall be considered incidental to the patching.

 The Contract unit price for “Pavement Patch, Temporary, MC 250” shall include all costs for the Work required to install and remove the temporary patch. Mineral aggregate crushed rock will be paid in accordance with Section 4-01.5.
 The costs for additional MC 250 and additional mineral aggregate crushed rock required to maintain temporary pavement patches after the initial installation shall be borne by the Contractor.

9. Other payment information.
 All costs for the rejection and disposal of Materials held for more than 24 hours after mixing, as specified in Section 5-04.3(8), shall be at the Contractor’s expense.
 When cores are taken by the Engineer at the request of the Contractor, as specified in Section 5-04.3(10)B, the Owner shall be reimbursed for the coring expenses at the rate of $85.00 per core.
 Where samples have been taken from the uncompressed asphalt concrete as specified in Section 5-04.3(12), new Material shall be placed and compacted at no additional expense to the Owner.
 If surface deviations are found which exceed the allowable tolerances but are not in excess of twice the allowable tolerances specified in Section 5-04.3(13), and, in the opinion of the Engineer, correction by means of any of the methods specified above produce unsatisfactory results as to smoothness and serviceability, the Engineer may accept the completed pavement and will deduct from monies due or that may become due to the Contractor the sum of $500.00 for each and every section of single traffic lane 100 feet in length in which any deviations as described above are found. Under the circumstances described above, the decision whether to accept the completed pavement or to require corrections as described above shall be vested entirely in the Engineer.
 All costs to repair pavement damaged by the removal of temporary marking tape specified in Section 5-04.3(17) shall be at the Contractor’s expense.
 Payment for backfill and compaction of the Subgrade shall be included in the Contract unit price for the particular work item which necessitated the pavement cut.
 Payment for crushed rock surfacing shall be paid separately in accordance with Section 4-01 except as specified in item 8 “Pavement Patch, Temporary, MC 250” above.
 Payment for Material used for fog seal as specified in Section 5-04.3(19) will be measured and paid as asphalt for tack coat.
 Payment for anti-stripping additive as specified in Section 5-04.3(20) will be measured and paid as asphalt for tack coat.

Temporary pavement marking and the removal of shall be incidental to the various Bid items and no separate or additional payment will be made.
SECTION 5-05 CEMENT CONCRETE PAVEMENT

5-05.1 DESCRIPTION

This Work shall consist of constructing Portland cement concrete pavements in streets and alleys on a prepared Subgrade or Base Course in accordance with these Specifications and in conformity with the lines, grades, thicknesses, and typical cross-sections indicated on Standard Plans and indicated on the Drawings.

This Work shall also consist of constructing Portland cement concrete edge walls, support walls and curb walls at locations shown on the Drawings, and shall further include concrete patching of various types of pavement cuts, in accordance with these Specifications and Standard Plans.

Concrete pavement patching is defined as the restoration of a small or narrow roadway cut, less than full panel width, resulting from trench excavation to install underground facilities in a rigid pavement. Concrete pavement restoration that requires full panel replacement shall be treated as “Cement Concrete Pavement,” not “Patching.”

5-05.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Joint Filler</td>
<td>9-04</td>
</tr>
<tr>
<td>Joint Sealants</td>
<td>9-04</td>
</tr>
<tr>
<td>Reinforcing Bars</td>
<td>9-07</td>
</tr>
<tr>
<td>Tie Bars</td>
<td>9-07</td>
</tr>
<tr>
<td>Dowel Bars</td>
<td>9-07</td>
</tr>
<tr>
<td>Curing Materials and Admixtures</td>
<td>9-23</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
<tr>
<td>Epoxy Resins</td>
<td>9-26</td>
</tr>
<tr>
<td>Temporary Pavement Marking</td>
<td>9-29.4</td>
</tr>
</tbody>
</table>

The concrete mix for arterial street pavement shall be Class 6.5 (1-1/2), and for residential streets and alleys shall be Class 6 (1-1/2).

Concretes incorporating fly ash may be utilized for all classes of concrete. Mix proportions will be subject to approval by the Engineer and shall meet the requirements of Section 9-23.9.

Cement concrete pavement patch shall be Class 6.5 (1-1/2) HES.

Water reducing admixtures shall meet the requirements of Section 9-23.6.

The use of calcium chloride will not be allowed.

All concrete mix designs shall be submitted to the Engineer for approval at least 10 Working Days in advance of ordering.

The Material requirements may be amended in the Contract Documents.

5-05.3 CONSTRUCTION REQUIREMENTS

5-05.3(1) PROPORTIONING MATERIALS

Each batch of concrete delivered to the Project Site shall be accompanied with a Manufacturer’s Certificate of Compliance indicating the batch weights.

The class of concrete for non-structural uses refers to the nominal number of sacks of cement per cubic yard, although this designation does not constitute a guarantee of yield. The figure in parenthesis indicates maximum aggregate size. Example: Cl 5 (1-1/2) is a 5 sack mix with 1-1/2 inch maximum size coarse aggregate.

H.E.S. indicates high-early-strength Portland cement.

With approval of the Engineer, the Contractor may use high-early-strength Portland cement in any of the mixes (see submittal requirement in Section 5-05.2).
Air-entrained concrete shall be used. The volume of air in freshly mixed concrete shall conform to that specified in the table below:

<table>
<thead>
<tr>
<th>Maximum Size of Coarse Aggregate (Inches)</th>
<th>Air Content Percent by Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2, 2 and 3</td>
<td>5 ±1</td>
</tr>
<tr>
<td>3/4 and 1</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>3/8 and ½</td>
<td>7-1/2 ± 1</td>
</tr>
</tbody>
</table>

If the measured air content is found outside the range of values contained in the table, the Contractor shall immediately make changes in mixing or Materials as necessary to comply with the requirements for air content.

Fine and coarse aggregates shall be proportioned by weight except that if the Project is small, volumetric proportioning may be used with permission of the Engineer. In proportioning, the unit of measure for cement will be by the 94 pound sack.

Weights of fine and coarse aggregate are based on a bulk specific gravity, saturated surface dry, of 2.67.

Concrete mixes shall be proportioned as specified in the table which follows. The weight of each size of aggregate is the estimated quantity to be used with one sack of cement. With approval of the Engineer (see submittal requirements in Section 5-05.2), the proportion of aggregate may be altered to give better workability.

<table>
<thead>
<tr>
<th>Class of Concrete (Maximum Aggregate Size)</th>
<th>5 (3/4)</th>
<th>5 (1-1/2)</th>
<th>5.5 (1-1/2)</th>
<th>6 (3/4)</th>
<th>6 (1-1/2)</th>
<th>6.5 (1-1/2)</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 day Compressive Strength, lbs. per sq. in.</td>
<td>2,300</td>
<td>2,300</td>
<td>2,500</td>
<td>3,000</td>
<td>3,000</td>
<td>3,600</td>
<td>....</td>
</tr>
<tr>
<td>Sacks per Cubic Yard</td>
<td>5</td>
<td>5</td>
<td>5.5</td>
<td>6</td>
<td>6</td>
<td>6.5</td>
<td>....</td>
</tr>
<tr>
<td>Pounds dry Fine Aggregate No. 1</td>
<td>....</td>
<td>275</td>
<td>248</td>
<td>....</td>
<td>220</td>
<td>210</td>
<td>9-03.1(2)</td>
</tr>
<tr>
<td>Pounds dry Fine Aggregate No. 2</td>
<td>291</td>
<td>....</td>
<td>....</td>
<td>203</td>
<td>....</td>
<td>....</td>
<td>9-03.1(2)</td>
</tr>
<tr>
<td>Pounds No. 2 Coarse Aggregate</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>280</td>
<td>9-03.1(3)</td>
</tr>
<tr>
<td>Pounds No. 4 Coarse Aggregate</td>
<td>....</td>
<td>166</td>
<td>150</td>
<td>....</td>
<td>132</td>
<td>....</td>
<td>9-03.1(3)</td>
</tr>
<tr>
<td>Pounds No. 5 Coarse Aggregate</td>
<td>387</td>
<td>248</td>
<td>223</td>
<td>320</td>
<td>201</td>
<td>....</td>
<td>9-03.1(3)</td>
</tr>
</tbody>
</table>

In adjusting concrete mixes, the following water-cement ratios shall not be exceeded:

<table>
<thead>
<tr>
<th>Cement Sacks (Sacks Per Cubic Yard)</th>
<th>Maximum Water (Gal. per Sack)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8.2</td>
</tr>
<tr>
<td>5</td>
<td>6.5</td>
</tr>
<tr>
<td>5.5</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>6.5</td>
<td>5.1</td>
</tr>
</tbody>
</table>

5-05.3(2) CONSISTENCY (SLUMP REQUIREMENTS)

The Materials shall be mixed with sufficient water to produce a stiff concrete which holds its shape when deposited upon the Subgrade. Concrete placed during wet weather shall be mixed with sufficient water to produce a very stiff mixture. The consistency shall be such that separation of the mortar from the coarse aggregate will not occur in handling.

Slump shall be measured in accordance with ASTM C143 “Method of Test for Slump of Portland Cement Concrete.”

The water/cement ratio shall not produce a mix with a slump greater than 2 inches for other than slip form construction, and ½ inch for slip form construction. Concrete slump with water-reducing agent shall not exceed 3-1/2 inches. A water-reducing agent shall be added to the concrete mix when:
1. The Contractor elects to hand-screed and/or hand-finish concrete paving work in lieu of using a mechanical finishing machine, or
2. The Engineer determines increased workability is necessary due to weather conditions or other variables.

5-05.3(3) EQUIPMENT

Equipment necessary for handling Materials and performing all parts of the Work shall be approved by the Engineer as to design, capacity, and mechanical condition. The Equipment shall be at the jobsite sufficiently ahead of the start of paving operations to be examined thoroughly and approved.

1. Batching plant and Equipment:
 a. General: The batching plant shall include bins, weighing hoppers, and scales for the fine aggregate and for each size of coarse aggregate. If cement is used in bulk, a bin, hopper, and separate scale for cement shall be included. The weighing hoppers shall be properly sealed and vented to preclude dusting during operation. The batching plant shall be equipped with a suitable nonresettable batch counter which correctly indicates the number of batches proportioned.
 b. Bins and hoppers: Bins with adequate separate compartments for fine aggregate and for each size of the coarse aggregate shall be provided in the batching plant.
 c. Scales: Plant and truck scales shall meet the requirements of Section 1-09.2.
 d. The batching plant shall be equipped to proportion aggregates and bulk cement by means of automatic weighing devices of an approved type.

2. Mixers:
 a. General: Concrete may be mixed at a batching plant or wholly or in part in truck mixers. Each mixer shall have attached in a prominent place a manufacturer's plate showing the capacity of the drum in terms of volume of mixed concrete and the speed of rotation of the mixing drum or blades.
 b. Batching plant: Mixing shall be in an approved mixer capable of combining the aggregates, cement, and water into a thoroughly mixed and uniform mass within the specified mixing period. The mixer shall be equipped with an approved timing device which automatically locks the discharge lever when the drum has been charged and releases it at the end of the mixing period. The device shall be equipped with a bell or other suitable warning device adjusted to give a clearly audible signal each time the lock is released.

 Mixers shall be cleaned at suitable intervals. The pickup and throw-over blades in the drum or drums shall be repaired or replaced when they are worn down 3/4 inch or more. The Contractor shall have available at the jobsite a copy of the manufacturer's design, showing dimensions and arrangements of the blades in reference to original height and depth, or provide permanent marks on blades to show points of 3/4 inch wear from new conditions. Drilled holes 1/4 inch in diameter near each end and at midpoint of each blade are recommended.
 c. Truck mixers and truck agitators: Truck mixers used for mixing and hauling concrete, and truck agitators used for hauling plant-mixed concrete, shall conform to the requirements of Section 6-02.3(4)C.
 d. Nonagitator trucks: Bodies of nonagitating hauling Equipment for concrete shall be smooth, mortar-tight, metal containers and shall be capable of discharging the concrete at a satisfactory controlled rate without segregation. If discharge of concrete is accomplished by tilting the body, the surface of the load shall be retarded by a suitable baffle. Covers shall be provided when needed for protection. Plant-mixed concrete may be transported in nonagitated vehicles provided that the concrete is delivered to the site of the Work and discharge is completed within 45 minutes after the introduction of mixing water to the cement and aggregates, and provided the concrete is in a workable condition when placed.

3. Finishing Equipment:
a. The standard method of constructing concrete pavement on City Roadways shall be with one or more self-propelled paving machines which spread, screed, shape and consolidate the freshly placed concrete between stationary side forms. The Contractor may option to use approved slip-form paving equipment designed to spread, consolidate, screed and float-finish the freshly placed concrete in one complete pass of the machine with minimum of hand finishing.

b. On Projects requiring less than 500 square yards of cement concrete pavement or requiring individual placement areas of less than 500 square yards, irregular areas and at locations inaccessible to self-propelled paving equipment, cement concrete payment may be placed with approved placement and hand finishing equipment utilizing stationary side forms. Hand screeding and float finishing of cement concrete pavement may only be utilized on small irregular areas as allowed by the Engineer.

c. Along with the basic tools required for compacting and finishing concrete pavement, a long handle, 10-foot metal straight edge for checking the surface smoothness as described in Section 5-05.3(12), shall be furnished by the Contractor and shall be at the site of the Work prior to the commencing of placing concrete. The straight edge shall be lightweight, straight and true, equipped with a long handle to allow for checking the smoothness of the surface along the entire width of the pavement section.

4. Joint Sawing Equipment:
 a. The Contractor shall provide approved power driven saws for sawing joints, adequate in number of units and power to complete the sawing at the required rate. The Contractor shall provide at least one standby saw in good working order. An ample supply of saw blades shall be maintained at the site of the Work at all times during sawing operations. The Contractor shall provide adequate artificial lighting facilities for night sawing. All of this Equipment shall be on the job both before and continuously during concrete placement. Sawing Equipment shall be available immediately and continuously upon call by the Contractor on a 24 hour basis, including Saturdays, Sundays and Holidays.

5. Smoothness Testing Equipment:
 a. Along with the basic tools required for compacting and finishing concrete pavement, a long-handle, 10-foot straight edge for checking the surface smoothness as described in Section 5-05.3(12) shall be furnished by the Contractor and shall be at the site of the Work prior to the commencing of placing concrete. The straight edge shall be lightweight, straight and true, equipped with a long handle to allow for checking the smoothness of the surface along the entire width of the pavement section.

 b. On large paving Projects (1000 LF or more of continuous concrete pavement) the Contractor shall provide a California type computerized profilograph, complete with recorder, for determining the profile index of the pavement according to WSDOT Test Method No. 807. The profilograph shall be on the Project Site, calibrated, in good working condition, and ready for operation before construction of any concrete pavement begins. The operator shall be competent and experienced in operation of the Equipment.

5-05.3(4) HANDLING, MEASURING, AND BATCHING MATERIALS
 The batch plant site, layout, Equipment, and provisions for transporting Material shall ensure a continuous supply of Material to the Work. See Section 5-05.3(1) regarding batch ticket reporting requirements.

1. Measuring Materials:
 a. Aggregates: The fine aggregate and each size of coarse aggregate shall be measured by weighing, the weight for the particular aggregates used being proportional to their respective bulk specific gravities. The weighing of each size of Material shall be a separate and distinct operation.

 Corrections shall be made for variations in weight of Materials due to the moisture content.

 The Equipment for weighing aggregates shall conform to the requirements of Section 1-09.2.
b. **Cement:** Cement shall be weighed on scales meeting the requirements of Section 1-09.2. Adequate provision shall be made to prevent loss of cement between the batch box and the mixer.

c. **Water:** Water may be measured either by volume or by weight. The accuracy of measuring the water shall be within a range of error of not over 1 percent.

2. **Batching Materials:**
 a. On all Projects requiring more than 2,500 cubic yards of Portland cement concrete for paving, the batching plant shall be equipped to proportion aggregates and cement by weight by means of automatic and interlocked proportioning devices of approved type.

5-05.3(5) **MIXING CONCRETE**

5-05.3(5)A **GENERAL**

The concrete may be mixed in a batching plant or in truck mixers. The mixer shall be of an approved type and capacity. Mixing time shall be measured from the time all Materials are in the drum. Ready-mixed concrete shall be mixed and delivered in accordance with the requirements of Section 6-02.3(4).

When mixed in a batching plant, the mixing time shall not be less than 50 seconds nor more than 90 seconds.

The mixer shall be operated at a drum speed as shown on the manufacturer's name plate on the mixer. Any concrete mixed less than the specified time shall be discarded and disposed of by the Contractor. The volume of concrete mixed per batch shall not exceed the mixer's nominal capacity in cubic feet, as shown on the manufacturer's standard rating plate on the mixer.

Each concrete mixing machine shall be equipped with a device for counting automatically the number of batches mixed during the day's operation.

All elements of a batch shall be simultaneously and continuously fed to the mixer to ensure uniform distribution of cement, water, aggregates, and admixtures.

Retempering concrete by adding water or by other means will not be permitted. Admixtures for increasing the workability or for accelerating the set will be permitted only when specified, or when approved by the Engineer.

5-05.3(5)B **LIMITATIONS OF MIXING**

Concrete shall not be mixed, placed, or finished when the natural light is inadequate, as determined by the Engineer, unless an adequate and approved artificial lighting system is operated.

Mixing and placing concrete shall be discontinued when a descending air temperature in the shade away from artificial heat reaches 40°F and shall not be resumed until an ascending air temperature in the shade and away from artificial heat reaches 35°F unless authorized in writing by the Engineer.

When mixing and placing is authorized during cold weather, the aggregates may be heated by either steam or dry heat prior to being placed in the mixer. The apparatus used shall heat the mass uniformly and shall be arranged to preclude the possible occurrence of overheated areas which might injure the Materials. Unless otherwise authorized, the temperature of the mixed concrete shall be not less than 50°F and not more than 90°F at the time of discharge into the hauling conveyance. No concrete shall be mixed with frozen aggregates.

5-05.3(6) **SUBGRADE**

Subgrade shall be constructed, and maintained, in accordance with the requirements of Section 2-06.

Where thickened edges for pavements are required, such as shown on the Standard Plans, the Subgrade shall be excavated and shaped to provide for the section shown.

Wherever possible, vehicles shall be kept off the finished Subgrade. If vehicles must travel on the Subgrade ahead of the paving, a power drag shall be carried immediately ahead of placing concrete. Irregularities in the Subgrade caused by any Equipment during the placement of concrete shall be smoothed out and compacted immediately ahead of placing the concrete.

5-05.3(7) **PLACING, SPREADING, AND COMPACTING CONCRETE**

All the requirements for concrete mix, density, finish and surface smoothness apply regardless of the methods used to place concrete pavement.
Concrete pavement shall be placed, spread, and consolidated between stationary forms by means of an approved paving machine or a slip-form paver at the Contractor’s option. Hand methods of spreading and consolidating concrete shall be limited to pavement patching, small panel replacement, irregular areas, and pavement placed in confined work areas.

On streets with grades of 4 percent or more, the direction of the paving operation shall be uphill, starting from the lowest street elevation.

Unless otherwise specified in the Contract, paving widths from 25 feet to 44 feet shall be paved in 2 operations with compensation allowed for thickened edge on each side of the included longitudinal construction joint. Should the Contractor be allowed to pave in more than 2 operations for the above widths, the additional thickened edges required due to installation of more than one construction joint shall be made at no additional expense to the Owner. When “hand” screeding methods are allowed, paving widths shall not exceed 12 feet on arterials or 13 feet on non-arterials. Full-width paving will be allowed only with written permission of the Engineer.

Keyways shall be provided at all longitudinal construction joints and at transverse construction joints without dowels.

Mixers and trucks shall be operated on the Subgrade or on the Shoulder adjacent to the lane being paved. Newly paved lanes shall not be used for mixers, trucks or other construction Equipment unless the concrete pavement meets the requirements set forth in Section 5-05.3(17).

A protective ramp shall be constructed at the pavement edge where vehicles may be driven on and off the pavement. The forms shall be left on the outside edge of the first lane at all turnouts until the pavement is opened to traffic.

When tie bars are specified, they shall be placed before the concrete is poured, except when slip form paving machines equipped with an approved tie bar insertion device are used. If the tie bars impede the flow of traffic, the tie bars shall be protected from traffic by bending down the back against the side form. Prior to placing the adjacent lane, the tie bars shall be straightened.

An 1/8-inch thick metal plate, 5 inches wide and no less than 10 feet long, shall be placed flat on top of the completed pavement along its edge at the common joint with the adjacent pavement slab to be poured. The concrete shall be struck off from this plate, either by machine or by hand placement methods.

All Roadways, Shoulders, and Subgrade in use by the Contractor shall be kept adequately dampened to prevent the accumulation of dust on the freshly placed concrete.

5-05.3(7)B SLIP FORM CONSTRUCTION

At the option of the Contractor and with the approval of the Engineer, concrete pavement may be constructed by the use of slip-form paving Equipment.

Slip-form paving Equipment shall be provided with traveling side forms of sufficient dimensions, shape and strength to support the concrete laterally for a sufficient period of time during placement to produce pavement of the required cross section and the Equipment shall spread, consolidate, screed, and float-finish the freshly placed concrete in such a manner as to provide a dense and homogenous pavement.

The concrete shall be distributed uniformly into final position by the slip-form paver and the horizontal deviation in alignment of the edges shall not exceed the ½ inch from the alignment established by the Engineer.

The paver shall vibrate the concrete for the full width and depth of the strip of pavement being placed and the vibration shall be adequate to provide a consistency of concrete that stands normal to the surface with sharp well defined edges. The sliding forms shall be rigidly held together laterally to prevent spreading of the forms.

The plastic concrete shall be effectively consolidated by internal vibration with transverse vibrating units for the full width of pavement and/or a series of equally spaced longitudinal vibrating units. The space from the outer edge of the pavement to the outer longitudinal unit shall not exceed 9 inches. The spacing of internal units shall be uniform and not exceed 18 inches.

The term internal vibration means vibration by vibrating units located within the specified thickness of pavement section and a minimum distance equal to the pavement thickness ahead of the screed.

The rate of vibration of each vibrating unit shall be not less than 7500 vibrations per minute, and the amplitude of vibration shall be sufficient to be perceptible on the surface of the concrete along the entire length of the vibrating unit and for a distance of at least 1 foot. The frequency of vibration or amplitude shall be varied
The concrete shall be held at a uniform consistency, having a slump as specified in Section 5-05.3(2). The slip-form paver shall be operated with as nearly a continuous forward movement as possible and all operation of mixing, delivering, and spreading concrete shall be coordinated to provide uniform progress with stopping and starting of the paver held to a minimum. If, for any reason, it is necessary to stop the forward movement of the paver, the vibratory and tamping elements shall also be stopped immediately. No tractive force shall be applied to the machine, except that which is controlled from the machine.

Regardless of the method or machinery used to construct pavement, depressed curb for driveways and ramps shall be provided at those locations indicated on the Drawings or as required by the Engineer. When a slip-form paving machine is used for pavement construction, the Contractor shall block out the pavement area beneath areas where depressed curb is to be constructed. Such blocked out pavement areas, together with the depressed curb sections, shall then be constructed concurrently with the cement concrete item needing the depressed curb.

When concrete is being placed adjacent to an existing pavement, that part of the Equipment which is supported on the existing pavement, shall be equipped with protective pads on crawler tracks or rubber-tired wheels and shall be offset to run a sufficient distance from the edge of the pavement to avoid breaking or cracking the pavement edge.

After the concrete has been given a preliminary finish by the finishing devices in the slip-form paving Equipment, the surface of the fresh concrete shall be checked with a straight-edge to comply with the tolerances and finish specified in Section 5-05.3(12).

With slip-form construction, tie bars shall be set in place along the longitudinal joint. Keyway will not be required on sawcut longitudinal joints.

5-05.3(7)C STATIONARY SIDE FORM CONSTRUCTION

Forms and headers and their placement shall meet the requirements of Section 5-05.3(21).

The concrete shall be placed upon the prepared Subgrade or base between the forms to the required depth and cross section in a continuous operation between construction or expansion joints. No concrete shall be placed until the forms are approved by the Engineer.

The concrete shall be thoroughly consolidated by mechanical vibration. Complete consolidation is required along all forms or adjoining pavements by such means which prevent gravel pockets along the edges of the finished pavement. Any gravel pockets found after removing the forms shall be repaired by the Contractor.

When integral curb is being constructed with the pavement, fresh concrete for the integral curb shall be placed at such time which enables the top section of the curb to be consolidated, finished, and bonded to the pavement slab while the concrete is plastic.

Where curb is required, and such curb is not being placed integrally with the pavement slab, dowels shall be placed in the pavement slab as detailed on Standard Plan No. 411, or as specified in Section 8-04.

5-05.3(7)D PLACING CONCRETE AT THROUGH JOINTS

Concrete placement around through joints shall be such that the through joint assembly shall not be disturbed and that it shall remain in a straight line perpendicular to the Subgrade, as shown on the Standard Plans. The concrete shall then be vibrated along the entire length of the joint to consolidate the concrete and leave no rock pockets anywhere at the joint.

5-05.3(7)E PLACING CONCRETE WITH REINFORCING STEEL OR WIRE MESH

Concrete shall not be placed until the Subgrade and the reinforcing steel or wire mesh has been approved by the Engineer. The Contractor shall use positive reinforcing steel or wire mesh as shown on Drawings and make sure the reinforcing steel or mesh is not displaced as the concrete is placed.

Reinforcement shall be free of dirt, mill scale, oil, grease, or other foreign Material that may impair bond. Steel, coated with rust, may be used if the oxidations are not deep or loose coated.

Reinforcement shall conform to Reinforcing Steel Section 9-07.5 and Wire Mesh Section 9-07.7.

Requirements for placing and fastening reinforcing steel are specified in Section 6-02.3(24)D.
Successive mats of steel or wire mesh shall be securely lapped together and tied so that longitudinal bars lap a minimum 40 diameters and wire mesh laps 6 to 12 inches.

Reinforcement shall be laid as a continuous mat. Continuity shall be maintained between expansion joints. Steel shall terminate at the designated locations in the slab.

Section 5-05.3(7)F COMPACTING CONCRETE

5-05.3(7)F1 GENERAL

All cement concrete pavement shall be vibrated. Vibration shall be by internal vibration, and/or surface vibration.

5-05.3(7)F2 INTERNAL VIBRATION

Except when slip-form pavers are used, internal vibrations shall be performed in accordance with Section 6-02.3(9).

5-05.3(7)F3 MACHINE COMPACTION

The machine used for compacting shall be self-propelled and designed to run on the side forms. Movable parts shall be capable of adjustment and they shall be adjusted so as to produce accurately the Roadway sections shown on the Drawings. The machine shall be equipped with two reciprocating screeds. The tops of the forms shall be kept clean with a suitable device attached to the machine.

The travel of the machine on the forms shall be maintained true without lift, wobble or other variations which might prevent a precise strike off.

The machine shall be put in forward motion as soon as concrete is deposited on the Subgrade. On the first pass, a roll of concrete shall be carried ahead of the screed. Screeds and tampers shall be operated so as not to disturb expansion joints and caps.

Machines shall be operated prior to placing longitudinal and transverse dummy joints.

Machines shall be operated at least twice and as many more times as may be necessary to compact concrete free from rock pockets, and to a section that can be finished properly.

Care must be exercised not to overwork the concrete and being an excess of mortar to the surface.

5-05.3(7)F4 COMBINED VIBRATION AND MACHINE COMPACTION

The combined vibration and compaction Equipment shall be demonstrated to the satisfaction of the Engineer as being capable of consolidating the concrete across the full width of the pavement into a homogenous mass, free of rock pockets, and without separation of mortar and aggregate.

The Equipment shall consists of the machine described in Section 5-05.3(7)F3, or an approved spreading machine to which is attached a vibrating unit composed of individual internal vibrators spaced not more than 29 inches apart. The vibrators shall be spaced equidistantly, and the distance from the side forms to the nearest vibrator shall not exceed 14 inches. The vibrators shall be carried behind and independent of the strike-off screed of the spreading machine, or ahead of and independent of the strike-off screed of the first compacting machine.

The vibrating unit shall not rest upon the side forms nor impart vibration to the strike-off screeds. The individual vibrators shall be attached to a frame in a manner which permits adjustment of both the depth of penetration into the concrete and the angle of the vibrator with the horizontal.

The entire vibrating unit shall allow raising the vibrator tips completely clear of the concrete surface.

The vibrator shall be capable of vibrating at rates between 4,800 and 8,000 impulses per minute when inserted in the concrete. All vibrators shall be synchronized to vibrate at a frequency specified by the Engineer, within the limits established.

On the first trip over the freshly placed concrete the vibration Equipment shall be submerged in the concrete to ensure adequate consolidation. Unless otherwise directed by the Engineer, the vibration Equipment shall be operated on the first pass only. The vibration Equipment shall not be operated when the machine is not in motion except when vibrating near an expansion joint.

After the first pass with vibration, one or more trips without vibration shall be made as described in Section 5-05.3(7)F3.
5-05.3(7)F5 VIBRATING SCREED CONCRETE PAVEMENT CONSTRUCTION

The type of vibrating screed which the Contractor proposes to use, whether roller or beam, shall be subject to approval by the Engineer. Upon request by the Engineer a test section of pavement shall be placed for the purpose of demonstrating the capabilities of the screed to satisfactorily compact and strike off the concrete to the established grade and section.

Concrete shall be uniformly distributed between the forms and it shall then be compacted and screeded to the level of the top of the forms by means of the vibrating screed. Supplemental compaction by mechanical vibration of the concrete adjacent to the forms will be required if the concrete cannot otherwise be adequately compacted.

The vibrating screed shall be operated over the freshly placed concrete in successive passes only a sufficient number of times to obtain maximum compaction. Over-vibration of the concrete, resulting in an excess of mortar at the surface of the pavement, will not be permitted.

After the final passages of the vibrating screed, the surface of the concrete shall be at the established pavement grade and cross section and shall be sufficiently smooth as to require only a very moderate amount of hand finishing for smoothness to meet approval of the Engineer.

5-05.3(8) JOINTS

5-05.3(8)A GENERAL

Transverse and longitudinal joints shall be contraction or through joints (including construction joints). Joints shall be constructed in accordance with Standard Plan 405 and shall be of the type and at the locations indicated on the Drawings. The faces of all joints shall be constructed perpendicular to the surface of the cement concrete pavement.

5-05.3(8)B CONTRACTION JOINTS

5-05.3(8)B1 FORMED CONTRACTION JOINTS

Formed contraction joints shall be constructed by embedding a 3/8-inch thick preformed joint Material. The depth of the formed joints shall be no less than 1/3 of the pavement thickness. The filler shall be cut to the exact section of the joint. The length of the premolded joint filler shall extend to within 1/4-inch of both edges of any panel.

Transverse contraction joints (dummy joints) shall be placed after compaction and finishing of concrete have been completed and before initial set. A vertical groove shall be cut into the surface at the location of the joint, using a tool provided with stops (tee iron) to prevent cutting the groove deeper than the planned depth. The preformed joint Material shall then be embedded into the groove until the top is flush with the pavement surface, with a deviation of not more than 1/8-inch below the surface. The joint filler shall be perpendicular to the surface and always in a straight line.

After the joint filler has been embedded in the concrete, the surface of the pavement shall be finished against the filler strip with hand floats to restore the surface finish. While performing this operation, the filler strip must be maintained in a perpendicular position, true to alignment. After finishing the entire area, the joint shall be true to grade, smooth and without irregularities.

The premolded joint filler may be omitted provided the joints are subsequently sawed in accordance with the provisions of Section 5-05.3(8)B2.

5-05.3(8)B2 SAWED CONTRACTION JOINTS

Sawed contraction joints shall be constructed by sawing a vertical groove in the hardened concrete on an approved schedule after placing and before development of random cracks in the concrete slab. Transverse contraction joints shall be sawed before the longitudinal joints are sawed. The first set of transverse joints shall be sawed at a maximum of 60 foot intervals or such other spacing as directed by the Engineer, as soon as the cut can be made without undue raveling of concrete. Intermediate joints shall be sawed immediately following the first set of joints. The Contractor shall provide the Engineer a minimum 4 working hours advance notice of sawcutting.

Any scheduling for the sawing of joints that results in premature or uncontrolled cracking shall be revised immediately, under direction of the Engineer, by adjusting the time interval between placing of concrete and the
sawing of joints. After the schedule has been approved, the sawing shall proceed as a continuous operation until all joints have been completed.

Two or more sawing units may be required to accomplish the sawing in order to minimize random cracking. Standby Equipment shall be on the job to ensure continuity of sawing as specified regardless of any breakdown of Equipment.

Where curing membrane is used, the area disturbed by sawing of joints shall be resprayed immediately upon completion of the sawing operation and care shall be exercised to prevent the curing compound from getting into the groove. Joint sealing compound shall not adhere to concrete if curing compound is present.

The depth of sawed longitudinal or transverse contraction joints shall be a minimum of 1/3 of the pavement thickness.

The concrete saw shall be powered adequately to perform the required cutting. It shall cut a uniform groove to the required depth and not less than 3/16-inch nor more than 5/16-inch in width. The Contractor will be expected to so arrange the schedule of sawing joints, including initial sawing, at the required intervals so that every possible effort is made to control cracking by the use of judiciously spaced and timed sawed joints. In the event random cracks occur, they shall be repaired in accordance with Section 5-05.3(22). The Contractor shall provide at least one standby saw in good working order to insure continuous sawing as specified regardless of any breakdown of Equipment. An ample supply of sawblades shall be maintained at the site of work at all times during sawing operations. The Contractor shall provide artificial lighting facilities for night sawing. All Equipment required for sawing shall be on the job both before and continuously during concrete placement. Sawing Equipment shall be available immediately and continuously on a 24 hour basis, including Saturdays, Sundays and legal Holidays.

Any damage to the curing Material during the sawing operations shall be repaired immediately after the sawing is completed.

Formed transverse contraction joints shall be installed where designated by the Engineer, if necessary to prevent uncontrolled transverse cracks from occurring before the pavement can be sawed.

5-05.3(8)B3 SEALING SAWED CONTRACTION JOINTS

Sawed contraction joints shall be filled with a joint sealant filler conforming to the requirements of Section 9-04.2. Joints shall be thoroughly cleaned at the time of sealing. If hot-poured type sealant is used, the joints shall be dry. Care shall be taken to avoid air pockets. The hot-poured compound shall be applied in two or more layers, if deemed necessary by the Engineer. The cold-poured compound shall be applied under sufficient pressure to fill the groove from the bottom to a point approximately 1/4-inch below the surface of the concrete. The joint filled with cold-poured compound shall then be covered with a strip of nonabsorptive paper at least twice as wide as the joint. The paper shall be left in place.

If contraction joints are formed with plastic strips, sealing is not required.

Excess sealing Material shall be cleaned off the surface of the pavement before opening to traffic.

5-05.3(8)C THROUGH JOINTS

Expansion joints are placed only where shown on the Drawings or where directed by the Engineer. The joint alignment must be at right angles to the pavement center line unless otherwise specified.

Longitudinal expansion joints shall be placed where shown on the Drawings or where required for concrete pavement between or along retaining walls, curbs or other structures.

Expansion joints shall be constructed with premolded Material, 3/4-inch in thickness and conforming to Section 9-04.1(2). They shall extend from 1 inch below the Subgrade to 1 inch below the top of the pavement. Transverse expansion joints shall extend the full width of pavement.

The joint Material shall be held accurately in place during the placing and finishing of the concrete by a bulkhead, a holder, a metal cap or any other approved method. The joint must be perpendicular to the paved surface and the holder must be in place long enough to prevent sagging of the Material, especially on streets having steep grades.

In multiple lane construction, the joints shall be matched so as to form a continuous alignment across all lanes.
Expansion joints shall extend continuously through all curbs, special care being exercised to preserve alignment perpendicular to the pavement in the curb section.

A wood filler strip or metal cap shall be placed on the top of the premolded joint filler to form the groove 1 inch deep, and it shall remain in place until after the finishing and the concrete is sufficiently set to resist sloughing into the groove. The joint filler must be stapled together at the ends to preserve continuity.

Immediately after removal of side forms, the edges of the pavement shall be carefully inspected and wherever the joint filler is not fully exposed, the concrete shall be chipped down until the edge of the filler is fully exposed for the entire depth.

5-05.3(8)C2 CONSTRUCTION JOINTS

All longitudinal construction joints shall be constructed with keyway and tie bars as detailed on Standard Plan No. 405. Along with keyway and tie bars, a thickened edge shall be required on pavements less than 9 inches in thickness for Type B joints, and less than 10 inches thickness for Type A joints.

Transverse construction joints formed by placing a header board transversely across the Subgrade shall be made at the end of each day’s paving or when placing of standard mixed concrete is discontinued for more than 60 minutes or when placing of high early strength concrete is discontinued for more than 30 minutes. The header board shall be located to conform to the spacing for the transverse contraction joints (or an expansion joint) and shall be left in place until the paving is resumed. If the location of the header board is to be a contraction joint, then the header shall have fastened to the concrete side a wedge-shaped strip of wood or preformed plastic to form a key in the concrete. Thickened edge must be constructed at the construction joint header to provide ample depth of concrete above and below the keyway. For dowel bar requirements, refer to Section 5-05.3(10).

Where preformed contraction joints are used, the joint made by the construction joint header shall have a 2-inch strip of joint Material imbedded against the hardened concrete when paving is resumed.

5-05.3(8)C3 SEALING THROUGH JOINTS

After the pavement is cured, and before carrying any traffic, the space left by the removal of the wood filler strip or the metal cap above the top of the expansion joint filler strip shall be thoroughly cleaned of all loose material. The 3/4-inch wide groove shall be completely free of any projecting concrete from the sides and the groove shall be continuous across the slab to each edge. It shall then be filled level with the pavement surface with joint sealant meeting the requirements of Sections 9-04.2(2).

The joint sealant material shall be heated and placed in accordance with the manufacturer’s instructions. Burned Material will be rejected. The through joint groove shall be dry at the time of pouring the sealing compound.

5-05.3(8)D JOINT LOCATION

5-05.3(8)D1 TRANSVERSE JOINTS

Standard spacing of transverse contraction joints along straight sections of streets (between through expansion joints or between intersections or other irregular areas), shall be at intervals no greater than 15 feet across the full width of the pavement and at right angles to the center line of Roadway. Where the spacing between transverse through expansion joints or between intersections or other irregular areas are not in even multiples of 15 feet, the last several spaces approaching the expansion joint or header shall be varied by shortening the spaces as directed by the Engineer. On horizontal curves the joint spacing of 15 feet shall be measured along the outer edge of the outside lane and at right angles to the center line.

When paving adjacent to existing pavement or a previously paved lane, the new transverse joints shall be placed to match joint locations in the adjacent pavement. Where the existing joint spacing is greater than 15 feet, intermediate transverse joints shall be constructed when directed by the Engineer.

For intersections and other irregular areas, the arrangement of contraction joints shall be in accordance with standard intersection patterns, or as directed by the Engineer. The area of any one irregular panel formed by contraction joints in intersections shall not exceed 225 square feet and its greatest dimensions shall not exceed 15 feet.

Where uncontrolled cracks have appeared or exist in the adjacent lane, they shall be matched as nearly as possible by uniform transverse joints in the second lane. In the event uncontrolled cracks in the existing paved lane are too frequent or in random locations and impossible to match with a uniform spacing in the second lane,
the two lanes shall be completely separated by \(3/4\)-inch joint Material along the length of the joint from 1/8 inch below the surface to one inch below the bottom of the concrete being placed.

Where integral curb or doweled curb is placed along the concrete pavement, premolded joint filler Material shall be placed transversely across the full section of the curb in true alignment with the pavement joint, perpendicular to the pavement grade.

All joints in an intersection shall be considered transverse joints except those joints that terminate normal to the curb radii.

5-05.3(8)D2 LONGITUDINAL JOINTS

Standard locations for longitudinal joints for the following pavement widths, whether contraction or construction, shall be as listed below unless otherwise specified otherwise in the Contract.

<table>
<thead>
<tr>
<th>Width Curb to Curb</th>
<th>Joint Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Feet</td>
<td>Center line</td>
</tr>
<tr>
<td>32 Feet</td>
<td>Center line and 10 feet each side of enter</td>
</tr>
<tr>
<td>36 Feet</td>
<td>Center line and 10 feet each side of center</td>
</tr>
<tr>
<td>40 Feet</td>
<td>Center line and 12 feet each side of center</td>
</tr>
<tr>
<td>44 Feet</td>
<td>Center line and 11 feet each side of center or match existing joint</td>
</tr>
</tbody>
</table>

In the event the Roadway is divided into two lanes, the construction joints shall be located on the center line of the Roadway unless otherwise approved by the Engineer. In separate lane construction, a joint filler 1/4-inch by 2 inches shall be placed between the two lanes when the second lane is constructed.

5-05.3(9) STEEL REINFORCING BARS

Reinforcing steel bars shall be used to reinforce pavement around castings when the casting is 18 inches or less from any joint or pavement edge. Reinforcing steel shall be 1/2 inch round deformed billet steel bars in accordance with ASTM Designation A615 Grade 60. The first bar shall be placed 1/2 the distance between the casting and the nearest joint with a total of 4 steel bars, each placed at the same distance from the casting, installed in the pavement around the casting forming a square. All 4 bars shall have a length such that each bar is lapped at each end with connecting bar by 3 inches; however, the lap may be reduced to accommodate the end of any bar not being within 3 inches of any joint or edge.

5-05.3(10) TIE BARS AND DOWEL BARS

5-05.3(10)A DOWEL BARS

Dowel bars will be required in new pavement at all transverse joints of arterial streets, intersections, and non-arterial bus and commercial streets. The dowels shall be installed at the midpoint of the thickness of the pavement, parallel to the surface of the pavement and perpendicular to the transverse joint. The tolerances for placement shall be 6 1/8-inch. The size and spacing of dowel bars shall be as indicated on Standard Plan No. 405. The dowel bars shall be held in place during the placing and setting of the concrete. Dowel bars are not required between new pavement and existing pavement unless otherwise indicated on the Drawings. Joints normal to curb radii will not require dowel.

The dowels shall be installed by method of seating the dowels or by use of a dowel bar cage extended across the width of the transverse joint or by other methods approved by the Engineer. Dowels shall be smooth, round bars of Grade 60 Steel or better, and shall be epoxy encapsulated and coated with grease to prevent corrosion and dowel seizure. The grease coating on the dowel bars shall remain intact after installing and placing the concrete. Where dowel cages are used to support the dowels, the metal rod or wire ties used to hold the cage together during shipping shall be totally removed after the cage has been placed and secured to the base or Subgrade and prior to the placement of the concrete Material.

5-05.3(10)B TIE BARS

Tie bars shall be placed at all longitudinal construction joints in accordance with Standard Plan 405, unless directed otherwise by the Engineer. Tie bars are not normally required at longitudinal contraction joints or longitudinal joints between new and existing pavement unless otherwise indicated on the Drawings. Tie bars shall be located at the required elevation and spacing shown on the Drawings and placed in such a manner that the vertical edge of the concrete is not deformed or otherwise damaged during placement of the bars. Tie bars
shall be deformed steel bars of Grade 40 steel or better and shall be epoxy coated. Joints normal to curb radii will not require dowel.

5-05.3(11) FINISHING

5-05.3(11)A GENERAL

The pavement shall be consolidated and the surface finished true to grade and cross-section by hand or machine finishing methods. On all vertical curves at irregular intersections, modified tools shall be provided as necessary to secure a smooth, uniform contour and surface.

5-05.3(11)B SLIP-FORM CONSTRUCTION

After the concrete has been given a preliminary finish by means of finishing devices incorporated in the slip-form paving Equipment, the surface of the fresh concrete shall be checked by the Contractor with a straightedge device not less than 10 feet in length. High areas indicated by the straightedge device shall be removed by the hand-float method. Each successive check with the straightedge device shall lap the previous check path by at least 1/2 of the length of the straigtedge. The requirements of this paragraph may be waived, upon the approval of the Engineer, if the Contractor can successfully demonstrate that other means can consistently produce a surface meeting the 10-foot straightedge requirement specified in Section 5-05.3(12).

Any edge slump of the pavement, exclusive of specified edging, in excess of 1/4 inch shall be corrected before the concrete has hardened. If edge slump on any 1 foot or greater length of hardened concrete exceeds 1 inch, the entire panel between the transverse and longitudinal joints shall be removed and replaced with concrete true to the specified line, grade, and cross-section.

High spots exceeding 1/4-inch shall be reduced by suitable grinding methods. Low spots exceeding 1/4-inch shall be filled with an approved epoxy-bonded grout in a manner approved by the Engineer.

5-05.3(11)C STATIONARY SIDE FORM CONSTRUCTION

5-05.3(11)C1 HAND FINISHING

After the concrete has been struck off and consolidated, it shall be smoothed by longitudinal floating. Movement ahead shall be in successive advances of not more than 1/2 the length of the float. Floating shall continue until all irregularities are removed. Longitudinal floating shall follow compaction of the concrete by not less than 30 feet. Free water on the pavement shall be removed with the float or other suitable tool. After floating, the surface shall be scraped with a grout rod at least 10 feet in length with a long handle for operating at the edge of the pavement. The grout rod shall be operated to correct irregularities in the pavement surface and remove water and laitance. Contraction joints shall be placed after all floating has been completed in accordance with provisions of Section 5-05.3(8)B2.

5-05.3(11)C2 MACHINE FINISHING

The finishing machine shall be of a type approved by the Engineer. The machine shall be adjustable to both crown and plane of the finished pavement surface. The screed shall oscillate longitudinally during its travel transversely across the pavement. It shall be operated in the forward direction so that the screed passes over the same section of pavement at least 2 times during its transverse travel.

The finishing machine shall be moved over the pavement as many times as is necessary to give the pavement a smooth even textured surface, conforming to the exact crown and cross section specified on the Drawings.

The floating shall not be considered complete until all free water is removed from the surface.

The finishing operations shall be performed at a time and over such lengths of the pavement surface as existing conditions necessitate. All finishing operations are subject to strict control by the Engineer, and shall be performed to his satisfaction.

5-05.3(11)D EDGING

Before the final finishing is completed and before the concrete has taken the final set, the pavement shall be edged as indicated below:
Location	Radius
Edge of Pavement | 1/2-inch
Contraction Joints| 1/4-inch
Through or Construction Joints | 1/2-inch

Particular attention shall be given to edge at the appropriate time. The concrete shall have attained a partial set and all free water shall have disappeared so that the edged joints are clearly defined with no tearing or slump of the edges.

5-05.3(11)E FINAL FINISH

After edging but prior to texturing, the Contractor shall demonstrate to the Engineer that the surface is ready for texturing by performing the surface smoothness checks as called for in Section 5-05.3(12). Any areas which do not comply with the specified tolerances shall be corrected and rechecked prior to texturing.

As the pavement surface is checked and approved for smoothness, the Contractor shall finish the surface with a uniform, gritty texture, true to grade and cross section. The final finish shall be accomplished by one of the methods described below, or as directed by the Engineer to achieve the specified surface texture.

Before using either the drag, brush or comb, the concrete shall have set sufficiently so that the surface is not overgrooved or gouged in the finishing operation.

Burlap Finish: A burlap drag having at least 3 feet of drag in contact with the pavement and as wide as the pavement section shall be dragged forward over the pavement surface. The burlap drag shall be wet and clean when in use. The burlap shall not be left on the pavement surface between dragging operations.

Brush Finish: After edging, the pavement shall be brushed transversely with a fiber or wire brush of a type approved by the Engineer. The brush strokes shall be perpendicular to the center line with the adjacent strokes slightly overlapped. Care should be taken to make sure texture finish is uniform throughout the pavement surface.

Rough Finish: When directed by the Engineer, the Contractor shall give the pavement a final finish surface by texturing with a comb perpendicular to the center line of the pavement. The comb shall produce striations approximately 0.015 foot in depth at approximately 1/2-inch spacings in the fresh concrete. The actual nominal depths of the striations shall be determined in the field by the Engineer. The comb shall be operated mechanically either singly or in gangs with several placed end to end. Finishing shall take place with the elements of the comb set at 45 degrees to the concrete surface to eliminate dragging the mortar. If the striation Equipment has not been previously approved, a test section shall be constructed prior to approval of the Equipment. If the pavement has a raised curb without a formed concrete gutter the texturing shall end 2 feet from the curb line. This 2-foot untextured strip shall be hand finished with a steel trowel.

5-05.3(12) SURFACE SMOOTHNESS

The surface smoothness shall be checked with a straightedge 10 feet long, mounted to a long handle to permit operation from outside the pavement. The straightedge shall be placed on the surface of the pavement parallel to the centerline and at intervals of no more than 5 feet across the full width of the pavement so as to bridge any depressions and touch all high spots. Should the surface of the pavement, when tested with a 10 foot straightedge, vary from the true surface grade more than 1/8-inch in 10 feet on arterials, 1/4-inch in 10 feet on residential streets, 3/8-inch in 10 feet in alleys, 3/8-inch in 10 feet in concrete bases, and 1/8-inch in 10 feet in concrete bases for unit pavers, the Contractor shall correct the surface grade by redoing his finish operation.

On large arterial paving Projects, the pavement smoothness shall be checked under supervision of the Engineer following placement of concrete, with Equipment furnished and operated by the Contractor. Smoothness of all pavement placed except small or irregular areas shall be measured with a recording profilograph, as specified in Section 5-05.3(3), parallel to centerline, from which the profile index will be determined by the Engineer in accordance with WSDOT Test Method 807.

The transverse slope of the finished pavement shall be uniform to a degree such that no variation greater than 1/8-inch is present when tested with a 10 foot straightedge laid in a direction perpendicular to the centerline.
In no case shall the grade in the pavement or gutter be such that allows ponding of water. If the surface smoothness of the pavement after curing is found to exceed the tolerance permitted, the high spots shall be ground until they meet tolerance. If the surface tolerance cannot be met satisfactorily by grinding, the pavement shall be removed and replaced in conformity with the Specifications.

Only Equipment and methods that consistently produce a finished surface meeting the requirements specified herein shall be used. Use of Equipment or methods which do not meet these standards shall be discontinued until the Contractor can revise and demonstrate changes in construction operations that meet the requirements of the Specifications.

If for any reason these surface smoothness checks are not performed, the Engineer may require the Contractor, as a condition of acceptance, to submit a report from an testing laboratory approved by the Engineer certifying that the surface smoothness complies with the specified tolerances, and that the testing laboratory is certified to do this work by WSDOT or AASHTO.

5-05.3(13) CURING

5-05.3(13)A CURING PERIOD

Regardless of the curing method used, the Contractor shall maintain the curing protection and protect from damage from any cause for at least the length of time listed below for the various mixes, exclusive of the day the concrete is placed, or until the pavement is opened to traffic, whichever comes first:

Type I Portland Cement Concrete Pavement	7 Days
High-Early-Strength Cement Concrete Pavement	5 Days
Concrete Mixes Containing Fly Ash	14 Days

5-05.3(13)B CURING METHODS

5-05.3(13)B1 GENERAL

Immediately after the finishing operations have been completed and as soon as marring of the concrete can not occur, the entire surface of the newly placed concrete shall be covered and cured in accordance with one of the methods in the following subsections as the Contractor may elect.

Pavement edges which are exposed by the removal of the forms shall be protected by the immediate application of a curing medium of moist earth.

All curing Materials shall be free of all substances which are considered to be harmful to Portland cement. The curing medium shall be capable of preventing checking, cracking, and dry spots regardless of conditions existing at the time of placement. Concrete placement will not be permitted unless curing Materials are on the Job Site and ready for immediate application. Failure to comply with all provisions of the curing procedures hereinafter specified will be sufficient reason to suspend all concrete operations.

When the curb section is to be placed separately, the surface of the pavement directly underneath the curb section shall be covered with a protective cover to protect that area from the curing agent when the pavement is sprayed.

5-05.3(13)B2 WHITE PIGMENTED CURING COMPOUND

White pigmented curing compound, meeting the requirements of Section 9-23.2, Type 2, Class B, shall be applied on the entire area of exposed surface of the new concrete with an approved mechanical spray machine. Wax base curing compound will not be allowed. The spray fog shall be protected from the wind with an adequate shield. It shall be applied uniformly at the rate of one gallon to not more than 150 square feet.

The compound shall be applied with Equipment which ensures continuous agitation of the compound during spraying operations. The nozzle shall be of the two line type with sufficient air to properly atomize the compound.

The curing compound shall not be applied during or immediately after rainfall. If it becomes necessary to leave the pavement uncoated overnight, it shall be covered with polyethylene sheeting which shall remain in place until weather conditions are favorable for the application of the curing compound.

In the event that rain falls on the newly coated pavement before the film has dried sufficiently to resist damage, or in the event of damage to the film from any cause, the Contractor shall apply a new coat of curing
compound in one or two applications to the affected area at the rate which, in the opinion of the Engineer, results in a film of curing value equal to that specified in the original coat.

Containers of curing compound shall be distributed on the Work in a manner to enable the Engineer to determine the rate of application being used at any time. All curing compound placed in the spray tanks shall be withdrawn directly from manufacturer’s original containers bearing the manufacturer’s name, brand, and lot number.

Before placing the curing compound in the spray tank, it shall be thoroughly agitated as recommended by the manufacturer. The compound shall not be diluted by the addition of solvents nor be altered in any manner. If the compound has become chilled to the extent that it is too viscous for proper stirring or application or if portions of the vehicle have been precipitated from solution, it shall be heated to restore proper fluidity but it shall not be heated above 100°F.

The curing compound shall be applied immediately after the concrete has been finished and after any bleed water that has collected on the surface has disappeared, or at a time designated by the Engineer. If hair checking develops in the pavement before finishing is completed, the Engineer may order the application of the curing compound at an earlier stage, in which event any concrete cut from the surface in finishing operations shall be removed entirely from the pavement. If additional mortar is then needed to fill torn areas, it shall be obtained ahead of the spraying operations. All areas cut by finishing tools subsequent to the application of the curing compound shall immediately be given new applications at the rate specified above.

The compound, after application, shall be protected by the Contractor from injury for the period of time specified above. All traffic, either by foot or otherwise, shall be considered as injurious to the film of the applied compound.

The Contractor shall provide on the job a sufficient quantity of white polyethylene sheeting to cover all the pavement laid in three hours of maximum operation. This sheeting shall be reserved exclusively for the protection of the pavement in case of rain or breakdown of the spray Equipment used for applying the curing compound. The protective sheeting shall be placed over the pavement in a manner approved by the Engineer.

Areas from which it is impossible to exclude traffic shall be protected by a covering of sand or earth not less than 1 foot in thickness or by other suitable and effective means. The protective covering shall be placed no earlier than 24 hours after application of the compound.

All liquid membrane-forming curing compounds shall be removed from the Portland cement concrete pavement to which traffic delineators are to be bonded. Curing compound removal shall not be started until the pavement has attained sufficient flexural strength for traffic to be allowed on it. The Contractor shall submit a proposed removal method to the Engineer and shall not begin the removal process until the Engineer has approved the removal method.

The Contractor shall assume all liabilities for and protect the Owner from any damages or claims arising from the use of Materials or processes described herein.

5-05.3(13)B3 WHITE POLYETHYLENE SHEETING

The sheeting shall be placed over the pavement immediately after finishing operations are completed, or at a time designated by the Engineer.

The sheeting shall be laid so that individual sheets overlap at least 2 feet, and the lapped areas shall be held in close contact with the pavement by weighting with earth or boards to prevent movement by the wind. The sheeting shall extend downward to cover the edges of the pavement and shall be secured to the Subgrade with a continuous bank of earth or surfacing Material. Any holes occurring in the sheeting shall be patched immediately to the satisfaction of the Engineer. The sheeting shall be maintained against injury and remain in place the minimum period of time as specified above.

White polyethylene sheeting shall conform to the requirements of Section 9-23.1.

5-05.3(13)B4 WET CURING

As an alternative to the above curing methods or as directed by the Engineer, the Contractor may wet cure the concrete pavement. Wet curing shall be accomplished by applying a continuous fog or mist spray to the entire pavement surface 24 hours a day for a minimum of 7 days. If water runoff is not a concern, continuous sprinkling is acceptable. Sprinkling shall not begin until the concrete has achieved initial set as determined by AASHTO T197 or other approved method.
5-05.3(13)B5 TRANSPARENT CURING COMPOUND

The use of transparent liquid curing compounds shall be restricted to areas not exceeding 1,000 square yards.

The curing compound shall be Type 1 as specified in Section 9-23.2. Sufficient pigment shall be present so that the sprayed compound is easily discernible. The application and the curing shall be the same as for "White Liquid Membrane Curing Compound" in Section 5-05.3(13)B2.

5-05.3(13)B6 EMULSIFIED ASPHALT

Concrete pavement when laid as a base for an asphalt wearing course shall be cured as specified in Section 5-05.3(20).

5-05.3(13)C CURING IN HOT WEATHER

In periods of low humidity, or drying winds, or high temperatures a fog spray shall be applied to concrete as soon after placement as conditions warrant in order to prevent the formation of shrinkage cracks. The spray shall be continued until conditions permit the application of a liquid curing membrane or other curing media. The Engineer shall make the decision when the use of a fog spray is necessary.

5-05.3(14) COLD WEATHER WORK

When the air temperature is expected to reach the freezing point during the day or night and the pavement has not cured for 50 percent of the time specified in Section 5-05.3(13)A, the concrete shall be protected from freezing. The Contractor shall, at no expense to the Owner, provide a sufficient supply of straw, hay, grass, earth, blankets, or other suitable insulating blanket material and spread it over the pavement to a sufficient depth to prevent freezing of the concrete. The Contractor shall be responsible for the quality and strength of the concrete thus cured. Any concrete injured by frost action or freezing shall be removed and replaced at the Contractor's expense.

5-05.3(15) CONCRETE PAVEMENT CONSTRUCTION IN ADJACENT LANES

Refer to Section 5-05.3(7)A.

5-05.3(16) PROTECTION OF PAVEMENT

The Contractor shall protect the pavement and its appurtenances from any damage. Protection shall include personnel to direct traffic and the erection and maintenance of warning signs, lights, barricades, temporary take-down bridges across the pavement with adequate approaches, and whatever other means may be necessary to accommodate local traffic and to protect the pavement during the curing period or until opened to traffic as specified in Section 5-05.3(17).

5-05.3(17) OPENING PAVEMENTS TO TRAFFIC

Unless otherwise approved in writing by the Engineer, the Contractor shall not open newly constructed cement concrete pavement to traffic, including construction Equipment, until the pavement has cured for the period of time specified in Section 5-05.3(13)A and attained a compressive strength of 3500 psi. Approval to open newly constructed pavement to the use of construction Equipment (or other vehicular traffic) in less time than the time period specified in Section 5-05.3(13)A will be limited to those paving situations when the Contractor is unable to use the Subgrade of the lane being paved or the Shoulder adjacent to it for paving Equipment.

Approval will be conditioned upon the Contractor agreeing to the following restrictions:

1. The concrete in the newly paved lane has attained a flexural strength of 500 psi as determined with a Beam Test pursuant to AASHTO T-177 or ASTM C293.
2. The Beam Test is performed at the Contractor's expense by an independent materials laboratory retained by the Contractor. The laboratory retained by the Contractor shall be a laboratory acceptable to the Engineer.
3. The surface of the new pavement shall be protected from scarring and abrasion by operating mixers, trucks, and other construction Equipment on mats, skids, or other protective devices approved by the Engineer. Accumulation of sand, gravel, dirt, concrete or other debris deposited on the new pavement shall be removed daily. Curing compound protection damaged as a result
of using the paved lane shall be replaced concurrent with spraying of curing compound on the newly placed concrete.

4. The Contractor shall remove and replace at no expense to the City any panels on the new pavement that are cracked or broken as a result of the Contractor’s early opening of the lane to vehicle use.

Streets with curbs shall not be opened until the curb has cured for at least 72 hours and has attained 2500 psi strength. If the curb has not attained the above-mentioned 2500 pounds per square inch strength, the Contractor shall protect the curb by placing form lumber on the pavement 2 feet away from the curb, or standard barricades and maintain them to the satisfaction of the Engineer. Such curb protection shall remain in place as long as may be necessary for protection of the curb.

Streets shall not be opened to traffic until the smoothness criteria specified in Section 5-05.3(12) have been met.

Temporary pavement markings, when required by the Engineer, shall be installed, maintained, and subsequently removed in accordance with Section 5-04.3(17).

Prior to opening traffic, the pavement shall be cleaned. The Engineer will decide when the pavement shall be open to traffic. Refer to Section 1-07.23, Section 1-10, and the “Traffic Control Manual for In-Street Work”.

5-05.3(18) CEMENT CONCRETE APPROACH

Concrete approaches shall be constructed at the locations shown in the Drawings or as staked by the Engineer and in accordance with WSDOT Standard Plan No. F4.

The provisions of Section 5-05 shall pertain in the construction of concrete approaches, and, in addition, the following shall apply:

Placing, Compacting, and Finishing: Concrete may be placed, compacted, and finished using hand methods. The tools required for these operations shall be approved by the Engineer.

5-05.3(19) REINFORCED CONCRETE BRIDGE APPROACH SLABS

Approach slab concrete shall be Class AX conforming to the requirements of Section 6-02.3(2)A.

Reinforced concrete bridge approach slabs shall be constructed at the locations shown in the Drawings or as staked by the Engineer and in accordance with the Contract Documents.

The approach slabs shall be constructed full bridge deck width from outside usable Shoulder to outside usable Shoulder at an elevation to match the structure. Pavement ends and the bridge ends of the approach slabs shall be modified as shown in the Drawings to accommodate the grate inlets at the bridge ends if the grate inlets are required.

Screed rail support, installation, and finish machine requirements shall be as specified for bridge deck slabs.

Reinforced concrete bridge approach slab anchors shall be installed as detailed in the Drawings. For Method A anchor installations, the grout or adhesive used to install the anchors shall have a minimum compressive strength of 4000 psi at three days and be capable of developing the ultimate strength of the anchor rod. The anchor rod shall be ASTM A 36 steel. Compressive strength shall be determined in accordance with AASHTO T 106. The anchors shall be installed parallel both to profile grade and center line of Roadway. The Contractor shall secure the anchors to ensure that they do not become misaligned during concrete placement.

The compression seal shall be as noted in the Contract Documents.

Finishing of the reinforced concrete bridge approach slabs shall be accomplished by either a combination of finishing machine and hand finishing or by hand finishing methods only. The finished and cured approach slabs shall be free from any deviation exceeding 1/8 inch under a 10-foot straightedge placed parallel and perpendicular to the center line of the Roadway.

5-05.3(20) UNFINISHED CEMENT CONCRETE PAVEMENT

Cement concrete pavement, which is intended as a base for an asphalt wearing course, shall conform to all requirements of Section 5-05 with the following exceptions:

1. The surface tolerance shall be 3/8 inch in 10 feet.
2. The surface of the concrete base, if hand compacted, may be struck off with only one strike-off rod.

3. Contraction joints shall be constructed as follows:
 a. A weakened plane shall be made in the plastic concrete every 15 feet or to match existing cracks as designated by the Engineer.
 b. The plane shall be weakened with a joint cutter to a minimum depth of 2 inches.
 c. Bulging caused by the joint cutter shall be corrected by floating lightly.
 d. Joint Material shall be placed completely through the curb at the point where the weakened plane intersects the curb.

4. Liquid curing compounds which leave a waxy film on the concrete shall not be used for curing concrete base pavement. If cured with a liquid curing compound, it shall meet the requirements of Section 9-23.2 for the clear type and the rate of coverage shall be at least one gallon per 125 square feet; or emulsified asphalt CSS-1 or CRS-1 meeting the requirements of Section 9-02.1(6) applied at a rate between 0.15 gallon and 0.25 gallon per square yard of surface.

5-05.3(21) SIDE FORMS

Side forms shall have a height of not less than the specified depth of pavement, and thickened edge when applicable, and shall be of ample strength to resist deformation. They shall be provided with adequate devices for secure setting so that when in place they shall withstand, without visible springing or settlement, the weight, impact, and vibration of the finishing machines. The forms shall be free from warps, bends, or kinks.

Forms shall be drilled in advance of being placed to line and grade to accommodate tie bars where these are specified.

Forms shall remain in place at least 12 hours after the concrete has been placed and shall be cleaned and oiled each time they are used. Curing compound shall be applied to the concrete immediately after the forms are removed.

The alignment and grade elevations of the forms shall be checked and the necessary corrections made by the Contractor immediately before placing the concrete. When any form has been disturbed or any Subgrade thereunder has become unstable, the form shall be reset and rechecked.

Forms may be of wood or metal or any other material at the option of the Contractor, provided the forms as constructed result in a pavement of specified thickness, cross section, grade, and alignment as shown on the Drawings.

Forms shall be adequately supported to prevent deflection or movement, and result in concrete pavement conforming with the Drawings and Specifications. The top of the forms shall not deviate more than 1/8-inch in 10 feet and the alignment of forms shall be within 1/4-inch in 10 feet. The forms may be removed the day after pouring if the concrete is sufficiently set to withstand removal without danger of chipping or spalling. When forms are removed before the expiration of the curing period, the edges of the concrete shall be protected with moist earth or sprayed with curing compound. All forms shall be cleaned, oiled and examined for defects before they are used again.

5-05.3(22) REPAIR OR REPLACEMENT OF DEFECTIVE PAVEMENT PANELS

Broken panels, random cracks, nonworking contraction joints near cracks, and spalls along joints and cracks shall be replaced with a new panel, unless specified otherwise below. This shall be accomplished prior to completion of joint sealing.

Pavement slabs containing multiple cracks through the full depth of the panel, separating the panel into three or more parts, shall be entirely removed and replaced. Pavement panels containing a single diagonal crack intersecting the transverse and longitudinal joints within 1/3 of the width and length of the panel from the corner shall be repaired by removing and replacing the smaller portion of the panel.

Random cracks penetrating the full depth of the pavement shall be grooved and sealed. The top of the crack shall be grooved to a minimum depth of 3/4-inch and to a width not less than 3/8-inch nor more than 5/8-inch by means of an approved grooving machine. The grooving machine shall be capable of following closely the path of the crack and of widening the top of the crack to the required section without spalling, or otherwise damaging the concrete. Loose and fractured concrete shall be removed, and the groove shall be thoroughly cleaned and sealed. Random cracks that are tight and that do not penetrate the full depth of the pavement shall
be left undisturbed. When necessary, the depth of crack penetration shall be determined by inspection of cores drilled.

When a transverse random crack terminates in or crosses a transverse contraction joint, the uncracked portion of the joint shall be filled with epoxy-resin mortar or grout and the crack shall be routed and sealed. When a transverse random crack approximately parallels the planned contraction joint and is within a distance of 5 feet from a contraction joint in the pavement, the crack shall be routed and sealed, and the joint shall be filled with epoxy-resin mortar or grout. When a transverse random crack is more than 5 feet from the nearest contraction joint in the pavement, both the joint and the crack shall be sealed. Joints to be filled with epoxy-resin mortar or grout shall be thoroughly cleaned.

Spalls shall be repaired by making a saw cut at least 1 inch outside the spalled area and to a minimum depth of 2 inches. When the spalled area abuts a joint, the saw cut shall be made to a depth of 2 inches or 1/6 the slab thickness, whichever is greater. The concrete between the saw cut and the joint or primary crack shall be chipped out to solid concrete. The cavity thus formed shall be thoroughly cleaned of all loose material. A prime coat of epoxy-resin binder shall be applied to the dry, cleaned surface of all sides of the cavity, except the joint or primary crack face. The prime coat shall be applied by scrubbing prime coat material into the surface with a stiff-bristle brush. Placement of Portland cement concrete or epoxy-resin concrete or mortar shall immediately follow the application of the prime coat. If the spalled area to be patched abuts a working joint or a working crack which penetrates the full depth of a slab, an insert or other bond-breaking medium shall be used to maintain working joints or cracks during the repair work.

5-05.3(23) CEMENT CONCRETE PAVEMENT FOR ALLEY

5-05.3(23)A PAVEMENT AND ALLEY RETURN REQUIREMENTS
Cement concrete pavement for alleys shall meet the requirements of Section 5-05 and Standard Plan No. 403. Alley returns shall meet the requirements for driveways in Section 8-19.

5-05.3(23)B EXTRA CONCRETE FOR ALLEY APPROACH RAMP
When constructing and finishing cement concrete alley pavement, the Engineer may in some cases require the Contractor to place additional concrete over the surface of the alley pavement to serve as an integral ramp or vehicular access to abutting private property. Such extra concrete shall be placed and finished to the additional thickness directed by the Engineer. Additional thickness for such ramps shall not exceed 6 inches above the original planned concrete surface at any point. See Standard Plan 430.

5-05.3(23)C EDGE AND SUPPORT WALL
Where shown on the Drawings, the Contractor shall construct the edge wall as detailed on Standard Plan No. 403 or the support wall as detailed on Standard Plan No. 800, except that the alley width indicated on the Drawings shall be taken to the face of the curb.

After removal of forms, all lips and edgings where form boards have met shall be removed with a sharp tool or stone. Bolts or concrete ties shall be removed and the holes filled with 1:2 mortar and floated to an even uniform surface. If in the opinion of the Engineer a satisfactory surface has been obtained, no further finishing shall be done. If, however, the surface is not satisfactory, these surfaces shall be thoroughly washed with water and a 1:1 mortar applied with brush and completely worked into the small air holes and other crevices. After initial set, the surface shall be rubbed with a damp sack.

The curb shall extend a net 6 inches above the alley pavement.

5-05.3(23)D CURB WALL
Curb wall shall be constructed as indicated on Standard Plan No. 801. Deformed steel bars shall be in accordance to ASTM Designation A615 Grade 60.

5-05.3(24) CONCRETE UNDERPINNING
Where designated by the Engineer, existing concrete foundations left above grade shall be supported with concrete underpinning.

5-05.3(25) WATER
Water for pavement construction shall be furnished as provided in Section 2-07. Refer to Section 9-25.
5-05.3(26) A GENERAL

Concrete pavement restoration shall be considered "Pavement Patch" whenever the pavement restoration is due to a utility trench cut, and the width of the opening is less than the full concrete panel width. For full panel replacement see Sections 5-05.5.

Concrete pavement patching shall be scheduled to accommodate the demands of traffic, and shall be performed as rapidly as possible to provide maximum safety and convenience to public travel.

The placing and compaction of the trench backfill, and the preparation and compaction of the Subgrade shall be in accordance with the requirements of the various applicable sections of these Specifications.

Before the patch is constructed, all pavement cuts shall be trued so that the marginal lines of the patch form a rectangle with straight edges and vertical faces. The use of a concrete saw will not be required unless so indicated in the Contract.

The class of concrete used in patches depends upon the urgency of opening the street to traffic. Curing compound as specified in Section 5-05.3(13) shall be placed on the concrete immediately after finishing.

Proper signs, barricades, lights and other warning devices, as may be required by the Engineer, shall be maintained all 24 hours of the day until the patch is completed and ready for traffic.

On all public works Contracts, the Contractor shall perform all Work required to backfill the excavations made under existing pavements and to restore pavement cuts with patching in accordance with these Specifications unless otherwise provided in the Project Manual.

Compaction of the Subgrade shall be completed prior to the required patching. Compaction shall be to 95% maximum density as determined by the methods specified in Section 2-03.3(14)E.

5-05.3(26) B CEMENT CONCRETE PAVEMENT

Streets which have rigid type pavements surfaced with asphalt concrete shall be patched as shown on Standard Plan Nos. 404.1a and 404.1b. The thickness of concrete pavement patch shall match the existing rigid base or 9 inches, whichever is greater. The top surface of the concrete shall match the top surface of the existing rigid base; in no case shall the top of the concrete be higher than the top of the existing rigid base. Brush finishing will not be required. Joints shall be placed if directed by the Engineer. Curing shall be accomplished with STE-1 asphalt emulsion diluted with water as directed by the Engineer.

When the existing street surface is cement concrete, the concrete pavement patch shall be placed, compacted and struck off to the grade of the adjacent pavement in accordance with the pertinent provisions of Section 5-05. Through joints and dummy joints shall be placed and edged where directed. The surface shall be finished and brushed with a fiber brush or combs or tines. Approved curing compound shall be placed on the finished concrete immediately after finishing.

5-05.3(27) TEMPORARY PAVEMENT PATCHING

Temporary pavement patching shall be in accordance with Section 5-04.3(23)E.

5-05.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for pavement or pavement base will be by the square yard of concrete in place, including the area underneath curbs. No deduction will be made for castings in pavement.

Measurement for thickened edge will be by the linear foot as measured along the face of the thickened edge.

Measurement for concrete underpinning will be by cubic yard placed as computed by the Engineer.

Measurement for edge wall, support wall and curb wall will be per cubic yard of concrete based on neat lines indicated on the Standard Plans.

Steel required for pavement reinforcement as specified in Section 5-05.3(7)E will be measured by the pound of steel reinforcement in place.
Tiebars and dowels required for pavement and curbs, and reinforcement steel required around casting, will not be measured.

Measurement and payment for curb constructed with alley pavement will be in accordance with Section 8-04.

Measurement of concrete pavement patching will be by the cubic yard for cement concrete patching. Quantities for surface restorations for trench excavations will be based upon computations made by the Engineer using the required pavement patch thickness and the removal criteria specified in Section 2-02.3(3).

Quantities for pavement patching for electrical conduit will be based on actual measured dimensions with the provision that the width of restoration for payment purposes shall be no greater than 24 inches.

5-05.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 5-05 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Pavement, Cement Concrete (Class), (Thickness)”, per square yard.
2. “Pavement Base, Cement Concrete (Class), (Thickness)”, per square yard.
 The Contract unit price for “Pavement, Cement Concrete (Class), (Thickness)” and “Pavement Base, Cement Concrete (Class) (Thickness)” shall include all costs for the Work required to install concrete pavement of the specified class and thickness, including construction joints, contraction joints, through joints, saw cutting, keyways, sealing joints, curing and, when required, tie bars and dowel bars as specified in Section 5-05.3(10).
3. “Pavement, Thickened Edge (18 inch x 3 inch)”, per linear foot.
 The Contract unit price for “Pavement, Thickened Edge (18 inch x 3 inch)” shall include all costs for the Work required to shape and compact the Subgrade for the thickened edge including the concrete.
4. “Underpinning, Cement Concrete CL 5 (3/4)”, per cubic yard.
 The Contract unit price for “Underpinning, Cement Concrete CL 5 (3/4)” shall include all costs for the Work required including furnishing and placing the underpinning and reinforcing steel and excavating as required.
5. “Wall, Cement Concrete, Edge, Type 403B”, per cubic yard.
 The Contract unit price for “Wall, Cement Concrete, Edge, Type 403B” shall include all costs for the Work required to construct the wall as shown on the Drawings and as specified. Excavation for the edge wall shall be considered incidental to the wall and no separate payment will be made.
6. “Wall, Cement Concrete, Support, Type 800”, per cubic yard.
 The Contract unit price for “Wall, Cement Concrete, Support, Type 800” shall include all costs for the Work required to construct the wall as shown on the Drawings and as specified. Excavation and reinforcing steel (including steel extending into pavement slab) for the support wall shall be considered incidental to the wall and no separate payment will be made.
7. “Wall, Cement Concrete, Curb, Type 801”, per cubic yard.
 The Contract unit price for “Wall, Cement Concrete, Curb, Type 801” (including reinforcing steel extending into pavement slab) shall include all costs for the Work required to construct the wall as shown on the Drawings and as specified. Excavation and reinforcing steel for curb wall shall be considered incidental to the wall and no separate payment will be made.
8. “Pavement Patch, Cement Concrete Class 6.5 (1-1/2), H.E.S.”, per cubic yard.
 The Contract unit price for “Pavement Patch, Cement Concrete Class 6.5 (1-1/2), H.E.S.” shall include the costs for all Work not otherwise provided for in this pay section but necessary to maintain and permanently restore, as applicable, pavements or other traffic bearing surfaces which have been opened by trench excavation or similar work. All incidental work required to complete the patching of street surfaces as specified, including installing joints where required, shall be considered incidental to pavement patching.

Payment for "Pavement Patch, Temporary, MC 250" shall include reimbursement for removal of temporary patch before final patching.

The costs for additional MC 250 and crushed surfacing Material required to maintain temporary pavement patches after the initial installation shall be borne by the Contractor.

10. Other payment information.

Payment for Roadway ballast will be as "Mineral Aggregate, (Type)" in accordance with Section 4-01.5.

All costs in connection with replacing Portland cement with fly ash as specified shall be included in the Contract unit price for the various classes of concrete involved. If the concrete is to be paid for other than by class of concrete, all costs involved with replacing Portland cement with fly ash as specified shall be included in the Contract unit price for the applicable item or items of work.

All costs required to furnish and mix additional cement to concrete as specified in Section 9-01.4 shall be at the Contractor’s expense.

All costs for the Work required to repair defective pavement slabs as specified in Section 5-05.3(22) shall be at the Contractor’s expense.

All costs for temporary pavement marking work as specified in Section 5-04.3(17) including installation, maintaining, and removing shall be considered incidental to the Contract unit price Bid for “Pavement, Cement Concrete.”

Payment for backfill and compaction of the Subgrade shall be included in the Contract unit price for the particular work item which necessitated the pavement cut. Payment for crushed rock surfacing shall be paid separately in accordance with Section 4-01.

Payment for steel reinforcing bar for reinforced concrete pavement and for bridge approach slab shall be paid separately in accordance with Section 6-02.5.

Steel required for tiebars, dowels, curbs and pavement, and for reinforcement around castings as specified in 5-05.3(9) will be considered incidental to the pavement and no separate payment will be made.
This page intentionally blank.
DIVISION 6 STRUCTURES

SECTION 6-01 GENERAL REQUIREMENTS

6-01.1 DESCRIPTION

This section relates to structural, and incidental items used in any or all types of existing or proposed structures. The provisions of Section 6-01 supplement the detailed specifications supplied for any given structure unless noted otherwise on the Drawings.

6-01.2 FOUNDATION DATA

See Section 1-02.4(2) for subsurface information.

6-01.3 CLEARING THE SITE

The Contractor shall clear the entire site of the proposed structure to the limits staked by the Engineer.

6-01.4 APPEARANCE OF STRUCTURES

To achieve a more pleasing appearance, the Engineer may require the Contractor to make minor adjustments to the height and alignment of bridge railings, traffic barrier, and structural curbs.

6-01.5 RESERVED

6-01.6 LOAD RESTRICTIONS ON BRIDGES UNDER CONSTRUCTION

Bridges under construction shall remain closed to all traffic, including construction equipment, until the Substructure and the Superstructure, through the roadway deck, are complete for the entire structure, except as provided herein. Completion includes release of all falsework, removal of all forms, and attainment of the minimum design concrete strength and specified age of the concrete in accordance with these Specifications. Construction traffic shall not occupy the structure until approved by the Engineer. Once the structure is complete and is accepted by the Engineer, Section 1-07.7 shall govern all traffic loading, including all construction loading.

If necessary and safe to do so, and if the Contractor requests it in writing, the Engineer may approve traffic on a bridge prior to completion. The submittal shall:

1. Describe the extent of the structure completion at time of the proposed equipment loading.
2. Describe the loading arrangement, movement, and position of traffic (equipment) on the bridge.
3. Provide stress calculations prepared by (or under the direction of) a professional engineer, licensed under Title 18 RCW, State of Washington, and carrying the professional engineer's signature and seal in accordance with Section 1-05.3(2F), and
4. State that the Contractor assumes all risk for damage.

6-01.7 NAVIGABLE STREAMS

The Contractor shall keep navigable streams clear so that water traffic may pass safely, providing and maintaining all lights and signals required by the U.S. Coast Guard. The Contractor shall also comply with all channel depth and clearance line requirements of the U.S. Corps of Engineers. This may require removing material deposited in the channel during construction.

6-01.8 RESERVED

6-01.9 SHOP DRAWINGS

Shop Drawing requirements shall be as specified in Section 1-05.3 with the following exceptions:

The Shop Drawings and calculations shall be provided far enough in advance of actual need to allow for the review process by the Engineer or other agencies, which may result in acceptance, rejection, revision, or re-submittal. The Engineer will require up to 30 days from the date the submittals are received until they are sent
to the Contractor. This time period may increase if the Shop Drawings submitted do not meet the Contract requirements or contain insufficient details.

Unless designated otherwise by the Contractor, submittals of Shop Drawings will be reviewed in the order they are received by the Engineer. In the event that several sets of Shop Drawings are submitted simultaneously, the Contractor shall specify the sequence in which these Shop Drawings are to be reviewed. If the Contractor does not submit a Shop Drawing review sequence for simultaneous Shop Drawing submittals, the review sequence shall be at the Engineer’s discretion.

Shop Drawings and calculations shall be prepared by (or under the direction of) a professional engineer, licensed under Title 18 RCW, State of Washington, and shall carry the professional engineer’s signature and seal, in accordance with Section 1-05.3(2)F.

6-01.10 RESERVED

6-01.11 NAME PLATES

The Contractor shall install no permanent plates or markers on a structure unless the Drawings designate it.

6-01.12 STRUCTURE CLEANUP

Final cleanup shall be as specified in Section 1-04.11.

6-01.13 ARCHITECTURAL FEATURES

Each Material incorporated in the Work shall be uniform in texture and color for consistency in appearance, unless approved otherwise by the Engineer.

To ensure uniform texture and color, the Contractor shall obtain all cement for the structure from the same manufacturing plant unless the Engineer waives this requirement in writing.

6-01.14 PREMOLDED JOINT FILLER

When the Drawings call for pre-molded joint filler, the Contractor shall fasten it with galvanized wire nails to one side of the joint. The nails must be no more than 6 inches apart and shall be 1-1/2 inches from the edges over the entire joint area. The nails shall be at least 1-1/2 inches longer than the thickness of the filler.

The Contractor may substitute for the nails any adhesive by submitting adhesive catalog cuts and certifications verifying the following: the adhesive shall be compatible with Resilient Bituminous Preformed Expansion Joint Filler meeting the requirements of ASTM D1751 or AASHTO M213, and be capable of bonding the filler to Portland cement concrete.

6-01.15 NORMAL TEMPERATURE

Bridge Drawings state dimensions at a normal temperature of 64 °F. These dimensions are horizontal or vertical.

6-01.16 MAINTENANCE OF BRIDGE DRAINS

The Contractor shall keep existing and new bridge drains open and functioning during construction. Before work begins, the Contractor shall verify existing drains are clear and free flowing, and if not, the Contractor shall immediately notify the Engineer. Maintenance includes keeping drains clean, free of debris, and free flowing. Before acceptance of the bridge drains, the existing and new bridge drains shall be tested for drainage, and clogged or non-flowing drains shall be cleaned and cleared to a free-flowing state acceptable to the Engineer.
SECTION 6-02 CONCRETE STRUCTURES

6-02.1 DESCRIPTION
Section 6-02 applies to the construction of all structures (and their parts) made of Portland cement concrete with or without reinforcement. Any part of a structure to be made of other materials shall be built as required elsewhere in these Specifications.

6-02.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Aggregates for Portland Cement Concrete</td>
<td>9-03.1</td>
</tr>
<tr>
<td>Gravel Backfill</td>
<td>9-03.12</td>
</tr>
<tr>
<td>Joint and Crack Sealing Materials</td>
<td>9-04</td>
</tr>
<tr>
<td>Bridge Drains</td>
<td>9-06</td>
</tr>
<tr>
<td>Downspouts</td>
<td>9-06</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
<tr>
<td>Epoxy-Coated Reinforcing Steel</td>
<td>9-07</td>
</tr>
<tr>
<td>Prestressed Concrete Girders</td>
<td>9-19</td>
</tr>
<tr>
<td>Curing Materials and Admixtures</td>
<td>9-23</td>
</tr>
<tr>
<td>Concrete Mixes Incorporating Fly Ash</td>
<td>9-23.9</td>
</tr>
<tr>
<td>Plastic Waterstop</td>
<td>9-24</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
<tr>
<td>Elastomeric Bearing Pads</td>
<td>9-35</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>9-23</td>
</tr>
</tbody>
</table>

6-02.3 CONSTRUCTION REQUIREMENTS

6-02.3(1) CLASSIFICATION OF STRUCTURAL CONCRETE
Unless specified otherwise, the Contractor shall use Type II Portland cement in all concrete. The mix to be used in various parts of the structure is noted on the Drawings. When not indicated on the Drawings, the following applies:

<table>
<thead>
<tr>
<th>Class Of Concrete</th>
<th>Used In</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX</td>
<td>Thin and heavily reinforced members; in all roadway slabs subject to abrasive action of traffic; in all cast-in-place beams and girders; in all traffic barriers, columns, arch ribs and arch rings; in approach slabs.</td>
</tr>
<tr>
<td>B</td>
<td>All reinforced sections other than those covered by Class AX.</td>
</tr>
<tr>
<td>C</td>
<td>Unreinforced sections of footing blocks, heavy walls, and other mass construction.</td>
</tr>
<tr>
<td>D, DX</td>
<td>Areas where concrete is to be deposited under water, such as seals.</td>
</tr>
<tr>
<td>LS</td>
<td>Areas where shrinkage must be reduced, such as closure pours.</td>
</tr>
</tbody>
</table>

The Contractor may request substituting a class of concrete with a higher than specified 28-day design strength. Any request for a substitution shall be submitted at least 10 Working Days before the need arises and will be evaluated for acceptance based on the class of concrete specified. No separate or additional payment will be made resulting from this substitution.

6-02.3(2) PROPORTIONING MATERIALS

6-02.3(2A) GENERAL
The 28-day design strength for each class of concrete listed in Section 6-02.3(1) is shown below. The Contractor shall use as little water as possible for satisfactory placement and shall not exceed the amounts
shown below. The table below also provides a guideline for concrete mixes, assuming a bulk specific gravity of 2.67 for each size of aggregate. The weight shown for each size of aggregate is only an estimate of the amount to be used per cubic yard of concrete. Actual amounts may vary from those shown, because the Engineer may adjust the mix to correct for actual bulk specific gravity or moisture content or both, or to ensure proper consistency, workability, correct cement content, and yield.

<table>
<thead>
<tr>
<th>Class of Concrete</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>DX</th>
<th>AX</th>
<th>LS<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength, psi</td>
<td>3,600</td>
<td>3,000</td>
<td>2,300</td>
<td>3,600</td>
<td>3,600</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Max. gals. of mixing Water per 100 lbs. of Portland cement</td>
<td>5.33</td>
<td>6.15</td>
<td>7.23</td>
<td>5.33</td>
<td>5.33</td>
<td>5.30</td>
<td>4.55<sup>(1)</sup></td>
</tr>
<tr>
<td>Lbs. of cement per cubic yd.</td>
<td>610</td>
<td>540</td>
<td>470</td>
<td>610</td>
<td>610</td>
<td>660</td>
<td>660</td>
</tr>
<tr>
<td>Lbs. of SSD Class 2 Fine aggregate</td>
<td>1,395</td>
<td>1,470</td>
<td>1,375</td>
<td>1,195</td>
<td>1,300</td>
<td>1,420</td>
<td>1,420</td>
</tr>
<tr>
<td>Lbs. of SSD No. 2 Course aggregate</td>
<td>1,860</td>
<td>1,820</td>
<td>1,970</td>
<td>2,060</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lbs. of SSD No. 5 Course aggregate</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1,955</td>
<td>1,735</td>
<td>1,735</td>
</tr>
</tbody>
</table>

Proportions are by Weight. Maximum Size Aggregate is 1-1/2 inch.

¹Water-reducing admixture shall be used in Class LS concrete as outlined in Section 6-02.3(3)B.

The total Chloride ion (Cl-) content of the mixed concrete shall not exceed 0.06 percent of cementitious material for prestressed concrete nor 0.10 percent of cementitious material for reinforced concrete (see exception in Section 6-02.3(3)B). Cementitious material shall be the weight of cement plus fly ash, and microsilica, if used.

Concrete for bridge decks, bridge approach slabs, and for Engineer provided mixes shall use only Class 1 fine aggregate. Concrete for slip-formed barrier may use Class 1 or 2 fine aggregate.

Unless otherwise specified, the Contractor shall use Type II Portland cement in all concrete.

The Contractor may propose the use of fly ash for all classes of concrete other than for Owner-provided mixes. The Contractor shall submit the proposed mix design incorporating fly ash along with certifications indicating the mix design meets or exceeds the specified requirements. Fly ash, if used, shall not exceed 15 percent by weight of the total cementitious material in the concrete mix and all concrete within a class in a structure shall have the same proportion of fly ash. The water/cement ratio shall be calculated on the total cementitious material.

As an alternative to the use of cement and fly ash as separate components, a blended hydraulic cement, Type IP(8S) or Type I (PM) (MS), may be used. The blended cement shall be produced such that the maximum fly ash content of the cementitious material is 15 percent.

6-02.3(2)B MEASURING MATERIALS

All materials that make up a batch of concrete will be measured by weight on scales that comply with Section 1-09.2.

The cement, the fine aggregate, and each size of coarse aggregate shall be weighed separately, the weight for each being proportional to its bulk specific gravity. The Engineer may correct the weight to adjust for free water held by the aggregate.

The volume in cubic feet shall equal the total batch weight (the weight, in pounds, of all materials including water) divided by the unit weight of the concrete in pounds per cubic foot. The unit weight of concrete will be determined by WSDOT Test Method 806.

If the Engineer approves, the Contractor may use mobile mixers that measure material by volume.

6-02.3(3) ADMIXTURES

Concrete admixtures shall be added to the concrete mix at the time of batching the concrete or in accordance with the manufacturer’s written procedure and as approved by the Engineer. A copy of the manufacturer’s written procedure shall be furnished to the Engineer prior to use of any admixture. Admixtures from different manufacturers shall not be used together unless the Contractor provides written documentation.
verifying that the admixtures are compatible in combination with all other ingredients of the concrete. Any modifications from the manufacturer’s written procedures shall be submitted with written justification for the Engineer’s approval (see Section 6-02.3(3)B). Admixtures shall not be added to the concrete with the modified procedures until the Engineer has approved them.

6-02.3(3)A AIR-ENTRAINED CONCRETE

In all cast-in-place concrete placed above the finished ground line, the Contractor’s concrete shall have between 4.5% minimum and 6.5% maximum air entrainment. The Engineer will approve the exact percentage of air to be entrained.

The Contractor may elect to use air entrainment for concrete placed below finished ground line. With or without air entrainment, the 28-day compressive strength of all concrete shall meet the strength requirements of the class of concrete specified.

6-02.3(3)B WATER-REDUCING AND RETARDENT ADMIXTURES

Concrete used in all underwater placement for shafts, bridge roadway slabs, traffic and pedestrian barriers, and all Class LS concrete shall include a water-reducing admixture that conforms to AASHTO M 194, Type A.

If temperature of the surrounding air exceeds 80°F, the Contractor may use a combination of water-reducer and retardant admixture that conforms to AASHTO M 194, Type D. In this case, the chloride ion in the mixture shall conform with Section 9-23.6 of these Specifications and shall be approved by the Engineer. The Engineer may require that the SPU Materials Laboratory sample and test the mixture before use.

The Contractor shall add water-reducer at the manufacturer’s recommended rate and as the Engineer may direct. The water-reducer shall be added as a liquid through an automatic dispenser approved by the Engineer. This dispenser shall inject the reducer into the first 75 percent of the mixing water that enters the batch.

Water-reducing and air-entraining admixtures shall be compatible and shall be from the same source and manufacturer. Water-reducing and air-entraining admixtures not from the same source and manufacturer require the Contractor to submit to the Engineer certified test reports stating that the two admixtures are compatible.

6-02.3(3)C RESERVED

6-02.3(3)D NON-SHRINK CEMENT SAND GROUT

Non-shrink cement sand grout shall be used where indicated on the Drawings. Non-shrink grout shall conform to the requirements outlined in Section 9-04.3(2).

Prior to placing the grout, the contact surface shall be thoroughly cleaned, roughened and wetted with water. The grout shall be covered with burlap sacks after the initial concrete set and wetted at regular intervals until the required strength is obtained.

6-02.3(4) MIXING CONCRETE

6-02.3(4)A MACHINE MIXING

All concrete shall be mixed thoroughly in a batch mixer that:

1. Meets the Engineer's approval;
2. Distributes materials uniformly throughout the batch;
3. Includes a mechanical device to prevent aggregates being added after mixing begins;
4. Has a batch meter or other device for recording the number of revolutions per batch;
5. Is rated for at least a two-sack batch capacity; and
6. Automatically locks the charging device to prevent emptying the materials until they have been mixed for a set time.

To prepare the mixer, the Contractor shall first place enough sand, cement, and water in the drum to coat its inside surface with cement mortar.
Batches shall be proportioned on the basis of pounds of cement. For each batch, some water shall enter the drum before any cement or aggregate. All water shall be added by the end of the first one-fourth of the required mixing time. Heated water used in cold weather may require the Contractor to adjust this order to prevent flash setting. The Engineer will determine the amount of water required for each batch.

The entire batch shall be removed from the drum before materials for the next batch are added. If mixing stops long enough that the concrete shows signs of hardening, the mixer shall be thoroughly cleaned.

Concrete shall be mixed for at least 1 minute after all materials and water are in the drum. Classes D and DX, however, shall be mixed 1-1/2 minutes. The Engineer may permit a shorter mixing time for special mixers if tests show equal or better results.

During mixing, the drum shall rotate within its designed speed range. This speed should not be less than 175 nor more than 225 feet per minute at the sides of the drum, and not less than 14 nor more than 20 rpm.

The Contractor shall use an Engineer approved device to measure and control the amount of water used in each batch. This device shall control flow to an accuracy of 61/2 percent. It shall include an easy to read gauge that is clearly visible at all times.

6-02.3(4)B HAND MIXING

The Contractor shall not hand-mix concrete except in emergencies and then only with written permission from the Engineer. Hand-mixing is never permitted for concrete to be placed in water.

If the Engineer permits, hand-mixing shall be done on a watertight platform in a way that distributes materials evenly throughout the mass. Mixing shall continue long enough to produce a uniform mixture. No hand-mixed batch shall exceed 1/2 cubic yard.

6-02.3(4)C READY-MIXED CONCRETE

Ready-mixed concrete may be used after the Engineer has inspected and approved the plant and delivery system. Approval will be given if the Supplier can produce and deliver concrete that conforms to all Owner and Engineer requirements. The delivery rate shall provide for placing of the concrete as required in Section 6-02.3(6). Delivery and handling methods shall also permit placement with a minimum of rehandling and without damage to the structure or the concrete.

The central ready mix plant shall meet the requirements of ASTM C 94. In general, the batching plant shall include bins, weighing hoppers, and scales for the fine aggregates and each size of coarse aggregate. If cement is used in bulk, a bin, hopper and separate scale for cement shall also be included. The weighing hoppers shall be properly sealed and vented to preclude dusting during operation. The batching plant shall be equipped with a suitable non-resettable batch counter which correctly indicates the number of batches proportioned during a day. Bins and hoppers shall have separate compartments of adequate size for the fine, and for each size of coarse aggregate. Scales shall meet the requirements of Section 1-09.2. Plants shall be equipped to proportion aggregates and bulk cement by means of automatic weighing devices of an approved type.

An approved Supplier may use any cement after obtaining certification from the manufacturer that the cement meets all the requirements of these Specifications. The Supplier shall store this cement separately so that it may be easily distinguished from all other cement.

The Supplier may use one or more of the following methods for mixing and delivering ready-mixed concrete:

1. Central-mixed concrete - completely mixed in a stationary mixer and delivered to the site in a truck agitator or truck mixer rotating at agitator speed;
2. Shrink-mixed concrete - partially mixed in a stationary mixer with mixing completed in a truck mixer; or
3. Transit-mixed concrete - completely mixed in a truck mixer.

A clearly visible metal plate (or plates) attached to each mixer and agitator shall display: (1) the concrete-volume capacity of the drum or container, and (2) the rotation speed of the drum or blades. Mixers and agitators shall always operate within capacity and speed-of-rotation limits set by the manufacturers. Any mixer, when fully loaded, shall mix the ingredients into a uniform mass within the required time. Any agitator, when fully
Any stationary mixer shall have a timer that prevents the batch from discharging until a set mixing time has elapsed. In shrink-mixing, the batch may be discharged from the stationary mixer as soon as the ingredients have been thoroughly intermingled (about 30 seconds).

If a truck mixer or agitator transports the concrete, the batch shall be discharged at the site no more than 1-1/2 hours after the cement enters the mix. The time to discharge may be extended to 1-3/4 hours if the temperature of the concrete being placed is in less than 75°F. With the approval of the Engineer and as long as the temperature of the concrete being placed is below 75°F, the maximum time to discharge may be extended to 2 hours. When conditions are such that the concrete may experience an accelerated initial set, the Engineer may require a shorter time to discharge. When conditions would speed stiffening of the concrete, the Engineer may require a shorter delivery time. The Engineer may extend this time limit if the concrete is used for fence post foundations, so long as the mix remaining after the 1-1/2 hour limit remains usable without adding water.

In transit-mixing, mixing shall begin within 30 minutes after the cement is added to the aggregates.

Each truck mixer or agitator shall have a nonresettable counter to record the number of revolutions of its drum, blades, or paddles. In transit- or shrink-mixing, each batch shall be mixed at least 70, but not more than 100, revolutions of the drum or blades at the mixing speed designated by the equipment manufacturer. Any additional mixing shall proceed at the manufacturer’s designated agitating speed.

Any concrete transported by truck mixer or agitator shall not undergo more than 250 revolutions of the drum or blades before pouring. To remain below this limit, the Supplier may agitate the concrete intermittently within the 1-1/2 hour deadline.

The Inspector shall monitor all mixing done at a plant or job site. At least once each day the Inspector shall examine mixers and agitators to find any build-ups of hardened mix or worn blades. If this examination reveals a problem, or if the Inspector wishes to test the quality of the concrete, slump tests may be performed with samples taken at approximately the 1/4 and 3/4 points as the batch is discharged. If the two slumps differ by more than 2 inches, the equipment shall not be used until the condition is corrected. However, the equipment may continue in use if longer mixing times or smaller loads produce batches that pass the slump tests.

6-02.3(4)D RETEMPERING

Concrete shall be mixed only in such quantities as are required for immediate use and shall be used while fresh before initial set has taken place. Any concrete having initial set before placing and finishing shall be wasted and not used for the work. Retempering of concrete (re-mixing with water or other materials) will not be allowed.

6-02.3(4)E CONSISTENCY

The maximum slump for vibrated concrete shall be:

1. Three inches for concrete placed in all footings, box girder bottom slabs, bridge approach slabs, and roadway deck slabs (including the Superstructure of flat slab bridges); and
2. Four inches for all other concrete.

The maximum slump for nonvibrated concrete shall be 7 inches.

The maximum slump for Class DX concrete, for underwater placement, shall be 7 inches.

When a high-range water reducer is used, the maximum slump limit may be increased an additional two inches while the concrete is affected by the admixture.

If the Contractor is unable to provide a concrete with a workable consistency, a water reducing admixture in Owner provided mixes may be used provided the batch meets the slump limit and complies with the proportions required in Section 6-02.3(2)A.
6-02.3(5) ACCEPTANCE OF CONCRETE

6-02.3(5)A CONFORMANCE TO MIX DESIGN

Aggregate weights shall conform within 62 percent of the weights for course or fine aggregate required by the mix design. The total cementitious material weight shall conform within 61 percent of the mix design weight. If the total cementitious material weight is made up of different components, these component weights shall be within the following tolerances:

1. Portland cement 61 percent of the mix design weight;
2. Fly ash 6.5 percent of the mix design weight; and
3. Microsilica 6.10 percent of the mix design weight.

Water measured by volume or weight shall conform within 61.5 percent of the mix design amount but shall, in no case, exceed the maximum water specified in the Owner provided mix design.

All weights shall conform to the mix design weights or as modified in accordance with Section 6-02.3(2)C.

6-02.3(5)B CERTIFICATION OF COMPLIANCE

The concrete producer shall provide a Manufacturer's Certificate of Compliance for each truckload of concrete. The Certificate of Compliance shall verify that the delivered concrete is in compliance with the mix design and shall include:

- Manufacturer Plant (Batching Facility)
- Owner Contract No.
- Date
- Time Batched
- Truck No.
- Initial Revolution Counter Reading
- Quantity (Quantity batched this load)
- Type of concrete by class and producer design mix number
- Cement Producer, Type, and Mill Certification No. (The mill test number as required by Section 9-01.3 is the basis for acceptance of cement.)
- Fly Ash (if used) Brand and Type
- Approved aggregate gradation designation

Mix Design weights per cubic yard and actual batched weights for:

- Cement
- Fly Ash (if used)
- Coarse Concrete Aggregate and moisture content (each size)
- Fine Concrete Aggregate and moisture content
- Water (including free moisture in aggregates)
- Admixtures brand, quantity per/100 wt. and total quantity batched
 - Air-Entraining Admixture
 - Water Reducing Admixture
 - Other Admixture

The Certificate of Compliance shall be signed by a responsible representative of the concrete producer, other than the driver, affirming the accuracy of the information provided.

6-02.3(6) PLACING CONCRETE

6-02.3(6)A GENERAL

The Contractor shall not place concrete:

1. On frozen or ice-coated ground or Subgrade;
2. Against or on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints;
3. Under rainy conditions; placing of concrete shall be stopped before the quantity of surface water is sufficient to effect or damage surface mortar quality or cause a flow or wash of the concrete surface;

4. In any foundation until the Engineer has approved its depth and character;

5. In any form until the Engineer has approved it and the placement of any reinforcing in it; or

6. In any work area where vibrations from nearby work (driving or pulling piles, etc.) may harm the concrete’s initial set or strength.

When a foundation excavation contains water, the Contractor shall pump it dry before placing concrete. If this is impossible, an underwater concrete seal shall be placed that complies with Section 6-02.3(6)D. This seal shall be thick enough to resist any uplift.

All foundations and forms shall be moistened with water just before the concrete is placed. Any standing water on the foundation or in the form shall be removed.

The Contractor shall place concrete in the forms as soon as possible after mixing. The concrete shall always be plastic and workable. For this reason, the Engineer may reduce the time to discharge even further. Concrete placement shall be continuous, with no interruption longer than 20 minutes between adjoining layers unless the Engineer approves longer time. Each layer shall be placed and consolidated before the preceding layer takes initial set. After initial set, the forms shall not be jarred, and projecting ends of reinforcing bars shall not be disturbed.

In girders or walls, concrete shall be placed in continuous, horizontal layers 1-1/2 to 2-feet deep. Compaction shall leave no line of separation between layers. In each part of a form, the concrete shall be deposited as near its final position as possible.

Any method for placing and consolidating shall not segregate aggregates or displace reinforcing steel. Any method shall leave a compact, dense, and impervious concrete with smooth faces on exposed surfaces. Plastering is not permitted. The Contractor, at no expense to the Owner, shall remove any Section of defective concrete.

To prevent aggregates from separating, the length of any conveyor belt used to transport concrete shall not exceed 300 feet. If the mix needs protection from sun or rain, the Contractor shall cover the belt. When concrete pumps are used for placement, the operator(s) shall be certified by the American Concrete Pumping Association for the type of equipment and class of concrete to be placed. Prior to use on the first placement of each day a Contractor’s representative shall visually inspect the pumps water chamber for water leakage. No pump shall be used that allows free water to flow past the piston.

If a concrete pump is used as the placing system, the pump priming slurry shall be discarded before placement. Initial acceptance testing may be delayed until the pump priming slurry has been eliminated from the concrete being pumped. Eliminating the priming slurry from the concrete may require that several cubic yards of concrete are discharged through the pumping system and discarded. Use of a concrete pump requires a reserve pump (or other backup equipment) at the site to prevent missed deadlines from breakdowns.

If the concrete is to drop more than 5 feet, it shall be deposited through a sheet metal (or other approved conduit. If the form slopes, the concrete shall be lowered through approved conduit to keep it from sliding down one side of the form. No aluminum conduits or tremies shall be used to pump or place concrete.

Before placing concrete for roadway slabs on steel spans, the Contractor shall release the falsework under the bridge and let the span swing free on its supports. Concrete in flat slab bridges shall be placed in one continuous operation for each span or series of continuous spans.

Concrete for roadway slabs and the stems of T-beams or box-girders shall be placed in separate operations if the stem of the beam or girder is more than 3-feet deep. First the beam or girder stem shall be filled to the bottom of the slab fillets. Roadway slab concrete shall not be placed until enough time has passed to permit the earlier concrete to shrink (at least 12 hours). If stem depth is 3 feet or less, the Contractor may place concrete in one continuous operation if the Engineer approves.

Between expansion or construction joints, concrete in beams, girders, roadway slabs, piers, columns, walls, and traffic and pedestrian barriers, etc. shall be placed in a continuous operation.

No traffic or pedestrian barrier shall be placed until after the roadway and sidewalk slabs are complete for the entire structure. No concrete barriers shall be placed until the falsework has been released and the span
supports itself. No barrier, curb, or sidewalk shall be poured on steel or prestressed concrete girder bridges until the roadway slab reaches a compressive strength of at least 3,000 psi.

The Contractor may construct traffic and pedestrian barriers by the slipform method. However, the barrier may not deviate more than 1/4 inch when measured by a 10-foot straightedge held longitudinally on the front face, back face, and top surface. Electrical conduit within the barrier shall be constructed in accordance with the requirement of Section 8-33.3(2).

When placing concrete in arch rings, the Contractor shall ensure that the load on the falsework remains symmetrical and uniform.

Unless the Engineer approves otherwise, arch ribs in open spandrel arches shall be placed in sections. Small key sections between large sections shall be filled after the large sections have shrunk.

6-02.3(6)B WEATHER AND TEMPERATURE LIMITS TO PROTECT CONCRETE HOT WEATHER PROTECTION

The Contractor shall provide concrete within the specified temperature limits by:

1. Shading or cooling aggregate piles (sprinkling of fine aggregate piles with water is not allowed). If sprinkling of the coarse aggregates is to be used, the piles moisture content shall be monitored and the mixing water adjusted for the free water in the aggregate. In addition, when removing the coarse aggregate, it shall be removed from at least 1 foot above the bottom of the pile; or

2. Refrigerating mixing water; or replacing all or part of the mixing water with crushed ice, provided the ice is completely melted by placing time.

If the concrete would probably exceed 90°F using normal methods, the Engineer may require approved temperature-reduction measures be taken before the placement begins.

If air temperature exceeds 90°F, the Contractor shall use water spray or other approved methods to cool all concrete-contact surfaces to less than 90°F. These surfaces include forms, reinforcing steel, steel beam flanges, and any others that touch the mix. Water-reducing admixtures shall be used to ensure compliance with slump and water quantity requirements. The Contractor shall reduce the time between mixing and placing to a minimum and shall not permit mixer trucks to remain in the sun while waiting to discharge concrete. Chutes, conveyors, and pump lines shall be shaded.
Table 6-02.3(6)-1 Surface Evaporation from Concrete

To estimate evaporation rate:

1. Enter chart at appropriate air temperature and relative humidity above.
2. Move right to line corresponding to the concrete temperature.
3. Move down to line approximating the wind velocity.
4. Read evaporation rate on scale to left of this point.
If bridge roadway slabs are placed while air temperature exceeds 90°F, the Contractor shall:

1. Cover the top layer of reinforcing steel with clean, wet burlap immediately before concrete placement;
2. Sprinkle cool water on the forms and reinforcing steel just before the placement if the Engineer requires it;
3. Finish the concrete slab without delay; and
4. Provide at the site water-fogging equipment to be used if needed after finishing to prevent plastic cracks.

If the evaporation rate at the concreting site is 0.20 pounds per square foot of surface per hour or more (determined from Table 6-02.3(6)-1), the Contractor shall surround the fresh concrete with an enclosure. This enclosure shall protect the concrete from wind blowing across its surface until the curing compound is applied. If casting deck concrete that is 80°F or hotter, the Contractor shall install approved equipment at the site to show relative humidity and wind velocity.

COLD WEATHER PROTECTION

The Contractor assumes all risks connected with the placing of concrete during cold weather. The Contractor shall provide a written procedure of cold weather concreting to the Engineer for review and approval. Permission given by the Engineer to place concrete during cold weather will in no way ensure acceptance of the Work by the Owner. Should the concrete placed under such conditions prove unsatisfactory in any way, the Engineer has the right to reject the work although the plan and the work was carried out with permission of the Engineer (see Sections 1-05.1, 1-05.2, and 1-05.6).

The Engineer may require the Contractor to provide and maintain a recording thermometer near the concreting site. During freezing or near-freezing weather, data from this thermometer shall be readily available to the Engineer.

The Contractor shall not mix nor place concrete while the air temperature is below 35°F, unless the water or aggregates (or both) are heated to at least 70°F. The aggregate shall not exceed 150°F. If the water is heated to more than 150°F, it shall be mixed with the aggregates before the cement is added. Any equipment and methods shall heat the materials evenly and shall not alter or prevent the required amount of air entrainment.

The Contractor may warm stockpiled aggregates with dry heat or steam, but not by applying flame directly or under sheet metal. If the aggregates are in bins, steam or water coils or other heating methods may be used if aggregate quality is not affected. Live steam heating is not permitted on or through aggregates in bins. If using dry heat, the Contractor shall increase mixing time enough to permit the super-dry aggregates to absorb moisture.

Any concrete placed in air temperatures below 35°F shall be immediately surrounded with a heated enclosure. Air temperature within the enclosure shall be maintained between 50 and 90°F and the relative humidity shall be above 80 percent. These conditions shall be maintained for a minimum of 7 days or for the cure period required by Section 6-02.3(11), whichever is longer. The Contractor shall stop adding moisture 24 hours before removing the heat. Extra protection shall be provided for areas especially vulnerable to freezing (such as exposed top surfaces, corners and edges, thin sections, and concrete placed into steel forms).

If weather forecasts predict air temperatures below 35°F during the 7 days just after the concrete placement, the Contractor may place the concrete only if he protects it by surrounding with a heated enclosure.

6-02.3(6)C PLACING CONCRETE IN FOUNDATION SEALS

If the Drawings require a concrete seal, the Contractor shall place the concrete underwater inside a watertight cofferdam, tube, or caisson. Seal concrete shall be placed in a compact mass in still water. It shall remain undisturbed and in still water until fully set. While seal concrete is being deposited, water elevation inside and outside the cofferdam shall remain equal to prevent any flow through the seal in either direction. The cofferdam shall be vented at the vent elevation shown in the Drawings. The thickness of the seal is based upon this vent elevation.

The seal shall be at least 18-inches thick unless the Drawings show otherwise. The Engineer may change the seal thickness during construction which may require redesign of the footing and the pier shaft or
column. Although seal thickness changes may result in the use of more or less concrete, reinforcing steel, and excavation, payment will remain as originally defined in Contract unit prices.

To place seal concrete underwater, the Contractor shall use a concrete pump or tremie. The tremie shall have a hopper at the top that empties into a watertight tube at least 10 inches in diameter. The discharge end of the tube on the tremie or concrete pump shall include a device to seal out water while the tube is first filled with concrete. Tube supports shall permit the discharge end to move freely across the entire work area and to drop rapidly to slow or stop the flow. One tremie may be used to concrete an area up to 18 feet per side. Each additional area of this size requires one additional tremie.

Throughout the underwater concrete placement operation, the discharge end of the tube shall remain submerged in the concrete and the tube shall always contain enough concrete to prevent water from entering. The concrete placement shall be continuous until the work is completed, resulting in a seamless, uniform seal. If the concreting operation is interrupted, the Engineer may require the Contractor to prove by core drilling or other tests that the seal contains no voids or horizontal joints. If testing reveals voids or joints, the work will be considered defective and the Contractor shall repair them or replace the seal, at the Contractor’s sole expense.

Concrete placed under water shall be Class D or DX mix and shall be proportioned to meet the consistency requirement of Section 6-02.3(4)E.

6-02.3(6)D DEWATERING CONCRETE SEALS AND FOUNDATIONS

After a concrete seal is constructed, the Contractor shall pump the water out of the cofferdam and place the rest of the concrete in the dry. This pumping shall not begin until the seal has set enough to withstand the hydrostatic pressure - normally at least 3 days for gravity seals and at least 10 days for seals containing piling. The Engineer may extend these waiting periods to ensure structural safety or to meet a condition of the operating permit.

If weighted cribs are used to resist hydrostatic pressure at the bottom of the seal, the Contractor shall anchor them to the foundation seal. Any method used (such as dowels or keys) shall transfer the entire weight of the crib to the seal.

No pumping shall be done during or for 24 hours after concrete placement unless done from a suitable sump separated from the concrete work by a watertight wall. Pumping shall be done in a way that rules out any chance of concrete being carried away.

6-02.3(6)E POINT OF ACCEPTANCE

Determination of concrete properties for acceptance will be made based on samples taken to most nearly represent the condition of the concrete as placed in the forms. Any placement system which, in operation, alters the specified properties of the concrete, will require sampling at the discharge from the placement system. Acceptance of concrete placed through a tremie system depends on testing of concrete samples taken from the truck discharge.

It shall be the Contractor’s responsibility to provide adequate and representative samples of the fresh concrete to a location designated by the Engineer for the testing of concrete properties and making of cylinder specimens. Samples shall be provided as directed in Sections 1-06.1 and 1-06.2.

When mutually agreeable to the Owner and the Contractor, samples may be taken at a location other than the point of discharge. The alteration of concrete properties in passage through the placement system shall be recognized in analyzing results of such samples and in determining acceptance of the fresh concrete.

6-02.3(7) CONCRETE EXPOSED TO SEA WATER

If sea water is to come in contact with a concrete structure, the Contractor shall:

1. Mix the concrete for at least 2 minutes;
2. Control water content to produce concrete that shall be as impermeable as possible;
3. Compact the concrete as the Engineer may require, avoiding the formation of any stone pockets;
4. Place only clean, rust-free reinforcement bars in the concrete;
5. Coat form surfaces heavily with shellac and any approved form release agent;
6. Leave forms intact for at least 30 days after concrete placement (longer if the Engineer requires) to prevent sea water from contacting the concrete. When placing Type III (High Early Strength) cement concrete, leave forms in place for at least 7 days;

7. Leave the surface of concrete just as it comes from the forms;

8. Provide special handling for any concrete piles used in sea water to avoid even slight deformation cracks; and

9. Avoid sharp corners in concrete work.

The Engineer shall decide the range of disintegration possible by exposure to sea water. This range shall extend from a point below the level of extreme low tide up to a point above the level of extreme high tide. Wave action and other conditions also affect the Engineer's decision on this range. Unless the Engineer approves otherwise, the Contractor shall not locate construction joints within this range. All concrete within this range shall be poured in the dry.

6-02.3(8) CONCRETE EXPOSED TO ALKALINE SOILS OR WATER

The requirements for concrete in sea water shall also apply to concrete in alkaline soils or water. In addition, the Contractor shall:

1. Let the concrete set at least 30 days (longer if possible) before allowing soil or water to contact it directly;

2. Vibrate each batch of concrete immediately after it has been placed into the forms, using enough vibrating tampers to do this effectively; and

3. Hand tamp, if necessary, to produce smooth, dense outside surfaces.

6-02.3(9) VIBRATION OF CONCRETE

The Contractor shall supply enough vibrators to consolidate the concrete (except that placed underwater) according to the requirements of this section. Each vibrator must:

1. Be designed to operate while submerged in the concrete;

2. Vibrate at a rate of at least 7,000 pulses per minute; and

3. Receive the Engineer's approval on its type and method of use.

Immediately after concrete is placed, vibration shall be applied in the fresh batch at the point of deposit. In doing so, the Contractor shall:

1. Space the vibrators evenly, no farther apart than twice the radius of the visible effects of the vibration;

2. Ensure that vibration intensity is great enough to visibly affect a mass of 1-inch slump concrete across a radius of at least 18 inches;

3. Insert the vibrators slowly to a depth that effectively vibrates the full depth of each layer, penetrating into the previous layer on multilayer pours;

4. Protect partially hardened concrete (i.e., non-plastic concrete - which prevents vibrator penetration when only its own weight is applied) by preventing the vibrator from penetrating it or making direct contact with steel that extends into it;

5. Not allow vibration to continue in one place long enough to form pools of grout;

6. Continue vibration long enough to consolidate the concrete thoroughly, but not so long as to segregate it;

7. Withdraw the vibrators slowly when the process is complete; and

8. Avoid use of vibrators to move concrete from one point to another in the forms.

When vibrating and finishing top surfaces that are to be exposed to weather or wear, the Contractor shall not draw water or laitance to the surface. In high lifts, the top layer shall be shallow and made up of a concrete mix as stiff as can be effectively vibrated and finished.

To produce a smooth, dense finish on outside surfaces, the Contractor shall hand tamp the concrete.
6-02.3(10)A GENERAL

A preconcreting conference shall be held 5 to 10 Working Days before placing concrete to discuss construction procedures, personnel, and equipment to be used. Those attending shall include:

1. (Representing the Contractor) The superintendent and all foremen in charge of placing steel reinforcing bars, of placing the concrete, and of finishing it; and
2. (Representing the Owner) The Engineer and key inspection assistants.

If the Project includes more than one slab, and if the Contractor's key personnel change between concreting operations, an additional conference shall be held just before each slab is placed.

The Contractor shall not place roadway slabs until the Engineer agrees that:

1. Concrete production and placement rates are high enough to meet placing and finishing deadlines;
2. Finishers with enough experience have been employed; and
3. Adequate finishing tools and equipment are at the site.

The finishing machine shall be self-propelled and be capable of forward and reverse movement under positive control. The finishing machine shall be equipped with a rotating cylindrical single or double drum screed not exceeding 60 inches in length. The finishing machine shall have the necessary adjustments to produce the required cross-section, line, and grade. Provisions shall be made for the raising and lowering of all screeds under positive control. The upper vertical limit of screed travel shall permit the screed to clear the finished concrete surface. When placing concrete abutting a previously placed slab, the side of the finishing machine adjacent to the existing slab shall be equipped to travel on the existing slab. If performance is not acceptable, the Engineer may reject the equipment, any concrete already placed, or both.

The Contractor may use hand-operated strike-boards only when the Engineer approves for special conditions and small areas (less than 10 feet in width and 200 feet in length). These boards must be sturdy and able to strike off the width of a full roadway lane without intermediate screeds. Strike-boards, screed rails, and any specially made auxiliary equipment shall receive the Engineer's approval before use. All finishing requirements in these Specifications apply to hand-operated finishing equipment.

Screed rails shall rest on adjustable supports that can be removed with the least possible disturbance to the screed business. The supports shall rest on structural members or on forms rigid enough to resist deflection. Supports shall be removable to at least 2 inches below the finished surface. If possible, the Contractor shall place screeds outside the finishing area. However, if they are placed inside the area, they shall be placed above the finished surface.

Screed rails (with their supports) shall be strong enough and stiff enough to permit the finishing machine to operate effectively on them. All screed rails shall be placed and secured for the full length of the slab before the concreting begins. If the Engineer approves in advance, the Contractor may move rails ahead onto previously set supports while concreting progresses. But such movable rails and their supports shall not change the set elevation of the screed.

On steel truss and girder spans, screed rails and bulkheads may be placed directly on transverse steel floorbeams, with the strike-board moving at right angles to the centerline of the roadway.

Before any concrete is placed, the finishing machine shall be operated over the entire length of the slab to check screed deflection. Concrete placement may begin only if the Engineer approves after this test.

Immediately before placing concrete, the Contractor shall check (and adjust if necessary) all falsework and wedges to minimize settlement and deflection from the added weight of the concrete slab. The Contractor shall also install devices, such as telltales, by which the Engineer can readily measure settlement and deflection.

The Contractor shall schedule the concrete placement so that it can be completely finished during daylight. After dark finishing is permitted if the Engineer approves and if the Contractor provides adequate lighting.

The placement operation shall cover the full width of the roadway or the full width between construction joints. The Contractor shall locate any construction joint over a beam or web that can support the slab on either
side of the joint. The joint shall not occur over a pier unless the Drawings permit. Each joint shall be formed vertically and in true alignment. The Contractor shall not release falsework or wedges supporting pours on either side of a joint until each side has aged as these Specifications require.

Placement of concrete for slabs shall comply with Section 6-02.3(6)A. The Engineer shall approve the placement method. In placing the concrete, the Contractor shall:

1. Place it (without segregation) against concrete placed earlier, as near as possible to its final position, approximately to grade, and in shallow, closely spaced piles;
2. Consolidate it around reinforcing steel by using vibrators before strike-off by the finishing machine;
3. Not use vibrators to move concrete;
4. Not revibrate any concrete surface area where workers have stopped prior to screeding;
5. Remove any concrete splashed onto reinforcing steel in adjacent segments before concreting them;
6. Tamp and strike off the concrete with a template or strikeboard moving slowly forward at an even speed;
7. Maintain a slight excess of concrete in front of the cutting edge across the entire width of the placement operation;
8. Make enough passes with the strike-board (without bringing excessive amounts of mortar to the surface) to create a surface that is true and ready for final finish; and
9. Leave a thin, even film of mortar on the concrete surface after the last pass of the strike-board.

Workers shall complete all post screeding operations without walking on the concrete. This may require work bridges spanning the full width of the slab.

After removing the screed supports, the Contractor shall fill the voids with concrete (not mortar).

If necessary, as determined by the Engineer, the Contractor shall float the surface left by the finishing machine to remove roughness, minor irregularities, and seal the surface of the concrete. Floating shall leave a smooth and even surface. The floats shall be at least 4 feet long. Each transverse pass of the float shall overlap the previous pass by at least half the length of the float. The first floating shall be at right angles to the strike-off. The second floating shall be at right angles to the centerline of the span. A smooth riding surface shall be maintained across construction joints.

Expansion joints shall be finished with a 11/2 inch radius edger.

After floating, but while the concrete remains plastic, the Contractor shall test the entire slab for flatness (allowing for crown, camber, and vertical curvature). The testing shall be done with a 10-foot straightedge held on the surface. The straightedge shall be advanced in successive positions parallel to the centerline, moving not more than one-half the length of the straightedge each time it advances. This procedure shall be repeated with the straightedge held perpendicular to the centerline. An acceptable surface shall be one free from deviations of more than 1/8 inch under the 10-foot straightedge.

If the test reveals depressions, the Contractor shall fill them with freshly mixed concrete, strike off, consolidate, and refinish them. High areas shall be cut down and refinished. Re-testing and refinishing shall continue until an acceptable, deviation free surface is produced. The hardened concrete shall meet all smoothness requirements of these Specifications even though the tests require corrective work.

The Contractor shall texture the bridge deck by combing the final surface perpendicular to the centerline. Made of a single row of metal tines, the comb shall leave striations in the fresh concrete approximately 3/16-inch deep by 1/8-inch wide and spaced approximately 1/2 inch apart. The Engineer will decide actual depths at the site. (If the comb has not been approved, the Contractor shall obtain the Engineer's approval by demonstrating it on a test section.)

The Contractor may operate the combs manually or mechanically, either singly or with several placed end to end. The timing and method used shall produce the required texture without displacing larger particles of aggregate. Texturing shall end 2 feet from curb lines. This 2-foot untextured strip shall be hand finished with a steel trowel.

If the Drawings call for an overlay (to be constructed on the same Contract) such as asphalt concrete, latex modified concrete, epoxy concrete, or similar, the Contractor shall produce the final finish by dragging a strip of damp, seamless burlap lengthwise over the full width of the slab or by brooming it lightly. A burlap drag shall
equal the slab in width. Approximately 3 feet of the drag shall contact the surface, with the least possible bow in its leading edge. It must be kept wet and free of hardened lumps of concrete. When it fails to produce the required finish, the Contractor shall replace it. When not in use, it shall be lifted clear of the slab.

After the slab has cured, the surface shall not vary more than 1/8-inch under a 10-foot straightedge placed parallel and perpendicular to the centerline.

The Contractor shall cut high spots down with a diamond faced, saw-type cutting machine. This machine shall cut through mortar and aggregate without breaking or dislodging the aggregate or causing spalls.

Low spots shall be built up utilizing a grout or concrete with a strength equal to or greater than the required 28-day strength of the roadway slab. The method of build-up shall be submitted to the Engineer for approval.

The surface texture on any area cut down or built up shall match closely that of the surrounding deck. The entire bridge roadway slab must provide a smooth riding surface.

Concrete for sidewalk slabs shall be well compacted, struck off with a strike-board, and floated with a wooden float to achieve a surface that does not vary more than 1/8-inch under a 10-foot straightedge. An edging tool shall be used to finish all sidewalk edges and expansion joints. The final surface shall have a granular texture that does not turn slick when wet.

6-02.3(10)B RESERVED

6-02.3(11) CURING CONCRETE

6-02.3(11)A GENERAL

After placement, concrete surfaces shall be cured as follows:

<table>
<thead>
<tr>
<th>Concrete Surface</th>
<th>Curing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slabs (roadway, except those using Class LS; bridge approach slabs, bridge side walks; culvert tops; roofs of cut and cover tunnels)</td>
<td>curing compound covered by white, reflective type sheeting or continuous wet curing for at least 10 days.</td>
</tr>
<tr>
<td>Roadway slabs using concrete Class LS</td>
<td>continuous wet cure with heavy quilted blankets or burlap only, for 14 days.</td>
</tr>
<tr>
<td>Retaining walls, culvert sidewalls, and culvert floors</td>
<td>continuous moisture for at least ten days.</td>
</tr>
</tbody>
</table>

All other concrete surfaces (except traffic barriers and rail bases) continuous moisture for at least three days.

The Contractor may provide continuous moisture by watering a covering of heavy quilted blankets, by watering and covering with a white reflective type sheeting, or by wetting the outside surfaces of wood forms. See Sections 1-07.5 and 1-07.15 for pollution prevention and environmental controls.

When curing roadway slabs with wet heavy quilted blankets or burlap, a fog or mist spray of water shall be sprayed on the entire concrete surface before the bleed water has evaporated. As soon as the concrete has achieved initial set, the surface shall be covered with presoaked heavy quilted blankets of burlap. The fog or mist spray shall be applied continuously until the presoaked heavy quilted blankets of burlap are placed. If the fog or mist spray cannot be applied continuously, two coats of curing compound (that complies with Section 9-23.2) shall be applied after the initial fog or mist spray application and before the presoaked heavy quilted blankets of burlap are placed.

When using curing compound, the Contractor shall apply two coats (that complies with Section 9-23.2) to the fresh concrete. The compound shall be applied immediately after finishing as soon as the visible bleed of water has evaporated or as soon as the Engineer directs. Application of the second coat shall run at right angles to that of the first. The two coats shall total at least 1 gallon per 150 square feet and shall obscure the original color of the concrete. If any curing compound spills on construction joints or reinforcing steel, the Contractor shall clean it off before the next pour.

Unless the Drawings call for an asphalt overlay, the Contractor shall use white pigmented curing compound (Type 2), agitating it thoroughly just before and during application. If other materials shall be bonded
to the surface, the Contractor shall remove the curing compound by sandblasting or acceptable high pressure water washing.

The Contractor shall have on-site back-up spray equipment, enough workers, and a bridge from which they shall apply the curing compound. The Engineer may require the Contractor to demonstrate (at least one day before the pour) that the crew and equipment can apply the compound acceptably. No later than the morning after applying the curing compound, the Contractor shall cover the top surfaces with white, reflective sheeting, leaving it in place for at least ten days. Throughout this period, the sheeting shall be kept in place by taping or weighting the edges where they overlap.

If the Drawings call for an asphalt overlay, the Contractor shall use the clear curing compound (Type 1D), applying at least 1 gallon per 150 square feet to the concrete slab.

6-02.3(11)B CURING AND FINISHING CONCRETE TRAFFIC AND PEDESTRIAN BARRIER

The Contractor shall supply enough water and workers to cure and finish concrete barrier as required in this Section.

Fixed-Form Barrier:
The edge chamfers shall be formed by attaching chamfer strips to the barrier forms. After troweling and edging a barrier (while the forms remain in place), the Contractor shall:

1. Brush the top surface with a fine bristle brush;
2. Cover the top surface with heavy, quilted blankets; and
3. Spray water on the blankets and forms at intervals short enough to keep them thoroughly wet for 3 days.

After removing the forms, the Contractor shall:

1. Remove all lips and edgings with sharp tools or chisels;
2. Fill all holes with mortar;
3. True up corners of openings;
4. Remove concrete projecting beyond the true surface by stoning or grinding;
5. Cover the barrier with heavy, quilted blankets (not burlap); and
6. Keep the blankets continuously wet for at least 7 days.

The Contractor may do the finishing work described in steps (1) through (4) above during the second (the 7 days) curing period if the entire barrier is kept covered except the immediate work area. Otherwise, no finishing work may be done until at least 10 days after pouring.

After the 10-day curing period, the Contractor shall remove from the barrier all form-release agent, mud, dust, and other foreign substances in either of two ways: (1) by light sandblasting and washing with water, or (2) by spraying with a high-pressure water jet. The water jet equipment shall use clean fresh water and shall produce (at the nozzle) at least 1500 psi with a discharge of at least 3 gpm. The water jet nozzle shall have a 25-degree tip and shall be held no more than 9 inches from the surface being washed.

After cleaning, the Contractor shall use brushes to rub 1:1 mortar into air holes and small crevices on all surfaces except the brushed top. This mortar shall consist of 1 part Portland cement (of the same brand used in the concrete) and 1 part clean, fine plaster sand. As soon as the mortar takes its initial set, the Contractor shall rub it off with a piece of sacking or carpet. The barrier shall then be covered with wet blankets for at least 48 hours.

No curing compound shall be used on fixed-form concrete barrier. The completed surface of the concrete shall be even in color and texture.

Slip-Form Barrier:
The edge radius shall be formed by attaching radius strips to the barrier slip forming.

The Contractor shall finish slip-form barrier by: (1) steel troweling to close all surface pockmarks and holes; and (2) for plain surface barrier, lightly brushing the front and back face with vertical strokes and the top surface with crosswise strokes.

After finishing, the Contractor shall cure the slip-form barrier by using either method A (curing compound) or B (wet blankets) described below:
Method A: Under the curing compound method, the Contractor shall:

1. Spray 2 coats of clear curing compound (Type 1D) on the concrete surface after the free water has disappeared (Coverage of combined coats shall equal at least 1 gallon per 150 square feet);
2. No later than the morning after applying the curing compound, cover the barrier with white, reflective sheeting for at least 10 days; and
3. After the 10-day curing period, remove the curing compound completely by light sandblasting or by spraying with a high-pressure water jet to produce an even surface appearance. The water jet equipment shall use clean fresh water and shall produce (at the nozzle) at least 2500 psi with a discharge of at least 4 gpm. The water jet nozzle shall have a 25-degree tip and shall be held no more than 9 inches from the surface being cleaned. The Contractor may propose to use a curing compound concrete sealer. The Engineer will evaluate the proposal and if found acceptable will approve the proposal in writing. As a minimum, the Contractor’s proposal shall include:

 - Product Identity
 - Manufacturer’s recommended application rate
 - Method of application and necessary equipment
 - Material Safety Data Sheet (MSDS)
 - Sample of the material for testing

Allow 14 Working Days for evaluating the proposal and testing the material.

Method B: Under the wet cure method, the Contractor shall:

1. Provide an initial cure period by continuous fogging or mist spraying for at least the first 24 hours;
2. After the initial cure period, cover the barrier with a heavy quilted blanket; and
3. Keep the blankets continuously wet for at least 10 days. (No additional finishing is required at the end of the curing period.)

6-02.3(12) CONSTRUCTION JOINT

If the Engineer approves, the Contractor may add, delete, or relocate construction joints indicated on the Drawings. Any request for such changes shall be in writing, accompanied by a drawing that depicts them. The Contractor shall bear any added costs that result from such changes.

All construction joints shall be formed neatly with grade strips or other approved methods. The Engineer will not accept irregular or wavy pour lines. Wire mesh forming material shall not be used. All joints shall be horizontal, vertical, or perpendicular to the main reinforcement. The Contractor shall not use an edger on any construction joint, and shall remove any lip or edging before making the adjacent pour.

If the Drawings require a roughened surface on the joint, the Contractor shall strike it off to leave grooves at right angles to the length of the member. The grooves shall be 1/2 inch to 1 inch wide, 1/4 inch to 1/2 inch deep, and spaced equally at twice the width of the groove. If the first strike-off does not produce the required roughness, the Contractor shall repeat the process before the concrete reaches initial set. The final surface shall be clean and without laitance or loose material.

If the Drawings do not require a roughened surface, the Contractor shall include shear keys at all construction joints. These keys shall provide a positive, mechanical bond. Shear keys shall be formed depressions and the forms shall not be removed until the concrete has been in place at least 12 hours. Forms shall be slightly beveled to ensure ready removal. Raised shear keys are not allowed.

Shear keys for the tops of beams, at tops and bottoms of boxed girder webs, in diaphragms, and in crossbeams shall:

1. Be formed with 2 by 8 inch wood blocks;
2. Measure 8 inches lengthwise along the beam or girder stem;
3. Measure 4 inches less than the width of the stem, beam, crossbeam, etc. (measured transverse of the stem); and
4. Be spaced at 16 inches center to center.

Unless the Drawings show otherwise, in other locations (not named above), shear keys shall equal approximately one third of the joint area and shall be approximately 1-1/2 inches deep.
Before placing new concrete against cured concrete, the Contractor shall thoroughly clean and roughen the cured face and wet it with water. Before placing the reinforcing mat for footings on seals, the Contractor shall: (1) remove all scum, laitance, and loose gravel and sediment; (2) clean the construction joint at the top of the seals; and (3) chip off any high spots on the seals that would prevent the footing steel from being placed in the position required by the Drawings.

6-02.3(13) EXPANSION JOINTS AND COMPRESSION SEALS

6-02.3.(13)A EXPANSION JOINTS

This section outlines the requirements of specific expansion joints shown in the Drawings. The Drawings may require other types of joints, seals, or materials than those described here.

Joints made of a vulcanized, elastomeric compound (with neoprene as the only polymer) shall be installed with an approved lubricant adhesive as recommended by the manufacturer. The length of a seal shall match that required in the Drawings without splicing or stretching.

Open joints shall be formed with a template made of wood, metal, or other suitable material. Insertion and removal of the template shall be done without chipping or breaking the edges or otherwise injuring the concrete. Joint surfaces shall be parallel with a tolerance varying not more than 1/16 in a distance of 10 feet.

Any part of an expansion joint running parallel to the direction of expansion shall provide a clearance of at least 1/2 inch (produced by inserting and removing a spacer strip) between the two surfaces. The Contractor shall ensure that the surfaces are precisely parallel to prevent any wedging from expansion and contraction.

All poured rubber joint sealer (and any required primer) shall conform with Section 9-04.2(2).

The expansion joints shall be as shown and noted in the Drawings.

The Contractor shall submit Shop Drawings of the expansion joints proposed for use to the Engineer for approval. Submittal of Shop Drawings shall be in accordance with provisions of Section 1-05.3. The Shop Drawings shall show details of the system(s), including materials and dimensions, method of installation, and method of sealing the system to prevent leakage of water through the joint. The Contractor shall submit, with his Shop Drawing submittal, the manufacturer’s written installation procedures to the Engineer for approval.

After the joint system(s) is installed, the joint area shall be sandbagged, flooded with 4 inches of water for 24 hours and inspected from below the joint for leakage. If leakage is observed, the joint system shall be repaired as recommended by the manufacturer and approved by the Engineer.

To aid in assuring proper use and installation of the expansion joint system under job conditions, the Contractor shall have available, during installation of the system and at no cost to the Owner, the services of a qualified, full-time field representative of the manufacturer of the expansion joint system to be installed in this Project. Recommendations made by the manufacturer’s representative and approved by the Engineer, shall be adhered to by the Contractor at his own expense.

The expansion joints shall seal the roadway deck surface, curbs, and sidewalks to prevent water from passing through the joint to portions of the structure below. Installation of the expansion joints and painting of the exposed metal parts shall be in accordance with the manufacturer’s recommendation. The sealant recommended by the manufacturer supplying the expansion joint shall be approved by the Engineer before installation. The transition of the expansion joint from the roadway, up the curb face and horizontally to the back of the curb shall be in a continuous factory fabricated curb/gutter unit.

The seats for the expansion joints shall be absolutely parallel to longitudinal and transverse roadway grade and shall match the transverse crown of the final pavement surface. All spalls, low areas or high areas in the expansion joint seat shall be recontoured so that the variation is no more than 1/16 inch from a 10-foot straightedge on a constant cross slope and from a 3-foot straightedge on a parabolic crown. Each successive check with the straightedge device shall lap the previous check by at least 1/2 of the length of the straightedge. All concrete outside corners of the expansion joint slot shall have a radius of rounding of 1/4 inch.

When the expansion joint seat consists of steel plates or steel angles, all high areas shall be ground and all low areas having a depth of less than 1/4 inch from the true seat contour shall be filled with an approved epoxy. Areas with a depth greater than 1/4 inch shall be filled with an approved epoxy sand grout. The tolerance from a 10-foot or 3-foot straightedge shall be the same as stated above for concrete seats.
The expansion joint material shall have full firm bearing for the entire length and width of the joint. The expansion joint material shall be placed so that its top surface is recessed 1/8 inch ±1/16 inch below the driving surface of the pavement on both sides of the expansion joint.

Shims, washers or other devices shall not be used below the expansion joint material to bring the joint either to proper elevation or to proper tolerance.

All aluminum surfaces which are to be in contact with concrete shall be coated with zinc chromate or a bituminous paint as recommended by the manufacturer.

6-02.3(13)B COMPRESSION SEAL

6-02.3(13)B1 GENERAL

The groove or recess for compression seals shall have parallel sides and be constructed to the proper depth. The width of the recess shall not vary more than 1/16 inch in a distance of 10 feet. The bottom shall be a true, smooth plane parallel to the surface of the roadway, curb, or sidewalk.

The Contractor shall furnish and install compression seals of the size and type specified at the locations indicated on the Drawings and according to the following provisions:

The seals shall conform to the requirements of ASTM Designation D2000 and shall be formed by an extrusion process resulting in a dense neoprene with uniform dimensions and smooth exterior surface.

The cross section of the seal shall be shaped to allow adequate compression of the seal under design conditions. The length of seals shall be as indicated on the Drawings. Stretching of the seals will not be permitted. Details of the seal, including corner joints and type of material to bond joints shall be submitted to the Engineer and approved before submitting samples for lot acceptance. A lot shall be considered all material of one size produced during one production run for use on this Project. A sample shall consist of a 3-foot length of actual seal. The Supplier of the joint seals shall furnish the Engineer with a certified copy of the test results indicating that the material complies with the Specification requirements including catalog cuts, Shop Drawings, and manufacturer's certificate of compliance.

The seal shall be installed with an approved lubricant adhesive in accordance with the manufacturer's recommendations. The lubricant adhesive shall be delivered in containers plainly marked with the manufacturer’s name or trademark, lot number and date of manufacture. A one pint sample of lubricant adhesive shall be furnished to the Engineer for approval prior to installation.

6-02.3(13)B2 PREPARATION OF SURFACES FOR INSTALLATION

All surfaces to receive elastomeric compression seal shall be free from dirt, water, oil, rust, frost, spalls, cracks, and any other loose foreign debris which may be detrimental to effective joint sealing.

It is imperative that a clean opening with 1/4 inch rounded top edges shall be produced for the specified opening and the full depth of joint required. After the joints are constructed and all foreign materials removed from the joint grooves, all joint grooves shall be inspected for spalling. Any spalling which increases the specified size of the joint groove beyond the following limits shall be repaired by patching with epoxy mortar:

1. Spalls over 1/4 inch wide and over 1/2 inch below the surface of the pavement; and
2. Spalls over 1/4 inch wide and 2 inches or more in length, regardless of the depth of spall below the surface of the pavement.

6-02.3(13)B3 INSTALLATION

Where indicated on Drawings, the Contractor shall install the proper seals in a neat, workmanlike manner, and to the satisfaction of the Engineer.

For ease of installation, the air temperature should be below 85°F.

Compression seals shall be recessed 3/8 inch from the finished grade with a tolerance of 1/16 inch in 10 feet.

At end joints or miter joints as shown on the Drawings, a 1/4-inch thick neoprene sponge shall be bonded to the seal ends with an approved cyanoacrylate adhesive. In order to insure proper fitting, the neoprene sponge shall be cut to the size and shape of the uncompressed seal (nominal dimensions). Further, the seal plus the
sponge shall be slightly longer than the gap to be filled so that the sponge is in a state of compression against the ends of the seal. The cyanoacrylate adhesive shall be applied to outer webs and top web of the seal only, to allow entrapped air to escape and the sponge to properly function.

At seal upturn or downturn locations, the installation procedures shall be as follows (see detail on the Drawings):

1. Locate 1/2-inch diameter hole and drill through seal as shown, using a standard twist drill;
2. Using a sharp long blade knife or hacksaw, cut lower section of seal to 1/2-inch diameter hole as shown;
3. Bend seal in desired position and install as shown; and
4. Complete seal installation following normal sealing instructions.

The seal surface to be bonded shall be cleaned with toluene or approved solvent prior to applying adhesive. A continuous coat of adhesive shall be applied to both joint interfaces immediately prior to seal installation. Adhesive shall not be applied below 40°F. The compression seal shall be placed such that the top surface, or surface facing the front of the curb, shall be recessed 1/8-inch ± 1/16 inch into the adjacent concrete surface.

6-02.3(14) FINISHING CONCRETE SURFACES

6-02.3(14)A GENERAL

All concrete shall show a smooth, dense face after the forms are removed. If it is porous, the Contractor shall bear the cost of removing and replacing it. The Contractor shall clean and refinish any stained or discolored surfaces that may have resulted from his/her work or from construction delays.

Subsections B, C, and D (below) describe three classes of surface finishing. The Contractor shall comply with these subsections unless the Drawings or Project Manual requires otherwise.

6-02.3(14)B CLASS 1 SURFACE FINISH

The Contractor shall apply a Class 1 surface finish to all rail bases, curbs, traffic barrier, pedestrian barrier, and ornamental concrete members.

Class 1 surface finish requires the same treatment as Class 2 surface finish (below) but also includes the finishing steps outlined in Section 6-02.3(11)B.

6-02.3(14)C CLASS 2 SURFACE FINISH

The Contractor shall apply a Class 2 surface finish to:

1. All surfaces on the Superstructures at highway grade separations and railroad undercrossings (but not under surfaces of slab spans, filled spandrel arches and floor slabs between girders, or near horizontal bottom slabs of box girders, or inside vertical surfaces of girders, or concrete cast in steel forms);
2. All above finished ground surfaces of bridge piers, columns, abutments, retaining walls, and culvert head walls whenever these surfaces are visible from any walkway or roadway within 150 feet (but not columns cast in steel forms);
3. All outside surfaces, vertical or sloping, of each Superstructure (including the undersurfaces of cantilevered floor slabs that overhang outside girders or box girders); and
4. All surfaces of open spandrel arch rings, spandrel columns, and abutment towers.

The Contractor shall follow steps 1 through 8 below. When steel forms have been used and when the surface of filled holes matches the texture and color of the area around them, the Contractor may omit steps 3 through 8. To create a Class 2 surface finish, the Contractor shall:

1. Remove all bolts and all lips and edgings where form members have met;
2. Fill all holes greater than 1/4-inch with 1:2 mortar floated to an even, uniform finish;
3. Thoroughly wash the surface of the concrete with water;
4. Brush on a 1:1 mortar mix (made of the same brand of cement as was used in the concrete), working it well into the small air holes and other crevices in the face of the concrete;
5. Brush on no more mortar than can be finished in 1 day;
6. Rub the mortar off with burlap or a piece of carpet as soon as it takes initial set (before it reaches final set);
7. Fog-spray water over the finish as soon as the mortar paint has reached final set; and
8. Keep the surface damp for at least 2 days.

If the mortar becomes too hard to rub off as described in step 6, the Contractor shall remove it with a Carborundum stone and water. Random grinding is not permitted.

The final finish shall satisfy the Engineer.

6-02.3(14)D CLASS 3 SURFACE FINISH

The Contractor shall apply a Class 3 surface finish to:

1. All above-ground surfaces not receiving a Class 1 or Class 2 surface finish as specified above; and
2. All surfaces that are to be underground or covered with fill (note - the Engineer may waive the requirement for removing tight form ties and filling small air holes).

To produce a Class 3 surface finish, the Contractor shall:

1. Remove all bolts and all lips and edgings where form members have met; and
2. Fill all holes greater than 1/4-inch with 1:2 mortar floated to an even, flush finish.

Nothing further is required if the Engineer decides these 2 steps have produced a satisfactory surface finish. Otherwise, the Contractor shall follow other Class 2 surface finish steps until the Engineer approves the work as a final Class 3 surface finish.

6-02.3(15) DATE NUMERALS

Standard date numerals shall be placed where shown on the Drawings. The date shall be for the year in which the structure is completed. When a traffic barrier is placed on an existing structure, the date shall be for the year in which the original structure was completed.

6-02.3(16) SHOP DRAWINGS FOR FALSEWORK AND FORMWORK

The Contractor shall submit all Shop Drawings for falsework and formwork for approval or preapproval directly to the Engineer as described in Section 6-02.3(16)A or 6-02.3(16)B. Approval will not reduce the Contractor’s responsibility for ensuring the adequacy of the formwork and falsework. All falsework and formwork shall be constructed in accordance with approved falsework and formwork Shop Drawings.

Except for the placement of falsework foundation pads and piles, the construction of any unit of falsework shall not start until the Engineer has reviewed and approved the falsework drawing submittals for that unit. Falsework driven piling, temporary concrete footings, or timber mudsills may be placed as described in Section 6-02.3(17)D prior to approval at the Contractor’s own risk, except for the following conditions:

1. The falsework is over or adjacent to roadways or railroads as described in Section 6-02.3(17)C; or
2. The falsework requires prior placement of shoring or cofferdams as described in Section 2-09.3(3)D.

Costs associated with modifying falsework to bring it into compliance with the approved falsework drawing submittals shall be at the Contractor’s expense.

If the Project involves a railroad or the U.S. Bureau of Reclamation, additional sets for the portion of the Project that involves them shall be sent to the Engineer:

1. Four sets for each railroad company affected; and
2. Six sets for the U.S. Bureau of Reclamation.

The Engineer will review the falsework and formwork Shop Drawings and calculations, and if they are acceptable, will obtain the required approvals from the appropriate railroad company or the U.S. Bureau of Reclamation.
After the Engineer has received approval and any comments from the railroad company or the U.S. Bureau of Reclamation, two copies of the falsework and formwork Shop Drawings will then be marked with any comments and returned to the Contractor.

Plan approval is not required for footing or retaining walls unless they are more than 4 feet high (excluding pedestal height).

The design of falsework and formwork shall be based on:

1. Applied loads and conditions which are no less severe than those described in Section 6-02.3(17)A, “Design Loads;”
2. Allowable stresses and deflections which are no greater than those described in Section 6-02.3(17)B, “Allowable Stresses and Deflections;”
3. Special loads and requirements no less severe than those described in Section 6-02.3(17)C, “Falsework and Formwork at Special Locations;” and
4. Conditions required by other Sections of 6-02.3(17), “Falsework and Formwork.”

The falsework and formwork Shop Drawings shall be scale drawings showing the details of proposed construction, including: sizes and properties of all members and components; spacing of bents, posts, studs, wales, stringers, wedges and bracing; rates of concrete placement, placement sequence, direction of placement, and location of construction joints; identify falsework devices and safe working load as well as identifying any bolts or threaded rods used with the devices including their diameter, length, type, grade, and required torque. Show in the falsework drawing submittals the proximity of falsework to utilities or any nearby structures including underground structures. Formwork accessories shall be identified according to Section 6-02.3(17)H, “Formwork Accessories.” All assumptions, dimensions, material properties, and other data used in making the structural analysis shall be noted on the drawing.

The Contractor shall furnish two copies of the associated design calculations to the Engineer for examination as a condition for approval. The design calculations shall show the stresses and deflections in load supporting members. Construction details which may be shown in the form of sketches on the calculation sheets shall be shown in the falsework or formwork drawings as well. Falsework or formwork Shop Drawings will not be approved in any case where it is necessary to refer to the calculation sheets for information needed for complete understanding of the falsework and formwork Shop Drawings or how to construct the falsework and formwork.

In accordance with the requirements of Section 1-05.3(2)F, all falsework and formwork Shop Drawings and design calculations shall be prepared by (or under the direct supervision of) a Professional Engineer, licensed under Title 18 RCW, State of Washington, in the branch of Civil or Structural Engineering.

6-02.3(16)A NONPREAPPROVED FALSEWORK AND FORMWORK SHOP DRAWINGS

The Contractor shall submit six copies of all non-preapproved falsework and formwork Shop Drawings, and two copies of the design calculations, directly to the Engineer.

Reviewed falsework and formwork Shop Drawings will be returned from the Engineer to the Contractor within the time allowed according to Section 6-01.9. The time allowed begins when the Contractor’s transmittal and submittal including all required copies of the falsework and/or formwork Shop Drawings and calculations, catalog data, and other technical information are received by the Engineer. Fax copies are considered only informational. For multiple submittals or multiple parts to the same submittal and priority of review see Section 6-01.9.

Shop Drawings returned to the Contractor for correction shall be corrected and clean (without any previous approval stamps and comments) revised falsework and formwork Shop Drawings resubmitted to the Engineer for review and approval.

The Contractor may revise approved falsework and formwork Shop Drawings, provided sufficient time is allowed for the Engineer’s review and approval before construction is started on the revised portions. Such additional time will not be more than that which was originally allowed per Section 6-01.9.

6-02.3(16)B PREAPPROVED FORMWORK SHOP DRAWINGS

The Contractor may request preapproval on formwork Shop Drawings for abutments, wingwalls, diaphragms, retaining walls, columns, girders and beams, box culverts, railings, and bulkheads. Shop Drawings for falsework supporting the roadway slab for interior spans between precast prestressed concrete girders may
also be submitted for preapproval. Other falsework drawing submittals, however, will not be preapproved, but shall be submitted for review and approval as required in Section 6-02.3(16)A.

To apply for preapproval, the Contractor shall submit one reproducible drawing for each formwork plan sheet and two copies of the design calculations directly to the Engineer. The Engineer will return the formwork plan to the Contractor stamped "Preapproved" with an effective date of approval or will indicate any changes required for approval within the time allowed according to Section 6-01.9. The time allowed begins when the Contractor's transmittal and submittal including all required information are received by the Engineer.

For each contract on which the preapproved formwork Shop Drawings shall be used, the Contractor shall submit copies to the Engineer in the quantities stated in Section 6-02.3(16). Construction shall not begin until the Engineer has given approval.

If the forms being constructed have any deviations to the preapproved formwork plan, the Contractor shall submit formwork plan revisions for review and approval per Section 6-02.3(16)A.

Preapproved formwork Shop Drawings and calculations approved prior to January 1, 1994 shall be resubmitted for review and approval using the current design loads, allowable stresses and specifications.

6-02.3(17) FALSEWORK AND FORMWORK

Formwork and falsework are both structural systems. Formwork contains the lateral pressure exerted by concrete placed in the forms. Falsework supports the vertical and/or the horizontal loads of the formwork, reinforcing steel, concrete, and live loads during construction.

The Contractor shall set falsework, to produce in the finished structure, the lines and grades indicated in the Drawings. The setting of falsework shall allow for shrinkage, settlement, falsework girder camber, and any structural camber the Drawings or the Engineer require.

Concrete forms shall be mortar tight, true to the dimensions, lines, and grades of the structure. Curved surfaces shown in the Contract Drawings shall be constructed as curved surfaces and not chorded, except as allowed in Section 6-02.3(17)J. Concrete formwork shall be of sufficient strength and stiffness to prevent overstress and excess deflection as defined in Section 6-02.3(17)B. The rate of depositing concrete in the forms shall not exceed the placement rate in the approved formwork plan. The interior form shape and dimensions shall also ensure that the finished concrete conforms with the Drawings.

If the new structure is near or part of an existing one, the Contractor shall not use the existing structure to suspend or support falsework unless the Contract state otherwise. For prestress girder and T-beam bridge widenings or stage construction, the roadway deck and the diaphragm forms may be supported from the existing structure or previous stage, if approved by the Engineer. For steel plate girder bridge widenings or stage construction, only the roadway deck forms may be supported from the existing structure or previous stage, if approved by the Engineer. See Section 6-02.3(17)E for additional conditions.

On bridge roadway slabs, forms designed to stay in place made of steel or precast concrete panels shall not be used.

For post-tensioned structures, both falsework and forms shall be designed to carry the additional loads caused by the post-tensioning operations. The Contractor shall construct supporting falsework in a way that leaves the Superstructure free to contract and lift off the falsework during post-tensioning. Forms that remain inside box girders to support the placement of the roadway slab concrete shall, by design, resist girder contraction as little as possible. See Section 6-02.3(26) for additional conditions.

Concrete barriers shall be used to protect falsework adjacent to traffic from damage by vehicles.

6-02.3(17)A DESIGN LOADS

The design load for falsework shall consist of the sum of dead and live vertical loads, and a design horizontal load. The minimum total design load for any falsework shall not be less than 100 pounds per square foot for combined live and dead load regardless of structure thickness.

The entire Superstructure cross-section, except traffic barrier, shall be considered to be placed at one time for purposes of determining support requirements and designing falsework girders for their stresses and deflections, except as follows:

For concrete box girder bridges, the girder stems, diaphragms, crossbeams, and connected bottom slabs, if the stem wall is placed more than 5 days prior to the top slab, may be considered to be self supporting between
falsework bents at the time the top slab is placed, provided that the distance between falsework bents does not exceed 4 times the depth of the portion of the girder placed in the preceding concrete placements.

Falsework bents shall be designed for the entire live load and dead load, including all load transfer that takes place during post-tensioning, and braced for the design horizontal load.

Dead loads shall include the weight of all successive placements of concrete, reinforcing steel, forms and falsework, and all load transfer that takes place during post-tensioning. The weight of concrete with reinforcing steel shall be assumed to be not less than 160 pounds per cubic foot.

Live loads shall consist of the actual weight of any equipment to be supported by falsework applied as concentrated loads at the points of contact, and a minimum uniform load of not less than 25 pounds per square foot applied over the entire falsework drawing submittal area supported, plus a minimum load of not less than 75 pounds per linear foot applied at the outside edge of deck overhangs.

The design horizontal load to be resisted by the falsework bracing system in any direction shall be:

The sum of all identifiable horizontal loads due to equipment, construction sequence, sidesway caused by geometry or eccentric loading conditions, or other causes, and an allowance for wind plus an additional allowance of 1 percent of the total dead load to provide for unexpected forces. In no case shall the design horizontal load be less than three percent of the total dead load.

The minimum horizontal load to be allowed for wind on each heavy-duty steel shoring tower having a vertical load carrying capacity exceeding 30 kips per leg shall be the sum of the products of the wind impact area, shape factor, and the applicable wind pressure value for each height zone. The wind impact area is the total projected area of all the elements in the tower face normal to the applied wind. The shape factor for heavy-duty steel shoring towers shall be taken as 2.2. Wind pressure values shall be determined from the following table:

<table>
<thead>
<tr>
<th>Height Zone (Ft. above Ground)</th>
<th>Adjacent to Traffic</th>
<th>At Other Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 30</td>
<td>20 psf</td>
<td>15 psf</td>
</tr>
<tr>
<td>30 to 50</td>
<td>25 psf</td>
<td>20 psf</td>
</tr>
<tr>
<td>50 to 100</td>
<td>30 psf</td>
<td>25 psf</td>
</tr>
<tr>
<td>Over 100</td>
<td>35 psf</td>
<td>30 psf</td>
</tr>
</tbody>
</table>

The minimum horizontal load to be allowed for wind on all other types of falsework, including falsework girders and forms supported on heavy-duty steel shoring towers, shall be the sum of the products of the wind impact area and the applicable wind pressure value for each height zone. The wind impact area is the gross projected area of the falsework support system, falsework girders, forms and any unrestrained portion of the permanent structure, excluding the areas between falsework posts or towers where diagonal bracing is not used. Wind pressure values shall be determined from the following table:

<table>
<thead>
<tr>
<th>Height Zone (Ft. above Ground)</th>
<th>Wind Pressure Value For Members Over & Bents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 30</td>
<td>2.0 Q psf</td>
</tr>
<tr>
<td>30 to 50</td>
<td>2.5 Q psf</td>
</tr>
<tr>
<td>50 to 100</td>
<td>3.0 Q psf</td>
</tr>
<tr>
<td>Over 100</td>
<td>3.5 Q psf</td>
</tr>
</tbody>
</table>

The value of Q in the above tabulation shall be determined as follows:

\[Q = 1 + 0.2W; \text{ but } Q \text{ shall not be more than 10.} \]

Where:

\[W \text{ is the width of the falsework system, in feet, measured in the direction of the wind force being considered.} \]
The falsework system shall also be designed so that it is sufficiently stable to resist overturning prior to the placement of the concrete. The minimum factor of safety against falsework overturning in all directions from the assumed horizontal load for all stages of construction shall be 1.25. If the required resisting moment is less than 1.25 times the overturning moment, the difference shall be resisted by bracing, cable guys, or other means of external support.

Design of falsework shall include the vertical component (whether positive or negative) of bracing loads imposed by the design horizontal load. Design of falsework shall investigate the effects of any horizontal displacement due to stretch of the bracing. This is particularly important when using cable or rod bracing systems.

If the concrete is to be post-tensioned, the falsework shall be designed to support any increased or redistributed loads caused by the prestressing forces.

6-02.3(17)B ALLOWABLE DESIGN STRESSES AND DEFLECTIONS

The maximum allowable stresses listed in this Section are based on the use of identifiable, undamaged, high-quality materials. Stresses shall be appropriately reduced if lesser quality materials are to be used.

These maximum allowable stresses include all adjustment factors, such as the short term load duration factor. The maximum allowable stresses and deflections used in the design of the falsework and formwork shall be as follows:

Deflection:

Deflection resulting from dead load and concrete pressure for exposed visible surfaces, such as the sides and bottoms of girders, regardless of the fact that the deflection due to the weight of all successive placements of concrete, reinforcing steel and forms may be compensated for by camber strips; sides of abutments, wingwalls, piers, retaining walls, and columns = 1/500 of the span.

Deflection resulting from dead load and concrete pressure for unexposed non-visible surfaces, including the bottom of the deck slab between girders, regardless of the fact that the deflection due to the weight of all successive placements of concrete, reinforcing steel and forms may be compensated for by camber strips = 1/360 of the span.

In the foregoing, the span length shall be the center line to center line distance between supports for simple and continuous spans, and from the center line of support to the end of the member for cantilever spans. For plywood supported on members wider than 1 1/2 inches, the span length shall be taken as the clear span plus 1 1/2 inches. Also, dead load shall include the weight of all successive placements of concrete, reinforcing steel, forms and falsework self weight. Only the self weight of falsework girders may be excluded from the calculation of the above deflections provided that the falsework girder deflection is compensated for by the installation of camber strips.

Where successive placements of concrete are to act compositely in the completed structure, deflection control becomes extremely critical. For members constructed in several successive placements, such as concrete box girder and concrete T-beam girder structures, falsework components shall be sized, positioned, and/or supported to minimize progressive increases in deflection of the structure which would preload the concrete or reinforcing steel before it becomes fully composite.

Timber:

Each species and grade of timber/lumber used in constructing falsework and formwork shall be identified in the drawings. The allowable stresses and loads shall not exceed the lesser of stresses and loads given in the table below or listed stresses for designated species and grade in Table 7.3 of the Timber Construction Manual, Third Edition by the American Institute of Timber Construction.
Compression perpendicular to the grain reduced to 300 psi for use when moisture content is 19 percent or more (areas exposed to rain, concrete curing water, green lumber).

<table>
<thead>
<tr>
<th>Stress Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression parallel to the grain but not to exceed 1,500 psi</td>
<td>480,000 psi (L/d)^2</td>
</tr>
<tr>
<td>Flexural stress for members with a nominal depth greater than 8 inches</td>
<td>1,800 psi</td>
</tr>
<tr>
<td>Flexural stress psi for members with a nominal depth of 8 inches or less</td>
<td>1,500 psi</td>
</tr>
<tr>
<td>The maximum horizontal shear</td>
<td>140 psi</td>
</tr>
<tr>
<td>AXIAL tension</td>
<td>1,200 psi</td>
</tr>
<tr>
<td>The maximum modulus of elasticity (E) for timber</td>
<td>1,600,000 psi</td>
</tr>
</tbody>
</table>

Where:

\[L \] is the unsupported length; and
\[d \] is the least dimension of a square or rectangular column, or the width of a square of equivalent cross-sectional area for round columns.

The allowable stress for compression perpendicular to the grain, and for horizontal shear shall not be increased by any factors such as short duration loading. Additional requirements are found in other parts of Section 6-02.3(17). Criteria for the design of lumber and timber connections are found in Section 6-02.3(17I).

Plywood for formwork shall be designed in accordance with the methods and stresses allowed in the APA Design/Construction Guide for Concrete Forming as published by the American Plywood Association, Tacoma, Washington. As concrete forming is a special application for plywood, wet stresses shall be used and then adjusted for forming conditions such as duration of load, and experience factors. Concrete pour pressures shall be per Section 6-02.3(17)J.

Steel:

For identified grades of steel, design stresses shall not exceed those specified in the Manual of Steel Construction - Allowable Stress Design, Ninth Edition by the American Institute of Steel Construction, except as follows:

<table>
<thead>
<tr>
<th>Stress Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression, flexural but not to exceed 0.6Fy</td>
<td>12,000,000 psi</td>
</tr>
<tr>
<td>The modulus of elasticity (E) shall be</td>
<td>29,000,000 psi</td>
</tr>
</tbody>
</table>

When the grade of steel cannot be positively identified as with salvaged steel and the presence of rivets, design stresses shall not exceed the following:

<table>
<thead>
<tr>
<th>Stress Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield point fy</td>
<td>30,000 psi</td>
</tr>
<tr>
<td>Tension, axial, and flexural</td>
<td>16,000 psi</td>
</tr>
<tr>
<td>Compression, axial</td>
<td>14,150 - 0.37(KL/r)^2 psi</td>
</tr>
<tr>
<td>except L/r shall not exceed 120</td>
<td></td>
</tr>
<tr>
<td>Shear on gross section of the web of rolled shapes</td>
<td>9,500 psi</td>
</tr>
<tr>
<td>Web crippling for rolled shapes</td>
<td>22,500 psi</td>
</tr>
<tr>
<td>Compression, flexural but not to exceed</td>
<td>16,000 - 5.2(L/b)^2 psi</td>
</tr>
<tr>
<td>16,000 psi and L/b not greater than 39</td>
<td></td>
</tr>
</tbody>
</table>

The modulus of elasticity (E) shall be 29,000,000 psi

Where:

\[L \] is the unsupported length;
\[d \] is the least dimension of rectangular columns, or the width of a square of equivalent cross-sectional area for round columns, or the depth of beams;
\[b \] is the flange width;
\[t \] is the thickness of the compression flange;
\[r \] is the radius of gyration of the compression flange about the weak axis of the member; and
F_y is the specified minimum yield stress, psi, for the grade of steel used. All dimensions are expressed in millimeters.

6-02.3(17)C FALSEWORK AND FORMWORK AT SPECIAL LOCATIONS

In addition to the minimum requirements specified in Sections 6-02.3(17A and 6-02.3(17B, falsework over or adjacent to roadways or railroads which are open to traffic or the public shall be designed and constructed so that the falsework is stable if subjected to impact by vehicles. The use of damaged materials, unidentifiable material, salvaged steel or steel with burned holes or questionable weldments shall not be used for falsework described in this section. For the purposes of this specification, the following public or private facilities shall also be considered as "Roadways":

- pedestrian pathways and other Structures such as bridges, walls, and buildings.

The dimensions of the clear openings to be provided through the falsework for roadways, railroads, or pedestrian pathways shall be as specified in the Contract.

Falsework posts or shoring tower systems which support members that cross over a roadway or railroad shall be considered as adjacent to roadways or railroads. Other falsework posts or shoring towers shall be considered as adjacent to roadways or railroads only if the following conditions apply:

1. Located in the row of falsework posts or shoring towers nearest to the roadway or railroad; and
2. Horizontal distance from the traffic side of the falsework to the edge of pavement is less than the total height of the falsework and forms; or
3. The total height of the falsework and forms is greater than the horizontal clear distance between the base of the falsework and a point 10 feet from the centerline of track;

The Contractor shall provide any additional features for the work needed to ensure that the falsework is stable for impact by vehicles; providing adequate safeguards, safety devices, protective equipment, and any other needed actions to protect property and the life, health, and safety of the public; and shall comply with the provisions in Section 1-07.23, Section 1-10, and Section 6-02.3(17M. The falsework design at special locations, shall incorporate the minimum requirements detailed in this Section, even if protected by concrete median barrier.

The vertical load used for the design of falsework posts and towers which support the portion of the falsework over openings, shall be the greater of the following:

1. 150 percent of the design load calculated in accordance with Section 6-02.3(17B, but not including any increased or redistributed loads caused by the post-tensioning forces; or
2. 100 percent of the design load plus the increased or redistributed loads caused by the post-tensioning forces.

Each falsework post or each shoring tower leg adjacent to roadways or railroads shall consist of either steel with a minimum section modulus about each axis of 9.5 inches cubed or sound timbers with a minimum section modulus about each axis of 250 inches cubed.

Each falsework post or shoring tower leg adjacent to roadways or railroads shall be mechanically connected to its supporting footing at its base, or otherwise laterally restrained, to withstand a force of not less than 2,000 pounds applied at the base of the post or tower leg in any direction except toward the roadway or railroad track. Posts or tower legs shall be connected to the falsework cap and stringer by mechanical connections capable of resisting a load in any horizontal direction of not less than 1,000 pounds.

For falsework spans over roadways and railroads, all falsework stringers shall be mechanically connected to the falsework cap or framing. The mechanical connections shall be capable of resisting a load in any direction, including uplift on the stringer, of not less than 500 pounds. All associated connections shall be installed before traffic is allowed to pass beneath the span.

When timber members are used to brace falsework bents which are located adjacent to roadways or railroads, all connections shall be bolted through the members using 5/8-inch diameter or larger bolts.
Concrete traffic barrier shall be used to protect all falsework adjacent to traveled roadways. The falsework shall be located so that falsework footings, mudsills, or piles are at least 2 feet clear of the traffic barrier and all other falsework members shall also be at least 2 feet clear of the traffic barrier. Traffic barrier used to protect falsework shall not be fastened, guyed, or blocked to any falsework but shall be fastened to the pavement according to details shown in the Drawings. The installation of concrete traffic barrier shall be completed before falsework erection is begun. The traffic barrier at the falsework shall not be removed until approved by the Engineer. Falsework openings which are provided for the Contractor’s own use (not for public use) shall also use concrete traffic barrier to protect the falsework, except the minimum clear distance between the barrier and falsework footings, mudsills, piles, or other falsework members shall be at least 3 inches.

Falsework bents within 20 feet of the center line of a railroad track shall be braced to resist the required horizontal load or 2,000 pounds whichever is greater.

Pedestrian openings through falsework shall be paved or surfaced with full width continuous wood walks which shall be wheelchair accessible and shall be kept clear. Pedestrians shall be protected from falling objects and water falling from construction above. Overhead protection for pedestrians shall extend at least 4 feet beyond the edge of the bridge deck. Shop Drawings and details of the overhead protection and pathway shall be submitted with the falsework drawing submittals for review and approval. Pedestrian openings through falsework shall be illuminated by temporary lighting, constructed and maintained by the Contractor. The temporary lighting shall be constructed in accordance with local electrical code requirements. The temporary lighting shall be steady burning 60 watt, 120 volt lamps with molded waterproof lamp holders spaced at 25 feet centers maximum. All costs relating to pedestrian pathway paving, wood walks, overhead protection, maintenance, operating costs, and temporary pedestrian lighting shall be incidental to applicable adjacent items of work.

6-02.3(17)D FALSEWORK SUPPORT SYSTEMS: PILING, TEMPORARY CONCRETE FOOTINGS, TIMBER MUDSILLS, MANUFACTURED SHORING TOWERS, CAPS, POSTS

The Contractor shall support all falsework on either driven piling, temporary concrete footings, or timber mudsills. Temporary concrete footings shall be designed as reinforced concrete which may be either cast in place or precast. All components for a falsework support system shall be sized for the maximum design loads and allowable stresses described in the preceding Sections.

The falsework drawing submittals shall include a Superstructure placing diagram showing the concrete placing sequence, direction of placements, and construction joint locations. When a sequence for placing concrete is shown in the Contract, no deviation will be permitted.

If the Drawings call for piling or foundation shafts to support permanent structures, the Contractor may not use mudsills or temporary concrete footings for falsework support unless the underlying soil passes the settlement test described in this section.

Piling:

When using piling to support the falsework, the Contractor’s falsework drawing submittals shall specify the minimum required bearing and depth of penetration for the piling. Also, the falsework drawing submittals shall show the maximum horizontal distance that the top of a falsework pile may be pulled in order to position it under its cap. The falsework drawing submittal shall show the maximum allowable deviation of the top of the pile, in its final position, from a vertical line through the point of fixity of the pile. The calculations shall account for pile stresses due to combined axial and flexural stress and secondary stresses.

Timber piling (untreated) shall be banded at the top before driving. The following shall be identified in the falsework Shop Drawing submittal: lengths, minimum tip diameter, and expected diameter at ground line. The Contractor shall comply with the requirements of Sections 9-10.1 and 9-10.1(1). The maximum allowable load for timber piles shall be 45 tons. Steel piling shall be identified in the falsework Shop Drawing submittal. If steel pipe piling is used, the pipe diameter and wall thickness shall be identified in the falsework Shop Drawing submittal. Steel piling shall meet the requirements of Section 9-10.5. The applicable specifications in Section 6-05 shall be used to determine the bearing capacity of the falsework piling. If the Engineer approves, the pile bearing capacity may instead be determined by test loading the piling to twice the falsework design load. The Contractor shall provide the Engineer an opportunity to witness these tests and submit a plan of the test and cross-sections showing the locations and elevations of the proposed tests to the Engineer for approval.

Temporary Concrete Footings and Timber Mudsills:
Timber mudsills or temporary concrete footings may be used in place of driven piling, provided tests show that the soil can support twice the falsework design load and that the mudsill or temporary concrete footing shall not settle more than 1/4-inch when loaded with the design load. The tests shall be done at the falsework site, at the same elevation of the mudsill, and conducted under conditions representative of the actual site conditions. The acceptable tests for various soil types are:

1. **Granular Soil** - The Contractor shall conduct on-site tests according to the AASHTO 235 “Standard Method Test for Bearing Capacity of Soil for Static Load on Spread Footings.” The Contractor shall provide the Engineer an opportunity to witness these tests and provide a plan of the test and cross-sections showing the locations and elevations of the proposed tests to the Engineer for approval.

2. **Fine Grained or Organic Soil** - The Contractor shall employ a Geotechnical Engineer to investigate the foundation soils and certify in writing that each mudsill or temporary footing shall meet the load-settlement requirements described above. The allowable bearing capacities, elevations and locations of specific falsework mudsills shall be listed in the certification. Soils information used to determine the soil bearing capacity and settlement shall be submitted with the written certification to the Engineer for review and approval.

Timber mudsills or temporary concrete footings for falsework shall be designed to carry the loads imposed upon them without exceeding the estimated soil bearing capacity and specified maximum settlement. Where mudsills or temporary footings are used in the vicinity of permanent spread footings, the allowable mudsill bearing pressure shall be less than that of the permanent footings. This is because elevation difference; smaller bearing area; and the lack of surrounding overburden provides a lower bearing capacity than the permanent spread footings. The mudsills shall be designed for bearing capacities at the location that they are to be used. Timber mudsills or temporary concrete footings shall be designed as unyielding foundations under full design loads. The soil pressure bearing values assumed in the design of the falsework (normally not more than 3,000 pounds per square foot) shall be shown in the falsework drawing submittals. The minimum edge distances from the edge of the post or shoring tower leg to the edge or end of the mudsill member shall be shown in the falsework drawing submittals. Timber mudsills and temporary concrete footings shall be designed such that member deflections do not exceed 1/4-inch and that member allowable stresses are not exceeded.

Full cross-sectional views of all falsework on timber mudsills or temporary concrete footings to be placed in side slopes or above excavations shall be shown in the falsework drawing submittals. Footings or mudsills which are stepped or placed above an excavation shall have all related geometry and slope stability items identified in the falsework drawing submittal. Details and calculations for any shoring system to support the embankment or excavation shall be included.

Mudsills or temporary concrete footings placed in benches in slopes shall be set back from the face of the slope one-half the mudsill or temporary concrete footing width, but not less than 1 foot 0 inches. The bench including the setback shall be level in its narrow dimension. Slopes between benches measured from the top of slope at one bench to the toe of slope at the next bench below shall be no steeper than 1-1/2 horizontal to 1 vertical.

Falsework shall be founded on a solid footing, safe against undermining, protected from softening, and capable of supporting the loads imposed. The preparation of the soil to receive the temporary footing is important to ensure that the falsework does not experience localized settlement that could result in falsework failure. In preparing the soil for a timber mudsill or temporary concrete footing, the Contractor shall:

1. Place it on dry soil that is either undisturbed or compacted to 95 percent of maximum density, as determined by the compaction control tests in Section 2-03.3(14)D performed by the Contractor and submitted to the Engineer for review;

2. Place mudsills or footings level with full contact bearing on the soil with no voids. Place each distribution plate or corbel member between the post or tower leg and the mudsill members such that there is full contact bearing;

3. Place grout or a compacted layer of fine material under the mudsill if it is supported by rock or coarse sand and gravel;

4. Provide the Engineer with a sample of any off-site material to be used under the mudsill;

5. Allow up to five Working Days for the Engineer’s approval before using the off-site material; and
6. Provide erosion control measures to protect the soil of the mudsill or footing from undermining and softening.

Anticipated total settlements and incremental settlements of falsework and forms due to successive concrete placements shall be shown in the falsework drawing submittals. These shall include falsework footing settlement and joint take-up. Total anticipated settlements shall not exceed one inch including joint take-up. When using mudsills, the Contractor shall prepare for the possibility of reshoring with the use of such devices as screw jacks or hydraulic jacks and adjustment of wedge packs. The placing of concrete shall be discontinued if unanticipated settlement occurs, including settlements that deviate more than 3/8-inch from those indicated on the approved falsework drawing submittal. Concrete placement shall not resume until corrective measures satisfactory to the Engineer are provided. If satisfactory corrective measures are not provided prior to initial set of the concrete in the affected area, placing of concrete shall be discontinued at a location determined by the Engineer. All unacceptable concrete shall be removed as determined by the Engineer.

Where the maximum leg load exceeds 30 kips, foundations for individual steel towers shall be designed and constructed to provide uniform settlement at each tower leg for all loading conditions.

Bents, Shoring Towers, Piling, Posts, and Caps:

Shop Drawings for falsework bents or shoring tower systems, including manufactured tower systems shall have plan, cross-section, and elevation view scale drawings showing all geometry. Show in the falsework drawing submittals the proximity of falsework to utilities or any nearby structures including underground structures. The ground elevation, cross-slopes, relation of stringers to one another, and dimensions to posts or piling shall be shown in the falsework drawing submittals. Column, pile, or tower heights shall be indicated. Member sizes, wall thickness and diameter of steel pipe columns or piles shall be shown in the falsework drawing submittals. Location of wedges, minimum bearing area and type of wedge material shall be identified in the falsework drawing submittals. Bracing size, location, material and all connections shall be described in the falsework drawing submittals.

The relationship of the falsework bents or shoring tower systems to the permanent structure’s pier and footing shall be shown. Load paths shall be as direct as possible. Loads shall be applied through the shear centers of all members to avoid torsion and buckling conditions. Where loads cause twisting, biaxial bending, or axial loading with bending, the affected members shall be designed for combined stresses and stability.

Posts or columns shall be constructed plumb with tops and bottoms carefully cut to provide full end bearing. Caps shall be installed at all bents supported by posts or piling unless approved falsework drawing submittals specifically permit otherwise. Caps shall be fastened to the piling or posts. The falsework shall be capable of supporting non uniform or localized loading without adverse effect. For example, the loading of cantilevered ends of stringers or caps shall not cause a condition of instability in the adjacent unloaded members.

Timber posts and piling shall be fastened to the caps and mudsills by through-bolted connections, drift pins, or other approved connections. The minimum diameter of round timber posts shall be shown in the falsework drawing submittals. Timber caps and timber mudsills shall be checked for crushing from columns or piling under maximum load.

Steel posts and piling shall be welded or bolted to the caps, and shall be bolted or welded to the foundation. Steel members shall be checked for buckling, web yielding, and web crippling.

Wedges shall be used to permit formwork to be taken up and released uniformly. Wedges shall be oak. Cedar and other soft wood wedges or shims shall not be used anywhere in a falsework or forming system. Wedges shall be used at the top or bottom of shores, but not at both top and bottom. After the final adjustment of the shore elevation is complete, the wedges shall be fastened securely to the sill or cap beam. The method of securely fastening wedges shall be included in the submittal. Only one set of wedges (with one optional block) shall be used at one location. Screw jacks (or other approved devices) shall be used under arches to allow incremental release of the falsework.

Sand jacks may be used to support falsework and are used for falsework lowering only. Sand jacks shall be constructed of steel with snug fitting steel or concrete pistons. Sand jacks shall be filled with dry sand and the jack protected from moisture throughout its use. They shall be designed and installed in such a way to prevent the unintentional migration or loss of sand. All sand jacks shall be tested per Section 6-02.3(17)G.

When falsework is over or adjacent to roadways or railroads, all details of the falsework system which contribute to the horizontal stability and resistance to impact shall be installed at the time each element of the...
falsework is erected and shall remain in place until the falsework is removed. For other requirements see Section 6-02.3(17)C.

Transverse construction joints in the Superstructure shall be supported by falsework at the joint location. The falsework shall be constructed in such a manner that subsequent pours shall not produce additional stresses in the concrete already in place.

Manufactured Shoring Tower Systems and Devices:

Manufactured proprietary shoring tower systems shall be identified in the falsework drawing submittal by make and model and safe working load capacity per leg. The safe working load for shoring tower systems shall be based upon a minimum 2-1/2 to 1 factor of safety.

The safe working load capacity, anticipated deflection (or settlement), make and model shall be identified in the falsework submittal for manufactured devices such as: single shores, overhang brackets, support bracket and jack assemblies, friction collars and clamps, hangers, saddles, and sand jacks. The safe working load for shop manufactured devices shall be based on a minimum ultimate strength safety factor of 2 to 1. The safe working load for field fabricated devices and all single shores shall be based on a minimum ultimate strength safety factor of 3 to 1.

The safe working load of all devices shall not be exceeded. The design loads shall be as defined by Section 6-02.3(17)A. The maximum allowable free end deflection of deck overhang brackets under working loads applied shall not exceed 3/16 inch regardless of the fact that the deflection may be compensated for by pre-cambering or of setting the elevations high. The Contractor shall comply with all manufacturer's specifications; including those relating to bolt torque, placing washers under nuts and bolt heads, cleaning and oiling of parts, and the reuse of material. Devices which are deteriorated, bent, warped, or have poorly fitted connections or welds, shall not be installed.

Shoring tower or device capacity as shown in catalogs or brochures published by the manufacturer shall be considered as the maximum load which the shoring is able to safely support under ideal conditions. These maximum values shall be reduced for adverse loading conditions; such as horizontal loads, eccentricity due to unbalanced spans or placing sequence, and uneven foundation settlement.

Depending on load-carrying capacity, steel shoring systems are classified as pipe-frame systems, intermediate strength systems, and heavy-duty systems. The two types of pipe-frame shoring base frames in general use are the ladder type and the cross-braced type. In the ladder type, frame rigidity is provided by horizontal struts between the vertical legs, whereas in the cross-braced type rigidity is provided by diagonal cross-bracing between the legs.

Copies of catalog data and other technical data shall be submitted with the falsework drawing submittals to verify the load-carrying capacity, deflection, and manufacturers installation requirements of any manufactured product or device proposed for use. Upon request by the Engineer, the Contractor shall submit manufacturer certified test reports and results showing load capacity, deflection, test installation conditions, and identify associated components and hardware for shoring tower systems or other devices. In addition to manufacturer’s requirements, the criteria shown in the following sections for manufactured proprietary shoring tower systems and devices shall be complied with when preparing falsework drawing submittals, calculations, and installing these shoring tower systems and devices as falsework.

Alternative criteria and/or systems may be approved if a written statement on the manufacturer’s letter head, signed by the shoring or device manufacturer (not signed by a material Supplier or the Contractor) is submitted to the Engineer for approval and addresses the following:

1. Identity of the specific Contract on which the alternative criteria and/or system applies;
2. Description of the alternative criteria and/or system;
3. Technical data and test reports;
4. The conditions under which the particular alternative criteria may be followed; and
5. That a design based on the alternative criteria shall not overstress or over deflect any shoring component or device nor reduce the required safety factor.

In any case where the falsework drawing submittals detail a manufactured product and the manufacturer’s safe working load, load versus deflection curves, factor of safety, and installation requirements cannot be found in any catalog, the Engineer may require load testing per Section 6-02.3(17)G to verify the safe working load and deflection characteristics.
For all tower systems, tower leg loads shall not exceed the limiting values under any loading condition or sequence. Frame extensions and any reduced capacity shall be shown in the falsework drawing submittals. Screw jacks shall fit tight in the leg assemblies without wobble. Screw jacks shall be plumb and straight. Shoring towers shall be installed plumb, and load distribution beams shall be arranged such that vertical loads are distributed to all legs for all successive concrete placements. There shall be no eccentric loads on shoring tower heads unless the heads have been designed for such loading. Shoring towers shall remain square or rectangular in plan view and shall not be skewed. There shall be no interchanging of parts from one manufactured shoring system to another. Bent or faulty components shall not be used.

For manufactured shoring towers that allow ganging of frames, the number of ganged frames shall be limited to one frame per opposing side of a tower, and the total number of legs per ganged tower shall not exceed eight legs. Ganged frames shall be installed per the manufacturer's published standards using the manufacturer's components. Other gang arrangements shall not be used.

For manufactured steel shoring tower systems, the Contractor shall have bracing designed and installed for horizontal loads and falsework overturning per Section 6-02.3(17)A. Minimum bracing criteria and allowable leg loads are described in the following paragraphs.

All shoring tower systems and bracing shall be thoroughly inspected by the Contractor for plumb vertical support members, secure connections, and straight bracing members immediately prior to, at intervals during, and immediately after every concrete placement. For manufactured shoring tower systems, the maximum allowable deviation from the vertical is 1/8-inch in 3 feet. If this tolerance is exceeded, concrete shall not be placed until adjustments have brought the shoring towers within the acceptable tolerance.

Cross-Braced Type Base Frames:

The maximum allowable load per leg for cross-braced type base frame shoring is limited by the height of the extension frame and the type of screw jack (swivel or fixed head) used at the top of the frame. The maximum load on one leg of a frame shall not exceed four times the load on the other leg under any given loading condition or sequence. The maximum load on one of the two frames making up a tower shall not exceed four times the load on the opposite frame under any given loading condition or sequence. If swivel-head screw jacks are used, the allowable leg loads shall not exceed that shown in the following table:

<table>
<thead>
<tr>
<th>Maximum Allowable Leg Load in Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension frame height</td>
</tr>
<tr>
<td>Screw height 12" or less</td>
</tr>
<tr>
<td>Screw height exceeds 12"</td>
</tr>
</tbody>
</table>

If fixed-head screw jacks are used at the top of the extension frame, the maximum allowable load per leg shall be 11,000 pounds for all extension frame heights up to five feet with screw jack height extensions of 12 inches or less. Fixed-head screw jacks exceeding 12 inches shall use the values in the table above. Screw jack extensions shall not exceed the manufacturer's published recommendations. Extension frames shall be braced. Side cross-braces are required for extension heights up to 2 feet 0 inches. Both side and end cross-braces are required from over 2 feet 0 inches to 5 feet 0 inches extension heights.

Supplemental Bracing:

Supplemental bracing shall be installed on shoring towers 20 feet or more in height and shall connect rows of towers to each other so rows of frames are continuously cross-braced in one plane. Supplemental bracing shall be installed as follows:

1. In the transverse direction (the direction parallel to the frame) one horizontal brace and one diagonal brace shall be attached to each tower face, for every three frames of shoring height, including an extension frame if used. The lowest horizontal brace shall be located near the top of the third tower frame, and any additional horizontal braces spaced no farther than three frames apart. The diagonal braces shall be located on opposite tower faces, and shall run in opposite directions across the plane of the tower row.

2. In the longitudinal direction (the direction perpendicular to the frames), when shoring height is four frames or more, a horizontal brace shall be installed on one face of each tower, with the lowest brace located no higher than the top of the fourth frame and any additional horizontal braces spaced no farther than four frames apart. When shoring height is six frames or more,
diagonal cross-bracing shall be installed in the longitudinal direction similar to the transverse
direction.

3. When roadway grade, soffit profile, or superelevation exceeds 4 percent slope for any height of
shoring tower, a continuous brace parallel to the slope shall be attached to each frame extension
or screw jack of the tower within 6 inches of the top. These braces shall be in addition to bracing
previously described.

The bracing shall be fastened securely to each frame leg and shall be located within 6 inches of the
frame member intersections. The ends of diagonal braces shall not be attached to shoring frames at locations
where towers have little or no load. Diagonal brace ends shall be attached to tower frames near the top and
bottom at locations where significant gravity load is maintained throughout all construction sequences, such as
directly below box girder outside webs, thus precluding lift-off due to the vertical component of the brace reaction.
Supplemental bracing shall be shown in the falsework drawing submittal. The connection details, including the
method of connection and exact location of the connecting devices, shall be in accordance with the
manufacturer’s recommendations and shall be shown in the falsework drawing submittals.

Ladder Type Base Frames:

Ladder type base frame shoring shall be limited to the following maximum loads and conditions,
regardless of any conflicting information which may be found in manufacturer’s catalogs or brochures:

1. If the shoring system consists of a single tier of braced base frames, leg loads shall not exceed
10,000 pounds;
2. If the shoring system consists of two or three tiers of base frames, leg loads shall not exceed
7,500 pounds;
3. If an extension staff is used, the maximum allowable leg load shall be reduced to 6,000 pounds;
and
4. The maximum load on one leg of a frame shall not exceed four times the load on the other leg
under any given loading condition or sequence. The maximum load on one of the two frames
making up a tower shall not exceed four times the load on the opposite frame under any given
loading condition or sequence.

Maximum allowable leg loads as shown above shall apply when fixed-head screw jacks are used, or
when swivel-head jacks are used at either the top or bottom of the tower. A screw jack extension shall not
exceed 12 inches. Swivel-head screw jacks shall not be used at both the top and bottom of ladder-type frames.
For any combination of ladder-type base frames or base frames with staff extensions, the total height of the
shoring shall not exceed 20 feet, including screw jack extensions.

When roadway grade, soffit profile, or superelevation exceeds 4 percent slope for heights of shoring
towers 20 feet or less, a continuous brace parallel to the slope shall be attached to each staff extension or screw
jack of the tower within 6 inches of the top. These braces shall be attached per conditions described previously
for cross-braced frames.

Intermediate Strength Shoring:

Steel shoring, consisting of cross-braced tubular members capable of carrying up to 25 kips per tower
leg, is considered intermediate strength shoring. The use of a 25-kip type falsework shoring system shall meet
the following conditions and limitations:

1. If swivel-head screw jacks are used at either the top or bottom of the tower, the maximum
allowable load shall be reduced to 20 kips per tower leg;
2. The screw-jack adjustment shall not exceed 14 inches;
3. Extension frames shall be braced. Side cross-braces are required for all extension-frame
heights. In addition, end cross-braces (braces across the face of the extension frame) shall be
provided for extension frame heights of 3 feet 0 inches or more;
4. The maximum load on one leg of a frame, or on one frame of a tower, shall not exceed four times
the load on the opposite leg or frame under any given loading condition or sequence;
5. Shoring towers 20 feet or more in height shall have supplemental bracing installed in accordance
with the criteria for bracing “Cross-braced Type Base Frames,” except that no supplemental
bracing will be required in the longitudinal direction (the direction perpendicular to the frame); and
6. When roadway grade, soffit profile, or superelevation exceeds 4 percent slope for any height of shoring tower a continuous brace parallel to the slope shall be attached to each frame extension or screw jack of the tower within 6 inches of the top. These braces shall be in addition to bracing required in item 5.

The use of 25-kip shoring, when designed and erected in conformance with the above criteria, is acceptable for tower heights up to five frames plus a fully-extended extension frame plus the maximum allowable screw-jack adjustment. For any proposed use exceeding this limiting height, the Contractor shall submit a statement signed by the shoring manufacturer covering the specific installation. The statement shall provide assurance that the shoring shall carry the loads to be imposed without overstressing any shoring component or reducing the required safety factor.

Heavy-Duty Shoring Systems:

Shoring capable of carrying up to 100 kips per tower leg is considered heavy duty shoring. The following criteria applies to these systems:

- If tower legs, including any extension unit, are utilized as single-post shores braced in one direction only, the shores shall be analyzed as individual steel columns.
- If the total height of the shoring does not exceed the height of a single tower unit, including any extension unit, and if both the base and extension units are fully braced in both directions in accordance with the manufacturer’s recommendations, individual tower legs may be considered as capable of carrying the safe working load recommended by the manufacturer without regard to the load on adjacent legs.
- If the shoring consists of two or more units stacked one above the other, either with or without an extension unit, the differential leg loading within a given tower unit shall not exceed the following limitations:

<table>
<thead>
<tr>
<th>Differential Leg Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum load on any leg in the tower unit</td>
</tr>
<tr>
<td>10 kips or less</td>
</tr>
<tr>
<td>10 kips to 50 kips</td>
</tr>
<tr>
<td>50 kips to 75 kips</td>
</tr>
<tr>
<td>75 kips or more</td>
</tr>
</tbody>
</table>

A complete stress analysis of steel beams used as continuous caps over two or more tower units shall be performed to determine the effect of continuity on tower leg loads. Resulting moment shear shall be added to or subtracted from the simple beam reaction to obtain the actual leg load and may produce a significant load differential.

Heavy-duty shoring shall be diagonally braced or otherwise externally supported at the top unless the towers are stable against overturning as defined in Section 6-02.3(17)A. When designing external bracing, including cable bracing, attention shall be given to the bracing connection to the falsework. Connections shall be designed to transfer horizontal and vertical forces from the falsework to the bracing system without overstressing any tower component. All external bracing, attachment locations, and connection details shall be shown in the falsework drawing submittals.

6-02.3(17)E STRINGERS, BEAMS, JOISTS, ROADWAY SLAB SUPPORT, AND DECK OVERHANGS

All stringers, beams, joists, and roadway slab support shall be designed for the design loads, deflections, and allowable stresses described in the preceding Sections 6-02.3(17)A, B, and C and for the following conditions:

- At points of support, stringers, beams, joists, and trusses shall be restrained against rotation about their longitudinal axis. The effect of biaxial bending shall be investigated in all cases where falsework beams are not set plumb and the structure cross-slope exceeds three percent.
- For box girder and T-beam bridges, the centerline of falsework beams or stringers shall be located within 2 feet of the bridge girder stems and preferably directly under the stems or webs. Stringers supporting formwork for concrete box girder and T-beam slab overhangs shall be stiff enough so that the differential deflection due to the roadway slab pour is no more than 3/16-inch between the outside edge of the roadway slab and the exterior web even if camber strips can compensate for the deflection.
Friction shall not be relied upon for lateral stability of beams or stringers. If the compression flange of a beam is not laterally restrained, the allowable bending stress shall be reduced to prevent flange buckling. If flange restraint is provided and since it is impossible to predict the direction in which a compression flange buckles, positive restraint shall be provided in both directions. Flange restraint shall be designed for a minimum load of two percent of the calculated compression force in the beam flange at the point under consideration.

Camber strips shall be used to compensate for falsework take-up and deflection, vertical alignment, and the anticipated structure dead load deflection shown in the camber diagram in the Drawings. Camber is the adjustment to the profile of a load-supporting beam or stringer so that the completed structure shall have the lines and grades shown in the Drawings. The dead load camber diagram shown in the Drawings is the predicted structure dead load deflection due to self weight. This dead load camber shall be increased by:

1. Amount of anticipated falsework take up;
2. Anticipated deflection of the falsework beam or stringer under the actual load imposed; and
3. Any vertical curve compensation.

Camber strips shall be fastened by nailing to the top of wood members, or by clamping or banding in the case of steel members. Camber strips shall have sufficient contact bearing area to prevent crushing under total load. As a general rule, camber strips are not required unless the total camber adjustment exceeds 1/4-inch for exterior falsework stringers and 1/2-inch for interior stringers.

On concrete box girder structures, the forms supporting the roadway slab shall rest on ledgers or similar supports and shall not be supported from the bottom slab except as provided below. The form supports shall be fastened within 18 inches of the top of the web walls, producing a clear span between web walls. The Roadway slab forms may be supported or posted from the bottom slab if the following conditions are met:

1. Permanent access, shown in the Drawings, is provided to the cells, and the centerline to centerline distance between web walls is greater than 10 feet;
2. Falsework stringers designed for total load, stresses and deflections per Section 6-02.3(17)A and B are located directly below each row of posts;
3. Posts have adequate lateral restraint; and
4. All forms (including the roadway deck forms), posts, and bracing are completely removed.

The falsework and forms on concrete box girder structures supporting a sloping web and deck overhang shall consist of a lateral support system which is designed to resist all rotational forces acting on the stem, including those caused by the placement of deck slab concrete, roadway deck formwork weight, finishing machine, and other live loads. Stem reinforcing steel shall not be stressed by the construction of the roadway deck slab placement. Overhang brackets shall not be used for the support of roadway slab forms from sloping web concrete box girder bridges.

Deck slab forms between girders or webs shall be constructed such that there is no differential settlement relative to the girders. The support systems for form panels supporting concrete deck slabs and overhangs on girder bridges (such as steel plate girders and prestressed girders) shall be designed as falsework. Falsework supporting deck slabs and overhangs on girder bridges shall be supported directly by the girders so that there shall be no differential settlement between the girders and the deck forms during placement of deck concrete.

6-02.3(17)F BRACING

All falsework bracing systems shall be designed to resist the horizontal design load in all directions with the falsework in either the loaded or unloaded condition. All bracing, connection details, specific locations of connections, and hardware used shall be shown in the falsework drawing submittals. Falsework diagonal bracing shall be thoroughly analyzed with particular attention given to the connections. The allowable stresses in the diagonal braces may be controlled by the joint strength or the compression stability of the diagonal. Timber bracing for timber falsework bents shall have connections designed per Section 6-02.3(17)). Any damaged cross-bracing, such as split timber members shall be replaced. Steel strapping shall avoid making sharp angles or right-angle bends. A means of preventing accidental loss of tension shall be provided for steel strapping. See Sections 6-02.3(17)A, B and C for design loads and allowable stresses.

Bracing shall not be attached to concrete traffic barrier, guardrail posts, or guardrail.
To prevent falsework beam or stringer compression flange buckling, cross-bracing members and connections shall be designed to carry tension as well as compression. All components, connection details and specific locations shall be shown in the falsework drawing submittals. Bracing, blocking, struts, and ties required for positive lateral restraint of beam flanges shall be installed at right angles to the beam in plan view. If possible, bracing in adjacent bays shall be set in the same transverse plane. However, if because of skew or other considerations, it is necessary to offset the bracing in adjacent bays, the offset distance shall not exceed twice the depth of the beam.

All falsework and bracing shall be inspected by the Contractor for plumbness of vertical support members, secure connections, tight cables, and straight bracing members immediately prior to, during, and immediately after every concrete placement.

Bracing shall be provided to withstand all imposed loads during erection of the falsework and all phases of construction for falsework adjacent to any roadway, sidewalk, or railroad track which is open to the public. All details of the falsework system which contribute to horizontal stability and resistance to impact, including the bolts in bracing, shall be installed at the time each element of the falsework is erected and shall remain in place until the falsework is removed. The falsework drawing submittals shall show provisions for any supplemental bracing or methods to be used to conform to this requirement during each phase of erection and removal. Wind loads shall be included in the design of such bracing or methods. Loads, connections, and materials for falsework adjacent to roadways, shall also be in accordance with Section 6-02.3(17)C.

Cable or Tension Bracing Systems:

When cables, wire rope, steel rod, or other types of tension bracing members are used as external bracing to resist horizontal forces, or as temporary bracing to support bents while falsework is being erected or removed adjacent to traffic, all elements of the bracing system shall be shown in the falsework drawing submittals. Bracing shall not be attached to concrete traffic barrier, guardrail posts, or guardrail. Any damaged bracing, such as frayed and kinked guying systems shall be replaced. Wire rope shall avoid making sharp angles or right-angle bends and a means of preventing accidental loss of tension shall be provided. The following information shall be submitted to the Engineer for approval:

1. **Cable diameter, rod, or tension member size, and allowable working load**;
2. **Location and method of attaching the cable, rod, or tension member to the falsework.** The connecting device shall be designed to transfer both horizontal and vertical forces to the cable without overstressing any falsework component;
3. **The type of cable connectors or fastening devices (such as U-bolt clips, plate clamps, etc.) to be used and the efficiency factor for each type.** If cables are to be spliced, the splicing method shall be shown;
4. **Method of tightening cables, rods, or tension members after installation if tightening is necessary to ensure their effectiveness.** Method of preventing accidental loosening;
5. **Anchorage details, including the size and weight of concrete anchor blocks, the assumed coefficient of friction for surface anchorages, and the assumed lateral soil bearing capacity for buried anchorages**;
6. **Method of pre-stretching or preloading cable or tension members; and**
7. **Determination of the potential stretch or elongation of the tension member under the design load and if the resulting lateral deflection causes excessive secondary stresses in the falsework.**

Copies of manufacturer’s catalog or brochure showing technical data pertaining to the type of cable to be used shall be furnished with the falsework Shop Drawing submittals. Technical data shall include the cable diameter, the number of strands and the number of wires per strand, ultimate breaking strength or recommended safe working strength, and any other information as may be needed to identify the cable.

In the absence of sufficient technical data to identify the cable, or if it is old and obviously worn, the Contractor shall perform cable breaking tests to establish the safe working load for each reel of cable furnished. For static guy cable the minimum factor of safety shall be 3 to 1. The Contractor shall notify the Engineer at least 2 Working Days in advance for witnessing these tests.

When cable bracing is used to prevent the overturning of heavy-duty shoring, attention shall be given to the connections by which forces are transferred from the shoring to the cables. Cable restraint shall be designed to act through the cap system to prevent the inadvertent application of forces which the shoring is not designed to withstand. Cables shall not be attached to any tower component.
Cable splices made by lapping and clipping with “Crosby” type clamps shall not be used. Other splicing methods may be used; however, at each location where the cable is spliced, cable strength shall be verified by a load test. When cables are used as external bracing to resist overturning of a falsework system, the horizontal load to be carried by the cables shall be calculated as follows:

1. When used with heavy-duty shoring systems, cables shall be designed to resist the difference between 1.25 times the total overturning moment and the resistance to overturning provided by the individual falsework towers;
2. When used with pipe-frame shoring systems where supplemental bracing is required, cables shall be designed to resist the difference between 1.25 times the total overturning moment and the resistance to overturning provided by the shoring system as a whole; and
3. When used as external bracing to prevent overturning of all other types of falsework, including temporary support during erection and removal of falsework at traffic openings, cables shall be designed to resist 1.25 times the total overturning moment.

The maximum allowable cable design load shall be determined using the following criteria:

1. If the cable is new, or is in uniformly good condition, and if it can be identified by reference to a manufacturer’s catalog or other technical publication, the allowable load shall be the ultimate strength of the cable as specified by the manufacturer, multiplied by the efficiency of the cable connector, and divided by a safety factor of 3 (i.e., safe working load = breaking strength x connector efficiency/safety factor);
2. If the cable is used but still in serviceable condition, or is new or nearly new but cannot be found in a manufacturer’s catalog, the Contractor shall perform load breaking tests. In this case, the cable design load shall not exceed the breaking strength, as determined by the load test, multiplied by the connector efficiency factor, and divided by a safety factor of 3; and
3. If the cable is used and still in serviceable condition, or is a new or nearly new cable which cannot be identified, and if load breaking tests are not performed, the cable design load shall not exceed the safe working load shown in the wire rope capacities table multiplied by the cable connector efficiency.

Cable connectors shall be designed in accordance with criteria shown in the following tables “Efficiency of Wire Rope Connections” and “Applying Wire Rope Clips.” Cable safe working loads are provided in table “Wire Rope Capacities.”

Efficiency of Wire Rope Connections
(As compared to Safe Loads on Wire Rope)

<table>
<thead>
<tr>
<th>Type of Connection</th>
<th>Connector Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Rope</td>
<td>100%</td>
</tr>
<tr>
<td>Sockets - Zinc Type</td>
<td>100%</td>
</tr>
<tr>
<td>Wedge Sockets</td>
<td>70%</td>
</tr>
<tr>
<td>Clips - Crosby Type with Thimble</td>
<td>80%</td>
</tr>
<tr>
<td>Knot and Clip (Contractors Knot)</td>
<td>50%</td>
</tr>
<tr>
<td>Plate Clamp-Three Bolt Type with Thimble</td>
<td>80%</td>
</tr>
<tr>
<td>Spliced Eye and Thimble:</td>
<td></td>
</tr>
<tr>
<td>1/4” and smaller</td>
<td>100%</td>
</tr>
<tr>
<td>3/8” to 3/4”</td>
<td>95%</td>
</tr>
<tr>
<td>7/8” to 1”</td>
<td>88%</td>
</tr>
<tr>
<td>1-1/8” to 1-1/2”</td>
<td>82%</td>
</tr>
<tr>
<td>1-5/8” to 2”</td>
<td>75%</td>
</tr>
<tr>
<td>2-1/8” and larger</td>
<td>70%</td>
</tr>
</tbody>
</table>
WIRE ROPE CAPACITIES

Safe Load in Pounds for New Plow Steel Hoisting Rope
6 Strands of 19 Wires, Hemp Center
(Safety Factor of 6)

<table>
<thead>
<tr>
<th>Diameter: Inches</th>
<th>Weight: Lbs/Ft</th>
<th>Safe Load: Lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>0.10</td>
<td>1,050</td>
</tr>
<tr>
<td>5/16</td>
<td>0.16</td>
<td>1,500</td>
</tr>
<tr>
<td>3/8</td>
<td>0.23</td>
<td>2,250</td>
</tr>
<tr>
<td>7/16</td>
<td>0.31</td>
<td>3,070</td>
</tr>
<tr>
<td>1/2</td>
<td>0.40</td>
<td>4,030</td>
</tr>
<tr>
<td>9/16</td>
<td>0.51</td>
<td>4,840</td>
</tr>
<tr>
<td>5/8</td>
<td>0.63</td>
<td>6,330</td>
</tr>
<tr>
<td>3/4</td>
<td>0.95</td>
<td>7,930</td>
</tr>
<tr>
<td>7/8</td>
<td>1.29</td>
<td>10,730</td>
</tr>
<tr>
<td>1</td>
<td>1.60</td>
<td>15,000</td>
</tr>
<tr>
<td>1-1/8</td>
<td>2.03</td>
<td>18,600</td>
</tr>
<tr>
<td>1-1/4</td>
<td>2.50</td>
<td>23,000</td>
</tr>
<tr>
<td>1-3/8</td>
<td>3.03</td>
<td>25,900</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3.60</td>
<td>30,700</td>
</tr>
<tr>
<td>1-5/8</td>
<td>4.23</td>
<td>35,700</td>
</tr>
<tr>
<td>1-3/4</td>
<td>4.90</td>
<td>41,300</td>
</tr>
</tbody>
</table>

Applying Wire Rope Clips:

The only correct method of attaching U-bolt wire rope clips to rope ends is to place the base (saddle) of the clip against the live end of the rope, while the "U" of the bolt presses against the dead end.

The clips are usually spaced about six rope diameters apart to give adequate holding power. A wire-rope thimble shall be used in the loop eye to prevent kinking when wire rope clips are used. The correct number of clips for safe application, and spacing distances, are shown below:

Number of Clips and Spacing for Safe Application

<table>
<thead>
<tr>
<th>Improved Plow Steel Rope Diameter (Inches)</th>
<th>Drop Forged</th>
<th>Other Material</th>
<th>Min. Spacing (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1/2</td>
<td>3</td>
<td>4</td>
<td>3-1/2</td>
</tr>
<tr>
<td>5/8</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3/4</td>
<td>4</td>
<td>5</td>
<td>4-1/2</td>
</tr>
<tr>
<td>7/8</td>
<td>4</td>
<td>5</td>
<td>5-1/4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1-1/8</td>
<td>6</td>
<td>6</td>
<td>6-3/4</td>
</tr>
<tr>
<td>1-1/4</td>
<td>6</td>
<td>7</td>
<td>7-1/2</td>
</tr>
<tr>
<td>1-3/8</td>
<td>7</td>
<td>7</td>
<td>8-1/4</td>
</tr>
<tr>
<td>1-1/2</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Anchor Blocks:

Concrete anchor blocks and connections used to resist forces from external bracing shall be shown in the falsework Shop Drawing submittal. Concrete anchor blocks shall be proportioned to resist both sliding and overturning. When designing anchor block stability, the weight of the anchor block shall be reduced by the vertical component of the cable or brace tension to obtain the net or effective weight to be used in the anchorage computations. The coefficient of friction assumed in the design shall not exceed the following:
<table>
<thead>
<tr>
<th>Setting</th>
<th>Friction Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor block set on sand</td>
<td>0.40</td>
</tr>
<tr>
<td>Anchor block set on clay</td>
<td>0.50</td>
</tr>
<tr>
<td>Anchor block set on gravel</td>
<td>0.60</td>
</tr>
<tr>
<td>Anchor block set on pavement</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Note: Multiply the friction coefficient by 0.67 if it is likely the supporting material is wet or shall become wet during the construction period.

The method of connecting the cable or brace to the anchor block is part of the anchor block design. The connection shall be designed to resist both horizontal and vertical forces.

Temporary Bracing for Bridge Girders:

Bridge girders (such as steel plate girders and prestressed girders) shall be braced and tied to resist forces that would cause rotation or torsion in the girders caused by the placing of concrete for diaphragms or the deck. These conditions also apply to bridge widenings and stage constructed bridges where construction sequences can cause rotation or torsion in the girders. Falsework support brackets or braces shall not be welded to structural steel members or reinforcing steel.

On prestressed girder spans, the Contractor shall install cross-bracing between girders at each end and midspan to prevent lateral movement or rotation. This bracing shall be placed immediately after erection of the girders. The bracing shall not be removed until the diaphragms or the deck have been placed and cured for a minimum of 24 hours.

When deck overhang or the distance from the centerline of the exterior girder (or outside girder of a staged construction) to the near edge of the roadway slab on a prestressed girder span exceeds the distances listed in the table below, the Contractor shall provide extra bracing for the exterior girder at the midpoint between diaphragms (or at more frequent intervals). This bracing shall include: (1) a cross-tie connecting the top flange of each exterior girder with its counterpart on the other side, and (2) braces between the bottom flanges and top flanges of all girders.

<table>
<thead>
<tr>
<th>Girder Series</th>
<th>Distance in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>W42G</td>
<td>30</td>
</tr>
<tr>
<td>W50G</td>
<td>42</td>
</tr>
<tr>
<td>W58G</td>
<td>63</td>
</tr>
<tr>
<td>W74G</td>
<td>66</td>
</tr>
</tbody>
</table>

If a concrete finishing machine is supported at the outside edge of the slab, the Contractor shall account for its added weight in the design of bracing.

Roadway deck forming systems may require bracing or ties between girders for the girder to adequately support the form loading. When braces, struts, or ties are required, they shall be designed and detailed by the Contractor and shall be shown in the falsework/formwork Shop Drawing submittal to the Engineer for approval. These braces, struts, and ties shall be furnished and installed by the Contractor at no additional cost to the Owner.

6-02.3(17)G TESTING FALSEWORK DEVICES

The Contractor shall establish the load capacity and deflection (or settlement) of all friction collars and clamps, brackets, hangers, saddles, sand jacks, and similar devices utilizing an independent testing laboratory accredited in accordance with ASTM E 1595 and approved by the Engineer. Laboratory tests shall use the same materials and design that shall be used on the Project. Test loads shall be applied to the device in the same manner that the device is to experience loading on the Project. Any bolts or threaded rods used with the device shall be identified as to diameter, length, type, grade, and torque. Any wedges, blocks, or shims used with the device on the Project shall also be tested with the device. Any adjustable jack system used as a part of a device shall be tested with the device and shall have its maximum safe working extended height identified. Devices shall
not be tested in contact with the permanent structure. Independent members with the same properties as the permanent structure shall be used to test device connections.

At least fourteen (14) days prior to the test, the Contractor shall submit a test procedure and scale drawing for the Engineer's approval showing how the device is to be tested and how data is to be collected. The Contractor shall provide the Engineer 2 Working Days advance notice for an opportunity to witness these tests.

The approved independent testing laboratory shall provide a certified test report which shall be signed and dated. The test report shall clearly identify the device tested including trademarks and model numbers; identify all parts and materials used, including grade of steel, or lumber, member section dimensions; location, size, and the maximum tested extended height of any adjustable jacks; indicate condition of materials used in the device; indicate the size, length and location of all welds; indicate how much torque was used with all bolts and threaded rods. The report shall describe how the device was tested, report the results of the test, provide a scale drawing of the device showing the location(s) of where deflections or settlements were measured, and show where load was applied. Deflections or settlements shall be measured at load increments and the results shall be clearly graphed and labeled. Prior to installation of falsework devices named in this section, the Contractor shall submit the certified test reports to the Engineer for review and approval.

The safe working load for shop manufactured devices named in this section shall be derived by dividing the ultimate strength by a safety factor of 2.0. The safe working load for field fabricated or field modified devices (including the use of timber blocks or wedges with the device) shall be determined by dividing the ultimate strength by a safety factor of 3.0. Working load shall include weights of all successive concrete placements, falsework, forms, all load transfer that takes place during post-tensioning, and any live loads; such as workers, roadway finishing machines, and concrete delivery systems. The maximum allowable free end deflection of deck overhang brackets with combined dead and live working loads applied shall be 3/16-inch even though deflection may be compensated for by pre-cambering or setting the elevations high. The Contractor shall comply with all manufacturer's specifications; including those relating to bolt torque, cleaning and oiling of parts, and the reuse of material. Devices which are deteriorated, bent, warped or have poorly fitted connections or welds, shall not be installed.

6-02.3(17)H FORMWORK ACCESSORIES

Formwork accessories such as form ties, form anchors, form hangers, anchoring inserts, and similar hardware shall be specifically identified in the formwork Shop Drawings including the name and size of the hardware, manufacturer, safe working load, and factor of safety. The grade of steel shall also be indicated for threaded rods, coil rods, and similar hardware. Wire form ties taper ties and welding or clamping formwork accessories to Contract Drawings reinforcing steel shall not be used. Driven types of anchorages for fastening forms or form supports to concrete, and Contractor fabricated "J" hooks shall not be used. Field drilling of holes in prestressed girders is not allowed.

The following table from ACI 347R-88 provides minimum safety factors for formwork accessories. The hardware proposed shall meet these minimum ultimate strength requirements or the manufacturer's minimum requirements, whichever provides the greater factor of safety. The Contractor shall attach copies of the manufacturer's catalog cuts and/or test data of hardware proposed, to the formwork Shop Drawings and submit the falsework and formwork Shop Drawings and calculations for review and approval per Section 6-02.3(16). In situations where catalog cuts and/or test data are not available, testing shall be performed in accordance with Section 6-02.3(17)G.
Minimum Safety Factors of Formwork Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Safety Factor</th>
<th>Type of Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form tie</td>
<td>2.0</td>
<td>All applications</td>
</tr>
<tr>
<td>Form anchor</td>
<td>2.0</td>
<td>Formwork supporting form weight and concrete pressures only</td>
</tr>
<tr>
<td>Form anchor</td>
<td>3.0</td>
<td>Formwork supporting weights of forms, concrete, construction live loads, and impact</td>
</tr>
<tr>
<td>Form hangers</td>
<td>2.0</td>
<td>All applications</td>
</tr>
<tr>
<td>Anchoring inserts</td>
<td>2.0</td>
<td>Placed in previous opposing concrete placement to act as an anchor for form tie</td>
</tr>
</tbody>
</table>

Safety factors are based on ultimate strength of the formwork accessory.

The bearing area of external holding devices shall be adequate to prevent excessive bearing stress on form lumber. Form ties and form hangers shall be arranged symmetrically on the supporting members to minimize twisting or rotation of the members. Form tie elongation shall not exceed the allowable deflection of the wale or member that it supports. Inserts, bolts, coil rods, and other fasteners shall be analyzed and designed for appropriately combined bending, shear, torsion, and tension stresses. The formwork shall not be attached to Contract Drawing rebar or rebar cages. However, the Contractor may install additional reinforcing steel for formwork anchorage.

Frictional resistance shall not be considered as contributing to the stability of any connection or connecting device, except those designed as friction connectors such as U-bolt friction-type connectors.

Form anchors and anchoring inserts shall be designed considering concrete strength at time of loading, available embedment, location in the member, and any other factors affecting their working strength, and shall be installed in concrete per the manufacturer’s published requirements. Form anchors and anchoring inserts embedded in previous concrete placements shall not be loaded until the concrete has reached the required design strength. The required design strength of concrete for loading of an anchor shall be shown in the formwork drawing if it is assumed that the anchor is to be loaded before the concrete has reached its 28 day strength.

Installation of permanent concrete inserts, such as form ties hangers, or embedded anchor assemblies, shall permit removal of all metal to at least 1/2-inch below the concrete surface. Holes shall be patched in accordance with Section 6-02.3(14). During removal of the outer unit, the bond between the concrete and the inner unit or rod shall not be broken.

6-02.3(17) Timber Connections

Timber connections shall be designed in accordance with the methods, stresses, and loads allowed in the Timber Construction Manual, Third Edition by the American Institute of Timber Construction (AITC). Timber falsework and formwork connections shall be designed using wet condition stresses for all installations West of the Cascade Range crest line and by criteria provided in the following sections. Frictional resistance shall not be considered as contributing to the stability of any timber connection.

Bolted Connections:

Tabulated values in the AITC Timber Construction Manual-Third Edition are based on square posts. For a round post or pile, the main member thickness shall be the side of a square post having the same cross-sectional area as the round post used.

The AITC Table 6.20 for Douglas Fir-Larch bolt Group 3 and for Hem-Fir bolt Group 8 show design values for bolts to be used when the load is applied either parallel or perpendicular to the direction of the wood grain. When the load is applied at an angle to the grain, as is the case with falsework bracing, the design value for the main member shall be obtained from the Hankinson formula shown in the AITC manual.

Design values in the AITC Table 6.20 apply only to three member joints (bolt in double-shear) in which the side members are each 1/2 the thickness of the main member. This joint configuration is not typical of bridge falsework where side members are usually much smaller than main members. For two member joints (single shear bolt condition), the AITC Table 6.20 values shall be adjusted by a single shear load factor as follows:
1. 0.75 for installations East of the Cascade Range crest line, except as shown in item 3 below;
2. 0.50 for installations West of the Cascade Range crest line; and
3. 0.50 for load acting at an angle to the bolt axis, as is the case with longitudinal bracing when falsework bents are skewed.

Except for connections in falsework adjacent to or over railroads or roadways, threaded rods and coil rods may be used in place of bolts of the same diameter with no reduction in the tabulated values. At openings for roadways and railroads, all connections shall be bolted using 5/8-inch diameter or larger through bolts.

Bolt holes shall be a minimum 1/32-inch to a maximum 1/8-inch larger than the bolt diameter. A washer not less than a standard cut washer shall be installed between the wood and the bolt head and between the wood and the nut to distribute the bearing stress under the bolt head and nut and to avoid crushing the fibers. In lieu of standard cut washers, metal plates or straps with dimensions at least equal to that of a standard cut washer may be substituted.

When steel bars or shapes are used as diagonal bracing, the tabulated design values shown in AITC Table 6.20 for the main members loaded parallel to grain (P value) are increased 75 percent for joints made with bolts 1/2-inch or less in diameter, 25 percent for joints made with bolts 1-1/2-inches in diameter, and proportionally for intermediate diameters. No increase in the tabulated values is allowed for perpendicular-to-grain loading (Q value).

Clearance requirements for end, edge, and bolt spacing distance shall be as shown below. All distances are measured from the end or side of the wood member to the center of the bolt hole. For members which are subject to load reversals the larger controlling distances shall be used for design. For parallel-to-grain loading, the minimum distances for full design load:

1. In tension, minimum end distance shall be 7 times the bolt diameter;
2. In compression, minimum end distance shall be 4 times the bolt diameter; and
3. In tension or compression, the minimum edge distance shall be 1.5 times the bolt diameter.

For perpendicular-to-grain loading, the minimum distance for full design load:

1. Minimum end distance shall be 4 times the bolt diameter;
2. Edge distance toward which the load is acting shall be at least 4 times the bolt diameter; and
3. Distance on the opposite edge shall be at least 1.5 bolt diameters.

Minimum clearance (spacing) between adjacent bolts in a row shall be 4 times the bolt diameter, measured center-to-center of the bolt holes.

When more than two bolts are used in a line parallel to the axis of the side member, additional requirements shall be followed as shown in the AITC manual.

Lag Screw Connections:

Design values for lag screws subject to withdrawal loading are found in AITC Table 6.27. Values for wood having a specific gravity of 0.51 for Douglas Fir-Larch or 0.42 for Hem-Fir shall be assumed when using the table. The withdrawal values are in pounds per inch of penetration of the threaded part of the lag screw into the side grain of the member holding the point, with the axis of the screw perpendicular to that member. The maximum load on a given screw shall not exceed the allowable tensile strength of the screw at the root section.

AITC recommends against subjecting lag screws to end-grain withdrawal loading. However, if this condition cannot be avoided, the design value shall be 75 percent of the corresponding value for withdrawal from the side grain.

Values in the Group II wood species column shall be used for Douglas Fir-Larch and the Group III wood species column shall be used for Hem-Fir. When the load is applied at an angle to the grain, as is the case with falsework bracing, the design value shall be obtained from the Hankinson formula shown in the AITC manual.

When lag screws are subjected to a combined lateral and withdrawal loading, as would be the case with longitudinal bracing when the falsework bents are skewed, the effect of the lateral and withdrawal forces shall be determined separately. The withdrawal component of the applied load shall not exceed the allowable value in withdrawal. The lateral component of the applied load shall not exceed the allowable lateral load value.

Lag screws shall be inserted in lead holes as follows:

1. In tension, minimum end distance shall be 7 times the bolt diameter;
2. In compression, minimum end distance shall be 4 times the bolt diameter; and
3. In tension or compression, the minimum edge distance shall be 1.5 times the bolt diameter.
The clearance hole for the shank shall have the same diameter as the shank, and the same depth of penetration as the length of unthreaded shank;

2. The lead hole for the threaded portion shall have a diameter equal to 60 to 75 percent of the shank diameter and a length equal to at least the length of the threaded portion. The larger percentile figure in each range shall apply to screws of the greater diameters used in Group II wood species;

3. The threaded portion of the screw shall be inserted in its lead hole by turning with a wrench, not by driving with a hammer; and

4. To facilitate insertion, soap or other lubricant shall be used on the screws or in the lead hole.

Drift Pin and Drift Bolt Connections:

When drift pins or drift bolts are used, the required length and penetration shall be determined using the following criteria. The lateral load-carrying capacity of drift pins and drift bolts driven into the side grain of a wood member shall be limited to 75 percent of the design values for a common bolt of the same diameter and length in the main member. For drift pin connections, the pin penetration into the connected members shall be increased to compensate for the absence of a bolthead and nut. For drift bolts or pins driven into the end grain of a member, the lateral load-carrying capacity shall be limited to 60 percent of the allowable side grain load (perpendicular to grain value) for an equal diameter bolt with nut. To develop this allowable load the drift bolt or pin shall penetrate at least 12 diameters into the end grain. To fully develop the allowable load of the drift bolts or pins, they shall be driven into pre-drilled holes, 1/16-inch less in diameter than the drift pin or bolt diameter.

The criteria shown in the AITC Timber Construction Manual-Third Edition shall apply to drift bolt or pin connection allowable loads for the following conditions:

1. Withdrawal resistance; and
2. When there are more than two drift bolts or pins in a joint, allowable loads shall be further reduced by applying applicable modification factors shown in the AITC Table 6.3.

Nailed and Spiked Joints:

Joints using nails or spikes shall conform to the provisions of AITC. For side grain withdrawal, the values in AITC Table 6.35 for wood having a specific gravity of 0.51 for Douglas Fir-Larch and a specific gravity of 0.42 for Hem-Fir shall be used. End grain withdrawal shall not be used. For lateral loading, the values in AITC Table 6.36 for wood species Group II for Douglas Fir-Larch and wood species Group III for Hem-Fir shall be used. Diameters listed in the tables apply to fasteners before application of any protective coating.

When more than one nail or spike is used in a joint, the total design value for the joint in withdrawal or lateral resistance shall be the sum of the design values for the individual nails or spikes.

The tabulated design values for lateral loads are valid only when the nail penetrates into the main member at least 11 diameters for Douglas Fir-Larch and 13 diameters for Hem-Fir. Note that the values are maximum values for the type and size of fastener shown. The tabulated values shall not be increased even if the actual penetration is exceeded.

When main member penetration is less than 11 diameters for Douglas Fir-Larch and 13 diameters for Hem-Fir, the design value shall be determined by straight-line interpolation between zero and the tabulated load, except that penetration shall not be less than 1/3 of that specified.

Double-headed or duplex nails used in falsework and formwork construction are shorter than common wire nails or box nails of the same penny weight. They have less penetration into the main member and therefore their load-carrying capacity shall be adjusted accordingly.

Nail and spike minimum spacing in timber connections shall be as follows:

1. The average center-to-center distance between adjacent nails, measured in any direction, shall not be less than the required penetration into the main member for the size of nail being used; and
2. The minimum end distance in the side member, and the minimum edge distance in both the side member and the main member, shall not be less than 1/2 of the required penetration.

Allowable values for withdrawal and lateral load resistance are reduced when toe nails are used in accordance with the following:
1. For withdrawal loading, the design load shall not exceed 2/3 of the value shown in the applicable design table; and

2. For lateral loading, the design load shall not exceed 5/6 of the value shown in the applicable design table.

Toe nails are recommended to be driven at an approximate angle of 30 degrees with the piece and started approximately 1/3 of the length of the nail from the end or side of the piece.

Timber Connection Adjustment for Duration of Load:

Tabulated values for timber fasteners are for normal duration of load and may be increased for short duration loading, except for connections used in falsework and formwork for post tensioned structures and staged construction sequences. Duration of load adjustment for timber connections shall not be allowed for all post tensioned structures and for staged construction sequences where delayed and/or staged loading occurs for any type of concrete structure. The adjustment for duration of load as described in this section applies only to design values for timber connectors, such as nails, bolts, and lag screws. Allowable stresses for timber and structural steel components used in the connection, as described in Section 6-02.3(17B), are maximums and thus shall not be increased.

Tabulated values for nails, bolts, and lag screws may be adjusted by the following duration-of-load factors:

1. 1.25 for falsework design governed by the minimum design horizontal load or greater (three percent or greater of the dead load);
2. 1.33 for falsework design governed by wind load; and
3. 2.00 for falsework design governed by impact loading.

6-02.3(17)J FACE LUMBER, STUDS, WALES, AND METAL FORMS

Elements of this section shall be designed for the loads, allowable stresses, deflections, and conditions which pertain from other subsections of Section 6-02.3(17).

Forms battered or inclined over the concrete tend to uplift as concrete is placed and shall have positive anchorage or counterweights designed to resist uplift and shall be shown in the formwork drawing submittal. Where the concrete pouring sequence causes fresh concrete to be significantly higher along one side of tied forms than the opposite side, a positive form anchorage system shall be designed capable of resisting the imbalance of horizontal thrust, and prevent the dislocation and sliding of the entire form unit.

Wooden forms shall be faced with smooth sanded, exterior plywood. This plywood shall meet the requirements of the National Bureau of Standards, U.S. Product Standard PS 1, and the Design Specification of the American Plywood Association (APA). Each full sheet shall bear the APA stamp. The Contractor shall list in the formwork Shop Drawing submittal the grade and class of plywood. If the Engineer approves the manufacturer’s certification of structural properties, the Contractor may use plywood that does not carry the APA stamp. Plywood panels stamped “shop” or “shop cutting,” shall not be used.

Plyform is an APA plywood specifically designed and manufactured for concrete forming. Plyform differs from conventional exterior plywood grades in strength and the exterior face panels are sanded smooth and factory oiled. Likewise, there is a significant difference between grades designated Class 1, Class 2, and Structural I Plyform.

The grades of plywood for various form applications shall be as follows:

1. Traffic and Pedestrian Barriers (except those that receive an architectural surface treatment) - Plywood used for these surfaces shall be APA grade High Density Overlaid (HDO) Plyform Class I. But if the Contractor coats the form to prevent it from leaving joint and grain marks on the surface, plywood that meets or exceeds APA grades B-B Plyform Class I or B-C (Group I species) may be used. Under this option, the Contractor shall provide for the Engineer's approval a 4-foot square test panel of concrete formed with the same plywood and coating as proposed in the form Shop Drawings. This panel shall include one form joint along its centerline. The Contractor shall apply coating material, according to the manufacturer’s instructions, before applying chemical release agents;
2. Other Exposed Surfaces (all but those on traffic and pedestrian barriers) – Plywood used to form these surfaces shall meet or exceed the requirements of APA grades B-B Plyform Class I or B-C (Group I series). If one face is less than B quality, the B (or better) face shall contact the concrete; and

3. Unexposed Surfaces (such as the undersides of roadway slabs between girders, the interiors of box girders, etc., and traffic and pedestrian barriers where surfaces are to receive an architectural treatment) - Plywood used to form these surfaces may be APA grade CDX, provided the Contractor complies with stress and deflection requirements stated elsewhere in these Specifications.

Form joints on an exposed surface shall be in a horizontal or vertical plane. But in wingwalls and box girders, side form joints shall be placed at right angles and parallel to the roadway grade. Joints parallel to studs or joists shall be backed by a stud or joist. Joints at right angles to studs and joists shall be backed by a stud or other backing the Engineer approves. Perpendicular backing is not required if studs or joists are spaced:

1. Nine inches or less on center and covered with 1/2-inch plywood; or
2. Twelve inches or less on center and covered with 3/4-inch plywood.

The face grain of plywood shall run perpendicular to studs or joists unless shown otherwise on the Contractor's formwork Shop Drawings and approved by the Engineer. Proposals to deviate from the perpendicular orientation shall be accompanied by supporting calculations of the stresses and deflections.

Forming for all exposed curved surfaces shall follow the shape of the curve shown in the Drawings and shall not be chorded except as follows. On any retaining wall that follows a horizontal circular curve, the wall stems may be a series of short chords if:

1. The chords within the panel are the same length unless otherwise approved by the Engineer;
2. The chords do not vary from a true curve by more than 1/2 inch at any point; and
3. All panel points are on the true curve.

Where architectural treatment is required, the angle point for chords in wall stems shall fall at vertical rustication joints.

For exposed surfaces of abutments, wingwalls, piers, retaining walls, and columns, the Contractor shall build forms of plywood at least 3/4-inch thick with studs no more than 12 inches on center. The Engineer may approve exceptions, but deflection of the plywood, studs, or wales shall never exceed 1/500 of the span (or 1/360 of the span for unexposed surfaces, including the bottom of the deck slab between girders).

All form plywood shall be at least 1/2-inch thick except on sharply curved surfaces. There, the Contractor may use 1/4-inch plywood if it is backed firmly with heavier material.

Round columns or rounded pier shafts shall be formed with a self-supporting metal shell form or form tube that leaves a smooth, non-spiraling surface. Wood forms are not permitted.

Metal forms shall not be used elsewhere unless the Engineer is satisfied with the surface and approves in writing. The Engineer may withdraw approval for metal forms at any time. If permitted to use a combination of wood and metal in forms, the Contractor shall coat the forms so that the texture produced by the wood matches that of the metal. Aluminum shall not be used for metal forms.

For design purposes, the Contractor shall assume that on vertical surfaces concrete exerts 150 pounds of pressure per square foot per foot of depth. However, when the depth is reached where the rate of placement controls the pressure, the following table applies:

1. The chords within the panel are the same length unless otherwise approved by the Engineer;
2. The chords do not vary from a true curve by more than 1/2 inch at any point; and
3. All panel points are on the true curve.
Rate of Placing Feet per Hour | Pressure, Pounds per Square Foot for Temperature of Concrete as Shown
---|---
2 | 60 °F | 70 °F and above
| | 470 | 375
3 | 470 | 375
4 | 640 | 565
5 | 725 | 625
6 | 815 | 690
7 | 900 | 750
8 | 990 | 815
9 | 1,075 | 875
10 | 1,165 | 935
15 | 1,250 | 1,000
10 | 1,250 | 1,000
15 | 1,670 | 1,300

The pressures in the above table have been increased to provide an allowance for the vibration and impact.

Horizontal surfaces shall support a pressure of 160 pounds per square foot for each foot of concrete height.

All exposed corners shall be beveled 3/4-inch. However, traffic barriers, footings, footing pedestals and seals need not be beveled unless the Drawings require it.

All forms shall be as mortartight as possible with no water standing in them as the concrete is placed.

The Contractor shall apply a parting compound on forms for exposed concrete surfaces. This compound shall be a chemical release agent that permits the forms to separate cleanly from the concrete. The compound shall not penetrate or stain the surface and shall not attract dirt or other foreign matter. After the forms are removed, the concrete surface shall be dust-free and have a uniform appearance. The Contractor shall apply the compound at the manufacturer’s recommended rate to produce a surface free of dusting action and yet provide easy removal of the forms.

If an exposed concrete surface is to be sealed, the release agent shall not contain silicone resin. Before applying the agent, the Contractor shall submit to the Engineer a [Manufacturer’s Certificate of Compliance](#) stating whether the resin in the base material is silicone or non-silicone.

The Contractor shall submit to the Engineer a sample and catalog cut of the parting compound at least 10 Working Days before its use. Approval or nonapproval shall be based on laboratory tests results.

The Engineer may reject any forms that are not able to produce a satisfactory surface.

6-02.3(17)K FORMS ON STEEL SPANS

Forms for concrete placement on all steel structures shall be removable and shall not remain in place. Where needed, the forms shall have openings for truss or girder members. Each opening shall be large enough to leave at least 1-1/2 inches between the concrete and steel on all sides of the steel member after the forms have been removed.

Any form support for a roadway slab that rests on a plate girder flange shall apply the load within 6 inches of the girder web centerline. The Contractor shall not weld any part of the form to any steel member.

If the Engineer permits bolt holes in the web to support form brackets, the holes shall be shop-drilled unless otherwise approved by the Engineer. The Contractor shall fill the holes with fully torqued AASHTO M 164 bolts per Section 6-03.3(33). Each bolt head shall be placed on the exterior side of the web. There shall be no holes made in the flanges.

6-02.3(17)L FINISHING MACHINE SUPPORT SYSTEM

Before using any finishing machine, the Contractor shall obtain the Engineer’s approval of detailed Shop Drawings that show the system proposed to support it. The Contractor shall not attach this (or any other)
equipment support system to the sides or suspend it from any girder unless the Engineer permits. The Engineer will not permit such a method if it unduly alters stress patterns or create too much stress in the girder.

6-02.3(17)M RESTRICTED OVERHEAD CLEARANCE SIGN

The Contractor shall notify the Engineer not less than 15 Working Days before the anticipated start of each falsework and girder erection operation whenever such falsework or girders reduce clearances available to the public traffic. Falsework openings shall not be more restrictive to traffic than shown in the Drawings.

Where the height of vehicular openings through falsework is less than 15 feet 0 inches, a W 12-2 "Low Clearance Symbol Sign" shall be erected on the shoulder in advance of the falsework, and two or more W 12-301 and/or W 12-302 signs shall be attached to the falsework to provide accurate usable clearance information over the entire falsework opening. The posted low clearance shall include an allowance for anticipated falsework girder deflection (rounded-up to the next whole inch) due to design dead load, including all successive concrete pours. W 12-302 signs shall be used to designate prominent clearance restrictions and limits of usable clearance. In addition, where the clearance is less than the legal height limit (14 feet 0 inches), a W 12-2 sign shall be erected in advance of the nearest intersecting road or wide point in the road at which a vehicle can detour or turn around. A W 13-501 sign indicating the distance to the low clearance shall be installed below the advance sign. The Engineer will furnish the above noted signs and the Contractor shall erect and maintain them, all in accordance with Sections 1-07.23 and 1-10.

When erecting falsework that restricts overhead clearance above a railroad track, the Contractor shall immediately (as soon as the restriction occurs) place restricted overhead clearance signs. Sign details are shown in WSDOT Standard Plan No.G-1 included in the Appendix of the Project Manual.

6-02.3(17)N REMOVAL OF FALSEWORK AND FORMS

The Contractor shall never remove forms or falsework unless the Engineer approves. The Engineer will decide, on the basis of post-placement curing conditions, the exact number of curing days that shall elapse before form removal. If the Engineer does not decide otherwise, the Contractor may remove forms (from the time of the last pour the forms support) as indicated in the table below. Both compressive strength and curing days criteria must be met if both are listed:
Concrete Placed In	% of Specified Minimum Compressive Strength	Number of Curing Days
Columns, wall faces, mass piers and abutments (except pier caps), traffic and pedestrian barriers, and any other side form not supporting the concrete weight.¹ | --- | 3
Pier caps continuously supported.² | 60 | 3
Sidewalks not supported on bridge roadway slabs.² | 70 | ---
Crossbeams, caps, pier caps not continuously supported, struts and top slabs on concrete box culverts, inclined columns and inclined walls.²,³ | 80 | 5
Roadway slabs supported on wood or steel stringers or on steel or prestressed concrete girders.² | 80 | 10
Box girders, T-beam girders, and flat-slab Superstructure.²,³ | 80 | 14
Arches.²,³ | --- | 21

¹Where forms do not support the load of concrete.
²Where forms support the load of concrete.
³Where continuous spans are involved, the time for all spans will be determined by the last concrete placed affecting any span.

Before releasing supports from beneath beams and girders, the Contractor shall remove forms from columns to enable the Engineer to inspect the column concrete.

The Contractor may remove the side forms of footings 24 hours after concrete placement if a curing compound is applied immediately. But this compound shall not be applied to that area of the construction joint between the footing and the column or wall.

The Contractor may remove side forms, traffic barrier forms, and pedestrian barrier forms after 24 hours if these forms are made of steel or dense plywood, an approved water reducing additive is used, and the concrete reaches a compressive strength of 1,400 psi before form removal. This strength shall be proved by test cylinders made from the last concrete placed into the form. *The cylinders shall be cured according to Field Operating Procedure for AASHTO T 23, Method 2.*

Wet curing shall comply with the requirements of Section 6-02.3(11). The concrete surface shall not become dry during form removal or during the entire curing period.

Before placing forms for traffic and pedestrian barriers, the Contractor shall completely release all falsework under spans.

Before releasing forms under concrete cured at temperatures colder than 50°F, the Contractor shall first prove that the concrete meets desired strength - regardless of the time that has elapsed.

The Engineer may approve leaving in place forms for footings in cofferdams or cribs. This decision will be based on whether removing them would harm the cofferdam or crib and whether the forms are indicated as showing in the finished structure.

All cells of a box girder structure which have permanent access shall have all forms completely removed, including the roadway deck forms. All debris and all projections into the cells shall be removed. Unless otherwise shown on the Drawings, the roadway slab interior forms in all other cells where no permanent access is available, may be left in place.

Falsework and forms supporting sloping exterior webs shall not be released until the roadway deck and deck overhang concrete has obtained its removal strength and time of cure. Stern reshoring shall not be used.
Open joints shown in the Contract Drawings shall have all forms completely removed, including styrofoam products and form anchors, allowing the completed structure to move freely.

If the Contractor intends to support or suspend falsework and formwork from the bridge structure while the falsework and formwork is being removed, the Contractor shall submit a falsework and formwork removal plan and calculations for review and approval. The falsework and formwork removal plan shall include the following:

1. The location and size of any cast-in-place falsework lowering holes and how the holes are to be filled;
2. The location, capacity, and size of any attachments, beams, cables, and other hardware used to attach to the structure or support the falsework and formwork;
3. The type, capacity and factor of safety, weight, and spacing of points of reaction of lowering equipment; and
4. The weight at each support point of the falsework and formwork being lowered.

All other forms shall be removed, whether they are above or below the level of the ground or water. Sections 6-02.3(7) and 6-02.3(8) govern form removal for concrete exposed to sea water or to alkaline water or soil. The forms inside of hollow piers, girders, abutments, etc. shall be removed through openings provided for that purpose as indicated on the Drawings, or approved by the Engineer.

6-02.3(17) EARLY CONCRETE TEST CYLINDER BREAKS

The fabrication, curing and testing of the early cylinders shall be the responsibility of the Contractor. Early cylinders are defined as all cylinders tested in advance of the design age of 28 days whose purpose is to determine the in-place strength of concrete in a structure prior to applying loads or stresses. The Contractor shall retain an independent testing laboratory to perform this work.

The concrete cylinders shall be molded in accordance with Field Operating Procedure for AASHTO T 23 from concrete last placed in the forms and representative of the quality of concrete placed in that pour.

The cylinders shall be cured in accordance with Field Operating Procedure for AASHTO T23, Method 2. The Engineer may approve the use of cure boxes meeting the requirements of this test method. Special cure boxes to enhance cylinder strength will not be allowed.

The concrete cylinders shall be tested for compressive strength in accordance with AASHTO T22. The number of early cylinder breaks shall be in accordance with the Contractor's need and as approved by the Engineer.

The Contractor shall furnish the Engineer with all test results. The test results will be reviewed and approved before any forms are removed. The Contractor shall not remove forms without the approval of the Engineer.

Test laboratories used for this work shall be ASTM accredited and shall be approved by the Engineer. All costs in connection with furnishing cylinder molds, fabrication, curing, and testing of early cylinders shall be included in the Contract unit prices for the various Bid items of Work involved.

6-02.3(18) PLACING ANCHOR BOLTS

The Contractor shall comply with the following requirements in setting anchor bolts in piers, abutments, or pedestals:

1. If set in the wet concrete, the bolts shall be accurately placed before the concrete is placed;
2. If the bolts are set in drilled holes, hole diameter shall exceed bolt diameter by at least 1 inch.

Grouting shall comply with Section 6-02.3(20);

3. If the bolts are set in pipe, grouting shall comply with the requirements for grouting shoes in Section 6-02.3(20); and
4. If freezing weather occurs before bolts can be grouted into sleeves or holes, they shall be filled with an approved antifreeze solution (non-evaporating).
6-02.3(19) BRIDGE BEARINGS

6-02.3(19)A ELASTOMERIC BEARING PADS

The Contractor shall use rubber cement to bond the lower contact surface of elastomeric bearing pads to the structure.

6-02.3(19)B BRIDGE BEARING ASSEMBLIES

For all fixed, sliding, or rolling bearings, the Contractor shall:

1. Machine all sliding and rolling surfaces true, smooth, and parallel to the movement of the bearing;
2. Polish all sliding surfaces;
3. Anchor expansion bearings securely, setting them true to line and grade;
4. Coat all sliding surfaces thoroughly with oil and graphite just before placing them into position; and
5. Avoid placing concrete in such a way that it might interfere with the free action of any sliding or rolling surface.

Grout placement under steel bearings shall comply with Section 6-02.3(20).

6-02.3(20) GROUT FOR ANCHOR BOLTS AND BRIDGE BEARINGS

Grout shall be a prepackaged grout, mixed, placed, and cured as recommended by the manufacturer, or the grout shall be produced using Type I or Type II Portland cement, fine aggregate Class 1, and water, in accordance with these Specifications.

Grout shall meet the following requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Compressive Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Method</td>
<td>AASHTO T 106</td>
</tr>
<tr>
<td>Values</td>
<td>4,000 psi @ 7 days</td>
</tr>
</tbody>
</table>

Grout shall be a workable mix with flowability suitable for the intended application.

If the Contractor elects to use a prepackaged grout, a material sample and laboratory test data from an independent testing laboratory shall be submitted to the Engineer for approval with the request for approval of material sources.

If the Contractor elects to use a grout consisting of Type II Portland cement, fine aggregate Class 1, admixture, and water, the mix proportions and laboratory test data from an independent ASTM accredited test laboratory shall be submitted to the Engineer for approval with the request for approval of material sources.

The Contractor shall receive approval from the Engineer before using the grout.

Field grout cubes shall be made in accordance with WSDOT Test Method 813 for either prepackaged grout or a Contractor provided mix when requested by the Engineer, but not less than per bridge pier or one per day.

Before placing grout, the concrete on which it is to be placed shall be thoroughly cleaned, roughened, and wetted with water to ensure proper bonding. The grout pad shall be cured as recommended by the manufacturer or kept continuously wet with water for three days.

Before placing grout into anchor bolt sleeves or holes, the cavity shall be thoroughly cleaned and wetted to ensure proper bonding.

To grout bridge bearing plates, the Contractor shall:

1. Build a form approximately 4 inches high, with sides 4 inches outside the base of each steel bearing plate;
2. Fill each form with grout to the depth indicated on the Drawings;
3. Work grout under all parts of each bearing plate;
4. Remove each form after the grout has hardened;
5. Remove the grout outside each bearing plate to the base of the bearing plate;
6. Bevel off the grout neatly to the top of the masonry; and
7. Place no additional load on the bearing plate until the grout has set at least 72 hours.

After all grout under the bearing plate and in the anchor bolt cavities has attained a minimum strength of 4,000 psi, the anchor bolt nuts shall be tightened to snug-tight. “Snug-tight” means either the tightness reached by (1) a few blows from an impact wrench, or (2) the full effort of a man using a spud wrench. Once the nut is snug-tight the anchor bolt threads shall be burred just enough to prevent loosening of the nut.

6-02.3(21) DRAINAGE OF BOX GIRDER CELLS
To drain box girder cells, the Contractor shall provide and install, according to details in the Drawings, short lengths of nonmetallic pipe in the bottom slab at the low point of each cell. The pipe shall have a minimum inside diameter of 4 inches. If the difference in plan elevation is 2 inches or less, the Contractor shall install pipe in each end of the box girder cell.

6-02.3(22) DRAINAGE OF SUBSTRUCTURE
The Contractor shall use weep holes and gravel backfill that complies with Section 9-03.12(2) to drain fill material behind retaining walls, abutments, tunnels, and wingwalls. To maintain thorough drainage, weep holes shall be placed as low as possible. Gravel backfill shall be placed and compacted as required in Section 2-09.3(1)E. In addition, if the Drawings require tiling, French or rock drains, or other drainage devices shall be installed.

If underdrains are not installed behind the wall or abutment, all backfill within 18 inches of weep holes shall comply with Section 9-03.12(4). Unless the Drawings require otherwise, all other backfill behind the wall or abutment shall be gravel backfill for walls.

6-02.3(23) OPENING TO TRAFFIC
Bridges with a roadway slab made of Portland cement concrete shall remain closed to all traffic, including construction equipment, until the concrete has reached the 28-day specified compressive strength. This strength shall be determined by testing cylinders made of the same concrete as the roadway and cured under the same conditions. A concrete deck bridge shall never be opened to traffic earlier than 10 days after the deck concrete was placed and never before the Engineer has approved.

For load restrictions on bridges under construction, refer to Section 6-01.6.

6-02.3(24) REINFORCEMENT
6-02.3(24)A GENERAL
The Contractor shall furnish a bar list and bending diagram to the Engineer for approval prior to fabrication.

Various steel reinforcing bars, including those in crossbeams, may be shown as straight in the bar list. The Contractor shall bend these bars as required to conform to the configuration of the structure and as detailed in the Drawings.

6-02.3(24)B FIELD BENDING
If the Drawings call for field bending of steel reinforcing bars, the Contractor shall bend them in keeping with the structural configuration and the Drawings and Specifications.

Bending steel reinforcing bars partly embedded in concrete shall be done as follows:

Field bending shall not be done:

1. On bars size No. 14 or No. 18;
2. When air temperature is lower than 45°F;
3. By means of hammer blows or pipe sleeves; or
4. While the bar temperature is in the range of 400°F to 700°F.

In field-bending steel reinforcing bars, the Contractor shall:

1. Make the bend gradually;
2. Apply heat as described in Tables 2 and 3 for bending bar sizes No. 6 through No. 11 and for bending bar sizes No. 5 and smaller when the bars have been previously bent. Previously unbent bars of sizes No. 5 and smaller may be bent without heating;
3. Use a bending tool equipped with a bending diameter as listed in Table 1;
4. Limit any bend to these maximums -- 135 degrees for bars smaller than Size No. 9, and 90 degrees for bars Size No. 9 through 11; and
5. Straighten by moving a hickey bar (if used) progressively around the bend.

In applying heat for field-bending steel reinforcing bars, the Contractor shall:
1. Use a method that avoids damage to the concrete;
2. Insulate any concrete within 6 inches of the heated bar area;
3. Ensure, by using temperature-indicating crayons or other suitable means, that steel temperature never exceeds the maximum temperatures shown in Table 2 below;
4. Maintain the steel temperature within the required range shown in Table 2 below during the entire bending process;
5. Apply two heat tips simultaneously at opposite sides of bars larger than Size No. 6 to assure a uniform temperature throughout the thickness of the bar. For Size No. 6 and smaller bars, apply two heat tips, if necessary;
6. Apply the heat for a long enough time that within the bend area the entire thickness of the bar--including its center--reaches the required temperature;
7. Bend immediately after the required temperature has been reached;
8. Heat at least as much of the bar as Table 3 below requires;
9. Locate the heated section of the bar to include the entire bending length; and
10. Never cool bars artificially with water, forced air, or other means.

TABLE 1

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Bend Diameter/Bar Diameter Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat Not Applied</td>
</tr>
<tr>
<td>No. 4, No 5</td>
<td>8</td>
</tr>
<tr>
<td>No. 6 through No. 9</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>No. 10, No. 11</td>
<td>Not Permitted</td>
</tr>
</tbody>
</table>

The minimum bending diameters for stirrups and ties for No. 4 and No. 5 bars when heat is not applied shall be specified in Section 9-07.

TABLE 2

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>No. 4</td>
<td>1,200</td>
</tr>
<tr>
<td>No. 5, No. 6</td>
<td>1,350</td>
</tr>
<tr>
<td>No. 7 through No. 9</td>
<td>1,400</td>
</tr>
<tr>
<td>No. 10, No. 11</td>
<td>1,450</td>
</tr>
</tbody>
</table>
TABLE 3

Minimum Bar Length to be Heated
(d = nominal diameter of bar)

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Bend Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45°</td>
</tr>
<tr>
<td>No. 4 through No. 8</td>
<td>8d</td>
</tr>
<tr>
<td>No. 9</td>
<td>8d</td>
</tr>
<tr>
<td>No. 10, No. 11</td>
<td>9d</td>
</tr>
</tbody>
</table>

6-02.3(24)C PROTECTION OF MATERIALS

The Contractor shall protect reinforcing steel from all damage. When placed into the structure, the steel shall be free from dirt, loose rust or mill scale, paint, oil, and other foreign matter.

When transporting, storing, or constructing in close proximity to bodies of salt water, plain and epoxy-coated steel reinforcing bar shall be kept in enclosures that provide protection from the elements.

If plain or epoxy-coated steel reinforcing bar is exposed to mist, spray, or fog that may contain salt, it shall be flushed with fresh water prior to concrete placement.

When the Engineer requires protection for reinforcing steel that is to remain exposed for a length of time, the Contractor shall protect the reinforcing steel:

1. By cleaning and applying a coat of paint Formula No. A-9-73 over all exposed surfaces of steel; or
2. By cleaning and painting paint Formula No. A-9-73 on the first 6 inches of the steel bars protruding from the concrete and covering the bars with polyethylene sleeves.

The paint shall have a minimum dry film thickness of 1 mil.

6-02.3(24)D PLACING AND FASTENING

The Contractor shall position reinforcing steel as the Drawings require and shall ensure that the steel is not displaced as the concrete is placed.

When spacing between bars is 1 foot or more, they shall be tied at all intersections. When spacing is less than 1 foot, every other intersection shall be tied. If the Drawings require bundled bars, they shall be tied together with wires at least every 6 feet. Wire used for tying epoxy-coated reinforcing steel shall be plastic coated. Tack welding is not permitted on reinforcing steel.

Abrupt bends in the steel are permitted only when one steel member bends around another. Vertical stirrups shall pass around main reinforcement or be firmly attached to it.

For slip-formed concrete, the reinforcing steel bars shall be tied at all intersections and crossbraced to keep the cage from moving during concrete placement. Crossbracing shall consist of additional reinforcing steel placed both longitudinally and transversely.

For slip-formed concrete barriers, the vertical dowels protruding from the supporting concrete structure shall be diagonally braced against bending induced by the advancing slip-form. The bracing bars shall be no smaller than No. 5 and shall be extended diagonally from the top of one expansion joint to the bottom of the next expansion joint and shall be securely tied to all intervening dowels. A horizontal top bar shall also be tied to all the dowels.

After reinforcing steel bars are placed in a traffic or pedestrian barrier and prior to slip-form concrete placement, the Contractor shall check clearances and reinforcing steel bar placement. This check shall be accomplished by using a template or by operating the slip-form machine over the entire length of the traffic or pedestrian barrier. All clearance and reinforcing steel bar placement deficiencies shall be corrected by the Contractor before slip-form concrete placement.

Mortar blocks (or other approved devices) shall be used to maintain the concrete coverage required by the Drawings. The mortar blocks shall:
1. Have a bearing surface measuring not greater than 2 inches in either dimension; and
2. Have a compressive strength equal to that of the concrete in which they are embedded.

In slabs, each mortar cube shall have either: (1) a grooved top that holds it in place, or (2) an embedded wire that protrudes and is tied to the reinforcing steel. If this wire is used around epoxy-coated bars, it shall be coated with plastic.

Acceptance of mortar blocks shall be based on testing a set of two specimens. Each pair of specimens shall represent 2,500 or fewer mortar blocks and shall be made of the same mortar as the blocks and cured under the same conditions. The Contractor may either:

1. Submit the blocks to the Engineer for pre-use testing, or
2. Submit Manufacturer’s Certificate of Compliance in keeping with Section 1-06.3.

In lieu of mortar blocks, the Contractor may use metal or plastic chair supports to hold uncoated bars. Any surface of a metal chair support that is not to be covered by at least 1/2-inch of concrete shall be either:

1. Hot-dip galvanized after fabrication in keeping with AASHTO M 232 Class D;
2. Coated with plastic firmly bonded to the metal. This plastic shall be at least 3/32-inch thick where it touches the form and shall not react chemically with the concrete when tested in the SPU Materials Laboratory. The plastic shall not shatter or crack at or above – 5°F and shall not deform enough to expose the metal at or below 200°F; or
3. Stainless steel that meet the requirements of ASTM A 493, Type 302. Stainless steel chair supports are not required to be galvanized or plastic coated.

In lieu of mortar blocks, epoxy-coated reinforcing bars may be supported by either:

1. Metal chair supports coated entirely with a dielectric material such as epoxy or plastic;
2. Other epoxy-coated reinforcing bars; or

Plastic chair supports shall be lightweight, non-porous, and chemically inert in concrete. Plastic chair supports shall have rounded seatings, shall not deform under load at normal temperatures, and shall not shatter or crack under impact loading in cold weather. Plastic chair supports shall be placed at spacings greater than 300 millimeters along the bar and shall have at least 25% of their gross plate area perforated to compensate for the difference in coefficient of thermal expansion between plastic and concrete. The shape and configuration of plastic supports shall permit complete concrete consolidation in and around the support.

In roadway and sidewalk slabs, the Contractor shall place reinforcing steel mats carefully to provide the required concrete cover. A “mat” is 2 layers of steel. Top and bottom mats shall be supported enough to hold both in their proper positions. If No. 4 bars make up the lower layer of steel in a mat, it shall be blocked at not more than 3-foot intervals (or 4-foot intervals for bars No. 5 and larger). Wire ties to girder stirrups shall not be considered as blocking. To provide a rigid mat, the Contractor shall add other supports and tie wires to the top mat as needed.

If a bar is indicated as interfering with a bridge drain, it shall be bent in the field to bypass the drain.

Clearances shall be at least:

1. 4 inches between: Main bars and the top of any concrete masonry exposed to the action of salt or alkaline water;
2. 2-1/2 inches between: Adjacent bars in a layer. Slab bars and the top of the roadway slab. Main bars and the surface of concrete deposited against earth (without intervening forms);
3. 2 inches between: Adjacent layers. Main bars and the surface of concrete (except in walls and slabs). Reinforcing bars and the faces of forms for exposed aggregate finish;
4. 1-1/2 inches between: Main bars and the surface of concrete in retaining walls. Slab bars and the top of the slab (except roadway slabs). Stirrups and ties and the surface of the concrete.
5. 1 inch between: Slab bars and the bottom of the slab. Curb or sidewalk bars and the surface of the concrete.

Reinforcing steel bars shall not vary more than the following tolerances from their position shown in the Drawings:

<table>
<thead>
<tr>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Members 10 inches or less in thickness</td>
<td>±1/4 in.</td>
</tr>
<tr>
<td>Members more than 10 inches in thickness</td>
<td>±3/8 in.</td>
</tr>
<tr>
<td>Except:</td>
<td></td>
</tr>
<tr>
<td>The distance between the nearest reinforcing steel bar surface and</td>
<td>+1/4 in.</td>
</tr>
<tr>
<td>the top surface of the roadway deck slab</td>
<td></td>
</tr>
<tr>
<td>Longitudinal spacing of bends and ends of bars</td>
<td>±1 in.</td>
</tr>
<tr>
<td>Length of bar laps</td>
<td>-1 1/2 in.</td>
</tr>
<tr>
<td>Embedded length</td>
<td></td>
</tr>
<tr>
<td>No. 3 through No. 11</td>
<td>-1 in.</td>
</tr>
<tr>
<td>No. 14 through No. 18</td>
<td>-2 in.</td>
</tr>
<tr>
<td>When reinforcing steel bars are to be placed at equal spacing within a</td>
<td></td>
</tr>
<tr>
<td>plane:</td>
<td></td>
</tr>
<tr>
<td>Stirrups and ties</td>
<td>±1 in.</td>
</tr>
<tr>
<td>All other reinforcement</td>
<td>±1 bar dia.</td>
</tr>
</tbody>
</table>

Before placing any concrete, the Contractor shall:

1. Clean all mortar from reinforcement; and
2. Obtain the Engineer’s permission to place concrete after the Engineer has inspected the placement of the reinforcing steel. (Any concrete placed without the Engineer’s permission will be rejected and shall be removed.)

6-02.3(24)E SPlicing

The Contractor shall supply steel reinforcement bars in the full lengths the Drawings require. Unless the Engineer approves in writing, the Contractor shall not change the number, type, or location of splices.

The Engineer may permit the Contractor to use thermal or mechanical splices in place of the method shown in the Drawings if they are of an approved design. Use of a new design may be granted if:

1. The Contractor provides technical data and proof from the manufacturer that the design shall perform satisfactorily, and
2. Sample splices and materials from the manufacturer pass the Engineer’s tests.

After a design has been approved, any changes in detail or material shall require new approval.

The Contractor shall:

1. Not lap-splice reinforcing bars Nos. 14 or 18;
2. Not permit any welded or mechanical splice to deviate in alignment more than 1/4 inch per 3-1/2 feet of bar;
3. Distribute splices evenly, grouping them together only at points of low tensile stress;
4. Ensure at least 2 inches clearance between any splice and the nearest bar or the surface of the concrete (or 1-1/2 inches for the length of the sleeve on mechanical splices);
5. Rigidly clamp or wire all splices in a way the Engineer approves;
6. Place lap-spliced bars in contact for the length of the splice and tie them together near each end;
7. Securely fasten the ends and edges of welded-wire-fabric reinforcement, overlapping them enough to maintain even strength.

6-02.3(24)F WELDING REINFORCING STEEL

Welding of steel reinforcing bars shall conform to the requirements of the Project Manual, the Drawings, and these Specifications.
When welding is required, steel reinforcing bars shall be supplied that are suitable for welding. Steel which is to be welded shall have a maximum carbon equivalent of 0.65 percent. The carbon equivalent shall be determined by the following formula:

$$CE = % C + \frac{% Mn}{6} + \frac{% Cu}{40} + \frac{% Ni}{20} + \frac{% Cr}{10} - \frac{% Mo}{50} - \frac{% V}{10}$$

In addition, carbon shall not exceed 0.45 percent nor manganese 1.30 percent.

Before any welding begins, the Contractor shall obtain the Engineer’s approval of a written welding procedure for each type of welded splice to be used, including the procedure specifications and joint details. The procedure specifications shall specify: material specification; manual or machine; position of weld; filler metal specification and classification; shielding gas; single or multiple pass; single or multiple arc; either shielded metal arc, flux cored arc, or gas metal arc welding process; preheat and interpass temperature; welding current; polarity; and root treatment. The welding procedure shall specify welding sequence, pass number, electrode size, welding current amperes and voltage for each joint detail. All the aforementioned information shall be contained on a form that specifies the procedure number, revision number, and the Contractor. The form shall be signed and dated.

Electrodes for manual shielded metal arc welding (SMAW) of Grade 60 steel reinforcing bars shall conform to the requirements of AWS A5.5 of the low hydrogen E90 series.

Solid and composite electrodes for gas metal arc welding (GMAW) and flux-cored arc welding (FCAW) of Grade 60 steel reinforcing bar shall conform to the requirements of AWS A5.28, ER90S and AWS A5.29, E90T respectively. The Contractor shall demonstrate that each combination of electrode and shielding proposed for use produces the following mechanical properties:

<table>
<thead>
<tr>
<th>FCAW Grade E90T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>90,000 psi</td>
</tr>
<tr>
<td>Yield Strength</td>
<td>78,000 psi</td>
</tr>
<tr>
<td>Elongation in 2 inches</td>
<td>17%</td>
</tr>
</tbody>
</table>

Compliance may be verified from manufacturer’s certified test reports, or from actual testing of weld specimens.

All welding shall be protected from air currents, drafts, and precipitation to prevent loss of heat or loss of arc shielding. Short circuiting transfer with gas metal arc welding will not be allowed. Slugging of welds will not be allowed. No field welding of reinforcing bars will be permitted when the ambient temperature is below 32°F.

The minimum preheat and interpass temperature for welding Grade 60 reinforcing bars shall be 400°F. Preheating shall be applied to the reinforcing bars and other splice members within 6 inches of the weld, unless limited by the available lengths of the bars or splice member.

Generally, postheating of welded splices is only required for direct butt welded splices of Grade 60 bars size No. 9 or larger and shall be done immediately after welding before the splice has cooled to 700°F. Postheating shall not be less than 800°F nor more than 1,000°F and held at this temperature for not less than 10 minutes before allowing the splice to cool naturally to ambient temperature.

Weld joint and welder qualifications shall be made by the following procedures. The joint qualification and welder qualification shall be according to the following tests.

Under supervision of the Engineer’s Materials and Fabrication Inspector, the welder shall weld three test joints of the largest size reinforcing bar to be weld spliced. Two of the test welds shall be test loaded to no less than 125 percent of the minimum specified yield strength of the bar. The remaining test weld shall be mechanically cut perpendicular to the direction of welding and macroetched. Indirect butt splices shall be cut mechanically at two locations to provide a transverse cross section of each of the bars spliced in the test assembly. The sections shall show the full cross-section of the weldment, the root of the weld, and any reinforcement. The etched cross-section shall have complete penetration and complete fusion with the base metal and between successive passes in the weld. Groove welds of direct butt splices and flare-groove welds shall not have reinforcement exceeding 1/8-inch in height measured from the main body of the bar and shall have a gradual transition to the base metal surface. No cracks will be allowed in either the weld metal or heat-affected zone. All craters shall be filled to the full cross-section of the weld. Weld metal shall be free from overlap. Undercutting deeper than 1/32-inch will not be allowed except at points where welds intersect the raised pattern of deformations where undercutting less than 1/16-inch deep will be acceptable. The sum of diameters of piping...
Porosity in groove welds shall not exceed 1/8-inch in any linear inch of weld or exceed 9/16 inch in any 6 inch length of weld. Corrections to welds with shielded metal arc, gas metal arc, or flux-cored arc welding processes shall be made in accordance with Engineer's approval.

A welder qualified in the vertical position shall then be qualified for the horizontal and flat positions. A welder qualified for the horizontal position shall then be qualified for the flat position but not the vertical position. A welder qualified in the flat position shall be qualified for the flat position only.

Welders qualified for direct butt splice groove welds are qualified for indirect butt splice groove welds and fillet welds. A welder qualified for indirect butt splice groove welded is not qualified for direct butt splice welds. The welder qualifications shall remain in effect indefinitely unless, (1) the welder is not engaged in a given process of welding for which he/she is qualified for a period exceeding six months, or (2) there is some specific reason to question a welder’s ability.

Weld joint geometry shall be as shown in the Drawings and these Specifications. Welding machines shall be DC current, reverse polarity, and in good working condition.

The Contractor is responsible for using a welding sequence that limits the alignment distortion of the bars due to the effects of welding. The maximum out-of-line permitted will be 1/4-inch from a 3.5-foot straight edge centered on the weld and in line with the bar.

The following procedure for welding steel reinforcing bars is recommended:

- Sheared bar ends shall be burned or sawed off a minimum of 1/2-inch to completely remove the ruptured portion of the steel shear area prior to welding butt splices.
- Surfaces to be welded shall be smooth, uniform, and free from fins, tears, cracks, and other defects. Surfaces to be welded and surfaces adjacent to a weld shall also be free from loose or thick scale, slag, rust, moisture, grease, paint, epoxy covering, or other foreign materials. All tack welds shall be within the area of the final weld. No other tack weld will be permitted. Double bevel groove welds require chipping, grinding, or gouging to sound metal at the root of the weld before welding the other side. Progression of vertical welding shall be upward. The ground wire from the welding machine shall be clamped to the bar being welded.

Should the Contractor elect to use a procedure which differs in any way from the procedure recommended, the Contractor shall submit the changes, in writing, to the Engineer for approval. Approved weld procedures shall be strictly followed.

6-02.3(24)G MECHANICAL SPLICES

The Contractor shall form mechanical splices with an Engineer-approved system using sleeve filler metal, threaded coupling, or another method that complies with this section.

If necessary to maintain required clearances after the splices are in place, the Contractor shall adjust, relocate, or add stirrups, ties, and bars.

Before splicing, the Contractor shall provide the Engineer with the following information for each shipment of splice material:

1. The type or series identification (and heat treatment lot number for threaded-sleeve splices);
2. The grade and size of bars to be spliced;
3. A manufacturer’s catalog with complete data on material and procedures;
4. A written statement from the manufacturer that the material is identical to that used earlier by the Engineer in testing and approving the system design; and
5. A written statement from the Contractor that the system and materials shall be used according to the manufacturer’s instructions and all requirements of this section.

All splices shall meet these criteria:

1. Tension splices shall develop at least 130 percent of the yield tensile strength specified for the unspliced bar. The ultimate tensile strength of the sleeve shall exceed that of the other parts of the completed splice.
2. AASHTO M 31 bars within a splice sleeve shall not slip more than 0.03 inch for Grade 40 bars, nor more than 0.045 inch for Grade 60 bars. This slippage shall be measured between gage points clear of the splice sleeve. Measurements shall be taken at an initial load of 3,000 psi and again after loading to 90 percent of the minimum specified yield strength for the unspliced bar and then relaxed to 3,000 psi; and

3. Maximum allowable bar size:
 a. Mechanical butt splice No. 14 bar
 b. Mechanical lap splice No. 6 bar

The Engineer will visually inspect the splices and accept all that appear to conform with the test samples. For sleeve-filler splices, the Engineer will allow voids within the limits on file in the design approval. If the Engineer considers any splice defective, it shall be removed and replaced.

In preparing sleeve-filler metal splices, the Contractor shall:
1. Clean the bar surfaces by: (1) oxyacetylene torch followed by power wire brushing, or (2) abrasive blasting;
2. Remove all slag, mill scale, rust, and other foreign matter from all surfaces within and 2 inches beyond the sleeve;
3. Grind down any projection on the bar that would prevent placing the sleeve;
4. Prepare the ends of the bars as the splice manufacturer recommends and as the approved procedure requires; and
5. Preheat, just before adding the filler, the entire sleeve and bar ends to 300°F, ±50°F. (If a gas torch is used, the flame shall not be directed into the sleeve.)

When a metallic, sleeve-filler splice is used (or any other system requiring special equipment), both the system and the operator shall qualify in the following way under the supervision of the Engineer. The operator shall prepare 6 test splices (3 vertical, 3 horizontal) using bars having the same AASHTO Designation and size (maximum) as those to be used in the work. Each test sample shall be 42 inches long, made up of two 21-inch bars joined end-to-end by the splice. The bar alignment shall not deviate more than 1/8 inch from a straight line over the whole length of the sample. All 6 samples must meet the tensile strength and slip criteria specified in this Section.

The Contractor shall provide labor, materials, and equipment for making these test samples at no expense to the Owner. The Owner will test the samples at no cost to the Contractor.

6-02.3(24)H JOB CONTROL TESTS

As the work progresses, the Engineer may require the Contractor to provide a sample splice (thermal or mechanical) to be used in a job control test. The operator shall create this sample on the job site with the Engineer present using bars of the same size as those being spliced in the work. The sample shall comply with all requirements of these Specifications, and is in addition to all other sample splices required for qualification. The Engineer will require no more than two satisfactory samples on any Project with fewer than 200 splices and no more than one satisfactory sample per 100 splices on any Project with more than 200 splices.

6-02.3(24)I EPOXY-COATED STEEL REINFORCING BAR

This work is furnishing, fabricating, coating, and placing epoxy-coated steel reinforcing bars as shown in the Contract. Coating material shall be applied electrostatically, by spraying, or by the fluidized-bed method. All epoxy-coated bars shall comply with the requirements of Section 9-07. Fabrication may occur before or after coating.

The Contractor shall protect epoxy-coated bars from damage using padded or nonmetallic slings and straps free from dirt or grit. To prevent abrasion from bending or sagging, the Contractor shall lift bundled bars with a strong-back, multiple supports, or a platform bridge. Bundled bars shall not be dropped or dragged. During shop or field storage, bars shall rest on wooden or padded cribbing. The Contractor may substitute other methods for protecting the bars if the Engineer approves. If the Engineer determines the coated bars have been badly damaged, they will be rejected.
Metal chairs and supports shall be coated with epoxy (or another inert coating if the Engineer approves). The Contractor may use other support devices with the Engineer’s approval. Plastic coated tie wires (approved by the Engineer) shall be used to protect the coated bars from being damaged during placement.

The bars shall be placed as the Drawings require and held firmly in place during placing and setting of the concrete. All epoxy-coated bars in the top mat of the roadway slab shall be tied at all intersections. Other epoxy-coated bars shall also be tied at all intersections except when spacing is less than 1 foot in each direction, they shall be tied at alternate intersections.

In the interval between installing coated bars and concreting the deck, the Contractor shall protect the coating from damage that might result from other construction work.

The Engineer will inspect the coated bars after they are placed and again before the deck concrete is placed. The Contractor shall patch any areas that show significant damage (as defined below).

Significant damage means any opening in the coating that exposes the steel in an area that exceeds:

1. 0.05 square inch (approximately 1/4 inch square or 1/4 inch in diameter or the equivalent);
2. 0.012 square inch (approximately 1/8 inch square or 1/8 inch in diameter) when the opening is within 1/4 inch of another opening of equal or larger size;
3. 6 inches long, any width; or
4. 0.50 square inch aggregate area in any 1-foot length of bar.

The Contractor shall patch significantly damaged areas with Engineer-approved patching material obtained from the epoxy resin manufacturer. This material shall be compatible with the coating and inert in concrete. Areas to be patched shall be clean and free of surface contaminants. Patching shall be done before oxidation occurs and according to the resin manufacturer’s instructions.

6-02.3(25) PRESTRESSED CONCRETE GIRDERS

6-02.3(25)A GENERAL

The manufacturing plant of prestressed concrete girders shall be certified by the Prestress Concrete Institute’s Plant Certification Program for the type of prestress member to be produced. Proof of plant certification by PCI shall be submitted along with the Shop Drawings by the Contractor to the Engineer.

Prior to the start of production of girders, the Contractor shall advise the Engineer of the production schedule. The Contractor shall give the Inspector safe and free access to the work. If the Inspector observes any nonspecification work or unacceptable quality control practices, the Inspector will advise the plant manager. If the corrective action is not acceptable to the Engineer, the girder(s) will be rejected.

The Owner intends to perform Quality Assurance Inspection. By its inspection, the Owner intends only to facilitate the work and verify the quality of that work. This inspection shall not relieve the Contractor of any responsibility for identifying and replacing defective material and workmanship.

The various types of girders are:

Bulb Tee Girder - Refers to a bulb tee girder or a deck bulb tee girder.

Deck Bulb Tee Girder - Refers to a bulb tee girder with a top flange designed to support traffic loads (i.e., without a cast-in-place deck). This type of bulb tee girder is mechanically connected to adjacent girders at the Project Site.

6-02.3(25)B SHOP DRAWINGS

The Drawings show design conditions and details for prestressed girders. Deviations will not be permitted, except as specifically allowed by these Specifications and by manufacturing processes approved by the annual plant approval process.

Shop Drawings shall show the size and location of all cast-in holes for installation of deck formwork hangers and/or temporary bracing. Holes for formwork hangers shall match approved deck formwork Shop
Drawings designed in accordance with Section 6-02.3(16). There shall be no field-drilled holes in prestressed girders.

The Contractor shall have the option to furnish Series W74G prestressed concrete girders with minor dimensional differences from those shown in the Drawings. The 2-5/8-inch top flange taper may be reduced to 1-5/8-inch and the bottom flange width may be increased to 2-feet 2-inches. Other dimensions of the girder shall be adjusted as necessary to accommodate the above mentioned changes. Reinforcing steel shall be adjusted as necessary. The overall height and top flange width shall remain unchanged.

If the Contractor elects to provide a Series W74G girder with an increased web thickness, Shop Drawings along with supporting design calculations shall be submitted to the Engineer for approval prior to girder fabrication. The girder shall be designed for at least the same load carrying capacity as the girder shown in the Drawings. The load carrying capacity of the mild steel reinforcement shall be the same as that shown in the Drawings.

The Contractor may alter bulb tee girder dimensions as specified from that shown in the Drawings if:

1. The girder has the same or higher load carrying capacity (using current AASHTO Design Specification);
2. The Engineer approves, before the girder is made, complete design calculations for the girder;
3. The Contractor adjusts Substructures to yield the same top of roadway elevation shown in the Drawings;
4. The depth of the girder is not increased by more than 2 inches and is not decreased;
5. The web thickness is not increased by more than 1 inch and is not decreased;
6. The top flange minimum thickness of the girder is not increased by more than 2 inches, providing the top flange taper section is decreased a corresponding amount;
7. The top flange taper depth is not increased by more than 1 inch; and
8. The bottom flange width is not increased by more than 2 inches.

The Contractor shall provide four copies of the Shop Drawings to the Engineer for approval. Only steel side forms will be approved, except plywood forms are acceptable on the end bulkheads. Approval of Shop Drawings means only that the Engineer accepts the methods and materials. Approval does not imply correct dimensions.

6-02.3(25)C CASTING

Before casting girders, the Contractor shall have possession of an approved set of Shop Drawings.

All concrete mixes to be used shall be pre-approved by the Owner and must meet the requirements of Section 9-19.1. The temperature of the concrete when placed shall be between 50°F. and 90°F. Slump shall not exceed 4 inches for normal concrete nor 7 inches with the use of a high range water reducing admixture. The high range water reducer shall meet the requirements of Section 9-23.6 and Section 9-23.7. When the slump exceeds the maximum slump specified, the acceptability of the concrete shall be subject to the provisions of Section 6-02.3(5).

Air-entrainment is not required in the concrete placed into prestressed precast concrete girders unless otherwise indicated in the Contract. The Contractor shall use air-entrained concrete in the entire roadway deck flange of deck bulb-tee girders. Maximum and minimum air content shall be as specified in Section 6-02.3(3)A.

No welds will be permitted on steel within prestressed girders. Once the prestressing steel has been installed, no welds or grounds for welders shall be made on the forms or the steel in the girder, except as specified.

The Contractor may form circular block-outs in the girder top flanges to receive falsework hanger rods. These block-outs shall:

1. Not exceed 1 inch in diameter;
2. Be spaced no more than 72 inches apart longitudinally on the girder;
3. Be located 3 inches or more from the outside edge of the top flange on Series W42G, W50G and W58G girders and 6 inches or more for Series W74G girders; and
4. Be located within 1 foot 3 inches of the web centerline for bulb tee girder.
The Contractor may form circular block-outs in the girder webs to support brackets for roadway slab falsework. These block-outs shall:

1. Not exceed 1 inch in diameter;
2. Be spaced no more than 72 inches apart longitudinally on the girder; and
3. Be positioned so as to clear the girder reinforcing and prestressing steel.

6-02.3(25)D PRESTRESSING

Each stressing system shall have a pressure gauge or load cell that measures jacking force. Any gauge shall display pressure accurately and readably with a dial at least 6 inches in diameter or with a digital display. Each jack and its gauge shall be calibrated as a unit and shall be accompanied by a certified calibration curve allowing tension stress to be determined. The Contractor shall provide one copy of this chart to the Engineer. The cylinder extension during calibration shall be in the approximate position it occupies at final jacking force.

Jacks and gauges shall be recalibrated and recertified:

1. Annually;
2. After any repair or adjustment; and
3. Anytime there are indications that the jack calibration is in error.

The Engineer may use pressure cells to check jacks, gauges, and calibration charts before and during tensioning.

All load cells shall be calibrated and shall have an indicator that shows prestressing force in the strand. The range of this cell shall be broad enough that the lowest 10 percent of the manufacturer's rated capacity shall not be used to measure jacking force.

From manufacture to encasement in concrete, all reinforcement used in girders shall be protected against dirt, oil, grease, damage, rust, and all corrosives. If strands in the stressing bed are exposed before they are encased in concrete, the Contractor shall protect them from contamination or corrosion. The protection method requires the Engineer's approval. If steel has been damaged or if it shows rust or corrosion, it will be rejected.

6-02.3(25)E CURING

During curing, the Contractor shall keep the girder in a saturated curing atmosphere until the girder concrete has reached the required release strength. If the Engineer approves, the Contractor may shorten curing time by heating the outside of impervious forms. Heat may be radiant, convection, conducted steam, or hot air. With steam, the arrangement shall envelop the entire surface with saturated steam. The Engineer will not permit hot air curing until after approving the Contractor’s proposed method to envelop and maintain the girder in a saturated atmosphere. Saturated atmosphere means a relative humidity of at least 90 percent. The Contractor shall never allow dry heat to touch the girder surface at any point.

Under heat curing methods, the Contractor shall:

1. Keep all unformed girder surfaces in a saturated atmosphere throughout the curing time;
2. Embed a thermocouple (linked with a thermometer accurate to ± 5°F) 6 to 8 inches from the top or bottom of the girder on its centerline and near its midpoint;
3. Monitor with a recording sensor (accurate to ± 5°F) arranged and calibrated to continuously record, date, and identify concrete temperature throughout the heating cycle;
4. Make this temperature record available for the Engineer to inspect;
5. Heat concrete to no more than 100°F during the first two hours after pouring the concrete, and then increase no more than 25°F per hour to a maximum of 175°F;
6. Cool concrete, after curing is complete, no more than 25°F per hour, to 100°F; and
7. Keep the temperature of the concrete above 60°F until the girder reaches release strength.

The Contractor may strip side forms once the concrete has reached a minimum compressive strength of 3,000 psi. All damage from stripping is the Contractor’s responsibility.
6-02.3(25)F CONTRACTORS CONTROL STRENGTH

Concrete strength shall be measured on test cylinders cast from the same concrete as that in the girder. These cylinders shall be cured under time-temperature relationships and conditions that simulate those of the girder. If the forms are heated by steam or hot air, test cylinders shall remain in the coolest zone throughout curing. If forms are heated another way, the Contractor shall provide a record of the curing time-temperature relationship for the cylinders for each girder to the Engineer. When two or more girders are cast in a continuous line and in a continuous pour, a single set of test cylinders may represent all girders provided the Contractor demonstrates uniformity of casting and curing to the satisfaction of the Engineer.

The Contractor shall mold, cure, and test enough of these cylinders to satisfy specification requirements for measuring concrete strength. The Contractor may use 4 inch by 8 inch or 6 inch by 12 inch cylinders. If heat is used to shorten curing time, the Contractor shall let cylinders cool for at least 1/2 hour before testing.

Test cylinders may be cured in a moist room or water tank in accordance with AASHTO T-23 after the girder concrete has obtained the required release strength. If, however, the Contractor intends to ship the girder prior to the standard 28 day strength test, the design strength for shipping shall be determined from cylinders placed with the girder and cured under the same conditions as the girder. These cylinders may be placed in a noninsulated, moisture-proof envelope.

To measure concrete strength in the girder, the Contractor shall randomly select two test cylinders and average their compressive strengths. The compressive strength in either cylinder shall not fall more than 5 percent below the specified strength. If these two cylinders do not pass the test, two other cylinders shall be selected and tested.

If too few cylinders were molded to carry out all required tests on the girder, the Contractor shall remove and test cores from the girder under the surveillance of the Engineer. If the Contractor casts cylinders to represent more than one girder, all girders in that line shall be cored and tested. A test shall consist of three cores measuring 4 inches in diameter by the thickness of the web and shall be removed from just below the top flange; one at the midpoint of the girder’s length and the other two approximately 3 feet to the left and approximately 3 feet to the right. The cores shall be taken in accordance with AASHTO T 24 and shall be tested in accordance with AASHTO T 22. The Engineer may accept the girder if the average compressive strength of three cores is at least 85 percent of the specified compressive strength with no one core less than 75 percent of specified compressive strength.

If the girder is cored to determine the release strength, the required patching and curing of the patch shall be done prior to shipment. If there are more than three holes or if they are not in a neutral location, the prestress steel shall not be released until the holes are patched and the patch material has attained a minimum compressive strength equal to the required release compressive strength or 4000 psi, whichever is less.

The Contractor shall coat cored holes with a Type II, Grade 2 epoxy and patch the holes using the same type concrete as that in the girder, or a mix approved during the annual plant review and approval. The girder shall not be shipped until tests show the patch material has attained a minimum compressive strength of 4000 psi.

6-02.3(25)G PRESTRESS RELEASE

Side and flange forms that restrain deflection shall be removed before release of the prestressing reinforcement.

All harped and straight strands shall be released in a way that produces the least possible tension in the concrete. This release shall not occur until tests show each girder has reached the minimum compressive strength required by the Drawings.

6-02.3(25)H PROTECTION OF EXPOSED REINFORCEMENT

From manufacture to encasement in concrete, all reinforcement used in girders shall be protected against dirt, grease, damage, rust, and all corrosives. If the steel has been damaged, it will be rejected. The Engineer may reject the steel if it shows rust or corrosion.

When a girder is removed from its casting bed, all bars and strands projecting from the girder shall be cleaned and painted with a minimum dry film thickness of 1 mil of paint Formula No. A-9-73. During shipping and handling, projecting reinforcement shall be protected from bending or breaking. Just before placing concrete...
around the painted projecting bars or strands, the Contractor shall remove from them all dirt, oil, and other foreign matter.

6-02.3(25)I FINISHING

The Contractor shall apply a Class 2 finish, as defined in Section 6-02.3(14), to:

1. The vertical exterior surfaces of the outside girders;
2. The bottoms, sides, and tops of the lower flanges on all girders; and
3. The bottom of the outside roadway flange of each outside bulb tee girder section.

All other girder surfaces shall receive a Class 3 finish.

The interface on I-girders and other girders that contact the cast-in-place deck shall have a finish of dense, screeded concrete without a smooth sheen or laitance on the surface. After vibrating and screeding, and just before the concrete reaches initial set, the Contractor shall texture the interface. This texture shall be applied with a steel brooming tool that etches the surface transversely leaving grooves 1/8-inch to 1/4-inch wide, between 1/8-inch and 1/4-inch deep, and spaced 1/4-inch to 1/2-inch apart.

On the deck bulb tee girder section, the Contractor shall test the roadway deck surface portion for flatness. This test shall occur after floating but while the concrete remains plastic. Testing shall be done with a 10-foot-straightedge parallel to the girder centerline and with a flange width straightedge at right angles to the girder centerline. The Contractor shall fill depressions, cut down high spots, and refinish to correct any deviation of more than 1/4 inch within the straightedge length. This section of the roadway surface shall be finished to meet the requirements for finishing roadway slabs, as defined in Section 6-02.3(10).

The Contractor may repair rock pockets and other defects in the girder provided the repair is covered in the annual plant approval package. All other repairs and repair procedures shall be documented and approved by the Engineer prior to acceptance of the girder.

6-02.3(25)J TOLERANCES

The girders shall be fabricated as shown in the Drawings and shall meet the dimensional tolerances listed below. Actual acceptance or rejection will depend on the Engineer’s judgment on whether a defect outside these tolerances affects the structure’s strength or appearance:

1. Length (overall): ±1/4 inch per 25 feet of beam length, up to a maximum of ±1 inch.
5. Flange Depth: ± 1/4, - 1/8 inch.
9. Beam Ends (deviation from square or designated skew) Horizontal: ±1/2 inch from web centerline to flange edge Vertical: ±1/8 inch per foot of beam depth.
10. Bearing Area Deviation from Plane (in length or width of bearing): 1/16 inch.
11. Stirrup Reinforcing Spacing: ±1 inch.
14. Offset at Form Joints (deviation from a straight line extending 5 feet on each side of joint): ±1/4 inch.
15. Differential Camber Between Girders in a Span (measured in place at the job site)
 b. For bulb tee girders: Cambers shall be equalized by an approved method when the difference in cambers between adjacent girders or stages measured at mid-span exceeds 1/4 inch.
17. Position of Lifting Loops: ± 3 inches longitudinal, ±1 inch transverse.
18. Weld plates for bulb tee girders shall be placed ±1/2 inch longitudinal, and ±1/8 inch vertical.

6-02.3(25)K HORIZONTAL ALIGNMENT

The Contractor shall check and record the horizontal alignment of both top and bottom flanges of each girder upon removal from the casting bed. The Contractor shall also check and record the horizontal alignment within a two week period prior to shipment, but no less than three days prior to shipment. If the girder remains in storage for a period exceeding 120 days, the Contractor shall check and record the horizontal alignment at approximately 120 days. Each check shall be made by measuring the distance between each flange and a chord that extends the full length of the girder. The Contractor shall perform and record each check at a time when the alignment of the girder is not influenced by temporary differences in surface temperature. These records shall be available for the Engineer's inspection and shall be included in the Contractor's Prestressed Concrete Certificate of Compliance.

Immediately after the girder is removed from the casting bed, neither flange shall be offset more than 1/8 inch for each 10 feet of girder length. During storage and prior to shipping, the offset (with girder ends plumb and upright and with no external force) shall not exceed 1/4 inch per 10 feet of girder length. Any girder within this tolerance may be shipped, but must be corrected at the job site to the 1/8 inch maximum offset per 10 feet of girder length before concrete is placed into the diaphragms.

The Engineer may permit the use of external force to correct girder alignment at the plant or job site if the Contractor provides stress calculations and a proposed procedure. If external force is permitted, it shall not be released until after the roadway slab has been placed and cured ten days.

The Engineer may reject any girder that does not meet the requirements of this section.

6-02.3(25)L GIRDER DEFLECTION

The Contractor shall check and record the vertical deflection (camber) of the girder upon removal of the girder from the casting bed. If the girder remains in storage for a period exceeding 120 days, the Contractor shall check and record the vertical deflection (camber) within a two week period prior to shipment, but no less than three days prior to shipment. The Contractor shall perform and record each check at a time when the alignment of the girder is not influenced by temporary differences in surface temperature. These records shall be available for the Engineer's inspection, and in the case of girders older than 120 days, shall be transmitted to the Engineer as soon as practical for evaluation of the effect of long term storage on the “D” dimension. These records shall also be included in the Contractor's Prestressed Concrete Certificate of Compliance.

The “D” dimensions shown in the Drawings are computed girder deflections at midspan based on a time elapse of 120 days after release of the prestressing strands. A positive (+) “D” dimension indicates upward deflection.

The Contractor shall control the deflection of prestressed concrete girders that are to receive a cast-in-place slab by scheduling fabrication within 120 days of girder erection. If it is anticipated that the girders are to be older than 120 days at the time of erection, the Contractor shall submit calculations to the Engineer showing estimated girder deflection at midspan for the age anticipated for erection. This submittal shall also include the Contractor's proposal for accommodating any excess camber in the construction. The Contractor shall not proceed with girder fabrication until the submittal is approved by the Engineer. The actual girder deflection at the midspan may vary from the “D” dimension at the time of slab forming by a maximum of plus 1/2 inch for girder lengths up to 80 feet, and plus 1 inch for girder lengths over 80 feet.

All costs, including any additional Owner engineering expenses, in connection with accommodating excess girder deflection shall be at the Contractor's expense.

6-02.3(25)M HANDLING AND STORAGE

During handling and storage, each girder shall always be kept plumb and upright. It shall be lifted only by the lifting strands at either end. Series W42G, W50G and W58G girders can be picked up at a maximum angle of 30 degrees to the vertical (measured in the longitudinal plane of the girder). All other prestressed girders shall be picked up vertically. Girders shall be braced laterally to prevent tipping or buckling as specified in the Drawings.

Before moving a long girder, the Contractor shall check it for any tendency to buckle. Each girder that may buckle shall be braced on the sides to prevent buckling. This bracing shall be attached securely to the top
flange of the girder. The lateral bracing shall be in place during all lifting or handling necessary for transportation from the manufacturing plant to the job site and erection of the girder. The Contractor is cautioned that for some delivery routes more conservative guidelines for lateral bracing may be required. Before removing the bracing to cast diaphragms, the Contractor shall fasten all girders in place by other means.

If the Contractor wishes to deviate from these handling and bracing requirements, the vertical pickup, or the pickup location, the proposed method shall be analyzed by the Contractor’s engineer and submitted with the supporting calculations to the Engineer for approval. The Contractor's analysis shall conform to Articles 5.2 and 5.3 of the P.C.I. Design Handbook, Precast and Prestressed Concrete, Third Edition, or other approved methods. The Contractor's calculations shall verify that the concrete stresses in the prestressed girder do not exceed those listed in Section 6-02.3(25)N.

If girders are to be stored, the Contractor shall place them on a stable foundation that keeps them in a vertical position. Stored girders shall be supported at the bearing recesses or if there are no recesses, approximately 18 inches from the girder ends. For long-term storage of girders with initial horizontal curvature, the Contractor may wedge one side of the bottom flange, tilting the girders to control curvature. If the Contractor elects to set girders out of plumb during storage, the Contractor shall have the proposed method analyzed by the Contractor’s engineer to ensure against damaging the girder.

6-02.3(25)N SHIPPING

After the girder has reached its 28 day design strength, and the fabricator believes it to comply with the specification, the girder and a completed Manufacturer’s Certificate of Compliance, signed by a Prestressed Concrete Institute Certified Technician or a professional engineer registered as a structural engineer in the State of Washington under Title 18 RCW, acceptable to the Engineer, shall be presented to the Engineer for inspection. If the Engineer finds the certification and the girder to be acceptable, the Engineer will stamp the girder “Approved for Shipment”.

No prestressed girders shall be shipped that are not stamped “Approved for Shipment.”

No bulb tee girder shall be shipped for at least seven days after concrete placement. No other girder shall be shipped for at least ten days after concrete placement.

Girder support during shipping shall meet these requirements unless otherwise shown in the Drawings:

<table>
<thead>
<tr>
<th>Type of Girder</th>
<th>Centerline Support Within This Distance From Either End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series W42G and W50G, and all bulb tee girders</td>
<td>3 feet</td>
</tr>
<tr>
<td>Series W58G</td>
<td>4 feet</td>
</tr>
<tr>
<td>Series W74G</td>
<td>5 feet</td>
</tr>
</tbody>
</table>

If the Contractor wishes to use other support locations, they shall be proposed to the Engineer for review and approval in accordance with Section 6-02.3(25)M. The Contractor’s proposal must include calculations showing concrete stresses in the girders shall not exceed those listed below:

Criteria for Checking Girder Stresses at the Time of Lifting or Transporting and Erecting

Stresses at both support and harping points must be satisfied based on these criteria:

1. Allowable compression stress, $f_c = 0.60 f_{cm}$.
 a. f_{cm} = compressive strength at time of lifting or transporting verified by test but shall not exceed design compressive strength (f_c) at 28 days in psi + 1,000 psi.

2. Allowable tension stress, f_t.
 a. With no bonded reinforcement = 3 times the square root of f_{cm}.
 b. With bonded reinforcement to resist total tension force in the concrete computed on the basis of an uncracked section = 7.5 times the square root of f_{cm}. The allowable tensile stress in reinforcement is 30 ksi (ASTM A 615, Gr. 60).

3. Prestress losses
 a. 1 day to 1 month = 20,000 psi
 b. 1 month to 1 year = 35,000 psi
 c. 1 year or more = 45,000 psi (max.)

4. Impact on dead load
6-02.3(25)O PRESTRESS CONCRETE GIRDER ERECTION

Before beginning to erect any prestressed concrete girders, the Contractor shall submit to the Engineer for review, and shall have received approval for the erection plan and procedure describing the methods the Contractor intends to use. The erection plan and procedure shall provide complete details of the erection process including but not limited to:

1. Temporary falsework support, bracing, guys, deadmen, and attachments to other structure components or objects;
2. Procedure and sequence of operation;
3. Girder stresses during progressive stages of erection;
4. Girder weights, lift points, and lifting devices, spreaders, angle of lifting strands in accordance with Section 6-02.3(25)M, etc.;
5. Crane(s) make and model, weight, geometry, lift capacity, outrigger size and reactions;
6. Girder launcher or trolley details and capacity (if intended for use); and
7. Locations of cranes, barges, trucks delivering girders, and the location of cranes and outriggers relative to other structures, including retaining walls and wing walls.

The erection plan shall include Shop Drawings, notes, catalog cuts, and calculations clearly showing the above listed details, assumptions, and dimensions. Material properties and specifications, structural analysis, and any other data used shall also be included. The plan shall be prepared by (or under the direct supervision of) a professional engineer licensed under Title 18 RCW, State of Washington, in the branch of Civil or Structural, and shall carry the engineer's seal and signature, in accordance with Section 1-05.3(2)F.

The Contractor shall submit the erection Shop Drawings, calculations, and procedure directly to the Engineer, in accordance with Section 6-02.3(16). After the plan is approved and returned to the Contractor, all the changes that the Contractor proposes shall be submitted to the Engineer for review and approval.

When prestressed girders arrive on the Project Site, the Engineer will confirm that they are stamped “Approved for Shipment” and that they have not been damaged in shipment before accepting them.

The concrete in piers and crossbeams shall reach at least 80 percent of design strength before girders are placed on them. The Contractor shall hoist girders only by the lifting strands at the ends, always keeping the girders plumb and upright.

Instead of the oak block wedges shown in the Drawings, the Contractor may use Douglas fir blocks if the grain is vertical.

Before the grout pads are placed, the concrete beneath them shall be thoroughly cleaned, roughened, and wetted with water to ensure proper bonding. Pads shall be kept wet continuously until they reach a compressive strength of at least 2,000 psi. Grout pads shall reach this strength before girders are set on them. Grout compressive strength will be determined by fabricating cubes in accordance with WSDOT Test Method 813 and testing in accordance with AASHTO T-106.

The Contractor shall check the horizontal alignment of both the top and bottom flanges of each girder, as described in Section 6-02.3(25)K, before placing concrete in the bridge diaphragms.

The Contractor shall fill all block-out holes and patch any damaged area, caused by the Contractor's operation, with an approved mix, to the satisfaction of the Engineer.

6-02.3(25)P DECK BULB TEE GIRDER FLANGE CONNECTION

The Contractor shall submit a method of equalizing deck bulb tee girder deflections to the Engineer for approval. This submittal shall be prepared by or under the direction of a professional engineer licensed under Title 18 RCW, State of Washington, and shall carry the engineer's signature and seal in accordance with Section 1-05.3(2)F. This submittal shall be made a minimum of 60 days prior to field erection of the deck bulb tee girder. Deflection equalizing methods approved for previous Owner contracts will be acceptable providing the bridge configuration is similar and the previous method was satisfactory. A listing of the previous Owner contract numbers for which the method was used shall be included with the submittal.
On deck bulb tee girders, girder camber shall be equalized utilizing the approved method before girders are weld-tied and before keyways are filled. Keyways between tee girders shall be filled flush with the surrounding surfaces with non-shrink grout. This non-shrink grout shall have a compressive strength of 4,000 psi before the equalizing equipment is removed. Compressive strength shall be determined by fabricating cubes in accordance with WSDOT Test Method 813 and testing in accordance with AASHTO T-106.

Welding grounds shall be attached directly to the steel plates being welded when welding the weld-ties on bulb tee girders.

No construction equipment shall be placed on the structure, other than equalizing equipment, until the girders have been weld-tied and the keyway grout has attained a compressive strength of 4,000 psi.

6-02.3(26) CAST-IN-PLACE PRESTRESSED CONCRETE

6-02.3(26)A GENERAL

Cast-in-place prestressed concrete shall be Class AX mix (unless the Drawings show otherwise). It shall be air-entrained, but shall not contain air-entraining cement.

The Contractor shall construct supporting falsework in a way that leaves the Superstructure free to contract and lift off the falsework during post-tensioning. Forms that remain inside box girders to support the roadway slab shall, by design, resist girder contraction as little as possible.

Before tensioning, the Contractor shall remove all side forms from girders. From this point until 48 hours after grouting the tendons, the Contractor shall keep all construction and other live loads off the Superstructure and shall keep the falsework supporting the Superstructure in place.

Once the prestressing steel is installed, no welds or welding grounds shall be attached to metal forms, structural steel, or reinforcing bars of the structural member.

The Contractor shall not stress the strands until all concrete has reached a compressive strength of at least 4,000 psi (or the strength shown in the Drawings). This strength shall be measured on concrete test cylinders made of the same concrete cured under the same conditions as the cast-in-place unit.

All post-tensioning shall be completed before sidewalks and barriers are placed.

6-02.3(26)B SHOP DRAWINGS

Before casting the structural elements, the Contractor shall submit for approval, in accordance with Section 6-02.3(16)A, complete details of the method, materials, and equipment he proposes to use in the prestressing operations.

In addition, the Shop Drawings shall show:

1. The method and sequence of stressing;
2. Technical data on tendons and steel reinforcement, anchoring devices, anchoring stresses, types of tendon conduit, and all other data on prestressing operations;
3. Separate stress and elongation calculations shall be submitted for each tendon if the difference in tendon elongations exceeds 2 percent;
4. That tendons in the bridge shall be arranged to locate their center of gravity as the Drawings require;
5. Details of additional or modified reinforcing steel required by the stressing system; and
6. Procedures and lift-off forces at both ends of the tendon for performing a force verification lift-off in the event of discrepancies between measured and calculated elongations.

Approval of these Shop Drawings will mean only that the Engineer considers them to show a reasonable approach in enough detail. Approval will not indicate a check on dimensions.

Couplings or splices will not be permitted in prestressing strands. Couplings or splices in bar tendons are subject to the Engineer’s approval.

Friction losses used to calculate forces of the post-tensioning steel shall be based on the assumed values used for the design. The assumed anchor set, friction coefficient "µ" and friction wobble coefficient "k" values for design are shown in the Drawings. The post-tensioning Supplier may revise the assumed anchor set value provided all of the stress and force limits listed in Section 6-02.3(26)F are met.
The Contractor shall determine all points of interference between the mild steel reinforcement and the paths of the post-tensioning tendons. Details to resolve interferences shall be submitted with the Shop Drawings for approval. Where reinforcing bar placement conflicts with post-tensioning tendon placement, the tendon profile shown in the Drawings shall be maintained. Mild steel reinforcement for post-tensioning anchorage zones shall not be fabricated until after the post-tensioning Shop Drawings have been approved by the Engineer.

The Contractor may deviate from the approved Shop Drawings only after obtaining the Engineer’s written approval of a written request that describes the proposed changes. Approval of a change in method, material, or equipment shall not relieve the Contractor of any responsibility for completing the work successfully.

Before physical completion of the Project, the Contractor shall provide the Engineer with reproducible originals of the Shop Drawings (and any approved changes). These shall be clear, suitable for microfilming, and on permanent sheets of sizes specified in Section 1-05.3.

6-02.3(26)C Anchorages

Post-tensioning reinforcement shall be secured at each end by means of an approved anchorage device which shall be of such a nature that it does not kink, neck down, or otherwise damage the post-tensioning reinforcement. The anchorage assembly shall be grouted to the Engineer’s satisfaction.

The structure shall be reinforced with steel reinforcing bars in the vicinity of the anchorage device. This reinforcement is categorized into two zones. The first or local zone is the anchorage region that closely surrounds the specific anchorage device. The second or general zone is the portion of the anchorage region more remote from the anchorage device.

The steel reinforcing bars required locally for the concrete confinement immediately around the anchorage device (first or local zone) shall be calculated by the post-tensioning system Supplier and shall be shown in the Shop Drawings. The calculations shall be submitted with the Shop Drawings. The first or local zone steel reinforcing bars shall be furnished and installed by the Contractor, at no additional cost to the Owner, in addition to the structural reinforcement required by the Drawings. The steel reinforcing bars required in the second or general zone shall be as shown in the Drawings and are included in the appropriate Bid items.

The Contractor shall submit details, certified tests reports, and/or supporting calculations as specified below, which verify the structural adequacy of the anchorage devices for approval by the Engineer. This requirement does not apply where the anchorage devices have been previously approved by the Engineer for the same structure configuration. The Contractor shall also submit any necessary changes to the Contract Drawings. The test report shall specify all pertinent test data. Dead ended anchorages will not be permitted. Dead ended anchorages are defined as anchorages that cannot be accessed during the stressing operations.

The Contractor’s proposed anchorage devices shall meet the requirements listed in (1) or (2) below:

1. Bearing Type Anchorage:

 a. The computed average bearing stress on the concrete directly beneath bearing plates shall not exceed either of the following:

 (1) At service load (after all losses)
 \[f_{cp} = 0.6 \frac{f_c}{A_b} \left(\frac{A_{b_j}}{A_b} \right)^{1/2} \] but not greater than 1.25 \(f_c \).

 (2) At jacking load (before seating)
 \[f_{cp} = 0.8 \frac{f_{c_i}}{A_{b_j} - 0.2}^{1/2} \] but not greater than 1.25 \(f_{c_i} \) for longitudinal tendons anchored in the webs and not greater than 1.00 \(f_{c_i} \) for transverse tendons anchored in the deck slab, where:

 \[f_{cp} = \text{permissible compressive concrete stress}, \]
 \[f_c = \text{compressive strength of concrete}, \]
 \[f_{c_i} = \text{compressive strength of concrete at time of initial prestress}, \]
 \[A_{b_j} = \text{Maximum area of the portion of the concrete anchorage surface that is geometrically similar to and concentric with the area of the anchorage (excluding openings)}, \]
 \[A_b = \text{bearing area of the anchorage excluding openings}. \]

 b. For anchorages where A’b and Ab are equal, and in transverse post-tensioning of roadway slabs, the bearing stress shall not exceed 0.9\(f_c \) at jacking load (before seating) or 3000 psi at service load after all losses.
c. The computed bending stresses in the distribution plate induced by the pull of the prestressing steel shall not exceed 90 percent of the yield point of the material when 95 percent of the ultimate strength of the post-tensioning reinforcement is applied. The bending stresses in the distribution plate shall be computed in accordance with the procedure described in the article titled, “Simplified Bearing Plate Computations for Post-Tensioning Anchorages” published in the July-August 1975 edition of the PCI Journal, and these calculations shall be submitted with the Shop Drawings for approval.

d. Materials and workmanship shall conform to the applicable requirements of Sections 6-03 and 9-06.

2. Other Anchorage Assemblies:

Other anchorage assemblies shall be defined as any assembly that does not meet the requirements of item 1.a. above for bearing-type anchorages. The adequacy of other anchorage assemblies shall be demonstrated by tests representing actual job site conditions. The tests shall be certified and meet the following requirements:

a. The concrete test block shall have a cross-section equal to twice the minimum edge distance of center line of tendon to the face of concrete in the actual structure in one direction and equal to the minimum spacing of the anchorages plus 3 inches in the other direction. The length of the concrete test block shall be at least three times the largest cross-sectional dimension.

b. The reinforcement in the test block behind the anchorage for a distance equal to the largest of the two cross-sectional dimensions of the anchorage shall simulate the actual reinforcement used in the structure. For the remaining length of the test block, the reinforcement may be increased as required to prevent failure in that portion.

c. Concrete strength at the time of testing shall not exceed 85 percent of the minimum concrete strength at the time of post-tensioning as specified in the Drawings. The concrete strength shall be determined in accordance with procedures outlined in ASTM C1074, Estimating Concrete Strength by the Maturity Method.

d. The test shall be comprised of three anchorages separately tested or tested together in one test block.

e. Anchorages shall be capable of developing 95 percent of the ultimate strength of the post-tensioning reinforcement without measurable permanent distortion of the assembly and without concrete failure in the test block. Measurable permanent distortion is defined as a distortion across the face of the assembly of 0.01 inch or more using the original plane as a reference and is measured after the test loading is released. The test block shall be acceptable with regard to concrete failure if the following criteria are satisfied:

 (1) No concrete cracks with a load of 40 percent of the ultimate strength of the post-tensioning reinforcement.

 (2) Width of concrete cracks with a test load of 70 percent of the ultimate strength of the post-tensioning reinforcement does not exceed 0.005 inch.

 (3) After loading to 95 percent of the ultimate strength of the post-tensioning reinforcement and releasing the test load, the width of concrete cracks does not exceed 0.015 inch.

f. Materials and workmanship shall conform to the applicable requirements of Sections 6-03 and 9-06.

Before installing the anchorage device, the Contractor shall submit a Manufacturer’s Certificate of Compliance for the anchorage device in accordance with Section 1-06.3.

6-02.3(26)D METAL DUCTS

The Contractor shall encase each tendon in a galvanized, ferrous metal duct that is rigid and spiral. This duct shall maintain the required profile within a placement tolerance of ±1/4-inch for longitudinal tendons and ±1/8-inch for transverse slab tendons, during all phases of the work. The conduit shall be completely sealed to keep out all mortar.

Each conduit shall be located to place the tendon at the center of gravity the Drawings require. To keep friction losses to a minimum, the Contractor shall install duct to the exact lines and grades shown in the Drawings.
Once in place, the duct shall be tied firmly in position before they are covered with concrete. During concrete placement, the duct shall not be displaced or damaged.

The ends of the duct shall:
1. Permit free movement of anchorage devices, and
2. Remain covered after installation in the forms to keep out all water or debris.

The Contractor shall install vents at high points and drains at low points of the tendon profile (and at other places if the Drawings require). Vents and drains shall be 1/2-inch minimum diameter standard steel or polyethylene pipe. Vents shall point upward and remain closed until grouting begins. Drains shall point downward and remain open until grouting begins. Ends of steel vents and drains shall be removed 1 inch inside the concrete surface after grouting has been completed. Polyethylene vents and drains may be left flush to the surface unless otherwise directed by the Engineer. Duct vents are not required for transverse post-tensioning ducts in the roadway slab unless specified in the Drawings.

Immediately after any concrete placement, the Contractor shall force blasts of oil-free, compressed air through the duct to break up and remove any mortar inside before it hardens. Before deck concrete is placed, the Contractor shall satisfy the Engineer that ducts are unobstructed and contain nothing that could interfere with grouting or harm the tendons. If the tendons are in place, the Contractor shall show that they are free in the duct.

In temperatures below 32°F, ducts shall be kept free from water to avoid damage from freezing.

6-02.3(26)E PRESTRESSING REINFORCEMENT

All prestressing reinforcement shall comply with Section 9-07.10. They shall not be coupled or spliced. Tendon locations shown in the Drawings indicate final positions after stressing (unless the Drawings say otherwise). No tendon made of 7-wire strands shall contain more than 31 strands of 1/2-inch diameter, or more than 22 strands of 0.6-inch diameter.

From the time prestressing reinforcement is made until it is grouted or encased in concrete, the Contractor shall protect it from dirt, grease, rust, corrosives, and all physical damage. The Engineer will reject prestressing reinforcement that shows any sign of damage, rust, or corrosion. If the prestressing reinforcement is not to be stressed and grouted within 10 calendar days after it is placed in the conduits, the Contractor shall place an approved corrosion inhibitor in the conduits.

The feeding ends of the strands shall be equipped with a bullet nosing or similar apparatus to facilitate strand installation.

6-02.3(26)F TENSIONING

The Contractor shall not begin to tension the tendons until:
1. All concrete has reached a minimum compressive strength of 4,000 psi or the strength the Drawings require (demonstrated on test cylinders made of the same concrete and cured under the same conditions as that in the bridge); and
2. The Engineer is satisfied that all strands are free in the ducts.

Tendons shall be tensioned to the values shown in the Drawings (or approved Shop Drawings) with hydraulic jacks. When stressing from both ends of a tendon is specified, it need not be simultaneous unless the Drawings require. The jacking sequence shall follow the approved Shop Drawings.

Each jack shall have a pressure gauge that determines the load applied to the tendon. The gauge shall display pressure accurately and readably with a dial at least 6 inches in diameter or with a digital display. Each jack and its gauge shall be calibrated as a unit and shall be accompanied by a certified calibration chart. The Contractor shall provide one copy of this chart to the Engineer for use in monitoring. The cylinder extension during calibration shall be in approximately the position it is to occupy at final jacking force.

All jacks and gauges must be recalibrated and recertified: (1) at least every 180 days, and (2) after any repair or adjustment. The Engineer may use pressure cells to check jacks, gauges, and calibration charts before and during tensioning.

These stress limits apply to all tendons (unless the Drawings set other limits):
1. Maximum service load after all losses: 80 percent of the specified yield stress of the steel.
2. Maximum tensile strength during jacking: 79 percent of the specified minimum ultimate tensile strength of the steel.

3. Maximum initial stress at anchoring after seating: 70 percent of the specified minimum ultimate tensile strength of the steel.

Tendons shall be anchored at initial stresses that ultimately maintain service loads at least as great as the Drawings require.

As tensioning proceeds, the Engineer will be recording the applied load, tendon elongation, and anchorage seating values.

As stated in Section 6-02.3(26)A, the assumed design friction coefficient "μ" and wobble coefficient "k" shown on the Drawings shall be used to calculate the stressing elongation. These coefficients may be revised by the post-tensioning Supplier by the following method provided it is approved by the Engineer:

Early in the Project, the post-tensioning Supplier shall test, in place, two representative tendons of each size and type shown in the Drawings, for the purpose of accurately determining the friction loss in the strand and/or bar tendon.

The test procedure shall consist of stressing the tendon at an anchor assembly with load cells at the dead end and jacking end. The test specimen shall be tensioned to 79 percent of ultimate in ten increments. For each increment, the gauge pressure, elongation, and load cell force shall be recorded and the data furnished to the Engineer. The theoretical elongations and post-tensioning forces shown on the post-tensioning Shop Drawings shall be re-evaluated by the post-tensioning Supplier using the results of the tests and corrected as necessary. Revisions to the theoretical elongations shall be submitted to the Engineer for evaluation and approval. The apparatus and methods used to perform the tests shall be proposed by the post-tensioning Supplier and shall be subject to the approval of the Engineer.

All cost associated with testing and evaluating test data shall be included in the Contract unit prices for the applicable items of Work involved.

As tensioning proceeds, the Engineer will be recording the applied load, tendon elongation, and anchorage seating values.

Elongation measurements shall be made at each stressing location to verify that the tendon force has been properly achieved. If proper anchor set has been achieved and the measured elongation of each strand tendon is within 67 percent of the approved calculated elongation, the stressed tendon represented by the elongation measurements is acceptable to the Engineer.

In the event discrepancies greater than 7 percent exist between the measured and calculated elongations, the jack calibration shall be checked and stressing records reviewed for any evidence of wire or strand breakage. If the jack is properly calibrated and there is no evidence of wire or strand breakage, a force verification lift-off shall be performed to verify the force in the tendon. The post-tensioning Supplier force verification lift-off procedure shall provide access for visual verification of anchor plate lift-off. The jacking equipment shall be capable of bridging and lifting off the anchor plate. The tendon is acceptable if the verification lift-off force is not less than 99 percent of the approved calculated force nor more than 70 percent of the specified minimum ultimate tensile strength of the prestressing steel or as approved by the Engineer.

Elongation measurements shall be recorded for bar tendons to verify proper tensioning only. Acceptance will be by force verification lift-off. The bar tendon is acceptable if the verification lift-off force is not less than 95 percent nor more than 105 percent of the approved calculated force or as approved by the Engineer.

When removing the jacks, the Contractor shall relieve stresses gradually before cutting the prestressing reinforcement. The prestressing strands shall be cut a minimum of 1 inch from the face of the anchorage device.

6-02.3(26)G GROUTING

After tensioning the tendons, the Contractor shall again blow oil-free, compressed air through each duct. All drains shall then be closed and the vents opened. After completely filling the duct with grout, the Contractor shall pump the grout from the low end at a pressure of not more than 250 psig, except for transverse tendons in deck slabs the grout pressure shall not exceed 100 psig. Grout shall be continuously wasted through the vent until no more air or water pockets show. At this point, all vents shall be closed and grouting pressure at the injector held between 100 and 200 psig for at least 10 seconds, except for transverse tendons in deck slabs the
The grouting pressure shall be held between 50 and 75 psig for at least 10 seconds. The Contractor shall leave all plugs, caps, and valves in place and closed for at least 24 hours after grouting.

Grouting equipment shall:

1. Include a pressure gauge with an upper end readout of between 275 and 325 psig;
2. Screen the grout before it enters the pump with an easily reached screen that has clear openings of no more than 0.125 inches;
3. Be gravity fed from an attached, overhead hopper kept partly full during pumping; and
4. Be able to complete the largest tendon on the Project in no more than 20 minutes of continuous grouting.

In addition, the Contractor shall have standby equipment (with a separate power source) available for flushing when the regular equipment cannot maintain a one-way flow of grout. This standby equipment shall be able to pump at 250 psig.

The grout shall consist of Portland cement, water, and a water reducing admixture and shall be mixed in the following proportions:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement Type II</td>
<td>1 Sack</td>
</tr>
<tr>
<td>Water</td>
<td>4.5 Gallons Maximum</td>
</tr>
<tr>
<td>Water Reducing Admixture</td>
<td>Manufacturer’s Recommendation</td>
</tr>
<tr>
<td>Fly Ash (Optional)</td>
<td>20 Pounds Maximum</td>
</tr>
</tbody>
</table>

The water reducing admixture shall be limited to AASHTO M194 Type A or D and shall not contain ingredients that may corrode steel (that is, chlorides, fluorides, sulfates, or nitrates). Fly ash may be used at the option of the Contractor.

The Contractor shall proportion the mix to produce a grout with a flow of 15 to 20 seconds as determined by ASTM C 939, Flow of Grout for Preplaced Aggregate Concrete (Flow Cone Method). The grout ejected from the end vent shall have a minimum flow time of 15 seconds.

The grout mix shall be injected within 30 minutes after the water is added to the cement. Temperature of the surrounding concrete shall be at least 35°F from the time the grout injecting begins until 2 inch cubes of the grout have a compressive strength of 800 psi. Cubes shall be made in accordance with WSDOT Test Method 813 and stored in accordance with method 2 of WSDOT Test Method 809. If ambient conditions are such that the surrounding concrete temperature may fall below 35°F, the Contractor shall provide a heat source and protective covering for the structure to keep the temperature of the surrounding concrete above 35°F. Grout temperature shall not exceed 90°F during mixing and pumping. If conditions are such that the temperature of the grout mix may exceed 90°F, the Contractor shall make necessary provisions, such as cooling the mix water and/or dry ingredients, to ensure that the temperature of the grout mix does not exceed 90°F.

6-02.3(27) CONCRETE FOR PRECAST UNITS

Precast units shall not be removed from forms until the concrete has attained a minimum compressive strength of 70 percent of the specified design strength as verified by rebound number determined in accordance with ASTM C 805.

Precast units shall not be shipped until the concrete has reached the specified design strength as determined by testing cylinders made from the same concrete as the precast units. The cylinders shall be made, handled, and stored in accordance with Field Operating Procedure for AASHTO T 23 Method 2 and compression tested in accordance with AASHTO T 22 and T 231.

6-02.3(28) PRECAST CONCRETE PANELS

6-02.3(28)A GENERAL

The Contractor shall perform quality control inspection. The manufacturing plant for precast concrete units shall be certified by the Precast/Prestressed concrete Institute’s Plant Certification Program for the type of precast member to be produced. Proof of plant certification by PCI shall be submitted along with the Shop Drawings by the Contractor to the Engineer. Products which conform to this requirement include noise barrier
panels, wall panels, floor and roof panels, marine pier deck panels, retaining walls, pier caps, and bridge deck panels.

Prior to the start of production of the precast concrete units, the Contractor shall advise the Engineer of the production schedule. The Contractor shall give the Inspector safe and free access to the work. If the Inspector observes any nonspecification work or unacceptable quality control practices, the Inspector will inform the plant manager. If the corrective action is not acceptable to the Engineer, the unit(s) will be rejected.

The Engineer intends to perform Quality Assurance inspection. By its inspection, the Engineer intends only to facilitate the work and verify the quality of that work. This inspection shall not relieve the Contractor of any responsibility for identifying and replacing defective material and workmanship.

If products are prestressed, all prestressing materials and methods shall be in accordance with Section 6-02.3.(25).

6-02.3.(28)B SHOP DRAWINGS

The Contractor shall submit Shop Drawings of Precast/Prestressed Panels in accordance with the requirements set forth in Section 1-05.3(2).

Shop Drawings shall show complete details of the methods, materials, and equipment the Contractor proposes to use in prestressing/precasting work. The Shop Drawings shall follow the design conditions shown in the Drawings unless the Engineer approves variations.

The Shop Drawings shall contain as a minimum:

1. Unit shapes (elevations and sections), and dimensions;
2. Finishes and method of constructing the finish (i.e., forming, rolling, etc.);
3. Reinforcing, joint and connection details;
4. Lifting, bracing and erection inserts;
5. Locations and details of hardware attached to the structure; and
6. Relationship to adjacent material.

Approval of these Shop Drawings shall not relieve the Contractor of responsibility for accuracy of the Shop Drawings or conformity with the Contract. Approval will not signify a check on dimensions.

The Contractor may deviate from the approved Shop Drawings only after obtaining the Engineer’s written approval of a written request that describes the proposed changes. Approval of a change in method, material, or equipment shall not relieve the Contractor of any responsibility for completing the work successfully.

Before physical completion of the Project, the Contractor shall provide the Engineer with reproducible originals of the Shop Drawings (and any approved changes). These shall be clear, suitable for microfilming, and on permanent sheets of sizes specified in Section 1-05.3.

6-02.3.(28)C CASTING

Before casting precast concrete units, the Contractor and Fabrication Inspector shall have possession of an approved set of Shop Drawings.

Precast units shall not be removed from forms until the concrete has attained a minimum compressive strength of 70 percent of the specified design strength.

Forms may be steel or plywood faced, provided they impart the required finish to the concrete.

6-02.3.(28)D CURING

Concrete in the precast units shall be cured by either moist or accelerated curing methods. The method to be used shall be preapproved in the WSDOT plant certification process.

1. For moist curing, the surface of the concrete shall be kept covered or moist until such time as the compressive strength of the concrete reaches the strength specified for stripping. Exposed surfaces shall be kept continually moist by fogging, spraying or covering with moist burlap or cotton mats. Moist curing shall commence as soon as possible following completion of surface finishing.
2. For accelerated curing, heat shall be applied at a controlled rate (following the initial set of concrete) and in combination with an effective method of supplying or retaining moisture. Moisture may be applied by a cover of moist burlap, cotton matting, or other effective means. Moisture may be retained by covering the unit with an impermeable sheet.

Heat may be radiant, convection, conducted steam or hot air. Heat the concrete to no more than 100°F during the first two hours after pouring the concrete, and then increase no more than 25°F per hour to a maximum of 175°F. After curing is complete, cool the concrete no more than 25°F per hour to 100°F. Maintain the concrete temperature above 60°F until the unit reaches stripping strength.

Concrete temperature shall be monitored by means of a thermocouple embedded in the concrete (linked with a thermometer accurate to ±5°F). The recording sensor (accurate to ±5°F) shall be arranged and calibrated to continuously record, date, and identify concrete temperature throughout the heating cycle. This temperature record shall be made available to the Engineer for inspection and become a part of the documentation required.

The Contractor shall never allow dry heat to touch exposed unit surfaces directly at any point.

6-02.3(28)E CONTRACTORS CONTROL STRENGTH

The concrete strength at stripping shall be determined by testing cylinders made from the same concrete as the precast units. The cylinders shall be made, handled, and stored in accordance with Field Operating Procedure AASHTO T 23 Method 2 and compression tested in accordance with AASHTO T 22 and T 231.

For accelerated cure units, concrete strength shall be measured on test cylinders cast from the same concrete as that in the unit. These cylinders shall be cured under time-temperature relationships and conditions that simulate those of the unit. If the forms are heated by steam or hot air, test cylinders shall remain in the coolest zone throughout curing. If forms are heated another way, the Contractor shall provide a record of the curing time-temperature relationship for the cylinders for each unit to the Engineer. When two or more units are cast in a continuous line and in a continuous pour, a single set of test cylinders may represent all units provided the Contractor demonstrates uniformity of casting and curing to the satisfaction of the Engineer.

The Contractor shall mold, cure, and test enough of these cylinders to satisfy specification requirements for measuring concrete strength. The Contractor may use 4-inch by 8-inch or 6-inch by 12-inch cylinders. The required design strength shall be increased 5 percent when using 4-inch by 8-inch cylinders. This 5 percent increase shall not be applied for the determination of the stripping strength. The Contractor shall let cylinders cool for at least one-half hour before testing for release strength.

Test cylinders may be cured in a moist room or water tank in accordance with AASHTO T 23 after the unit concrete has obtained the required release strength. If, however, the Contractor intends to ship the unit prior to the standard 28-day strength test, the design strength for shipping shall be determined from cylinders placed with the unit and cured under the same conditions as the unit. These cylinders may be placed in a noninsulated, moisture-proof envelope.

To measure concrete strength in the precast unit, the Contractor shall randomly select two test cylinders and average their compressive strengths. The compressive strength in either cylinder shall not fall more than 5 percent below the specified strength. If these two cylinders do not pass the test, two other cylinders shall be selected and tested.

6-02.3(28)F FINISHING

The Contractor shall provide a finish on all relevant concrete surfaces as defined in Section 6-02.3(14), unless the Drawings or Special Provisions require otherwise.

6-02.3(28)G TOLERANCES

The units shall be fabricated as shown in the Drawings, and shall meet the dimensional tolerances listed in PCI MNL-116-85, unless otherwise required by the Drawings or Special Provisions.

6-02.3(28)H HANDLING AND STORAGE

The Contractor shall lift all units only by adequate devices at locations designated on the Shop Drawings. When these devices and locations are not shown in the Drawings, Section 6-02.3(25)M shall apply.
Precast unit shall be stored off the ground on foundations suitable to prevent differential settlement or twisting of the units. Stacked units shall be separated by dunnage of uniform thickness capable of supporting the units. Dunnage shall be arranged in vertical planes. The upper units of a stacked tier shall not be used as storage areas for shorter units unless substantiated by engineering analysis and approved by the Engineer.

6-02.3(28)I SHIPPING

Precast units shall not be shipped until the concrete has reached the specified design strength. The units shall be supported in such a manner that they shall not be damaged by anticipated impact on their dead load. Sufficient padding material shall be provided between tie chains and cables to prevent chipping or spalling of the concrete.

6-02.3(28)J ERECTION

When the precast units arrive on the Project Site, the Engineer will confirm that they are stamped “Approved for Shipment”. The Engineer will inspect the units for damage before accepting them.

The Contractor shall lift all units by suitable devices at locations designated on the Shop Drawings. Temporary shoring or bracing shall be provided, if necessary. Units shall be properly aligned and leveled as required by the Drawings. Variations between adjacent units shall be leveled out by a method approved by the Engineer.

6-02.3(29) DOWNSPOUTS

The Contractor shall furnish and install 4 or 6 inches standard weight steel pipe downspouts at the locations shown and as detailed in the Drawings.

The downspouts shall be full length pipe sections in all straight runs. If approved by the Engineer, the Contractor may use other types of couplings and fittings in lieu of the grooved couplings and fittings shown in the Drawings, provided they are equal and are approved by the Engineer.

The portion of downspouts and/or drain pipe constructed within concrete shall be fully encased in a sponge rubber compound 1/2 inch thick and meeting the requirements of ASTM Designation D 1752 Type No. 1, except the color requirement is waived.

The downspouts shall be constructed along a minimum slope of 10% and with minimum radius of 4 feet. The Contractor shall submit Shop Drawings showing typical downspout pipe layout including size, spacing and type of pipe hangers and concrete inserts for approval of the Engineer. The Contractor shall determine the exact lengths of pipe and hangers required for each location. The Contractor shall verify all downspout lengths by field measurements prior to fabrication.

6-02.3(30) DRILLING HOLES IN CONCRETE

The Contractor shall drill holes in the existing concrete facilities as located on the Drawings. The diameter of the hole shall be sized as recommended by the manufacturer of the bonding agent used for anchoring a new member in that hole.

The Contractor shall submit to the Engineer for approval, the bonding agent manufacturer’s name, and recommendations for the bonding agent, hole size for size bar to be epoxied, the method of drilling the hole, controls to prevent drilling beyond required penetration, and such other information as necessary 5 Working Days in advance. If the bonding agent manufacturer has no recommended hole size for a bar or rod, the manufacturer shall include a statement certifying that the bonding agent works for the hole sizes recommended below. If the bonding agent manufacturer has no recommended hole sizes, the diameter of holes shall be as follows:
Diameter Holes for #18 Bars
2-1/2"

Diameter Holes for #14 Bars
2"

Diameter Holes for #11 Bars
1-5/8"

Diameter Holes for #10 Bars
1-1/2"

Diameter Holes for #9 Bars
1-3/8"

Diameter Holes for #8 Bars
1-1/4"

Diameter Holes for #7 Bars
1-1/8"

Diameter Holes for #6 Bars
1"

Diameter Holes for #5 Bars
3/4"

Diameter Holes for #4 Bars
5/8"

Diameter Holes for #3 Bars
1/2"

For threaded rod
1/4" larger than the outside diameter of the rod.

The holes to be drilled in the existing concrete shall be drilled with equipment that shall not fracture or damage the existing concrete which is to remain, or fracture the aggregate that surrounds the hole. Jackhammers shall not be used to drill holes. The method used to drill the holes shall provide a fracture free surface in which to epoxy bond the bars and/or threaded rods. The hole shall be roughened and cleaned prior to bonding bar or rod.

The Contractor shall not begin hole drilling operations until the method submitted is approved by the Engineer. If the Engineer rejects the Contractor’s proposed methods, the Contractor shall use other means, as approved by the Engineer, of drilling the holes which give the required results.

Tools classified as demolition tools shall not be used.

Prior to drilling the hole, the Contractor shall locate reinforcement by a non destructive testing method. If existing steel reinforcing is hit during drilling, the drilling shall be immediately stopped and the Engineer shall be immediately notified. The rejected hole shall be cleaned and then filled completely with non-shrink grout (see Section 9-04.3(2)) as approved by the Engineer. A new hole which does not strike reinforcement shall be drilled adjacent to the rejected hole, as approved by the Engineer.

6-02.3(31) EPOXY IN DRILLED HOLES

Reinforcing bars or threaded rods shall be secured in holes drilled into existing concrete where indicated on the Drawings using a high strength, creep resistant epoxy resin meeting the requirements of Section 9-26. The epoxy system shall meet the requirements of ASTM C881, Type 4, or approved equal performance. For products other than epoxy resins the Contractor shall submit a Manufacturer’s Certificate of Compliance including a test report from an independent testing laboratory, which satisfies the requirements of ASTM E1595, verifying that the application temperature range, cure time, heat deflection temperature (ASTM D648), and slant shear strength (AASHTO T237) are equal to or better than the above specified epoxy resin systems.

The Contractor shall place the reinforcing steel and/or threaded rods scheduled to be embedded in the existing concrete in the following manner:

1. Core drilled or other smooth surface holes shall be sandblasted full depth to roughen sides of hole;
2. Sandblast the section of reinforcing steel and/or threaded rod scheduled to be embedded in the existing concrete to white metal;
3. All holes shall be thoroughly cleaned. If compressed air is used, the air shall be filtered to prevent oil or other contamination from entering the hole adversely impacting bonding;
4. Thoroughly dry the drilled hole immediately before placing the epoxy, by clean, hot air, or by flame. If flame is used, only that produced with propane gas will be allowed;
5. Place the epoxy in the drilled hole in such a manner as to prevent the formation of air pockets;
6. Clean the reinforcing bar and/or threaded rod with a clean rag dipped in a solution of methyl/ethyl ketone or acetone; and
7. Insert the reinforcing bar and/or threaded rod into the drilled hole. In the horizontal drilled holes, caulk the annular space between the entrance of the hole and the bar and/or threaded rod with lead wool or approved equal.
NOTE: For factory coated epoxy bars, Step (2) shall be omitted.

6-02.3(32) REPAIR OF SPALLED AND DELAMINATED CONCRETE

6-02.3(32)A DESCRIPTION
This work shall consist of cleaning and repairing loose, spalled, and delaminated concrete at locations indicated on the Drawings and in accordance with the following Sections.

6-02.3(32)B CLEANING AND PREPARATION
The Contractor shall remove all loose, defective and delaminated concrete by chipping with pneumatic chipping hammers, hand tools, or high pressure water jets. All cracks and cavities shall be chipped so that their sides are approximately perpendicular to the exposed surface and form a mechanical shoulder at least 1/2-inch in depth. The Engineer shall specify the final depth of concrete removal in a timely manner in the field. In addition to chipping, all concrete to be repaired shall be cleaned by flushing with water and compressed air jets. The nozzle shall have sufficient air pressure to assure removal of all dirt, grease, oil, moss and loose particles.

Cleaned surfaces shall be free of all dirt, grease, oil, moss scale, and rust before repairs are made. Care shall be taken in removing concrete to prevent overbreakage. Concrete shall be carefully broken away from reinforcing bars where applicable, to prevent damage to steel reinforcement.

6-02.3(32)C REPAIRS
The Contractor shall have the option of making the concrete repairs with the best methods available subject to the approval of the Engineer. Two proposed methods are outlined below:

1. Hand placed sand and cement grout with approved epoxy bonding agent; and
2. Quick-set concrete as approved by the Engineer.

Hand placed sand and cement grout shall be used only on the smaller spalled areas with a depth of 1/2-inch or less. All repairs shall be finished to the original size and contour of the member being repaired.

Spall depths over 1-inch shall be reinforced with 4 X 4 WO.5. welded wire fabric secured to the existing concrete with 1/4-inch tie wire anchors and 16 gauge wire ties. Welded wire fabric shall clear the new surface by no less than 1/2-inch, preferably 3/4-inch. Location, spacing and type of anchor will be subject to approval of the Engineer.

6-02.3(33) EPOXY INJECTION OF CONCRETE CRACK

6-02.3(33)A GENERAL
Cracks in existing concrete shall be repaired by epoxy injection where indicated on the Drawings or where directed by the Engineer in accordance with the following specifications. The Contractor shall submit his procedure for epoxy injection to the Engineer for approval 2 weeks prior to performing this portion of the work.

The material used as a surface seal must have adequate strength and adhesion to hold injection ports firmly in place and to resist injection pressures adequately to prevent leakage during injection.

The epoxy resin system for crack injection shall be a Type I, Grade 1 system conforming to ASTM C881 except for the following requirements:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel Time</td>
<td>20 Minutes Minimum</td>
</tr>
<tr>
<td>Viscosity</td>
<td>700 Centipoises Maximum</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>Not Required</td>
</tr>
<tr>
<td>Heat Deflection Temperature</td>
<td>130 °F. Minimum</td>
</tr>
</tbody>
</table>

1Gel time shall not apply if continuous flow nozzle mixing injection equipment is used.

The injection equipment shall have the capability of discharging the mixed adhesive at pressures up to 200 psi and maintaining that pressure.
Concrete cracks over 0.006 inch thick, as designated and marked by the Engineer for injection shall be repaired as follows:

1. Before repair work begins, cracks shall be free from loose or foreign matter such as dirt, efflorescence, laitance, oil, grease, salt or any other contaminants. Acids and corrosives shall not be used as cleaning agents;

2. Entry ports shall consist of tubes, tees, or other valve devices suitable for accepting epoxy injection resins under pressure and shall be provided along the crack at intervals of not less than the thickness of the concrete at that location. For thick sections (2 feet plus), entry ports may be spaced at distances as recommended by the manufacturer or directed by the Engineer. The holes for the entry ports shall be drilled with a hollow bit with an attached vacuum chuck to prevent dust from becoming embedded in the crack;

3. Prior to injection of the crack, the surface sealing system shall be applied to the face of the crack and areas around entry ports to attain a seal capable of withstanding the applied injection pressures. For through cracks, the surface seal shall be applied to all accessible faces;

4. The surface seal shall be allowed to gain adequate strength before proceeding with the injection. However, prior to epoxy injection, crack should be air injected to determine if the crack is capable of epoxy injection (air detected coming out of adjacent ports means that crack is injectible). If not injectible, entry port should be temporarily abandoned and procedure repeated at adjacent ports. At a later time, previously non-injectible cracks should be given a second air injection test;

5. The injection of the adhesive into each crack shall begin at the entry port at the lowest elevation. Injection of deck cracks shall be done from the top side; through cracks may require sealing crack on bottom with epoxy paste. Injection shall continue at the first port until the injection adhesive begins to flow out of the port at the next higher elevation. The first port shall be plugged and injection started at the second port until adhesive flows from the next port. The entire crack shall be injected with the same sequence. If port to port travel of epoxy adhesive is not indicated, the work shall immediately be stopped and the Engineer notified. On wide cracks where resin travel between ports is expected to be rapid, two or more ports may be pumped simultaneously. On exceptionally large cracks, a formulation (dependent upon crack width, ambient temperature, modulus requirements and other variables) of epoxy resin and fine sands shall be used as approved by the Engineer;

6. After the injection adhesive has cured, the surface seal shall be removed. The face of the crack shall be finished flush with the adjacent concrete. There shall be no indentations or protrusions caused by placement of entry ports;

7. Supervision of this process by the manufacturer's representative shall be required until the Contractor is familiar with the products and the operations; and

8. The sealing and injection procedures outlined herein is an approved method for accomplishing the work. However, the Contractor may, upon written approval of the Engineer, use other equipment and/or procedures. The Engineer may require a core of the repaired crack be taken and broken in compression. If failure does not occur along the repaired crack, the repair shall be considered acceptable.

The Contractor shall obtain three 2-inch diameter core samples in the first 100 linear feet of crack repaired and one core sample for each 100 linear feet thereafter at his expense. The cores shall be for full crack depth and taken from locations selected by the Engineer. If less than 90% of the visible crack is filled with cured epoxy adhesive, the crack from which the cores were taken shall be deemed not to have been repaired in accordance with this Specification and no payment will be made until satisfactory repairs are completed by the Contractor. The Contractor shall re-inject the crack, and the repair will again be subject to the approval of the Engineer.

Upon approval of the repair by the Engineer, the Contractor shall fill the core holes using an epoxy bonding agent and Portland cement mortar (f'c = 4,000 psi) and finish the surface to blend with the adjacent concrete.
6-02.3(33)C SUBMITTALS

The Contractor shall submit the following documentation for approval along with the Bid:

1. **Applicator’s Qualifications**: a list of projects, dates, locations, contacts, and contact’s telephone number for successful epoxy resin repairs on concrete structures.
2. **Epoxy Injection Adhesive**: After Award of Contract, the epoxy manufacturer shall provide material certifications and certified laboratory test reports.

6-02.3(34) REMOVAL OF CONCRETE / BONDING NEW CONCRETE TO EXISTING CONCRETE

6-02.3(34)A REMOVAL OF CONCRETE - GENERAL

The Contractor shall remove existing concrete as noted, and to the limits indicated, on the Drawings. The Contractor shall submit to the Engineer for approval, a demolition plan with working Shop Drawings showing the method of removing portions of the existing concrete structure. The Contractor shall demonstrate to the satisfaction of the Engineer that the method and equipment for removing portions of existing concrete are adequate for the intended purpose and shall provide satisfactory results. The removal shall not commence until approval is given in writing by the Engineer. Explosives shall not be used in the demolition.

Bush hammering, grinding, and other methods as approved by the Engineer shall be employed. Exposed reinforcing steel shall be cut a minimum of one (1) inch behind the final surface. The void left by removal of the reinforcing steel shall be coated with an approved epoxy resin. Care shall be taken in removing concrete to prevent overbreakage or damage to portions of the existing structure which are to remain. Any damage, due to the Contractor’s operations, to the existing structure which is to remain shall be repaired by the Contractor, as approved by the Engineer, at no cost to the Owner.

Loose particles, dust, dirt, oil, moss, and other deleterious material shall be removed by sand blasting followed by a water flush, or by the application of high pressure water ranging from 2,000 psi to 5,000 psi, unless approved otherwise by the Engineer. The remaining concrete surface shall be acceptable for either of the finishes specified below as indicated in the Contract.

The Contractor shall take such precautions as are necessary to protect the public, and public and private property, from falling concrete and other debris.

6-02.3(34)A1 CONCRETE REMOVAL WITHOUT REPLACEMENT

The remaining concrete surface shall be patched with grout to a reasonably smooth surface acceptable to the Engineer. The grout shall consist of cement and fine aggregate mixed in the proportions to match the existing work as nearly as practicable. The Contractor shall submit to the Engineer for approval at least 10 Working Days in advance, a grout mixture including admixture if recommended by the grout manufacturer, bonding agent as necessary, and bonding agent manufacturer’s final concrete surface preparation indicating the finished surface material provides a strong bond with existing concrete and is durable.

6-02.3(34)A2 BONDING NEW CONCRETE TO EXISTING CONCRETE

The concrete surface to which new concrete is to be bonded shall have a uniformly rough and jagged texture. The existing concrete surface shall be prepared as necessary in accordance with the general requirements specified above. Unless indicated otherwise on the Drawings, the minimum amplitude of concrete roughening shall be ¼ inch as defined in ACI “Concrete Repair Basics” Course Manual SCM-24(91). This texture will be measured under a straight board four (4) foot in length where surface peaks to adjacent valleys shall average 1/4 inch depth minimum displacement along the board’s length. The Contractor shall make every reasonable effort to obtain valleys not exceeding 1/2 inch maximum from the original surface and peaks not greater than 1/8 inch from the original surface. Each peak shall be jagged. Along the four foot board length, the average number of peaks shall be a minimum 30, and the average number of valleys shall be a minimum 30. At each test location, the Engineer will place the board in three (3) directions to verify roughness.

Steel reinforcing bars, extending from the existing concrete surface which are to remain as indicated on the Drawings, shall be carefully cleaned of all existing concrete, oil, rust, scale, and other deleterious material. New reinforcing steel shall be spliced to the existing bar unless noted otherwise on the Drawings.

The Contractor shall submit to the Engineer for approval at least 10 Working Days in advance, a concrete bonding agent suitable for the conditions anticipated including time to place concrete forms, and a Manufacturer’s
Certificate of Compliance stating the bonding agent manufacturer’s recommended procedure produces an acceptable bond between new concrete and existing concrete.

6-02.3(35) SUPERSTRUCTURE

The Superstructure for bridges shall include all materials (except those noted below) above the top of the cross beams or pedestals as the case may be, and between the abutment expansion joints, including concrete Class AX, reinforcing steel, prestressed concrete girders, deck slab, diaphragms, sidewalks, curb/parapets, earthquake restrainers, railing anchorage, concrete for precast and prestressed components, prestressing steel, expansion joints, inserts, compression seals, elastomeric pads and bridge drains with reducers.

Exceptions: Items excluded under “Superstructure” are the following:

1. Metal traffic and pedestrian railings and posts;
2. Steel bridge bearings;
3. Girders;
4. Downspouts;
5. Painting;
6. Light poles (standards) luminaires and other electrical-related items specified elsewhere herein; and
7. Electrical conduit/expansion fittings, junction boxes and condulets.

The Superstructure contains the approximate quantities of materials as listed in the Project Manual. The quantities listed are for major items only and are not intended to be a complete list of all items required for construction of the Superstructure. The quantities are approximate and are for the convenience of the Contractor in determining the volume of work involved and are not guaranteed to be accurate. The prospective Bidders shall verify these quantities before submitting a Bid. No adjustments other than for approved changes will be made in the lump sum Contract Price for “Superstructure,” even though the actual quantities required may deviate from those listed.

6-02.3(36) BRIDGE DRAINS

The Contractor shall furnish and install drains of the type specified in the Drawings and located as shown therein.

Bridge drains shall be furnished with vaned grates as shown in Standard Plan Nos. 265 or 266, or with herringbone pattern as shown in WSDOT Standard Plan No. B-2b. Grating covers shall be fitted to the individual drain casting with which they are to be used and shall be ground to rest evenly and without rocking.

To each drain casting there shall be shop welded a piece of either standard galvanized steel pipe or galvanized wrought iron pipe of the size, length and type shown in the Drawings.

The length of steel pipe shall be galvanized in accordance with the provisions of ASTM Designation A 53, Black and Hot-Dipped Zinc-Coated Welded and Seamless Steel Pipe for Ordinary Uses. Galvanizing shall be done after cutting to length, grooving, threading or other fabrication.

After welding, the drain castings and grating covers shall be coated inside and outside with an asphaltic base, black dipping paint, approved by the Engineer. This coating shall extend over that portion of the galvanized steel pipe adjacent to the casting far enough to cover the welds.

Bridge drains shall meet the requirements of Section 9-06.19.

6-02.4 MEASUREMENT

Bid items of work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Concrete (Class) (Use)” will be by the cubic yard in place. Measurements will be to the neat lines of the structure as shown in the Drawings unless authorized otherwise in writing by the Engineer, except in the case of concrete in cofferdam seals. No measurement will be made for concrete below the established elevation of the bottom of the footing or seal. No deduction will be made for pile heads, reinforcing
steel, structural steel, bolts, weep holes, rustications, chamfers, edgers, bridge drains, joint filler, junction boxes, miscellaneous hardware and conduit and drain pipes under 6 inches diameter.

Class D or DX concrete, when used in the seals of underwater cofferdams, will be paid for on the basis of the actual volume deposited as determined by the average cross-sectional area of the inside of the cofferdam except that no measurement will be made for the volume so determined which is outside of an area bounded by vertical planes 1 foot outside of the neat lines of the seal. The limiting vertical planes shall be parallel to the location of the neat lines based upon the traverse and longitudinal centerlines of the seal as shown on the Drawings.

Measurement for “Steel Reinforcing Bar, (Grade)” will be by the pound in place as calculated from the Drawings, unless ordered otherwise in writing by the Engineer. No allowance will be made for spreaders, form blocks, wire clips or other fastenings, which must be furnished by the Contractor. When splices are made other than those shown in the Drawings, no allowance will be made for the extra steel required. When shear steel is required at construction joints which are not shown in the Drawings, and which are permitted for the Contractor’s convenience, no allowance will be made for the additional steel required.

Measurement for “Steel Reinforcing Bar, (Grade), Epoxy Coated” will be by the pound before epoxy coating is applied, as set forth above for uncoated steel reinforcing bars.

Measurement for “Wire Mesh, (Gage), (Mesh Size)” will be by the square yard for the area covered as calculated from the Drawings. No extra allowance will be made for required overlap of mesh.

Measurement for “Expansion Joint (Type)” or “Compression Seal (Type)” will not be made at or between the abutment expansion joints when there is a Bid item for “Superstructure.” Otherwise, measurement for “Expansion Joint (Type)” or “Compression Seal (Type)” will be per linear foot along the horizontal and vertical outside faces.

Measurement for “Downspout, Galvanized Steel Pipe, (Diameter)” will be by the linear foot along the center line of the pipe through fittings.

Measurement for “Superstructure” will be by lump sum. Separate measurement will not be made for those material items described in Section 6-02.3(35) as these are included with the “Superstructure.”

When a Bid item for “Superstructure” is included on the Bid Form, no measurement will be made for concrete or reinforcing steel placed in the area defined as Superstructure.

When the Bid Form includes the Bid item “Superstructure”, no separate measurement will be made for “Bridge Drain” that are to be installed within the area defined as Superstructure.

Measurement for gravel backfill for drains will be by the cubic yard as Mineral Aggregate (Type) per Section 1-09.1.

6-02.5 PAYMENT

Compensation for the cost necessary to complete the work described in Section 6-02 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Concrete (Class) (Use)”, per cubic yard.

 The Contract unit price for “Concrete (Class) (Use)” shall include all costs for the work required to furnish and install structural concrete in place including falsework, forms, expansion joint material, and construction of weep holes including gravel backfill for drains surrounding the weep holes. The Contract Price shall exclude concrete in the Superstructure when this is covered by a separate Bid item.

2. “Superstructure”, per lump sum.

 The lump sum Contract Price for “Superstructure” shall include all costs for the work required to furnish and install all items described in Section 6-02.3(35) to be complete as specified. No separate payment will be made for items described in Section 6-02.3(35) as they are included with the “Superstructure.”

 All costs for furnishing and placing the date numerals as specified in Section 6-02.3(15) shall be included in the lump sum Contract Price for the Bid item “Superstructure”.

 All costs related to the work for the overhead clearance signs as specified in Section 6-02.3(17)M shall be considered incidental to the Bid item “Superstructure.”
All costs in connection with lifting, transporting, and erecting girders including inserts, shims for leveling, grout, field cutting and bending, rebar for drains, welding, blockouts in girders and slabs, and special construction features shall be included in the lump sum Contract Price for “Superstructure.”

3. “Steel Reinforcing Bar, (Grade)”, per pound.
4. “Steel Reinforcing Bar, (Grade), Epoxy Coated”, per pound.

The Contract unit price for “Steel Reinforcing Bar, (Grade)” or “Steel Reinforcing Bar, (Grade), Epoxy Coated” shall include all costs for the work required to furnish, fabricate, coat, and place the steel reinforcement as specified, and to provide a bar list and bending diagram. The Contract unit price shall also include all costs for any required threading of reinforcing bars. In structures of reinforced concrete where there are no structural steel Bid items, such minor metal parts as expansion joints, bearing assemblies, and bolts will be paid for at the Contract unit price for reinforcing steel unless otherwise specified. When a Bid item for “Superstructure” is included in the Bid Form, all reinforcing steel in the Superstructure shall be considered incidental to the Bid item “Superstructure.”

All costs related to test weld as required in Section 6-02.3(24)F shall be included in the Contract unit price for “Steel Reinforcing Bar, (Grade)”.

5. “Wire Mesh, (Gage), (Mesh Size)”, per square yard.

The Contract unit price for “Wire Mesh, (Gage), (Mesh Size)” shall include all costs required to furnish and place the mesh as specified.

6. “Expansion Joint (Type)”, per linear foot.

The Contract unit price for “Expansion Joint (Type)” shall include all costs to furnish and install the complete expansion joint system for bridge roadway slabs as specified, including hardware and miter joints. When the Project contains a Bid item for “Superstructure,” expansion joints within the Superstructure shall be considered incidental to the Bid item, “Superstructure.”

7. “Compression Seal (Type)”, per linear foot.

The Contract unit price for “Compression Seal (Type)” shall include all costs for the work required to furnish and install the compression seal in place. All costs in connection with the compression seals in the deck, sidewalk slabs, concrete overlay, curbs and abutment backwalls, including miter joints, lubricant adhesive, samples and all necessary items to make a complete installation shall be included in the Contract unit price for “Compression Seal (Type)”. Refer to Section 6-02.4.

The Contract unit price for “Downspout, Galvanized Steel Pipe, (Diameter)” shall be full compensation for all costs in connection with furnishing and installing the downspouts, including field measuring, galvanizing, and other items necessary to make a complete construction as specified.

The Contract unit price for “Drill Hole (Size)” shall include all costs for the work required to perform the drilling as specified.

10. “Repair Spalled and Delaminated Concrete”, per square foot.

The Contract unit price for “Repair Spalled and Delaminated Concrete” shall include all costs for the work specified in Section 6-02.3(32).

11. “Epoxy Injection of Concrete Crack”, per linear foot.

The Contract unit price for “Epoxy Injection of Concrete Crack” shall include all costs for the work specified in Section 6-02.3(33).

12. “Bridge Drain”, per each.
The Contract unit price for "Bridge Drain" shall be full compensation for all work necessary to install drain, reducer, and grate to structure as specified in Section 6-02.3(36). All costs in connection with maintaining and cleaning of bridge drains as specified in 6-01.16 shall be considered incidental to the construction of the bridge drain.

13. **Other payment information.**

All necessary items not specifically listed as a Contract Bid item in the Bid Form, and payment is not otherwise provided, shall be considered to be included in the various items comprising this improvement. No separate payment will be made.

Structure excavation, shoring, cribbing, and cofferdams will be paid in accordance with Section 2-09.5.
Gravel backfill for walls and gravel backfill for drains will be paid as Mineral Aggregate, (Type) in accordance with Section 4-01.5.
Structural removals will be paid in accordance with Section 2-02.5.

Any section of concrete placed that are found or deemed defective by the Engineer shall be removed and replaced by the Contractor and all costs incurred thereof shall be borne by the Contractor.

For concrete placed in water as specified in Section 6-02.3(6)C and testing as required by the Engineer reveals void(s) or joint(s), the Contractor shall repair the void(s) or joint(s), or replace the seal at his own cost.

All costs for curing and finishing concrete shall be considered incidental to the various Bid items comprising the work.

When test indicate leakage in the expansion joint system(s) on the bridge deck, the Contractor shall make good the system(s) and all costs incurred thereof shall be borne by the Contractor.

All costs related to the provision for openings as specified in Section 6-02.3(17)K shall be considered incidental to the various Bid items comprising the Contract.

The Contractor shall provide labor, materials, and equipment for making the test sample splices as specified in Section 6-02.3(24)G at no cost to the Owner. The Owner will test the samples at no cost to the Contractor.

All costs in connection with the provision and installation of special anchorage reinforcement as specified in Section 6-02.3(26)C shall be borne by the Contractor.

All costs, including any additional Owner’s engineering expenses, in connection with controlling the girder deflection as specified in Section 6-02.3(25)L shall be borne by the Contractor.

All costs associated with furnishing and installing Date Numerals, where indicated on the Drawings, shall be incidental to the various Bid Items.

All costs in connection with using air-entraining and/or water-reducing admixture(s) in concrete for the bridge decks, traffic barrier, and pedestrian barrier shall be included in the Contract unit prices for the various Bid items involved.

All costs in connection with providing holes for vents, for furnishing and installing cell drainage pipes for box girder structures, and furnishing and placing grout and shims under steel shoes shall be included in the Contract unit prices for the various Bid items involved.

All costs in connection with replacing Portland cement with fly ash shall be included in the Contract unit price for the various classes of concrete involved. If the concrete is to be paid for other than by class of concrete, all costs involved with replacing Portland cement with fly ash shall be included in the Contract unit price for the applicable item or items of work.

All costs for providing openings in forms on steel spans (see Section 6-02.3(17)K) shall be included in the Contract unit prices for the various Bid Items involved.

All costs associated with removing concrete and preparing and finishing the concrete surface as specified in Section 6-02.3(34) shall be included in the concrete removal Bid Item in Section 2-02.5.

All costs associated with preparing a concrete surface for new concrete shall be included in “Concrete (Class) (Use)”.
SECTION 6-03 STEEL STRUCTURES

6-03.1 DESCRIPTION
This work shall include furnishing, fabricating, erecting, cleaning, and painting steel structures and the structural steel parts of nonsteel structures.

Any part of a steel structure made of nonsteel materials shall comply with the sections of these Specifications that govern those materials.

6-03.2 MATERIALS
Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Structural Steel and Related Materials</th>
<th>9-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints</td>
<td>9-08</td>
</tr>
</tbody>
</table>

Structural steel shall be classified as:

1. Structural carbon steel (to be used whenever the Drawings do not specify another classification);
2. Structural low alloy steel; and
3. Structural high strength steel.

Unless the Contract states otherwise, the following shall be classified as structural carbon steel: shims; ladders; stairways; anchor bolts and sleeves; pipe, fittings and fastenings used in handrails; and other metal parts, even if made of other materials, for which payment is not specified.

All AASHTO M 270 material used in what the Drawings show as main load-carrying tension members or as tension components of flexural members shall meet the Charpy V-notch requirements of AASHTO M 270 temperature zone 2. All AASHTO M 270 material used in what the Drawings show as fracture critical members shall meet the Charpy V-notch requirements of AASHTO M 270, Fracture Critical Impact Test requirements, temperature zone 2. Charpy V-notch requirements for other steel materials shall be as specified in the Contract. Filler metals for welding shall meet the toughness requirements of the applicable welding code specified in Section 6-03.3(25).

The Contractor shall submit for the Engineer’s approval a written plan for visibly marking the material so that it can be traced. These marks shall remain visible at least through the fit-up of the main load-carrying tension members. The marking method shall permit the Engineer to verify: (1) material specification designation, (2) heat number, and (3) material test reports to meet any special requirements.

For steel in main load-carrying tension members and in tension components of flexural members, the Contractor shall include the heat numbers on the reproducible copies of the as-built Shop Drawings.

6-03.3 CONSTRUCTION REQUIREMENTS
Structural steel fabricators of girders, floorbeams, truss members, and stringers, for permanent steel bridges, shall be certified under the AISC Quality Certification Program, Category III, Major Steel Bridges. When fracture critical members are specified in the Contract, structural steel fabricators shall also have an endorsement F, Fracture Critical, under the AISC Quality Certification Program.

6-03.3(1) NOTICE OF ROLLING
Before rolling work begins, the Contractor shall provide enough notice that the Engineer may arrange to inspect it. The Contractor shall inform the Engineer of who is to do the work and where it is to be done. No material shall be rolled until the Engineer gives written Notice to Proceed.

6-03.3(2) FACILITIES FOR INSPECTION
The Contractor shall provide all facilities the Inspector requires to inspect material and workmanship. Inspectors shall be given safe and free access to all areas in the mill and shop.
6-03.3(3) INSPECTOR’S AUTHORITY

See Section 1-05.

6-03.3(4) REJECTIONS

See Sections 1-05 and 1-06.

6-03.3(5) MILL ORDERS AND SHIPPING STATEMENTS

The Contractor shall furnish as many copies of mill orders and shipping statements as the Engineer requires.

6-03.3(6) WEIGHING

Structural steel need not be weighed unless the Contract Documents require it. When weight is required, it may either be calculated or obtained by scales. The Contractor shall furnish as many copies of the calculations or weight slips as the Engineer requires. If scale weights are used, the Contractor shall record separately the weights of all tools, erection material, and dunnage.

6-03.3(7) SUBMITTALS

6-03.3(7)A SHOP DRAWINGS

The Contractor shall submit for approval all Shop Drawings, and certified mill test reports, for fabricating the steel. If these Shop Drawings are to be submitted directly from the fabricator, the Contractor shall so notify the Engineer in writing.

Prints of the Shop Drawings shall be supplied in these quantities:

Ten sets to the Engineer (four more sets are required for each affected railroad company on any grade separation structure that carries a railroad over a highway).

The Engineer will return the Shop Drawings to the Contractor. When Shop Drawing sheets returned by the Engineer require correction, the Contractor shall correct and resubmit them in the quantities required above. No material shall be fabricated until:

1. the Engineer has approved the Shop Drawings; and
2. the SPU Materials Laboratory has approved the materials source and the fabricator.

In approving Shop Drawings, the Engineer accepts only the nature and scope of the details without validating any dimensions.

Unless the Engineer permits it in writing, no changes shall be made in any Shop Drawing after its approval.

Before physical completion of the Project, the Contractor shall furnish the Engineer one set of reproducible copies of the as-built Shop Drawings. (One more set is required for each affected railroad company on any grade separation Structure that carries a railroad over a highway.) The reproducible copies shall be clear, suitable for microfilming, and on permanent sheets that measure 22 by 34 inches.

6-03.3(7)B ERECTION METHODS

Before beginning to erect any steel structure, the Contractor shall submit to the Engineer for review, and shall have received approval for the erection plan and procedure describing the methods the Contractor intends to use. The Contractor’s erection plan and procedure shall be reviewed by the steel fabricator prior to being submitted to the Engineer. The Contractor shall submit evidence that the fabricator has reviewed the erection Shop Drawings and procedures; and submit the fabricator’s review comments to the Engineer along with the erection plan submittal.

The erection plan and procedure shall provide complete details of the erection process including but not limited to:

1. Temporary falsework support, bracing, guys, deadmen, and attachments to other structure components or objects;
2. Procedure and sequence of operation;
3. Girder stresses during progressive stages of erection;
4. Girder weights, lift points, and lifting devices, spreaders, glommers, etc.;
5. Crane(s) make and model, weight, geometry, lift capacity, outrigger size and reactions;
6. Girder launcher or trolley details and capacity (if intended for use); and
7. Locations of cranes, barges, trucks delivering girders, and the location of cranes and outriggers relative to other structures, including retaining walls and wing walls.

The erection plan shall include Shop Drawings, notes, catalog cuts, and calculations clearly showing the above listed details, assumptions, and dimensions. Material properties, specifications, structural analysis, and any other data used shall also be included. The plan shall be prepared by (or under the direct supervision of) a professional engineer, licensed under Title 18 RCW, State of Washington, in the branch of civil or structural, and shall carry the engineer’s seal and signature, in accordance with Section 1-05.3(2)F.

The Contractor shall submit the erection Shop Drawings, calculations, procedure, and fabricator’s comments directly to the Engineer, in accordance with Section 6-02.3(16). After the plan is approved and returned to the Contractor, all changes that the Contractor proposes shall be submitted to the Engineer for review and approval.

6-03.3(8) SUBSTITUTIONS
The Contractor shall not substitute sections that differ from Drawings dimensions unless the Engineer approves in writing. If the Contractor requests and receives approval to substitute heavier members, such substitution shall be at no additional cost to the Owner.

6-03.3(9) HANDLING, STORING, AND SHIPPING OF MATERIALS
Markings applied at the mill shall distinguish structural low alloy steel from structural carbon steel. The fabricator shall keep the 2 classes of steel carefully separated.

Before fabrication, all material stored at the fabricating plant shall be protected from rust, dirt, oil, and other foreign matter. The Owner will accept no rust-pitted material.

After fabrication, all material awaiting shipment shall be subject to the same storage requirements as unfabricated material.

All structural steel shall arrive at the job in good condition. As the Engineer requires, steel damaged by salt water shipment shall be thoroughly cleaned by high pressure water flushing, chemical cleaning, or sandblasting, and repainted with the specified shop coat.

All material shall be stored so as to prevent rust and loss of small parts. Piled material shall not rest on the ground or in water but on skids or platforms.

The loading, transporting, unloading, and piling of the structural steel material shall be so conducted that the metal is kept clean and free from injury from rough handling.

In field assembly of structural parts, the Contractor shall use methods and equipment not likely to twist, bend, deform, or otherwise injure the metal. Any member slightly bent or twisted shall be corrected before it is placed. The Owner will reject any member with serious handling damage.

Girder sections shall be handled so as to prevent damage to the girders. If necessary, the Contractor shall provide temporary stiffeners to prevent buckling during erection.

6-03.3(10) STRAIGHTENING BENT MATERIAL
If the Engineer permits in writing, plates, angles, other shapes, and built-up members may be straightened. Straightening methods shall not fracture or injure the metal. Distorted members shall be straightened mechanically. A limited amount of localized heat may be applied only if carefully planned and supervised, and only if the Engineer has approved a heat-straightening procedure in writing.

Parts to be heat-straightened shall be nearly free from all stress and external forces except those that result from the mechanical pressure used with the heat.

After straightening, the Contractor shall inspect the member for fractures using a method determined by the Engineer.
The Engineer will reject metal showing sharp kinks and bends.

The procedure for heat straightening of universal mill (UM) plates by the mill or the fabricator shall be submitted to the Engineer for approval.

6-03.3(11) WORKMANSHIP AND FINISH

Workmanship and finish shall be first-class, equaling the best practice in modern bridge fabrication shops. Welding, shearing, burning, chipping, and grinding shall be done neatly and accurately. All parts of the work exposed to view shall be neatly finished.

Wherever the Drawings show a surface finish symbol, the surface shall be machined.

6-03.3(12) FALSEWORK

All falsework shall conform to the requirements specified in Section 6-02.

6-03.3(13) FABRICATING TENSION MEMBERS

Plates for main load-carrying tension members or tension components of flexural members shall be:

1. Blast cleaned entirely or blast cleaned on all areas within 2 inches of welds to SSPC-SP6, Commercial Blast Cleaning; and

2. Fabricated from plate stock with the primary rolling direction of the stock parallel to the length of the member.

6-03.3(14) EDGE FINISHING

All rolled, sheared, and flame-cut edges shall be true to line and free of rough corners and projections. Corners along exposed edges shall be rounded to a minimum radius of 1/16-inch.

Sheared edges on plates more than 5/8 inch thick shall be planed, milled, ground, or flame-cut to a depth of at least 1/8 inch.

Re-entrant corners or cuts shall be filleted to a minimum radius of 3/4 inch.

Exposed edges of main load-carrying tension members or tension components or flexural members shall have a surface roughness no greater than 250 micro-inches as defined by the American National Standards Institute, ANSI B46.1, Surface Texture. Exposed edges of other members shall have surface roughness no greater than 1,000 micro-inches.

The hardness of flame-cut edges of structural low alloy plates, as specified in Section 9-06.2, for main load-carrying tension members or tension components of flexural members shall meet the requirements outlined in Appendix A, “Testing Rockwell Hardness of Flame-cut Edges” of the Project Manual. The Contractor shall prevent excessive hardening of plate edges through preheating, postheating, or control of the burning process as recommended by the steel manufacturer and approved by the Engineer.

6-03.3(15) PLANING OF BEARING SURFACES

Ends of columns that bear on base and cap plates shall be milled to true surfaces and accurate bevels. When assembled, caps and base plates of columns and the sole plates of girders and trusses shall have full contact. If warped or deformed, the plates shall be heat straightened, planed, or corrected in some other way to produce accurate, even contact. If necessary for proper contact, bearing surfaces that are to be in contact other metal surfaces shall be planed or milled. Surfaces of warped or deformed base and sole plates that are to contact masonry shall be rough finished.

On the surface of expansion bearings, the cut of the planer shall be in the direction of expansion.

6-03.3(16) ABUTTING JOINTS

Abutting ends of compression members shall be faced accurately so that they bear evenly when in the Structure. On built-up members, the ends shall be faced or milled after fabrication.

Ends of tension members at splices shall be rough finished to produce neat, close joints. A contact fit is not required.
6-03.3(17) END CONNECTION ANGLES

On floorbeams and stringers, end connection angles shall be flush with each other and set accurately in relationship to the position and length of the member. Unless the Drawings require it, end connection angles shall not be finished. If, however, faulty assembly requires them to be milled, milling shall not reduce thickness by more than 1/16 inch.

6-03.3(18) BUILT-UP MEMBERS

The various pieces forming one built-up member shall be straight and close-fitting, true to detailed dimensions, and free from twists, bends, open joints, or other defects.

When fabricating curved girders, localized heat or the use of mechanical force shall not be used to bend the girder flanges about an axis parallel to the girder webs.

6-03.3(19) HAND HOLES

Hand holes, whether punched or cut with burning torches, shall be true to sizes and shapes shown in the Drawings. Edges shall be true to line and ground smooth.

6-03.3(20) LACING BARS

Unless the Drawings state otherwise, ends of lacing bars shall be neatly rounded.

6-03.3(21) PLATE GIRDERs

6-03.3(21)A WEB PLATES

If web plates are spliced, clearance between plate ends shall not exceed 3/8 inch.

6-03.3(21)B RESERVED

6-03.3(21)C WEB SPLICES AND FILLERS

Web splice plates and fillers under stiffeners shall fit within 1/8 inch at each end.

6-03.3(22) EYEBARS

Eyebars shall be straight, true to size, and free from twists or folds in the neck or head and from any other defect that would reduce their strength. Heads shall be formed by upsetting, rolling, or forging. Dies in use by the manufacturer may determine the shape of bar heads if the Engineer approves. Head and neck thickness shall not overrun by more than 1/16 inch. Welds shall not be made in the body or head of any bar.

Each eyebar shall be properly annealed and carefully straightened before it is bored. Pinholes shall be located on the centerline of each bar and in the center of its head. Holes in bar ends shall be so precisely located that in a pile of bars for the same truss panel the pins may be inserted completely without driving. All eyebars made for the same locations in trusses shall be interchangeable.

6-03.3(23) ANNEALING

All eyebars shall be annealed by being heated uniformly to the proper temperature, then cooled slowly and evenly in the furnace. At all stages, the temperature of the bars shall be under full control. Slight bends on secondary steel members may be made without heat. Crimped web stiffeners need no annealing.

6-03.3(24) PINS AND ROLLERS

6-03.3(24)A GENERAL

Pins and rollers shall be made of the class of forged steel the Drawings specify. They shall be turned accurately to detailed dimensions, smooth, straight, and flawless. The final surface shall be produced by a finishing cut.
Pins and rollers 9 inches or less in diameter may either be forged and annealed or made of cold-finished carbon steel shafting.

Pins more than 9 inches in diameter shall have holes at least 2 inches in diameter bored longitudinally through their centers. Pins with inner defects will be rejected.

The Contractor shall provide pilot and driving nuts for each size of pin unless the Drawings state otherwise.

6-03.3(24)B BORING PIN HOLES

Pin holes shall be bored true to detailed dimensions, smooth and straight, and at right angles to the axis of the member. Holes shall be parallel with each other unless the Drawings state otherwise. A finishing cut shall always be made.

The distance between holes shall not vary from detailed dimensions by more than 1/32 inch. In tension members, this distance shall be measured from outside to outside of holes; in compression members, inside to inside.

6-03.3(24)C PIN CLEARANCES

Each pin shall be 1/50-inch smaller in diameter than its hole. All pins shall be numbered after being fitted into their holes in the assembled member.

6-03.3(25) WELDING AND REPAIR WELDING

6-03.3(25)A GENERAL

Welding and repair welding of all steel bridges shall comply with the ANSI/AASHTO/AWS D1.5, latest edition, Bridge Welding Code. Welding and repair welding for all other steel fabrication shall comply with AWS D1.1, latest edition, Structural Welding Code. The requirements described in the remainder of this section shall prevail whenever they differ from either of the above welding codes.

Welding of structural steel will be permitted only to the extent shown in the Drawings. No welding, including tack and temporary welds, shall be done in the shop or field unless the location of the welds is shown on the approved Shop Drawings or approved by the Engineer in writing.

Welding procedures shall be submitted for approval with Shop Drawings. The procedures shall specify the type of equipment to be used, electrode selection, preheat requirements, base materials, and joint details. When the procedures are not prequalified by AWS or AASHTO, evidence of qualification tests shall be submitted.

Welding shall not begin until after the Contractor has received the Engineer’s approval of Shop Drawings as required in Section 6-03.3(7). These Shop Drawings shall include procedures for welding, assembly, and any heat-straightening or heat-curving.

Any welded shear connector longer than 8 inches may be made of two shorter shear connectors joined with full-penetration welds.

In shielded metal-arc welding, the Contractor shall use low-hydrogen electrodes.

In submerged-arc welding, flux shall be oven-dried at 550°F for at least 2 hours, then stored in ovens held at 250°F or more. If not used within 4 hours after removal from a drying or storage oven, flux shall be redried before use.

Preheat and interpass temperatures shall conform to the applicable welding code as specified in this Section. When welding main members of steel bridges, the minimum preheat shall not be less than 100°F.

If groove welds (web-to-web or flange-to-flange) have been rejected, they may be repaired no more than twice. If a third failure occurs, the Contractor shall:

1. Trim the members, if the Engineer approves, at least 1/2 inch on each side of the weld; or
2. Replace the members at no expense to the Owner.

By using extension bars and runoff plates, the Contractor shall terminate groove welds in a way that ensures the soundness of each weld to its ends. The bars and plates shall be removed after the weld is finished and cooled. The weld ends shall then be ground smooth and flush with the edges of abutting parts.
The Contractor shall not:

1. Weld with electrogas or electroslag methods;
2. Weld nor flame cut when ambient temperature is below 20°F; or
3. Use coped holes in the web for welding butt splices in the flanges unless the Drawings show them.

6-03.3(25)B WELDING INSPECTION

The Contractor’s inspection procedures, techniques, methods, acceptance criteria and inspector qualifications for welding of steel bridges shall be in accordance with the ANSIAASHTO/AWS D1.5, Bridge Welding Code, latest edition. The Contractor’s inspection procedures, techniques, methods, acceptance criteria and inspector qualifications for welding of all steel Structures other than steel bridges shall be per AWS D1.1, latest edition, Structural Welding Code. The requirements described in the remainder of this section shall prevail whenever they differ from either of the above welding codes.

Nondestructive testing, in addition to visual inspection, shall be performed by the Contractor. Unless otherwise shown in the Drawings or specified in the Project Manual, the extent of inspection shall be as specified in this section. Testing and inspection shall apply to welding performed in the shop and in the field.

1. Visual Inspection
 All welds shall be 100 percent visually inspected. Visual inspection shall be performed before, during, and after the completion of welding.

2. Radiographic Inspection
 Complete penetration tension groove welds in highway bridges shall be 100 percent radiographically inspected. These welds include those in the tension area of webs where inspection shall cover the greater of these two distances: (a) 15 inches from the tension flange or (b) one third of the web depth. In addition, edge blocks conforming to the requirements of AWS D1.1-96 Structural Welding Code Section 6.17.13 shall be used for radiographic inspection.

3. Ultrasonic Inspection
 Complete penetration groove welds on plates thicker than 5/16 inch in the following welded assemblies or Structures shall be 100 percent ultrasonically inspected:
 a. Welded connections and splices in highway bridges and earth retaining Structures, excluding longitudinal butt welds in beam or girder webs;
 b. Bridge bearings and modular expansion joints;
 c. Sign bridges, cantilever sign Structures, and bridge mounted sign brackets excluding longitudinal butt joint welds in beams;
 d. Light, signal, and strain pole standards; and
 e. Steel Casing for concrete columns.
 The testing procedure and acceptance criteria for tubular members shall conform with Section 10 of the latest edition of the AWS Structural Welding Code D1.1 - Steel.

4. Magnetic Particle Inspection
 a. Fillet and partial penetration groove welds:
 At least 30 percent of each size and type of fillet welds (excluding intermittent fillet welds) and partial penetration groove welds in the following welded assemblies or Structures shall be tested by the magnetic particle method:
 (1) Flange-to-web connections in highway bridges;
 (2) End and intermediate pier diaphragms in highway bridges;
 (3) Stiffeners and connection plates in highway bridges;
 (4) Welded connections and splices in earth retaining Structures;
 (5) Boxed members of trusses;
 (6) Bridge bearings and expansion joints;
 (7) Sign bridges, cantilever sign Structures, and bridge mounted sign brackets; and
 (8) Light, signal, and strain pole standards.
 b. Longitudinal butt welds in beam and girder webs:
 At least 30 percent of each longitudinal butt weld in the beam and girder webs shall be tested by the magnetic particle method.
c. Complete penetration groove welds on plates 5/16 inch or thinner shall be 100 percent tested by the magnetic particle method. Testing shall apply to both sides of the weld, if backing plate is not used.

d. The ends of each complete penetration groove weld at plate edges shall be tested by the magnetic particle method.

Unless directed otherwise by the Engineer, the Contractor shall have all welds of structural members inspected by 100% radiographic or ultrasonic inspection, or by a combination of both, in accordance with the applicable specification in 2. and 3. above and in compliance with the last paragraph of this section.

Where 100 percent testing is not required, the Engineer reserves the right to select the location(s) for testing.

If rejectable flaws are found in any test length of weld in item 4.a or 4.b in this Specification above, the full length of the weld or 5 feet on each side of the test length, whichever is less, shall be tested.

After repairs of defects have been made, additional nondestructive testing shall be performed to ensure that the repairs are satisfactory. This testing shall include the repaired area plus at least 2 inches on each side of the repaired area.

After the Contractor has completed his welding inspection, the Contractor shall allow the Engineer sufficient time to perform quality assurance ultrasonic welding inspection.

The Contractor shall maintain the video records of ultrasonic inspections and the ultrasonic inspection reports in the shop until the last joint to be tested by ultrasonic means has been accepted by the inspector conducting these inspections for the Contractor. Within 2 Working Days following this acceptance, the Contractor shall mail the film and video record together with 2 copies each of the radiographic and ultrasonic inspection reports to the Engineer.

6-03.3(26) SCREW THREADS

Screw threads shall be U.S. Standard and shall fit closely in the nuts.

6-03.3(27) HIGH STRENGTH BOLT HOLES

6-03.3(27)A GENERAL

At the Contractor’s option under the conditions described in this Section, holes may be punched or subpunched and reamed, drilled or subdrilled and reamed, or formed by numerically controlled drilling operations.

The hole for each high strength bolt shall be 1/16-inch larger than the nominal diameter of the bolt.

In fabricating any connection, the Contractor may subdrill or subpunch the holes and then ream full size after assembly or drill holes full size from the solid with all thicknesses of material shop assembled in the proper position. If the Contractor chooses not to use either of these methods, the following shall apply:

1. Drill bolt holes in steel splice plates full size using steel templates;
2. Drill bolt holes in the main members of trusses, arches, continuous beam spans, bents, towers, plate girders, box girders, and rigid frames at all connections as follows:
 a. A minimum of 30 percent of the holes in one side of the connection shall be made full size using steel templates;
 b. A minimum of 30 percent of the holes in the second side shall be made full size assembled in the shop; and
 c. All remaining holes may be made full size in unassembled members using steel templates; and
3. Drill bolt holes in crossframes, gussets, lateral braces, and other secondary members full size using steel templates.

The Contractor shall submit for the Engineer’s approval a detailed outline of the procedures proposed to accomplish the work from initial drilling through shop assembly.
6-03.3(27)B PUNCHED HOLES

For punched holes, die diameter shall not exceed punch diameter by more than 1/16 inch. Any hole requiring enlargement to admit the bolt shall be reamed. All holes shall be cut clean with no torn or ragged edges. The Owner will reject components having poorly matched holes.

6-03.3(27)C REAMED AND DRILLED HOLES

Reaming and drilling shall be done with twist drills, or with short taper reamers, producing cylindrical holes perpendicular to the member. Reamers and drills shall be directed mechanically, not hand-held. Connecting parts that require reamed or drilled holes shall be assembled and held securely as the holes are formed, then match-marked before disassembly. The Contractor shall provide the Engineer with a diagram showing these match-marks. The Owner will reject components having poorly matched holes.

Burrs on outside surfaces shall be removed. At the Engineer’s request, the Contractor shall disassemble parts to remove burrs.

If templates are used to ream or drill full-size connection holes, the templates shall be positioned and angled with extreme care and bolted firmly in place. Templates for reaming or drilling matching members, or the opposite face of one member, shall be duplicates. All splice components shall be match-marked unless otherwise approved by the Engineer.

6-03.3(27)D NUMERICALLY CONTROLLED (N/C) DRILLED CONNECTIONS

In forming any hole described in Section 6-03.3(27), the fabricator may use numerically controlled (N/C) drilling or punching equipment if it meets the requirements in this Section.

The Contractor shall submit for approval a detailed outline of proposed N/C procedures. This outline shall:

1. Cover all steps from initial drilling or punching through check assembly; and
2. Include the specific members of the Structure to be drilled or punched, hole sizes, locations of the common index and other reference points, makeup of check assemblies, and all other information needed to describe the process fully.

N/C holes may be drilled or punched to size through individual pieces, or may be drilled through any combination of tightly clamped pieces.

At the Engineer’s request, the Contractor shall demonstrate that the N/C procedures consistently produces holes and connections meeting the requirements of these Specifications.

6-03.3(27)E ACCURACY OF PUNCHED, SUBPUNCHED AND SUBDRILLED HOLES

After shop assembly and before reaming, all punched, subpunched, and subdrilled holes shall meet the following standard of accuracy. At least 75 percent of the holes in each connection shall permit the passage of a cylindrical pin 1/8-inch smaller in diameter than nominal hole size. This pin shall pass through at right angles to the face of the member without drifting. All holes shall permit passage of a pin 3/16-inch smaller in diameter than nominal hole size. The Owner will reject any pieces that fail to meet these standards.

6-03.3(27)F ACCURACY OF REAMED AND DRILLED HOLES

At least 85 percent of all holes in a connection of reamed or drilled holes shall show no offset greater than 1/32-inch between adjacent thicknesses of metal. No hole shall have an offset greater than 1/16-inch.

Centerlines from the connection shall be inscribed on the template, and holes shall be located from these centerlines. Centerlines shall also be used for accurately locating the template relative to the milled or scribed ends of the members.

Templates shall have a hardened steel bushing inserted into each hole. These bushings may be omitted, however, if the fabricator satisfies the Engineer (1) that the template is to be used no more than 5 times, and (2) that use produces no template wear.

Each template shall be at least 1/2-inch thick. If necessary, thicker templates shall be used to prevent buckling and misalignment as the holes are formed.
6-03.3(27)G FITTING FOR BOLTING

Before drilling, reaming, and bolting begins, all parts of a member shall be assembled, well pinned, and drawn firmly together. If necessary, assembled pieces shall be taken apart to permit removal of any burrs or shavings produced as the holes are formed. The member shall be free from twists, bends, and other deformation.

In shop-bolted connections, contacting metal surfaces shall be sandblasted clean before assembly. Sandblasting shall meet the requirements of the SSPC Specifications for Commercial Blast Cleaning (SSPC-SP 6).

Any drifting done during assembly shall be no more than enough to bring the parts into place. Drifting shall not enlarge the holes or distort the metal.

6-03.3(28) SHOP ASSEMBLY

6-03.3(28)A METHOD OF SHOP ASSEMBLY

Unless the Contract states otherwise, the Contractor shall choose from the 5 shop assembly methods described below, the method that best fits the proposed erection method. The Contractor shall obtain the Engineer’s approval of both the shop assembly and the erection methods before work begins.

1. **Full Truss or Girder Assembly**: Each truss or girder is completely assembled over the full length of the Superstructure.
2. **Progressive Truss or Girder Assembly**: Each truss or girder is assembled in stages longitudinally over the full length of the Superstructure.
 a. **For trusses**: The first stage shall include at least three adjacent truss panels. Each truss panel shall include all of the truss members in the space bounded by the top and bottom chords and the horizontal distance between adjacent bottom chord joints.
 b. **For girders**: The first stage shall include at least three adjacent girder shop sections. Shop sections are measured from the end of the girder to the first field splice or from field splice to field splice.
 c. **For trusses and girders**: After the first stage has been completed, each subsequent stage shall be assembled to include: two truss panels or girder shop sections of the previous stage and one or more truss panels or girder shop sections added at the advancing end. The previous stages shall be repositioned if necessary, and pinned to ensure accurate alignment.

For girders on tangents without skew or tapers, the Contractor may assemble subsequent stages which include one girder shop section of the previous stage and two or more girder shop sections at the advancing end.

If the bridge is longer than 150 feet, each longitudinal stage shall be at least 150 feet long, regardless of the length of individual continuous truss panels or girder shop sections.

The Contractor may begin the assembly sequence at any point on the bridge and proceed in either or both directions from that point. Unless the Engineer approves otherwise, no assembly shall have less than three truss panels or girder shop sections.

3. **Full Chord Assembly**: The full length of each chord for each truss is assembled with geometric angles at the joints. Chord connection bolt holes are drilled/reamed while members are assembled. The truss web member connections are drilled/reamed to steel templates set by relating geometric angles to the chord lines.

 At least one end of each web member shall be milled or scribed at right angles to its long axis. The templates at both ends of the member shall be positioned accurately from the milled end or scribed line.

4. **Progressive Chord Assembly**: Adjacent chord sections are assembled in the same way as specified for Full Chord Assembly, using the procedure specified for Progressive Truss or Girder Assembly.

5. **Special Complete Structure Assembly**: All structural steel members (Superstructure and Substructure, including all secondary members) are assembled at one time.
6-03.3(28)B CHECK OF SHOP ASSEMBLY

The Contractor shall check each assembly for alignment, accuracy of holes, fit of milled joints, and other assembly techniques. Drilling or reaming shall not begin until the Engineer has given approval. If the Contractor uses N/C drilling, this approval must be obtained before the assembly or stage is dismantled.

6-03.3(29) SANDBLASTING

After fabrication, the Contractor shall sandblast all structural steel (except machine-finished surfaces) in accordance with the SSPC-SP10 specification for near-white blast cleaning. After sandblasting and before painting, the Contractor shall remove all loose dust and dirt that remains on the steel. Acid shall not be used to remove scale or stains in the field.

6-03.3(30) SHOP PAINTING

6-03.3(30)A GENERAL

Within 8 hours after the sandblasting required in Section 6-03.3(29), all structural steel shall be painted with one shop coat as the Drawings specify. The Contractor shall not add more volatile thinner to the paint than the formula permits.

The Contractor shall not load structural steel for shipment until the shop coat of paint has dried thoroughly. No painting shall be done after the steel has been loaded for shipment.

Contact surfaces of field bolted connections shall be:

1. Painted with the shop coat when the structure is to be coated with inorganic zinc silicate paint; or
2. Painted with one shop coat of vinyl pretreatment, Formula No. A-5-61, when the structure is to be coated with a paint other than inorganic zinc silicate.

If the contact surfaces of a bolted connection coated with inorganic zinc silicate paint has been kept free from dirt, oil, grease, and other foreign matter, it may be field bolted without further preparation. If it is contaminated, the surface shall be sandblasted no more than 8 hours before final bolting.

All contact surfaces of bolted connections coated with other than inorganic zinc silicate paint shall be cleaned by sandblasting just before final field bolting.

Any sandblasting done before final field bolting shall comply with SSPC Specifications for Commercial Blast Cleaning (SSPC-SP6).

6-03.3(30)B WEATHER CONDITIONS

The Contractor shall apply paint only when air and metal are 40°F or warmer. Major painting on a Structure shall not begin unless the weather is forecast to remain above 40°F for at least 48 hours after painting starts. Minor painting of spots and small areas may be done any time the air and metal meet temperature requirements.

In open yards or on erected structures, the metal shall not be painted while hot enough to blister the paint.

Paint shall never be applied on damp metal. Any metal painted under cover in damp or cold weather shall remain covered until dry or until weather conditions permit open exposure.

6-03.3(30)C APPLICATION

All paint shall be brushed on unless the Project Manual call for another method. Painting shall be done in a professional manner by competent painters. The paint film shall meet the minimum thickness requirements stated in Section 6-07.3(5).

6-03.3(30)D ERECTION MARKS

Erection marks to permit identification of members in the field shall be painted on previously painted surfaces.
6-03.3(30)E MACHINE-FINISHED SURFACES

As soon as possible and before they leave the shop, machine-finished surfaces on abutting chord splices, column splices, and column bases shall be covered with grease. After erection, the steel shall be cleaned and painted as specified.

All surfaces of iron and steel castings milled to smooth the surface shall be painted with the primer called for in the specified paint system.

While still in the shop, machine-finished surfaces and inaccessible surfaces of rocker or pin-type bearings shall receive the full paint system. Surfaces of pins and holes machine-finished to specific tolerances shall not be painted. However, as soon as possible and before they leave the shop, they shall be coated with grease.

6-03.3(31) ALIGNMENT AND CAMBER

6-03.3(31)A GENERAL

Before beginning field bolting, the Contractor shall:

1. Adjust the structure to correct grade and alignment;
2. Regulate elevations of panel points (ends of floorbeams); and
3. Delay bolting at compression joints until adjusting the blocking to provide full and even bearing over the whole joint.

On truss spans, a slight excess camber will be permitted as the bottom chords are bolted. But camber and relative elevations of panel points shall be corrected before the top chord joints, top lateral system, and sway braces are bolted.

6-03.3(31)B MEASURING CAMBER

The Contractor shall provide the Engineer with a diagram for each truss that shows camber at each panel point. This diagram shall display actual measurements taken as the truss is being assembled.

6-03.3(32) ASSEMBLING AND BOLTING

To begin bolting any field connection or splice, the Contractor shall install and tighten to snug-tight enough bolts to bring all parts into full contact with each other prior to tightening the bolts to the specified minimum tension. "Snug-tight" means either the tightness reached by (1) a few blows from an impact wrench, or (2) the full effort of a person using a spud wrench.

As erection proceeds, all field connections and splices for each member shall be securely drift-pinned and bolted before the weight of the member can be released or the next member is added. Field erection Shop Drawings shall specify pinning and bolting requirements that meet or exceed the following minimums:

1. **Joints in normal structures:** Fifty percent of the holes in a single field connection and 50 percent of the holes on each side of a single joint in a splice plate shall be filled with drift pins and bolts. 30 percent of the filled holes shall be pinned. 70 percent of the filled holes shall be bolted and tightened to snug-tight. Once all the bolts are snug-tight, each bolt shall be systematically tightened to the specified minimum tension. "Systematically tightened" means beginning with bolts in the most rigid part, which is usually the center of the joint, and working out to its free edges. The fully tensioned bolts shall be located near the middle of a single field connection or a single splice plate.

2. **Joints in cantilevered structures:** 75 percent of the holes in a single field connection and 75 percent of the holes on each side of a single joint in a splice plate shall be filled with drift pins and bolts. 50 percent of the filled holes shall be pinned. 50 percent of the filled holes shall be bolted and tightened to snug-tight. Once all the bolts are snug-tight, each bolt shall be systematically tightened to the specified minimum tension. The fully tensioned bolts shall be located near the middle of a single field connection or a single splice plate.

Drift pins shall be placed throughout each field connection and each field joint with the greatest concentration in the outer edges of a splice plate or member being bolted.
To complete a joint following the method listed above, the Contractor shall fill all remaining holes of the field connection or splice plate with bolts and tighten to snug-tight. Once all of these bolts are snug-tight, each bolt shall be systematically tightened to the specified minimum tension. After these bolts are tightened to the specified minimum tension, the Contractor shall replace the drift pins with bolts tightened to the specified minimum tension.

The Contractor may complete a field bolted connection or splice in a continuous operation before releasing the weight of the member or adding the next member. The Contractor shall utilize drift pins to align the connection. The alignment drift pins shall fill between 15 and 30 percent of the holes in a single field connection and between 15 and 30 percent of the holes on each side of a single joint in a splice plate. Once the alignment drift pins are in place, all remaining holes shall be filled with bolts and tightened to snug-tight starting from near the middle and proceeding toward the outer gage lines. Once all of these bolts are snug-tight, the Contractor shall systematically tighten all these bolts to the specified minimum tension. The Contractor shall then replace the drift pins with bolts. Each of these bolts shall be tightened to the specified minimum tension.

All bolts shall be placed with heads toward the outside and underside of the bridge. All high-strength bolts shall be installed and tightened before the falsework is removed.

The Contractor may erect metal railings as erection proceeds. But railings shall not be bolted or adjusted permanently until the falsework is released and the deck placed.

The Contractor shall not begin painting until the Engineer has inspected and accepted field bolting. Where bolted connections are shown in the Drawings or specifically authorized, all bolts, nuts, and washers shall conform to the specifications for material and assembly of structural joints using high strength steel bolts as provided in Division I, Design, Article 10.32.3, and Division II, Construction, Article 11.3.

6-03.3(33) BOLTED CONNECTIONS

6-03.3(33)A GENERAL

Bolts, nuts, hardened washers, and direct tension indicators shall meet the requirements of Section 9-06(5)3.

All bolted connections are friction type. Painted structures require Type 1 or Type 2 bolts. Unpainted structures require Type 3 bolts. AASHTO M 253 Type 1, 2, and 3 bolts shall not be galvanized or be used in contact with galvanized material.

Hardened washers are required under turned elements for connections using AASHTO M 164 and AASHTO M 253 bolts and as required in the following:

1. Irrespective of the tightening method, hardened washers shall be used under both the head and the nut when AASHTO M 253 bolts are to be installed in structural carbon steel (AASHTO M 183).

2. Where the outer face of the bolted ports has a slope greater than 1:20 with respect to a plane normal to the bolt axis, a hardened beveled washer shall be used to compensate for the lack of parallelism.

All galvanized nuts shall be lubricated with a lubricant containing a visible dye so a visual check for the lubricant can be made at the time of field installation. Black bolts shall be “oily” to the touch when installed. Weathered or rusted bolts and nuts shall be cleaned and relubricated prior to installation.

After assembly, bolted parts shall fit solidly together. They shall not be separated by washers, gaskets, or any other material. Assembled joint surfaces, including those next to bolt heads, nuts, and washers, shall be free of loose mill scale, burrs, dirt, and other foreign material that would prevent solid seating.

When all bolts in a joint are tight, each bolt shall carry at least the proof load shown in Table 3 below:
Table 3

<table>
<thead>
<tr>
<th>Bolt Size (Inches)</th>
<th>AASHTO M 164 (Pounds)</th>
<th>AASHTO M 253 (Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>12,050</td>
<td>14,900</td>
</tr>
<tr>
<td>5/8</td>
<td>19,200</td>
<td>23,700</td>
</tr>
<tr>
<td>3/4</td>
<td>28,400</td>
<td>35,100</td>
</tr>
<tr>
<td>7/8</td>
<td>39,250</td>
<td>48,500</td>
</tr>
<tr>
<td>1</td>
<td>51,500</td>
<td>63,600</td>
</tr>
<tr>
<td>1-1/8</td>
<td>56,450</td>
<td>80,100</td>
</tr>
<tr>
<td>1-1/4</td>
<td>71,700</td>
<td>101,800</td>
</tr>
<tr>
<td>1-3/8</td>
<td>85,450</td>
<td>121,300</td>
</tr>
<tr>
<td>1-1/2</td>
<td>104,000</td>
<td>147,500</td>
</tr>
</tbody>
</table>

Tightening may be done by either the turn-of-nut or the direct-tension-indicator method. Preferably, the nut shall be turned tight while the bolt is prevented from rotating. However, if required because of bolt entering and/or wrench operational clearances, tightening may be done by turning the bolt while the nut is prevented from rotating. Following are descriptions of the Turn-of-Nut and Direct-Tension-Indicator Methods:

1. **Turn-of-Nut Method:**

 Hardened steel washers shall be used under the turned elements. After a bolt in a connection or joint splice plate has been tightened to snug-tight and all specified bolting conditions satisfied, it shall be tightened to the specified minimum tension by rotating the amount specified in Table 4. Before final tightening, the Contractor shall match-mark with crayon or paint the outer face of each nut and the protruding part of the bolt. To ensure that this tightening method is followed, the Engineer will (1) observe as the Contractor installs and tightens all bolts, and (2) inspect each match-mark.

 Table 4:

<table>
<thead>
<tr>
<th>Nut Rotation from Snug-Tight Condition</th>
<th>Disposition of Outer Faces of Bolted Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>L ≤ 4D</td>
<td>1/3 turn</td>
</tr>
<tr>
<td>4D < L ≤ 8D</td>
<td>1/2 turn</td>
</tr>
<tr>
<td>8D < L ≤ 12D</td>
<td>2/3 turn</td>
</tr>
</tbody>
</table>

 Bolt length measured from underside of head to extreme end of point.

 Condition 1: both faces at right angles to bolt axis.
 Condition 2: one face at right angle to bolt axis, one face sloped no more than 1:20, without bevel washer.
 Condition 3: both faces sloped no more than 1:20 from right angle to bolt axis, without bevel washer.

 Nut rotation is relative to the bolt regardless of which element (nut or bolt) is being turned. Tolerances permitted: 6 30 degrees for final turns of 1/12 turn or less; 6 45 degrees (1/8 turn) for final turns of 2/3 turn or more.

 D = nominal bolt diameter of bolt being tightened.

 When bolt length exceeds 12D, the rotation shall be determined by actual tests in which a suitable tension device simulates actual conditions.

2. **Direct-Tension-Indicator Method:**
Direct Tension Indicators (DTI’s) shall not be used under the turned element. DTI’s shall be placed under the bolt head with the protrusions facing the bolt head when the nut is turned. DTI’s shall be placed under the nut with the protrusions facing the nut when the bolt is turned. DTI’s shall be installed by two or more person crews with one individual preventing the element at the DTI from turning the measuring the gap of the DTI to determine the proper tension of the bolt.

Three DTIs, per lot, shall be tested in a WSDOT approved bolt tension calibrator. The bolts shall be tensioned to 105 percent of the tension shown in Table 3. The test bolts shall not be tightened such that all of the DTI protrusions are completely crushed (all five openings with zero gap). The DTI gap between all protrusions shall be measured with a tapered feeler gauge to the nearest 0.001 inch. All of the non-zero DTI gap measurements for the three test bolts shall be averaged. This average shall be used in the tightening of all the production bolts except as provided below.

All bolts in a connection shall be snug tightened prior to bringing any DTI’s in the connection to full load. The maximum gap of the production bolt DTIs shall not be greater than the average test gap established above or 0.005 inch, whichever is less. The minimum gap of the production bolts DTIs may be zero (all five openings with zero gap).

The Contractor shall tension all bolts, inspecting all DTI’s with a feeler gage, in the presence of the Engineer.

If a bolt, that has had its DTI brought to full load, loosens during the course of bolting the connection, the bolt shall have a new DTI installed and be retensioned. Reuse of the bolt and nut are subject to the provisions of this section.

AASHTO M 253 bolts and galvanized AASHTO M 164 bolts shall not be reused. Ungalvanized AASHTO M 164 bolts may be reused if approved by the Engineer. All bolts to be reused shall have their threads inspected for distortion by reinstalling the used nut on the bolt and turning the nut for the full length of the bolt threads by hand. Bolts to be reused shall be relubricated. Used bolts shall be subject to a rotational capacity test as specified in Section 6-03.3(33)B Pre-Erection Testing. Touching up or retightening previously tightened bolts which may have been loosened by the tightening of adjacent bolts shall not be considered reused, provided the snugging up continues from the initial position and does not require greater rotation, including the tolerance, than that required by Table 4 in this specification.

6-03.3(33)B PRE-ERECTION TESTING

High strength bolt assemblies (bolt, nut, and washer), black and galvanized, shall be subjected to a rotational capacity test (AASHTO M 164, Section 8.5) prior to any erection activity. Each combination of bolt production lot, nut lot, and washer lot shall be tested as an assembly. All tests shall be performed by the Contractor in the presence of the Engineer. Two specimens per lot shall be tested at the erection site immediately prior to installation, or whenever the Engineer deems it necessary. The bolt assemblies shall meet the following requirements:

1. Go through two times the required number of turns from snug tight condition as indicated in Table 4 of Section 6-03.3(33) without stripping, tensile, or shear failure. Rotation-capacity test shall be performed in a WSDOT approved bolt tension calibrator.

2. The maximum recorded tension shall be equal to or greater than 1:15 times the minimum bolt tension listed in Table 3 of Section 6-03.3(33).

3. The measured torque to produce the minimum bolt tension shall not exceed the value obtained by the following equation.

 \[\text{Torque} = 0.25 \times PD \]

 Where: \(\text{Torque} \) = Calculated Torque (foot-pounds) \(P \) = Measured Bolt Tension (pounds) \(D \) = Normal Bolt Diameter (feet)

4. Disassemble the torqued bolt and inspect for signs of failure. Failure is defined as any shear damage to the threads of the bolt or the nut or cracks in the body of the bolt. If either specimen
fails, the lot of bolts will be rejected. Elongation of the bolt between the bolt head and the nut is not considered to be a failure.

6-03.3(33)C BOLTING INSPECTION

The Contractor, in the presence of the Engineer, shall inspect the tightened bolt using a calibrated inspection torque wrench.

If the bolts to be installed are not long enough to fit in the Owner furnished tension calibrator, five bolts of the same grade, size and condition as those under inspection shall be tested using Direct-Tension-Indicators (DTI) to measure bolt tension. This tension measurement test shall be done at least once each inspection day. The Contractor shall supply the necessary DTIs. The DTI shall be placed under the bolt head. A washer shall be placed under the nut, which shall be the element turned during the performance of this tension measurement test. Each bolt shall be tightened by any convenient means to the specified minimum tension as indicated by the DTI. The inspecting wrench shall then be applied to the tightened bolt to determine the torque required to turn the nut 5 degrees (approximately 1 inch at a 12-inch radius) in the tightening direction. The job inspection torque shall be taken as the average of three values thus determined after rejecting the high and low values.

Five bolts (provided by the Contractor) of the same grade, size, and condition as those under inspection shall be placed individually in an Owner-furnished tension calibrator to measure bolt tension. This calibration operation shall be done at least once each inspection day. There shall be a washer under the part turned in tightening each bolt if washers are used on the structure. In the calibrated device, each bolt shall be tightened by any convenient means to the specified tension. The inspecting wrench shall then be applied to the tightened bolt to determine the torque required to turn the nut or head 5 degrees (approximately 1 inch at a 12 inch radius) in the tightening direction. The job-inspection torque shall be taken as the average of three values thus determined after rejecting the high and low values.

Ten percent (minimum 2 bolts) of the tightened bolts on the structure represented by the test bolts shall be selected at random in each connection. The job-inspection torque shall then be applied to each with the inspecting wrench turned in the tightening direction. If this torque turns no bolt head or nut, the Owner will accept the connection as being properly tightened. But if the torque turns one or more bolt heads or nuts, the job-inspection torque shall then be applied to all bolts in the connection. Any bolt whose head or nut turns at this stage shall be tightened and reinspected. The Contractor may, however, retighten all the bolts in the connection and resubmit it for inspection.

6-03.3(34) ADJUSTING PIN NUTS

All pin nuts shall be tightened thoroughly. The pins shall be placed so that members bear fully and evenly on the nuts. The pins shall have enough thread to allow burring after the nuts are tightened.

6-03.3(35) SETTING ANCHOR BOLTS

Anchor bolts shall be set in masonry as required in Section 6-02.3(18). Anchor bolts shall be grouted in after the shoes, bearing plates, and keeper plates have been set and the span or series of continuous spans are completely erected and adjusted to line and camber.

6-03.3(36) SETTING AND GROUTING BEARING PLATES

The following procedure applies to steel bearing plates for all steel spans, including shoes, keeper plates and turning racks on movable bridges.

To set bearing plates, the Contractor shall:

1. Set bearing plates on the anchor bolts;
2. Place steel shims under the bearing plates to position pin centers to line and grade and in relationship to each other. Steel shims shall be no more than 2-1/2 inches square and placed under bearing plates;
3. Level the bases of all bearing plates;
4. Draw anchor bolt nuts down tight;
5. Recheck pin centers or bearings for alignment; and
6. Leave at least 3/4 inch of space under each bearing plate for grout.
After the bearing plates have been set and the span or series of continuous spans are completely erected and swung free, the space between the bottom of the bearing plate and the top of the concrete bearing seat shall be filled with grout. Main bearing plates for cantilever spans shall be set and grouted in before any steel work is erected.

Grout mixture and placement shall be as required in Section 6-02.3(20).

6-03.3(37) SETTING STEEL BRIDGE BEARINGS

Bearing plates, shoes, and keeper plates of expansion bearings shall be set and adjusted to center the expansion shoe at a normal temperature of 64°F. Adjustment for any inaccuracy in fabricated length shall be made after dead-load camber is out.

6-03.3(38) PLACING SUPERSTRUCTURE

The Contractor shall place no Superstructure load on finished piers or abutments until the Engineer allows. Normally, this concrete-hardening interval requires at least 12 days.

6-03.3(39) SWINGING THE SPAN

No forms, steel reinforcing bars, or concrete roadway slabs shall be placed on steel spans until the spans swing free on their supports and elevations are recorded. No simple span or any series of continuous spans will be considered as swinging free until all temporary supports have been released. Forms, reinforcing steel, or concrete roadway slabs shall not be placed on any simple or continuous span steel girder bridge until all its spans are adjusted and its bearing plates, shoes, and keeper plates grouted. For this Specification, the structure shall be considered to be continuous across hinged joints.

After the falsework is released (spans swung free) the bearing plates, shoes, and keeper plates are grouted, and before any load is applied, the Engineer will:

1. Measure elevations at selected points along the tops of girders or floorbeams under steel weight dead load;
2. Compare the calculated steel weight camber elevations with the elevations measured in step 1; and
3. Furnish the Contractor with new dead-load camber dimension.

The Contractor shall adjust the top-of-web to top-of-deck dimensions, varying from Drawing camber as necessary and as determined by the Engineer.

6-03.3(40) DRAINING POCKETS

The Contractor shall provide enough holes to drain all water from pockets in trusses, girders, and other members. Unless shown on approved Shop Drawings, drain holes shall not be drilled without the written approval of the Engineer.

All costs related to providing drain holes shall be included in the Contract unit prices for structural or cast steel.

6-03.3(41) FLOORBEAM PROTECTION

Each floorbeam that supports a concrete slab joint shall be coated on its top and flange edges with a heavy mop of roofing grade asphalt applied hot. This asphalt shall conform to ASTM D 312 (not mineral stabilized). A protective covering of asphalt coated glass fiber sheet (ASTM D 4601 Type 1 non-perforated) shall be placed over the hot coat of asphalt. This combination coating shall be applied over the shop paint. It shall take the place of the two field coats of paint specified for other parts of the structural steel.

6-03.3(42) SURFACE CONDITION

As the Structure is erected, the Contractor shall keep all steel surfaces clean and free from dirt, concrete, mortar, oil, paint, grease, and other stain-producing foreign matter. Any surfaces that become stained shall be cleaned as follows:
1. Painted steel surfaces shall be cleaned by methods required for the type of staining. The method shall be submitted to the Engineer for approval; and
2. Unpainted steel surfaces shall be cleaned by sandblasting. Sandblasting to remove stains on publicly visible surfaces shall be done to the extent that, in the Engineer’s opinion, the uniform weathering characteristics of the structure are preserved.

6-03.3(43) CASTINGS, STEEL FORGINGS, AND MISCELLANEOUS METALS

6-03.3(43)A GENERAL

Castings, steel forgings, and miscellaneous metals shall be built to comply with Section 9-06.

6-03.3(43)B SHOP CONSTRUCTION, CASTINGS, STEEL FORGINGS, AND MISCELLANEOUS METALS

This section’s requirements for structural steel (including painting requirements) shall also apply to castings, steel forgings, and miscellaneous metals.

Castings shall be:
1. True to pattern in form and dimensions;
2. Free from pouring faults, sponginess, cracks, blow holes, and other defects in places that would affect strength, appearance, or value;
3. Clean and uniform in appearance;
4. Filleted boldly at angles; and
5. Formed with sharp and perfect arises.

Iron and steel castings and forgings shall be annealed before any machining, unless the Drawings state otherwise.

6-03.4 MEASUREMENT

Bid items of work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Cast or forged metal (kind) or copper seals shown in the Drawings will be measured by the pound or will be paid for on a lump sum basis, whichever is shown on the Bid Form.

In computing pay weight on the basis of scale weights, the pay quantity of structural steel will be the shop scale weight of the fabricated members, which shall be weighed on satisfactory scales in the presence of the Inspector. If the shop paint has been applied to the completed member when weighed, 0.4 of 1 percent of the weight of the member shall be deducted from the scale weights to compensate for weight of shop paint.

6-03.5 PAYMENT

Compensation for the cost necessary to complete the work described in Section 6-03 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:

1. “Structural Carbon Steel”, per pound.
2. “Structural Low Alloy Steel”, per pound.
3. “Structural High Strength Steel”, per pound.

The Contract Price Bid for the items “Structural Carbon Steel”, “Structural Low Alloy Steel”, and “Structural High Strength Steel” shall be full compensation for all costs necessary for manufacture, fabrication, transportation, erection, welding inspection, and painting of all structural steel used in the completed structure, including protective coating or treatment as may be called for on the Drawings or in the Project Manual.

For the purpose of payment, such minor items as bearing plates, pedestals, forged steel pins, anchor bolts, field bolts, shear connectors, etc., unless otherwise provided for elsewhere, shall be considered as structural carbon steel even though it is made of other materials.
All costs related to inspection of structural welds shall be included in the Contract unit price Bid for structural steel and shall, in each case, refer to the appropriate inspection method necessary for obtaining optimum quality assurance.

4. “(Cast or Forged) Steel”, lump sum or per pound.
5. “(Cast, Malleable, or Ductile) Iron”, lump sum or per pound.
6. “Cast Bronze”, lump sum or per pound.

Payment for “(Cast or Forged) Steel”, “(Cast, Malleable or Ductile) Iron”, and “Cast Bronze” will be made at the lump sum or per pound Contract Prices as included in the Bid Form.

7. Other payment information.

When no Bid item is included in the Bid Form and payment is not otherwise provided, the castings, forgings, and miscellaneous metal shall be considered as incidental to the construction, and all costs therefore shall be included in the Contract unit prices for the payment items involved and shown.

Prospective Bidders shall verify the estimated weight of structural steel before submitting the Bid.

The weight of field bolts shall be based on the approved shipping list. No payment will be made for any weight in excess of 1-1/2 percent above the computed net weight of the whole item.

Reinforcing bars which are threaded will be paid as “Steel Reinforcing Bar, (Grade)” or “Steel Reinforcing Bar, (Grade), Epoxy Coated” in accordance with Section 6-02.5.

SECTION 6-04 TIMBER STRUCTURES

6-04.1 DESCRIPTION

This work is the building of any structure or parts of structures (except piling) made of treated timber, untreated timber, or both. The Contractor shall erect timber structures on prepared foundations. The structures shall conform to the dimensions, lines, and grades required by the Drawings, the Engineer, and these Specifications.

Any part of a timber structure made of nontimber materials shall comply with the sections of these Specifications that govern those materials.

6-04.2 MATERIALS

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel and Related Material</td>
<td>9-06</td>
</tr>
<tr>
<td>Bolts, Washers, Other Hardware</td>
<td>9-06.22</td>
</tr>
<tr>
<td>Paints</td>
<td>9-08</td>
</tr>
<tr>
<td>Timber and Lumber</td>
<td>9-09</td>
</tr>
</tbody>
</table>

6-04.3 CONSTRUCTION REQUIREMENTS

6-04.3(1) STORING AND HANDLING MATERIAL

At the Project Site, the Contractor shall store all timber and lumber in piles. Weeds and rubbish under and around these piles shall have been removed before the lumber is stacked.

Untreated lumber shall be open stacked at least 12 inches above the ground. It shall be piled to shed water and prevent warping.

Treated timber shall be:
1. Cut, framed, and bored (whenever possible) before treatment;
2. Close stacked and piled to prevent warping;
3. Covered against the weather if the Engineer requires it;
handled carefully to avoid sudden drops, broken outer fibers, and surface penetration or bruising with tools; and

5. Lifted and moved with rope or chain slings (without use of cant dogs, peaveys, hooks, or pike poles).

6-04.3(2) WORKMANSHIP

The Contractor shall employ only competent bridge carpenters. All their work shall be true and exact. Nails and spikes shall be driven with just enough force to leave heads flush with wood surfaces. The Contractor shall discharge any worker who displays poor workmanship by leaving deep hammer marks in wood surfaces. Workmanship on metal parts shall comply with requirements for steel structures.

6-04.3(3) SHOP DETAILS

The Contractor shall provide the Engineer with six sets of Shop Drawings for all treated timber. These Shop Drawings shall show dimensions for all cut, framed, or bored timbers.

The Engineer will return to the Contractor one set of approved or corrected Shop Drawings. No material shall be framed or bored until the Engineer approves the Shop Drawings. Shop Drawings shall be drawn on sheets that conform to the sizes required in Section 1-05.3.

6-04.3(4) FIELD TREATMENT OF CUT SURFACES, BOLT HOLES, AND CONTACT SURFACES

All cut surfaces, bolt holes, and contact surfaces shall be treated in accordance with Section 9-09.3 for all timber and lumber requiring preservative treatment.

All cuts and abrasions in treated piles or timbers shall be trimmed carefully and treated in accordance with Section 9-09.3.

6-04.3(5) HOLES FOR BOLTS, DOWELS, RODS, AND LAG SCREWS

Holes shall be bored:

1. For drift pins and dowels: with a bit 1/16 inch smaller in diameter than the pins and dowels.
2. For truss rods or bolts: with a bit the same diameter as the rods or bolts.
3. For lag screws in two parts:
 (a) with the shank lead hole the same diameter as the shank and as deep as the unthreaded shank is long; and
 (b) with the lead hole for the threaded part approximately two thirds of the shank diameter.

6-04.3(6) BOLTS, WASHERS, AND OTHER HARDWARE

Bolts, flat-head bolts, dowels, washers, and other hardware, including nails, shall be black or galvanized as specified on the Drawings, but if not so specified shall be galvanized when used in treated timber structures. Flat-head bolts are detailed in the Standard Plans.

Washers of the size and type specified shall be used under all bolt heads and nuts that would otherwise contact wood. Flat-head bolts require washers under the nuts only.

All bolts shall be checked by burring the threads after the nuts have been finally tightened. Vertical bolts shall have nuts on the lower ends.

Wherever bolts fasten timber to timber, to concrete, or to steel, the members shall be bolted tightly together at installation and retightened just before the Owner accepts the Work. These bolts shall have surplus threading of at least 3/8 inch per foot of timber thickness to permit future tightening.

6-04.3(7) COUNTERSINKING

Countersinking shall be done wherever smooth faces are required. Each recess shall be treated in accordance with Section 9-09.3.
6-04.3(8) FRAMING

The Contractor shall cut and frame lumber and timber to produce close-fitting, full-contact joints. Each mortise shall be true to size for its full depth, and its tenon shall fit it snugly. Neither shimmed nor open joints are permitted.

6-04.3(9) FRAMED BENTS

Mudsills shall be of pressure-treated timber, firmly and evenly bedded to solid bearing, and tamped in place.

Concrete pedestals that support framed bents shall be finished so that sills bear evenly on them. To anchor the sills, the Contractor shall set dowels in the pedestals when they are cast. The dowels shall be at least 3/4 inch in diameter and protrude at least 6 inches above the pedestal tops. Pedestal concrete shall comply with Section 6-02.

Each sill shall rest squarely on mudsills, piles, or pedestals. It shall be drift-bolted to mudsills or piles with 3/4 -inch diameter or larger bolts that extend at least 6 inches into them. When possible, the Contractor shall remove any earth touching the sills to permit free air circulation around them.

Each post shall be fastened to sills with 3/4 -inch diameter or larger dowels that extend at least 6 inches into the post.

6-04.3(10) CAPS

Timber caps shall rest uniformly across the tops of posts or piles and cap ends shall be aligned evenly. Each cap shall be fastened with a drift bolt 3/4 inch in diameter or larger that penetrates the post or pile at least 9 inches. The bolt shall be approximately in the center of the pile or post.

If the roadway grade exceeds 2 percent, each cap shall be beveled to match the grade.

6-04.3(11) BRACING

When pile bents are taller than 10 feet, each shall be braced transversely and every other pair shall be braced longitudinally. No single cross-bracing shall brace more than 20 feet of vertical distance on the piles. If the vertical distance exceeds 20 feet, more than one cross-bracing shall be used. Each brace end shall be bolted through the pile, post, or cap with a bolt 3/4 inch in diameter or larger. Other brace/pile intersections shall be bolted or boat-spiked as the Drawings require. Cross-bracing shall lap both upper or lower caps and shall be bolted to the caps or sills at each end.

6-04.3(12) STRINGERS

All stringers that carry laminated decking or vary more than 1/8 inch in depth shall be sized to an even depth at bearing points. Outside stringers shall be butt jointed and spliced.

Interior stringers shall be lapped so that each rests over the full width of the cap or floorbeam at each end. Except on sharp horizontal and vertical curves, stringers may cover two spans. In this case, joints shall be staggered and the stringers either toenailed or drift bolted as the Drawings require. To permit air circulation on untreated timber structures, the ends of lapped stringers shall be separated. This separation shall be done by fastening across the lapping face a 1-inch by 3-inch wood strip cut 2 inches shorter than the depth of the stringer.

Any cross-bridging or solid bridging shall be neatly and accurately framed, then securely toenailed at each end (with two nails for cross-bridging and four nails for solid bridging). The Drawings show bridging size and spacing.

6-04.3(13) WHEEL GUARDS AND RAILINGS

Wheel guards and railings shall be built as Section 6-06.3(1) requires.

6-04.3(14) SINGLE-PLANK FLOORS

Single-plank floors shall be made of a single thickness of plank on stringers or joists.

Unless the Engineer directs otherwise, the planks shall be:

1. Laid heart side down with tight joints;
2. Spiked to each joist or nailing strip with at least two spikes that are at least 4 inches longer than the plank thickness;
3. Spiked at least 2 1/2 inches from the edges;
4. Cut off on a straight line parallel to the centerline of the roadway;
5. Arranged so that no adjacent planks vary in thickness by no more than 1/16 inch; and
6. Surfaced on one side and one edge (S1S1E) unless otherwise specified.

6-04.3(15) LAMINATED FLOORS
The strips shall be placed on edge and shall be drawn down tightly against the stringer or nailing strip and the adjacent strip and, while held in place, shall be spiked. Each strip shall extend the full width of the deck, unless some other arrangement is shown in the Drawings or permitted by the Engineer.

Each strip shall be spiked to the adjacent strip at intervals of not more than 2 feet, the spikes being staggered 8 inches in adjacent strips. The spikes shall be of sufficient length to pass through two strips and at least halfway through the third. In addition, unless bolting is specified on the Drawings, each strip shall be toenailed to alternate stringers with 40d common nails and adjacent strips shall be nailed to every alternate stringer. The ends of all pieces shall be toenailed to the outside stringer. The ends of the strips shall be cut off on a true line parallel to the centerline of the roadway. When bolts are used to fasten laminated floors to stringers, the bolts shall be placed at the spacing shown in the Drawings, and the pieces shall be drawn down tightly to the bolting strips. The bolt heads shall be driven flush with the surface of the deck. Double nuts or single nuts and lock nuts shall be used on all bolts. The strips shall be spiked together in the same manner as specified above.

6-04.3(16) PLANK SUBFLOORS FOR CONCRETE DECKS
Any plank subfloor shall be laid surfaced side down with close joints at right angles to the centerline of the roadway. Planks shall be spiked in place as required in Section 6-04.3(14).

Floor planks shall be pressure treated with creosote as Section 9-09.3(2) requires.
The Drawings govern the amount of creosote oil.

6-04.3(17) TRUSSES
Completed trusses shall show no irregularities of line. From end to end, chords shall be straight and true in horizontal projection. In vertical projection they shall show a smooth curve through panel points that conforms to the correct camber. The Engineer will reject any pieces cut unevenly or roughly at bearing points. Before the Contractor places the hand railing, he shall complete all trusses, swing them free of their falsework, and adjust them for line and camber (unless the Engineer directs otherwise).

6-04.3(18) PAINTING
Section 6-07.3(3) governs painting of timber structures.

6-04.4 MEASUREMENT
The criteria in Section 6-03.4 will be used to determine the weight of structural metal other than hardware. Timber and lumber (treated or untreated) will be measured by the 1,000 board feet (MBM), using nominal thicknesses and widths. Lengths will be actual lengths of individual pieces in the finished structure with no deduction for daps, cuts, or splices. To measure laminated timber decking, the Engineer will use the number and after-dressing sizes of pieces required on the Drawings. The length of each lamination shall be the length remaining in the finished Structure.

6-04.5 PAYMENT
Payment will be made in accordance with Section 1-04.1, for each of the following Bid items that are included in the proposal:
1. “Timber and Lumber (untreated or name treatment)”, per MBM.
2. “Structural Metal”, lump sum.
Where no item for structural metal is included in the proposal, full pay for furnishing and placing metal parts shall be included in the Contract unit price per MBM for “Timber and Lumber (untreated or name treatment)

SECTION 6-05 PILING

6-05.1 DESCRIPTION

This work consists of furnishing and driving piles (timber, precast concrete, cast-in-place concrete, and steel) of the sizes and types the Contract Documents or the Engineer require. This work also includes cutting off or building up piles when required. In furnishing and driving piles, the Contractor shall comply with the requirements of this section, the Contract Documents, and the Engineer.

6-05.2 MATERIALS

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
<tr>
<td>Prestressing Steel</td>
<td>9-07.10</td>
</tr>
<tr>
<td>Timber Piling</td>
<td>9-10.1</td>
</tr>
<tr>
<td>Concrete Piling</td>
<td>9-10.2</td>
</tr>
<tr>
<td>Cast-in-Place Concrete Piling</td>
<td>9-10.3</td>
</tr>
<tr>
<td>Steel Piling</td>
<td>9-10.5</td>
</tr>
<tr>
<td>Steel Pile Tips and Shoes</td>
<td>9-10.6</td>
</tr>
</tbody>
</table>

6-05.3 CONSTRUCTION REQUIREMENTS

6-05.3(1) PILING TERMS

Concrete Piles — Concrete piling may be precast, precast-prestressed, or cast-in-place in steel casings driven to the ultimate bearing capacity called for in the Contract which are filled with concrete (cast-in-place) after driving.

Steel Piles — Steel piles may be open-ended or closed-ended pipe piles, or H-piles.

Overdriving — Over-driving of piles occurs when the ultimate bearing capacity calculated from the equation in Section 6-05.3(12), or the wave equation if applicable, exceeds the ultimate bearing capacity required in the Contract in order to reach the minimum tip elevation specified in the Contract, or as required by the Engineer.

Maximum Driving Resistance — The maximum driving resistance is either the pile ultimate bearing capacity, or ultimate bearing capacity plus overdriving to reach minimum tip elevation is specified in the Contract, whichever is greater.

Wave Equation Analysis — Wave equation analysis is an analysis performed using the wave equation analysis program (WEAP) with a version dated 1987 or later. The wave equation may be used as specified herein to verify the Contractor’s proposed pile driving system. The pile driving system includes, but is not necessarily limited to, the pile, the hammer, the helmet, and any cushion. The wave equation may also be used by the Engineer to determine pile driving criteria as may be required in the Contract.

Ultimate Bearing Capacity — Ultimate bearing capacity refers to the vertical load carrying capacity (in units of force) of a pile as determined by the equation in Section 6-05.3(12), the wave equation analysis, pile driving analyzer and CAPWAP, static load test, or any other means as may be required by the Contract, or the Engineer.

Allowable Bearing Capacity — Allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. The Contract may state the factor of safety to be used in calculating the allowable bearing capacity from the ultimate bearing capacity. In the absence of a specified factor of safety, a value of three (3) shall be used.

Rated Hammer Energy — The rated energy represents the theoretical maximum amount of gross energy that a pile driving hammer can generate. The rated energy of a pile driving hammer shall be stated in the hammer manufacturer’s catalog or specifications for that pile drive hammer.
Developed Hammer Energy — The developed hammer energy is the actual amount of gross energy produced by the hammer for a given blow. This value shall never exceed the rated hammer energy. The developed energy may be calculated as the ram mass times the drop (or stroke) for drop, single acting air/steam, and open-ended diesel hammers. For double acting hydraulic and air/steam hammers, the developed hammer energy shall be calculated from ram impact velocity measurements or other means approved by the Engineer. For closed-ended diesel hammers, the developed energy shall be calculated from the measured bounce chamber pressure for a given blow. Hammer manufacturer calibration data may be used to correlate bounce chamber pressure to developed hammer energy. For a single acting diesel hammer the developed energy is determined using the blows per minute.

Transferred Hammer Energy — The transferred hammer energy is the amount of energy transferred to the pile for a given blow. This value shall never exceed the developed hammer energy. Factors that cause transferred hammer energy to be lower than the developed hammer energy include friction during the ram downstroke, energy retained in the ram and helmet during rebound, and other impact losses. The transferred energy can only be measured directly by use of sensors attached to the pile. A pile driving analyzer (PDA) may be used to measure transferred energy.

Pile Driving Analyzer — A pile driving analyzer (PDA) is a device which can measure the transferred energy of a pile driving system, the compressive and tensile stresses induced in the pile due to driving, the bending stresses induced by hammer mis-alignment with the pile, and estimate the ultimate capacity of a pile at a given blow.

Pile Driving System — The pile driving system includes, but is not necessarily limited to, the hammer, leads, helmet or cap, cushion and pile.

Helmet — The helmet, also termed the cap, drive cap, or driving head, is used to transmit impact forces from the hammer ram to the pile top as uniformly as possible across the pile top such that the impact force of the ram is transmitted axially to the pile. The term helmet can apply to the complete impact force transfer system, which includes the anvil or striker plate, hammer cushion and cushion block, and a pile cushion if used, or just the single piece unit into which these other components (anvil, hammer cushion, etc.) fit. The helmet does not include the follower, if one is used. For hydraulic hammers, the helmet is sometimes referred to as the anvil.

Hammer cushion — The hammer cushion is a disk of material placed on top of the helmet but below the anvil or striker plate to relieve impact shock, thus protecting the hammer and the pile.

Pile cushion — The pile cushion is a disk of material placed between the helmet and the pile top to relieve impact shock, primarily to protect the pile.

Follower — A follower is a structural member placed between the hammer assembly, which includes the helmet, and the pile top when the pile top is below the reach of the hammer.

Pile Driving Refusal — Pile driving refusal is defined as 15 blows per inch for the last 4 inches of driving. This is the maximum blow count allowed during overdriving.

Minimum Tip Elevation — The minimum tip elevation is the elevation to which the pile tip must be driven. Driving deeper in order to obtain the required bearing capacity may be required.

6-05.3(2) ORDERING PILING

The length of piling given in the Bid Form is for estimating purposes only and is not to be used as an order list.

No order list for piling will be furnished by the Engineer.

All piling shall be ordered by the Contractor. The Contractor shall determine the length required from the results obtained by the driving of the test piles called for on the Drawings, and from subsurface exploration data. The Contractor shall increase the lengths, at the Contractor’s sole expense, the necessary amount to provide for fresh heading and to reach from the cutoff elevation up to the position of the driving equipment.

See Section 6-05.3(10) regarding test piles.
6-05.3(3)A **MANUFACTURE OF PRECAST CONCRETE PILING**

Precast concrete piles shall consist of concrete sections reinforced to withstand handling and driving stresses. These may be reinforced with deformed steel bars or prestressed with steel strands. The Drawings show dimensions and details. If the Drawings require piles with square cross-sections, the corners shall be chamfered 1 inch.

13-inch diameter precast or prestressed piles shall meet the requirements of WSDOT Standard Plans E-4.

16-inch and 18-inch diameter precast-prestressed piles shall meet the requirements of WSDOT Standard Plans E-4a.

Temporary stress in the prestressing reinforcement of prestressed piles (before loss from creep and shrinkage) shall be 70 percent of the minimum ultimate tensile strength. (For short periods during manufacture, the reinforcement may be overstressed to 80 percent of ultimate tensile strength if stress after transfer to concrete does not exceed 70 percent of that strength.)

Prestressed concrete piles shall have a final (effective) prestress of at least 1,000 psi.

Unless the Engineer approves splices, all piles shall be full length.

The Engineer intends to perform Quality Assurance Inspection.

6-05.3(3)B **CASTING AND STRESSING**

Reinforcing bars, hoops, shoes, etc. shall be placed as shown in the Contract, with all parts securely tied together and placed to the specified spacings. No concrete shall be poured until all reinforcement is in place in the forms.

The Contractor shall perform quality control inspection. The manufacturing plant for precast concrete piling shall be certified by the Precast/Prestressed Concrete Institute's Plan Certification Program for the type of precast piling that is to be produced and shall be approved by WSDOT as a Certified Precast Concrete Fabricator prior to start of production.

Prior to the start of production of the piling, the Contractor shall advise the Engineer of the production schedule. The Contractor shall give the Inspector safe and free access to the work. If the Inspector observes any nonspecification work or unacceptable quality control practices, the Inspector will advise the plant manager. If the corrective action is not acceptable to the Engineer, the piling(s) will be rejected.

In casting concrete piles, the Contractor shall:

1. Cast them either vertically or horizontally;
2. Use metal forms (unless the Engineer approves otherwise) with smooth joints and inside surfaces that can be reached for cleaning after each use;
3. Brace and stiffen the forms to prevent distortion;
4. Place concrete continuously in each pile, guarding against horizontal or diagonal cleavage planes;
5. Ensure that the reinforcement is properly embedded;
6. Use internal vibration around the reinforcement during concrete placement to prevent rock pockets from forming; and
7. Cast test cylinders with each set of piles as concrete is placed.

Forms shall be metal and shall be braced and stiffened to retain their shape under pressure of wet concrete. Forms shall have smooth joints and inside surfaces easy to reach and clean after each use. That part of a form which shapes the end surface of the pile shall be a true plane at right angles to the pile axis.

Each pile shall contain a cage of nonprestressed reinforcing steel. The Contractor shall follow the Contract in the size and location of this cage, and shall secure it in position during concrete placement. Spiral steel reinforcing shall be covered by at least 1 1/2 inch of concrete measured from the outside pile surface.

Prestressing steel shall be tensioned as required in Section 6-02.3(25)C.
The Drawings specify tensioning stress for strands or wires. Tension shall be measured by jack pressure as described in Section 6-02.3(25)C. Mechanical locks or anchors shall temporarily maintain cable tension. All jacks shall have hydraulic pressure gauges (accurately calibrated and accompanied by a certified calibration curve no more than 180 days old) that permit stress calculations at all times.

All tensioned piles shall be pretensioned. Post-tensioning is not allowed.

The Contractor shall not stress any pile until test cylinders made with it reach a compressive strength of at least 3,300 psi.

6-05.3(3)C FINISHING

As soon as the forms for precast concrete piles are removed, the Contractor shall fill all holes and irregularities with 1:2 mortar. That part of any trestle pile that is to be underground or below the low-water line and all parts of any pile to be used in salt water or alkaline soil shall receive only this mortar treatment. That part of any trestle pile that shows above the ground or water line shall be given a Class 3 finish as described in Section 6-02.3(14)C.

6-05.3(3)D CURING

Precast Concrete Piles. The Contractor:

1. Shall keep the concrete continuously wet with water after placement for at least ten days with Type I or II Portland cement or at least three days with Type III;

2. Shall remove side forms no sooner than 24 hours after concrete placement, and then only if the surrounding air remains at no less 50°F for five days with Type I or II Portland cement or three days with Type III; and

3. May cure precast piles with saturated steam or hot air, as described in Section 6-02.3(25)D, provided the piles are kept continuously wet until the concrete has reached a compressive strength of 3,300 psi.

Precast-Prestressed Concrete Piles. These piles shall be cured as required in Section 6-02.3(25)D.

6-05.3(4) MANUFACTURE OF STEEL CASINGS FOR CAST-IN-PLACE CONCRETE PILES

The diameter of steel casings shall be as specified in the Contract. Spiral welded steel pile casings are not allowed for steel pile casings greater that 24 inches in diameter. A full penetration groove weld with a maximum 1/16 inch offset between welded edges is required.

6-05.3(5) MANUFACTURE OF STEEL PILES

Steel piles shall be made of rolled steel H-pile sections, steel pipe piles, or of other structural steel sections described in the Contract. Spiral welded steel pile casings are not allowed for steel pipe piles greater than 24 inches in diameter. A full penetration groove weld with a maximum 1/16 inch offset between welded edges is required.

6-05.3(6) SPLICING STEEL CASINGS AND STEEL PILES

The Engineer will normally permit steel piles and steel casings for cast-in-place concrete piles to be spliced. But in each case, the Contractor must obtain approval on the need and the method for splicing. Welded splices shall be spaced at a minimum distance of 3 meters. Only welded splices will be permitted.

Splice welds shall comply with Section 6-03.3(25) and AWS D1.1 Structural Welding Code. Splicing of steel piles shall be performed in accordance with an approved weld procedure. The Contractor shall submit a weld procedure to the Engineer for approval prior to welding. For ASTM A252 material, mill certification for each lot of pipe to be welded shall accompany the submittal.

Weld splicing of steel casings for cast-in-place concrete piles shall be the Contractor’s responsibility. Casings which collapse or are not watertight, shall be replaced at the Contractor’s expense.

Steel casing joints shall not be offset more than 1/16 inch.
6-05.3(7) STORAGE AND HANDLING

The Contractor shall store and handle piles in ways that protect them from damage.

6-05.3(7)A TIMBER PILES

Timber piling shall be stacked closely and in a manner to prevent warping. The ground beneath and around stored piles shall be cleared of weeds, brush, and rubbish. Piling shall be covered against the weather if the Engineer requires it.

The Contractor shall take special care to avoid breaking the surface of treated piles. They shall be lifted and moved with rope or chain slings (without the use of cant dogs, peaveys, hooks, or pike poles). If timber piles are rafted, any attachments shall be within 3 feet of the butts or tips. Any surface cut or break shall be brushed with two coats of creosote oil and covered with an approved roofing asphalt. The Engineer may reject any pile because of a cut or break.

6-05.3(7)B PRECAST CONCRETE PILES

The Contractor shall not handle any pile until test cylinders made with the same batch of concrete as the pile reach a compressive strength of at least 3,300 psi.

Storing and handling methods shall protect piles from fractures by impact and undue bending stresses. Handling methods shall never stress the reinforcement more than 12,000 psi. An allowance of twice the calculated load shall be made for impact and shock effects. The method of lifting the piles shall be submitted to the Engineer for approval. The Contractor shall take extra care to avoid damaging the surface of any pile to be used in sea water or alkaline soil.

6-05.3(7)C STEEL CASINGS AND STEEL PILES

The Engineer will reject bent, deformed, or kinked piles which cannot be straightened without damaging the metal.

6-05.3(8) PILE TIPS AND SHOES

The Engineer prefers that timber piles be driven with squared ends. But if conditions require, they may be shod with metal shoes. Pile tips and shoes shall be securely attached to the piles in accordance with the manufacturer's recommendations.

Where called for in the Contract, conical steel pile tips shall be used when driving steel casings. The tips shall be inside fit, flush-mounted such that the tip and/or weld bead does not protrude more than 1/16 inch beyond the nominal outside diameter of the steel casing.

If conical tips are not specified, the lower end of each casing shall have a steel driving plate that is thick enough to keep the casing watertight and free from distortion as it is driven. The diameter of the steel driving plate shall not be greater than the outside diameter of the steel casing.

Where called for in the Contract, inside-fit cutting shoes shall be used when driving open-ended steel piles. The cutting shoes shall be flush-mounted such that the shoe and/or weld bead does not protrude more than 1/16 inch beyond the nominal outside diameter of the steel pile. The cutting shoe shall be of an inside diameter at least 0.75 inch less than the nominal inside diameter of the steel pile.

Pile tips or shoes shall be of a type denoted in the Qualified Products List. If pile tips or shoes other than those denoted in the Qualified Products List are proposed, the Contractor shall submit Shop Drawings of the proposed pile tip along with design calculations, specifications, material chemistry and installation requirements, to the Engineer for approval. The Contractor shall also submit evidence of a pile driving test demonstrating suitability of the proposed pile tip. The test shall be performed in the presence of the Engineer or an acceptable independent testing agency. The test shall consist of driving a pile fitted with the proposed tip. The pile shall be located outside the proposed foundation limits if the pile cannot be visually inspected (see Section 6-05.3(11)). The pile shall be driven to a depth sufficient to develop the required bearing capacity as called for in the Contract, in ground conditions determined to be equivalent to the ground conditions at the Project Site. For closed-ended casings or piles, the pile need not be removed if, in the opinion of the Engineer, the pile can be inspected for evidence of damage to the pile or the tip. For open-ended steel casings or piles, timber piles or H-piles, the pile shall be removed for inspection.
6-05.3(9)A PILE DRIVING EQUIPMENT

Prior to driving any piles, the Contractor shall submit to the Engineer for approval the details of each proposed pile driving system. The pile driving system shall meet the minimum requirements for the various combinations of hammer type and pile type specified in this section. These requirements are minimums and may need to be increased in order to ensure that the required bearing capacity can be achieved, that minimum tip elevations can be reached, and to prevent pile damage.

The Contractor shall submit a wave equation analysis for pile driving systems required by Contract or for all pile driving systems used to drive piling with required ultimate bearing capacities of 300 tons or greater. The wave equation analysis shall be performed by, and bear the stamp of, a civil engineer licensed in the State of Washington. The wave equation analysis shall be performed in accordance with the requirements of this section and the user's manual for the program. The wave equation analysis shall verify that the pile driving system proposed does not produce stresses greater than 90 percent of the yield stress for steel piles, or steel casings for cast-in-place concrete piles. For prestressed concrete piles, the allowable driving stress shall be 3 times the square root of \(f'_c \), plus prestress in tension, and 0.85\(f'_c \) minus prestress in compression. The wave equation shall also verify that the pile driving system does not exceed the refusal criteria at the depth of penetration anticipated for achieving the required ultimate bearing capacity and minimum tip elevation. Furthermore, the wave equation analysis shall verify that at bearing, the maximum driving resistance is 100 blows per foot or less. Unless otherwise specified in the Contract, or directed by the Engineer, the following default values shall be used as input to the wave equation analysis program:

<table>
<thead>
<tr>
<th>Output option (IOUT)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor of safety applied to ((R_{ult}))</td>
<td>1.0</td>
</tr>
<tr>
<td>Type of damping</td>
<td>Smith</td>
</tr>
<tr>
<td>Residual stress option</td>
<td>No</td>
</tr>
</tbody>
</table>

\((R_{ult}) \) is equal to the maximum driving resistance for the pile

<table>
<thead>
<tr>
<th>Hammer</th>
<th>For Analysis of Driving Resistance</th>
<th>For Analysis of Driving Stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single acting diesel hammers</td>
<td>0.72</td>
<td>0.84</td>
</tr>
<tr>
<td>Closed-ended diesel hammers</td>
<td>0.72</td>
<td>0.84</td>
</tr>
<tr>
<td>Single acting air/steam hammers</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>Double acting air/steam hammers</td>
<td>0.45</td>
<td>0.53</td>
</tr>
<tr>
<td>Hydraulic hammers or other external combustion hammers having ram velocity monitors that may be used to assign an equivalent stroke</td>
<td>0.85</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Within 15 Working Days after the Engineer receives the submittal, the Contractor will be notified of the Engineer's acceptance or rejection. If the Contractor wishes to change the pile driving system after the Contractor's proposed system has been approved, the system must be submitted for approval to the Engineer, and up to an additional 10 Working Days for approval will be required.

6-05.3(9)B PILE DRIVING EQUIPMENT MINIMUM REQUIREMENTS

For each drop hammer used, the Contractor shall weigh it in the Engineer's presence or provide the Engineer with a certificate of its weight. The exact weight shall be stamped on the hammer. Drop hammers shall have a weight of not less than:

1. 3,000 pounds for piles under 50 feet long that have an ultimate bearing capacity of not more than 60 tons; and
2. 4,000 pounds for piles 50 feet and longer or that have an ultimate bearing capacity of 60 to 90 tons.
If a drop hammer is used for timber piles, it is preferable to use a heavy hammer and operate with a short drop.

For each diesel, hydraulic, steam, or air-driven hammer used, the Contractor shall provide the Engineer with the manufacturer’s specifications and catalog. These shall show all data needed to calculate the developed energy of the hammer used.

Underwater hammers may be used only with approval of the Engineer.

Drop hammers on timber piles shall have a maximum drop of 10 feet. Drop hammers shall not be used to drive timber piles that have ultimate bearing capacities of more than 60 tons.

When used on timber piles, diesel, hydraulic, steam, or air-driven hammers shall provide at least 13,000 foot-pounds of developed energy per blow. The ram of any diesel hammer shall have a weight of at least 2,700 pounds.

Precast concrete, and precast-prestressed concrete piles shall be driven with a single-acting steam, air, hydraulic, or diesel hammer with a ram weight of at least half as much as the weight of the pile, but never less than the minimums stated below. The ratio of developed hammer energy to ram weight shall not exceed six. Steel casings for cast-in-place concrete, steel pipe, and steel H-piles shall also be driven with diesel, hydraulic, steam, or air hammers.

These hammers shall provide at least the following developed energy per blow:

<table>
<thead>
<tr>
<th>Maximum Driving Resistance (tons)</th>
<th>Air or Steam Hammers</th>
<th>Open Ended Diesel Hammers</th>
<th>Closed Ended Diesel Hammers</th>
<th>Hydraulic Hammers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 165</td>
<td>21,500</td>
<td>23,000</td>
<td>30,000</td>
<td>18,500</td>
</tr>
<tr>
<td>166 to 210</td>
<td>27,500</td>
<td>29,500</td>
<td>38,000</td>
<td>23,500</td>
</tr>
<tr>
<td>211 to 300</td>
<td>39,000</td>
<td>41,500</td>
<td>54,000</td>
<td>33,500</td>
</tr>
<tr>
<td>301 to 450</td>
<td>59,000</td>
<td>63,000</td>
<td>81,000</td>
<td>50,500</td>
</tr>
</tbody>
</table>

In addition, the ram of any diesel or hydraulic hammer shall have the following minimum weights:

<table>
<thead>
<tr>
<th>Maximum Driving Resistance (tons)</th>
<th>Minimum Ram Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 165</td>
<td>2,700</td>
</tr>
<tr>
<td>166 to 210</td>
<td>4,000</td>
</tr>
<tr>
<td>211 to 300</td>
<td>5,000</td>
</tr>
<tr>
<td>301 to 450</td>
<td>6,500</td>
</tr>
</tbody>
</table>

These requirements for minimum hammer size may be waived if to the satisfaction of the Engineer a wave equation analysis is performed which demonstrates the ability of the hammer to obtain the required bearing capacity and minimum tip elevation without damage to the pile.

Vibratory hammers may be used to drive piles provided the location and plumbness requirements of this section are met. The required bearing capacity for all piles driven with vibratory hammers will be determined according to 6-05.3(12) by driving the pile at least an additional 2 feet using an impact hammer. This method of determining bearing capacity will be accepted provided the blows per inch are either constant or increasing. If the pile cannot be driven 2 feet, the pile will be considered acceptable for bearing if the pile is driven to refusal.

If water jets are used, the number of jets and water volume and pressure shall be enough to erode the material next to the pile at the tip. The equipment shall include a minimum of two water jet pipes and two 3/4-inch jet nozzles. The pump shall produce a constant pressure of at least 100 psi at each nozzle.

6-05.3(9)C PILE DRIVING LEADS

All piles shall be driven with fixed-lead drivers. The leads shall be fixed on the top and bottom during the pile driving operation. Leads shall be long enough to eliminate the need for any follower (except for timber piles as specified in Section 6-05.3(11)E). To avoid bruising or breaking the surface of treated timber piles, the
Contractor shall use spuds and chocks as little as possible. In building a trestle or foundation with inclined piles, leads shall be adapted for driving batter piles.

A helmet of the right size for the hammer shall distribute the blow and protect the top of steel piling or casings from driving damage. The driving head shall be positioned symmetrically below the hammer’s striking parts, so that the impact forces are applied concentric to the pile top.

For piles with specified ultimate bearing capacities of 300 tons or greater, pile driving leads other than those fixed at the top and bottom may be used to complete driving, if approved by the Engineer, when all of the following criteria are met:

1. Each plumb and battered pile is located and initially driven at least 20 feet in true alignment using fixed leads or other approved means; and
2. The pile driving system (hammer, cushion and pile) shall be analyzed by Pile Driving Analyzer (PDA) to verify that driving stresses in the pile are not increased due to eccentric loading during driving, and transferred hammer energy is not reduced due to eccentric loading during driving, for all test piles and at least one production pile per pier. Unless otherwise specified, the cost of PDA testing shall be incidental to the various Contract unit prices for driving piles.

6-05.3(10) TEST PILES

If the Contract or the Engineer call for it, the Contractor shall drive test piles to determine pile lengths required to reach the required load-carrying capacity, penetration, or both. Test piles shall be:

1. Made of the same material and have the same tip diameter as the permanent piles (although test piles for treated timber piles may be either treated or untreated);
2. Driven with pile tips if the permanent piles are to have tips;
3. Prebored when preboring is specified for the permanent piles;
4. Identical in cross-section and other characteristics to the permanent piles when the piles are steel casings for cast-in-place concrete piles, precast concrete, precast-prestressed concrete, or steel pipe or H-pile;
5. Long enough to accommodate any soil condition;
6. Driven with equipment and methods identical to those to be used for the permanent piles;
7. Located as the Engineer directs; and
8. Driven before permanent piles in a given pier.

Test piles may also be driven by the Contractor, at no cost to the Owner, as evidence that the pile driving system selected does not damage the pile or result in refusal prior to reaching any specified minimum tip elevation.

Timber test piles shall be driven outside the footing and cut off 1 foot below the finished ground line. Timber test piles shall not be used in place of permanent piles.

Steel and all types of concrete test piles shall become permanent piles. The Engineer has reduced the number of permanent piles by the number of test piles.

The Contractor shall base test pile length on test-hole data in the Contract. Any testpile that prove to be too short shall be replaced (or spliced if the Contract allows splicing) at the Contractor’s expense.

In foundations and trestles, test piles shall be driven to at least 15 percent more than the bearing capacity required for the permanent piles, except where pile driving criteria is determined by the wave equation. When pile driving criteria is specified to be determined by the wave equation, the test piles shall be driven to the same ultimate bearing capacity as the production piles. Test piles shall penetrate at least to the minimum tip elevation(s) specified in the Contract. If no minimum tip elevation is specified, test piles shall extend at least 10 feet below the bottom of the concrete footing or groundline, and 15 feet below the bottom of the concrete seal.

When any test pile to be left as a permanent pile has been so damaged by handling or driving that the Engineer believes it unfit for use, the Contractor shall remove and replace the pile at no additional cost to the Owner. The Engineer may direct the Contractor to overdrive the test pile to more than 15 percent above the minimum bearing capacity for permanent piles or above ultimate bearing capacity if the wave equation is used to determine driving criteria. In this case, the overdriving shall be at the Contractor’s expense. But if pile damage results from this overdriving, any removal and replacement will be at the Owner’s expense.
6-05.3(11) A TOLERANCES

For elevated pier caps, the tops of piles at cut-off elevation shall be within 2 inches of the locations indicated in the Contract. For piles capped below final grade, the tops of piles at cut-off elevation shall be within 6 inches of the horizontal locations indicated in the Contract. No pile edge shall be nearer than 4 inches from the edge of any footing or cap. Piles shall be installed such that the axial alignment of the top 10 feet of the pile is within 4 percent of the specified alignment. No misaligned steel or concrete piles shall be pulled laterally. A properly aligned section shall not be spliced onto a misaligned section for any type of pile. Unless the Contract shows otherwise, all piles shall be driven vertically.

6-05.3(11) B FOUNDATION PIT PREPARATION

The Contractor shall replace (and bear the cost of replacing) any pile damaged or destroyed before or during driving.

The Contractor shall completely dig all foundation pits (and build any required cofferdams or cribs) before driving foundation piles. The Contractor shall adjust pit depths to allow for upheaval caused by pile-driving, judging the amount of adjustment by the nature of the soil. Before constructing the footing or pile cap, the Contractor shall restore the pit bottom to correct elevation by removing material or by backfilling with granular material.

6-05.3(11) C PREPARATION FOR DRIVING

Treated and untreated timber piles shall be freshly cut square on the butt ends just before they are driven. If piles are to be driven into hard material, caps, collars, or bands shall be placed on the butt ends to prevent crushing or brooming. If the head area of the pile is larger than that of the hammer face, the head shall be snipped or chamfered to fit the hammer. On treated piles, the heads shall be snipped or chamfered to at least the depth of the sapwood to avoid splitting the sapwood from the pile body.

The Contractor shall match timber pile sizes in any single bent to prevent sway braces from undue bending or distorting.

When driven, pile faces shall be turned as shown in the Drawings or as the Engineer directs.

No precast-prestressed pile shall be driven until test cylinders poured with it reach at least the specified compressive strength shown in the Contract. On all other precast piles, the cylinders must reach a compressive strength of at least 4,000 psi before the piles are driven.

Helmets of approved design shall protect the heads of all precast concrete piles as they are driven. Each helmet shall have fitted into it a cushion next to the pile head. The bottom side of the helmet shall be recessed sufficiently to accommodate the required pile cushion and hold the pile in place during positioning and driving. The inside helmet diameter shall be determined before casting the pile, and the pile head shall be formed to fit loosely inside the helmet.

Steel Casing, steel pipe, or H-piles shall have square-cut ends. During driving, each pile head shall be protected by a fitted metal pile helmet.

6-05.3(11) D ACHIEVING MINIMUM TIP ELEVATION AND BEARING

Once pile driving has started, each pile shall be driven continuously until the required load bearing capacity shown in the Contract has been achieved. Pauses during pile driving, except for splicing, mechanical breakdown, or other unforeseen events, shall not be allowed.

If the Contract specifies a minimum tip elevation, the pile shall be driven to at least the minimum tip elevation, even if the load bearing capacity has been achieved, unless the Engineer directs otherwise. If a pile does not develop the required load-bearing capacity at the minimum tip elevation, the Contractor shall continue driving the pile until the required bearing capacity is achieved. If no minimum tip elevation is specified, then the piles shall be driven to the load bearing capacity shown in the Contract and the following minimum penetrations:

1. Pile supporting cross-beams, bents, 10 feet below final top of ground elevated pile caps elevation;
2. Piles supporting foundations 10 feet below bottom of foundation; or
3. Piles with a concrete seal 15 feet below bottom of seal.

If overdriving is required in order to reach a specified minimum tip elevation, the Contractor shall provide a pile driving system which does not result in damage to the pile, or produces a refusal before the minimum tip elevation is reached. The cost of overdriving shall be incidental to the various Contract unit prices for furnishing and driving piles.

So long as the pile is not damaged and the embankment or foundation material being driven through is not permanently damaged, the Contractor shall use normal means necessary to:

1. Secure the minimum depth specified;
2. Penetrate hard material that lies under a soft upper layer;
3. Penetrate through hard material to obtain the specified minimum tip elevation; or
4. Penetrate through a previously placed embankment.

Normal means refer to methods such as preboring, spudding, or jetting piles. Blasting or drilling through obstructions are not considered normal means.

Prebored holes and pile spuds shall have a diameter no larger than the least outside dimension of the pile. After the pile is driven, the Contractor shall fill all open spaces between the pile and the soil caused by the preboring or spudding with dry sand, or pea gravel, or controlled density fill as approved by the Engineer.

If water jets are used, the jets shall be withdrawn before the pile reaches its final penetration, and the pile shall then be driven to its final penetration and bearing capacity. The pile shall be driven a minimum of 2 feet to obtain bearing after the jets are withdrawn, or to refusal, whichever occurs first. If the water jets loosen a pile previously driven, it shall be redriven in place or pulled and replaced by a new pile. To check on pile loosening, the Contractor shall attempt to redrive at least one in every five piles.

The various Contract unit prices for driving piles shall cover all costs related to the use of water jets, preboring, or spudding. The Owner will not pay any costs the Contractor incurs in redriving piles loosened as a result of using water jets, preboring, or spudding.

If the Engineer requires, the Contractor shall overdrive the pile beyond the minimum load-bearing capacity and minimum tip elevation shown in the Contract. In this case, the Contractor will not be required to:

1. Use other than normal means to achieve the additional penetration;
2. Bear the expense of removing or replacing any pile damaged by overdriving; or
3. Bear the expense of overdriving the pile more than 3 feet as specified in Section 6-05.5.

In driving piles for footings with seals, the Contractor shall use no method (such as jetting or preboring) that might reduce friction capacity.

6-05.3(11)E USE OF FOLLOWERS FOR DRIVING

Followers shall not be used to drive concrete or steel piles. On timber piles, the Contractor may use steel (not wooden) followers if the driving head and cap fit snugly over the pile head. The Engineer prefers, however, that the hammer strike the pile head directly without any cushion, block, or follower. If a follower is used, the Contractor shall, in every group of 10 piles, drive one long pile without a follower to the required bearing capacity and minimum tip elevation. This long pile shall be used to test the bearing capacity of the piles driven with a follower in the group. The tip elevation of the long pile shall be similar to the elevation of the piles driven with the follower. If the tip elevations are significantly different, as determined by the Engineer, the Contractor shall redrive the remaining piles in the group to the tip elevation of the longer pile.

6-05.3(11)F PILE DAMAGE

The Contractor shall remove and replace (and bear the cost of doing so) any pile which is damaged as determined by the Engineer.

After driving a steel casing for a cast-in-place concrete pile, the Contractor shall leave it empty until the Engineer has inspected and approved it. The Contractor shall make available to the Engineer a light suitable for inspecting the entire length of its interior. The Engineer will reject any casing that is improperly driven, that shows partial collapse that would reduce its bearing capacity, that has been reduced in diameter, or that does not keep out water. The Contractor shall replace (and bear the cost of replacing) any rejected casing.
Pile heads which have been broomed, rolled, or otherwise significantly damaged as determined by the Engineer shall be cut back to undamaged material before proceeding with driving as well as acceptance of the pile.

6-05.3(11)G PILE CUTOFF

The Contractor shall trim the tops of all piles to the true plane shown in the Contract and to the elevation the Engineer requires. If a pile is driven below cutoff elevation without the Engineer’s approval, the Contractor shall remove and replace it (and bear the costs of doing so), even if this requires a longer pile. Any pile that rises as nearby piles are driven, shall be driven down again if the Engineer requires.

Any piles under timber caps or grillages shall be sawed to the exact plane of the structure above them and fit it exactly. No shimming on top of timber piles to adjust for inaccurate pile top elevations will be permitted. If a timber pile is driven out of line, it shall be straightened without damage before it is cut off or braced.

Steel casings shall be cut off at least 6 inches below the finished ground line or at the low water line if a casing may be visible as determined by the Engineer.

6-05.3(11)H PILE DRIVING FROM OR NEAR ADJACENT STRUCTURES

The Contractor shall not drive piling from an existing structure unless all of the following conditions are met:

1. The existing structure is to be demolished within the Contract;
2. The existing structure is permanently closed to traffic; and
3. Working Shop Drawings are submitted in accordance with Sections 6-01.9 and 6-02.3(16), showing the structural adequacy of the existing structure to safely support all of the construction loads.

To minimize the detrimental effects of pile driving vibrations on new concrete less than 28 days old, piles shall not be driven closer to the new concrete than the distance determined from the following formula:

\[D = C \times \sqrt{E} \]

Where:
- \(D\) = distance in feet
- \(E\) = rated hammer energy in foot-pounds
- \(C\) = coefficient shown below based on the number of days of curing time

<table>
<thead>
<tr>
<th>Curing Time (days)</th>
<th>Coefficient ((C))</th>
<th>Curing Time (days)</th>
<th>Coefficient ((C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.34</td>
<td>6</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>7-9</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>10-13</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>14-20</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>0.13</td>
<td>21-28</td>
<td>0.08</td>
</tr>
</tbody>
</table>

This distance may be reduced if approved in writing by the Engineer.

6-05.3(12) DETERMINATION OF BEARING VALUES

The following formula shall be used to determine ultimate bearing capacities:

\[P = F \times E \times L_{n(10N)} \]

Where:
- \(P\) = ultimate bearing capacity, in tons
- \(F\) = 1.65 for air/steam hammers
- 1.55 for open ended diesel hammers
- 1.2 for close ended diesel hammers
- 1.9 for hydraulic hammers
- 0.6 for drop hammers
SECTION 6-05 PILING

E = developed energy, equal to \(W \times H \), in ft-kips

\(W = \) weight of ram, in kips

\(H = \) vertical drop of hammer or stroke of ram, in feet

\(N = \) average penetration resistance in blows per inch for the last 4 inches of driving

\(\ln = \) the natural logarithm, in base “e”

For closed-end diesel hammers (double-acting), the developed hammer energy \((E) \) is to be determined from the bounce chamber reading. Hammer manufacturer calibration data may be used to correlate bounce chamber pressure to developed hammer energy. For double acting hammer hydraulic and air/steam hammers, the developed hammer energy shall be calculated from ram impact velocity measurements or other means approved by the Engineer. For open ended diesel hammers (single-acting) use the blows per minute to determine the developed energy \((E) \).

The above formula applies only when:

1. The hammer is in good condition and operating in a satisfactory manner;
2. A follower is not used;
3. The pile top is not damaged;
4. The pile head is free from broomed or crushed wood fiber;
5. The penetration occurs at a reasonably quick, uniform rate; and the pile has been driven at least 2 feet after any interruption in driving greater than 1 hour in length;
6. There is no perceptible bounce after the blow. If a significant bounce cannot be avoided, twice the height of the bounce shall be deducted from \(H \) to determine its true value in the formula;
7. For timber piles, bearing capacities calculated by the formula above shall be considered effective only when it is less than the crushing strength of the piles; and
8. If \(N \) is greater than or equal to 1.0 blow/inch.

If \(N \) required to achieve the required ultimate bearing capacity using the above formula is less than 1.0 blow/inch, the pile shall be driven until the penetration resistance is a minimum of 1.0 blow/inch for the last 2 feet of driving.

The Engineer may require the Contractor to install a pressure gauge on the inboard end of the hose to check pressure at the hammer.

If water jets are used in driving, bearing capacities shall be determined either: (1) by calculating it with the driving data and the formula above after the jets have been withdrawn and the pile is driven at least 2 feet, or (2) by applying a test load.

6-05.3(13) TREATMENT OF TIMBER PILE HEADS

After cutting timber piles to correct elevation, the Contractor shall thoroughly coat the heads of all untreated piles with two coats of an approved preservative that meets the requirements of Section 9-09 (except concrete-encased piles).

After cutting treated timber piles to correct elevation, the Contractor shall brush three coats of an approved preservative that meets the requirements of Section 9-09 on all pile heads (except those to be covered with concrete footings or concrete caps). The pile heads shall then be capped with alternate layers of an approved roofing asphalt and a waterproofing fabric that conforms to Section 9-11.2. The cap shall be made of four layers of an approved roofing asphalt and three layers of fabric. The fabric shall be cut large enough to cover the pile top and fold down at least 6 inches along all sides of the pile. After the fabric cover is bent down over the pile, its edges shall be fastened with large-head galvanized nails or with three turns of galvanized wire. The edges of the cover shall be neatly trimmed.

On any treated timber pile encased in concrete, the cut end shall receive two coats of an approved preservative that meets the requirements of Section 9-09 and then a heavy coat of an approved roofing asphalt.

6-05.3(14) EXTENSIONS AND BUILD-UPS OF PRECAST CONCRETE PILES

The Contractor shall add extensions, or build-ups (if necessary) on precast concrete piles after they are driven to the required bearing capacity and minimum tip elevation.
Before adding extensions or build-ups to precast-prestressed piles, the Contractor shall remove any spalled concrete, leaving the pile fresh-headed and with a top surface perpendicular to the axis of the pile. The concrete in the build-up shall reach a minimum compressive strength of 5,000 psi at 28 days.

Before adding to non-prestressed precast concrete piles, the Contractor shall cut the pile head away to a depth 40 times the diameter of the vertical reinforcing bar. The final cut shall be perpendicular to the axis of the pile. Reinforcement of the same density and configuration as used in the pile shall be used in the build-up and shall be fastened firmly to the projecting steel. Forms shall be placed to prevent concrete from leaking along the pile. The concrete in the build-up shall reach a minimum compressive strength of 4,000 psi at 28 days.

Just before placing the concrete for extensions or build-ups to precast or precast-prestressed concrete piles, the Contractor shall thoroughly wet the top of the pile. Forms shall remain in place at least three days.

6-05.3(15) COMPLETION OF CAST-IN-PLACE CONCRETE PILES

After approval by the Engineer, driven casings shall be cut off horizontally at the required elevation. They shall be clean and free of water when concrete and reinforcing steel are placed.

These piles shall consist of steel casings driven into the ground, reinforced as specified, and filled with Class AX concrete.

6-05.3(15)A REINFORCEMENT

All bars shall be fastened rigidly into a single unit, then lowered into the casing before the concrete is placed. Loose bars shall not be used.

Spiral hooping reinforcement shall be deformed steel bar, plain steel bar, cold-drawn wire, or deformed wire.

6-05.3(15)B PLACING CONCRETE

Before placing concrete, the Contractor shall remove all debris and water from the casing. If the water cannot be removed, the casing shall be removed (or cut off 2 feet below the ground and filled with sand) and a new one driven.

The Contractor shall place concrete continuously through a 5-foot rigid conduit directing the concrete down the center of the pile casing, ensuring that every part of the pile is filled and the concrete is worked around the reinforcement. The top 5 feet of concrete shall be placed with the tip of the conduit below the top of fresh concrete. The Contractor shall vibrate, as a minimum, the top 10 feet of concrete. In all cases the concrete shall be vibrated to a point at least 5 feet below the original ground line.

6-05.4 MEASUREMENT

Measurement for driving (type) pile will be the number of piles driven in place.

In these categories, measurement will be the number of linear feet driven below cutoff:

1. Furnishing timber piling (untreated or name of treatment).
4. Furnishing steel piling.

Measurement for furnishing and driving test piles will be the number actually furnished and driven as the Contract requires.

Measurement for steel pile tips or shoes will be by the number of tips or shoes actually installed and driven in place on steel casings or steel piles.

6-05.5 PAYMENT

Payment will be made in accordance with Section 1-04.1, for each of the following Bid items that are included in the proposal:

1. "Furnishing and Driving (Type) Test Pile", per each.
The Contract unit price per each for “Furnishing and Driving (Type) Test Pile” shall be full pay for furnishing and driving test piles to the bearing capacity or penetration required by the Engineer, furnishing and installing a pile tip when pile tips are specified for the permanent piles, preboring when preboring is specified for the permanent piles, for pulling the piles or cutting them off as required, and for removing them from the site or for delivery to the Owner for salvage when ordered by the Engineer. This price shall also include all costs in connection with moving all pile driving equipment or other necessary equipment to the Project Site and for removing all such equipment from the Project Site after the piles have been driven. If, after the test piles have been driven, it is found necessary to eliminate the piling from all or any part of the structure, no additional pay will be allowed for moving the pile driving equipment to and from the site of the work.

2. “Driving Timber Pile (untreated or name treatment)”, per each.

The Contract unit price per each for “Driving Timber Pile (untreated or name treatment)” shall include any metal shoes which the Contractor has determined to be beneficial to the pile driving.

3. “Driving Conc. Pile (Size)”, per each.

The Contract unit price per each for “Driving Conc. Pile (Size)” and “Driving St. Pile” shall be full pay for driving the pile to the bearing and/or penetration specified. When overdriving piles beyond the minimum bearing capacity and minimum tip elevation specified in the Contract is required by the Engineer, payment for the first 3 feet of overdriving shall be included in the Contract unit price for “Driving Conc. Pile (Size)” or “Driving St. Pile”. Additional penetration beyond the first 3 feet of overdriving will be paid for on the basis of force account work as covered in Section 1-09.6.

5. “Furnishing Timber Piling (Untreated or Name Treatment)”, per linear foot.

The Contract unit price per linear foot shall be full pay for furnishing the piling specified. Such price shall also be full pay, when measurement includes, for piling length ordered but not driven.

8. “Precast Concrete Pile Buildup”, per each.

Payment for build-ups of precast or precast-prestressed concrete piles will be made on the basis of force account work as covered in Section 1-09.6. No payment will be made for build-ups or additional lengths of build-up made necessary because of damage to the piling during driving. The length of splice for precast concrete piles includes the length cut off to expose reinforcing steel for the splice. The length of splice for precast-prestressed piles includes the length in which holes are drilled and reinforcing bars are grouted.

9. “Furnishing Steel Pile Tip or Shoe (Size)”, per each.

10. Other payment information.

Payment for build-ups of precast or precast-prestressed concrete piles will be made on the basis of force account work as covered in Section 1-09.6. No payment will be made for build-ups or additional lengths of build-up made necessary because of damage to the piling during driving. The length of splice for precast concrete piles includes the length cut off to expose reinforcing steel for the splice. The length of splice for precast-prestressed piles includes the length in which holes are drilled and reinforcing bars are grouted.

Any pile which is damaged or destroyed before or at the time it is being driven shall be replaced by the Contractor at his own cost.

The various Contract unit prices for driving piles shall cover all costs related to the use of water jets, preboring, or spudding. The Owner will not pay any costs the Contractor incurs in redriving piles loosened as a result of water jets, preboring, or spudding.

The Contract unit price per linear foot for furnishing concrete piling (size specified) shall cover all costs related to the pile build-up above the steel casing.

All costs to remove and replace test piles intended to remain as permanent piles but which were damaged in handling or driving shall be borne by the Contractor.
All costs to remove and replace any pile damaged in driving or straightening or driven below grade shall be borne by the Contractor.

Should it be determined by survey that the elevations of the pile tops have heaved after installation, the Contractor shall, at his own expense, redrive the heaved piles to a pile tip penetration equal to or greater than that achieved during initial driving of the heaved pile.

All pile cutoffs and damaged piling shall become the property of the Contractor and shall be disposed of off the site by the Contractor.

The Engineer will inspect all piling prior to driving and reserves the right to have any pile which is damaged or destroyed before or at the time it is being driven replaced by the Contractor at the Contractor's expense.

The Contractor shall furnish at its own expense the necessary lengths of piling to reach from cutoff elevation up to the position of the driving equipment.

All cost and expense to perform the work of removing the heaved soil within the limits of the footing excavation and filling the voids remaining from extracted piles with sand and pea gravel shall be considered incidental to the construction and shall be included in the Contract unit prices for the various pay items of Work involved in this Project.

All cost and expense for design of pile including uplift and pile build-ups, pile markings for blow count, and Shop Drawings shall be considered incidental to construction.

Payment for “Steel Reinforcing Bar” shall be in accordance with Section 6-02.5.

All cost and expense for jetting, sand and pea gravel and vibration monitoring shall be considered incidental to construction and no separate payment or further compensation shall be made.

SECTION 6-06 BRIDGE AND PEDESTRIAN RAILINGS

6-06.1 DESCRIPTION

This work shall consist of providing and building bridge railings and pedestrian railings that meet the requirements of the Drawings, these Specifications, and the Engineer.

6-06.2 MATERIALS

Material shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Railing</td>
<td>9-09</td>
</tr>
<tr>
<td>Metal Railing</td>
<td>9-06.18</td>
</tr>
<tr>
<td></td>
<td>as shown in the Drawing</td>
</tr>
</tbody>
</table>

6-06.3 CONSTRUCTION REQUIREMENTS

6-06.3(1) TIMBER RAILINGS

Wheel guards and railings shall be true to line and grade and framed accurately. The Contractor shall follow Section 6-04 whenever this Section does not specify a construction method.

Unless the Drawings show otherwise, wheel guards shall be:

1. Beveled and surfaced on the roadway side and surfaced on the top edge. They may be surfaced on four sides (S4S);
2. Laid in sections at least 12 feet long; and
3. Bolted through the floor plank and outside stringer (or nailing piece) with 3/4-inch bolts spaced no more than 4 feet apart.

All rails and rail post material shall be S4S and painted as required in Sections 6-04 and 6-07. Railing members shall be fastened securely together, with the bolts tightened once at installation, and again just before the Physical Completion Date. The Contractor shall provide the Engineer at least 3 Working Days advance notice of the last tightening.
6-06.3(2) METAL RAILINGS

Metal railing includes posts, web members, and horizontal members of the sidewalk and roadway railing. Unless the Drawings or Project Manual shows otherwise, these shall be made of aluminum alloy or steel.

Before fabricating the railing, the Contractor shall submit 6 copies of the Shop Drawings for the Engineer’s approval. The Contractor may substitute other rail connection details for those shown in the Drawings if details of these changes are shown in the Shop Drawings and if the Engineer approves. In approving Shop Drawings, the Engineer indicates only that they are adequate and complete enough. Approval does not indicate a check on dimensions.

Anchor bolts or wedge anchors shall be positioned with a template to ensure that bolts match the hole spacings of the bottom channels or anchorage plates.

Where specified, cover plates shall fit the bottom channel tightly after being snapped into position.

Metal railings shall be installed true to line and grade (or camber). After first setting the railing, the Contractor shall readjust all or part of it, if necessary, to create an overall line and grade approved by the Engineer.

6-06.4 MEASUREMENT

Bid items of work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Timber railing will be measured per “Timber and Lumber, (untreated or name treatment)” by the thousand board feet (MBM) as shown in Section 6-04.

Metal railing will be measured by the linear foot along the line and slope at the base of the completed railing.

6-06.5 PAYMENT

Compensation for the cost necessary to complete the work described in Section 6-06 will be made at the Contract unit price Bid only for the Bid items listed or referenced below:

1. “Bridge Railing, (Type)”, per linear foot.
2. “Metal Railing, (Type)”, per linear foot.

The Contract unit prices for “Bridge Railing, (Type)” and “Metal Railing, (Type)” shall include all costs for the Work required to construct the railings as shown in the Drawings and as specified in this Section, including longitudinal, vertical and inclined structural members, plates, fastenings, anchor bolts, galvanizing, grouting, and painting as specified. In case no Bid item is included in the Bid Form for “Bridge Railing, (Type)” and “Metal Railing, (Type)” and payment is not otherwise provided, all metal railings shall be included in the lump sum Contract Price for “Structural Carbon Steel” as specified in Section 6-03.

Payment for timber railing shall be per “Timber and Lumber, (Untreated or Name Treatment)” per Section 6-04.5 and shall include all costs for the Work required to construct and paint the railings and posts as shown in the Drawings.

SECTION 6-07 PAINTING

6-07.1 DESCRIPTION

This work shall consist of preparing the surface, providing and applying the paint, and cleaning up after painting is completed. The work shall comply with all requirements of the Drawings, these Specifications, and the Engineer.

6-07.2 MATERIALS

Materials shall comply with the requirements in Section 9-08.
6-07.3 CONSTRUCTION REQUIREMENTS

6-07.3(1) PAINTING NEW STEEL STRUCTURES

6-07.3(1)A GENERAL
Shop painting of structural steel shall comply with Section 6-03.3(30). No new structural steel shall be painted until approved by the Engineer.

6-07.3(1)B NUMBER OF COATS AND COLOR
All new structural steel work shall be cleaned and painted with three coats of paint, except as otherwise noted. Cleaning shall conform to the requirements set forth in 6-07.3(1)F. The first coat shall be applied immediately after sandblasting the steel in accordance with the applicable parts of Section 6-03.3(30). The second and third coats shall be applied after erection except as otherwise noted in Section 6-03.3(41). The color of each succeeding coat shall be sufficiently different from that previously applied to readily permit the discovery of an incomplete application of the paint coat. The color of the third coat shall be as specified in the Project Manual. Three color samples, approximately 10 inches by 10 inches of the final coat shall be submitted to the Engineer.

6-07.3(1)C WEATHER CONDITIONS
Paint shall not be applied when:
1. The air and metal are cooler than 40°F;
2. Metal surfaces are damp or the air is misty or the surface temperature is less than 5°F above the dew point;
3. The Engineer believes conditions are unsuitable; or
4. The metal is hot enough to cause the paint to blister and leave a porous finish.

Steel painted under cover in damp or cold weather shall remain under cover until the paint dries or weather conditions permit open exposure.

6-07.3(1)D APPLICATION
Painters shall be competent and do careful work. All field applied coats shall be brushed on unless the Contract Documents state otherwise. All paints shall be applied in compliance with manufacturer’s recommendations, unless noted otherwise in the Contract Documents.

Painters shall use round or oval shaped brushes, but with aluminum paint, may use flat brushes up to 4 inches wide. Brushing shall first be in a series of tight circles to fill surface roughness, and then in parallel strokes to leave a smooth, even coating that adheres closely to the metal or previous coat. On surfaces that cannot be brushed, painters shall use sheepskin or other daubers approved by the Engineer.

Prior to the application of 1st coat primer, 2nd coat primer or final coat, the Contractor shall obtain approval from the Engineer who will verify that the surfaces to be painted during that day have first been cleaned in accordance with these Contract Documents.

Bolts, the edges of plates, angles, and other rolled shapes shall receive an extra heavy coating. Painters shall work the paint well into all joints and crevices. All areas named in this paragraph shall be painted lightly just before general painting. This light coating shall be recoated when the general coat is applied.

The Contractor shall schedule operations so that all sand blasted surfaces are primed before the end of the Working Day. Any blasted surface not primed before the end of the Working Day shall be reblasted and primed. If the air temperature or the temperature of the steel falls below the dewpoint after cleaning and prior to application of the first Primer Coat, the Contractor shall reclean the affected area(s) to the satisfaction of the Engineer at no additional cost to the Owner.

When A-6 (Zinc Dust Zinc Oxide Primer) is used as a primer, the Contractor shall insure that the zinc solids are continually mixed in solution. The Contractor shall mix only the amount of A-6 that can be used up within the current Working Day. Any remaining A-6 must be discarded at the end of the day.
The Contractor shall allow each field coat of paint to cure for a minimum of 18 hours or until Engineers approval, prior to the application of the succeeding coat of paint. Each succeeding field coat of paint shall be applied within 72 hours after the application of the previous coat of paint.

Should a painted area indicate bond failure, become soiled, contaminated, or rusted prior to the application of any subsequent coats, the Contractor shall reclean and repaint the area to the satisfaction of the Engineer at no additional cost to the Owner.

Removed materials, scrap or waste materials, and debris shall not be disposed of in any stream, river, or other body of water, nor shall their disposition be in violation of applicable City and County ordinances or regulations or conflict with the requirements imposed by regulatory bodies such as the Environmental Protection Agency, the Department of Ecology and the Board of Public Health, or any other agency entrusted with the protection of public health and safety. Removed materials shall be handled in accordance with existing garbage, recyclables and hazardous waste disposal ordinances. See Section 1-07.5.

Any structural defects, including cracks, missing bolts or rivets, deterioration, etc., detected during the painting of these structures shall be brought to the attention of the Engineer. See Section 1-07.13.

If the Contract Documents permit spray painting, airless spray machines shall satisfactorily apply paint mixed strictly as these Specifications require. All sprayed paint shall be brushed as described elsewhere in the Section. The Contractor shall not, in attempting to operate a sprayer, add more thinner or other substances than the formulas permit. The Engineer’s approval is required for any airless sprayer. If it does not produce satisfactory work, the Engineer may prohibit its use and require brushing instead.

Before it is removed from its containers, paint shall be stirred thoroughly by a mechanical mixer or by other means. During application, it shall be stirred often enough to keep pigments in suspension.

Paint shall be shipped from the factory at brushing consistency. In no case shall thinner, other than minor amounts needed for equipment cleanup, be used on the Project. Any thinner used for equipment cleanup shall be used and stored off the bridge structure at a location approved by the Engineer.

The final coat on any surface exposed to view (as determined by the Engineer) shall be made with paint from a common batch. The Contractor shall provide the Engineer with a method in writing for verifying and certifying that the final coat is, in fact, from a common batch.

6-07.3(1)E REMOVAL OF UNACCEPTABLE PAINT

The Contractor shall remove unacceptable paint and repaint to the satisfaction of the Engineer. Unacceptable paint is any paint that has the wrong color, is of improper consistency or purity, or that is applied on metal not cleaned according to specifications. See Section 1-05.7.

6-07.3(1)F FIELD CLEANING

After completing erection work (including bolting, straightening bent material, etc.), the Contractor shall thoroughly clean all metal surfaces to the satisfaction of the Engineer, using metal brushes, scrapers, chisels, hammers, sandblasting or other means the Engineer requires to remove rust, scale, and dirt. Solvents may be used to remove oil and grease, and bristle or wood fiber brushes to remove loose dust. If the structure is covered with dirt or concrete residue, pressure flushing may be required (as specified in Section 6-07.3(2)).

When shipping, handling, or welding injures the shop coat, damaged areas shall be thoroughly cleaned by wire brushing before field painting. Between coats of paint, if the Engineer requires, the Contractor shall reclean the structure by the methods described above.

6-07.3(1)G FIELD PAINTING

Immediately after the Engineer approves the field cleaning, the Contractor shall apply one touch-up coat of the same paint used for the shop coat to these areas: bolt heads, areas where the shop coat has been broken, and all marks made during shipping or erection.

The first field coat shall be applied only after the touch-up coat is completely dry. If the first field coat leaves small cracks and cavities that are not watertight, they shall be filled with single component urethane sealant meeting the requirements of Federal Specification TT-S-00230C, Type II, Class A (applied per manufacturer’s recommendation) before the second field coat is applied. No later coat shall be applied until the full thickness of the previous coat has dried.
6-07.3(2) REPAINTING EXISTING STEEL STRUCTURES

Unless otherwise provided, maintenance painting includes cleaning and painting the metal parts of an existing bridge. Cleaning means removing rust, scale, dead paint, dirt, grease, and other foreign matter. Foreign matter, if determined by the Engineer to be firmly encapsulated in the existing paint, need not be removed. The Contractor shall clean and paint all exposed metal surfaces that may rust. These include all metal surfaces that do not touch other metal, wooden floor or truss members, concrete or stone masonry, or other surfaces.

Pressure flushing shall precede all other methods of cleaning the metal surfaces. Flushing may be omitted in some areas, if directed by the Engineer.

Prior to pressure flushing and abrasive blasting, the Contractor shall submit for approval by the Engineer a written procedure for collection and removal of debris and blasting material.

Pressure flushing shall be done with clean, fresh water. The nozzle shall have sufficient pressure to remove all soilage debris, loose paint and loose rust scale from all metal surfaces. The pressure flushing equipment shall produce at least 3,000 psi at the nozzle and a discharge of at least 4 gpm. The nozzle shall have a 25-degree tip and shall be held no more than 9 inches from the surface being washed.

Rust removal shall be by means of abrasive blasting in accordance with SSPC-SP6 specifications. All rust spots that are abrasive blasted shall be blasted to a uniform white metal appearance with no areas of stain and gray mill scale permitted. There shall be no evidence of red or yellow rust at the edges of the blasted area. The blasted area shall be extended to sound paint, and the sound paint edges shall be feathered to give a smooth surface. Minimum sandblasting nozzle pressure shall be 90 psi.

White metal is defined by the Structural Steel Painting Council No. Sa3 as a surface with gray-white metallic color, slightly rough, to form a suitable base for paint. If the old paint at the edge of an abrasive blasted area lifts after the spot coats are applied, the lifted paint shall be scraped off and the damaged areas repainted. Rust spots which cannot be removed effectively by abrasive blasting shall be removed with power brushing, scraping or other effective means as directed by the Engineer.

Abrasive blasting operations shall be done in such a manner that no damage occurs to any portions of the work partially or entirely completed.

The degree of cleanliness shall be determined by the Engineer. After abrasive blasting, all loose rust, dirt, sand and dust shall be thoroughly removed before paint is applied. The Contractor shall recover 95% of the waste abrasive blast material. Abrasive blasting clean-up and painting shall be in conformance with local air/water/noise pollution ordinances.

A period of three days shall elapse before applying paint to a surface which has been cleaned by flushing, taking care before painting to remove any dust or dirt which may have settled on the steel members in the intervening time. In those areas where flushing cannot be safely accomplished, the surfaces shall be cleaned with an approved solvent to the satisfaction of the Engineer.

Painting shall not begin until after approval of surface preparation of each section of the structure by the Engineer.

After the touch-up paint has dried, all cracks and cavities which are not sealed with the spot coats, and all cracks and cavities throughout the bridge structure which border upon rusted or stained areas, shall be sealed with single component urethane sealant meeting the requirements of Federal specification TT-S-00230C, Type 2, Class A (applied per manufacturer’s recommendations) before the first coat is applied.

The first coat of paint shall conform to Formula A-6 (Zinc Dust Zinc Oxide Primer) and shall be applied immediately after the steel has been cleaned by sandblasting. The second coat shall also conform to Formula A6 (Zinc Dust Zinc Oxide Primer). The third coat shall conform to Formula C-9-86 (Phenolic Finish coat for Steel). The color of each succeeding coat shall be sufficiently different from that previously applied to readily permit the discovery of an incomplete application of the paint coat. The color of the third coat shall be as specified in the Project Manual. Three color samples, approximately 10 inches by 10 inches, of the final coat shall be submitted to the Engineer.

If an existing coated surface must be color matched, color samples of the paint manufacturer’s product, in the number of shades the Engineer requires, shall be submitted for the Engineer’s approval.
The cleaning-painting requirements of Sections 6-07.3(1)C, D, and E shall apply here unless the Drawings or Project Manual requires otherwise. The Drawings or Project Manual normally specify the number of coats required. If no number is given, the clean metal shall be painted with 3 coats.

If roadway or sidewalk planks lie so close to the metal that they prevent proper cleaning and painting, the Contractor shall remove or cut the planks to provide at least a 1-inch clearance. Any plank removal or cutting shall be done as the Engineer directs. The Contractor shall replace all planks after painting. If removal breaks or damages the planks and makes them unfit for reuse, the Contractor shall replace them at no expense to the Owner.

6-07.3(3) PAINTING TIMBER STRUCTURES

6-07.3(3)A NUMBER OF COATS AND COLOR

Unless the Drawings state otherwise:

1. Rails and rail posts on timber bridges shall receive 2 coats (with the wheel guard painted only on its top edge and roadway side).
2. Other timber work shall receive 3 coats (if the Drawings or Project Manual requires it to be painted).

Paint color shall be as indicated in the Drawings, Project Manual, or as the Engineer may require.

6-07.3(3)B APPLICATION

All wood surfaces which are to be painted must be thoroughly dry and free from oil and dirt. Paint shall be applied by brush, spread evenly, and worked thoroughly into all seasoning cracks, corners, and recesses. No later coat shall be applied until the full thickness of the previous coat has dried.

Final brush strokes with aluminum paint shall be made in the same direction to ensure that powder particles “leaf” evenly.

If a painted surface has been stained by creosote, it shall be given one or more coats of an approved shellac before repainting.

6-07.3(3)C PAINTING TREATED TIMBER

Timber treated with creosote or oil-borne, pentachlorophenol preservatives shall normally not be painted. Timber treated with water-borne preservatives shall be clean and be reduced to no more than 18 percent moisture content before it is painted. Any visible salt crystals on the wood surface shall be washed and brushed away - with the moisture content reduced again to the specified level before painting. Stored timber awaiting painting shall be covered and stacked with spreaders to ensure air circulation.

6-07.3(4) PAINTING GALVANIZED SURFACES

All galvanized surfaces to be painted shall be prepared and painted as follows:

1. Clean all surfaces thoroughly with toluene base solvent;
2. Wipe off the solvent with clean rags until surface is dry; and
3. The clean and dry surface shall be painted according to the following schedule:

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6-86</td>
<td>First Coat, Zinc Dust Zinc Oxide Primer.</td>
</tr>
<tr>
<td>C-9-90</td>
<td>Second Coat, Phenolic Finish Coat for Steel.</td>
</tr>
<tr>
<td>C-9-90</td>
<td>Third Coat, Phenolic Finish Coat for Steel.</td>
</tr>
</tbody>
</table>

The color of the finish field coat shall be as specified in the Project Manual.

Each coat must be dry before the next coat is applied. All coats applied in the shop must be dried hard before shipment.

The second and third coats shall be applied after field erection and shall conform to Formula C-9-90 (Phenolic Finish Coat for Steel). The color of each succeeding coat shall be sufficiently different from that previously applied to readily permit the discovery of an incomplete application of the paint coat.
If an existing coated surface must be color matched, color samples of the paint manufacturer’s product, in the number of shades the Engineer requires, shall be submitted for the Engineer’s approval. After the color has been selected by the Engineer, three color samples, approximately 10 inches by 10 inches of the selected color shall be submitted to the Engineer.

6-07.3(5) PAINT FILM THICKNESS

A full, wet coat of Formula A-5-61 free from runs and sags produces the proper film thickness (the rapid solvent release in this vinyl pretreatment makes it difficult to measure wet film thickness). Dry film thickness shall be between 0.4 and 0.7 mils.

Any other finish, no matter how it is being applied, shall have a wet thickness of at least 3.0 mils per coat and a dry film thickness of at least 1.5 mils per coat.

If the specified number of coats do not produce a combined dry film thickness of at least the sum of the thicknesses required per coat, the Contractor shall apply another full coat of finish paint.

Film thickness - wet and dry - shall be measured by suitable gages. Wet measurements shall be taken immediately after the paint is applied, and dry measurements after the coat is dry and hard.

6-07.3(6) PROTECTION OF PUBLIC AND PRIVATE PROPERTY

The Contractor shall protect public and private property, traffic, and all other parts of the bridge (deck, sidewalks, etc.) from airborne or dripping paint. The Contractor shall supply and install enough canvas or other covering to provide this protection as painting proceeds. If the covering does not adequately protect traffic, the Engineer may require the Contractor to station lookouts who shall stop the painting while vehicles or pedestrians pass.

At the pre-construction conference, or at least 10 Working Days prior to start of painting, the Contractor shall submit for approval by the Engineer a written detailed method for the removal of fresh and cured paint accidentally dropped on passing traffic by spills or drips during the painting operations. This method shall also designate a supervisory employee of the Contractor who shall be responsible for taking the required corrective action when paint damages public or private property.

The Contractor is required to post signs approved by the Engineer for boaters, vehicular and pedestrian traffic regarding the cleaning and painting operations. These signs shall also include information regarding accident spill clean-up.

6-07.3(7) MOISTURE CURED URETHANE PAINT

The Contractor shall submit the manufacturer’s recommendations for preparation, prime coat(s) and finish coat(s) application methods, curing times, and other information as necessary to ensure material and workmanship acceptable to the Engineer.

6-07.4 MEASUREMENT

Bid items of work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

6-07.5 PAYMENT

The Bid Form contains no separate payment item for painting because Contract unit prices cover all costs related to painting new steel or timber structures. Costs related to painting include preparing the surface; applying the paint; protecting and drying the coatings; protecting pedestrians, vehicles, and public and private property from paint; and supplying all tools, tackles, scaffolding, labor, and materials needed to complete the work.

When required, repainting existing steel bridge will be specified in the Project Manual.

Damage and disfigurement of public and/or private properties due to the operation of the Contractor shall be repaired or replaced in accordance with Section 1-07.16.
SECTION 6-08 WATERPROOFING

6-08.1 DESCRIPTION

This work shall consist of applying waterproofing materials to Portland cement concrete surfaces as required by the Drawings, these Specifications, or the Engineer.

6-08.2 MATERIALS

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt for Waterproofing</td>
<td>9-11.1</td>
</tr>
<tr>
<td>Waterproofing Fabric</td>
<td>9-11.2</td>
</tr>
<tr>
<td>Portland Cement Mortar</td>
<td>9-11.3</td>
</tr>
</tbody>
</table>

6-08.3 CONSTRUCTION REQUIREMENTS

6-08.3(1) STORAGE OF FABRIC

The fabric shall be stored in a dry, protected place. Rolls shall not be stored standing on end.

6-08.3(2) PREPARATION OF SURFACE

Concrete surfaces shall be reasonably smooth and without projections or holes that might puncture the waterproofing membrane. The surfaces shall be dry, with all dust and loose material removed. The Contractor shall not apply waterproofing in wet weather or when the air temperature is below 35°F unless the Engineer approves in writing.

6-08.3(3) APPLICATION OF WATERPROOFING

Waterproofing asphalt shall be stirred frequently as it is heated to between 300°F and 350°F. Each heating kettle shall have a thermometer.

Each coat of primer or asphalt shall begin at the low point of the surface so that water runs over (not against or along) the laps.

In applying the waterproofing, the Contractor shall:

1. Apply a coat of primer and let it dry before applying the first asphalt coat;
2. Mop hot asphalt on a band about 20 inches wide across the full length of the surface;
3. Immediately roll a starter strip of half-width fabric into the asphalt, pressing it into place to rid it of all air bubbles and to conform it closely to the surface;
4. Mop hot asphalt over the starter strip and an adjacent section of surface so that the fresh asphalt forms a band slightly wider than the full width of the fabric;
5. Immediately roll a full-width strip of fabric into the fresh asphalt, pressing it into place as before;
6. Mop hot asphalt on the latest strip and on an adjacent band of the surface slightly wider that the full width of the fabric;
7. Immediately roll another strip of fabric into the asphalt, lapping the earlier strip by at least 2 inches and pressing it into place as before;
8. Repeat steps 6 and 7 until the entire surface is covered; and
9. Mop the entire surface with a final coating of hot asphalt.

The three complete moppings of asphalt shall ensure that no fabric layer ever touches another fabric layer or the concrete surface. The Contractor shall examine all laps and ensure that they are thoroughly sealed down.

Each mopping shall cover completely, with a coat heavy enough to hide the fabric weave and all gray spots from the concrete. On horizontal surfaces, at least 12 gallons of asphalt shall be used for every 100 square feet of finished work. On vertical surfaces, at least 15 gallons per 100 square feet shall be used.

At the end of each day’s work, all fabric that was laid shall have received its final mopping of asphalt.
Wherever the membrane ends or is punctured by drains, pipes, etc., the Contractor shall seal the area to prevent water from entering between the waterproofing and the concrete surface.

All flashing (at curbs, against girders, spandrel walls, etc.) shall be made of separate sheets that lap the main membrane by at least 12 inches. Flashing shall be sealed closely:

1. with full metal flashing; or
2. by imbedding its upper edges in a groove poured full of an acceptable joint cement.

At each expansion joint, the membrane shall not be broken but shall be folded to permit movement. At either end of the bridge, the membrane shall run well down abutments and shall allow for expansion and contraction.

6-08.3(4) PROTECTION COURSE
If the Drawings require, the Contractor shall place a layer of mortar at least 1 1/2 inches thick over the whole surface of the membrane just after it has cooled to air temperature. This layer shall be a mix of one part Portland cement to two parts sand. It shall be distributed evenly over the membrane, tamped gently into place, finished by hand to a smooth, hard surface, then covered and kept moist for one week.

6-08.4 MEASUREMENT
Measurement will be the number of square yards of the surface of the waterproofed area.

6-08.5 PAYMENT
Payment will be made in accordance with Section 1-04.1, for the following Bid item when it is included in the proposal:
1. "Waterproofing", per square yard.
 The Contract unit price for "Waterproofing" shall include all costs for the Work necessary to furnish and construct the waterproofing as specified.
 Waterproofing of construction joints not shown on the Drawings shall be at the Contractor’s expense.

SECTION 6-09 CRIBBING
6-09.1 DESCRIPTION
This work is providing materials and constructing cribbing as required by the Drawings, these Specifications, and the Engineer.

6-09.2 MATERIALS
Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabion Cribbing</td>
<td>9-27.3</td>
</tr>
<tr>
<td>Wire</td>
<td>9-27.3(1)</td>
</tr>
<tr>
<td>Clip Fasteners</td>
<td>9-27.3(2)</td>
</tr>
<tr>
<td>Stone</td>
<td>9-27.3(3)</td>
</tr>
</tbody>
</table>

6-09.3 CONSTRUCTION REQUIREMENTS
6-09.3(1) GENERAL REQUIREMENTS
6-09.3(1A) FOUNDATIONS
 Before placing any crib work, the Contractor shall excavate the foundation or bed to the specified grade and obtain the Engineer’s approval on bearing quality.

6-09.3(2) RESERVED
6-09.3(6)A DESCRIPTION
This work is building wire gabion cribbing as required by the Drawings, these Specifications, and the Engineer.

6-09.3(6)B BASKETS
Baskets may be fabricated from either woven or welded steel wire; however, a gabion structure shall not include both. Baskets may be assembled with either lacing wire or clip fasteners; however, a perimeter or diaphragm edge shall not include both.

6-09.3(6)C DIMENSIONS
The Contractor shall supply gabion baskets in the lengths and heights the Drawings require. Each length shall be a multiple (double, triple, or greater) of horizontal width. Horizontal width shall be 36 inches. All baskets from the same manufacturer shall be the same width and shall be within a tolerance of 5 percent of the manufacturer's stated sizes.

6-09.3(6)D FABRICATION OF BASKETS
Gabions shall be made so that the sides, ends, lid, and diaphragms can be assembled into rectangular baskets of the required sizes at the construction site. Common-wall construction may be used in gabion structures up to 12 feet high. Common-wall construction includes any basket where its top serves as the bottom of the one above it or where one wall serves an adjacent basket. When gabion structures are more than 12 feet high, the baskets shall have independent sides, ends, top, and bottom.

Each gabion shall be divided by diaphragms into cells the same length as horizontal basket width. Diaphragms shall be made of the same mesh and gage as the basket body.

All perimeter and diaphragm edges shall be laced or clipped together so that joints are at least as strong as the body of the mesh itself. The ends of the lacing wire shall be anchored by three tight turns around the selvage wire.

6-09.3(6)E FILLING OF BASKETS
Baskets shall be filled with stone that meets the requirements of Section 9-27.3(6). The stone shall be placed and compacted to meet the unit mass requirements of Section 6-09.3(6)F.

Filling shall be in compacted layers not more than 14 inches deep. If cross-connecting wires are required, the Contractor shall adjust the number and depth of layers so that wires occur between the compacted layers.

6-09.3(6)F UNIT MASS REQUIREMENTS AND TEST
The unit weight of the filled gabion basket shall be at least 100 pounds per cubic foot. Should the unit weight be less than 100 pounds per cubic foot, the gabion will be rejected and the Engineer will require the Contractor to conduct and pass additional unit weight tests before completing other gabions.

The Contractor shall conduct either of the following unit weight tests to prove the density of completed gabions:

1. A filled gabion basket shall be selected from the completed structure and weighed; or
2. A gabion basket shall be filled with stone from a loaded truck that has been weighed. After filling, the truck and unused stone shall be weighed again. The difference between the two weighings shall be used to determine weight per cubic foot of the material in the gabion.
The Contractor shall conduct one unit weight test for each 500 cubic yards of gabions placed. The Engineer may reduce the required frequency of these tests after proper unit weight has been consistently demonstrated.

In conducting unit weight test A or B, the Contractor shall provide and use scales that comply with Section 1-09.2.

6-09.3(6)G CONSTRUCTION REQUIREMENTS

Each row or tier of baskets shall be reasonably straight and shall conform with alignment and grade. Hexagonal mesh baskets shall be stretched endwise before filling. Filler shall be placed carefully, then tamped or vibrated. The last layer shall fill each basket completely so that the secured lid rests on the filler. Each basket shall be laced securely to all adjacent baskets and its lid then laced or clipped to the sides, ends, and diaphragms.

All selvage wires of ends of adjacent baskets shall be laced together. The bottom selvage of the basket being constructed on a previously constructed basket must be laced to the top of that basket.

Excavation for gabions shall comply with the requirements for structure excavation in Section 2-09.

Backfilling behind or around gabions shall comply with Section 2-09.3(1)E.

6-09.4 MEASUREMENT

Gabion cribbing will be the calculated neat line volume of gabion baskets in place, using the manufacturer’s stated dimensions.

Structure excavation will be measured by the cubic yard as specified in Section 2-09.

6-09.5 PAYMENT

Payment will be made in accordance with Section 1-04.1, for each of the following Bid items that are included in the proposal:

1. “Structure Excavation”, per cubic yard.

Payment for “Structure Excavation” will be as specified in section 2-09.5. All costs involved in the use of special corners shall be included in the Contract unit price per square foot for the adjacent bins measured as specified in Section 6-09.4.

2. “Gabion Cribbing”, per cubic yard.

The Contract unit price for “Gabion Cribbing” shall include all costs for the Work required to furnish and install the gabion cribbing as specified.

SECTION 6-10 CONCRETE BARRIER

6-10.1 DESCRIPTION

This Section applies to building precast or cast-in-place cement concrete barriers as required by the Drawings, these Specifications, or the Engineer.

6-10.2 MATERIALS

Materials shall meet the requirements of the following sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Aggregates</td>
<td>9-03</td>
</tr>
<tr>
<td>Premolded Joint Fillers</td>
<td>9-04.1</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
</tbody>
</table>

Wire rope shall be Class 6 x 19, made of improved plow steel that has been galvanized and performed. Galvanizing shall meet ASTM A 603. The wire rope shall have right regular lay and a fiber core. It shall be 5/8 inch in diameter and have a minimum breaking strength of 15 tons.
All hardware (connecting pins, drift pins, nuts, washers, etc.) shall be galvanized in keeping with AASHTO M 232.

Connecting pins shall comply with ASTM A 449 and, after galvanizing checked for embrittlement by ASTM A 143. All other hardware shall comply with ASTM A 307.

6-10.3 CONSTRUCTION REQUIREMENTS

6-10.3(1) PRECAST CONCRETE BARRIER

The concrete in precast barrier shall reach a compressive strength of at least 4,000 psi at 28 days. No concrete barrier shall be shipped until test cylinders made of the same concrete and cured under the same conditions show the concrete has reached this strength. Class AX concrete that complies with Section 6-02 will meet this strength requirement. The Contractor may, however, alter the mix and aggregate grading if:

1. The Engineer approves;
2. The altered mix meets the requirement of a Contractor-provided mix design; and
3. No aggregate is used that is larger than the maximum for Class AX concrete.

The Contractor may use Type III Portland cement, but shall bear any added cost.

Precast barrier shall be cast in steel forms. After release, the barrier shall be finished to an even, smooth, dense surface, free from any rock pockets or holes larger than 1/4 inch across. Trowelling shall remove all projecting concrete from the bearing surface.

Precast concrete barrier shall be cured in accordance with Section 6-02.3(25)D except that the barrier shall be cured in the forms until a rebound number test, or test cylinders which have been cured under the same conditions as the barrier, indicate that the concrete has reached a compressive strength of at least 2,500 psi. No additional curing is required once the barrier is removed from the forms.

The barrier shall be precast in sections as the Standard Plans require. All barrier in the same Project (except end sections and variable length units needed for closure) shall be the same length. All barrier shall be new and unused. It shall be true to plan dimensions. The manufacturer shall be responsible for any damage or distortion that results from manufacturing.

Only one section less than 10 feet long may be used in any single run of precast barrier, and it must be at least 8 feet long. It may be precast or cast-in-place. Hardware identical to that used with other sections shall interlock such a section with adjacent precast sections.

When the barrier is being built next to roadway lanes open to traffic, a terminal section shall be connected temporarily to the end of the barrier built each day.

6-10.3(2) CAST-IN-PLACE CONCRETE BARRIER

Forms for cast-in-place barrier shall be made of steel or of exterior plywood coated with plastic. At the Contractor’s option, the barrier may be constructed by the slip-form method.

The barrier shall be made of Class AX concrete that meets the requirements of Section 6-02. The Contractor may use Portland cement Type III, but shall bear any added cost.

Immediately after removing the forms, the Contractor shall complete any finishing work needed to produce a uniformly smooth, dense surface. The surface shall have no rock pockets and no holes larger than 1/4 inch across. The barrier shall be cured in accordance with the requirements described in Section 6-02.3(11)A.

The maximum allowable deviation from a 10-foot straightedge held longitudinally on all surfaces shall be 1/4 inch.

The Contractor may build cast-in-place concrete barrier by the slip-form method. Concrete for slip-form barrier shall meet the requirements for concrete Class AX as outlined in Section 6-02.3, except that the fine aggregate gradation may be Class 1 or 2. Slip-form barrier shall be finished and cured in the same manner as required for concrete traffic and pedestrian barrier in Section 6-02.3(11)A.

At least 3 Working Days in advance of Substantial Completion Date, the Contractor shall request the Engineer to verify the concrete barrier to be free from stains, smears, and any discoloration.
6-10.3(3) RESETTING CONCRETE BARRIER

The Contractor shall reset concrete barrier if the Drawings or the Engineer require. If resetting is impossible immediately after removal, the Contractor shall store the barrier at locations approved by the Engineer.

6-10.3(4) JOINING PRECAST CONCRETE BARRIER TO CAST-IN-PLACE BARRIER

The Contractor may join segments of cast-in-place barrier to precast barrier where transitions, split barriers, or gaps shorter than 10 feet require it. At each joint of this type, the cast-in-place segment shall include hardware that ties both its ends to abutting precast sections.

6-10.3(5) TEMPORARY CONCRETE BARRIER

For temporary concrete barrier, the Contractor may use new or used precast barrier. This barrier shall comply with WSDOT Standard Plan requirements and cross-sectional dimensions, except that:

1. it may be made in other lengths than those shown in the WSDOT Standard Plan; and
2. it may have permanent lifting holes no larger than 4 inches in diameter or lifting loops.

The word “temporary” shall be visibly stamped or stencil painted on each barrier segment.

All barrier shall be in good condition, without cracks, chips, spalls, dirt, or traffic marks. If any barrier segment is damaged during or after placement, the Contractor, at no expense to the Owner, shall immediately repair it to the Engineer's satisfaction or replace it with an undamaged section.

As soon as the temporary barrier is no longer needed, the Contractor shall remove it from the Project. Owner furnished barrier shall remain Owner property, and the Contractor shall deliver it wherever the Engineer directs. Contractor furnished barrier shall remain the property of the Contractor.

6-10.3(6) PLACING CONCRETE BARRIER

Precast concrete barrier shall rest on a paved foundation shaped to a uniform grade and section. The foundation surface shall meet this test for uniformity:

When a 10-foot straightedge is placed on the surface parallel to the centerline for the barrier, the surface shall not vary more than 1/4 inch from the lower edge of the straightedge. If deviations exceed 1/4 inch, the Contractor shall correct them as required in Section 5-04.3(13).

The Contractor shall align the joints of precast segments so that they offset no more than 1/4 inch transversely and no more than 3/4 inch vertically. Grouting is not permitted. If foundation grade and section are acceptable, the Engineer may permit the Contractor to obtain vertical alignment of the barrier by shimming. Shimming shall be done with a polystyrene, foam pad (12 by 24 inches) under the end 12 inches of bearing surface.

Precast barrier shall be handled and placed with equipment that does not damage or disfigure it.

6-10.4 MEASUREMENT

Precast concrete barrier will be measured by the linear foot along its completed line and slope.

Temporary concrete barrier will be measured by the linear foot along the completed line and slope of the barrier, one time only for each setup of barrier protected area. Any intermediate moving or resetting will not be measured.

Cast-in-place concrete barrier will be measured by the linear foot along its completed line unless the Contract specifies that it be measured per cubic yard for concrete Class AX and per pound for steel reinforcing bar (as required in Section 6-02.4).

Cast-in-place concrete barrier light standard section will be by the unit for each light standard section installed.

6-10.5 PAYMENT

Payment will be made in accordance with Section 1-04.1, for each of the following Bid items that are included in the proposal:
SECTION 6-10 CONCRETE BARRIER

1. “Precast Conc. Barrier Type ____”, per linear foot.
2. “Cast-In-Place Conc. Barrier”, per linear foot.

The Contract unit price per linear foot for “Precast Conc. Barrier Type ____” and “Cast-In-Place Conc. Barrier” shall be full pay for excavation, forms, placement, special construction features, and all other materials, tools, equipment, and labor necessary to complete the work as specified; except that when the Contract specifies, the Contract unit price per cubic yard for “Conc. Class AX” and the per pound Contract unit price for “St. Reinf. Bar” shall be full pay for excavation, forms, placement, special construction features, and all other materials, tools, equipment, and labor necessary to complete the work as specified.

5. “Cast-In-Place Conc. Barrier Light Standard Section”, per each.

The Contract unit price per linear foot for “Cast-In-Place Conc. Barrier Light Standard Section” and “Temporary Conc. Barrier” shall be full pay for all costs, including furnishing, installing, connecting, anchoring, maintaining, temporary storage, and final removal of the temporary barrier.

Payment for transition sections between different types of barrier shall be made at the Contract unit price for the type of barrier indicated in the Drawings for each transition section.

SECTION 6-11 PRECAST CONCRETE RETAINING WALL STEMS

6-11.1 DESCRIPTION

The Contractor may construct WSDOT Standard Plan Reinforced Concrete Retaining Walls Type 1, 2, 3, and 4 using precast concrete wall stems as specified herein.

6-11.1(1) SUBMITTALS

Before proceeding with construction of the retaining walls using precast concrete wall stems, the Contractor shall submit the following to the Engineer for approval in accordance with Section 6-02.3(16):

1. Working Shop Drawings for fabrication of the wall stems, showing dimensions, reinforcing steel, joint and joint filler details, lifting devices with the manufacturer’s recommended safe working capacity, and material specifications;
2. Falsework Shop Drawings for the erection of the wall stems showing dimensions, support points, support footing sizes, erection blockouts, member sizes, connections, and material specifications; and
3. Calculations for the precast wall, the connection between the precast wall and the cast-in-place footing, and any modifications to the cast-in-place footing.

Calculations shall be prepared by a professional civil engineer licensed in the State of Washington in accordance with Section 1-05.3(2)F.

6-11.2 MATERIALS

Concrete for the precast concrete wall stems shall meet all the requirements for concrete Class AX as stated in Section 6-02.3.

Concrete for the cast-in-place footing shall meet all the requirements for concrete Class LS as stated in Section 6-02.3(2)A.

6-11.3 CONSTRUCTION REQUIREMENTS

The precast concrete wall stems shall be fabricated in accordance with the dimensions and details shown in the Drawings, except as modified in the approved working Shop Drawings.

The precast concrete wall stems may be fabricated full height in 8-foot, 16-foot, 24-foot widths.

The precast concrete wall stems shall be constructed with a mating shear key between adjacent panels. The shear key shall have beveled corners and shall be 1 1/2 inches in thickness.
The width of the shear key shall be 3 1/2 inches minimum and 5 1/2 inches maximum. The shear key shall be continuous and shall be of uniform width over the entire height of the wall stem. Rolled on textured finishes shall not be used. Precast stem walls shall be cast in a vertical position if the Drawings call for a form liner texture on both sides of the stem wall.

The precast wall panel shall be rigidly held in place during placement and curing of the footing concrete. To ensure an even flow of concrete under and against the base of the wall, a form shall be placed parallel to the wall stem, above the footing, to allow a minimum 1-foot head to develop in the concrete during concrete placement.

The reinforcing steel shall be shifted to clear the erection blockouts in the wall stem by 1 1/2 inches minimum.

All panel joints shall be constructed with joint filler installed on the rear (backfill) side of the wall. The joint filler material shall extend from 2 feet below the final ground level in front of the wall to the top of the wall. The joint filler shall be an inorganic flexible material and shall be installed to create a waterproof seal at panel joints.

The soil bearing pressure beneath the falsework supports for the wall stems shall not exceed the maximum design soil pressure shown in the Drawings for the retaining wall. The wall stem shall be placed a minimum of 1 inch into the footing to provide a shear key. The base of the stem shall be sloped 1/2 inch per foot to facilitate proper concrete placement.

6-11.3(1) TOLERANCES

The construction tolerances for the precast retaining wall stems shall be:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>±1/4 inch</td>
</tr>
<tr>
<td>Width</td>
<td>±1/4 inch</td>
</tr>
<tr>
<td>Thickness</td>
<td>±1/4 inch</td>
</tr>
<tr>
<td>Conc. cover for steel reinforcing bar</td>
<td>– 1/8 inch</td>
</tr>
<tr>
<td>Width of panel joints</td>
<td>±1/4 inch</td>
</tr>
<tr>
<td>Offset of panels</td>
<td>±1/4 inch</td>
</tr>
</tbody>
</table>

1° deviation from a straight line extending 5 feet on each side of panel joint.

6-11.4 MEASUREMENT

Measurement of the materials involved in constructing the precast concrete retaining wall stems and cast-in-place footing will be in accordance with Section 6-02.4 for the applicable related Bid items of work involved in constructing WSDOT Standard Plan Reinforced Concrete Retaining Walls Type 1, 2, 3, and 4.

6-11.5 PAYMENT

All costs associated with constructing the retaining walls using precast concrete retaining wall stems shall be included in the Contract unit prices for the applicable related Bid items of work required for construction of Standard Plan Reinforced Concrete Retaining Walls Type 1, 2, 3, and 4.
This page intentionally blank.
DIVISION 7 STORM DRAIN, CULVERTS, SANITARY AND COMBINED SEWERS, WATER MAINS AND RELATED STRUCTURES

SECTION 7-01 DRAINS

7-01.1 DESCRIPTION

This Work shall consist of constructing subsurface drains in accordance with the Drawings. Work shall include installation of solid and perforated pipe, filter Material, filter fabric (geotextile), sidewalk drains, and gravel drains. Subsurface drains shall be constructed of gravel filter Material and may include perforated pipe and filter fabric as detailed on the Drawings.

7-01.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel Backfill for Drains</td>
<td>9-03.12</td>
</tr>
<tr>
<td>Filter Material</td>
<td>9-03.12(4)</td>
</tr>
<tr>
<td>Joints</td>
<td>9-04.4</td>
</tr>
<tr>
<td>Geotextiles</td>
<td>9-05.22</td>
</tr>
<tr>
<td>Zinc-coated (Galvanized) or Aluminum-coated (Aluminized) Corrugated Iron or Steel Drain Pipe</td>
<td>9-05.1(2)</td>
</tr>
<tr>
<td>Corrugated Aluminum Drain Pipe</td>
<td>9-05.1(3)</td>
</tr>
<tr>
<td>Polyvinyl Chloride (PVC) Drain Pipe</td>
<td>9-05.1(5)</td>
</tr>
<tr>
<td>Corrugated Polyethylene Drainage Tubing Drain Pipe</td>
<td>9-05.1(6)</td>
</tr>
<tr>
<td>Corrugated Polyethylene Drain Pipe 36-inch diameter Maximum</td>
<td>9-05.1(7)</td>
</tr>
<tr>
<td>Perforated Concrete Subsurface Drain Pipe</td>
<td>9-05.2(2)</td>
</tr>
<tr>
<td>Zinc-coated (Galvanized) or Aluminum-coated Subsurface Drain Pipe</td>
<td>9-05.2(4)</td>
</tr>
<tr>
<td>Corrugated Aluminum Subsurface Drain Pipe</td>
<td>9-05.2(5)</td>
</tr>
<tr>
<td>Subsurface Drain Pipe</td>
<td></td>
</tr>
<tr>
<td>Perforated Corrugated Aluminum</td>
<td></td>
</tr>
<tr>
<td>Perforated PVC Subsurface Drain Pipe, 8-inch diameter maximum</td>
<td>9-05.2(6)</td>
</tr>
<tr>
<td>Perforated Polyethylene Drainage Tubing</td>
<td>9-05.2(7)</td>
</tr>
</tbody>
</table>

All reference to filter fabric shall be construed to mean a geotextile Material as specified in Section 9-05.22, Geotextile, Underground Drainage, Low Survivability, Class to be specified in Contract.

7-01.3 CONSTRUCTION REQUIREMENTS

Trenching is subject to the provisions of 7-17.3(1). Excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems.

A trench shall be excavated to the grade, line, and dimensions indicated on the Drawings. The subsurface drain pipe shall be installed with watertight rubber gasketed joint.

Polyvinyl Chloride drain pipe shall be jointed with a bell and spigot joint using a flexible elastomeric seal as described in Section 9-04.8. The bell shall be installed upstream. Corrugated Polyethylene drain pipe shall be jointed with snap-on, screw-on, or wraparound coupling bands as recommended by the manufacturer of the drain pipe.

The subsurface drain trench shall be dug to the required alignment and grade only as far in advance of pipe installing as the Engineer will approve.

The clear width of trench measured at the springline of the pipe in place shall be 24 inches, or 1 foot greater than the outside diameter of the pipe, whichever is the greater.

There shall be no mixing of the excavated Material with the filter Material to be used for backfilling. All excess excavated Material not required elsewhere on the Project shall be disposed of by the Contractor, unless otherwise provided for in the Contract.
The filter Material for drain shall be damp when placed in the trench and shall be deposited uniformly on both sides of the pipe for the full width of the trench and to the springline of the pipe. The Material shall be tamped in 4-inch layers to provide thorough compaction under and on each side of the pipe. Succeeding layers of gravel shall be deposited in 8-inch layers and be thoroughly compacted to the depth shown on the Drawings. The geotextile shall be placed in the manner and at the locations shown on the Drawings. The surface to receive the fabric and the trench into which the fabric is to be placed shall be free of obstructions and debris.

Should the geotextile be damaged during construction, the torn or punctured section shall be repaired by placing a piece of the geotextile that is large enough to cover the damaged area including a minimum 12 inch overlap in each direction with all surrounding geotextile. In places where the trench width is less than 1 foot, the minimum overlap shall be the trench width.

The Contractor shall construct subsurface and sidewalk drains where indicated on the Drawings or where designated by the Engineer.

Where shown on the Drawings for sidewalks or when directed by the Engineer, 4-inch galvanized steel pipe, or other pipe Material as indicated in the Contract, shall be placed under the sidewalk in 1 pipe length and extended across the planting area to the roadway gutter line including through any existing curb.

The slope of the 4-inch drain pipe will be established in the field by the Engineer at the time of excavating for the sidewalk construction.

One end of the drain pipe shall terminate at a gravel drain behind the sidewalk. The opposite end of the drain pipe shall terminate at the gutter line or face of the curb. Where curb exists or new curb is to be installed under the Contract, the curb side terminus of the drain pipe shall be encased in a 14-inch x 24-inch reinforced cement concrete curb block of the depth indicated in the Standard Plans.

The gravel drain shall have minimum dimensions of 12 inches wide, 12 inches deep, and 3 feet in length parallel to the backside of the sidewalk.

Clearances between drains and other utilities shall be maintained per Section 1-07.17.

When it is necessary to intercept water flowing underneath the roadway surfacing, the subsurface drain shall be constructed in accordance with WSDOT Standard Plan No. B-10.

All drain pipe shall be installed with the bell or larger end upstream. All perforated pipe shall be installed with holes facing down. All slotted pipe shall be installed with the slots facing up. All drain pipes shall be open, clean, clear of debris, and free draining.

7-01.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Filter Material, (Type)” will be per cubic yard based on the neat line cross section indicated on the Drawings.

Measurement for geotextile will be as specified in Section 2-12.4.

No Measurement will be made for the reinforced concrete curb block at the curb face.

Measurement for “Pipe, Subsurface Drain, (Material), (Size)” and “Sidewalk Drain, 4-Inch, Type 281” will be by the linear foot measured along the centerline of the pipe from pipe end to pipe end.

7-01.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-01 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:

1. “Pipe, Subsurface Drain, (Material), (Size)”, per linear foot.

 The Contract unit price for “Pipe, Subsurface Drain, (Material), (Size)” shall include all costs for the Work required to furnish and install the pipe, excavate the pipe trench, haul and dispose of excess excavated Material.

2. “Filter Material, (Type)”, per cubic yard.

 The Contract unit price of “Filter Material, (Type)” shall include all costs for the Work required to furnish and install and compact the mineral aggregate filter Material specified on the Drawings, and shall also include,
when the subsurface drain is constructed of only gravel filter Material, the costs of the Work required to excavate the trench and to haul and dispose of excess excavated Material.

3. "Sidewalk Drain, (Size), (Material)", per linear foot.
 The Contract unit price for "Sidewalk Drain, (Size), (Material)" shall include all costs for the Work required to furnish and install the drain pipe with intake screen and the reinforced concrete curb block, excavation and backfill, saw cut and remove the existing curb. It shall also include excavation at the inlet end of the pipe to make a gravel drain that has minimum dimensions of 12 inch wide by 12 inch deep by 3 feet in length.

4. "Gravel Drain, (Type)", per linear foot.
 The Contract unit price for "Gravel Drain, (Type)" shall include all costs for the Work required to excavate a trench 12 inches wide, fill it with mineral aggregate filter Material to a depth of 12 inches, haul and dispose of excess excavated Material and backfill trench with suitable excavated Material.

5. Other payment information.
 Any part of the trench excavated below grade or to a greater width than specified shall be backfilled with filter Material as specified at the Contractor's sole expense.
 Payment for geotextile will be in accordance with Section 2-12.5.

SECTION 7-02 CULVERTS

7-02.1 DESCRIPTION
 This Work shall consist of constructing Culverts of the various types and classes in accordance with the Drawings, these Specifications, and the Standard Plans, at the locations staked by the Engineer or indicated in the Contract.

 Work in ditches and channels over 4 feet deep are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems.

7-02.2 MATERIALS
 Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joints</td>
<td>9-04.3</td>
</tr>
<tr>
<td>Plain Concrete Culvert Pipe</td>
<td>9-05.3(1)</td>
</tr>
<tr>
<td>Reinforced Concrete Culvert Pipe</td>
<td>9-05.3(2)</td>
</tr>
<tr>
<td>Beveled Concrete End Sections</td>
<td>9-05.3(3)</td>
</tr>
<tr>
<td>Steel Culvert Pipe and Pipe Arch</td>
<td>9-05.4</td>
</tr>
<tr>
<td>Steel End Sections</td>
<td>9-05.4(9)</td>
</tr>
<tr>
<td>Aluminum Culvert Pipe</td>
<td>9-05.5</td>
</tr>
<tr>
<td>Aluminum End Sections</td>
<td>9-05.5(6)</td>
</tr>
</tbody>
</table>

 Where steel or aluminum Culvert pipe, pipe arch, or end sections are referred to in this Section, it shall be understood that steel is zinc coated (galvanized) or aluminum coated (aluminized) corrugated iron or steel, and aluminum is corrugated aluminum alloy as specified in Sections 9-05.4 and 9-05.5.

 The class of concrete pipe, or the thickness of steel or aluminum pipe, or pipe arch shall be the same for the entire length of the Culvert, and shall be required using as a basis the maximum height of cover indicated on the Drawings.

 Beveled end sections shall be of the same Material as the Culvert pipe to which they are attached.

7-02.3 CONSTRUCTION REQUIREMENTS

7-02.3(1) PLACING CULVERT PIPE

7-02.3(1)A GENERAL
 A trench shall be excavated to the alignment, depth, and grade shown in the Drawings. Excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A5, Trench Safety Systems.

 Proper preparation of foundation, placement of foundation Material where required, and placement of bedding Material shall precede the installation of all Culvert pipe. This shall include necessary leveling of the
native trench bottom or the top of the foundation Material as well as placement and compaction of required backfill Material to a uniform grade so that the entire length of pipe is supported on a uniformly dense and unyielding base.

Material meeting the requirements of gravel backfill for pipe bedding, when required in the Contract, shall be placed under the pipe and along the sides of the pipe in accordance with Standard Plan No. 285. Bedding shall be placed in two or more lifts. The first lift shall be placed, spread, and compacted to a uniform thickness of 4 inches or 6 inches (as indicated on Std. Plan 285) before the pipe is installed so that the pipe is uniformly supported along the barrel. Subsequent lifts of pipe bedding, of not more than 6 inches in thickness, shall be placed and compacted along the sides to the height shown in Standard Plan No. 285. Lifts shall be brought up evenly on both sides of the pipe and shall be Worked carefully under the pipe haunches and then compacted. If the Engineer determines that the Material existing in the bottom of the trench is satisfactory for bedding the pipe, gravel backfill for pipe bedding is not required. The existing Material shall be loosened, regraded, and compacted to form a dense and unyielding base.

When indicated in the Contract, a dike or plug of impervious Material shall be placed near the intake end of the Culvert to prevent piping as approved by the Engineer. The dike shall be 2 feet long and adequately placed around the pipe into native material to form an impervious barrier. When suitable impervious Materials are not available at the site, suitable backfill shall be obtained as provided in Section 2-09.3(1)E as approved by the Engineer.

Where pipe is to be placed in a new embankment, the embankment shall be constructed for a distance each side of the pipe location of not less than five times the diameter of the pipe and to a minimum height above the pipe equal to 1/2 the outside diameter of the pipe. The embankment Material shall be compacted to 95 percent of maximum density, and the moisture content at the time of compaction shall be between optimum and 3 percentage points below optimum as determined by the Compaction Control Tests specified in Section 2-03.3(14)E. The trench shall then be excavated to a width as indicated in Standard Plan No. 284 and the pipe installed and backfill compacted in accordance with Section 7-17.3(3).

The ends of the pipe, box or pipe arch shall be rigidly supported to prevent movement before and during the construction of end walls or headers.

Culverts shall not extend beyond the staked limits.

Culvert pipe shall be constructed within the same tolerance limits as specified for Sewer pipes in Section 7-17.3(2)B.

In excavation for Culverts, if any part of the excavated Materials meets the Specifications of Section 9-03.12(3), the Engineer may require that such Material, in the quantity required, be selectively removed, stockpiled separately, and used as pipe bedding in place of gravel backfill for pipe bedding. If Material so stockpiled becomes contaminated, the Contractor shall furnish suitable Material in an amount equal to that lost by contamination at no expense to the Owner.

All Culverts and end sections shall be open, clean, and free draining.

If the Contractor proposes an Alternate pipe installation, Shop Drawings for the Alternate shall be submitted to the Engineer for approval prior to procuring or constructing the Alternate.

Pipe installed under side road connections, where the depth of cover is less than 2 feet, shall not be of the bell and spigot type, but shall have beveled ends.

7-02.3(1)B PLACING CONCRETE PIPE

7-02.3(1)B1 GENERAL

In the trench, prepared as specified in Section 7-02.3(1)A, concrete pipe shall be installed beginning at the lower end, with the bell or groove end up grade. For pipe with elliptical reinforcement, the minor axis of reinforcement shall be in a vertical position.

When it is necessary to connect dissimilar pipe, an adapter coupling shall be used as detailed in the Drawings.

7-02.3(1)B2 RUBBER GASKETED JOINTS

In installing concrete pipe with rubber gaskets, the bottom of the trench shall be dewatered, and shall be firm and free of loose Material so that joining can be accomplished without contaminating the joint with mud, silt, gravel, or other foreign Material.
Pipe with affixed gaskets shall be handled carefully to avoid knocking the gasket out of position or contaminating it with foreign material. Any gasket so disturbed shall be removed, cleaned, relubricated if required, and replaced before joining the sections.

The pipe shall be properly aligned before joints are forced home. Sufficient pressure shall be applied in making the joint to ensure that the joint is home, as defined in the standard installation instructions provided by the pipe manufacturer. The Contractor may use any method recommended by the pipe manufacturer and acceptable to the Engineer for pulling the pipe together, except that driving or ramming by hand or machinery will not be permitted. Any pipe damaged during joining and joint tightening shall be removed and replaced at no expense to the Owner.

Sufficient restraint shall be applied to the line to ensure that joints once home remain undisturbed. At the end of the Day’s Work, the last pipe section shall be braced to prevent creep.

7-02.3(1)B3 HAND MORTARED JOINTS

On bell and spigot type pipe, the lower portion of the bell shall be filled with stiff mortar, composed of one part Portland cement and three parts fine sand and shall be sufficiently thick to make the inner surfaces of the abutting sections flush and even as the pipe is installed. On tongue and groove pipe, the lower 1/2 of the groove and the upper 1/2 of the tongue shall be coated with a thin layer of mortar composed of one part Portland cement and two parts fine sand. **The use of aluminum powder or calcium chloride in any mortar will not be allowed.** After covering the ends with mortar, the spigot end (or tongue end) shall be inserted into the bell (or groove) as far as the construction of the pipe permits.

After each section of the pipe is installed, uniformly matched, and the sections fitted as close as the construction of the pipe permits, the joint, both inside and out, shall be filled and sealed with the appropriate mortar mix as specified above. After sealing, the joint on the inside of the pipe shall be cleaned of all surplus mortar and smoothed flush to match the shape of surrounding surface. The mortar outside the pipe shall be properly cured by covering with polyethylene sheeting, damp sand, or spraying with curing compound; the Culvert shall not be backfilled until the mortar has set for at least 24 hours.

7-02.3(1)B4 ELLIPTICAL REINFORCEMENT

In lieu of marking circular pipe with elliptical reinforcement in accordance with ASTM C76, the location of the top of the pipe shall be indicated by 3-inch wide, waterproof, painted stripes on the inside and outside of the pipe for a distance of 2 feet from each end of the section.

7-02.3(1)C PLACING STEEL OR ALUMINUM PIPE

7-02.3(1)C1 GENERAL

Metal pipe and metal pipe arch shall be placed in a trench prepared as specified in Section 7-02.3(1)A. Separate sections of the pipe shall be installed in the trench with the outside laps of circumferential joints upgrade and with longitudinal laps positioned other than in the invert, and firmly joined together with approved bands.

7-02.3(1)C2 INSTALLATION OF METAL END SECTIONS

7-02.3(1)C2a GENERAL

Metal end sections shall be installed in accordance with the requirements of WSDOT Standard Plan Nos. B-7 and B-7a.

7-02.3(1)C2b RESERVED

7-02.3(1)C2c MITERED ENDS

The ends of steel Culvert pipe or pipe arch shall not be beveled unless called for in the Drawings. If beveled ends are specified, the ends of Culvert pipe over 30 inches in diameter shall be mitered to conform to the slope of the embankment in which the Culvert is to be placed whether the Culvert is constructed normal to or at an angle with the centerline of the roadway.

Beveled steel pipe end sections 12 inches through 30 inches in diameter shall be of the same Material and thickness and have the same protective coating as the pipe to which they are attached. Beveled pipe ends of these dimensions shall be constructed in conformance with WSDOT Standard Plan No. B-7a.
7-02.3(1)C3 PROTECTIVE TREATMENT

7-02.3(1)C3a TREATMENT OF STEEL PIPE

Steel pipe and pipe arch Culverts shall be coated by one of the following protective treatments, when such treatment is required in the Contract:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>Coated uniformly inside and out with asphalt.</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>Coated uniformly inside and out with asphalt and with an asphalt paved invert.</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>Coated inside and out with fibers embedded in the spelter coating and then covered on both sides with asphalt.</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>Coated as in Treatment 3 and with an asphalt paved invert.</td>
</tr>
<tr>
<td>Treatment 5</td>
<td>Coated inside and out with asphalt and a 100 percent periphery inside spun asphalt lining.</td>
</tr>
<tr>
<td>Treatment 6</td>
<td>Coated as in Treatment 3 and with a 100 percent periphery inside spun asphalt lining.</td>
</tr>
</tbody>
</table>

7-02.3(1)C3b TREATMENT OF ALUMINUM PIPE

When plain aluminum pipe or pipe arch is used where it makes contact with concrete or concrete pipe, all aluminum surfaces in contact with, and to 1 foot beyond the contact zone with the concrete or concrete pipe shall be cleaned and painted with two coats of paint. The aluminum pipe to be painted shall be cleaned with solvent to remove contaminants. After cleaning, the pipe shall be painted with two coats of paint conforming to Federal Specification TT-P-645 (Primer, Paint, Zinc Chromate, Alkyd Vehicle).

7-02.3(2) RESERVED

7-02.3(3) BACKFILLING

Placement and compaction of backfill Material above the bedding zone shall be performed in accordance with the requirements specified in Section 7-17.3(3) Backfilling Trenches.

The Contractor shall not operate tractors or other heavy Equipment over the Culvert until it has been backfilled as provided above, or until the embankment has reached a height of 2 feet above the top of the Culvert, or as provided in Section 1-07.7 if the site of the Culvert is at a location where legal Highway load limitations are not in effect.

7-02.3(4) REMOVING AND REINSTALLING CULVERTS

In the case of concrete pipe, all joints of the pipe before being reinstalled shall be cleaned so as to be free from all adhering Materials, including old mortar placed as a collar or seal in the original construction.

All Culvert sections removed and not reinstalled shall become the property of the Contractor.

7-02.3(5) PLUGGING EXISTING CULVERTS

Where shown in the Drawings or where designated by the Engineer, existing Culverts shall be plugged on the inlet end as specified in Section 2-02.3(5). Culvert to be abandoned and filled shall be as specified in Section 2-02.3(5).

7-02.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

The length of Culvert pipe, box Culvert, or pipe arch Culvert will be the number of linear feet of completed installation measured along the invert.

Beveled end sections will be considered as part of the Culvert pipe, box Culvert, or pipe arch Culvert and shall be measured as Culverts.

Embankment construction before Culvert placement under the applicable provisions of Section 7-02.3(1) will be measured in accordance with Section 2-03.
7-02.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-02 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:

1. “Pipe, Culvert, (Material), (Class), (Size)”, per linear foot.
2. “Pipe Arch, (Material), (Class), (Size)”, per linear foot.

 The Contract unit price for “Pipe, Culvert, (Material), (Class), (Size)" and “Pipe Arch, (Material), (Class), (Size)” shall include all cost for the Work required to furnish and install Culvert pipe and pipe arch, as specified in Section 7-02 including beveled end sections when required and final cleaning of the Culvert.

3. Other payment information.

 Where Culvert pipes are to be removed but are not to be reinstalled, see Section 2-02.5 for payment.

 No payment will be made for plugging existing pipes. See Section 2-02.5.

 Alternate pipe installations to that shown in the Drawings and approved by the Engineer shall have no increase in the cost to the Owner.

 All costs involved in storing, protecting, re-handling, and placing the excavated Material as directed by the Engineer shall be included in other items of Work on the Project.

 All costs of cleaning and painting aluminum pipe surfaces as specified shall be included in the Contract unit price per linear foot for the aluminum pipe or pipe arch.

 7-02.3(1)C3A treatment shall be incidental to the Contract unit price and no separate or additional payment will be made therefore.

 Payment for trench safety systems, when applicable, will be as specified in Section 7-17.5.

SECTION 7-03 STRUCTURAL PLATE PIPE, PIPE ARCH, ARCH, AND UNDERPASS

7-03.1 DESCRIPTION

This Work shall consist of constructing structural plate pipe, pipe arches, arches, and underpasses of various types and designs in accordance with the Drawings, these Specifications, and WSDOT Standard Plan No.’s B-8 and B-8a, at the locations and in conformity with the lines and grades as staked by the Engineer.

Structural plate pipes shall be full circle of the type, gauge or thickness, and diameter specified. Structural plate pipe arches shall be a multi-centered shape made up of four circular arcs tangent to each other at their junctions and symmetrical about the vertical axis and of the type, gage or thickness, and span specified.

Structural plate arches shall be a single-centered circular arc shape, placed on a reinforced concrete foundation, and of the design, type, gage or thickness, and span as provided for in the Drawings.

Structural plate underpasses shall be a multi-centered shape made up of a variable number of circular arcs tangent to each other at their junctions and symmetrical about the vertical axis and of the design, type, gage or thickness, and span specified.

Work in ditches, channels, and trench excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems.

7-03.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Class B</td>
<td>6-02.3(2)A</td>
</tr>
<tr>
<td>Corrugated Steel</td>
<td>9-05.6(8)A</td>
</tr>
<tr>
<td>Corrugated Aluminum</td>
<td>9-05.6(8)B</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
</tbody>
</table>

Bolts and bolted connections shall conform to the requirements of AASHTO M 167 for steel and AASHTO M 219 for aluminum.
7-03.3 CONSTRUCTION REQUIREMENTS

7-03.3(1) FOUNDATIONS

7-03.3(1)A GENERAL

Structural plate pipes, pipe arches, underpasses, and bases for arches shall be placed on stable foundations prepared to the widths, depth, and grade as shown in the Drawings or as designated by the Engineer. Soft spots encountered in the base shall be excavated to a depth, and backfilled and compacted with Material as directed by the Engineer.

Rock, in either ledge or boulder formation, hard pan, or cemented gravel occurring in the base material shall be excavated below grade and backfilled with suitable Material to provide a minimum 8-inch cushion under the pipes, pipe arches, or underpasses as directed by the Engineer.

Concrete required for constructing structural plate arch foundations shall be Class B concrete in conformance with the requirements of Section 6-02.3(2)A.

Steel reinforcing bars shall conform to the requirements of Section 9-07.

7-03.3(1)B STRUCTURAL PLATE PIPE, PIPE ARCH, AND UNDERPASS

The foundation for structural plate pipes, pipe arches, and underpasses, shall be shaped to conform to their bottom form, and shall form firm and uniform bearing throughout their length. Where pipes, pipe arches, or underpasses are to be installed in new embankment, the embankment shall be constructed to the 1/3-point of structural plate pipes (measured from the invert of the pipe), to the height of maximum horizontal dimension of structural plate pipe arches as provided for in WSDOT Standard Plan Nos. B-8 and B-8a, and in the case of a special design, as indicated on the Drawings, after which the trench shall be excavated and installation made.

The ends of structural plate pipes, pipe arches, arches, or underpasses, shall not be mitered unless indicated otherwise in the Contract. If mitered ends are specified, the slope shall conform to the slope of the embankment in which the Culvert is to be placed and shall be limited to the top arc only.

7-03.3(1)C STRUCTURAL PLATE ARCH

The base for structural plate arches shall be as shown in the Drawings.

7-03.3(2) ASSEMBLING

Structural plate pipes, pipe arches, arches, and underpasses shall be assembled in place in accordance with the manufacturer’s instructions, which shall accompany the shipment of Materials and show the position of each plate and the order of assembly. The Contractor shall submit the manufacturer’s instructions at least 5 Working Days prior to construction.

7-03.3(3) BACKFILLING

After the structural plate pipe, pipe arch, arch, or underpass has been placed in position, it shall be backfilled in accordance with Section 7-02.3(3).

7-03.3(4) FOUNDATION TREATMENT

Earth, or other Material when specified, shall be placed and compacted beneath structural plate pipes, pipe arches, or underpasses in conformance with WSDOT Standard Plan No. B-11.

7-03.3(5) HEADWALLS

If headwalls are specified in the Drawings, they shall be constructed as soon as the embankment has been completed to a sufficient height over the structure to allow the required Work. Headwalls shall be constructed in accordance with the applicable portions of Section 6-02.

7-03.3(6) ALTERNATE INSTALLATION

If the Contractor proposes an Alternate installation, Shop Drawings for the Alternate shall be submitted to the Engineer for approval at least 10 Working Days prior to procuring or constructing the Alternate.

7-03.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.
The length of structural plate pipes, pipe arches, arches, and underpasses, will be the number of linear feet of completed installation measured along the invert.

Concrete will be measured by the cubic yard as specified in Section 6-02.

Steel reinforcing bars will be measured by the pound as specified in Section 6-02.4 Structure excavation will be measured by the cubic yard as specified in Section 2-09.4.

Gravel backfill for foundation will be measured by the cubic yard as specified in Section 2-09.4.

7-03.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-03 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Structural Plate Pipe, (Material), (Thickness), (Diameter)”, per linear foot.
2. “Structural Plate Pipe Arch, (Material), (Thickness), (Span)”, per linear foot.
3. “Structural Plate Arch, (Material), (Thickness), (Span)”, per linear foot.
4. “Underpass, (Design), (Thickness), (Span)”, per linear foot.

The Contract unit price per linear foot for “Structural Plate Pipe, (Material), (Thickness), (Diameter)”, “Structural Plate Pipe Arch, (Material), (Thickness), (Span)”, “Structural Plate Arch, (Material), (Thickness), (Span)”, and “Underpass, (Design), (Thickness), (Span)” of the design, type, gage or thickness, and size specified shall be full pay for furnishing, hauling, and assembling in place the completed structure including excavation, stockpiling, disposal, placing and compacting.

5. **Other payment information.**

Payment for the class of concrete shall be as specified in Section 6-02.

Payment for steel reinforcing bar shall be as specified in Section 6-02.

Payment for structure excavation shall be as specified in Section 2-09.

Payment for imported Mineral Aggregate backfill shall be per Section 4-01.5.

Payment for trench safety systems will be in accordance with section 7-17.5.

SECTION 7-04 RESERVATION

SECTION 7-05 MANHOLES, CATCH BASINS, AND INLETS

7-05.1 DESCRIPTION

This Work shall consist of constructing manholes, catch basins, inlets, and the rebuilding or rechanneling of existing manholes in accordance with these Specifications and Standard Plans at locations shown on the Drawings. The Work shall also include excavation, backfilling, and compacting as specified in Section 7-17.

Work in trench excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems.

7-05.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Shrink Grout</td>
<td>9-04.3(2)</td>
</tr>
<tr>
<td>Joints</td>
<td>9-04</td>
</tr>
<tr>
<td>Reinforced Concrete</td>
<td>9-12.1</td>
</tr>
<tr>
<td>Steps</td>
<td>9-12.2</td>
</tr>
<tr>
<td>Ladders</td>
<td>9-12.3</td>
</tr>
<tr>
<td>Mortar</td>
<td>9-12.4</td>
</tr>
<tr>
<td>Concrete Masonry Units</td>
<td>9-12.5</td>
</tr>
<tr>
<td>Concrete Brick</td>
<td>9-12.6</td>
</tr>
<tr>
<td>Metal Castings</td>
<td>9-12.8</td>
</tr>
<tr>
<td>Traps</td>
<td>9-12.12</td>
</tr>
</tbody>
</table>

Manholes, catch basins and inlets shall be constructed of pre-cast components in accordance with the following Standard Plan:
Any deviations from Standard Plans will be subject to a Shop Drawing submitted by Contractor and approved by the Engineer. Concrete blocks or concrete (masonry) rings may be used for adjustment of the casting to final street grade.

Joints between manhole components shall be rubber gasket.

The concrete mix for manhole channel shall be Class 6(3/4) (see Section 5-05.3(1)).

Precast manhole components shall conform to ASTM C 478 except as modified in Section 7-05.

7-05.3 CONSTRUCTION REQUIREMENTS

7-05.3(1) MANHOLE

7-05.3(1)A FOUNDATION PREPARATION

7-05.3(1)A1 DEWATERING

Dewatering of manhole and catch basin excavations shall conform to the requirements specified in Section 7-17.3(1).

7-05.3(1)A2 FOUNDATION PREPARATION

Adequate foundation support shall be obtained by compacting the existing Subgrade to 95% ASTM D698 maximum dry density to a 12 inch depth. Where unsuitable foundation conditions exist, removal of unsuitable Material and replacement with compacted suitable or imported Material will be required.

7-05.3(1)B BEDDING

7-05.3(1)B1 BEDDING AND FOUNDATION SUPPORT FOR PRECAST BASE SECTION

Manholes and catch basins constructed with precast base sections shall be placed to grade upon a 6-inch minimum thickness of Mineral Aggregate Type 9 per Section 9-03 mixed with 4 sacks of Portland cement per cubic yard of mineral aggregate, with sufficient water added to form a stabilized foundation. The mixed Material shall be placed across the area of the excavation for the base to a minimum distance beyond the face of the manhole as indicated on the Standard Plans and shall be graded to provide uniform bearing support with the precast base section.

7-05.3(1)B2 BEDDING AND FOUNDATION SUPPORT FOR CAST-IN-PLACE BASE SECTION

Cast-in-place bases for manholes and catch basins shall be poured to grade upon a properly prepared foundation. Imported mineral aggregate, where required, shall be placed and compacted to the same limits specified in Section 7-05.3(1)B1. The concrete base shall meet the requirements indicated in the Standard Plans.

7-05.3(1)C DIMENSIONS

Manholes indicated on the Drawings shall conform in all respects to the Standard Plans for each type manhole specified.

7-05.3(1)D REINFORCED CONCRETE

7-05.3(1)D1 MIXTURE

Concrete shall meet the requirements of section 9-12.1(1).

7-05.3(1)D2 CURING

Upon completion of casting, the precast components shall be protected and cured in a moist atmosphere maintained by injection of steam for the requisite length of time and at the required temperature to develop the compressive strength required for manhole components.

Precast components may also be water-cured by any approved method which keeps the components continuously moist during the curing period. Cast-in-place components shall be moist cured for a period not less than 7 Days, except that Type III Portland cement concrete shall be cured for not less than 3 Days.
A pigmented membrane curing compound may be applied in lieu of moist curing with prior approval of the Engineer.

7-05.3(1)E BASE

7-05.3(1)E1 GENERAL

Base sections shall conform to the requirements for precast manhole sections in Section 7-05.3(1)F, except that the reinforced base slab shall be made an integral part of the section, and openings for pipe shall be provided to meet job requirements as indicated on the Drawings. The base slab thickness shall be not less than that indicated on the Standard Plans, and on Type 200 and Type 201 manhole the base slab shall be cast monolithically with the wall section or otherwise constructed in such manner as to achieve a completely watertight structure.

Reinforcement of the base slab shall be in accordance with the Standard Plans. The steel shall be placed 1-1/2 inches from the top, and shall extend into the wall of the manhole section and be tied to the longitudinal steel when called for in the Standard Plans. The walls of the base section shall be reinforced in accordance with ASTM C 478. Openings to receive pipe shall be circular, and shall be held to the minimum size possible to accommodate the pipe to be inserted and to effectively seal the joint. Resilient connectors conforming to ASTM C 923 may be used at the Contractor’s option.

7-05.3(1)E2 PRECAST BASE

The base section shall be carefully placed on the prepared bedding so as to be fully and uniformly supported in true alignment and ensuring that all entering pipes can be inserted on proper grade. All lift holes shall be thoroughly wetted and then completely filled with mortar and smoothed both inside and out to ensure watertightness. All joints between precast sections shall be rubber-gasketed joints.

Precast sections shall be placed and aligned to provide vertical sides and vertical alignment of the ladder rungs. The completed manhole shall be rigid, true to dimensions, and watertight.

In precast manhole sections where steel loops have been provided in lieu of lift holes, the loops shall be removed flush with the inside wall surface after the manhole has been completed. No sharp cutoff protrusion will be permitted. If concrete spalling occurs as a result of the loop removal, the spalled area shall be restored in a workmanlike manner to a uniform smooth surface with mortar.

All precast manhole bases and catch basins shall be manufactured with thin-walled blockouts or openings for pipe connections conforming to pipe alignments shown on the Drawings. Removal of reinforcing steel or of any concrete beyond the blockouts shall not be allowed. Blockout or hole diameters shall be no larger than outside diameter of pipe plus 4 inches.

7-05.3(1)E3 CAST-IN-PLACE BASE

The first precast section shall be placed on the cast-in-place bottom slab and shall be carefully adjusted to true grade and alignment. The bottom slab shall be constructed in accordance with the modified Standard Plans. The existing pipe which the manhole is to be built around shall be inspected by the Contractor prior to placing the bottom slab of the manhole. If the existing line is in bad condition, the Contractor shall immediately notify the Engineer to replace the pipe. The bottom slab shall not be placed prior to the replacement of the damaged pipe.

The first manhole section shall be uniformly supported by the base concrete, and shall not bear directly on any of the pipes.

All lift holes and openings around pipes on precast components and cast-in-place bases or Structures shall be thoroughly wetted, completely filled with mortar, and smoothed and pointed both inside and out to ensure watertightness.

Precast sections shall be placed and aligned so as to provide vertical sides and vertical alignment of the ladder rungs. The completed manhole shall be rigid, true to dimension, and watertight.

7-05.3(1)F PRECAST WALL SECTIONS

Reinforcement for standard sections shall consist of a single cage of steel, placed at the approximate center of the wall section. The cage shall be welded at every circumferential wire, or lapped 40 diameters and tied. The welded splice shall develop a tensile strength of 50,000 psi.
Joints between sections shall be tongue and groove, and shall provide 1/2 inch nominal annular space and a minimum of 1-1/4 inches lap.

No more than two lift holes shall be cast into each section. Holes shall be so located as to not damage reinforcing or expose it to corrosion. At the manufacturer’s option, steel loops may be provided for handling, in lieu of lift holes.

Steps shall be installed in each section so that sections placed together in any combination provide a continuous vertical ladder with rungs equally spaced at 12 inches. The lowest rung shall be not more than 16 inches above the shelf.

Steps shall project uniformly from the inside wall of the manhole per Standard Plan No. 232 and shall be cast or firmly grouted in place to ensure complete watertightness. Where it is intended that manholes be installed without fixed steps, the Project Manual will so specify.

7-05.3(1)G PRECAST CONES

Standard precast cones shall provide reduction from 48 inches to 24 inches with height of not less than 18 inches, and 54 to 24 inches with height of not less than 24 inches (see the Standard Plans for cone dimensions). Jointing of cone section to the riser sections shall be similar to jointing between riser sections, but the top surface of the cone section shall be flat and at least 5 inches wide, radially, to receive adjustment bricks. Wall thickness shall be 4 inches minimum, and reinforcing shall conform to the requirements specified for standard sections of the larger diameter. Steps shall be provided as specified for standard precast sections, and an additional step shall be provided in all 48-inch to 24-inch and 54-inch to 24-inch concrete cones opposite the ladder steps and about midway in elevation. No more than two lift holes shall be cast into each cone, and they shall be located so they do not damage reinforcing or expose it to corrosion. At the manufacturer’s option, steel loops may be provided for handling, in lieu of lift holes.

Handholds (steps) installed in leveling bricks or flat slab shall be modified to allow a minimum clear opening of 21 inches measured at the shortest dimension, but the handhold shall be not less than 3 inches from the inside face of the wall.

7-05.3(1)H FLAT SLAB COVERS

Standard flat slab covers shall be a minimum of 8 inches thick and shall conform to the outer dimension of the standard sections upon which they are to be placed. Details of opening location and reinforcing shall be as shown on the Standard Plans.

7-05.3(1)I FLAT SLAB REDUCTION SECTIONS

Reducions to 24-inch and 48-inch openings can be made by means of a flat slab reducing section as shown on Standard Plan Nos. 200.1b through 206.1b. Standard flat slab covers shall be a minimum of 8 inches thick and shall conform to the outer dimension of the standard sections upon which they are to be placed. Details of opening location and reinforcing shall be as shown on the Standard Plans.

7-05.3(1)J T-TOP PIPE MANHOLES

T-Top pipe manholes shall conform to the Drawings and shall be provided with foundation and bedding.

7-05.3(1)K JOINTS

Joints between precast manhole components shall be rubber gasketed in a manner similar to pipe joints conforming to ASTM C 443. Shop Drawings of the joint design shall be submitted to the Engineer for approval prior to manufacture. Completed joints shall show no visible leakage and shall conform to the dimensional requirements of ASTM C 478.

7-05.3(1)L SHOP FABRICATED CORRUGATED METAL MANHOLES

Shop fabricated corrugated metal manholes, shall be constructed in strict accordance with the Drawings and Shop Drawings as approved by the Engineer, and shall conform to all applicable provisions of these Specifications.

7-05.3(1)M MANHOLE CHANNELS

All manholes shall be channeled unless otherwise Stated in the Drawings. Manhole channels shall be made to conform accurately to the Sewer grade and shall be brought together smoothly with well rounded junctions, satisfactory to the Engineer. Channel sides shall be carried up vertically to
the crown elevation of the various pipes, and the concrete shelf between channels shall be smoothly finished and warped evenly with slopes to drain.

7-05.3(1)N MANHOLE PIPE CONNECTIONS

All pipes, except CMP and PVC pipe, entering or leaving the manhole shall be provided with flexible joints within 1/2 of a pipe diameter or 12 inches, whichever is greater, from the outside face of the manhole structure and shall be placed on firmly compacted bedding, particularly within the area of the manhole excavation which normally is deeper than that of the Sewer trench. Openings surrounding pipes entering the manhole shall be completely filled with either a non-shrink grout and shall be made flush with the remaining manhole concrete surface to ensure watertightness (See Section 9-04.3(2) for non-shrink grout), or a Kor-n-Seal boot.

PVC pipe connecting to manhole shall be provided with a manhole adaptor complete with gasket and approved by the Engineer. No pipe joint in PVC pipe shall be placed within 10 feet of the outside face of the manhole.

7-05.3(1)O BACKFILL

Backfill around drainage Structures, such as manholes, catch basins, inlets, and related Structures, shall consist of suitable Material and shall conform to Section 7-17.3(3).

7-05.3(1)P MANHOLE GRADE ADJUSTMENT

The Contractor shall be responsible for selecting the appropriate precast concrete manhole components, allowing for a maximum height of 26 inches from the top of the cone section or top slab to the finished surface grade for installation of the manhole frame and cover including 8 inches minimum for adjustment brick. The surface grade for frame and cover on unimproved roadways shall match the adjacent existing roadway surface. On Projects calling for regrading and pavement improvements, the grade sheet furnished by the Engineer will show the approximate top grade for manhole within plus or minus 0.2 feet. The final grade will be set by the Engineer.

Final elevation and slope of the frame and cover shall conform to the restored and adjacent street surface. No warping of grades in lieu of manhole frame adjustment will be allowed. All joints in the brick or ring adjustment shall be filled with mortar, and the casting shall be seated in mortar placed on the top brick course. A 3/8-inch thick mortar lining shall be installed inside and outside the adjustment section to provide a smooth, watertight finish.

7-05.3(1)Q LADDER, STEPS AND HANDHOLDS

Base sections of precast manholes more than 3 feet in height shall be provided with a ladder as detailed in Standard Plan No. 232. Where ladders are required, the bottom step in which the ladder is hung shall be manufactured of the same Material as the ladder.

Steps and ladder made of copolymer polypropylene plastic manufactured by Lane International Corp., M. A. Industries, Inc., or approved equal may be substituted for galvanized steel steps and ladder.

Where a flat slab is required in the construction of a manhole, the handholds normally required in this area may either be installed in the slab itself, or installed between the slab and leveling bricks, provided that the overall distance to the upper hand hole in the cone section is no more than 16 inches.

7-05.3(1)R FRAME AND COVER

The casting as shown on Standard Plan No. 230, may be used without extension rings for concrete Pavement, or rigid Pavement base, thickness less the depth of the casting such that the top of casting is level with top of finished Pavement and the casting flange is below the rigid Pavement. Pavement thickness greater than the depth of casting shall have ring extensions (see Standard Plan No. 231) epoxied to the casting frame to allow the top of casting to be level with the top of finished Pavement, and the bottom of casting flange to be below the bottom of rigid Pavement.

Concrete Pavement around all manholes, or any other structure, where the casting flange is within the concrete pavement or within the rigid base, shall include 2 squares of steel reinforcement placed around the casting at mid-depth of the Pavement slab. No. 4 rebar shall be used to form 2 separate squares, rotated 45 degrees from each other, and at a minimum clearance of 2 inches from the casting.
7-05.3(1)S CONNECTIONS TO EXISTING MANHOLES

The Contractor shall verify invert elevations prior to construction. Discrepancies in invert elevations shall be immediately brought to the attention of the Engineer. The crown elevation of lateral pipes shall be the same as the crown elevation of the incoming pipe. The existing base shall be reshaped to provide a channel equivalent to that specified for a rechanneled manhole (see Section 7-05.3(1)T).

The Contractor shall excavate completely around the manhole to prevent unbalanced loading. The manhole shall be kept in operation at all times, and the necessary precautions shall be taken to prevent debris or other material from entering the sewer. This includes building a tight pipeline bypass through the existing channel where required.

The Contractor shall core drill, line drill or wall saw an opening to match the size of pipe to be inserted. Where line drilling is the method used, the method of drilling holes shall prevent overbreakage. All openings must provide a minimum of 1 inch and a maximum of 2 inches clearance around the circumference of the pipe. Upstream pipes, except PVC pipe, penetrating the walls of manholes shall be placed with the bell facing out such that the bell is placed snug against the outside wall of the manhole as the angle of penetration allows. Pipe, except PVC pipe, leaving or entering manholes shall be provided with a flexible joint within 1/2 of a pipe diameter, or 12 inches, whichever is greater. After pipes have been placed in their final position, the surface area around the opening in the manhole and the surface of the pipe shall be cleaned of all dirt, dust, grease, oil and other contaminants and then roughened and wetted with water. The opening between pipe and broken out concrete shall be grouted as specified in Section 7-05.3(1)N. PVC pipe connecting to an existing manhole shall be installed according to Section 7-05.3(1)N.

7-05.3(1)T RECHANNEL EXISTING MANHOLE

Rechanneling of an existing manhole shall include all work of removing the existing channel, installing the new channel and constructing new pipe opening or openings. It shall also include the work of connecting the pipe to the manhole in accordance with Section 7-05.3(1)S. Rechanneling shall be performed as specified in Section 7-05.3(1)M.

7-05.3(1)U REBUILD EXISTING MANHOLE

Where noted on the drawings, the Contractor shall rebuild the existing manhole per Standard Plan 208 to accommodate a new manhole frame and cover meeting the requirements of Standard Plan 230. Work required to rebuild an existing manhole includes excavation around the manhole, removal and salvage of the existing manhole frame and cover, leveling bricks, and the upper portion of the cone section to a depth yielding an opening of inside diameter as indicated on the Standard Plan. The cone section shall be rebuilt, leveling bricks installed, new manhole steps installed meeting the requirements of Sections 7-05.3(1)F or 7-05.3(1)G, and a new frame and cover installed in accordance with Section 7-05.3(1)R. The surrounding excavation shall be backfilled and compacted with suitable material. Excavation, backfill, and compaction shall conform to the applicable portions of Section 7-17. Salvage shall be in accordance with Section 2-02.3(7).

7-05.3(2) CATCH BASINS AND INLETS

7-05.3(2)A GENERAL

Construction requirements for catch basins and inlets shall follow all applicable specifications of Section 7-05.3(1) for manholes and manhole pipe connections with the exception no channeling is required.

Catch basin shall be installed at an elevation which provides at least 2 feet 8 inches of clearance between the outlet pipe and the bottom of the basin. Connections to the catch basin shall be made only at the pre-drilled holes or knock outs provided in the walls of the catch basin. In order to meet this requirement, the Contractor shall determine beforehand the approximate elevation of the proposed inflow and outflow pipes by taking into account the length of inlet connection pipe, the throw in the roadway, and any existing utilities or obstructions that may interfere with installing the inlet connection pipe. All these items have a bearing on the depth of the inlet pipe at the catch basin, and the bottom elevation of the catch basin.

Where it is necessary for the Contractor to set the catch basin deeper to accommodate the deeper incoming pipe, the additional depth of the catch basin requires additional rows of leveling bricks, up to a maximum of 16 inches, or installation of a one-foot to two-foot high concrete ring section below the top slab or cone section. This added concrete ring section shall be compatible with the standard catch basin section and shall accommodate rubber gaskets at the joints.
All new catch basins shall be provided with openings or knockouts for insertion of pipe connections and with a trap for the outlet pipe. The Contractor shall furnish and install new traps for relocated and rebuilt catch basins. When connections are to be made to existing catch basins with no available hole or knockout, or where a “knockout” of adequate size is not provided, pipe connections shall be accomplished by core drilling, line drilling or wall sawing. All openings must provide a minimum of 1 inch and a maximum of 2 inches clearance around the circumference of the pipe. Where line drilling is the method used, the method of drilling holes shall prevent overbreakage. After pipes have been placed in position, the opening between pipe and wall of catch basin or inlet shall be grouted as specified in Section 7-05.3(1)N.

7-05.3(2)C CATCH BASIN GRADE ADJUSTMENT

Catch basin frame and cover grade adjustment shall be in accordance with Section 7-05.3(1)P.

7-05.3(2)D INLET GRADE ADJUSTMENT

The inlet frame may be either cast into a concrete collar or set flange down on a minimum of one row of concrete adjustment blocks and mortared. It shall not, in any case, be grouted to final grade until the final elevation of the Pavement, gutter, ditch or sidewalk in which it is to be placed has been established and permission has been given by the Engineer to mortar the casting in place. Location of inlet will be staked by the Engineer. The bottom of the inlet shall be level with the invert of the outlet pipe.

7-05.3(2)E RELOCATE EXISTING CATCH BASIN OR INLET

Work required for relocation of existing catch basin or inlet shall include necessary excavation to remove without damage the existing catch basin or inlet, its frame and grate or cover and transporting and installing at the new location. Backfill and compaction shall be in accordance with Section 7-17.3(3). Grade adjustment shall be in accordance with Sections 7-05.3(2)C or 7-05.3(2)D.

The Contractor shall furnish and install new outlet traps. Existing Type 164 inlets shall be removed and disposed when the adjacent pavement is designated to be removed.

7-05.3(2)F REBUILD EXISTING CATCH BASIN

Where noted on the Drawing, the Contractor shall rebuild existing catch basin to accommodate a new frame and grate or cover as designated. Work required to rebuild catch basin includes excavation, the removal of the existing frame and grate or cover, leveling bricks, upper portion of catch basin chamber, and installing a new cone section, leveling bricks and new frame and grate or cover. Excavation, backfill, and compaction shall conform to the applicable portions of Section 7-17. Salvage shall be in accordance to Section 2-02.3(7). Grade adjustment shall be in accordance with Sections 7-05.3(2)C.

The Contractor shall furnish and install new outlet traps.

7-05.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Extra Depth (Type) Manhole” will be by the vertical foot for all depth in excess of 10 feet measured from the invert of the outlet pipe to the top of the casting.

Measurement for Extra Depth for the type of manholes which are built on top of and are fully supported by large diameter pipe, will be by the vertical foot for extra depth in excess of the 10 feet measured from the springline of the “supporting” pipe to the top of the manhole casting.

Measurement for “Extra Depth, Catch basin” will be by the vertical foot for any 4 foot diameter riser section required over the Standard section shown in the Standard Plans.

7-05.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-05 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Manhole (Type)”, per each.
The Contract unit price for “Manhole (Type)” shall include all costs for furnishing and installing manholes complete to finish street grade, including excavation, bedding, mortar, non-shrink grout, brick, block, castings, channeling, ladder, steps, connections to pipelines, and backfill with suitable native Material for a manhole depth up to and including 10 feet.

2. “Extra Depth, (Type) Manhole”, per vertical foot.
 The Contract unit price for “Extra Depth, (Type) Manhole” shall include all costs for the Work required to construct the portion of a manhole in excess of 10 vertical feet. Payment for extra depth of the A and B types of manhole will be made under the three digit Standard Plan number as 200A, 200B, 201A, 201B, etc.

3. “Rechannel Manhole”, per each.
 The Contract unit price for “Rechannel Manhole” shall include all costs to complete the manhole channeling Work as specified in Section 7-05.3(1)T and of core drilling openings for new pipes to the manhole when performed in an existing manhole.

 If connecting a new pipe to an existing manhole requires rechanneling of the manhole, the Work involved in connecting such pipe to the manhole is incidental to “Rechannel Manhole”, per each, and shall be performed as specified in Section 7-05.3(1)T. If, on the other hand, the Work involves only the cutting of an opening and connecting the pipe, this Work shall be considered incidental to the Contract unit price for installation of the pipe, per linear foot.

4. “Catch Basin, (Type)”, per each.
 The Contract unit price for “Catch Basin, (Type)” shall include all costs for the Work required to furnish and install the catch basin including trap, excavation and backfill with native Material, adjustment brick and blocks, mortar, non-shrink grout, plaster, and castings.

 The Contract unit price for “Extra Depth, Catch Basin” shall include all costs for the Work required to construct a catch basin in excess of the standard height as shown in the Standard Plans when 4 foot diameter riser section are used.

6. “Inlet, (Type)”, per each.
 The Contract unit price for “Inlet, (Type)” shall include all costs for the Work required to furnish and install the inlet including excavation, brick, block, mortar, and castings.

7. “Rebuild (Item)”, per each.
 The Contract unit price for “Rebuild (Item)” shall include all costs for the Work required, including the new casting, to completely rebuild the existing manhole to finished street grade as specified in Section 7-05.3(1)U.

 The Contract unit price for “Rebuild Catch Basin” shall include all costs for the Work required to rebuild the catch basin, including furnishing and installing new traps, excavation and backfill with native Material, adjustment brick and blocks, mortar, non-shrink grout, plaster and castings.

8. “Relocate (Item)”, per each.
 The Contract unit price for “Relocate (Item)” shall include all costs for the Work required to relocate the catch basin including furnishing and installing new traps, excavation and backfill with native Material, adjustment brick and blocks, mortar, non-shrink grout, plaster and castings.

9. Other payment information.
 When, at the direction of the Engineer, Mineral Aggregate Type 17 or other Material acceptable to the Engineer used as backfill, payment shall be per Section 4-01.5.

 Payment for “Extra Excavation”, will be per Section 7-17.5.

 Foundation Material when required by the Engineer, shall be paid as “Mineral Aggregate Type 2” or “Mineral Aggregate Type 14” per cubic yard, per Section 4-01.5.

 Where foundation Material is not shown on the Drawings and no Bid item for “Mineral Aggregate Type 2” or “Mineral Aggregate Type 14” is included in the Bid Form, and it is determined by the Engineer that the existing foundation is unsuitable, payment will be made in accordance with Section 1-09.4.
Final adjustment of the casting for new construction of manhole, catch basin and inlet shall be considered incidental and included in the Contract unit price for the manhole, catch basin, and inlet.

Where a newly constructed manhole and casting has been completed to the finished grade set by the Engineer and is later required to be adjusted up or down to a revised grade by the Engineer, the adjustment shall be paid in accordance with Section 7-20.5.

Payment for trench safety system will be as specified in Section 7-17.5.

SECTION 7-06 PIPE ANCHORS

7-06.1 DESCRIPTION
This Work shall consist of constructing concrete pipe anchors, prefabricated pipe anchors on tongue and groove concrete pipe and other pipes as designated and in accordance with WSDOT Standard Plan No. B-12, these Specifications, the details shown in the Drawings and as directed by the Engineer.

7-06.2 MATERIALS
Material shall meet the requirements of the applicable portion of Sections 6-02 and 6-03.

7-06.3 CONSTRUCTION REQUIREMENTS
The construction shall be in accordance with the Drawings and the applicable portions of Sections 6-02.3 and 6-03.3.

7-06.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

7-06.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 7-06 will be made at the Contract unit price Bid only for the Bid item listed or referenced below:

1. “Pipe Anchor”, per each.

The Contract unit price for “Pipe Anchor” shall include all costs for the Work specified in Section 7-06.

SECTION 7-07 CLEANING EXISTING DRAINAGE STRUCTURES

7-07.1 DESCRIPTION
This Work shall consist of cleaning and removing all debris and obstructions from existing Culvert pipes, sanitary Sewer pipes, drains, inlet Structures, manholes, box Culverts, grates, trash racks, or other drainage features within the limits of the Project.

7-07.2 RESERVED

7-07.3 CONSTRUCTION REQUIREMENTS
Existing drainage facilities connecting to new Work shall be cleaned as a first order of Work to enhance drainage off and through the Project. These facilities shall be kept clean up to the Physical Completion Date.

All existing pipes and drainage Structures connecting to new Work shall be cleaned by flushing, or by rodding, or by such manner as may be necessary as approved by the Engineer to provide unobstructed drainage. All catch basin sumps, manholes, inlet and outlet Structures, and debris racks shall also be freed of all dirt, rock, and debris.

7-07.4 MEASUREMENT
Work described in Section 7-07 will not be measured for payment.

7-07.5 PAYMENT
All Work described in Section 7-07 shall be considered incidental to the various Bid items comprising this improvement.
SECTION 7-08 MISCELLANEOUS PIPE CONNECTIONS

7-08.1 DESCRIPTION

This Work shall consist of excavation, foundation preparation, bedding, backfilling and compacting for the construction of miscellaneous Sewer and drain appurtenances other than those described in Section 7-01, 7-17 and 7-18.

Work in trench excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems.

7-08.2 MATERIALS

Materials shall meet the requirements in Section 9-04 and Section 9-05.

7-08.3 CONSTRUCTION REQUIREMENTS

7-08.3(1) EXCAVATION AND BACKFILL

Trench excavation and backfill shall be as specified in Section 7-17.

7-08.3(2) CONNECTIONS TO EXISTING SANITARY SEWERS

When making a connection to an existing sanitary Sewer line or manhole, the Contractor shall excavate and expose the existing facility where shown on the Drawings. In the event there is no existing tee or wye, refer to Section 7-17.3(2)C3 “CUT-IN TEE ON EXISTING PIPE”. See Section 7-05.3(1)S for connections to existing manholes.

7-08.3(3) PIPE INSTALLING, JOINTING, AND TESTING

Pipe installing, bedding, jointing, backfilling, and pipe connections shall conform to the applicable requirements of Section 7-17. Testing for acceptance as provided in Section 7-17.3(4) will not be required.

7-08.3(4) CATCH BASIN CONNECTIONS

Catch basin connections are pipe lines connecting outlets of catch basins to a storm drain or other facility. Both the alignment and the slope shall be on straight line, unless otherwise approved by the Engineer. Ninety degree (90°) bends will not be allowed.

No connection shall be made to the catch basin outlet pipe until the excavation around the catch basin has been backfilled and compacted to an elevation which provides support for pipe bedding and the connection pipe. Bedding for catch basin connection pipe shall be Class B bedding.

Connection pipe may be deflected to avoid obstacles to within the allowable angular deflection recommended by the manufacturer, and such deflection shall still allow rodding the pipe in a relatively easy manner as determined by the Engineer. Under no circumstances will deflection or change of direction be allowed by cutting or trimming the end of the pipe on a bias or an angle. All pipe ends shall be normal angle.

The Contractor shall furnish and install a new trap to the new outlet of the existing catch basin.

7-08.3(5) INLET CONNECTIONS

Inlet connections are pipe connections from drainage inlets to catch basins or other approved outlets. Inlet connections shall be installed upgrade from catch basin openings or other origins in straight alignment and shall be on a uniform slope. Where a straight alignment or a uniform slope is not feasible and curves are necessary, the altered alignment shall be made by deflecting each pipe into a smooth curve. Bends with angles greater than 22.5 degrees shall not be used, unless approved otherwise by the Engineer. Each pipe joint deflection shall not exceed that necessary to maintain a watertight connection as recommended by the pipe manufacturer.

To facilitate access to outfall pipes for cleaning, outfalls from inlet Structures shall be located in the walls with shortest width.

Pipe connections to a catch basin or other approved outlet shall not be made until the compaction requirements as specified in Section 7-08.3(4) have been met and the Work has been approved by the Engineer. Bedding for inlet connection pipe shall be Class B bedding.
7-08.3(6) DROP CONNECTIONS

Drop connections, used in conjunction with different types of manholes to allow for abrupt drop in elevation of the Sewer line, shall be constructed of Ductile Iron Pipe in accordance with Standard Plan No. 233. Drop connections shall be constructed at locations indicated on the Drawings and shall match the given design invert elevations.

7-08.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Pipe, Catch Basin Connection, (Material), (Class), (Size),” will be by the linear foot of pipe installed between the tee or wye in the receiving main pipe and the inside face of the catch basin.

Measurement for “Pipe, Inlet Connection (Material) (Class), (Size),” will be by the linear foot of pipe installed between the inside face of the inlet, and the inside face of the catch basin.

Measurement for “Drop Connection (Size),” will be by the vertical foot from the invert at the bend to the invert at the tee.

7-08.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-08 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Pipe, Catch Basin Connection, (Material), (Class), (Size),” per linear foot.
2. “Pipe, Inlet Connection, (Material), (Class), (Size),” per linear foot.

The Contract unit price for “Pipe, Catch Basin Connection, (Material), (Class), (Size),” and “Pipe, Inlet Connection, (Material), (Class), (Size),” shall include all costs for the Work required to furnish and install the pipe, including connections to catch basins or inlets, excavation, backfill, and compaction.

The Contract unit price for “Drop Connection, (Size),” shall include all costs for the Work required to furnish and install the complete drop connection, including the concrete footing, ductile iron spool and fittings at the drop connection and the ductile iron pipe that spans between the flexible coupling and the tee of the drop connection.

4. Other payment information.

The cost for furnishing and installing new traps when installing catch basin connection pipe to existing catch basin shall be included in the Contract unit price for “Pipe, Catch Basin Connection, (Material), (Class), (Size),” per linear foot.

Payment for Bedding will be in accordance with Section 7-17.5.

Payment for trench safety system will be as specified in Section 7-17.5.

SECTION 7-09 PIPE AND FITTINGS FOR WATER MAINS

7-09.1 DESCRIPTION

The Work included under Sections 7-09 through 7-15 and the Materials included in Section 9-30 shall apply to the construction of water distribution and transmission mains and appurtenances for both temporary and permanent installations.

7-09.2 MATERIALS

Materials shall meet the requirements of the following sections:
Pipe and Fittings for Water Mains

<table>
<thead>
<tr>
<th>Pipe</th>
<th>9-30.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ductile Iron Pipe</td>
<td>9-30.1(1)</td>
</tr>
<tr>
<td>Steel Pipe (6 inches and over)</td>
<td>9-30.1(4)A</td>
</tr>
<tr>
<td>Steel Pipe (4 inches and Under)</td>
<td>9-30.1(4)B</td>
</tr>
<tr>
<td>Polyvinyl Chloride (PVC) Pipe (4 inches and over)</td>
<td>9-30.1(5)</td>
</tr>
<tr>
<td>Fittings</td>
<td>9-30.2</td>
</tr>
<tr>
<td>Ductile Iron Pipe</td>
<td>9-30.2(1)</td>
</tr>
<tr>
<td>Steel Pipe</td>
<td>9-30.2(4)</td>
</tr>
<tr>
<td>Restrained Joints</td>
<td>9-30.2(6)</td>
</tr>
<tr>
<td>Transition reducing, flexible couplings and sleeves</td>
<td>9-30.2(7)</td>
</tr>
<tr>
<td>Valves</td>
<td>9-30.3</td>
</tr>
<tr>
<td>Gate Valves</td>
<td>9-30.3(2)</td>
</tr>
<tr>
<td>Butterfly Valves</td>
<td>9-30.3(4)</td>
</tr>
<tr>
<td>Valve Boxes</td>
<td>9-30.3(5)</td>
</tr>
<tr>
<td>Combination Air Release Valves</td>
<td>9-30.3(7)</td>
</tr>
<tr>
<td>Tapping Sleeve and Valve Assembly</td>
<td>9-30.3(9)</td>
</tr>
<tr>
<td>Hydrants</td>
<td>9-30.5</td>
</tr>
<tr>
<td>Service Connections</td>
<td>9-30.6</td>
</tr>
</tbody>
</table>

Specification references made herein for manufactured Materials such as pipe, hydrants, valves and fittings refer to designations for American Water Works Association (AWWA), American National Standards Institute (ANSI) or to American Society of Testing and Materials (ASTM) which are in effect on the date of Advertisement for Bids.

The Contractor shall only install new and unused Materials suitable and approved for potable water supply.

It is not intended that Materials listed herein are to be necessarily considered equal or generally interchangeable for all applications. Those suitable for the Project will be specified in the Project Manual or shown in the Drawings.

The pipe manufacturer shall test all pipe and fittings as required by these Specifications and the standards referenced. The pipe manufacturer shall submit to the Engineer two copies of all test results including a certification that Material to be delivered is represented by the samples tested and that such delivered Materials meets or exceeds the specified requirements. No pipe shall be delivered until test results and certifications are approved by the Engineer.

The Engineer shall have free access to all testing and records pertaining to Material to be delivered to the Project Site. The Engineer may elect to be present at any or all Material testing operations.

7-09.3 CONSTRUCTION REQUIREMENTS

Installation of pipe and fittings is described in Section 7-11.

7-09.4 RESERVED

7-09.5 RESERVED

SECTION 7-10 TRENCH EXCAVATION, BEDDING AND BACKFILL FOR WATER MAINS

7-10.1 DESCRIPTION

This Work shall consist of excavating, bedding, and backfilling for Water Mains and the construction of water distribution mains and appurtenances for both temporary and permanent installation.

Water mains shall be constructed at the locations shown on the Drawings.

Where rough grading is required at the beginning of Work, such grading, including excavation and embankment construction, shall conform to the requirements of Section 2-03. Rough grading shall be completed before excavating for the Water Main trench.

Waste and borrow sites shall conform to the requirements of Section 2-01.
7-10.2 MATERIALS

Materials specified as "Mineral Aggregate, (Type)" shall be in accordance with Section 9-03.

7-10.3 CONSTRUCTION REQUIREMENTS

7-10.3(1) GENERAL

See Section 7-17.3(1)A7a regarding trench excavation safety requirements. See Section 7-10.3(7) for additional requirements when the Work involves construction of potable Water Mains, structures, and related.

See Sections 1-07.23 and 1-10 regarding construction operations and traffic.

Clear access shall be provided and maintained to fire hydrants, water valves, water meters, water vaults, and related water structures.

Clearance shall be left to allow storm water to flow freely in gutters, other conduits, and natural watercourses.

7-10.3(2) UNGRADED STREETS

On ungraded streets, when grading is not called for in the Contract, the depth of trench excavation shall be as indicated on the Drawings and as staked by the Engineer.

Where the Drawings show pipe is to be installed above existing ground surface, an embankment fill shall be made and compacted to conform with the section shown on the Drawings, and the Water Main trench shall be excavated therein. That portion of the embankment below the bottom of the pipe shall be compacted with rollers or mechanical compactors under controlled moisture conditions as required under Method B of Section 2-03.3(14)D.

7-10.3(3) CLEARING AND GRUBBING IN UNGRADED STREETS

See Section 2-01.

7-10.3(4) REMOVAL OF EXISTING STREET IMPROVEMENTS

See Section 2-02.

7-10.3(5) GRADE AND ALIGNMENT

7-10.3(5)A GENERAL

Trenches for pipe shall be opened in accordance with the lines and grades indicated on the Drawings, and to a depth that maintains the minimum required depth of cover unless indicated otherwise on the Drawings (see Section 7-10.3(5)C).

On improved streets, the grade and alignment shall be taken from established points on the existing curbs or sidewalks when directed by the Engineer.

7-10.3(5)B VERIFICATION OF LOCATION

After marking underground facilities (see Sections 1-07.17(1) and 7-10.3(6)) and prior to any pavement cutting or removal or excavation for pipe installation, the Contractor shall verify, in the presence of the Engineer, the locations of existing Water Mains. The Contractor shall arrange to establish their depths at points where connections are to be made. After excavation, the Contractor shall verify the dimensions, type, and condition of the exposed Water Main. Should a condition be discovered which materially differs from indicated in the Contract, the Contractor shall immediately notify the Engineer. When necessary, the profile shall be adjusted as directed by the Engineer so that abrupt changes in grade and alignment of Water Main and connection are prevented.

7-10.3(5)C MINIMUM DEPTH OF COVER

The depth of trenching for Water Mains shall give a minimum depth of cover as indicated on Standard Plan 030. Where profile of pipeline and ground surface is shown on the Drawings, the pipeline shall be installed to the elevation shown, regardless of depth of cover indicated on Standard Plan 030. Deeper excavation may be required as directed by the Engineer due to localized breaks in grade or in order to install the new Water Main under existing Culverts or other utilities where necessary. Excavation shall be to such depth that the minimum cover over the valve operating nut shall be 1 foot unless directed otherwise by the Engineer.
7-10.3(6) EXISTING UTILITIES

See Section 1-07.17(1).

When utility services occupy the same space as the new Water Main, the Contractor shall do all necessary excavation to fully expose such services. The Contractor shall protect said services and Work around them during excavating and pipe installation operations. The Contractor shall be responsible for all damages to the services due to Contractor operations and shall immediately notify the Engineer and arrange for replacement of all damaged services.

In the event of conflict, the Contractor shall remove and restore, as directed by the Engineer, existing catch basin connections, inlet connections, drains, side sewers, inlets, and other sewerage and drainage facilities. All restoration shall be constructed to City Standards. Mainline sewers and storm drains shall not be damaged, removed or relocated. Water Main pipe shall be installed to clear these utilities (see Section 1-07.17).

Existing Water Mains and fittings encountered during trench excavation and indicated on the Drawings to be removed (or if removal is required by the Engineer) shall be removed and disposed of by the Contractor. See Section 2-02.

All ends of abandoned Water Main shall be plugged in accordance with Section 2-02.3(5). Pipe 12 inch and larger shall be abandoned and filled in accordance with Section 2-02.3(5).

It is anticipated that the Contractor will encounter water service laterals and appurtenances (water service lines running between the SPU Water Operations union and private residences) during Work operations. Records of these underground facilities are not maintained by the City and therefore do not appear on the Drawings and will not be field located by SPU Water Operations. It shall be the Contractor’s responsibility to ascertain the location of and protect these service laterals and appurtenances from damage (see Sections 1-07.16 and 1-07.17).

When it is necessary to provide temporary water supply connections due to conflict between existing privately owned water service laterals and appurtenances, and the new Water Main, it shall be the responsibility of the Contractor to provide temporary services. Permanent replacement of temporary water services with new water services shall be as directed by the Engineer, and require inspection and approval by SPU Water Customer Service. The Contractor shall give a minimum 2 Working Days advance notice by contacting 206-684-5800.

Should the Contractor damage or disrupt private water service laterals and appurtenances, the Contractor shall notify the Engineer of any such damage or disruption, shall begin repairs immediately as approved by the Engineer, and shall work continuously until water service is restored.

7-10.3(7) TRENCH EXCAVATION

7-10.3(7)A GENERAL

The Contractor shall perform excavation to the depth, line, and grade indicated on the Drawings. All excavations shall be made by open cut methods and shall include excavation for pipe bedding (see Standard Plans 284 and 285).

The length of trench excavation in advance of the pipe installing shall be kept to a minimum, and in no case shall it exceed 500 feet for pipeline, and 200 feet for distribution Water Main, unless approved otherwise by the Engineer.

Care shall be taken not to excavate below the depth indicated. Excavation below that depth shall be backfilled with native material, or Mineral Aggregate Type 17, and shall be compacted to the satisfaction of the Engineer at the Contractor’s expense.

At locations where trench excavation equals or exceeds 4 feet in depth, trench excavation Work shall include safety systems pursuant to Section 7-17.3(1)A7a.

See Section 7-17.3(1)A1 regarding exceeding Standard Plan 284 maximum trench width.

Grading and other excavations nearby shall be controlled to prevent surface water from flowing into the excavations. Suitable excavated material for reuse as backfill shall be piled in an orderly manner and shall be protected from becoming unsuitable. Unsuitable material, or suitable material in excess of Project needs, shall be disposed of by the Contractor.

Excavation for valve chambers and other structures shall be sufficient to provide a minimum of 12 inches between their exterior surfaces and the sides of the excavation.
The trench shall be kept dewatered until the pipe has been installed, jointed, coated, and sealed, as approved by the Engineer, prior to backfilling. See Section 7-17.3(1)A3.

7-10.3(7)B ROCK EXCAVATION
See Section 7-17.3(1)A5.

7-10.3(7)C EXTRA EXCAVATION
Changes in grades of the Water Main from those shown on the Drawings, or as provided in the Project Manual, may be necessary because of unplotted utilities, or for other reasons. If, in the opinion of the Engineer, it is necessary to adjust, correct, relocate, or in any way change the line and grade, such changes shall be made by the Contractor in accordance with this specification and with Section 1-04.4.

When pipeline grade is lowered in excess of 1 foot below the grade indicated on the Drawings, the Contractor shall make such extra excavation as approved by the Engineer.

When the pipeline horizontal alignment is changed by more than 1 foot from the line indicated on the Drawings, after the trench has been excavated, the Contractor shall excavate the trench at the changed location and backfill and compact the previous trench as approved by the Engineer.

Additional excavation so required will be classified as extra excavation.

7-10.3(7)D SHEETING - SHORING
See Section 7-17.3(1) regarding trench excavation and trench safety systems.

7-10.3(8) MATERIAL FROM TRENCH EXCAVATION
7-10.3(8)A REMOVAL AND REPLACEMENT OF UNSUITABLE MATERIAL
When excavating the bottom of the trench exposes peat, soft clay, quicksand, or other unsuitable foundation material, such material shall be removed to the depth directed by the Engineer and backfilled with foundation Material. Foundation Material shall be Mineral Aggregate Type 2, or as directed by the Engineer. When directed by the Engineer, foundation Material shall be covered with a 6 inch thick layer of select native material or Mineral Aggregate Type 17 and compacted prior to installing any Water Main pipe.

Material removed from the trench that is unsuitable for backfill shall be removed and disposed. If surplus native backfill material is not available within the limits of the Project, as determined by the Engineer, the Contractor shall furnish Mineral Aggregate of the Type designated by the Engineer in accordance with Section 4-01.

All unsuitable material shall be loaded directly into trucks and hauled to a Waste site obtained by the Contractor. Stockpiling of unsuitable material at the Project Site will not be allowed.

7-10.3(8)B SURPLUS MATERIALS
See Section 7-17.3(1)A6.

7-10.3(9) BEDDING THE PIPE
7-10.3(9)A RIGID PIPE
7-10.3(9)A1 GENERAL
Bedding of the class or classes indicated in the Contract shall be installed in accordance with Standard Plans 284 and 285. If no bedding class is indicated in the Contract, Class B bedding shall be provided.

All Water Main shall be bedded in sand, mineral aggregate Type 6 or Type 7, and all transmission main shall be bedded in mineral aggregate Type 9.

Care should be taken to prevent any damage to the pipe or its protective coating.

7-10.3(9)A2 BEDDING FOR POLYETHYLENE ENCASED, TAPE COATED, THERMOPLASTIC POWDER COATED, OR SPECIAL COATED PIPE
Class B bedding Material for specially protected or coated pipe shall be Mineral Aggregated Type 6 or 7 (paving or building sand) in accordance with the requirements of Section 9-03. Class B bedding consisting of Mineral Aggregate Type 6 or 7 shall be compacted by tamping.
Bedding of specially protected pipe shall be conducted at all times in such manner as to prevent damage and abrasion to the protective coating or wrap.

Placing of Class B bedding around wrapped or coated pipe shall be done in a manner acceptable to the Engineer. Any damage to the special coating or wrap shall be repaired by the Contractor at the Contractor’s expense in a manner acceptable to the Engineer.

7-10.3(9)B FLEXIBLE PIPE

7-10.3(9)B1 BEDDING FOR FLEXIBLE PIPE

Bedding for PVC and polyethylene pipe shall be Class B with Type 22 mineral aggregate placed in several lifts in accordance with Standard Plan No. 285. Care must be used in installing flexible pipe to prevent vertical pipe deflection.

The first bedding lift of 4 inch thickness shall be placed, spread and compacted across the width and length of the trench bottom at the required grade to support the pipe. Pipe is then installed and the next lift of bedding material carefully placed and compacted along both sides of the pipe up to the crown, being careful not to displace the pipe from its set line and grade. Once the bedding is completed to the crown of the pipe, and the pipe shows no visible misalignment from its required line and grade, the final bedding lift over the pipe shall be placed.

7-10.3(10) BACKFILLING TRENCHES

Prior to backfilling, all form lumber and debris shall be removed from the trench. Sheetin used by the Contractor shall be removed just ahead of the backfilling unless it is ordered by the Engineer to be left in place. Backfill up to 6 inches over the top and both sides of the pipe shall be evenly and carefully placed, but not until all large rocks capable of damaging the pipe or its coating have been removed from the backfill material.

In backfilling the trench, the Contractor shall take all necessary precautions to protect the pipe from any damage or shifting. The Contractor shall backfill from the side of the trench to a maximum uniform depth of 2 feet above the crown of the concrete pipe and 1 foot above ductile iron pipe before starting compaction.

During all phases of the backfilling operations and testing as outlined herein, the Contractor shall protect the pipe installation, provide for the maintenance of traffic as may be necessary, and provide for the safety of property and persons.

The Contractor shall use suitable native excavated material for trench backfill unless notified by the Engineer that the native material is unsuitable. The Engineer will examine excavated native material at the time of excavation to determine its suitability for use as backfill. Native material will be considered suitable for trench backfill if it meets the requirements set forth in Section 2-03.3(14).

Unsuitable backfill material shall be removed from the site, disposed of, and replaced with Mineral Aggregate Type 17 or such other imported material as designated by the Engineer.

The Contractor shall take all necessary steps to protect the excavated material from becoming contaminated with excessive moisture.

Where it is required that a blanket of select material or bank run gravel be placed on top of the native backfill, the backfill shall be placed to such elevation as shown on the Drawings, or as the Engineer may direct, and shall be leveled to provide for a uniform thickness of the borrow material. Compaction is required, and it shall be performed prior to placing the borrow material.

7-10.3(11) COMPACTION OF BACKFILL

The Contractor shall place the initial lift of to a uniform depth of 2 feet above the crown of concrete pipe and to a uniform depth of 1 foot above the crown of ductile iron pipe before starting compaction. Trench backfill shall continue to be placed in uniform lifts not exceeding 1 foot loose thickness and be compacted by mechanical tampers of the impact type approved by the Engineer. Water settling will not be permitted.

1. Improved areas such as street and sidewalk areas shall be compacted to 95% of maximum dry density (see Section 2-03.3(14)E).
2. Unimproved areas or landscape areas shall be compacted to 90% of maximum dry density (see Section 2-03.3(14)E).

The procedure and equipment to be used for backfill compaction shall be demonstrated on a test section of pipeline backfill to be designated by the Engineer.
The Engineer will sample excavated material to determine suitability of the native material for backfill use. If native material is found to be suitable and within the tolerance range of moisture content, the Contractor shall use the native material for backfilling. The Contractor shall take all necessary steps to protect the excavated material from becoming unreasonably saturated beyond the optimum moisture limits.

If the required compaction density has not been obtained, the Contractor shall remove the backfill from the trench and recompact using an improved technique, heavier compaction equipment or more passes. This process shall be repeated until the Contractor has established a procedure that provides the required field density. The Contractor will then be permitted to proceed with backfilling and compacting the remainder of the pipeline under the approved compaction procedure.

In the event routine field densities taken during the course of construction show the specified compaction is not being obtained because of changes in soil types or for any other reason, the Contractor will be required to reestablish the compaction procedure. In no case will excavation and pipe installation operations be allowed to proceed until the specified compaction is attained.

7-10.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Solid Rock Excavation” shall be in accordance with Section 2-03.4.

Measurement for “Mineral Aggregate, (Type)” shall be in accordance with Section 4-01.4.

Measurement for “Extra Excavation” and “Bedding, (Class), (Size) Pipe” shall be in accordance with Section 7-17.4.

Measurement for “Safety Systems in Trench Excavation for Water Main, Minimum Bid = $0.40 per Square Foot” will be by the square foot. The square foot quantity equals the area of a vertical plane through the pipe centerline, calculated by multiplying the average of the trench end depths by the length of trench between points four or more feet deep. Depth is measured from existing surface grade at the time of excavation to pipe invert.

7-10.5 PAYMENT

Imported Material when ordered in lieu of native backfill material by the Engineer will be paid for as Mineral Aggregate (Type) as directed by the Engineer in accordance with Section 4-01.5.

Payment for “Extra Excavation” and “Bedding, (Class), (Size) Pipe” shall be in accordance with Section 7-17.5.

Payment for “Solid Rock Excavation” shall be in accordance with Section 2-03.5.

Foundation Material, when required on the Drawings or directed by the Engineer, shall be paid for as “Mineral Aggregate, (Type)” in accordance with Section 4-01.5.

If no Bid item is in the Bid Form for “Mineral Aggregate” of the type designated by the Engineer or for “Solid Rock Excavation” or “Extra Excavation,” the Contractor shall perform the Work as directed by the Engineer, and payment will be made in accordance with Section 1-09.4.

No separate payment will be made for excavating the trench, placing and compacting the native backfill material, hauling and placing excess suitable native material elsewhere on the Project, or hauling and disposing of excess materials offsite whether suitable or unsuitable. These costs shall be considered as being included in the unit Bid prices for each class, size, and type of pipe in accordance with Section 7-11.5.

Payment for safety systems required for trench excavation Work shall be in accordance with Section 7-17.5.

Where unexpected objects, such as stumps, railroad ties, etc., are encountered in the trench excavation, and such unexpected objects cause the Contractor delays or require Extra Work or equipment for its removal, payment will be in accordance with Section 1-09.4. When the presence of these objects is indicated in the Contract Documents, and is not included in the Bid Form, the removal of these objects shall be considered incidental to the various Bid items comprising the Work and no separate or additional payment will be made.
No separate payment will be made for furnishing and installing sand cushion and protection of existing utilities and services. These items shall all be considered as incidental to the Work of constructing the Water Main.

All costs for plugging ends of abandoned Water Main shall be considered incidental to the various Bid items comprising the Contract.

All costs incurred by the Contractor in providing temporary water service, when deemed necessary, shall be considered incidental to the Contract.

In the event the Contractor elects to use pipe bedding or mineral aggregate of any type below the pipe to facilitate dry ditch construction, all costs for furnishing and placing these materials shall be borne by the Contractor.

Any material that becomes unusable due to the Contractor’s failure to take adequate measures to provide protection from moisture shall be replaced at the Contractor’s expense with Mineral Aggregate Type 17 or such other Material as the Engineer will accept.

All costs in connection with excavating test pits and from standby time during field density tests shall be considered as incidental to the backfill.

All costs for removing existing Water Mains and fittings as specified in Section 7-10.3(6) shall be considered incidental to the various Bid items comprising the Contract.

The cost for cutting and reconnecting water services by the SPU Water Operations as requested by the Contractor for his Work as specified in Section 7-10.3(6) will be charged to the Contractor.

The hauling away of surplus material from the excavation to other areas of the Project or disposing of the material offsite shall be considered as incidental to the unit price of pipe installed.

SECTION 7-11 PIPE INSTALLATION FOR WATER MAINS

7-11.1 DESCRIPTION

This Work shall consist of installing Water Main pipe in accordance with the manufacturer's printed specifications and instructions, with the AWWA standards for installing the type of pipe used and with these specifications.

Pipe sections shall be joined in such a manner as not to damage the lining or coating. The method of pulling or jacking the pipe home must allow for both vertical and horizontal movement of the pipe for protection of the gasket.

Water main installation shall not proceed until line and grade hubs have been set and measurements for connection fittings have been made in accordance with Section 7 10.3(5).

Clearances shall be maintained between Water Mains and other utilities per Section 1-07.17.

7-11.2 MATERIAL

7-11.2(1) GENERAL

Material shall meet the requirements of Section 9-30 and Section 9-04.

7-11.2(2) PRE-INSTALLATION TASTE TESTING

Ductile Iron Class 52 Water Main pipe specified as AWWA Standard C151, with cement lining based on AWWA Standard C104, must satisfactorily pass a Taste Rating Test conducted by the SPU Water Quality Division. This test need not be repeated on pipe produced by a manufacturer who has a Taste Rating Test program pre-approved by the SPU Water Quality Division. American Ductile Iron Pipe is a pre-approved manufacturer of pipe complying only with SPU’s Taste Rating Test Procedures. Taste Rating Tests of pipe obtained from other than pre-approved manufacturers will be conducted as specified in the SPU Water Quality’s “TASTE RATING TEST PROCEDURES”. Sufficient Contract time has been allowed for the normal scheduling and testing. A minimum of 5 Working Days will be required to conduct the Taste Rating Test on any pipe sample from a lot of 100 or fewer lengths.

7-11.2(3) POST INSTALLATION TASTE RATING TESTS

The SPU Water Quality Division may perform additional Taste Rating Tests on any portion of the Work prior to or after connection to existing mains.
Failure of the system or portion of the system to pass the Taste Rating Test will result in the rejection of all of the new Water Main under test.

SECTION 7-11 PIPE INSTALLATION FOR WATER MAINS

7-11.3 CONSTRUCTION REQUIREMENTS

7-11.3(1) DEWATERING OF TRENCH

In addition to the requirements of Section 7-17.3(1)A3, where water is encountered in the trench, the water shall be removed during pipe installation operations and trench dewatering shall be maintained until the ends of the pipe are sealed and provisions are made to prevent floating of the pipe. Trench water or other deleterious materials shall not be allowed to enter the pipe at any time.

7-11.3(2) HANDLING OF PIPE

7-11.3(2)A GENERAL

All types of pipe shall be handled in a manner that prevents damage to the pipe, pipe lining or coating. Pipe and fittings shall be loaded and unloaded using hoists and slings in a manner to avoid shock or damage, and under no circumstances shall they be dropped, skidded, or rolled against other pipe. Damaged pipe will be rejected, and the Contractor shall immediately place all damaged pipe apart from the undamaged and shall remove the damaged pipe from the site within 24 hours.

Methods of handling shall be corrected by the Contractor if the Engineer determines that these methods are damaging to the pipe.

Threaded pipe ends shall be protected by couplings or other means until the pipe is installed.

The pipe and fittings shall be inspected for defects.

Ductile iron and cast iron pipe, while suspended above grade, shall be rung with a light hammer to detect cracks. Dirt or other foreign material shall be prevented from entering the pipe or pipe joint during handling or installing operations, and any pipe or fitting that has been installed with dirt or foreign material in it shall be removed, cleaned, and reinstalled. A clean whisk broom shall be used for this purpose and for brushing to remove foreign matter prior to joining of pipe ends. At times when pipe installation is not in progress, the open ends of the pipe shall be closed by a watertight plug or by other means approved by the Engineer to ensure cleanliness inside the pipe.

Pipe shall be stacked in such a manner as to prevent damage to the pipe, to prevent dirt and debris from entering the pipe, and to prevent any movement of the pipe. The bottom tiers of the stack shall be kept off the ground on timbers, rails or other similar supports. Pipe on succeeding tiers shall be alternated by bell and plain end. Timbers 4-inch X 4-inch in size shall be placed between tiers and chocks shall be placed at each end to prevent movement. For safety each size of pipe shall be stacked separately.

7-11.3(2)B HANDLING SPECIAL COATED PIPE

Handling and shipping of enameled or multilayered polyethylene tape coated or *thermoplastic powder coated* ductile iron pipe while being transported and in the field shall be in accordance with the AWWA Standard Specifications C 214, and as specified herein.

Pipe, at all times, shall be handled with equipment such as stout wide canvas slings and wide padded skids designed to prevent damage to the coating. Bare cables, chains, hooks, metal bars or narrow skids shall not be permitted to come in contact with the lining or coating. When shipped by rail, all pipe shall be carefully loaded on properly padded saddles not less than 12 inches in width. Pipe sections shall be separated so that they do not bear against each other and the whole load shall be securely fastened together and to the cars to prevent movement in transit.

In truck shipments, the pipe shall be supported in wide cradles of suitable padded timbers hollowed out on the supporting surface to fit the curvature of pipe. All chains, cables or other equipment used for fastening the load must be carefully padded.

The Engineer will inspect the pipe and coating after delivery to the Project Site, while the pipe is stored along side the trench, prior to installation by the Contractor. The Contractor shall allow inspection of the coating on the underside of the pipe while suspended from the sling, before the pipe is lowered into the trench.

Pipe stored along the trench side shall be supported by padded wooden timbers placed under the pipe to hold the pipe off the ground, or by other means satisfactory to the Engineer.
Repair of multi-layered polyethylene tape coating shall be in accordance with AWWA C214 and Section 7-11.3(6). Repair of thermoplastic powder coated pipe shall be per manufacturer's instructions. The Contractor shall submit at least 3 Working Days in advance the manufacturer's recommendations for thermoplastic coating repair.

7-11.3(3) CUTTING PIPE

Whenever it becomes necessary to cut a length of pipe, the cut shall be made by abrasive saw or by a special pipe cutter. All pipe ends shall be square with the longitudinal axis of the pipe. The outside of slip joint pipes shall be beveled and otherwise smoothed so that good connections can be made without damage to the gasket. Threads shall be cleanly cut. Torch cutting of ductile iron pipe will not be allowed.

Restrained joint pipe shall be cut in accordance with the pipe manufacturer's recommendations. The Contractor shall submit at least 3 Working Days in advance the manufacturer’s recommendation for cutting restrained joint pipe including a Manufacturer's Certificate of Compliance stating the cutting process does not adversely impact the pipe material or integrity of the joint.

7-11.3(4) INSTALLING PIPE ON CURVES

On long radius curves, either horizontal or vertical, pipe may be installed with standard pipe by deflecting the joints. If the pipe is shown curved in the Drawings and no special fittings are shown, the Contractor can assume that the curves can be made by deflecting the joints with standard lengths of pipe. If shorter lengths are required, the Drawings will indicate maximum lengths that can be used. The amount of deflection at each pipe joint when pipe is installed on a horizontal or vertical curve shall not exceed the manufacturer's printed recommended deflections.

Where field conditions require deflection or curves not anticipated in the Drawings, the Engineer will determine the methods to be used.

When rubber gasketed pipe is installed on a curve, the pipe shall be jointed in a straight alignment and then deflected to the curved alignment. Trenches shall be made wider on curves for this purpose.

Maximum deflections at pipe joints and installation radius for various pipe lengths shall conform to the manufacturer’s and AWWA specifications for the given type of pipe.

Where pipe installation on curves requires the use of special fittings, concrete blocking shall be used per section 7-11.3(13).

Where restrained joint pipe is installed on a curve, the Contractor shall submit the pipe manufacturer's recommendations to the Engineer for approval at least 3 Working Days in advance.

7-11.3(5) CLEANING AND ASSEMBLING JOINTS

All parts of the pipe ends, couplings, fittings, and appurtenances shall be cleaned to remove oil, grit, or other foreign matter from the joint. Care shall be taken to keep the joint from contacting the ground.

Pipe not furnished with a depth mark shall be marked before assembly to ensure visual observation of the Work.

7-11.3(6) INSTALLING AND JOINTING PIPE

7-11.3(6)A INSTALLING AND JOINTING - DUCTILE IRON PIPE AND APPURTENANCES

The installation of ductile iron pipe and appurtenances shall be in accordance with AWWA C600. Except where restrained joint systems are required, mechanical or slip joints may be used.

7-11.3(6)B INSTALLING AND JOINTING POLYETHYLENE ENCASED PIPE

Pipe with polyethylene encasement shall be installed in accordance with AWWA C105. The method used for encasing the pipe shall be approved by the Engineer. All damage to the polyethylene encasement shall be repaired at the Contractor's sole expense. Bedding and backfill shall be in accordance with Sections 7-10.3(9), and 7-10.3(10), and 7-10.3(11).

7-11.3(6)C INSTALLING AND JOINTING MULTI-LAYERED POLYETHYLENE TAPE COATED PIPE

Pipe shall be hoisted from the trench side into the trench by means of a wide canvas or leather sling. Use of chains, cables, tongs or other equipment likely to cause damage to the lining or to the coating of the pipe will not be permitted. Dragging or skidding the pipe will not be permitted. The Contractor shall allow inspection of
the coating on the underside of the pipe while suspended from the sling. Any damage shall be repaired to the satisfaction of the Engineer before the pipe is lowered into the trench. Bedding and backfill shall be in accordance with Sections 7-10.3(9)A2, 7-10.3(10), and 7-10.3(11).

At all times during construction of the pipeline, the Contractor shall use every precaution to prevent damage to the protective coating on the pipe. No metal tools or heavy objects shall be unnecessarily permitted to come in contact with the finished coating. Workers will be permitted to walk on the coating only when necessary, in which case they shall wear shoes with rubber or composition soles and heels. This shall apply to all surfaces whether bare, primed or coated. Any damage to the protective coating from any cause, prior to final acceptance of the pipeline, shall be repaired as directed by the Engineer and at the Contractor’s expense.

Cutbacks on the spigot end shall be 6 inches or less and shall be made with a cutting device that is guided from the end of the pipe to ensure a straight, uniform cutback. No cutback shall be made on the bell end of the pipe.

Following the application of the outerwrap, the coating shall be electrically tested for holidays with a pulse tape holiday detector. The detector voltage range for this coating is 7000 to 9800 volts. The testing shall conform to NACE RP-02-74.

All holidays detected in the field shall be repaired by removing the outerwrap and primary coating from the damaged area, cleaning the exposed surfaces thoroughly and applying a suitable primer and tape to the exposed area as specified by the manufacturer. If required by the Engineer, the repaired area shall be outerwrapped after patching.

If the outerwrap is damaged and a holiday is not found in this area, the damaged outerwrap area shall be repaired by applying a patch as recommended by the manufacturer and approved by the Engineer.

If the outerwrap is damaged and a holiday is found, the damaged outerwrap shall be removed, taking care not to damage the inner coating. Before new outerwrap is placed, a holiday detector shall be applied to the exposed innerwrap to determine if it has been damaged during removal of the outerwrap. The outerwrap shall be installed as recommended by the manufacturer and approved by the Engineer.

After electrical bonds are installed and tested, the entire pipe joint and electrical bond strap shall be protected with a heat shrink joint sleeve. See Section 9-30.1(6)E Heat Shrink Joint Sleeve.

7-11.3(6)D INSTALLING RESTRAINED JOINT PIPE

The restrained joint Water Main to be installed shall be fully extended by pulling on the joint after the installation of the pipe segments as recommended by the manufacturer of the restrained joint pipe. When this newly installed Water Main is charged, bending or buckling of newly installed restrained joint Water Main will not be accepted. The Contractor shall submit the restrained joint manufacturer’s recommendations to the Engineer at least 5 Working Days prior to pipe installation.

Restained joint Water Main shall be installed as located on the Drawings. This Work shall include all hardware and as necessary to perform this Work.

7-11.3(6)E RESERVED

7-11.3(7) INSTALLING STEEL PIPE

7-11.3(7)A THREADED STEEL PIPE LESS THAN 4 INCHES IN DIAMETER

Steel pipe in sizes up to and including 3-1/2 inches shall be connected with malleable iron screwed couplings. Couplings shall be galvanized. Unions or flanges shall be used at all equipment and valves. Cut ends shall be reamed and threads cleanly cut. Exposed threads, after jointing, shall be brush-coated with an asphalt varnish, Royston Roskote Mastic R28 or approved equal.

7-11.3(7)B COUPLED PIPE 4 INCHES IN DIAMETER AND LARGER

Steel pipe 4-inch and larger, for use in underground services, shall be coupled as specified in the Drawings and Project Manual.

Any welding of steel pipe shall be in accordance with AWWA C206.

Bell and spigot joints shall be thoroughly cleaned before assembly, and a lubricant suitable for potable water meeting the approval of NSF shall be brushed on the inside of the bell just prior to assembly.
7-11.3(7)C STEEL CASING PIPE

Where shown on the Drawings, the Contractor shall install steel casing pipe for the Water Main by tunneling, jacking or augering without damage to existing streets, roads, highways, railroad track alignment or other utilities.

All joints shall be welded by operators who have been qualified by tests as prescribed by the AWS in Standard Qualifications Procedure to perform the type of work required. The quality of welding shall conform to the current edition AWS D1.1 Structural Welding Code, Section 3, Workmanship.

Before placing the casing and Water Main, the Contractor shall submit to the Engineer, for approval, an outline of his construction procedure together with a listing of the Equipment for the Work. The approval of procedure and equipment by the Engineer shall not relieve the Contractor of responsibility, or waive, or modify any of the provisions of the Contract.

Special care shall be taken during the installation of the pipe to ensure that no settlement of adjacent areas occurs. Any such settlement caused by the placement of the pipe shall be the Contractor’s responsibility. The Contractor shall repair all areas so affected, as directed by the Engineer. In the event that the pipe is damaged during the installation and the defects cannot be corrected to the satisfaction of the Engineer, the Contractor shall be required to remove and replace the pipe.

7-11.3(7)D STEEL CASING SEALS AND SPACERS

Casing seals shall provide a moisture-proof seal that is resistant to heat, cold, vibration, impact, abrasions, fluids, disbonding, and expansion and contraction of the casing and the Water Main. Casing seals shall be installed according to the manufacturer’s instructions.

The Crossing Insulators (Spacers) shall be composed of polyester fiberglass or polyvinyl chloride (PVC). The Material shall be resistant to abrasion and sliding wear. There shall be a minimum of two Crossing Insulators (Spacers) per length of pipe, and the spacing between spacers shall be no more than 10 feet apart. Crossing Insulators (Spacers) shall be installed per manufacturers instructions.

7-11.3(8) RESERVED

7-11.3(9) CONNECTIONS

7-11.3(9)A CONNECTIONS TO EXISTING MAINS

No water system valves on existing mains shall be operated by the Contractor.

The SPU Water Operations will make all connections to charged Water Mains and pipelines and will operate all valves to accomplish shutdowns and subsequent reactivation. Draining of existing Water Mains will be done by Water Operations staff. The Contractor shall excavate and expose the existing Water Main at the connection point to verify grade and alignment, and match the grade and alignment of the new main to the existing main. The excavation shall be sufficiently large to accommodate connection Work as approved by the Engineer.

Connection points shall be verified in accordance with Section 7-10.3(5)B.

Installation of Water Mains and appurtenances, including pressure testing, and an acceptable bacteriological test, shall be completed and approved prior to making any connections.

The Contractor shall provide the Engineer 2 Working Days advance notice for scheduling inspections for approval of Water Main installations for connection. Within 2 Working Days after the inspection, the Contractor will be provided with written approval or with a list of items to be corrected. Items to be corrected must be reinspected. The notification and response times for reinspection are the same as for the initial inspection.

Approval is contingent on the Water Main and appurtenances being completely installed and tested per Contract documents but does not require completion of street, sidewalk and planting strip restorations. Water main and appurtenances include all pipe, fittings, all blocking except temporary blocking, all hydrants, hydrant pads, blowoff assemblies, valves, flowmeters, chambers, corrosion protection, and coating systems.

Newly installed Water Main shall be pressure tested in accordance with Section 7-11.3(11) Hydrostatic Pressure Test and shall be flushed and disinfected in accordance with Section 7-11.3(12) Flushing and Disinfection of Water Mains.

After all tests, flushing, and disinfection have been successfully completed and the installed Water Main and appurtenances, including hydrants and valves, have been approved by the Engineer, it shall be the
Contractor’s responsibility to request the Engineer to schedule the shutdown(s) and connection(s) prior to surface restorations. In general, the Contractor’s request for shutdown(s) and connection(s) must be submitted to the Engineer at least 5 Working Days in advance of the desired date of the connection. However, the Contractor is encouraged to communicate and coordinate with the Engineer as early in the Project as possible regarding the scheduling of these connections as SPU Water Operations’ shutting down and starting up portions of the water system must take into consideration 1) - size of Water Main and total system impacts, 2) – coordination with fire and other needs, 3) – end user needs and coordination, and 4) – SPU Water Operation’s workforce availability. The Contractor’s scheduling of connections requires the Engineer’s approval. The excavation for the connection shall be completed, shored and dewatered, and all required materials and Equipment shall be available at the time of shutdown. Notifications of the scheduled shutdown will be made by SPU Customer Service / Inspection Services personnel to the affected consumers a minimum of 2 Working Days in advance of the scheduled shutdown. Connections must be made within 2 weeks of bacterial acceptance or the pipe must be retested.

The SPU will furnish connection fittings shown on the Drawings. In addition, prior to and after connection of the new main, SPU Water Operations will:

1. Deactivate Water Main;
2. Cut, remove, and dispose of pipe sections as necessary to install the new Materials;
3. Dewater existing pipe, as required, to perform SPU Water Operations connections;
4. Swab all connecting pipe and fittings with chlorine solution (5-6% Cl₂); and
5. Reactivate and flush the Water Main.

All fittings and other Materials and equipment not specifically called out in the Contract Documents as being furnished by SPU Water Operations, required to complete the connection shall be furnished by the Contractor. The Contractor shall coat, wrap and joint bond the connection to conform with the requirements of the new Water Main.

The Contractor shall make all necessary excavation, protective measures, and backfill, and provide any equipment and operators required to move and lower the component parts of the connection into position. All temporary and permanent blocking shall be done by the Contractor.

In addition to those connections shown on the Drawings, segments of a new Water Main may be placed in service prior to completion of the entire Water Main. All connections between the charged and uncharged segments of the new Water Main will be done by SPU Water Operations personnel.

Locations of connections between segments of new main are dependent on Contractor’s operations and therefore are not shown. All Materials for such connections shall be furnished by the Contractor.

7-11.3(9)B MAINTAINING SERVICE

Where existing services are to be transferred from old to new mains, the Contractor shall plan and coordinate the Work with that of SPU water Operations so that service will be resumed with the least possible inconvenience to customers.

To supply customers with water during the construction of a Project, where any section of pipe has passed satisfactory hydrostatic and bacteriological tests, SPU Water Operations reserves the right to tap corporation stops into a section of a new main and install corporation stops and service connections at such locations as SPU Water Operations deems necessary, at no expense to the Contractor. The attaching of any such service connections by the SPU Water Operation’s shall not be construed by the Contractor as any acceptance by the Owner of any part of the Work required under the Contract.

7-11.3(9)C WATER SERVICE CONNECTIONS

SPU Water Operations will, at no cost to the Contractor, make all taps for service connections, and will supply and install the service pipe.

SPU Water Operations will make excavations for the service connections, furnish and install service connections, backfill, compact the trench, and complete temporary patching. The Contractor shall make all repairs for the temporary patching and the permanent street restorations over all trenches in accordance with these Standards unless indicated otherwise in the Contract Documents.
The SPU Water Operation’s normally will schedule and make all service connections within 20 Working Days after the main is approved and in service; however, the Contract may indicate other scheduling requirements. Scheduling shall be addressed at the preconstruction conference.

Where the Drawings show 4-inch, 6-inch and 8-inch service connections, the Contractor shall furnish and install service connection tees, valves, plugs, and valve boxes. A 3 inch water service will be considered as a 4 inch service. The tees shall be mechanical joint (MJ) x mechanical joint x flange (FLG). Valves shall be MJ x FLG, and removable plugs shall be MJ for the service connection. The MJ plugs will be returned to the Contractor after installation of the water service by SPU Water Operations.

The Contractor shall adjust all valve boxes, meter boxes, and rings and covers to final grade prior to final surface restoration, at no additional cost to the Owner.

Where existing services are to be transferred from existing to new mains, the Contractor shall plan and coordinate the Work with that of SPU Water Operations so that service is resumed with the least possible inconvenience to consumers. Service tee locations will be field located as determined by SPU Water Operations. The Contractor shall not remove or abandon existing pipe until all service connections have been transferred to the new main or temporary service has been provided. Adequate provisions shall be made by the Contractor during construction for the care and protection of mains or services in use.

7-11.3(9)C1 INSULATED COUPLINGS AND FLANGE KITS

Insulated couplings and flange kits shall be installed to electrically isolate the pipeline from other structures. Insulated joints shall be located at the locations indicated on the Drawings.

The Contractor shall carefully align and install insulating couplings and flange kits according to the manufacturers recommendations to avoid damaging insulating Materials. Coat all exposed surfaces of insulating flange, including fasteners, with petroleum-impregnated wax tape as specified in AWWA 217.

7-11.3(9)D TEMPORARY WATERMAINS AND SERVICES

When called for in the Drawings, SPU Water Operation’s will install and maintain temporary Water Mains and services in such a manner as to provide constant adequate water supply to consumers and to avoid impeding vehicular and pedestrian traffic and access to abutting properties.

The Contractor’s critical path schedule shall allow adequate time for SPU Water Operations to install these facilities; a minimum of 2 weeks written advance notice shall be provided to the Engineer for scheduling of the temporary Water Main and service Work.

SPU Water Operations will make all required excavation, backfill, and compaction as well as furnishing the necessary equipment and pipe for temporary Water Mains.

All temporary Water Mains will be chlorinated, flushed, and a satisfactory bacteriological sample obtained by the SPU Customer Service / Inspection Services prior to placing them in service.

7-11.3(10) LOCATING WIRE

Locating wire shall be installed directly over all non-metallic pipe. The locating wire shall be bonded by exothermic welds to all metallic fittings, valves and valve boxes to form an electrically continuous system.

7-11.3(11) HYDROSTATIC PRESSURE TEST

7-11.3(11)A GENERAL

All Water Mains and appurtenances shall be hydrostatically pressure tested. Once the new Water Main has passed the hydrostatic pressure test, the Water Main shall be flushed, disinfected, and bacteriologically sampled in accordance with Section 7-11.3(12).

All labor, equipment, pumps, gauges, plugs, saddles, corporation stops, miscellaneous hose and piping, and a 1/4 inch F.I.P.T. connection for pressure recorder, necessary for performing the test, shall be furnished and operated by the Contractor.

Pressure recorders and charts used to record the tests will be furnished and operated only by the Engineer.

The Contractor, prior to notifying the Engineer to witness and record the pressure test, shall have set up beforehand and successfully performed the pressure test to make certain that the pipe is in satisfactory condition. The Contractor shall then notify the Engineer at least two Working Days before recording and conducting the test.
The Contractor shall furnish and install temporary blocking as required for pressure testing. Upon successful testing, temporary blocking shall be removed as directed by the Engineer.

To protect existing Water Mains from contamination by backflow of test water during filling operations, a Washington State approved reduced pressure backflow assembly shall be temporarily installed between the test and supply main. A current performance test report must be on site for the assembly being used. Prior to hydrostatic testing the temporary backflow protection shall be installed and the main under test isolated from the supply main.

7-11.3(11)A1 TEST PRESSURE FOR FIELD TESTING WATERMAIN PIPE

Field hydrostatic testing of various diameter ductile iron Water Main pipes and appurtenances shall be as indicated in the table immediately below:

<table>
<thead>
<tr>
<th>Diameter Pipe (inches)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16 or larger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Pressure (pounds)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>250</td>
</tr>
</tbody>
</table>

Pressure in Pounds per Square Inch (psi), unless specified otherwise.

Polyvinyl Chloride (PVC) Water Mains (Cl 200) and appurtenances 12 inches in diameter and smaller shall be tested hydrostatically to 300 psi.

Test pressure for other pipe will be indicated in the Contract Documents.

The test pressure shall be applied at the low end of the section of Water Main being tested. All air in the pipe shall be vented prior to test.

The hydrostatic test pressure shall be maintained until the Engineer has determined that the section of pipe, valves, and fittings are watertight. If there are no visible leaks and the test pressure is maintained without pumping for 15 minutes with a pressure drop of less than 15 psi, the main will be accepted as a water tight installation. When testing short (less that 18 feet) lengths of main pipe or when testing hydrant pipe, maintaining the test pressure without pumping for 5 minutes with less than 5 psi drop in pressure will be considered evidence of a satisfactory test.

Sections to be tested shall be limited to 1,500 feet or less. The Engineer may require that the first section of pipe, not less than 1,000 feet in length, installed by each of the Contractor’s crews, be tested in order to qualify the crew and the Material. Pipe installation shall not be continued more than an additional 1,000 feet until the first section has been tested successfully.

Hydrostatic tests shall be performed on every completed section of Water Main between valves, or as directed by the Engineer. The pressure differential across closed valves shall not exceed the rated operating pressure of the valve.

All tests shall be made with the hydrant auxiliary gate valves open and with pressure exerted against the closed hydrant inlet valve. After the test has been completed, gate valves shall be tested by closing each one in turn and relieving the pressure beyond. This test of the gate valve will be acceptable if no immediate loss of pressure is registered on the gauge when the valve is being checked. The Contractor shall verify that the pressure differential across the valve does not exceed the rated test pressure of the valve.

Any visible leakage detected shall be corrected by the Contractor regardless of the allowable leakage specified above. Should the tested section fail to meet the pressure test successfully as specified, the defects shall be located and repaired and the pipe line retested at the Contractor’s expense.

Defective materials or workmanship discovered as a result of a hydrostatic field test shall be replaced and remedied by the Contractor. Whenever it is necessary to replace defective material or correct the workmanship, the hydrostatic test shall be rerun until a satisfactory test is obtained.

7-11.3(11)B TESTING EXTENSIONS FROM EXISTING MAINS

When an existing Water Main is extended over 18 feet, the section of new pipe installed to the existing main will be made by SPU Water Operations with pretested, pre-chlorinated pipe, and no hydrostatic test will be required. SPU Customer Service / Inspection Service shall be notified for approval at least 3 Working Days in advance if predisinfected pipe is proposed for installation. When the required hydrostatic tests are conducted in
the new main section beyond the installed new valve in the closed position, the normal pressure of the existing main may be present against the other side of the new valve.

Where the distance between the end of an existing Water Main pipe extension to the new valve is more than 18 feet, the connection of the new pipe to existing pipe shall not be made until after hydrostatic tests have been made to the required pressure in both directions against the new valve. This shall be accomplished by a temporary cap or plug installed on the end of the new pipe, beyond the new valve, as close as possible to the existing pipe for testing purposes. *Where a new valve is not part of the Work, the Contractor shall notify the Engineer at least 10 Working Days in advance to coordinate other arrangements for hydrostatic testing.*

The short length of pipe between the temporary cap or plug end with the new valve in the closed position, with no hydrostatic pressure active on the opposite side of the valve, shall be subjected to the required test pressure. The same test shall be made against the other side of the new valve when that section of pipe is tested with no hydrostatic pressure active in the short section of pipe toward the existing main pipe. The final connection to the existing main shall be made by the SPU Water Operations with pretested, pre-chlorinated pipe, and no hydrostatic test will be required.

7-11.3(11)C TESTING SECTION WITH HYDRANTS INSTALLED

When hydrants are included with the section of main pipe to be tested, the testing shall be conducted in three separate tests as follows:

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water main gate valves and hydrant auxiliary gate valves closed, with the hydrant operating stem valves and hose ports wide open.</td>
</tr>
<tr>
<td>2</td>
<td>Water main gate valves and the hydrant operating the stem valves tightly closed but the hydrant auxiliary gate valves and hose ports wide open.</td>
</tr>
<tr>
<td>3</td>
<td>Each hydrant shall be tested to 200 psi with the hydrant auxiliary gate valve and hose ports closed and the hydrant operating stem valve wide open. Twenty-five pounds per square inch shall be in the supply main beyond the hydrant auxiliary gate valve when testing a hydrant singly.</td>
</tr>
</tbody>
</table>

7-11.3(11)D TESTING HYDRANTS INSTALLED ON EXISTING MAINS

For hydrants installed and connected to an existing main, the hydrant connection including hydrant tee, connection pipe, and auxiliary gate valves, shall be installed with pretested Materials.

Before the hydrant connection is made to the existing main, the hydrant installation shall be subjected to the hydrostatic Test No. 3 as specified in Section 7-11.3(11)C. Hydrants installed and connected to an existing main shall have a satisfactory bacteriological sample obtained following the hydrostatic test.

7-11.3(12) FLUSHING AND DISINFECTION OF WATER MAINS

7-11.3(12)A GENERAL

Before being placed in service, all newly installed pipe, valves, hydrants, and appurtenances shall be flushed, disinfected and kept clean, and a satisfactory bacteriological report shall be obtained.

Newly installed Water Mains exceeding 500 feet continuous length shall have a bacteriological sample taken from each and every 500 foot interval of Water Main in addition to samples taken at each end of the Water Main. For each hydrant lateral over 18 feet in length, a bacteriological sample shall be taken at the hydrant end. Hoses for bacteriological sampling will not be allowed. On new Water Mains without hydrants, temporary sampling taps shall be provided, and then removed and plugged after satisfactory bacteriological results have been verified acceptable. Hydrants used for bacteriological sampling shall be fitted with a sampling tap acceptable to the Engineer.

SPU’s Water Quality Laboratory will perform the bacteriological test and report the results to the Engineer. Results will be available to the Engineer no earlier than 48 hours after samples are delivered to SPU’s Water Quality Laboratory. Bacteriological sample results are valid for 14 Days after date of sample collection. If connections are not made within that time period, the Water Main must be flushed and another satisfactory bacteriological test result obtained. SPU’s Water Quality Division may require bacteriological samples at any time.
7-11.3(12)B PRE-DISINFECTION FLUSHING

Sections of pipe smaller than 24-inch diameter to be disinfected by methods other than that found in Section 7-11.3(12)D, METHOD 1, shall first be flushed to remove any solid or contaminated material. If METHOD 1 is used, the 2-1/2 fps flushing shall be done after disinfection is complete (see Section 7-11.3(12)L, Final Flushing and Testing). If no hydrant is installed at the end of the new pipe, the Contractor shall provide a tap large enough to develop a velocity of at least 2.5 feet per second in the pipe. Flushing period shall be at least 5 minutes for every 150 feet of new pipe but in no case less than 30 minutes. One 2-1/2 inch hydrant opening will, under normal pressure of 40 psi, provide this velocity in pipe sizes up to and including 12 inches. For pipe sizes exceeding 12-inch diameter, flushing taps size requirements are:

<table>
<thead>
<tr>
<th>Pipe Diameter (inches)</th>
<th>Flow Required to Produce 2-1/2 feet per second (fps) Velocity in Main (gpm)</th>
<th>Number - Size (inch) of Taps Required for a 2-1/2 fps Flush</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1200</td>
<td>3 - 2", or 1 - 3"</td>
</tr>
<tr>
<td>16</td>
<td>1600</td>
<td>4 - 2", or 1 - 4"</td>
</tr>
<tr>
<td>20</td>
<td>2500</td>
<td>6 - 2", or 3 - 3", or 2 - 4"</td>
</tr>
<tr>
<td>24</td>
<td>3600</td>
<td>4 - 3", or 2 - 4", or 1 - 6"</td>
</tr>
<tr>
<td>30</td>
<td>5625</td>
<td>4 - 4", or 2 - 6", or 1 - 8"</td>
</tr>
<tr>
<td>36</td>
<td>8100</td>
<td>2 - 6", or 1 - 8"</td>
</tr>
<tr>
<td>42</td>
<td>11025</td>
<td>3 - 6", or 1 - 10"</td>
</tr>
<tr>
<td>48</td>
<td>14400</td>
<td>4 - 6", or 1 - 12"</td>
</tr>
</tbody>
</table>

Taps required for chlorination, flushing or temporary or permanent release of air shall be furnished and installed by the Contractor and are incidental to the construction of Water Mains. When a hose bib faucet is installed for bacteriological sampling, it shall be located upstream from the flushing point. Taps on existing mains required for chlorination or flushing will be furnished and installed by SPU’s Water Quality Division. As an alternative to 2-1/2 fps flushing, sections of pipe 24 inches or larger diameter may be prepared for disinfection by mechanical cleaning methods approved by the Engineer.

The Contractor shall be responsible for disposing of treated water flushed from the mains in a manner satisfactory to the state and local authorities and to the Engineer. The water shall be neutralized before disposal into any natural drainage channel. The Contractor shall maintain an air gap equal to twice the discharge pipe/hose diameter (but not less than 12 inches) between the discharge outlet and the overflow rim of the receiving waters.

7-11.3(12)C REQUIRED CONTACT TIME

Before being placed into service, all newly installed pipe shall be disinfected so that a chlorine residual of not less than 10 mg/L remains in the water after the retention period. Treated water shall be retained in the pipe at least 24 hours. If the water temperature is less than 41°F (5°C), the water shall remain in the pipe for at least 48 hours. After the retention period, chlorine residual shall be tested at all extremities of the pipe and shall measure at least 10 mg/L. If a measurement of less than 10 mg/L is obtained repeat disinfection is required.

7-11.3(12)D FORM OF APPLIED CHLORINE

Chlorine shall be applied by one of three methods to give a dosage of not less than 25 mg/l of available chlorine:

METHOD - 1 Dry Calcium Hypochlorite

As each length of pipe is installed, sufficient high test calcium hypochlorite (65 -70% chlorine) shall be placed in the pipe to yield a dosage of not less than 25 mg/l available chlorine, calculated on the volume of the water to be contained in the pipe and appurtenances. This method may only be used if the pipes and appurtenances are kept clean and dry during construction.

The number of ounces of 65% test calcium hypochlorite required for a 20 foot length of pipe equals 0.004216d² in which "d" is the pipe diameter in inches.
METHOD - 2 100% Gas Chlorine

A chlorine gas-water mixture shall be applied by means of a solution-feed chlorinating device. Chlorinating devices for feeding solutions of the chlorine gas must provide means for preventing the backflow of water into the chlorine supply.

METHOD - 3 Sodium Hypochlorite

Sodium Hypochlorite, commercial grade (12.5% Cl₂) or in the form of liquid household bleach (5 - 6% Cl₂), may be substituted for the chlorine gas-water mixture. This liquid chlorine compound may be used full strength or diluted with water and injected into the main with fill water in correct proportion to produce a mixture of at least 25 mg/l Cl₂.

7-11.3(12)E CHLORINE DOSAGE

The amounts of chlorine (Cl₂) required to give 25 mg/l for 100-foot lengths of various diameters of pipe are:

<table>
<thead>
<tr>
<th>Pipe Size (inch)</th>
<th>Volume of Water per 100 ft Length (gallons)</th>
<th>Cl₂ 100% (lbs)</th>
<th>Household Bleach 5-1/4% Cl₂ (gallons)</th>
<th>Commercial Bleach 12-1/2% Cl₂ (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>65.3</td>
<td>.014</td>
<td>.03</td>
<td>.013</td>
</tr>
<tr>
<td>6</td>
<td>146.5</td>
<td>.031</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>8</td>
<td>261.0</td>
<td>.054</td>
<td>.13</td>
<td>.053</td>
</tr>
<tr>
<td>10</td>
<td>408.0</td>
<td>.085</td>
<td>.2</td>
<td>.08</td>
</tr>
<tr>
<td>12</td>
<td>588.7</td>
<td>.121</td>
<td>.3</td>
<td>.12</td>
</tr>
<tr>
<td>14</td>
<td>799.6</td>
<td>.167</td>
<td>.4</td>
<td>.16</td>
</tr>
<tr>
<td>16</td>
<td>1044.4</td>
<td>.22</td>
<td>.5</td>
<td>.21</td>
</tr>
<tr>
<td>20</td>
<td>1631.9</td>
<td>.34</td>
<td>.8</td>
<td>.33</td>
</tr>
<tr>
<td>24</td>
<td>2349.9</td>
<td>.49</td>
<td>1.1</td>
<td>.47</td>
</tr>
<tr>
<td>30</td>
<td>3671.7</td>
<td>.77</td>
<td>1.8</td>
<td>.75</td>
</tr>
<tr>
<td>36</td>
<td>5287.3</td>
<td>1.1</td>
<td>2.5</td>
<td>1.1</td>
</tr>
<tr>
<td>42</td>
<td>7196.6</td>
<td>1.5</td>
<td>3.5</td>
<td>1.44</td>
</tr>
<tr>
<td>48</td>
<td>9399.0</td>
<td>2.0</td>
<td>4.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

7-11.3(12)F POINT OF APPLICATION FOR LIQUID/GAS DISINFECTION

The preferred point of application of the chlorinating agent is at the beginning of the pipeline extension or any valved section of it and through a corporation stop inserted in the horizontal axis of the pipe. The water injector for delivering the chlorine-bearing water into the pipe shall be supplied from a tap on the pressure side of the gate valve controlling the flow into the pipeline extension. Alternate points of application may be used when approved or directed by the Engineer.

7-11.3(12)G BACKFLOW PREVENTION REQUIREMENT

To prevent contaminated water from the new main from entering the existing distribution system, a Washington State approved reduced pressure backflow assembly shall be used on the line supplying the water. A Washington State approved reduced pressure backflow assembly is sufficient backflow protection only for filling and flushing of the new main. During the hydrostatic pressure test, the temporary connection between the new main and the existing distribution system shall be removed.

7-11.3(12)H RATE OF APPLICATION

Water from the existing distribution system, or other approved source of supply, shall be controlled to flow very slowly into the newly installed pipeline during application of the chlorine. The rate of chlorine gas-water
mixture or dry gas feed shall be in such proportion to the rate of water entering the newly installed pipe that the dosage applied to the water is at least 25 mg/l.

Sodium hypochlorite, commercial grade (12.5% Cl₂) or in the form of liquid household bleach (5-6% Cl₂), may be substituted for the chlorine gas-water mixture. This liquid chlorine compound may be used full strength or diluted with water and injected into the main in correct proportion to the fill water so that dosage applied to the water is at least 25 mg/l.

7-11.3(12)I RESERVED
7-11.3(12)J RESERVED
7-11.3(12)K DISINFECTION OF CONNECTIONS TO EXISTING WATER SYSTEMS
All connections shall be disinfected per the requirements of AWWA C651 section titled “Disinfection Procedures When Cutting into or Repairing Existing Main”. All pipe and fittings shall be swabbed or sprayed with a chlorine solution at least as strong as liquid household bleach (5-6% Cl₂).

7-11.3(12)L FINAL FLUSHING AND TESTING
Following chlorination, all treated water shall be flushed from the pipe until the replacement water treated throughout its lengths shows an absence of chlorine. If chlorine is normally used in the source of supply, tests shall show a residual not in excess of that carried in the system.

Where dry calcium hypochlorite has been used for disinfection, flushing velocity must be at least 2.5 feet per second in the main. Flushing period shall be at least 5 minutes for every 150 feet of new main but in no case less than 30 minutes.

Bacteriological samples shall be collected at intervals of 500-feet and at the ends of the new Water Mains. No hoses shall be used in collection of samples. If hydrants are not available on the new main to facilitate collection of samples, temporary sampling taps shall be installed by the Contractor. Sampling taps shall be removed and plugged after satisfactory bacteriological results are obtained. If hydrants are used for collection of bacteriological samples, they shall be fitted with a sampling tap.

All hydrants on the new main shall be flushed to remove excess chlorine from the hydrant and hydrant branch.

7-11.3(12)M REPETITION OF FLUSHING AND TESTING
Based on any unsatisfactory bacteriological sample results, the new main shall be either flushed and re-sampled, or re-disinfected, flushed and re-sampled. These procedures shall be repeated by the Contractor until satisfactory bacteriological sample results are obtained.

7-11.3(13) CONCRETE THRUST BLOCKING
Concrete thrust blocking, as indicated on Standard Plan No.’s 330a through 331b, shall be placed at bends, tees, deadends, and crosses as located on the Drawings. Blocking shall be Class 5(1-1/2) (see Section 5-05.3(1)) concrete mix poured in place.

Concrete blocking shall bear against solid undisturbed earth at the sides and bottom of the trench excavation and shall be shaped so as not to obstruct access to the joints of the pipe or fittings.

All concrete blocking shall be inspected and approved by the Engineer prior to backfilling. The Contractor shall notify the Engineer at least one Working Day in advance. Unacceptable concrete blocking shall be replaced at the Contractor’s expense.

7-11.3(14) BLOWOFF ASSEMBLIES
Water main blowoff assemblies shall be constructed as shown on the Drawings or Standard Plan No.’s 340a and 340b. A standard meter box shall be installed in non-traffic bearing areas; a Type 361 Frame and Cover shall be used for all other installations subject to vehicular traffic. Care shall be taken in locating the meter box or frame and cover such that it is not in any water course or in any other location subject to drainage or sewerage contamination. Tops shall be set to conform to finished grade. Backfilling and compaction shall conform with Sections 7-10.3(10) and 7-10.3(11).

Drilling and tapping into the Water Main shall be performed by the Contractor except in the event of installation on a charged (in-use) Water Main, in which case SPU Water Operations will make the connection.
7-11.3(15) ELECTROLYSIS MONITORING SYSTEM FOR DUCTILE IRON PIPE

7-11.3(15)A GENERAL

Where called out on the Drawings, the pipeline Contractor furnishing the pipe shall comply with the following:

1. **Install Electrical Continuity Bonds:** The Contractor shall furnish and install electrical joint bonds, as specified herein, at all mechanical coupling non-insulated flange joints and all rubber gasket joints. The Contractor shall take special precautions to avoid disturbing existing bonds, electrical cables, and wires for test stations and other cathodic protection equipment connected to, or installed near the pipeline.

2. **Install Electrolysis Test Stations:** The Contractor shall furnish and install the Electrolysis Test Stations where shown, and as detailed on the Drawings.

7-11.3(15)B ELECTRICAL JOINT BONDS FOR ALL DUCTILE IRON PIPES AND FITTINGS

7-11.3(15)B1 GENERAL

Each length of ductile iron pipe in the pipeline, and each hydrant run, shall be electrically bonded together, and each mechanical joint shall be bonded to the pipe as shown on the Drawings. The Contractor shall make adhesion tests of all bonds and bonded joints in the presence of the Engineer. Any bonded joint which fails to meet the adhesion test shall be rebonded until a satisfactory test is obtained. Bonding cable shall be as specified in Section 9-30.14.

Details of mechanical joint bonding shall be as shown in Standard Plan No. 362.1.

7-11.3(15)B2 JOINT BOND CABLE CONNECTIONS FOR DUCTILE IRON PIPE

Prior to making any bond connection to metal, a 2 inch x 2 inch section of coating materials shall be removed from the pipe surface to make the connection. Paint, primer, and coating material shall be removed from the pipe surface with clean rags and solvent prior to preparing the metal surface. The metal surface shall be cleaned to white metal by sandblasting, grinding, or filing prior to welding the conductor. Resin-base grinding disks shall not be used. Ceramic base disks are acceptable. Joint bonding cable shall be welded to the pipe or fitting by the exothermic process with a copper sleeve fitted over the exposed conductor. Only sufficient insulation shall be removed from the bonding cable to allow placing of the welding mold. After the weld is completed it shall be tested in accordance with Section 7-11.3(15)D.

Defective welds shall be removed and replaced.

Exposed metal surfaces around the thermite weld including the end of the copper conductor, and the weld itself, shall be covered with coating material as shown on the Drawing or in accordance to Section 9-30.11(2)C5.

No connections to the piping shall be covered or buried until the Engineer has inspected the connections and given permission to cover or backfill. Bond connections not inspected by the Engineer prior to being covered or backfilled will be rejected.

7-11.3(15)B3 RESERVED

7-11.3(15)B4 TESTING ELECTROLYSIS TEST STATION

The Contractor shall notify the Engineer, in writing at least 72 hours in advance, to perform a functional test of the electrolysis test station before backfilling.

7-11.3(15)C ELECTROLYSIS TEST STATION

7-11.3(15)C1 GENERAL

Electrolysis Test Stations shall be installed as indicated on Standard Plan No. 360.1.

7-11.3(15)C2 ZINC REFERENCE ELECTRODES

Place reference electrode within the pipeline trench excavation 6" horizontally from the Watermain at or just below the springline. An exception is where Watermain crosses any other metallic pipe in which the electrode is to be placed between the Watermain and the other pipe. Reference electrodes shall be backfilled with suitable Material. Terminate wires in the test stations.
7-11.3(15)C3 TEST STATION

The test station shall consist of a molded test station box installed inside a conventional cast iron water meter box for non-traffic areas or inside a Type 230.1 frame and cover for traffic areas. The cover shall have the letters “WATER” cast into it.

7-11.3(15)C4 TEST WIRES

Wire location, connections to pipe, size, insulation color, and crimp-on wire connectors shall be as shown on the Standard Plan No. 363.

7-11.3(15)D THERMITE WELD CONNECTIONS

Each bond connection shall be insulated thoroughly with a Royston Handy Cap or approved equal. The cap shall completely cover the cleaned area and provide insulation of the bond connection from the soil environment. The cap must be attached by use of a bonding cement or primer and must contain an elastomeric Material under a plastic dome. The elastomeric Material must mold completely around the bond wire and weld area. The cap shall be a minimum of 4 inches x 4 inches x 125 mils thick. Caps are not required when the connection is covered by heat shrink joint wrapping.

7-11.3(15)D1 TESTING EXOTHERMIC WELD CONNECTIONS

After the exothermic weld has cooled, slag shall be removed and the weld tested with a glancing blow with a 16 ounce hammer to assure proper metallurgical bond.

7-11.3(16) ELECTRICAL INSULATION OF WATER MAIN

7-11.3(16)A GENERAL

The Water Main shall be installed so as to maintain electrical insulation from dissimilar pipe material, other water structures, and other underground installations.

7-11.3(16)B TESTING OF INSULATING COUPLINGS OR INSULATING FLANGE KITS

Insulating couplings or insulating flange kits shall be located and installed as shown on the Drawings. The Contractor shall install an electrolysis test station at each insulating device. The Contractor shall notify the Engineer or SPU corrosion Engineer at least 72 hours in advance to perform a functional test of the insulating couplings and flange kits. The Engineer will test the insulating device. Defective insulating devices shall be repaired at the Contractor’s sole expense. All damaged or defective insulating materials shall be replaced.

7-11.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Pipe, Water Main, (Material), (Class), (Size), including Fittings”, will be per linear foot based on the slope distance from point to point. The point of beginning or ending of measurement in any particular run of pipe shall be the vertical intersection of the center line of the intersecting pipe, or with the beginning or ending of any new pipe installed. No deductions will be made for the linear length of fittings, valves, couplings, etc. contained within the measured length. At changes in pipe size connected by a reducer, the point of measurement shall be taken as the midpoint of the reducer. See Standard Plans No. 194.

Measurement for “Blocking, Cement Concrete” will be by the cubic yard of concrete placed as computed by the Engineer.

Measurement for “Blowoff Assembly, (Size)” will be per each installed and shall include the blowoff connection pipe.

Measurement for “Steel Casing Pipe, (Size) Diameter, Tunneled, Jacked or Augered” will be per linear foot actually installed.

Measurement for “Station, Electrolysis Test” will be per each installed complete.

7-11.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-11 will be made at the Contract unit prices Bid only for the Bid items listed below:
SECTION 7-11 PIPE INSTALLATION FOR WATER MAINS

1. "Pipe, Water Main, (Material), (Class), (Size), (Coating), including Fittings", per linear foot.

The Contract unit price for "Pipe, Water Main, (Material), (Class), (Size), (Coating), including Fittings" shall be full compensation for the:

(1) Costs required for excavating, installing and joining pipe, backfilling and compacting native material, and disposing of and/or placing excess native material elsewhere.

(2) Cost of Materials, including but not limited to: the pipe, fittings and pipe supports, locating wire, special coatings, and other items called for in the Project Manual. Where required, the costs of sand or foam cushioning between the Water Main and other pipes shall also be included.

(3) Costs for the Work required to furnish and install mechanical joint sleeves and pipe supports, including pipe hanger rods with nuts, single pipe rolls, steel angles, reinforcing bars, nuts, bolts, washers, mastic, and galvanizing.

(5) Costs necessary for installing pipe on curves as shown in the Drawings, including field changes involving standard lengths of pipe deflected at the joints.

(6) Costs of all Material, labor and equipment associated with making pipe connections as specified in this section.

(7) Costs of furnishing and installing service connecting tees 4-inches and larger.

Special fittings used but not called for on the Drawings will be paid for at the Supplier's invoice cost plus 15 percent for overhead and profit. Special fittings called for on the Drawings but not used will be deducted from the Contractor's final estimate based on the current cost to the Supplier of fittings used on the improvement.

If the pipe, its lining or its coating is damaged, the Contractor will be required, at the Contractor's own expense, to repair the damage to the satisfaction of the Engineer prior to installation.

Payment for safety systems required for trench excavation Work shall be in accordance with Section 7-17.5.

Payment for Class B Bedding for specially coated pipe shall be in accordance with Section 7-17.5.

Defective materials or workmanship discovered as a result of tests shall be replaced and retested by the Contractor at the Contractor's own expense.

2. "Blocking, Cement Concrete", per cubic yard.

The Contract unit price for "Blocking, Cement Concrete" shall include:

(1) Costs of placing concrete blocking including: excavation, turnbuckles, shackle rods, steel plates, concrete form work, finishing, removal and disposal of material not required for backfill.

(2) Other Work that may be necessary for constructing the blocking in place as specified.

3. "Blowoff Assembly, (Size)", per each.

The Contract unit price for "Blowoff Assembly, (Size)" shall include:

(1) Costs for furnishing and installing the complete assembly including corporation, fittings, pipes, valve, meter box or ring and cover, and all excavation, backfill with native material and compaction.

(2) Costs to furnish and install the pipe between the corporation and the blowoff assembly including fittings.

(3) If the location of the blowoff assembly differs from that shown in the Drawings and requires an increase of more than 10 feet of connection pipe, the excess of pipe over 10 feet will be paid for in accordance with Section 1-09.4.

4. "Steel Casing Pipe, (Size), Tunneled, Jacked or Augered", per linear foot.

The Contract unit price for "Steel Casing Pipe, (Size), Tunneled, Jacked or Augered" shall include:

(1) Costs for the casing pipe in place, including jacking, augering, tunneling, excavation and backfill of jacking pits, furnishing and placing sand filler, spacers, and sealing both ends with concrete.

(2) Costs to remove and replace damaged steel casing pipe deemed necessary by the Engineer.
(3) Costs to repair any area settled due to the placement of steel casing pipe as directed by the Engineer.

5. "Station, Electrolysis Test", per each.
 The Contract unit price for "Station, Electrolysis Test" shall include:
 (1) Costs of furnishing and installing water meter box, test box, terminal blocks, wires, zinc reference electrodes, removal and restoration of sidewalks.
 (2) All other Materials and labor required to complete the job.

6. Other payment information.
 No separate payment will be made for electrical joint bonds. Costs for labor, Material and Equipment required to satisfactorily bond across mechanical couplings and across rubber gasket joints, and all incidentals required to provide satisfactory and complete bonding shall be included in the price Bid for "Pipe, Water Main, (Material), (Class), (Size), including Fittings."
 Joint bonding Material shall include without being limited to all required cables, bolts, molds, cold applied tape coatings and heat shrink sleeves.

SECTION 7-12 VALVES FOR WATER MAINS

7-12.1 DESCRIPTION
 This Work consists of furnishing and installing all Water Main valves and valve accessories included in the water system shown on the Drawings and supplying all materials, tools and appurtenances needed to complete the installation.

7-12.2 MATERIALS
 Materials shall meet the requirements of Section 9-30.
 Valves for Water Mains shall be suitable for ordinary waterworks service and are intended to be installed in a normal position on buried pipelines for water distribution systems.

7-12.3 CONSTRUCTION REQUIREMENTS

7-12.3(1) GENERAL
 All valves shall be inspected upon delivery in the field to ensure proper working order before installation and shall be free of all rust and dirt. They shall be set and jointed to the pipe according to the AWWA Standards for the type of connecting ends furnished. The valves shall be carefully inspected for injury to the outer protective coatings.

 An Operating Nut Extension shall be installed when the ground surface is more than 30 inches above the valve operating nut. The Operating Nut Extension shall extend into the top section of the Standard Valve Box and shall clear the bottom of the lid by a minimum of 24 inches. When required, it shall be furnished and installed by the Contractor.

 Upon delivery at the Project Site, all valves shall be opened to prevent the collection of water in the valve. Valves shall have the interiors cleaned of all foreign matter and shall be inspected both in open and closed position prior to installation. Valves shall be set perpendicular to the Water Main and valve boxes shall be placed over the valve or valve operator in a manner that the valve box does not transmit shock or stress to the valve (see Section 7-12.3(4)). The lower casting of the valve box shall be installed first, so as to be supported by a minimum backfill and a polyethylene foam collar not less than 2 inches in thickness. The casting shall not rest directly upon the body of the valve or upon the Water Main. Backfill shall be carefully tamped around the valve box to a distance of 3 feet on all sides or to the undisturbed face of the trench if it is closer. The cast iron valve box cover shall be set flush with the roadbed or finished paved surface.

 The combination air release/air vacuum valves shall be installed as shown in the Drawings. All piping shall be sloped to permit escape of any entrapped air. Backfilling and compaction shall be as specified in Section 7-10.
After installation, all valves shall be field tested (see Sections 7-11.3(11) and 7-11.3(12)) and disinfected. Should any defects in design, Materials installation, or workmanship appear during these tests, the Contractor shall correct such defects with the least possible delay and to the satisfaction of the Engineer.

7-12.3(2) VALVE CHAMBERS

7-12.3(2)A GENERAL

This section deals with the construction of valve chambers and special valve chambers.

Where shown on the Drawing or where directed by the Engineer, a valve shall be enclosed in a valve chamber.

Valve chambers may be either precast, cast in place, solid concrete blocks, or concrete brick.

7-12.3(2)B PRECAST VALVE CHAMBERS

The concrete base shall be poured-in-place or precast. Poured-in-place base shall be allowed to attain sufficient strength to support the chamber (usually 2 or 3 Days), as approved by the Engineer. Precast chambers shall be set on the concrete base in cement mortar with the slotted holes straddling the Water Main, unless indicated otherwise in the Contract or approved otherwise by the Engineer.

The Water Main shall be wrapped with 2-inch thick plastic foam Material at those areas where the main intersects the chamber wall. Any remaining space between the chamber wall and the plastic foam Material shall be filled with cement mortar or mortared bricks. In no case shall the Water Main rest on the chamber wall.

7-12.3(2)C CHAMBERS MADE WITH PRECAST CONCRETE BLOCKS

Circular or rectangular chambers may be made with solid precast concrete blocks. The base shall first be poured in place. After the base has reached sufficient strength (usually 2 or 3 Days), the walls may be constructed of concrete blocks with water-tight cement mortar joints.

Circular chambers shall be constructed with curved manhole blocks. The chamber top shall be tapered in to the dimensions shown on the Standard Plans.

Chambers shall have a cast-in-place or precast concrete top slab suitable for H-20 traffic loading.

7-12.3(2)D CAST-IN-PLACE CHAMBERS

Cast-in-place chambers may be constructed by using forms and poured concrete. Finishing of walls is not required other than the patching of porous spots (rock pockets) and bolt holes. Forms shall be removed for inspection of concrete.

7-12.3(3) SETTING FRAME AND COVER

The cast iron frame and cover shall be set to grades furnished by the Engineer. Provisions for future adjustment of frame to changes in grade shall be made by constructing a minimum of 2 courses of brick with mortar joints between the top of the chamber and the bottom of the casting. Brick for this purpose shall be standard concrete brick 2-1/4 inches thick.

7-12.3(4) SETTING VALVE BOX

Cast iron valve boxes shall be positioned during backfilling operations to be in vertical alignment with the gate valve operating stem. The lower casting of the unit shall be supported by a plastic foam collar not less than 2 inches thick, and shall be held in place by carefully compacted backfill. The casting shall not rest directly upon the body of the gate valve or upon the Water Main. The upper casting of the unit shall be placed in proper alignment and to such an elevation that its top is at final grade.

Compaction shall be as specified in Section 7-10.3(11).

7-12.3(5) VALVES INSTALLED ON SPECIALLY COATED PIPE

Valves installed on Water Mains that are polyethylene encased, tape coated, or special coated, shall be polyethylene encased, epoxy coated, or special coated the same as the Water Main.

7-12.3(6) LADDERS

Refer to Section 7-05.3(1)Q.
SECTION 7-12 VALVES FOR WATER MAINS

7-12.3(7) PAINTING OF VALVES

7-12.3(7)A PAINTING AT FACTORY
After the factory test and inspection, all ferrous parts of the valves except finished or bearing surfaces shall be painted inside and out with two coats of asphalt varnish, Federal Specification TT-V-51A or approved equal.

7-12.3(7)B PAINTING IN THE FIELD
The valve shall be carefully inspected for injury to the outer protective coatings. At all places where the coating has been ruptured or scraped off, the damaged area shall be thoroughly cleaned to expose the iron base, and the cleaned area shall then be recoated with the manufacturer’s recommended primer and the entire valve shall be field painted with two or more coats of Royston Roskote 612XM, or equal, per manufacturer’s instructions.

7-12.3(8) THERMOPLASTIC POWDER COATING
Valves are installed on Water Mains where the Contract Documents specify Thermoplastic Powder Coating, the valves and attachments shall have the same Thermoplastic Powder Coating unless approved otherwise by the Engineer.

7-12.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

7-12.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 7-12 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:

1. “Valve, Gate, (Size)”, per each.
2. “Valve, Butterfly, (Size)”, per each.
3. “Valve, Gate or Butterfly, (Size)”, per each.
 The Contract unit price for “Valve, (Type), (Size)” shall include all costs for the Work required to furnish and install the valve, including painting, jointing, disinfecting, hydrostatic testing, operating nut and extensions.
 When the valve is to be polyethylene encased, thermoplastic powder coated or epoxy coated as indicated in the Contract, the cost for furnishing and installing the coating as specified in Section 7-12 shall be included in the Contract unit price for “Valve, (Type), (Size)” as listed in the Bid Form.
4. “Tapping Sleeve, (Size) x (Size) and Tapping Gate Valve, (Size)”, per each.
 When the Tapping Sleeve and Tapping Valve are installed by the Seattle Public Utilities Water Operations, payment at the unit Bid price for the Tapping Sleeve and Valve shall include furnishing the sleeve and valve at the designated construction site, trench excavation, backfill with native material and compaction.
5. “Valve Chamber, (Type), (Size)”, per each.
 The Contract unit price for “Valve Chamber, (Type), (Size)” shall include all costs required to furnish and install the precast concrete, brick and block, or cast-in-place chamber, including foundation, adjustment brick, castings and lid, ethafoam cushion, mortar plastering, valves, support piers, waterproofing Materials and steps or ladders.
6. “Valve Box, Cast Iron”, per each.
 The Contract unit price for “Valve Box, Cast Iron” shall include all costs to furnish and install the valve box, including plastic foam cushion.

SECTION 7-13 RESERVED
SECTION 7-14 HYDRANTS

7-14.1 DESCRIPTION

These Specifications are to be used in conjunction with the AWWA Standard C502 for dry barrel hydrants for ordinary water works service.

This Work shall consist of installing and setting and adjusting hydrant; and furnishing, installing and setting the hydrant tee, auxiliary valve, restraint system and shackles, gravel drain, concrete blocks, shear block, bleeder, hydrant connection, connection pipe, bollards, retaining wall and rock facing, coating, painting, excavation, backfilling, reset existing hydrant, move existing hydrant, furnishing and installing hydrant markers and quick connect adapters when required, and other pertinent Work as specified in other sections of this Specification. The Work also includes flushing, hydrostatic pressure testing and disinfecting of furnished hydrants and hydrant barrel extensions. The Contractor shall check and tighten any loose bolts on the hydrant prior to installation.

Hydrants will be furnished by SPU Water Operations. When required by the Engineer, hydrant barrel extensions kits will be furnished by SPU and installed by the Contractor prior to hydrant pressure testing. The Contractor shall take delivery of, and responsibility for, hydrants and extension kits provided at the Water Operations Center (2700 Airport Way South, Seattle) and shall transport them to the job site. The Contractor shall notify the Engineer at least 5 Working Days in advance to schedule hydrant pick-up and extension kit pick-up, and 2 Working Days in advance for hydrant installation. One hydrant extension kit, sized as determined by the Engineer, will be provided for each hydrant requiring adjustment. The Contractor shall flush, test and disinfect furnished hydrants and hydrant barrel extensions according to Section 7-11.3.

7-14.2 MATERIAL

Materials shall meet the requirements of Section 9-30.5.

7-14.3 CONSTRUCTION REQUIREMENTS

7-14.3(1) SETTING HYDRANTS

Where shown in the Drawings, hydrants shall be installed in accordance with the detail shown on Standard Plan Nos. 310.1a through 314. Hydrants shall not be installed within 3 feet of a traveled roadway. In addition, a minimum 4-foot radius unobstructed working area shall be provided around all hydrants. The sidewalk flange shall be set 2-inches minimum and 7-inches maximum above finished grade.

For each hydrant requiring vertical adjustment, see Section 7-14.1.

Any barrel adjustment riser, less than 28” in length, shall be buried at the bottom of the hydrant center section, rather than at the bottom of the hydrant curb stand or discharge section.

After installation hydrants shall be subjected to a hydrostatic test as specified in Section 7-11.3(11).

The hydrant excavation shall be backfilled when installation and testing are complete and accepted by the Engineer.

A concrete shear block, as shown on the hydrant detail on Standard Plan 311, shall be constructed if the hydrant is not in a concrete sidewalk. Construction, Materials, and finishing shall conform with Section 8-14, Cement Concrete Sidewalk. The shear block shall be set flush with the immediately surrounding finish grade.

After all installation and testing is completed, the hydrants shall be painted in accordance with Section 7-14.3(11), unless otherwise directed by the Engineer.

Any hydrants not in service shall be identified by covering with a burlap or plastic bag.

7-14.3(2) HYDRANT CONNECTIONS

7-14.3(2A) GENERAL

Hydrant laterals shall consist of a section of 6-inch ductile iron pipe from the main to the hydrant and shall include an auxiliary gate valve set vertically and placed in the line as indicated in the Standard Plans.
7-14.3(2)B HYDRANT RESTRAINT

Hydrants shall be restrained with two 3/4-inch diameter steel shackle rods as shown on the Drawings. Threads shall be cut at the ends or where rod couplers are needed. "All Thread" rod will not be allowed. Shackle rods shall be completely coated pursuant to Section 9-30.15.

7-14.3(2)C AUXILIARY GATE VALVE AND VALVE BOX

Auxiliary gate valves and boxes shall be installed in accordance with Section 7-12 except that the end connections shall be provided with lugs for shackling or the bells shall have sufficient clearance between the body of the valve and the hub to permit the installation of shackles.

7-14.3(3) RESETTING EXISTING HYDRANTS

Where the Drawings call for adjustment of an existing hydrant to conform to a new street alignment or grade, it shall be reset without disturbing the location of the hydrant lateral tee at the main.

The hydrant shall be shackled as specified in Section 7-14.3(2)B.

This Work shall be in accordance with the specifications for setting new hydrants.

7-14.3(4) RESERVED

7-14.3(5) RESERVED

7-14.3(6) HYDRANT BARREL EXTENSIONS

The minimum requirements for hydrant barrel extensions, operating stems, and flanged adapters shall conform to AWWA C502 in design, Material, and workmanship. The drilling of the flanges on the extensions shall match the drilling of the flanges on the hydrant.

7-14.3(7) RESERVED

7-14.3(8) RESERVED

7-14.3(9) RETAINING WALLS FOR HYDRANTS

Where indicated on the Drawings, the Contractor shall furnish and place a broken concrete slab wall around hydrants in accordance with Standard Plan No. 313. Rockery rock may be used in place of broken concrete.

The broken concrete slabs shall be a minimum of 3-1/2 inches in thickness and not less than 3 feet x 1.5 feet in size. The slabs shall be set in level layers of the same thickness, and the exposed faces shall be as smooth as the shape and size of the slabs permit.

The backfill behind the wall shall be Mineral Aggregate Type 2, in accordance with Section 9-03.

7-14.3(10) HYDRANTS ON WATER MAINS THAT ARE POLYETHYLENE ENCASED, TAPED, OR SPECIALLY COATED

For hydrants installed on Water Mains that are polyethylene encased, taped, or specially coated, the following shall be required:

1. Hydrant Connections (See Section 7-14.3(2)) shall have the same special coating as the Water Mains to which they are connected, and shall have Class B bedding in accordance with Section 7-10.3(9);
2. Hydrant barrels below ground shall have the same special coating as the water main to which they are connected; and
3. Hydrant connection shall be installed as specified in Section 7-11.3(6).

7-14.3(11) HYDRANT FIELD PAINTING

Following installation and prior to backfill, any damaged coating on the below-ground portion of the hydrant shall be painted with Asphalthic Varnish, Royston Roskote number 612XM, or approved equal.

After shear pad construction or final surface restoration, the hydrant curb stand section including all exposed surfaces of the sidewalk flange shall receive two coats of oil based gloss enamel paint (Kelly-Moore Luxlite or approved equal) in Caterpillar yellow. Based on the elevation of the hydrant within the surrounding pressure zone, if the maximum static pressure at the hydrant is less than 60 psi, the engine port cap on the...
hydrant shall be painted with two coats of oil based gloss enamel paint (Kelly-Moore Luxlite or approved equal) with the final coat being Red.

7-14.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Retaining Wall for Hydrant” will be per square foot of face of wall constructed.

Measurement of hydrants, and resetting, moving, and reconnecting of existing hydrants will be made per each.

7-14.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-14 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. "Hydrant, 6-Inch Connection (Type)", per each.
 The Contract unit price for "Hydrant, 6-Inch Connection (Type)" shall include all costs for the Work required to furnish and install a Type 310 or 311 hydrant on new main (or existing main with existing tee), including the auxiliary valve, valve box, restraint system and shackles, barrel extension, gravel drain, concrete blocks, bleeder, polyethylene tape wrap encasements, field painting, shea block, bollards, and the 6-inch ductile iron pipe between the hydrant and the Water Main, and any hydrant marker or quick connect adapter required.

2. "Reset Hydrant", per each.
 The Contract unit price for "Reset Hydrant" shall include all costs for the Work required to reset the existing hydrant as specified, including shackling, painting and new connection pipe.

3. "Relocate Hydrant", per each.
 The Contract unit price for "Relocate Hydrant" shall include all costs for the Work required to relocate the existing hydrant as specified, the excavation, backfill, and if required, furnishing of tee, sleeve, and new connection pipe.

4. "Reconnect Hydrant", per each.
 The Contract unit price for "Reconnect Hydrant" shall include all cost of the Work required to reconnect the existing hydrant to the tee in the new main, installing new connecting pipe with fittings and shackles, painting, and removing the abandoned tee and main as necessary.

5. "Hydrant Extension, Vertical, 24 Inch and Under", per each.
 The Contract unit price for "Hydrant Extension, Vertical, 24 Inch and Under," and "Hydrant Extension, Vertical, Over 24 Inch" shall include all costs necessary for the Work to extend the hydrant to the required finished grade in a fully operational and finished condition and shall also include the casting, bolts, nuts, washers and gaskets.

7. Other payment information.
 All costs in connection with furnishing and installing coatings and field painting as specified in this section shall be included in the Contract unit price of various Bid items comprising the improvement.

 If the location of the hydrant differs from that shown in the Drawings and requires an increase of more than 5 feet of connection pipe, the length of pipe exceeding 5 feet will be paid for by either "Pipe, Water Main, Ductile Iron, Class 52, 6-Inch," if such a Bid item is in the Bid Form; or in accordance with Section 1-09.4 if this item is not in the Bid Form.

 Payment for bedding for polyethylene encased, multi-layered tape coated or special tape coated hydrant connection pipe shall be in accordance with Section 7-17.5.
SECTION 7-15 WATER SERVICE CONNECTIONS

7-15.1 GENERAL

SPU Water Operations will, at no cost to the Contractor, make all taps for water service connection, and for supplying, disinfecting, and installing the service pipe. See Sections 7-11.3(9) and 1-07.28.

SECTION 7-16 FLOW CONTROL SYSTEMS

7-16.1 DESCRIPTION

This Work shall consist of excavation, shoring, foundation preparation, bedding, jointing, backfilling and compacting for the construction of a flow control structure and detention pipe for storm water storage. The flow control structure shall consist of manhole structure with a flow control device.

Trenching and excavating for flow control systems are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems, and 7-17.3(1).

7-16.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Control Structure</td>
<td>9-05</td>
</tr>
<tr>
<td>Concrete Pipe</td>
<td>9-05</td>
</tr>
<tr>
<td>Corrugated Steel Pipe</td>
<td>9-05</td>
</tr>
<tr>
<td>Corrugated Aluminum Pipe</td>
<td>9-05</td>
</tr>
<tr>
<td>Frame and Grate</td>
<td>9-12</td>
</tr>
<tr>
<td>Manhole Components</td>
<td>9-12</td>
</tr>
</tbody>
</table>

Joint coupling bands for detention pipe shall be of the type specified in Section 9-05.1(2)B and 9-05.1(3)B.

Corrugated metal pipe (CMP) flow control systems will not be allowed in any landslide-prone area as defined in SMC 25.05.908.

Corrugated metal pipe flow control systems which are to be owned, or to be maintained, by the City will not be allowed.

Flow control systems to be owned, or to be maintained, by the City shall be concrete.

7-16.3 CONSTRUCTION REQUIREMENTS

7-16.3(1) GENERAL

All Work including excavation, foundation preparation, bedding, pipe installing and jointing, backfilling, compacting for the construction of detention pipe and flow control structure shall be in accordance with Section 7-05 and 7-17.

7-16.3(2) FLOW CONTROL STRUCTURE

The PVC orifice plate shall be fusion-welded to the PVC cross or tee with an orifice of the diameter indicated on the Drawings drilled in its center.

The PVC shear pin shall be 3/4-inch in diameter and shall be fastened with a PVC cotter pin and stainless steel washer.

One end of the shear gate chain shall be attached to the shear gate and the other end shall be attached to a galvanized anchor bolt embedded in the leveling block. The chain shall be slack when the gate is closed.

After pipes have been placed in their final positions, openings in the walls of the flow control structure shall be grouted in place to present a smooth, flush inner and outer surfaces.

7-16.3(3) DETENTION PIPE

Seams in pipes and bands shall be gasketed in accordance with AASHTO Designation M196.

The end plate shall be welded to the end of the detention pipe with a watertight continuous weld.
The end of the detention pipe inside the flow control structure shall be ground smooth of all burrs and sharp edges.

Aluminum which is to be in contact with a Portland Cement product (Controlled Density Fill, concrete, grout, mortar) shall first be cleaned with a solvent to remove contaminants. The cleaned surface shall then be painted with two coats of paint as specified in Section 9-05.20. The aluminum surface treatment shall extend a minimum of two feet beyond the surface to be in contact with the Portland Cement product.

Bedding for the detention pipe shall be Class B, using Mineral Aggregate Type No. 22 as specified in Section 7-17.3(1)B3.

Coupling bands for steel detention pipes shall be Type “D” per WSDOT Standard Plan B-13a.

7-16.3(4) TEE CONNECTION TO CORRUGATED PIPE

Drainage pipes connected to corrugated detention pipe shall be made through a shop fabricated tee as shown on the Drawings and shall be installed in accordance to Section 7-17.3(2)C2. Tee shall be made to conform to size of detention pipe and sized to accept only rubber joint pipe.

7-16.3(5) TESTING

Testing of flow control systems for leakage shall be in accordance with Section 7-17.3(4)B. All detention systems shall be tested in accordance with Section 7-17.3(4)B. Approval will not be given unless the detention system passes this test. The Contractor shall notify the Engineer at least 5 Working Days in advance of proposed testing.

7-16.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Flow Control Structure, (Diameter),” shall be by each structure, complete in place.

Measurement for the “Pipe, Detention, (Material) (Size),” shall be by linear foot for the actual length of pipe installed.

Measurement for outlet pipe shall be in accordance with Section 7-08.

7-16.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-16 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Flow Control Structure, (Diameter),” each.

 The Contract unit price for “Flow Control Structure, (Diameter)” shall include all costs for the Work required to furnish and construct the flow control structure including excavation, native backfill, gravel bedding or foundation Material, the PVC connection pipe and flexible adaptor coupling.

2. “Pipe, Detention, (Material), (Size),” per linear foot.

 The Contract unit price for “Pipe, Detention, (Material), (Size)” shall include all costs for the Work required to furnish, install, and test for leakage the detention pipe and end plate, grinding smooth the end of the detention pipe in the flow control structure, cleaning and painting the aluminum or steel surfaces as specified and all applicable Work listed in pay item (3) of Section 7-17.5.

 If an air vent is shown on the Drawings, all costs for fabricating and installing it shall be included in the Contract unit price Bid for “Pipe, Detention, (Material), (Size).”

3. Other payment information.

 The outlet pipe of the flow control structure will be paid as “Pipe, Catch Basin Connection (Material), (Class), (Size)” per Section 7-08.5.

 Tees will be paid for under Section 7-17.5.

 Payment for trench safety systems will be as specified in Section 7-17.5.
SECTION 7-17 STORM DRAINS AND SANITARY SEWERS

7-17.1 DESCRIPTION
This Work shall consist of trench excavation, shoring, foundation preparation, bedding, pipe installing, jointing, backfilling, compacting and testing for the construction of storm drains, sanitary Sewers, and combined Sewers.

All reference to “Sewer” in this section shall apply equally to construction of sanitary Sewers, combined Sewers and storm drains.

7-17.2 MATERIALS

7-17.2(1) GENERAL
Pipe used for sanitary Sewers, combined Sewers, and storm drains will be specified on the Drawings and may be one or more of the following:

<table>
<thead>
<tr>
<th>Flexible Pipe</th>
<th>Rigid Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinyl Chloride (PVC)</td>
<td>All Concrete</td>
</tr>
<tr>
<td>Acrylonitrile butadiene styrene (ABS)</td>
<td>Ductile Iron</td>
</tr>
<tr>
<td>Corrugated Metal</td>
<td>Vitrified Clay</td>
</tr>
<tr>
<td>Spiral Rib</td>
<td></td>
</tr>
<tr>
<td>Polyethylene (PE)</td>
<td></td>
</tr>
</tbody>
</table>

Aluminum or steel corrugated pipe may also be used for storm drains when indicated on the Drawings or approved by the Engineer.

Pipe shall have flexible gasketed joints unless otherwise specified.

It is not intended that Materials listed be considered equal or generally interchangeable for all applications. The Engineer will determine from the Materials listed those suitable for the Project and will so specify in the Contract Documents.

Materials shall meet the requirements of the following sections:

- Joints 9-04
- Plain Concrete Pipe 9-05.7(1)
- Reinforced Concrete Pipe 9-05.7(2)
- Vitrified Clay Pipe 9-05.8
- Steel Spiral Rib Pipe 9-05.9
- Steel Corrugated Pipe 9-05.10
- Aluminum Corrugated Pipe 9-05.11
- Aluminum and Steel Detention Pipe 9-05.21
- PVC Pipe 9-05.12
- Ductile Iron Pipe 9-05.13

All pipe shall be clearly marked with type, class, and thickness. Lettering shall be legible and permanent under normal conditions of handling and storage. Concrete pipe with elliptical reinforcement shall be clearly marked on the inside and outside of the pipe along the minor axis to identify top and bottom.

After installation, pipe shall be tested for leakage in accordance with Section 7-17.3(4).

7-17.2(2) PROOF TESTS (PREQUALIFICATION)
The intent of this requirement is to pre-qualify a joint system, components of which meet the above requirements, as to the water tightness of that joint system. This proof test shall apply to all pipes which are to be tested for water tightness prior to acceptance. Materials and test Equipment for proof testing shall be provided by the manufacturer. When approved by the Engineer, internal hydrostatic pressure may be applied by a suitable joint tester. Proof Tests shall meet the requirements of the following sections:
7-17.2(3) MATERIAL CERTIFICATION

The manufacturer or fabricator shall furnish a Manufacturer's Certificate of Compliance, based on manufacturer’s routine quality control tests, that the pipe meets or exceeds the requirements of the pertinent ASTM or ANSI Specification.

7-17.3 CONSTRUCTION REQUIREMENTS

7-17.3(1) EXCAVATION AND PREPARATION OF TRENCH, AND PIPE BEDDING

7-17.3(1)A TRENCH EXCAVATION

7-17.3(1)A1 GENERAL EXCAVATION REQUIREMENTS

All open excavations including trenches shall comply with the requirements of WAC Chapter 296-155.

The length of trench excavation in advance of pipe installation shall be kept to a minimum and in no case shall exceed 150 feet unless approved otherwise by the Engineer.

Sidewalk, pavement, and appurtenant structure shall not be undermined.

The maximum trench width between the foundation level and the top of the pipe shall be in accordance with Standard Plan No. 284. If the maximum trench width is exceeded without written authorization of the Engineer, the Contractor as directed by the Engineer shall provide pipe of higher strength classification and shall provide a higher class of bedding at no cost to the Owner.

Trench width above the top of pipe in the Right Of Way within paved roadway or sidewalk, and where near structure or underground installation or other improvement, shall not exceed the maximum trench width as indicated on Standard Plan No. 284. Outside the Right Of Way and in unimproved areas, trench width above the top of pipe may at the Contractor’s option exceed the maximum trench width indicated on Standard Plan 284 by sloping or benching. However, all requirements directed by the Engineer for handling and disposing of excavated material, and additional backfill, outside Standard Plan No. 284 maximum trench width shall be at no expense to the Owner.

All ledgerock, boulders, stones, and any object larger than 3 inch in any dimension shall be removed within 6 inches in any direction from the pipe. The maximum size of aggregate within 6 inch of the pipe shall not exceed 1 inch per foot of pipe diameter and in no case shall exceed 3 inch.

Prior to installation of bedding and pipe, the trench bottom shall be brought to grade as indicated for the type of bedding specified, and strengthened as necessary by tamping, addition of foundation Material, or by other means satisfactory to the Engineer, to provide a foundation capable of supporting the pipe in its proper position. Bedding or backfill Material shall be placed as indicated on Standard Plans 284 and 285. Where Class D bedding is specified in the Contract, additional trench bottom preparation shall comply with Section 7-17.3(1)B.

Excavation for manholes and other Structures connected to the pipelines shall be sufficient to provide a minimum of 12 inches between the surface of the structure and the sides of the excavation.

All material excavated from trenches and piled adjacent to the trench shall be piled and maintained so that the toe of the slope is at least 2 feet from the edge of the trench. This material shall be piled to cause a minimum of inconvenience to public travel, and provision shall be made for merging traffic where necessary. Clear access shall be provided to all fire hydrants, water valves, and meters. Surface drainage and runoff along gutters to storm drain facilities and along natural watercourses shall not be blocked. See Section 1-07 for other requirements.

The Contractor shall remove any shoring system or shield system or related system in such a manner as to not disturb bedding or backfill. Where bedding or backfill is disturbed, the Contractor shall reconsolidate the material as specified elsewhere in the Specifications.
Except when the Bid Item “Support System” is included in the Bid Form, all costs for support to comply with this section shall be included in the pipe Bid Item and no separate or additional payment will be made therefore.

7-17.3(1)A2 EXTRA EXCAVATION

When, after excavating to the foundation level, the material remaining in the trench bottom is determined unsuitable by the Engineer, excavation shall be continued to such additional depth as directed by the Engineer.

All additional excavation directed by the Engineer which is at least 1 foot beyond neatline limits indicated on Standard Plans 284 and 285 will be considered “Extra Excavation”.

Where foundation Material is required, it shall consist of Mineral Aggregate Type 2, or such other Material as directed by the Engineer.

7-17.3(1)A3 DEWATERING

During excavation, installation of pipeline, and placement of bedding and trench backfill, excavations shall be kept free of water. The Contractor shall control surface run-off so as to prevent entry or collection of water in excavations. The static water level within the excavation shall be drawn down a minimum of 1 foot below the bottom of the excavation so as to maintain the undisturbed state of the foundation soils and allow the placement of any bedding or backfill to the required density. The dewatering system shall be installed and operated so that the groundwater level outside the excavation is not reduced to the extent that would damage or endanger adjacent structure, underground installation, sidewalk, pavement, other improvement, or property.

Before dewatering is started, the Contractor shall submit to the Engineer a Statement of the method, installation and details of the dewatering system including details as necessary indicating equipment and pipelines including capacity(ies), water discharge locations, groundwater recharge locations and means of recharging the groundwater table where necessary, monitoring systems where necessary, and such other information to verify acceptable performance. Open and cased sumps shall not be used as primary dewatering for excavations deeper than 3 feet below the static water table.

The Contractor shall furnish, install, and operate all necessary Equipment to keep excavations free from water during construction. The control of groundwater shall prevent softening of the bottom of excavations, or formations of “quick” conditions or “boils” during excavation. Dewatering systems shall be designed and operated so as to prevent removal of the natural soils. Disposal of the water shall not cause injury to public or private property, or nuisance to the public. Sufficient pumping Equipment in good Working condition shall be available at all times for all emergencies, including power outage, and competent Workmen shall be available at all times for the operation of the pumping Equipment.

The dewatering system shall be designed to prevent loss of foundation support to adjacent structure, underground installation, or the sides of an excavation, and may require recharging the groundwater outside the excavation.

The release of groundwater to its static level shall be performed in such a manner as to maintain the undisturbed state of the natural foundation soils, prevent disturbance of compacted backfill and prevent flotation or movement of Structures, pipelines, Sewers, and storm drains.

All costs associated with dewatering the trench excavation and controlling groundwater shall be included in the various Bid Items and no separate or additional payment will be made therefore.

The Contractor is fully responsible for controlling groundwater.

7-17.3(1)A4 UNEXPECTED OBJECTS

Unexpected objects, such as stumps, railroad ties, buried pavement, etc., encountered in the trench excavation shall be removed and disposed of by the Contractor. Removal of unexpected objects will be considered incidental to pipe installation unless one or more of the following conditions are met:

1. The object(s) cannot be removed by the Equipment or excavation method at hand; or
2. The trench width or depth must be increased by 2 feet or more.

In the event that any of the above conditions are met, removal of the object will be paid in accordance with Section 1-09.4.
7-17.3(1)A5 TRENCH EXCAVATION IN SOLID ROCK

Solid Rock Excavation shall cover the removal and disposal of solid rock as defined in Section 2-03.1(2).

Materials removed shall be replaced with suitable excess excavated native Materials from adjacent trenches or roadway excavations, or from imported mineral aggregate or selected Material of the type specified by the Engineer.

7-17.3(1)A6 SURPLUS MATERIAL

Surplus Material obtained from trench excavation and determined to be suitable Material for use elsewhere on the Project Site by the Engineer shall be used in accordance with Section 2-03.3(10). All costs of reusing suitable excavated material as backfill within the trench excavation shall be incidental to the applicable Bid Item.

Surplus Material obtained from trench excavation and not needed elsewhere on the Project shall be disposed of in accordance with Section 2-01.2.

Selected Material from a trench excavation used elsewhere on the Project Site will be paid as “Mineral Aggregate, (Type)” (see Section 4-01.5).

7-17.3(1)A7 PROTECTIVE SYSTEMS

7-17.3(1)A7a TRENCH SAFETY SYSTEMS

Where trench excavation is deeper than 4 feet, the Contractor shall construct and maintain safety systems that meet the requirements of the Washington Industrial Safety and Health Act (RCW Chapter 49.17, including WAC Chapter 296-155). Ditches, channels, and similar earth openings over 4 feet in depth will be considered trench excavation over 4 feet deep and are subject to the requirements of the Washington Industrial Safety and Health Act (RCW Chapter 49.17, including WAC Chapter 296-155).

The Contractor’s trench safety system shall be a protective system designed and maintained by a competent person and shall meet accepted engineering requirements or practices.

The trench safety system shall be a permanent structure shield system, or a support system as defined below to protect the Work, existing property, utilities, underground installation, pavement, etc., and to provide safe working conditions in the trench. The Contractor may use a moveable shield system; however, all Work required by the Engineer outside maximum trench width indicated on Standard Plan 284 including but not limited to:

1) handling and disposal of excavated material;
2) additional backfill and surface restoration; and
3) repair of damage to adjacent structure or underground installation caused by the Contractor’s operations,

shall be at the sole expense of the Contractor.

The Contractor shall control water to protect employees against the hazards posed by water accumulation.

The protective system shall be removed from the trench, once the Work is complete, in a manner which provides a satisfactory means of reconsolidating the bedding or side support Material without disturbance to the pipe.

The use of horizontal strutting below the pipe barrel or the use of the pipe as support for trench bracing will not be permitted.

7-17.3(1)A7b SUPPORT SYSTEMS

In addition to worker safety requirements specified in Section 7-17.3(1)A7a, where trench excavations are to be laterally supported as required in the Contract at locations indicated on the Drawings, the lateral support shall be a support system as defined in WAC 296-155-650. Support systems may consist of underpinning, bracing, shoring, sheeting, or any other protective system or combination of protective systems which provides support to an adjacent structure, underground installation, and the sides of an excavation. The support system shall also include the control of groundwater as specified in Section 7-17.3(1)A3. The Contractor shall employ methods of installing, maintaining, and removing the system causing the least disturbance. During installation of
the system, and when the system is installed, the Contractor shall fill all voids behind the support system as necessary and when necessary to prevent loss of native soils or loss of soil support. When removing the support system, the Contractor shall coordinate reconsolidation of bedding as necessary, and with backfilling to minimize disturbance.

All costs for this Work will be paid by the Bid item “Support System”.

The Contractor shall submit Shop Drawings and design calculations, in accordance with Section 1-05.3(2)F, of the proposed support system including loading calculations and sufficient details of installation, maintenance, and removal concurrent with excavation and backfilling.

7-17.3(1)B PIPE BEDDING

7-17.3(1)B1 GENERAL

Bedding, of the class or classes shown on the Drawings, shall be installed in accordance with Standard Plan No. 285, and shall include all the Materials and Work within the limits of the pipe zone.

Unless otherwise noted on the Drawings, bedding for rigid and flexible pipe shall be Class B except bedding for ductile iron pipe shall be Class D.

All classes of bedding shall provide uniform support along the entire pipe barrel, without load concentration at joint collars or bells. No blocking of any kind shall be used to adjust the pipe to grade except when used with embedment concrete. Bell holes shall be excavated as required to ensure uniform support along the pipe barrel. Bedding disturbed by pipe movement or by removal of shoring or movement of a trench shield or box shall be reconsolidated prior to backfill. Special care shall be taken to provide adequate bedding support at wye or tee connections and adjacent to manholes or other Structures, so as to avoid bending or shearing stresses at these critical points.

7-17.3(1)B2 BEDDING FOR RIGID PIPE

Bedding shall be classified as Class A, Class B, Class C and Class D. The requirements and limits for the various classes of bedding are as shown on Standard Plan No. 285 and as described below:

1. **Class A Bedding**: Concrete for Class A bedding shall be Class 4 (1 ½) and shall be a 4 sack minimum Portland cement, 1 ½ inch aggregate, mix design. When placing the concrete bedding, the pipe shall be prevented from floating. Concrete shall be allowed to cure for a minimum of 12 hours prior to placing the type 9 mineral aggregate bedding Material. Mineral aggregate bedding shall then be placed in lifts of not more than 6 inches to a point 6 inches above the top of the pipe. Compaction of mineral aggregate Type 9 shall be to 90% maximum dry density as determined by ASTM D 698. Before beginning Work on concrete bedding, the Contractor shall submit a mix design for Class 4 (1 ½) concrete to the Engineer for approval at least 5 Working Days in advance. It shall have a sufficiently fluid consistency to readily fill all voids around and under the pipe.

2. **Class B Bedding**: Class B bedding of type 9 mineral aggregate shall be placed in at least three lifts. The first lift shall be placed before the pipe is installed and shall be a minimum of 4 to 6 inches in thickness (see dimension “a” on Standard Plan No. 285). The Material shall be spread smoothly so that the pipe is uniformly supported along the barrel. Subsequent lifts of not more than 6 inches shall be brought up to a point 6 inches above the top of the pipe. Each lift shall be brought up on both sides of the pipe and shall be carefully Worked under the pipe haunches by means of slicing with a shovel, vibration, or other procedures approved by the Engineer. Compaction of bedding shall be to 90% maximum dry density as determined by ASTM D 698.

3. **Class C Bedding**: Requirements for Class C bedding shall be the same as for Class B except that the type 9 mineral aggregate shall extend only to the springline of the pipe. Selected native Material shall then be placed in 6 inch lifts to 6 inches above the pipe, using the same methods as those required for Class B bedding. Compaction of mineral aggregate Type 9 shall be to 90% maximum dry density as determined by ASTM D 698. Compaction of native Material shall be as specified in Section 17.3(3).

4. **Class D Bedding**: Class D bedding shall be attained by carefully excavating the trench to proper grade, overexcavating at the bell sections, and placing and compacting select native Material around the pipe. Class D bedding and backfill shall be in accordance with Section 7-17.3(3).
Where unauthorized excavation has been made below the established grade, the Contractor shall provide, place, and compact suitable bedding Material to the proper grade and elevation. If the Engineer substitutes imported Mineral Aggregate in lieu of the selected native Material shown for Class C and for Class D bedding on Standard Plan No. 285, the bedding will be measured and paid for as “Bedding, Class B, (Size) Pipe.”

7-17.3(1)B3 BEDDING FOR FLEXIBLE PIPE

Bedding for flexible pipe shall be Class B bedding with Mineral Aggregate Type 22 placed in several lifts in accordance with Standard Plan No. 285. Before installing the pipe, a first bedding lift of 4 or 6 inch thickness, depending on pipe size, shall be placed. Then the pipe is installed. The bedding shall be spread smoothly so that the pipe is uniformly supported along the barrel. Subsequent lifts of not more than 6 inches thickness shall be installed to the crown of the pipe and individually compacted to 90% density as determined by ASTM D698. A further 6 inch lift of moderately compacted Material shall be placed over the crown of the pipe in a manner not to crush or disturb the pipe.

7-17.3(2) INSTALLING SEWER PIPE

7-17.3(2)A SURVEY LINE AND GRADE

The Contractor may use any method, such as “swede line and batter board”, “laser beam” methods, etc., which would allow accurate transfer of the control points provided by the Engineer to installing the pipe to the designated alignment and grade.

When using the “swede line and batter board” method, the Contractor shall transfer line and grade into the trench where they shall be carried by means of a taut grade line supported on firmly set batter boards at intervals of not more than 30 feet. Not less than three batter boards shall be in use at one time. Grades shall be constantly checked and in event the batter boards do not line up, the Work shall be immediately stopped, the Engineer notified, and the cause remedied before proceeding with the Work.

When using a laser beam to set pipe alignment and grade, the Contractor shall constantly check position of laser beam from surface hubs provided by the Owner to insure laser beam is still on alignment and grade. In the event the laser beam is found out of position, the Contractor shall stop Work and make necessary corrections to the laser beam Equipment and pipe installed.

7-17.3(2)B PIPE INSTALLATION

After an accurate grade line has been established, the pipe shall be installed within reasonably close conformity to the established line and grade in the properly dewatered trench. Mud, silt, gravel, and other foreign Material shall be kept out of the pipe and off the jointing surfaces.

All pipe installed in the trench to the specified line and grade shall be kept in longitudinal compression until the bedding has been placed and compacted around and over the pipe. All pipe shall be installed to conform to the prescribed line and grade shown in the Drawings.

Sewer pipe shall be installed to a true line and grade at the invert of the pipe. The Contractor shall exercise care in matching pipe joints for concentricity and compatibility. In no case shall two pipes be joined together with ends exceeding the maximum manufacturer’s tolerance. The limit of variance at the invert shall not exceed plus or minus 0.03 foot from true line and grade at the time of backfill, and in no case shall result in reverse flow or have a sag. Checking of the invert elevation of the pipe may be made by calculations from measurements on the top of the pipe.

The Sewer pipe, unless otherwise approved by the Engineer, shall be installed up grade from point of connection on the existing Sewer or from a designated starting point. The Sewer pipe shall be installed with the bell end forward or upgrade. When pipe installation is not in progress, the forward end of the pipe shall be kept tightly closed with an approved temporary plug.

Where pipelines are to be installed on specified curves of sufficiently short radius to deflect the pipe joints in an amount greater than recommended by the manufacturer, the curves shall be achieved with a series of tangents and shop-fabricated bends, subject to the approval of the Engineer.

Clearance between Sewer or Storm Drain pipe and other utilities shall be maintained per Section 1-07.17. Hand mortared joints will not be allowed.
7-17.3(2)C1 GENERAL
All fittings shall be capped or plugged with a plug of an approved Material gasketed with the same gasket Material as the pipe unit; or shall be fitted with an approved mechanical stopper; or shall have an integrally cast knock-out plug. The plug shall be able to withstand all test pressures without leaking, and when later removed, shall permit continuation of piping with jointing similar to joints in the installed line.

Should testing or television inspection indicate installed pipe is damaged or does not pass testing, the Contractor shall remove and replace the failed or damaged section of pipe. Should the Contractor believe the pipe which is damaged, or which failed the test, can be repaired by other than remove and replace, the Contractor shall submit a repair method for approval by the Engineer at least 5 Working Days in advance. The replaced, or repaired pipe, shall again be inspected and tested. Repairs using rubber boot type methods, such as FERNCO type coupler repairs, will not be allowed. See Section 7-17.3(4).

7-17.3(2)C2 FITTINGS
Unless otherwise specified, tee fittings shall be provided in the Sewer and drain mains for side sewers, catch basin connections and service drains. Tees shall be 8 inches inside diameter except tees for side sewers, which shall be 6 inches inside diameter unless indicated otherwise in the Project Manual or on the Drawings. All fittings shall be of sufficient strength to withstand all handling and load stresses normally encountered. All fittings shall be of the same Materials as the pipe, except when core drilling to insert a tee, which shall be per Section 7-17.3(2)C3. Material joining the fittings to the pipe shall be free from cracks and shall adhere tightly to each joining surface.

All tees on new pipe less than 24 inch inside diameter shall be prefabricated.

7-17.3(2)C3 CUT-IN TEE ON EXISTING OR NEW PIPE
Where indicated on the Drawings, the Contractor shall cut a hole and install a tee on the existing or new pipe 24 inch inside diameter or larger. Coring shall be done such that the cored out piece or other materials do not drop into the pipe. The Contractor shall notify the Engineer at least 2 Working Days in advance of cut-in tee operation.

Coring shall be performed in accordance with the following:

1. **Concrete Pipe Tee To Concrete Pipe**: Installing tee on Concrete Pipe shall be accomplished by core drilling a full size hole in one operation to accommodate an approved PVC tee insert with a coupling fitting, or a saddle type tee manufactured for the size of pipe on which the tee is being installed. A concrete tee may be installed on an existing concrete pipe 18 inches in diameter or larger by placing a short length of concrete pipe into the core-drilled hole with its bell end against the outside face of the existing pipe and the barrel end inserted just to its inside face. The Contractor shall thoroughly clean the bonding areas between the tee and the existing pipe so that the surfaces are free of dirt, dust, grease, oil or other contaminants that may reduce the bond between the grout and the pipe surfaces. Both surfaces shall first be coated with a **concrete bonding agent approved by the Engineer**. The annular space between the tee and the core-drilled surface shall then be tightly packed with non-shrink cement sand grout meeting the requirements of Section 9-04.3(2). The connection shall be neatly finished inside and outside the existing concrete pipe.

2. **Ductile Iron Tee To Existing Concrete Pipe**: The existing concrete pipe shall be core-drilled with a hole large enough to accommodate the barrel of the specified size of ductile iron pipe and provide a 1-inch space between it and the existing pipe for application of grout. A length of ductile iron pipe shall be cut so that it can be placed in the core-drilled hole with its bell end against the outside of the existing pipe without the barrel protruding beyond the inside face of the existing pipe. The Contractor shall clean the outside of the ductile iron pipe, removing loose particles (dust, dirt, oil, or film of any sort) that may reduce the bond between the grout and the pipe. After core drilling, the exposed surface of the existing concrete pipe shall be rough and clean. Both surfaces shall be coated with a **bonding agent approved by the Engineer**. The annular space between the pipe and core drilled surfaces shall be tightly packed with non-shrink cement sand grout meeting the requirements of Section 9-04.3(2). The connection shall be neatly finished inside and outside the existing concrete pipe.
3. **Saddle-Type Tee to Ductile Iron Pipe:** The ductile iron pipe shall have a full-sized hole cut into it by core drilling or by the arc-weld flame curing method. The Contractor shall obtain approval of the method from the Engineer at least 2 Working Days in advance. The existing ductile iron pipe shall have a full-sized hole cut into it, either by core drilling or by arc-weld flame cutting method. A saddle-type tapping tee, manufactured to fit the existing pipe, shall be mounted after the contact area between tee and pipe has been cleaned of all dirt, sand, grit, grease and other foreign matter to ensure continuous contact.

4. **Corrugated Metal Tee To Corrugated Metal Pipe:** In corrugated steel and aluminum pipes, a hole shall be sawcut to match a shop fabricated tee as indicated in Standard Plan No. 279.

5. **Inserta Tee To Clay Pipe:** The Contractor shall submit the method and type tee recommended by the tee manufacturer to the Engineer for approval at least 5 Working Days in advance. The flange plate of the fabricated tee shall be corrugated to match corrugation of the pipe to which it is attached. A neoprene gasket or approved equal shall be inserted between the outside face of the existing pipe and the flange plate of the tee and connected by bolting. Corrosion protection shall be provided if the pipe section of the tee is non-corrugated aluminum pipe.

The incoming pipe and the tee shall be connected with stainless steel rigid walled flexible coupling. If the pipe section of the tee is aluminum, corrosion protection shall be provided by isolating the aluminum from the steel by extending the gasket 1 inch beyond the edge of the stainless steel coupling.

All existing small diameter pipe made of non-reinforced concrete or vitrified clay shall be fully exposed for inspection. The excavation shall be backfilled and compacted per Section 7-17.3(3).

The Contractor shall notify the Engineer at least 2 Working Days before beginning cut-in operations (Note - The Engineer will notify Drainage and Wastewater Utility @ 206-386-1230 for the South District or 206-684-7506 for the North District). The existing pipe shall be inspected by the Engineer for defects before drilling operation starts and again during drilling operations and after installation of the tee is completed in order to make certain that no defective parts or Work remain undetected and uncorrected. If the Contractor has requested the Engineer to core drill the hole, the Contractor shall provide a tee made of the same Material and with the same corrugations as the cored pipe.

If the exposed pipe is found cracked or deformed, the Engineer will arrange for either roll in of a new pipe, or repair of the damage at no cost to the Contractor, provided the damage was not caused by the Contractor’s operations. If the Engineer rolls in a new pipe with a tee already on it, no fitting will be required.

7-17.3(2)D **PIPE MARKINGS**

On elliptically reinforced concrete pipe, the markings indicating the minor axis of the reinforcement shall be placed in a vertical plane (top or bottom) when the pipe is installed.

7-17.3(2)E **GASKETED JOINTS**

Pipe handling after the gasket has been affixed shall be carefully controlled to avoid disturbing the gasket and knocking it out of position, or contaminating it with dirt or other foreign Material. Any gaskets so disturbed shall be removed, cleaned, replaced, and relubricated before joining the sections.

Care shall be taken to properly align the pipe before joints are entirely forced home. During insertion of the tongue or spigot, the pipe shall be partially supported by hand, sling, or crane to minimize unequal lateral pressure on the gasket and to maintain concentricity until the gasket is properly positioned. Since most gasketed joints tend to creep apart when the end pipe is deflected and straightened, such movement shall be held to a minimum once the joint is home.

Sufficient pressure shall be applied in making the joint to ensure that it is home, as described in the standard installation instructions provided by the pipe manufacturer. Sufficient restraint shall be applied to the line to ensure that joints once home are held so, until fill Material under and alongside the pipe has been sufficiently compacted. At the end of the Work Day, the last pipe shall be blocked in an effective way to prevent creep.

Where pipe must be deflected to accommodate required horizontal or vertical curvature, it shall first be joined in straight alignment and then deflected as required.
7-17.3(2)F JOINTING

Where it is necessary to break out or connect to an existing pipe during construction, only new pipe having the same inside diameter shall be used in reconnecting the pipeline. Inverts, grade, and alignments are to match, as applicable. Where joints must be made between pipes with a mismatched wall thickness, the Contractor shall use a flexible gasketed coupling, adapter or coupling-adapter to make a watertight joint. Couplings shall be those manufactured by “Romac”, “Smith-Blair”, or approved equal. Fernco-type couplers shall not be used unless approved by the Engineer.

7-17.3(2)G PIPE LINE CONNECTIONS

Catch basin, service drain, or side Sewer connections to trunks, mains, or laterals, shall be left uncovered until after the Engineer has inspected and approved the Work. After approval of the connection, the bedding shall be completed to a point 6 inches above the top of the pipe and the trench backfilled.

7-17.3(2)H SIDE SEWER CONNECTIONS

Where a side sewer is as large or larger than the trunk, main, or lateral to which it is to be connected, the connection shall be made only at a standard manhole unless otherwise provided in the Contract. The capacity of the proposed connection and capacity of existing trunk, main, or lateral, must be verified and submitted to the Engineer for approval at least 15 Working Days in advance.

Side Sewers shall be installed below all Water Mains and shall meet the requirements for the minimum separation of sanitary Sewers and Water Mains in accordance with Section 1-07.17.

7-17.3(2)I PROTECTION OF EXISTING SEWER FACILITIES

All existing live Sewers including septic tanks and drain fields shall be kept in service at all times. Provision shall be made for disposal of sewage flow if any existing Sewers are damaged.

Water accumulating during construction shall be removed from the new pipeline but shall not be permitted to enter the existing system. The Contractor shall be responsible for flushing out and cleaning any existing pipeline into which gravel, rocks, or other debris has entered as a result of his/her operations, and shall repair lift stations or other facilities damaged by his/her operations.

The physical connection to an existing manhole or pipeline shall not be made until authorized by the Engineer. Such authorization will not be given until all upstream lines have been completely cleaned, all debris removed and, where applicable, a pipe has been temporarily placed in the existing channel and sealed.

7-17.3(2)J UNDERGROUND CONSTRUCTION

Where indicated on the Drawings, the Contractor shall install pipe by underground construction methods including jacking, augering, tunneling, directional drilling, microtunneling, or any other trenchless technology method, including installing the pipe in a casing pipe, or by any combination of these methods.

When casing pipe is required, and the size and gauge of pipe has not been specified in the Contract, the Contractor shall select the gauge and size of the casing pipe compatible with the underground construction operation. The Contractor shall take care to prevent caving ahead of the casing which would create voids outside the casing pipe. When the casing is in place, the carrier pipe shall be carefully skidded through the casing pipe and adjusted to the line and grade shown on the Drawing. The annular space between the casing and carrier pipes shall be filled with Material specified in the Contract Documents.

Ground support in portal areas, shafts, and jacking shafts shall be designed to support adjacent structure, underground installation, the sides of excavation, and withstand lateral thrust from jacking operations.

At least one designated person shall be on duty above ground whenever any employee is working underground. The Contractor shall have in place communications, hoisting equipment, emergency provisions, air quality monitoring, and ventilation equipment as necessary.

At least 20 Working Days in advance of underground construction activities, the Contractor shall submit 8 sets of Shop Drawings and all necessary calculations describing these activities, including dimensioning of shaft, jacking shaft, or portal; method of shaft excavation; method of underground construction; size of underground construction; staging and surface support; waste disposal particular to a specific underground construction; control equipment; qualifications of underground construction Contractor; a complete description of shoring including installation, maintenance, and removal; and a complete description of slurry handling and disposal.
system when applicable; in accordance with the requirements of Section 1-05.3(2)F. The submittal shall include the name of the designated person.

The material, procedure, and Equipment employed by the Contractor shall not relieve the Contractor of responsibilities nor waive or modify any provisions of the Contract Documents.

7-17.3(2)K TEMPORARY SEWER BYPASS

The Contractor shall install a temporary bypass in order to maintain uninterrupted Sewer service on Projects calling for reconstruction of existing Sewer mains or on Projects where construction Work will interfere with sewage flow in the existing Sewer. The bypass shall be made by diverting the effluent flow at an upstream access manhole and pumping it through a separate conduit to a downstream reentry point or to an adjacent Sewer system. The pump and bypass conduit shall be of adequate size and capacity to handle the flow. The effluent level in the bypass pumping manhole shall not be allowed to rise more than 1 foot above the crown of the incoming Sewer pipe. Work shall be conducted in such a manner as to comply with the requirements of Section 1-07.

A written proposal for bypassing the remaining portion of the Sewer system and the list of all Equipment to be used for the Work shall be submitted by the Contractor to the Engineer, allowing at least 10 Working Days for review and return of comments. Such approval shall not relieve the Contractor of his responsibilities or of any public liability for sewage spills under this Contract.

7-17.3(3) BACKFILLING TRENCHES

7-17.3(3)A GENERAL

In backfilling the trench, the Contractor shall take all necessary precautions to protect the pipe from any damage or shifting. The Contractor shall backfill from the side of the trench to a uniform depth of 2 feet above the crown of the pipe before starting compaction. See Section 7-17.3(3)B for Compaction Requirements.

During all phases of the backfilling operations and testing as outlined herein, the Contractor shall protect the pipe installation, provide for the maintenance of traffic as may be necessary, and provide for the safety of property and pedestrians.

The Contractor shall use suitable native excavated Material for trench backfill unless notified by the Engineer that the native Material is unsuitable. The Engineer will examine excavated native Material at the time of excavation to determine its suitability for use as backfill. Native Material will be considered suitable for trench backfill if it is:

1. Capable of attaining the degree of compaction specified in Section 7-17.3(3)B;
2. Within reasonable tolerance of optimum moisture content; and
3. Reasonably free of organic material, clay, frozen lumps, rocks or pavement chunks more than 6 inches in maximum dimension, or other deleterious matter.

Unsuitable backfill Material shall be removed from the site, disposed of per Section 2-01.2, and replaced with Mineral Aggregate Type 17 or such other imported Material as designated by the Engineer.

The Contractor shall take any necessary steps to protect the excavated Material from becoming contaminated with excessive moisture.

Where it is required that a blanket of select Material or bank run gravel be placed on top of the native backfill, the backfill shall be placed to such elevation as shown on the Drawings, or as the Engineer may direct, and shall be leveled to provide for a uniform thickness of the borrow Material. Compaction shall be required.

Pipe trenches shall be backfilled as soon as possible after the pipe installation. The Contractor shall not have more than 200 feet of trench open in which the pipeline has been completed, except by permission of the Engineer. Backfilling of trenches in the vicinity of catch basins, manholes, or other appurtenances will not be permitted until the cement in the masonry has become thoroughly hardened.

Walking on the pipe shall not be allowed until at least 1 foot of earth has been placed upon it.

7-17.3(3)B COMPACTION OF TRENCH BACKFILL

Trench backfill shall be spread in layers and be compacted by mechanical tampers of the impact type approved by the Engineer. The backfill Material shall be placed in successive layers with the first layer not to
exceed 2 feet above the pipe, and the following layers not exceeding 12 inches in loose thickness, with each layer being compacted to the density specified below:

1. Improved areas such as street and sidewalk areas shall be compacted to 95% of maximum dry density; or
2. Unimproved areas or landscape areas shall be compacted to 90% of maximum dry density.

Compaction control tests shall be performed as specified in Section 2-03.3(14)E.

The procedure and Equipment to be used for backfill compaction shall be demonstrated on a test section of pipeline to be designated by the Engineer at the beginning of this work. The Contractor shall make these arrangements with the Engineer at least 2 Working Days prior to beginning this work.

The Contractor shall excavate test pits in the backfill as directed by the Engineer for the purpose of testing the backfill compaction.

If the required compaction density has not been obtained, the Contractor shall remove the backfill from the trench and recompact using heavier compaction Equipment or more passes. This process shall be repeated until the Contractor has established a procedure that provides the required field density. The Contractor will then be permitted to proceed with backfilling and compacting the remainder of the pipeline under the approved compaction procedure.

In the event routine field densities taken during the course of construction show the specified compaction is not being obtained because of changes in soil types or for any other reason as determined by the Engineer, the Contractor will be required to reestablish the compaction procedure. In no case will excavation and pipe installation operations be allowed to proceed until the specified compaction is attained. Water setting will not be allowed as a method for compaction of backfill.

7-17.3(4) CLEANING AND TESTING

7-17.3(4)A GENERAL

Pipelines and appurtenances shall be cleaned and tested, after backfilling, by the exfiltration or low pressure air method, at the Contractor’s option, or by infiltration test if the ground water table is such that the Engineer may require it.

All work involved in cleaning and testing pipelines between manholes or rodding inlets as required herein shall be completed within 15 Working Days after backfilling of pipelines and Structures. Any delay shall be submitted to the Engineer well in advance and requires the written consent of the Engineer. The Contractor shall furnish all labor, Materials, tools, and Equipment necessary to make the test, clean the lines, and perform all Work incidental thereto. The Contractor shall perform the tests under the direction and in the presence of the Engineer. Precautions shall be taken to prevent joints from drawing apart during tests. Any damage resulting from these tests shall be repaired by the Contractor. The manner and time of testing shall be subject to approval by the Engineer.

All wyes, tees, and stubs shall be plugged using test tees, or acceptable alternate, securely fastened to withstand the internal test pressure. Such test tees shall be readily removable, and their removal shall provide a socket suitable for making a flexible jointed lateral connection or extension.

7-17.3(4)A1 PIPE NOT PASSING TESTING

Testing of side sewers including runoff and downspout connections shall comply with the requirements of Section 7-18.3(6).

If any pipeline installation fails to meet the requirements of the test method used, or is indicated as defective by television inspection, the Contractor shall determine the source or sources of leakage and shall replace all defective pipe. Where the Contractor believes a repair can be made without removal, the Contractor shall submit to the Engineer for approval at least 5 Working Days in advance, the proposed repair. See Section 7-17.3(2)C1 for damaged connections or failed connections or plugs. The complete pipe installation shall meet the requirements of the test method used before being considered acceptable. Replacement or repair of defective pipe shall not commence until the Contractor has received approval of the method from the Engineer.

All lateral or side sewer branches included in the test section shall be taken into account in computing allowable leakage.
Upon final acceptance of the Work, all Sewers, side sewers and fittings shall be open, clean, and free draining.

7-17.3(4)B EXFILTRATION TEST

Prior to making exfiltration leakage tests, the Contractor may fill the pipe with clear water to permit normal absorption into the pipe walls, provided that after filling the pipe the leakage test is completed within twenty-four hours. When under test, the allowable leakage shall be limited according to the provisions that follow. Specified allowances assume pre-wetted pipe.

Leakage shall be no more than 0.28 gallons per hour (gph) per inch inside diameter (inch dia) per 100 linear feet (LF) of pipe, with a hydrostatic head of 6 feet above the crown at the upper end of the test section, or above the natural groundwater table at the time of test, whichever is higher. The length of pipe tested shall be limited so that the pressure at the lower end of the section tested does not exceed 16 feet of head above the invert, and in no case shall the length be greater than 700 linear feet or the distance between manholes when greater than 700 linear feet.

Where the test head is other than 6 feet, the measured leakage shall not exceed 0.28 gph per inch inside diameter per 100 linear feet times the ratio of the square root of the test head to the square root of 6.

\[
\text{Leakage maximum} = 0.28 \times \frac{\sqrt{H}}{\sqrt{6}} = 0.114 \times \sqrt{H} \quad \text{where leakage is in gph/inch dia/100 LF}
\]

When the test is to be made one joint at a time, the leakage per joint shall not exceed the computed allowable leakage per length of pipe.

An allowance of 0.2 gallons per hour per foot of head above invert shall be made for each manhole included in a test section.

All pipe and detention systems in, or near as determined by the Engineer, Environmentally Critical Areas designated geologically hazardous areas, shall require exfiltration testing. Approval will not be given unless the detention system passes this test. The Contractor shall notify the Engineer at least 5 Working Days in advance of proposed testing.

7-17.3(4)C INFILTRATION TEST

Infiltration test leakage shall not exceed 0.16 gallons per hour (gph) per inch inside diameter (inch dia) per 100 linear feet (LF) of pipe tested, when the natural groundwater head over the pipe is 2 feet or less above the crown of the pipe at the upper end of the test section. The length of pipe tested shall not exceed 700 linear feet or the distance between manholes when greater than 700 linear feet.

Where the natural groundwater head is more than 2 feet, the measured leakage shall not exceed 0.16 gph per inch inside diameter per 100 linear feet times the ratio of the square root of the natural groundwater head to the square root of 2.

\[
\text{Leakage maximum} = 0.16 \times \frac{\sqrt{H}}{\sqrt{2}} = 0.114 \times \sqrt{H} \quad \text{where leakage is in gph/inch dia/100LF}
\]

When a suitable head of groundwater exists above the crown of the pipe and when the pipe is large enough to perform Work inside it, acceptance may be based on the repair of visible leakage by means satisfactory to the Engineer. Where repair is indicated, the repair methods shall be submitted in writing to the Engineer by the Contractor for approval (see Section 7-17.3(4)A1).

7-17.3(4)D AIR PRESSURE TEST FOR SEWERS CONSTRUCTED OF AIR-PERMEABLE MATERIALS

1. Pipelines may be tested with low pressure air by the pressure drop method, in lieu of water infiltration or exfiltration. The pressure drop shall be from 3-1/2 to 2-1/2 psi greater than the average back pressure of groundwater above the centerline of the pipe. At the Contractor’s option, pipe may be tested without pre-wetting; however, the test allowances herein assume pre-wetted pipe.

2. The allowable rate of air loss shall be .003 cubic feet per minute (cfm) per square foot of internal pipe surface; however, the total air loss shall be not exceed 3.50 cfm.
3. The test Equipment to be used shall be furnished by the Contractor and shall be inspected and approved by the Engineer prior to use. The Engineer may at any time require a calibration test of gauges or other instrumentation that is incorporated in the test Equipment.

4. Safety Provisions. Plugs used to close the Sewer pipe for the air test must be securely braced to prevent the unintentional release of a plug which can become a high velocity Projectile. Gauges, air piping manifolds, and valves shall be located at the top of the ground. No one shall be permitted to enter a manhole where a plugged pipe is under pressure. (Four pounds per square inch gauge (psig) air pressure develops a force against the plug in a 12 inch diameter pipe of approximately 450 pounds.) Air testing apparatus shall be equipped with a pressure release device such as a rupture disk or a pressure relief valve designed to relieve pressure in the pipe under test at 6 psi.

5. Pipe with inside diameter less than 36 inches may be tested from manhole to manhole or on shorter lengths as determined by the Contractor. Pipe 36 inches in diameter and over shall have all joints tested individually and consecutively along the entire line. The void volume around the joint shall be pressurized to 3.5 psi over that of the groundwater above the pipe. The Contractor shall allow the air pressure and temperature to stabilize before shutting off the air supply and start of test timing.

If a pipe joint fails to pass this pressure test or also fails a retest, it shall be repaired in a manner acceptable to the Engineer. If not repairable, the damaged pipe section shall be replaced with a new one and the joints tested as specified above.

7-17.3(4)E AIR PRESSURE TEST FOR PIPES CONSTRUCTED OF NON AIR-PERMEABLE MATERIALS

7-17.3(4)E1 GENERAL

When non air-permeable pipelines are subjected to the low pressure air test, all of the provisions of Section 7-17.3(4)D shall apply except that the pressure drop shall be from 3.5 to 3.0 psig greater than the average back pressure above the center of the pipe, and the minimum time shall be twice that computed as specified under Section 7-17.3(4)D.

7-17.3(4)E2 RECOMMENDED PROCEDURE FOR CONDUCTING ACCEPTANCE TEST BY PRESSURE DROP METHOD

1. Plug all pipe outlets with suitable test plugs. Brace each plug securely.

2. All gauge pressures in the test should be increased by the amount of groundwater pressure at the center of the pipe.

3. Add air slowly to the portion of the pipe installation under test until the internal air pressure is raised to 4.0 psig.

4. After an internal pressure of 4.0 psig is obtained allow at least 2 minutes for air temperature to stabilize, adding only the amount of air required to maintain pressure.

5. After the 2 minute period, disconnect air supply.

6. When pressure has decreased to 3.5 psig, start stop watch. Determine the time in seconds that is required for the internal air pressure to reach 2.5 psig. This time interval should then be compared with the time required by specification as computed below.

7. List size and length of all portions of pipe under test in table similar to the one that follows. The maximum reach to be tested in one operation shall be the reach between two consecutive manholes.

8. By the use of Nomograph, compute K and C. Use scales d and L, read K and C, and enter these values in the table.

9. Add all values of K and all values of C for pipe under test.

10. If the total of all C values is less than one, enter the total of all K values into the space for "Time Required by Specification."

11. If the total of all C values is greater than one and less than 1.75, divide the total of all K values by the total of all C values to get \(t_q \).

12. If the total of all C values is greater than 1.75, divide the total of all K values by 1.75 to get "Time Required by Specification." \(t_q \).
Diameter

<table>
<thead>
<tr>
<th>Diameter Inches</th>
<th>Length Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K = .0111d²L</th>
<th>C = .0003918 dL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total K</th>
<th>Total C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time required by specification (t_q)

\[t_q = \text{Time required by specification} \]

\[d = \text{Diameter in inches} \]

\[L = \text{Length of pipe in feet} \]
NOMOGRAPH for the solution of \(K = 0.011d^2L \), \(C = 0.0003882dL \), \(t_q = K \div C \)
7-17.3(4)F HYDROSTATIC TEST FOR SANITARY SEWER FORCE MAINS

7-17.3(4)F1 GENERAL
All sanitary force mains and appurtenances shall be subjected to hydrostatic pressure testing as soon as possible after they are installed and backfilled.

The hydrostatic pressure tests shall be conducted in accordance with provisions of sections 7-17.3(4)F2 through F8.

7-17.3(4)F2 EQUIPMENT
Furnish the following Equipment for the hydrostatic tests:

<table>
<thead>
<tr>
<th>Amount</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Approved graduated containers</td>
</tr>
<tr>
<td>2</td>
<td>Pressure gauges</td>
</tr>
<tr>
<td>1</td>
<td>Hydraulic force pump approved by the Engineer.</td>
</tr>
</tbody>
</table>

Suitable hose and suction pipe as required

Pressure gauges shall be calibrated within 6 months of hydrostatic testing. The Contractor shall provide a certified calibration certificate within 2 working days when requested by the Engineer.

7-17.3(4)F3 PROCEDURE
Clean water or approved reclaimed water shall be used as the hydrostatic test fluid. All parts of the piping system shall be subjected to a minimum test pressure of 50 psi plus pressure head required to overcome pumping height.

Where any section of pipe is provided with concrete thrust blocking, do not make the pressure test until at least 5 Days have elapsed after the thrust blocking is installed. If high-early cement is used for thrust blocking, the time may be reduced to no less than 2 Days.

The Contractor shall provide all temporary plugs, caps, and thrust blocking and all closure sections and couplings required to test the pipeline in sections at the specified test pressure.

7-17.3(4)F4 DURATION
The duration of each pressure test shall be a minimum of 1 hour. A leakage test of at least 2 hours duration shall immediately follow the pressure test.

7-17.3(4)F5 EXPPELLING AIR AND FILLING PIPE
Before applying the specified test pressure, expel all air from the pipe by slowly filling the pipe with water and allow to stand for 48 hours prior to testing.

7-17.3(4)F6 PRESSURE TEST
Test pressures shall be applied by means of a pump connected to the pipe. Apply the test pressure and operate the pump as necessary to maintain the test pressure at its full value for the entire duration of the pressure test.

Before applying the specified test pressure, expel all air from the pipe by slowly filling the section of pipe to be tested with water and allow to stand for 48 hours prior to the start of testing under slight pressure. The duration of each pressure test shall be 1 hour. A leakage test of 2 hours duration shall immediately follow the pressure test.

7-17.3(4)F7 LEAKAGE TEST
For the leakage test, the pump suction shall be in a barrel or similar device or metered so that the quantity of water put into the pipeline can be accurately measured. Apply the test pressure and operate the pump as necessary to maintain the pressure in the pipeline at a minimum of 90 percent of the test pressure for the entire duration of the leakage test. At the end of the test period operate the pump until the test pressure is again attained. Leakage shall be defined as the quantity of makeup water required to maintain the pipeline pressure
during the test and to restore the test pressure at the end of the test period. No pipe installation will be accepted if the leakage is greater than the number of gallons per hour as determined by the following formula:

\[L = \frac{ND(P)^{1/2}}{1850} \]

In the above formula:
- \(L \) = Allowable leakage, in gallons per hour
- \(N \) = Number of joints in the length of pipe tested
- \(D \) = Nominal diameter of pipe, in inches
- \(P \) = Average test pressure during the leakage test, in pounds per square inch Gauge

Should any test of pipe disclose leakage greater than that allowed, locate and repair the defective joints or pipe until the leakage from subsequent testing is within the specified allowance. The Contractor shall submit the method of repair to the Engineer for approval at least 3 Working Days in advance.

7-17.3(4)F8 CORRECTION OF EXCESSIVE LEAKAGE

Should any test of pipe disclose leakage greater than that allowed, locate and repair the defective joints or pipe until the leakage from subsequent testing is within the specified allowance. The Contractor shall submit the method of repair to the Engineer for approval at least 3 Working Days in advance.

7-17.3(4)G PLUGGING EXISTING SEWER PIPE

Where indicated on the Drawings or where designated by the Engineer, existing Sewer pipes shall be plugged on the inlet end as specified in Section 2-02.3(5).

7-17.3(4)H DEFLECTION TEST FOR FLEXIBLE PIPE

For pipes nominally 24-inch and larger inside diameter, deflections shall be determined by a method submitted to and approved by the Engineer. If a mandrel is selected, the minimum diameter, length and other requirements shall conform to the dimensions and requirements stated above.

All Sewers and storm drains constructed of flexible pipe shall be tested for vertical deflection no less than 30 Days after trench backfill and compaction have been completed. No diameter of the installed pipe be decreased by more than 5 percent for 12 inch and smaller inside diameter pipe, and by no more than 3% for all larger diameter pipe less than 30 inch inside diameter. For pipes less than or equal to 30 inches inside diameter, a mandrel shall be pulled through the pipe by hand to ensure that the maximum allowable deflection has not been exceeded. Prior to use, the mandrel shall be measured, inspected for roundness, and certified as being sound and accurate. A Manufacturer's Certificate of Compliance shall be submitted to the Engineer prior to the test. The use of an uncertified mandrel or a mandrel altered or modified after certification will invalidate the test. If the mandrel fails to pass through the pipe, the pipe will be deemed overdeflected.

Testing shall be conducted on a manhole-to-manhole basis after the line has been thoroughly flushed with water. If testing reveals an overdeflected pipe, it shall be uncovered and, if not damaged from overdeflection or from excavation activities, the pipe may be corrected and reinstalled. Any pipe damaged beyond reasonable repair, due to overdeflection or from any other cause, shall be uncovered and removed from the Project Site and replaced with a new pipe at no cost to the Owner. Pipe large enough for a person to Work inside it may be accepted on the basis of direct measurements. Prior to making any repairs, the Contractor shall submit his proposed method of repair in writing to the Engineer for approval at least 3 Working Days in advance.

The mandrel shall:

1. Be a rigid, nonadjustable, odd-numbering-leg (9 legs minimum) mandrel having an effective length not less than its nominal diameter;
2. Have a minimum diameter at any point along the full length as follows:
### Minimum Mandrel Diameter (inches)	Pipe Material	Nominal Size (Inches)
5.619 | PVC ASTM D 3034 (SDR 35) | 6
7.524 | | 8
9.40 | | 10
11.91 | | 12
13.849 | | 15
16.924 | | 18
19.952 | PVC ASTM F 679 (T-1 Wall) | 21
22.246 | | 24
25.29 | | 26
28.502 | | 30

3. and be fabricated of steel, be fitted with pulling rings at each end, be stamped or engraved on some segment other than a runner indicating the pipe Material specification, nominal size, and mandrel OD (e.g., PVC, D 3034-8-inch-7.524-inch); and be furnished in a suitable carrying case labeled with the same data as stamped or engraved on the mandrel.

7-17.3(4)I TELEVISION INSPECTION

Once during the final inspection process the Contractor, in the presence of the Engineer, shall videotape the interior of all Sewer and storm drain pipe 6 inches through 48 inches in diameter to determine acceptance of the Work. Side Sewer, catch basin and inlet connection pipe, and other non-mainline pipe will not require videotaping. The Contractor shall notify the Engineer at least 3 Working Days in advance of the videotaping, and shall have completed mainline cleaning and pressure testing of the pipe prior to videotaping. Pipe larger than 48 inches in diameter will be inspected visually by the Engineer after cleaning and testing. Videotapes shall be furnished to the Engineer within 10 Working Days of the television inspection, and shall become the property of the Engineer.

Videotaping shall be performed prior to allowing mainline flow into the pipe from upstream sources unless the Contractor requests otherwise with adequate advance notification and approval by the Engineer. Upstream Sewer bypass, when used, shall accommodate television inspection as necessary in order to afford full visibility of pipe inverts (see Section 7-17.3(2)K).

Videotaping shall be accomplished using a 360-degree radial view color television camera (aka pan and tilt) with a mechanical footage counter, and shall have a light source providing adequate illumination acceptable to the Engineer. The camera shall be centered in the pipe under inspection to insure that the crown, invert, side Sewer connections and sides of the mainline pipe are fully visible.

The videotapes shall be Standard Grade, 60-minute VHS tapes taped at SP speed. Each videotape shall be labeled with the Project name, street name, Drawing sheet number, vault plan number listed on the Drawings, the starting point and ending point (MH number to MH number preferred), the direction (upstream or downstream) the camera traveled in the pipe, and a unique identification number with the numbers on all videotapes of the Project being in consecutive sequence. Videotapes acceptable to the Engineer shall be of a quality which completely and clearly shows each joint and side service connection, by reasonably viewing into each side service connection, by being clear, and by having sufficient illumination to reasonably distinguish detail. Each videotape shall contain the video inspection of only one continuous run of pipe between consecutive manholes (the “run”).

Videotape which is not of acceptable quality, as determined by the Engineer, will be rejected and shall be interpreted as not in compliance with this Specification. The Contractor shall promptly conduct a second television inspection and submit an acceptable videotape meeting the requirements of this Section at the sole expense of the Contractor.

Should video inspection reveal defective Work, the Contractor shall, upon written order from the Engineer, correct said defects pursuant to Section 7-17.3(4)A1. A second television inspection shall then be taken of the corrected pipe run for acceptance in accordance with this Section at the sole expense of the Contractor. This procedure shall continue until acceptance of the corrected pipe run by the Engineer.
The Contractor shall not repair pipe or pipe joints which have failed a test specified in Sections 7-17.3(4)B, C, D, or E until a written outline of the method and procedure of repair is submitted to and approved by the Engineer. Video taping may be done by in-house City forces or, at the Engineer’s option, by the Contractor at the original Contract unit price. The Contractor shall schedule the retaping within 10 Working Days after notification by the Engineer. This additional videotape will then be compared with the videotape made at final inspection to determine whether or not any changes have occurred in the condition of the pipe. Should there be evidence of inconsistencies as compared to the original installation which, in the opinion of the Engineer, warrant replacement or repair, the Contractor shall, upon order of the Engineer, correct those defects pursuant to Section 1-05.10(1). After the necessary corrections have been made by the Contractor, the corrections shall be verified by additional television inspection at the Contractor’s expense.

7-17.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Extra Excavation” will be by the cubic yard of Material actually removed below the pipe bedding, in accordance with the standard trench neat lines shown on Standard Plan No. 284.

Measurement for “Bedding, (Class), (Size) Pipe” will be by the linear foot of pipe actually installed. Measurement will be from center to center of standard manholes or to the inside face of Structures.

Measurement for pipe will be by the linear foot of pipe installed and successfully tested, and shall be along the centerline of the pipe through the tees. Measurements will be from center to center of new or rechanneled manholes or to the inside face of Structures or manholes not channeled or to the end of pipe where it dead ends beyond manholes. Measurement will be to the nearest 0.1 foot.

No measurement will be made for trench excavation and backfill except for foundation Material, extra excavation and imported backfill Material.

Measurement for foundation Material will be by the cubic yard of Mineral Aggregate Type 2 required to fill the void made by extra excavation and shall be based on neat line width of trench, and depth and length as computed by the Engineer, per Section 1-09.1.

Measurement for imported Mineral Aggregate, when ordered for trench backfill in lieu of native Material by the Engineer, will be by the cubic yard based upon the maximum neat line trench pay width as specified in Section 7-17.3(1) and the Standard Plan, and the depth designated by the Engineer. Imported Mineral Aggregate used beyond these neat line trench limits shall be at the Contractor’s expense. The quantity of backfill Material shown in the Bid Form is an estimate only, and shall not, under any circumstances, be considered to indicate the quantity which may actually be required.

Measurement for “Safety Systems in Trench Excavation, Minimum Bid = $0.40 per Square Foot”, “Safety Systems in Trench Excavation for Water Main, Minimum Bid = $0.40 per Square Foot”, and “Support System” will be by the square foot. The square foot quantity equals the area of a vertical plane through the pipe centerline, calculated by multiplying the average of the trench end depths by the length of trench between points four or more feet deep. Depth is measured from existing surface grade at the time of excavation to pipe invert.

Measurement for “Temporary Sewer Bypass” will be by the linear foot of bypass pipe installed from the nearest downstream manhole to the nearest upstream manhole. No overlapping measurements will be allowed.

Measurement for “TV Inspection” will be for the linear feet of installed 6”-48” diameter mainline pipe videotaped once during (1) final inspection and (2) such re videotaping, if ordered by the Engineer, done six to eleven months after the Physical Completion Date. Measurement will be made along the pipe centerline through tees from (1) center to center of new or rechanneled manholes or (2) to the inside face of Structures or manholes not channeled or (3) to the end of pipe where it dead ends beyond manholes.

7-17.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-17 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:

1. “Extra Excavation”, per cubic yard.
The Contract unit price for “Extra Excavation” shall include all costs to remove, haul and dispose of the excavated Material.

2. “Bedding, (Class), (Size) Pipe”, per linear foot.
 The Contract unit price for “Bedding, (Class), (Size) Pipe” shall include all costs for Work required to furnish and install bedding to the cross section shown in Standard Plan 285. Cost of Class D bedding shall be included in the Bid item for cost of pipe per linear foot and therefore no separate payment will be made for Class D bedding.

3. “Pipe, (Use), (Material), (Class), (Size)”, per linear foot.
 The Contract unit price for “Pipe, (Use), (Material), (Class), (Size)” shall include all costs for the Work required to furnish and install the pipe of the type and size specified, and including the following:
 a. trench excavation (except “Extra Excavation”); haul, stockpile, backfill, and compact native Material backfill.
 b. handling, removal, and off-site disposal of excess and/or unsuitable excavated native Material, or placement of suitable excess excavated native Material or selected Material elsewhere on the Project.
 c. dewatering.
 d. required trench excavation and backfill.
 e. cleaning and testing per Section 7-17.3(4).
 f. Class D Bedding.
 g. pipe coupling.

 Dewatering of the trench shall be considered as included in the Bid Items for the appropriate type of pipe listed in the Bid Form.
 All costs in connection with excavating test pits and for standby time during field density test shall be considered as incidental to the installation of pipe.
 Unauthorized excavation below the established trench grade shall be made good by the Contractor, at his own cost, by providing, placing and compacting suitable bedding Material to the proper grade elevation.
 The Work of cleaning and testing, except TV inspection, and furnishing caps and plugs for the tests shall be considered as incidental to the Bid items for the appropriate type of pipe as listed in the Bid Form.
 All Work required in proof testing, specified in Section 7-17.2(2), shall be considered incidental to the Bid items for the appropriate type of pipe listed in the Bid Form.
 Any damage resulting from testing of the Sewers and appurtenances specified in Section 7-17.3(4)A shall be made good by the Contractor at his own cost.
 All costs of determining the source or sources of leakage and the cost of Work and Materials to replace the Sewer installation which failed to meet the requirements of the test method specified in Section 7-17.3(4) shall be borne by the Contractor.
 If the pipe fails the deflection test as specified in Section 7-17.3(4)H, all costs to locate and repair the failed sections and retest the pipe shall be borne by the Contractor.
 All costs for the Work required to furnish and install joint coupling devices as specified in Section 7-17.3(2)F shall be considered as incidental to the installation of pipe.

4. “Steel Casing Pipe, (Class), (Size), (Underground Construction Method)”, per linear foot.
 The Contract unit price for “Steel Casing Pipe, (Class), (Size), (Underground Construction Method)”, shall include all costs for the Work required to furnish and install casing pipe as specified in Section 7-17.3(2)J, including installation and removal of shoring of the jacking pit.

5. “Pipe, (Material), (Class), (Size), (Underground Construction Method)”, per linear foot.
 The Contract unit price for “Pipe, (Material), (Class), (Size), (Underground Construction Method)” shall include all costs for the Work required to furnish and install the pipe as specified in Section 7-17.3(2)J.
6. "Tee, (Material), (Size)", each.

The Contract unit price for "Tee, (Material), (Size)" shall include all costs for the Work required to furnish and install the tee as specified including plug when required.

7. "Tee, (Material), (Size), Cut-In Existing (Material) Pipe", each.

The Contract unit price for "Tee, (Material), (Size), Cut-In Existing (Material) Pipe" shall include all costs for the Work to furnish and install the tee as specified in Section 7-17.3(2)C3. If Drainage and Waste Water Utility installs a pipe with a tee, no payment will be made.

All costs for installing, maintaining, and removing trench safety systems as specified in Section 7-17.3(1)A7a shall be incidental to “Safety Systems for Trench Excavation, Minimum Bid = $0.40 per Square Foot” and no separate or additional payment will be made therefore.

8. "Safety Systems in Trench Excavation, Minimum Bid = $0.40 per Square Foot".

9. "Safety Systems in Trench Excavation for Water Main, Minimum Bid = $0.40 per Square Foot".

The minimum unit price for "Safety Systems in Trench Excavation" and for "Safety Systems in Trench Excavation for Water Main" shall be forty cents ($0.40) per square foot. Should the Contractor determine that the cost for this Work is greater than $0.40 per square foot the Contractor may Bid a higher unit price by crossing out the minimum unit price and extension shown on the Bid Form, writing in a higher unit price and extension on the Bid Form, and initialing the change. Should a Contractor write in a unit price less than $0.40 minimum the $0.40 unit price shall govern and become a part of the Bid.

The Contract unit price for “Safety Systems in Trench Excavation” and for “Safety Systems in Trench Excavation for Water Main” shall include all costs for the Work required to provide, construct, maintain and remove safety systems for trench excavations equal to or exceeding a depth of 4 feet as specified in Section 7-17.3(1)A7a.

Where unauthorized excavation has been made which increases the established trench depth beyond 4 feet, the Contractor shall meet the requirements specified for Trench Safety Systems in Section 7-17.3(1)A7a at no additional cost to the Owner.

The Contract unit price for “Temporary Sewer Bypass” shall include all the Work required to bypass sewer flow around the construction Work.

The unit cost per linear foot for “Television Inspection” shall include all costs necessary for CCTV inspection of all pipe 6”-48” diameter Sewer and storm drain pipe and the furnishing a videotape of an acceptable pipe to the Engineer. Payment will be for one complete videotaping session made during (1) the final inspection process and (2) one complete retaping, if videotaping is requested by the Engineer, six to eleven months after the Physical Completion Date. Costs for additional videotaping sessions and tapes necessary to verify corrections or replacement of pipe or done solely for the Contractor’s convenience shall be borne by the Contractor.

The Contract unit price for “Support System”, per square foot, shall include all costs for all Work required to provide, construct, maintain and remove the support system for trench excavations equal to or exceeding a depth of 4 feet as specified in Section 7-17.3(1)A7b.

13. Other payment information.

Where unauthorized excavation has been made which increases the established trench depth beyond 4 feet, the Contractor shall meet the requirements specified for Trench Safety Systems in Section 7-17.3(1)A7a at no additional cost to the Owner.

Payment for imported Material when ordered in lieu of native backfill Material by the Engineer will be paid as Mineral Aggregate Type 17 or other imported Material that is acceptable to the Engineer and is specified in Section 4-01.5.

Foundation Material when required on the Drawings, or directed by the Engineer, shall be paid as “Mineral Aggregate (Type)” per cubic yard, per Section 4-01.5.
Where foundation Material is not shown on the Drawings and no Bid item for “Mineral Aggregate, (Type)” is included in the Bid Form, and it is determined by the Engineer that the existing foundation is unsuitable, payment will be made for additional Materials in accordance with Section 1-09.4.

The cost for the Owner’s labor and Equipment for the videotaping during the final acceptance process and the videotaping 6 to 11 months later to recheck the pipe condition will be borne by the Owner unless additional videotape inspection is necessary to verify corrections or replacement of deficient pipe. The cost of additional television inspection, and cleaning in preparation for television inspection, to verify repairs or replaced pipe shall be borne by the Contractor. The Contractor shall also be responsible for all costs incurred in any television inspection performed solely for the benefit of the Contractor.

If the Contractor calls for an initial TV inspection, and the pipe is not clean or has so many deficiencies that the line cannot be fully inspected, the reinspection will be charged to the Contractor, and the cost withheld from money due to the Contractor.

The Contractor shall provide all necessary water for construction and testing purposes, according to the requirements of Section 2-07.

If the Contractor damages or undermines the adjacent improvements outside the maximum pay width as described in Section 7-17.3(1)A1, he shall be required to remove and replace those areas at no cost to the Owner.

No separate or additional compensation will be made for Plan Submittals, or for Material used in the jacking operations or for the cost of the backfilling operations, including compaction.

Any Material that becomes unusable due to the Contractor’s failure to take adequate measures to provide protection from moisture shall be replaced, at the Contractor’s expense, with same or substitute Material acceptable to Engineer.

The Contractor shall, at his own cost, provide pipe of increased strength classification or place a class of bedding of higher load bearing capacity, as required by the Engineer, when the maximum trench width specified in Section 7-17.3(1)A1 is exceeded by the Contractor without prior written approval of the Engineer. The Contractor shall furnish and install any approved imported backfill Material required outside the trench neat line limits.

SECTION 7-18 SIDE SEWERS

7-18.1 DESCRIPTION

This Work shall consist of excavation, shoring, foundation preparation, bedding, jointing, backfilling, compacting and testing for the construction of side sewers.

A side Sewer is considered to be that portion of a Sewer line that is constructed between a main Sewer and a residence or other buildings. All privately owned and operated drainage control facilities or systems, whether or not they discharge to a public drainage control system, shall be considered side sewers and shall be subject to Title 21 of the Seattle Municipal Code. It does not include any of the internal piping or connecting appurtenances, the installation of which is controlled by a municipal code, ordinance or regulation.

The general requirements for construction of Sewers in Section 7-17 of these Specifications shall apply to construction of side Sewers as well unless they are inconsistent with any of the provisions of this section. These Specifications apply to all side sewers on public Rights-of-Way.

7-18.2 MATERIALS

Materials shall meet the requirements for the following Sections:

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joints</td>
<td>9-04</td>
</tr>
<tr>
<td>Plain Concrete Pipe</td>
<td>9-05.7(1)</td>
</tr>
<tr>
<td>Vitrified Clay Pipe</td>
<td>9-05.8</td>
</tr>
<tr>
<td>PVC Pipe</td>
<td>9-05.12</td>
</tr>
<tr>
<td>Ductile Iron Pipe</td>
<td>9-05.13</td>
</tr>
</tbody>
</table>

All pipe shall be clearly marked with type, class, and/or thickness, as applicable. Lettering shall be legible and permanent on the outside surface of the pipe, and able to withstand normal conditions of handling and storage.
Approved jointing shall be flexible gasketing.

Flexible gasketing shall be construed to include rubber, synthetic rubberlike and plastic Materials specially manufactured for the joint, pipe size, and use intended and shall be furnished by the manufacturer of the pipe to be used.

Tees, wyes, bends, couplers, adapters, and transition sections shall conform to the requirements of this Section.

Mortared joints will not be allowed.

7-18.3 CONSTRUCTION REQUIREMENTS

7-18.3(1) SIDE SEWER CONSTRUCTION

7-18.3(1)A GENERAL

Side sewers shall be constructed with a maximum joint deflection not to exceed the manufacturer's printed recommendations and in no case shall exceed 2 inches per foot at any joint. Larger changes in direction shall be made by use of standard 1/8-bends.

Side sewer construction shall conform to Standard Plan No. 283 and all applicable ordinances or regulations with respect to Equipment, protective measures, size of pipe, depth of cover, number of users per pipe, permissible connections, inspection, and testing.

Side sewer locations shown on the Drawings shall be subject to relocation in the field after construction starts. Regardless of the Drawing location, the Contractor shall place the tee or wye branch in the main Sewer line at the location designated by the Engineer.

The Engineer will stake and indicate the depth for the invert elevation of end pipe at the street margin or property line.

Side sewers shall be installed with existing, or with other Project proposed, Water Main and other underground utilities, in accordance with the clearance requirements specified in Section 1-07.17(2).

Side sewer trenching shall be subject to the provisions of Section 7-17.3(1).

7-18.3(1)B RESERVED

7-18.3(1)C SIDE SEWERS SHOWN ON THE DRAWINGS

7-18.3(1)C1 PROTECTION OF EXISTING SIDE SEWER

When a newly-constructed pipe line crosses above or beneath an existing side Sewer which is shown on the Drawings, it shall be the responsibility of the Contractor to protect the existing side Sewer from damage during the course of construction.

7-18.3(1)C2 REMOVE AND REPLACE EXISTING SIDE SEWER

When the Drawings call for removal and replacement of existing side sewers, only new pipe shall be used to replace the removed pipe.

7-18.3(2) EXCAVATION, BEDDING, AND BACKFILL

Excavation, bedding and backfilling for side sewers shall conform to the requirements of Section 7-17, except that no bedding in excess of that required to hold the pipe in true alignment shall be placed prior to inspection. The Contractor shall give the Engineer at least 2 Working Days advance notice before covering the side sewer with bedding or backfill (see Section 7-18.3(6)).

7-18.3(3) PIPE INSTALLATION AND JOINTING

7-18.3(3)A GENERAL

Pipe installation and jointing, except as hereinafter provided, shall conform to the requirements of Section 7-17 and Section 21-16 of the Seattle Municipal Code.

7-18.3(3)B LINE AND GRADE

Side Sewers shall be installed to a line and grade between the main Sewer tee branch or wye branch and the Right of Way margin, so as to best serve the property relative to the following conditions, as approved by the Engineer:
1. Where a vacant property is level with or lower than the street grade, the invert elevation of the proposed side Sewer end pipe at the Right of Way margin shall be 1 foot higher than the elevation of the crown of the main Sewer at the location of its tee or wye branch. See Standard Plan 283 for additional requirements.

2. Where an occupied property is situated at higher elevation than the street grade and where the slope of the proposed side Sewer is steeper than 50%, the maximum elevation of the side Sewer at the Right of Way margin will be established by the Engineer with due consideration for placing the side Sewer below the invert of any proposed Storm Drain pipe, unless other conditions prevent it. The clearance between the invert of an existing storm Sewer and the crown of a side Sewer below it shall be not less than 6 inches. In either of these conditions, the end pipe of the side Sewer at the Right of Way margin shall be placed deep enough to accommodate at least 2-1/2 vertical feet of backfill between the crown of the pipe and established street elevation at that point.

3. Where an occupied property is level with or lower than the street grade, side Sewer pipe shall be installed on a grade not less than 2%.

7-18.3(3)C PIPE INSTALLATION
Bell and spigot pipe shall be installed with the bell end up grade. All pipe installation shall start and proceed up grade from the point of connection at the public Sewer or other starting point.
Pipe shall be installed in a straight line at a uniform grade between fittings.

7-18.3(3)D JOINTING
Where it is necessary to break out an existing side Sewer during construction due to grade conflict with a newly constructed pipeline, only new pipe shall be used in reconnecting the side Sewer. Where joints cannot be made due to dissimilar pipe Material or mismatched wall thickness, the Contractor shall use a flexible gasketed coupling to make a watertight joint. Couplings shall be those manufactured by “Romac”, “Smith-Blair” or approved equal for reinforced pipes and “Fernco” or approved equal for non-reinforced pipes.

7-18.3(4) FITTINGS
All fittings shall be factory-produced and shall be designed for installation on the pipe to be used. The maximum deflection permissible at any one fitting shall not exceed the pipe manufacturer’s recommendation. The maximum deflection of any combination of two adjacent fittings shall not exceed 45 degrees (one-eighth bend) unless straight pipe of not less than 2-1/2 feet in length be installed between such adjacent fittings, or unless one of such fittings is a wye branch with a cleanout provided on the straight leg.
Side Sewers shall be connected to the tee, wye, or riser provided in the public Sewer where such is available, utilizing approved fittings or adapters. Where no tee, wye, or riser is provided or available, connection shall be made by core drilling and installing an approved insert or saddle tee as specified in Section 7-17.3(2)C2.

7-18.3(5) CLEANOUTS
Refer to Section 7-19.

7-18.3(6) INSPECTION AND TESTING
7-18.3(6)A INSPECTION
See Section 7-18.3(2).
Pipes installed and backfilled without visual inspection of the side sewer installation shall be excavated and exposed for inspection.

7-18.3(6)B TESTING
All side sewers, including runoff and downspout connections, shall be tested after backfill. Side sewers that are reconstructed or repaired to a length of 10 feet or more shall be tested for watertightness in accordance with Section 7-17.3(4)B. Testing of newly reconstructed sections of side sewers consisting of a single length of pipe will not be required. Testing shall be performed in the presence of the Engineer in accordance with Section 7-17.3(4).
All side sewers constructed in conjunction with the main Sewer shall, for purposes of testing as specified in Section 7-17.3(4), have a 6-inch tee fitting placed at the point where the side sewer crosses the street or other public right-of-way margin. The tee opening shall be positioned perpendicular to the side Sewer slope, unless otherwise directed by the Engineer.

When the new side sewer is connected to a new main Sewer installed under the same Contract, and the side sewer is not tested simultaneously with the test of the main Sewer, the Contractor shall furnish and place, at his own expense, an additional 6-inch tee in the first pipe out of the main Sewer tee, so that an inflatable rubber ball can be inserted for sealing off the side sewer and thus permit separate tests.

When the new side sewer is connected to an existing main Sewer, the Contractor shall furnish and place 2 test tees: one immediately adjacent to the main Sewer and a second where the side sewer crosses the street or right-of-way margin. Both test tees will be paid per Section 7-18.5.

The ends of side Sewers or test tee openings shall be plugged watertight with Materials and by method acceptable to the Engineer.

7-18.3(7) MISCELLANEOUS REQUIREMENTS

7-18.3(7)A PIPE AND CONNECTIONS

Side sewer in Right-Of-Way or utility easement shall be not less than 6 inches in diameter unless otherwise specified. Side sewers on private property shall be not less than 4 inches in diameter. No roof drain, area drain, or subsurface drain shall be connected to a side sewer which is connected to a separate main line sanitary Sewer.

Roof drains or private service drains in areas of combined Sewer systems shall be run in a separate pipe to the property line before connecting into the side Sewer.

7-18.3(7)B PROXIMITY TO WATER SUPPLY LINES

Clearance between side sewers and Water Mains shall be maintained as specified in Section 1-07.17(2).

7-18.3(7)C PLUGS

Any unused openings to the side sewer shall be closed with a watertight plug fastened in place, as approved by the Engineer.

7-18.3(7)D SEPTIC TANKS AND CESSPOOLS

No side Sewer shall be constructed through or adjacent to an existing cesspool or septic tank. If the conditions prohibit any other location, the Contractor shall abate the cesspool or septic tank by such means as the Engineer may direct, and by such payment as may be specified or agreed upon.

7-18.3(8) RESTORATION, FINISHING, AND CLEANUP

The Contractor shall restore and/or replace all Pavement, curbing, sidewalks, landscaping, or other disturbed surface improvements to their original or better condition as determined by the Engineer in such manner as to meet the requirements of applicable sections of these Specifications. All surplus Materials and temporary structures, as well as all excess excavation shall be removed and the entire site of Contractor operations shall be left in a neat and clean condition.

When the course of the Work requires any disturbance of private property, the Contractor shall comply with the requirements of Section 1-07.24.

7-18.3(9) EXTENDING SIDE SEWERS INTO PRIVATE PROPERTY

Unless authorized by Section 21.16 of the Seattle Municipal Code, the property owners will not be permitted to extend side Sewers onto their property or connect fixtures thereto.

7-18.3(10) END PIPE MARKER

Location of side Sewers shall be marked by the Contractor at the property line by a 2-inch x 4-inch wooden stake 4 feet long buried in the ground a depth of 3 feet. The lower end shall have a 2-inch x 4-inch cleat nailed to it to prevent withdrawal of the stake. The exposed 1 foot shall be painted traffic white and the depth to the side Sewer or tee shall be indicated in black paint on the 2-inch x 4-inch. In addition, a length of 12 gauge galvanized wire shall be provided to extend from the plugged end of the side Sewer or tee. The upper end shall emerge at the stake, but shall not be fastened to it.
SECTION 7-18 SIDE SEWERS

7-18.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Pipe, (Use), (Material) (Class), (Size),” will be along the pipe from the tee or wye of the main Sewer through tees, wyes and other fittings to the street margin or Right of Way margin. Measurement will be to the nearest 0.10 foot.

7-18.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-18 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Pipe, (Use), (Material), (Class), (Size)”, per linear foot.
 The Contract unit price for “Pipe, (Use), (Material), (Class), (Size)”, shall include all costs for the Work required to furnish and install the side sewer pipe of the type specified, including the following:
 a. Trench excavation (except “Extra Excavation”), haul, stockpiling, backfill and compaction of native Material;
 b. removal and disposal of excess and/or unsuitable excavated native Material;
 c. dewatering;
 d. removal and disposal of existing pipe encountered in required trench excavation and backfill;
 e. temporary bypass of sewage, including pumping,
 f. cleaning and testing; and
 g. Class D Bedding.

2. “Tee, Test, (Material), (Size)”, per each.
 The Contract unit price for “Tee, Test, (Material), (Size)” shall include all costs for the Work to furnish and install the test tee as specified in Section 7-18.3(6)B.

3. Other payment information.
 Payment for safety systems required for trench excavation Work shall be in accordance with Section 7-17.5.
 Payment for Foundation Material will be in accordance with Section 7-17.5.
 Payment for Tees will be in accordance with Section 7-17.5.
 Payment for Bedding Class A, Class B and Class C will be in accordance with Section 7-17.5.
 Pipe installed and backfilled without visual inspection shall be excavated and exposed for inspection at the Contractor’s expense.
 Remove and re-install side sewer shall be paid as side sewer pipe.

SECTION 7-19 SEWER CLEANOUT

7-19.1 DESCRIPTION

This Work shall consist of the construction of sanitary Sewer cleanouts in accordance with the Drawings, these Specifications, and Standard Plan No. 280 as staked by the Engineer.

7-19.2 MATERIALS

All Materials incorporated into the total cleanout structure shall meet the requirements of the various applicable Sections of these Specifications.

7-19.3 CONSTRUCTION REQUIREMENTS

A cleanout shall be provided for each total change of 90 degrees of grade or alignment and in no case shall the spacing of cleanouts exceed 100 feet. No cleanout will be required at the connection of the side Sewer to a riser on the public Sewer. A suitably located cleanout in the house piping or plumbing may be considered as a cleanout for the side Sewer. Cleanouts shall consist of a wye branch in the side Sewer. All cleanouts located in public rights of way shall be extended to grade.
SECTION 7-19 SEWER CLEANOUT Page 7-75

The extension of cleanouts to grade on private property is optional with the property owner. When extended to grade, cleanouts shall be full side Sewer diameter and shall be extended to a point not less than 6 inches nor more than 12 inches below the finished ground surface and shall be plugged with a removable stopper which prevents passage of dirt or water. When specified, the Contractor shall install an approved casting to provide ready access to the cleanout stopper. A 1/8-bend shall be used to deflect the side Sewer upward as a cleanout where the terminal end of the side Sewer lies upstream from the last point of connection.

Pipe joints shall be the type specified in Section 7-17.3(2).

The trench excavation shall be made in such a manner as to provide an undisturbed base upon which the pipe shall be placed. Bedding around the wye and under the pipe connecting to the wye shall be thoroughly tamped as directed. Construction shall otherwise conform to the requirements shown on Standard Plan No. 280.

7-19.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Sewer Cleanout, (Size),” shall begin at the wye branch and extend to the lamphole casting, as shown on Standard Plan No. 280.

7-19.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-19 will be made at the Contract unit prices Bid only for the Bid items listed or referenced below:

1. “Sewer Cleanout, (Size)”, per each.

 The Contract unit price per each for “Sewer Cleanout, (Size)” shall be full compensation for furnishing and placing the wye, Sewer pipe, pipe bands, pipe plug casting, and concrete collar as indicated on Standard Plan No. 280, and as specified herein.

SECTION 7-20 ADJUSTMENT OF NEW AND EXISTING UTILITY STRUCTURES TO FINISH GRADE

7-20.1 DESCRIPTION

The Work covered by this section consists of adjusting new and existing manholes, catch basins, inlets, valve chambers, water meter boxes, handholes, and similar utility Structures encountered during the Work to a new grade elevation. The Work shall include adjustment by removing or installing ring extensions; by removing and installing adjustment brick; by removing or adding a vertical riser section to the utility structure; by removing and rebuilding a portion of the existing structure; or by any combination of the preceding methods.

Publicly-owned utility Structures shall be adjusted to finished grade by the Contractor. Privately-owned utilities are generally in the streets and road Rights of Way pursuant to franchises or to rights claimed under the laws of the United States of America, or the State of Washington and, therefore, these utility agencies are responsible for all adjustments and relocations of their own facilities. The Contractor shall schedule the Work so that utility adjustments by others can be accomplished without undue delay.

The requirements of this section apply to utility Structures constructed from precast concrete sections, masonry brick or blocks, and cast-in-place concrete.

7-20.2 MATERIALS

Material used in the adjustment of existing utility Structures shall meet the requirements for new construction specified in the section applicable to the item being adjusted.

Adjustment ring extensions shall meet the requirements of Section 9-12.8 and Standard Plan No. 231.

Epoxy used to secure manhole castings for ring extensions to existing frames shall be per epoxy manufacturer’s recommendations for the material application. The Contractor shall submit at least 3 Working Days in advance, a Manufacturer’s Certificate of Compliance and catalog cut stating the proposed epoxy provides satisfactory bonding performance for the intended application.
7-20.3 CONSTRUCTION REQUIREMENTS

7-20.3(1) ADJUSTMENT OF MANHOLES, CATCH BASINS, AND SIMILAR STRUCTURES

7-20.3(1)A GENERAL

The Engineer will establish approximate grade elevation for the tops of existing utility Structures requiring adjustment. The final alignment and grade elevation shall be established from adjacent roadway surfaces, forms, or such offset hubs as may be provided by the Engineer.

Except where adjustment is to be made by ring extension, the Contractor shall remove the Pavement around the casting; remove the casting and install or remove adjustment brick; or shall excavate around the utility structure, remove a portion of it as necessary and rebuild the structure to meet the new grade elevation. Pavement removal shall be kept to the minimum amount required to facilitate the adjustment. Adjustment to finished grade elevation, by whatever method, shall result in a finished structure meeting the requirements for new construction as specified in Section 7-05.3(1)P. The overall distance between the top of the casting to the bottom of the adjustment brick shall be not more than 26 inches.

When a ring extension is specified, it shall be epoxied securely to the existing frame. The surfaces of the frame and the ring extension that are to receive the epoxy shall be thoroughly cleaned with a wire brush prior to the application of epoxy.

When adjustment is made by adding or removing leveling bricks, all joints in the bricks shall be filled with mortar and the casting seated in mortar on the top brick course.

After the utility structure has been adjusted to grade, and the structure made watertight by plastering with a mortar cement, all voids around the structure shall be backfilled and compacted with imported mineral aggregate. The casting shall then be secured in place with a tapered layer of concrete or asphalt, as applicable.

Adjustment to finish grade of water meter boxes encountered within the planting strip and sidewalk area shall be made by the Contractor.

Should adjustment to a water meter box necessitate adjustment or relocation of the water meter, the Contractor shall notify the Engineer at least 3 Working Days in advance and the water meter will be adjusted or relocated by SPU Water Operations. The Contractor shall then make final adjustment of the meter box.

7-20.3(1)B UNPAVED STREET GRADING PROJECTS

New manholes, catch basins and similar Structures constructed in conjunction with street grading Projects which are to be surfaced with gravel or crushed stone shall be constructed to a point approximately 8 inches below the Subgrade and covered with a temporary wood cover. Existing manholes encountered shall be cut off and covered in similar manner. The Contractor shall carefully reference all manholes so that they may be easily found upon completion of the street Work.

After placing the gravel or crushed stone surfacing, the utility Structures and utility castings shall be constructed to the finished grade of the roadway surface. Excavation necessary for bringing utility castings to grade shall center about the utility structure and be held to the minimum area necessary. After completion of the utility structure adjustment, and after the structure is made watertight by plastering with mortar cement, the void around the manhole shall be backfilled with imported mineral aggregate and thoroughly compacted.

Where bituminous surface treatment is to be placed, the manhole castings shall be installed from 1/2 inch to 1 inch higher than the rock surfacing so that the top of the casting matches the finished roadway surface.

7-20.3(1)C CEMENT CONCRETE PAVING PROJECTS

Manholes, catch basins and similar Structures shall be constructed or adjusted in the same manner as outlined in Section 7-20.3(1)A except that the final adjustment shall be made and the cast iron frame set after the forms have been placed and checked. In placing the concrete Pavement, extreme care shall be taken not to alter the position of the casting in any way. All castings installed in and requiring new concrete Pavement or rigid base, shall comply with the requirements of Section 7-05.3(1)R.

7-20.3(1)D ASPHALT CONCRETE PAVING PROJECTS

Utility Structures requiring adjustment to match finish grade shall be adjusted prior to the start of the final paving operation.
The tops of existing utility Structures shall be raised or lowered to match the finish grade. Immediately after adjustment of the ring castings, to secure them at finish grade, the Contractor shall install temporary asphalt transition tapers around the Structures in order to provide a safe usable surface for traffic. The Contractor shall maintain the asphalt tapers and shall furnish, install, and maintain warning signs and barricades in accordance with Section 1-07.23 and Section 1-10. The Contractor shall remove the asphalt tapers immediately prior to the start of paving operations.

Inside surfaces of adjusted Structures which are disturbed or damaged by the adjustment, as well as the new adjustment area, shall be mortared to give a smooth, watertight surface.

7-20.3(1)E ASPHALT RESURFACING PROJECTS

Adjustment of manholes, catch basins, and similar Structures on asphalt resurfacing Projects shall meet the requirement of Section 7-20.3(1)D. Unless adjustment rings for castings are called for in the Project Manual or Bid Form, existing Pavements shall be removed to the extent necessary to remove the castings.

7-20.3(1)F STORM AND SANITARY SEWER OR WATER PROJECTS

Manholes, catch basins, gate valve Structures and other similar type Structures being constructed in conjunction with Sewer or water Projects on graded or paved streets shall be brought to final grade as outlined previously in these Specifications.

7-20.3(1)G ESTABLISHMENT OF GRADE FOR TOP OF MANHOLE

The Owner will establish approximate grade for top of manholes, catch basins and similar Structures for the various stages of construction; however, these grades will be approximate only. The Owner assumes no responsibility in this regard, except when the final grade is set.

7-20.3(2) ADJUSTMENT OF INLETS

The final alignment and grade of cast iron frames for new and old inlets to be adjusted to grade shall be established from the forms or adjacent Pavement surfaces. The final adjustment of the top of the inlet shall be performed in similar manner to that described for manholes. On asphalt concrete paving Projects using curbs and gutters, that portion of the cast iron frame not embedded in the gutter section shall also be solidly embedded in concrete. The concrete shall extend a minimum of 6 inches beyond the edge of the casting and shall be left 1-1/2 inches below the top of the frame so that the wearing course of asphalt concrete pavement butts against the cast iron frame. The existing concrete pavement and edge of the casting shall be painted with hot asphalt cement.

Adjustments in the inlet structure shall be made in the same manner and of the same Material as that required for new inlets. The inside of the inlets shall be plastered.

7-20.3(3) ADJUSTMENT OF MONUMENTS, AND CAST IRON FRAME AND COVER

Monuments and monument castings shall be adjusted to grade in the same manner as for manholes.

7-20.3(4) ADJUSTMENT OF VALVE BOX CASTINGS

Adjustment of valve box castings shall be made in the same manner as for manholes.

7-20.3(5) FURNISHING CASTINGS

Where adjustment of existing utility Structures is required and the Drawings or the Engineer direct that the existing castings be replaced, the Contractor shall furnish new castings of the type specified. Casting shall include frame and grate, or ring and cover unless Stated otherwise. Salvaged castings shall be cleaned and delivered, as directed by the Engineer, to the utility which owns the casting.

7-20.3(6) ADJUST BY SHAFTING

Adjustment of existing utility casting and Structure shall be by shafting when the casting remains the same and one of the following conditions exists:

1. The utility casting is to be raised, resulting in a total depth of the adjustment brick zone greater than the maximum allowable as indicated on the Standard Plans; or
2. The utility casting is to be lowered by more than the depth of the existing adjustment brick or in excess of 16 inches.
Work required shall include excavation, removal of the existing frame and cover, leveling bricks, cone section or flat slab of the utility structure. The Contractor shall add to or remove from the utility structure as appropriate, the vertical riser section having the least dimension, unless otherwise indicated on the Drawings, to allow the structure to be adjusted to the new grade elevation. The cone section or flat slab shall be reinstalled, adjustment bricks installed, and the existing frame and cover reset. The surrounding void shall be backfilled and the Material compacted in accordance with the applicable portion of Section 7-17.

7-20.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Adjust by Shafting” will be by the vertical foot of adjustment, from original grade to finish grade.

7-20.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 7-20 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Adjust Existing Manhole, Catch Basin or Valve Chamber”, per each.
2. “Adjust Existing Inlet,” each.
3. “Adjust Existing Monument Frame and Cover”, per each.
4. “Adjust Existing Valve Box”, per each.
5. “Adjust Existing Handhole”, per each.

The Contract unit price for “Adjust Existing (Item)” shall include all costs for the Work specified in Section 7-20 necessary to adjust the existing utility casting from the original grade elevation to a new finished grade elevation with or without removing or adding adjustment bricks.

6. “Adjust Existing Manhole, Catch Basin or Valve Chamber With Ring Extension”, per each.
7. “Adjust Existing Inlet With Ring Extension”, per each.
8. “Adjust Existing Monument Frame and Cover With Ring Extension”, per each.
9. “Adjust Existing Valve Box With Ring Extension”, per each.

The Contract unit price for “Adjust Existing (Item) with Ring Extension” shall include all cost for the Work required to furnish and install the required ring extension.

In the case where the Contractor is required to adjust a casting with ring extension as well as making an adjustment by removing or adding adjustment bricks, the Contractor will be compensated for the Work under the Bid items, “Adjust Existing (Item),” and “Adjust Existing (Item) with Ring Extension.”

10. “Adjust By Shafting”, per vertical foot.

The Contract unit price for “Adjust by Shafting” shall include the costs for all Work required to modify the existing structure and complete the adjustment to the grade elevation as specified in Section 7-20.3(6).

11. “Utility Casting, (Type)”, each.

The Contract unit price for “Utility Casting, (Type)” shall include the costs for all Work required to furnish and install new castings of the type specified when existing castings are to be replaced.

When a manhole is required to be rebuilt to accommodate a new casting, the cost of the utility casting shall be included in the Bid item “Rebuild (Item)” per Section 7-05.5 where “item” is “manhole”.

12. Other Payment Information.

Costs for adjustment to finish grade of water meter boxes, excluding adjustment of the water meter itself, shall be included in the prices Bid for the various Bid items shown in the Bid Form, and no separate payment will be made.

If a Bid item for adjusting existing utility Structures is not included on the Bid Form and such Work is performed, payment will be made per Section 1-09.4.
Mineral aggregate ordered as backfill in lieu of native Material will be paid by the cubic yard per Section 4-01.5.

Restoration of the roadway surface shall be in accordance with the applicable section covering the Work involved.

The costs for asphalt or cement concrete used to secure castings prior to paving shall be considered incidental to the Work and no separate payment will be made.

All Work required to adjust castings of all newly installed or rebuilt utility Structures to finished street grade shall be considered to be incidental to the Bid items for the appropriate type of utility structure listed in the Bid Form.

In asphalt resurfacing Projects, as specified in Section 7-20.3(1)E, all costs to remove the pavement, asphalt concrete and/or cement concrete base, will be considered incidental to the Work of adjusting the manhole.
DIVISION 8 MISCELLANEOUS CONSTRUCTION

SECTION 8-01 EROSION CONTROL

8-01.1 DESCRIPTION

This Work shall consist of preparing slopes, placing and compacting topsoil, seeding, fertilizing, and mulching all graded and disturbed areas in accordance with these Specifications and as shown in the Drawings or as designated by the Engineer.

8-01.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting Soil</td>
<td>9-14.1(4)</td>
</tr>
<tr>
<td>Topsoil, Type A, Type B, Playfield Soil</td>
<td>9-14.1(1), (2), (3)</td>
</tr>
<tr>
<td>Seed</td>
<td>9-14.2</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>9-14.3</td>
</tr>
<tr>
<td>Lime</td>
<td>9-14.3(1)</td>
</tr>
<tr>
<td>Mulch and Amendments</td>
<td>9-14.4</td>
</tr>
<tr>
<td>Tackifier</td>
<td>9-14.4(7)</td>
</tr>
<tr>
<td>Matting</td>
<td>9-14.5</td>
</tr>
<tr>
<td>Shear Boards</td>
<td>9-14.8</td>
</tr>
<tr>
<td>Water for Irrigation</td>
<td>9-25.2</td>
</tr>
</tbody>
</table>

8-01.3 CONSTRUCTION REQUIREMENTS

8-01.3(1) PREPARATION OF AREA

8-01.3(1)A CULTIVATION

Areas to be cultivated shall be at locations indicated on the Drawings, shall be cultivated to a minimum depth of 4 inches, and shall provide a reasonably firm but friable seed bed. Cultivation shall not take place if the soil is excessively wet. Seeding shall take place within 2 weeks of cultivation. When topsoil, lime, decomposed organic mulch, or other amendments are required, they shall be incorporated into the Subgrade by rototilling to a depth of 4 inches or deeper as required to provide the desired homogenous mixture.

Cultivation of the soil may be by rototilling, farm disc, harrow, or other suitable Equipment approved by the Engineer. Cultivation shall be done at right angles to the natural flow of water on the slope unless otherwise ordered by the Engineer.

Prior to the cultivation, the Contractor shall remove all visible rocks, clods and debris 1-1/2 inches or larger in any dimension. Any exposed tree roots in cut slopes shall be cleanly cut at the finished grade of the slope. Cultivation within the dripline of existing trees to be retained shall be reduced in depth as directed by the Engineer.

8-01.3(1)B COMPACTION

In addition to the compaction that may be required elsewhere in the Specifications, all areas to be seeded, including excavation slopes, shall be compacted and prepared unless otherwise specified or ordered by the Engineer. Unless seed is covered with soil during seed application, a cleated roller, crawler tractor, or similar Equipment, approved by the Engineer, that forms longitudinal depressions at least 2 inches deep shall be used for compaction and preparation of the surface to be seeded. The entire area shall be uniformly covered with longitudinal depressions formed perpendicular to the natural flow of water on the slope unless otherwise approved by the Engineer. The soil shall be conditioned with sufficient water so the longitudinal depressions remain in the soil surface until completion of the seeding. The area shall be compacted within three weeks of the time of seeding. Prior to seeding, the finished grade of the soil shall be 1 inch below the top of all curbs, catch basins, walks, driveways, and other Structures. Compaction by backblading or rolling is permissible for small applications provided that follow-up machine or hand-raking loosens the top 1 inch of soil.
8-01.3(1)C PREPARATION
All areas to be seeded shall meet the specified finish grades and shall be free of undesirable weed or plant growth and all clods, rocks, and debris 1-1/2 inches or larger in any dimension.

When soil fill is required to meet finish grades in areas to be maintained as lawn, fill shall be Playfield Soil unless otherwise directed by the Engineer.

8-01.3(2) TOPSOIL, PLAYFIELD SOIL, DECOMPOSED ORGANIC MULCH, & FERTILE MULCH

8-01.3(2)A GENERAL
Topsoil, playfield soil, decomposed organic mulch or fertile mulch shall be evenly spread over the specified areas to a minimum depth of 1.5 inches, unless otherwise shown in the Drawings, or as designated by the Engineer and shall be cultivated as specified in Section 8-01.3(1)A. After the topsoil has been cultivated, all large clods, hard lumps, rocks 1 inch in diameter and larger, and litter shall be raked up, removed, and disposed of by the Contractor.

Topsoil shall not be placed when the ground or topsoil is frozen, excessively wet or, in the opinion of the Engineer, in a condition detrimental to the Work.

8-01.3(2)B TOPSOIL TYPE A
Topsoil Type A shall be obtained from a source provided by the Contractor outside the Right of Way.

8-01.3(2)C TOPSOIL TYPE B
Topsoil Type B shall be native topsoil taken from within the Project Site and shall meet the requirements of Section 9-14.1(2).

Topsoil Type B shall be taken from areas designated by the Engineer to the designated depth and placed at locations which do not interfere with the construction of the Project as approved by the Engineer. Areas beyond the slope stakes shall be disturbed as little as possible in the above operations.

When topsoil Type B is specified in the Contract, it shall be the Contractor’s responsibility to perform the excavation operations in such a manner that sufficient Material is set aside to satisfy the needs of the Project.

Upon completion of the Work, topsoil Type B remaining and not required for use on the Project shall be disposed of by the Contractor.

Should a shortage of topsoil Type B occur and the Contractor has wasted or otherwise disposed of topsoil material, the Contractor shall furnish topsoil Type A at no expense to the Owner.

Topsoil Type B will not be considered as selected Material as defined in Section 2-03.3(10), and the conditions of said section shall not apply.

Material taken from roadway excavation, borrow, stripings, or other excavation items and utilized for topsoil will not be deducted from the pay quantities for the respective items.

8-01.3(2)D PLAYFIELD SOIL
Playfield soil shall meet the requirements of Section 9-14.1(4)B, and shall be installed as indicated on the Drawings.

8-01.3(3) DECOMPOSED ORGANIC MULCH & FERTILE MULCH
Decomposed organic mulch shall meet the requirements of Section 9-14.4(8). Fertile mulch shall meet the requirements of Section 9-14.4(4). The type mulch will be specified on, and shall be installed, as indicated on the Drawings.

8-01.3(4) SEEDING AND FERTILIZING

8-01.3(4)A SEEDING
The Contractor shall notify the Engineer not less than 24 hours in advance of any seeding operation and shall not begin the Work until areas prepared or designated for seeding have been approved. Following the Engineer’s approval, seeding of the approved slopes shall begin immediately.
Seeding shall not be done during windy weather or when the ground is frozen, excessively wet, or otherwise untillable. Unless otherwise specified in the Project Manual, seed of the seed mix specified shall be placed at the rate specified in Section 9-14.2. Seed shall be sown by one of the following methods:

1. An approved hydro-seeder which utilizes water as the carrying agent and maintains continuous agitation through paddle blades. It shall have an operating capacity sufficient to agitate, suspend, and mix into a homogeneous slurry the specified amount of seed and water or other Material. Distribution and discharge lines shall be large enough to prevent stoppage and shall be equipped with a set of hydraulic discharge spray nozzles which provide a uniform distribution of the slurry.

2. Approved hand seeders for small area applications.

Areas in which the above methods are impractical may be seeded by approved hand methods.

8-01.3(4)B FERTILIZING

Unless otherwise specified in the Project Manual, fertilizer shall be applied in accordance with the procedures and requirements for seeding in Section 8-01.3(4)A and applied as specified in Section 9-14.3 with regard to formulation and rate of application.

8-01.3(4)C LIMING

Agricultural lime shall be applied to all areas cultivated as described in Section 8-01.3(1)A at a rate of 100 pounds per 1000 square feet unless otherwise indicated in the Contract.

8-01.3(5) MULCHING

Wood cellulose fiber mulch, as specified in Section 9-14.4(2), shall be included in the hydroseeding process. The application of seed, fertilizer and mulch shall be required in a single operation for all seed applications, unless otherwise directed in the Project Manual. The application of mulch only, as a temporary stabilization method, shall conform to the application requirements specified in Section 8-01.3(4)A. Other mulch Materials, if specified in the Project Manual, shall be furnished, hauled, and evenly applied at the rates indicated, and shall be spread on seeded areas immediately after seeding unless otherwise specified.

Distribution of straw mulch Material shall be by means of an approved type mulch spreader which utilizes forced air to blow mulch Material on seeded areas. In spreading straw mulch, the spreader shall not cut or break the straw into short stalks.

Areas not accessible by mulching Equipment shall be mulched by approved hand methods.

Mulch sprayed on signs or sign Structures shall be removed the same Day.

8-01.3(6) SOIL BINDER OR TACKING AGENT

Unless specified otherwise, wood cellulose fiber mulch (per Section 9-14.4(2)) shall have tackifier incorporated into the mulch fiber during manufacture. If additional tackifier is required by the Project Manual, the tackifier shall be as specified in Section 9-14.4(7). When specified, soil binders and tacking agents shall be applied in accordance with the manufacturer’s recommendations.

8-01.3(7) DATES FOR APPLICATION OF SEED, FERTILIZER, AND MULCH

Unless otherwise approved by the Engineer, seeding, fertilizing, and mulching of slopes shall be performed during the following periods of any year at the location shown:

1. West of the Cascade Range summit April 1 to May 31, and September 1 to October 31.
2. Written permission to seed from June 1 to August 31, and from October 16 to March 31 will only be given when completion of the Project is imminent and the environmental conditions are conducive to satisfactory growth. Application of pre-germinated seed, moisture retention agents and/or provision for supplemental watering may be required by the Engineer.
All roadway excavation and embankment slopes, including excavation and embankment slopes that are partially completed to grade, must be prepared and seeded during the first available planting period and shall not be allowed to sit idle for long periods of time without receiving the erosion control specified in the Contract.

When environmental conditions are not conducive to satisfactory results from seeding operations, the Engineer may order the Work suspended, and it shall be resumed only when the desired results are likely to be obtained.

8-01.3(8) PLACING MATTING OR CLEAR PLASTIC COVERING

8-01.3(8)A PLACING MATTING

Immediately following the establishment of the finished grade, excelsior or jute matting shall be unrolled parallel to the flow of water. Seed and fertilizer shall be placed prior to the placing of matting. Where more than one strip of matting is required to cover the given area, it shall overlap the adjacent mat a minimum of 6 inches. The up-slope matting shall overlap the edge of the downslope matting by 6 inches. The up-slope end of each strip of matting shall be staked and buried in a 6-inch deep trench with the soil firmly tamped against the mat. Three stakes per width of matting (one stake at each overlap) shall be driven below the finish ground line prior to backfilling of the trench. The Engineer may require that any other edge exposed to more than normal flow of water or strong prevailing winds be staked and buried in a similar manner.

Matting edges shall be buried around the edges of catch basins and other Structures. Matting must be spread evenly and smoothly and in contact with the soil at all points.

The matting shall be held in place by approved wire staples, pins, spikes or wooden stakes driven vertically into the soil. Matting shall be fastened at intervals not more than 3 feet apart, with a minimum of three rows for each strip of matting, with one row along each edge and one row alternately spaced in the middle. All ends of the matting and check slots, if required, shall be fastened at 6-inch intervals across their width. Length of fastening devices shall be sufficient to securely anchor matting against the soil. Anchors shall be driven flush with the finished grade.

8-01.3(8)B PLACING CLEAR PLASTIC MATTING

Clear plastic covering meeting the requirements of Section 9-14.5 shall be installed on erodable embankment slopes shown in the Drawings or designated by the Engineer.

The clear plastic covering shall be installed immediately after completion of the application of roadside seeding and shall be in place before the fall rainfall begins.

The Contractor shall maintain the cover tightly in place by using sandbags or tires on ropes with a minimum 10-foot grid spacing in all directions. All seams shall be taped or weighted down full length. There shall be at least a 12-inch overlap of all seams. The Contractor shall be responsible for prompt repair of all damaged areas.

8-01.3(9) PROTECTION AND CARE OF SEEDED AREAS

The Contractor shall be responsible for performing the Work in accordance with Section 1-07.13 and with the following requirements:

1. Protect all areas involved against vehicle and pedestrian traffic by use of approved warning signs and barricades.
2. Areas which have been damaged through any cause prior to acceptance, and areas failing to receive a uniform application at the specified rate, shall be regraded, reseeded, refertilized, and remulched.

8-01.3(10) INSPECTION

Inspection of any treated area will be made when seeding, fertilizing, and mulching are completed. Areas not receiving a uniform application of seed, fertilizer, or mulch at the specified rate, as determined by the Engineer, shall be reseeded, refertilized, or remulched.

Acceptance of areas receiving seed, fertilizer and mulch, as required, shall be based on a uniform stand of grass. Areas failing to show a uniform stand of grass 90 Days after seeding application shall be reseeded.
Reseeded areas will be subject to additional inspection for acceptance 30 Days after reseeding. Uniform stand of grass shall be defined as any grass area with no bare spots greater than 6 square inches.

8-01.3(11) MOWING

When the Bid Form contains the Bid item “Mowing” or when mowing is required, the Contractor shall mow all grass growing areas and slopes 2-1/2 to 1 or flatter except for naturally wooded and undergrowth areas. Trimming around traffic facilities, Structures, curbs, tree pits, planting areas, or other features extending above ground shall be accomplished preceding or simultaneously with each mowing by use of power-driven or hand-operated machinery and tools to achieve a neat and uniform appearance.

Each mowing shall be considered as one coverage of all grass areas to be mowed within a defined area. Prospective Bidders shall verify the estimated acreage for mowing as shown in the Drawings, the topography, irregularity of the area, slopes involved, and access limitations to determine the appropriate Equipment to use. Equipment and tools shall be provided such as, but not limited to, tractor-operated rotary or flail type grass cutting machines and tools or other approved Equipment. Power driven Equipment shall not cause ruts or deformation of improved areas. Sickle type grass cutters will be permitted only on slopes of drainage ditches, berms, or other rough areas. The Equipment and tools shall be in good repair at all times and maintained so that a clean, sharp cut of the grass results. The actual number of mowings will be as determined by the Engineer based on the growth rate of the grass. Unless otherwise directed, the height of grass at the time of mowing shall be 3 to 4 inches, and cutting shall remove half of the blade height.

Grass cutting machinery shall be operated in such a manner and equipped with suitable guards as to avoid throwing rocks or debris onto the Traveled Way or off the Right of Way. Equipment which pulls or rips the grass or damages the turf in any manner will not be permitted. The Engineer will be the sole judge of the adequacy of the Equipment, safeguards, and methods of use. The Contractor may request permission to mulch clippings in place based upon the Engineers pre-approval of Equipment, mowing height and proposed mowing schedule. The Contractor shall collect or remove clippings from the Project except on the Traveled Way, Shoulder, walkway, or other improved areas.

8-01.3(12) SHEAR BOARDS

Where shear boards are required they shall be furnished and installed by the Contractor in accordance with the details shown on the Drawings. The top edge of the installed boards shall project 2 inches above the ground.

The shear board shall be spaced at intervals indicated on the Drawings and securely nailed to 2-inch x 4-inch stakes (min 4 per board). Stakes shall have a minimum penetration into the soil of 2 feet.

8-01.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement of erosion control by seeding, hydro-seeding or mulching together with required additives including but not limited to fertilizer, soil binder or tacking agents will be by ground slope measurement in square feet of treatment completed and accepted in accordance with the Contract Documents.

The Work of seeding or mulching will not be measured for payment until a uniform distribution of the Materials required is accomplished at the specified rate. Refer to Section 8-01.3(10).

Measurement of matting, including clear plastic covering, will be by the square foot measurement of surface area covered and accepted in accordance with the Contract Documents. Measurement will not be made for overlapping or folds.

Measurement of shear boards will be by the linear foot of 2-inch by 8-inch rough finished lumber installed.

8-01.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-01 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Erosion Control, Seeding”, per square foot.
The Contract unit price for “Erosion Control, Seeding” shall include all costs for the Work required to prepare the area for seeding as specified in Section 8-01.3(1) and to seed, fertilize and protect the seeded areas as specified in Section 8-01.3(4) and 8-01.3(9).

2. “Erosion Control, Hydro-Seeding”, per square foot.
 The Contract unit price for “Erosion Control, Hydro-Seeding” shall include all costs for the Work required to prepare the area for seeding as specified in Section 8-01.3(1) and to hydro-seed and protect the seeded areas as specified in Section 8-01.3(4), 8-01.3(5) and 8-01.3(9).
 Payment for reseeding areas ordered by the Engineer and not considered the responsibility of the Contractor will be made at the Contract unit price Bid for the seeding Bid item included on the Bid Form.
 Fertilizer, mulch, seed, tackifier and other Additives shall be considered incidental to hydroseeding.

3. “Erosion Control, Mulching”, per square foot.
 The Contract unit price for “Erosion Control, Mulching” shall include all costs for the Work required to furnish and install mulch as specified in Section 8-01.3(5) and 8-01.3(9).

4. “Erosion Control, Matting (Type)”, per square foot.
 The Contract unit price for “Erosion Control, Matting (Type)” shall include all costs for the Work required to furnish and install matting as specified in Section 8-01.3(8). All costs to repair and maintain matting and coverings shall be included in this Contract unit price.

5. “Erosion Control, Shear Boards”, per linear foot.
 The Contract unit price for “Erosion Control, Shear Boards” shall include all costs for the Work required to furnish and install shear boards as specified in Section 8-01.3(12).

6. “Mowing”, per square yard.
 The Contract unit price for “Mowing” shall include all costs for the Work required to mow and edge the areas as specified in Section 8-01.3(11). When a Bid item for “Lawn Establishment” is included in the Contract, all costs for mowing and edging shall be incidental to the lawn establishment Bid item.

7. “Topsoil, (Type)”, per cubic yard; “Mulch, (Type)”, per cubic yard.
 The Contract unit price for “Topsoil, (Type)” or “Mulch, (Type)” shall include all costs for the Work required to furnish and place the topsoil or mulch as specified, which includes excavating, loading, hauling, windrowing, stockpiling, spreading, cultivating and compacting. Where the addition of lime is specified, it shall be considered incidental to Topsoil, (Type). Lime shall also be considered incidental to “Mulch, (Type)” which shall be applied at a specified depth in lieu of topsoil if so directed by the Engineer.
 When the Bid Form includes the Bid item “Topsoil, Type B,” the Contractor shall furnish Topsoil Type A at no additional cost to the Owner if a shortage of Topsoil Type B occurs and the Contractor has wasted or otherwise disposed of topsoil Material. Refer to Section 8-01.3(2)B.

8. Other payment information.
 All costs for the Work required to restore, reseed, refertilize or remulch areas failing to show a uniform stand of grass shall be at the Contractor’s own expense.
 Removal of clear plastic covering, when such Material is specified as a method of erosion control, will be paid as “Extra Work” in accordance with Section 1-09.4.
 Payment for sodding as a type of erosion control shall be in accordance with Section 8-02.5
 Payment for furnishing and placing planting soil shall be in accordance with Section 8-02.5.
 Material taken from roadway excavation, borrow, strippings, or other excavation items and used for topsoil will not be deducted from the pay quantities for the respective Bid items.
SECTION 8-02 ROADSIDE PLANTING

8-02.1 DESCRIPTION

This Work shall consist of furnishing, planting, and maintaining for the landscape establishment period such trees, whips, shrubs, ground cover, seedlings, cuttings, and sod as specified in the Contract Documents. Work shall be performed as shown on the Drawings and Standard Plans, and in accordance with these Specifications, accepted horticultural practices, and as directed by the Engineer.

This Work shall also consist of furnishing and installing such paver blocks, grid blocks, cedar edging, bollards, benches and tree grates as indicated on the Drawings or specified in the Project Manual. Work shall be performed as indicated on the Drawings, in accordance with these Specifications and Standard Plan No. 130, or as directed by the Engineer.

Trees, whips, shrubs, ground covers, seedlings, cuttings, and sod will hereinafter be collectively referred to as, “plants” or “plant Material.”

Plant Material quantity, size and condition, and spacing shall be as indicated in the Drawings or Project Manual.

All landscaping Work shall be performed by a licensed Landscaping Contractor registered in the State of Washington.

8-02.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure-Treated Landscape Timbers</td>
<td>9-09.4</td>
</tr>
<tr>
<td>Top Soil, Type A, Type B, and Type C</td>
<td>9-14.1(1), (2), (3)</td>
</tr>
<tr>
<td>Planting Soil, Playfield Soil</td>
<td>9-14.1(4)</td>
</tr>
<tr>
<td>Decomposed Organic Mulch</td>
<td>9-14.4(8)</td>
</tr>
<tr>
<td>Seed</td>
<td>9-14.2</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>9-14.3</td>
</tr>
<tr>
<td>Mulch</td>
<td>9-14.4</td>
</tr>
<tr>
<td>Plant Material</td>
<td>9-14.6</td>
</tr>
<tr>
<td>Sod</td>
<td>9-14.6(8)</td>
</tr>
<tr>
<td>Paver Blocks</td>
<td>9-14.9</td>
</tr>
<tr>
<td>Turf Reinforcement</td>
<td>9-14.10</td>
</tr>
<tr>
<td>Interlocking Pavers</td>
<td>9-14.</td>
</tr>
<tr>
<td>Edging</td>
<td>9-14.11</td>
</tr>
<tr>
<td>Bollards</td>
<td>9-14.12</td>
</tr>
<tr>
<td>Benches</td>
<td>9-14.13</td>
</tr>
<tr>
<td>Tree Grates</td>
<td>9-14.14</td>
</tr>
<tr>
<td>Edging, Paver Restraint System</td>
<td>9-14</td>
</tr>
</tbody>
</table>

Nomenclature for plants and varieties shall be in accordance with the latest edition of “Standardized Plant Names” as prepared by the American Joint Committee on Horticulture Nomenclature.

Planting Soil shall be used unless otherwise specified on the Drawings or in the Project Manual.

The type of seed mix shall be as specified in the Project Manual.

Planting mulch for topdressing shall consist of bark mulch unless otherwise specified on the Drawings or in the Project Manual.

The concrete mix for wood bollard footings shall be Class 5(3/4) (See Section 5-05.3(1)).

8-02.3 CONSTRUCTION REQUIREMENTS

8-02.3(1) RESPONSIBILITY DURING CONSTRUCTION

The Contractor shall provide adequate and proper care of all plant Material and landscape Work done on the Project from the time of installation to the end of the landscape establishment period. The landscape
establishment period, when included on the Bid Form, will begin on the Day the planting is approved in writing by the Engineer and shall extend for 365 calendar Days.

Adequate and proper care shall include, but is not limited to, keeping all plant Material in a healthy growing condition by weeding, watering, cultivating, pruning and spraying; keeping all plant Material crowns, runners, trunks and branches free from mulch at all times; keeping planted and landscaped areas free from insect infestation, weeds and grass, litter and other debris; retaining finished grades in a neat, tidy, uniform condition; adjusting to grade paver blocks which may have settled; and adjusting tree fasteners as needed to prevent strangulation or irregular growth of plant Material and maintaining a consistent 2- to 3-inch layer of mulch in all planting beds and tree pits.

The Contractor shall have sole responsibility for the survival of all plant Material, and operation of newly installed irrigation Equipment when included in the Contract, from the time of installation to the end of the landscape establishment period, with the exception of third party damage or vandalism occurring after the start of the landscape establishment period.

On order of the Engineer, dead, diseased, dying or broken plants shall be removed and replaced with healthy plants of the same type and size. Replacement shall be planted within a time period set by the Engineer, which will depend on the season and availability of the replacement plants. Missing plants shall be replaced by the Contractor in the same manner.

8-02.3(2) RESERVEd

8-02.3(3) CHEMICAL PESTICIDES

Application of chemical pesticides shall be in accordance with the manufacturer’s recommendations and shall be carried out by an experienced applicator. The applicator shall be licensed by the State of Washington for the class of pesticide utilized. The Contractor shall submit to the Engineer evidence that all operators are licensed and the pesticide is registered in the State of Washington. The Contractor shall also submit to the Engineer a copy of the MSDS (Material Safety Data Sheet) and manufacturer’s recommendations for each pesticide to be used.

The Contractor shall use extreme care to ensure confinement of chemicals within the areas designated. The Contractor shall assume all responsibility for rendering any area unsatisfactory for planting by reason of chemical application. Damage to adjacent areas either on or off the Right of Way shall be repaired to the satisfaction of the Engineer, the property owner, or both. Chemicals which leave any residue in the soil and which are toxic to the plant Materials specified in the Contract for planting or to those in adjacent areas shall not be used.

The Contractor shall notify the Engineer at least 48 hours prior to the application of any pesticide, giving the name of the product, rate of application, and where it is to be used.

Trees shall be sprayed with the proper insecticide necessary to control disease, infestation by harmful insects and pests, including the control of caterpillars.

All chemicals shall be delivered to the Job Site in unopened containers.

No spraying shall occur within a 24-hour period of wet weather conditions.

8-02.3(4) PLANTING AREA PREPARATION

Areas to receive plant Material shall be cleared, grubbed, cultivated and graded prior to planting. Herbicide shall be applied to vegetated areas prior to clearing and grubbing operations when required by the Engineer. Planting areas shall be prepared so that they are weed and debris-free at the time of planting and until Acceptance by the Owner. Planting areas shall include all planting beds, areas 5 feet in diameter around trees and shrubs, and areas indicated as such on the Drawings or designated by the Engineer.

Where it is necessary to establish the Subgrade for a planting area, the Work shall be performed in accordance with the requirements of Section 2-03. The elevation of the Subgrade shall take into account the requirements, if any, for adding and incorporating Material into the natural soil, including the required quantities of planting soil and soil amendments, plus a minimum of 2 inches of mulch as topdressing. Fills shall be placed in lifts not exceeding 6 inches, with each lift compacted to 85% maximum density, as determined by the compaction control test specified in Section 2-03.3(14)E.
Planting areas shall be graded to finished Subgrade and cleaned of all debris including stumps, sticks, roots and rocks or lumps larger than 3 inches and inspected before planting soil or mulch is placed.

After the Subgrade of the planting areas has been cleaned and graded, planting soil, decomposed organic mulch, along with fertilizer or soil conditioners, shall be applied at a uniform lift of 3 inches and then rototilled into the Subgrade soils over the entire planting area for a 6 inch depth resulting in a 50-50 blend. The 6 inch amended layer shall be compacted to 85%.

When the finished grade requires more than a 3-inch lift of imported soil, the initial lift shall be a maximum of 3 inches and shall be rototilled into the native Subgrade soils for a 6 inch depth resulting in a 50-50 blend. This amended layer shall be compacted to 85%. Subsequent quantities shall be placed in 6” lifts, each compacted to 85%. The final lift shall contain a combination of planting soil, decomposed organic mulch, fertilizer, and soil conditioners as required in the Contract, rototilled when required to provide a homogeneous blend. The Contractor shall apply and shape the lifts in such a manner that the planting area has a final surface resulting in uniformly sloped surfaces from a ridge line, or ridge lines, to all outer edges of the planting area where the planting area surface is 2 inches below adjacent surrounding surfaces. The ridge line shall be the approximate centerpoint, or centerline(s), of the planting area as indicated on the Drawings. Planting soil or decomposed organic mulch or both shall not be placed when the ground or planting soil or decomposed organic mulch is frozen, excessively wet or, in the opinion of the Engineer, in a condition detrimental to the Work.

The finished grade of planting soil prior to the installation of plant Materials shall be 2 inches below the top surface of the adjacent sidewalks or curbs to allow for 2 inches of mulch as topdressing.

8-02.3(5) LAYOUT OF PLANTING

Plants shall be placed at spacings and locations shown on the Drawings. Location layout and staking shall be the responsibility of the Contractor, subject to the approval of the Engineer, before planting or construction of each item begins.

The Contractor shall locate trees first, then place the plants starting from the perimeter of the bed area and progressing to the center so that odd dimensions are adjusted at the centers of any planting bed as shown in the Drawings.

Tree locations shown on the Drawings shall be considered approximate, unless shown with stationing and distance. Trees shall be adjusted in location to clear all overhead lines and Structures. Unless otherwise shown in the Drawings or directed by the Engineer, the following spacing from street improvements shall prevail:

Minimum distance from street light pole	20 feet
Minimum distance from hydrant, water meter or Water Main	5 feet
Minimum distance from driveway, alley crossing	7 1/2 feet
Minimum distance from curb face	3 1/2 feet
Minimum distance from sidewalk edge	2 feet

The distance given shall be measured from the centerline of the tree to the nearest face of the improvement.

8-02.3(6) PLANTING

8-02.3(6)A GENERAL

Plants brought to the planting site shall be bare root, balled and burlapped, or in containers, depending on how specified in the planting schedule on the Drawings or in the Project Manual for the particular type of planting Material. No plant Material shall be planted until it has been inspected and approved for planting by the Engineer. Plants shall not be planted during freezing weather or when the ground is frozen. Plants shall not be planted during excessively wet conditions. Plants shall not be placed in areas that are below finished grade.

Unless otherwise approved by the Engineer, planting shall be performed during the period between October 1st and April 30th.

Positive drainage away from planting holes shall be provided for all newly installed plants. If drainage conditions are questionable, the Contractor shall request inspection and direction from the Engineer. Adjustment in planting pit locations or elevations to accommodate drainage concerns must be approved by the Engineer. Drainage problems discovered after plant Material is installed shall be corrected to the satisfaction of the Engineer at the Contractor’s expense.
Where subsurface drainage is required in the Drawings or Project Manual, the subsurface drainage installation shall be inspected and approved by the Engineer prior to planting and backfill.

Bare root plants shall be protected at all times to prevent drying.

Bare root plants which cannot be planted within 24 hours after arrival at the Project Site shall be removed from shipping containers and heeled temporarily in a protective medium, such as moist peat moss or sawdust. Damaged or torn roots shall be cut cleanly before planting.

Plants supplied in containers shall be kept moist at all times and shall be removed from the container in a manner that prevents damage to the root system. The plants shall not be removed from the container by pulling on the stem. Non-tapered containers larger than 5 gallon size shall have 2 vertical cuts made down the entire depth of the container before the root ball is removed. Representative samples of all containerized Material shall be inspected by the Engineer upon removal from the container. All circling roots must be cut and straightened to ensure correct directional growth after planting. The Engineer may require that the entire root ball be split from the bottom for a depth equal to 1/2 the container depth to expose root ends to the soil in the planting hole. In their final position, containerized plants shall have the same relationship to finished grade as when growing in the container.

8-02.3(6)B TREES

Tree planting holes shall be excavated to the depth of the rootball over a minimum surface area of 24 square feet, or an area of excavation large enough to provide for a 2 foot clear horizontal space between the root ball and the sides of excavation, whichever is larger. Tree pit excavation near a curb or sidewalk shall allow a horizontal clearance of at least 3 inches from the face of the curb or sidewalk. One-third cubic yard of decomposed organic mulch shall be added and thoroughly mixed with excavated soils to provide an amended homogeneous mix for backfilling the excavation.

Trees shall be placed with the root crown 2 inches above the surrounding curb and sidewalk grade. Care shall be taken not to over-excavate. Once in position, the twine and burlap or wire basket shall be removed from the top 2/3 of the root ball. Bare root plants shall be placed in the planting hole with roots spread out in a natural position and shall not be bunched, curled, twisted or bent. Backfill operations, watering, mulching, etc. shall be as described for container plants or balled and burlapped plants.

Backfill shall be carefully compacted by foot pressure applied to the soil. Under no circumstances shall water-saturated soil be used for backfill. Upon completion of backfilling, the Contractor shall build a 3” high, 4 foot diameter soil berm around the tree to allow slow percolation of water (see Standard Plan No. 100.1C). Water shall be applied at a rate of 15 to 20 gallons per tree. If settling occurs, the Contractor shall add enough soil to cover the roots but shall not rework the soil. Three inches of mulch shall then be added to topdress the entire tree pit including the watering ring, with the depth tapered to minimize contact at the trunk. In their final position, trees shall have their root crowns positioned above the surrounding grade as indicated on the Standard Plans.

8-02.3(6)C SHRUBS AND GROUNDCOVERS

Planting holes for containerized shrubs and ground cover plants shall be excavated as shown in the Standard Plans. Dry backfill soil shall be firmly compacted and bermed around the root system to form a watering ring for each plant. Plants shall be watered immediately after planting. Mulch shall be added to a 2-inch minimum depth unless otherwise directed in the Project Manual. Groundcover shall not be planted after mulch application unless specifically authorized by the Engineer.

Balled and burlapped shrubs shall be set in planting holes as shown in the Standard Plans with burlap and tie Materials removed entirely unless otherwise instructed by the Engineer.

8-02.3(7) PRUNING AND STAKING

Tree roots 2 inch and larger diameter encountered during pavement, sidewalk, curb, or curb and gutter construction shall comply with the requirements of Section 1-07.16(2).

All plants shall be pruned at the time of planting to remove any minor broken or damaged twigs and branches. Pruning shall be done in such a manner as to retain or to encourage the natural growth characteristics and proper form of the plants. Pruning shall be done with a sharp tool to produce a clean cut without bruising or tearing the bark. Unless directed otherwise by the Engineer, all completed pruning cuts shall be in the living wood where callous tissue can develop properly.
All tree trimming shall be done by an arborist, or a trained arboricultural technician working under the direction of an arborist from a professional tree service company which adheres to the National Arborist Association’s tree pruning standards.

Tree pruning Work shall be divided as follows:

1. Minor pruning Work is limited to:
 a. removal of less than 10 percent of the foliage, or if foliage has not developed, less than 10 percent of the foliage buds including branches up to 1-1/2 inches diameter; and
 b. removal that does not adversely impact the central leader or does not significantly alter the natural form of the tree being pruned as determined by the Engineer.

2. Major pruning Work is all other pruning Work. When major tree pruning Work is required, the Contractor shall:
 a. Notify the Engineer 3 Working Days prior to start of pruning and provide the name of the company or individual(s) proposed for doing the pruning. All major pruning Work shall be done by an arborist certified by the Washington State Chapter of the International Society of Arboriculturists.
 b. Arrange with the arborist and the Engineer a time at least 2 Working Days in advance, before starting the pruning so that the Engineer can observe and approve the pruning of the first tree. This tree shall be representative of the trees to be pruned and shall be adequate demonstration of the proper pruning method to apply to all the trees. After the Engineer has observed and approved the pruning of the representative tree, the pruner for the Contractor may proceed with pruning the remaining trees.

Unless otherwise specified in the Contract, all deciduous trees shall be staked at the time of planting by “Method A”. Method A requires two 2-inch diameter dowelled pressure-treated wood stakes with chamfered tops and 6-inch conical points as indicated in Standard Plan 100a. When unusual circumstances exist as determined by the Engineer, Method B shall be used using a single 5/8-inch diameter deformed steel reinforcing bar as indicated on Standard Plan 100b. For deciduous tree installation, the stake shall penetrate a minimum of one foot into undisturbed Subgrade with the top of the stake extending up to 2 inches below the lowest lateral branch or five feet above finished grade, whichever is tallest. For needle-bearing trees, a single dowelled tree stake shall be provided with length adequate to allow for a minimum penetration of one foot into undisturbed Subgrade and the top of the stake extending approximately to two-thirds of the tree height.

Damaged stakes shall be removed and replaced. Any tree or shrub thrown out of plumb by wind action or other causes shall be replanted by loosening the soil around the root system and replumbing the tree or shrub by adjusting the position of the root system. Adjustment shall not be made by pushing, pulling or restraining the trunk or stem. If, in the opinion of the Engineer, damage to the root system has occurred as a result of re-plumbing a tree or shrub, the tree or shrub shall be replaced by the Contractor.

Alternate methods of staking may be proposed by the Contractor, and, if approved by the Engineer, may be used.

Methods A and B for staking shall provide support for the tree trunk utilizing #2 “chain lock” tree ties or approved equal. The tree ties shall be installed to provide a minimum clearance of 1/2-inch on all sides of the trunk to allow for growth and flex of the tree trunk.

8-02.3(8) FERTILIZERS

Unless otherwise specified in the Project Manual, fertilizers for trees shall be a balanced formulation plus micronutrients controlled-release NPK in slow release form with a duration of availability greater than 6 months and shall be subject to approval by the Engineer. Fertilizer shall be formulated as described in Section 9-14.3. One cup of fertilizer shall be applied both at the beginning and the end of the plant establishment period within a 4-foot diameter circle around each tree.

Unless otherwise specified, fertilizer for shrubs and ground cover shall be the same formulation as above but applied at the rate of 1/2 cup per shrub and 1/4 cup per ground cover plant both at the beginning and at the end of the plant establishment period and spread within a 4 foot diameter circle around each plant.

8-02.3(9) MULCH

Planting mulch shall be as specified in Section 9-14.4(3). Decomposed organic mulch shall comply with the provisions of Section 9-14.4(8) and, when used in planting bed preparation, shall be applied to a settled lift
thickness of 3 inches, rototilled into a 3-inch depth of Subgrade soil to obtain a 6 inch deep 50/50 percent blend of mulch and Subgrade soil unless otherwise specified in the Project Manual. Wood chips, salvaged from clearing and grubbing operation, may be used for mulch topdressing if so indicated in the Project Manual or as allowed by the Engineer. Fertimulch may be used for topdressing or soil amendment as directed in the Contract or as allowed or required by the Engineer.

8-02.3(10) SOIL AMENDMENTS

Soil amendments of the type and in the quantities specified shall be applied during planting area preparation (8-02.3(4)) as directed by the Engineer to upgrade the topsoil or the decomposed organic mulch to the required standards as determined by soil testing. The soil amendments shall be thoroughly mixed with topsoil or mulch to produce a uniform blend as indicated in the Drawings or Contract Documents. All amendments shall be delivered to the site in the original, unopened containers bearing the manufacturer’s guaranteed chemical analysis and name. In lieu of containers, amendments may be furnished in bulk, and a certificate from the manufacturer indicating the above information shall accompany each delivery. Cost for amendments required to provide an adequate medium for plant growth shall be incidental to the Bid item for topsoil or decomposed organic mulch.

8-02.3(11) CULTIVATION AND CLEANUP

Upon completion of planting all excess Material shall be removed and disposed of off the Project Site. Planting areas shall be brought to a uniform grade flush with walks, curbs, pavements and driveways.

8-02.3(12) LANDSCAPE ESTABLISHMENT

1. General: Landscape establishment shall consist of providing adequate and proper care for all plant Materials and landscape areas within the Project limits during the landscape establishment period to assure the resumption of growth of the transplanted Material. The landscape establishment period shall begin immediately upon written notification from the Engineer of the acceptance of planting for the entire Project, including the acceptance of the automatic irrigation system (if included in the Project), and shall end a minimum of 365 calendar Days thereafter. The Contractor shall be held responsible for the loss of any plant Material, whether dead or missing, from the time of initial planting to the beginning of the landscape establishment period. The Contractor shall replace all dead or missing plants before the initial planting will be accepted including all plants stolen or damaged by acts of others.

2. Application of Herbicides and Insecticides: Applications shall be as specified in Section 8-02.3(3).

3. Watering: Plants shall be watered by the Contractor as needed to keep them in a healthy growing condition. For hand-watered trees a minimum of 15 gallons per week is required. The Contractor shall be responsible for the watering patterns and timing, including the setting of automatic sprinkler controls. Automatic irrigation systems shall be operated fully automatic during the plant establishment period. Automatic watering shall be performed during the time period of 4 am to 7 a.m. or as otherwise specified. If water restrictions are established, the Contractor shall develop watering schedules in consultation with the Engineer. The Contractor will not be permitted to use Owner hydrants for watering. Hydrants may be used to fill a water tank or truck pursuant to the requirements of Section 2-07. Before commencement of the landscape establishment period, the Contractor shall furnish in writing a watering schedule to the Engineer. Any change in watering schedule shall require a minimum 1 Working Day advance notice to the Engineer. All irrigation system components installed as part of the Work shall be maintained and operated by the Contractor as part of the Landscape Establishment Work.

4. Mulch: Mulch Material shall be applied and replaced when ordered by the Engineer. The final mulch application shall be made 1 week prior to inspection for acceptance.

5. Fastenings: Tree fastenings shall be kept intact and effective in maintaining firm support for plant Material. Fastenings shall be adjusted as needed by the Contractor to prevent strangulation or irregular growth. Fastenings and stakes shall be removed at the completion of the establishment period. Wood stakes shall remain the property of the Owner and arrangements shall be made by the Contractor to provide for their delivery to an Owner storage facility identified by the Engineer.
6. **Inspection of Work:** A general cleanup shall be made after any Work performed by the Contractor at the Project Site during the landscape establishment period.

7. **Litter Removal:** Unless otherwise specified in the Contract, the Contractor shall remove all litter, as a minimum, to provide a clean appearance at the time of landscape establishment inspections (see Section 8-02.5). The Contractor shall notify the Engineer on the same Day that litter pickup has been provided to ensure full credit for litter removal Work required in the Contract.

8. **Weed Control:** The Contractor shall maintain all mulched bed areas around trees, shrubs, and groundcovers in a weed free condition during the landscape establishment period. A combination of chemical and mechanical control shall be allowed subject to approval by the Engineer. At least 5 Working Days before the beginning of the landscape establishment period, the Contractor shall submit a weed control program identifying the means, manner, methods, and timing intervals to assure weed control. This weed control plan will be subject to revision dependent on results of the implemented plan.

9. **Inspection:** Plants and landscaped areas will be inspected regularly by the Engineer during the landscape establishment period. Should the Engineer determine at any time that the Contractor is not providing adequate and proper care of plant Material or is performing substandard landscape establishment Work, the Engineer will order the Contractor in writing to correct and remedy such unsatisfactory Work or practices. The Contractor shall make the necessary corrections within a 5-Day period immediately following receipt of such notice. *Notice will be made in writing to the Contractor or the Contractor’s representative following inspection of the Project Site.* Plant Material listed as dead, missing, or unacceptable, shall be removed, disposed of, and replaced by the Contractor according to a schedule set by the Engineer.

Approximately 30 Days before the end of the landscape establishment period, the Contractor may be required to accompany the Engineer or the Engineer’s representative on a walking inspection of the Project. Conditions found unacceptable by the Engineer shall be corrected by the Contractor within a 10-Day period immediately following the inspection. After correction, the Contractor shall notify the Engineer for a reinspection. Corrective Work shall include replacement of dead, missing, or unacceptable plant Material, weeding, pick-up of all litter, and repair of irrigation system.

8-02.3(13) PLANT REPLACEMENT

The Contractor shall be responsible for growing or providing enough plants for replacement of plant Material rejected before and through the plant establishment period. Rejected plant Material shall be removed and replaced as specified in Section 8-02.3(12).

All replacement plants shall be of the same species, size and quality as the plants they replace. Relocated trees larger than 4-inch caliper that fail to survive shall be replaced with a minimum of 3-1/2 inch caliper tree approved by the Engineer. Difference in value between relocated tree and replacement tree shall be assessed by the Engineer per 8-02.3(22).

8-02.3(14) LAWN INSTALLATION

8-02.3(14)A GENERAL

Lawn installation shall be by sodding unless “Seeded Lawn Installation” is specified on the Bid Form, and shall include Lawn Establishment as specified in Section 8-02.3(15) when specified on the Bid Form.

In areas irrigated by a sprinkler system, lawn installation shall not begin until the sprinkler system is operational. The Contractor may request the Engineer to approve the option of sodding in lieu of seeding for lawn installation. However, seeding in lieu of sodding will not be allowed.

Playfield soil or decomposed organic mulch for both seeded or sodded lawns shall be placed at a uniform thickness to meet finish grade. Decomposed organic mulch shall be *rototilled with the subsoil to obtain a 25-75 blend, compacted to 85% and raked to a smooth even grade without low areas to trap water.* Lime shall be incorporated at the time of cultivation at the rate of 100 pounds per 1000 square feet.

Barriers shall be erected, with warning signs where necessary, to preclude pedestrian traffic across newly placed lawn areas during the establishment period or as approved by the Engineer.

Finish grade shall be considered as being 1 inch below the adjacent sidewalk, curb or other street improvements.
SECTION 8-02 ROADSIDE PLANTING

8-02.3(14)B SEEDED LAWNS

Seeded lawn installation shall proceed through the following sequence of steps in its construction:

1. Areas to receive seed shall be cleared and grubbed, and the surface graded to a uniform level surface, 1 inch below curb and sidewalk elevation.

 If the surface is at finish grade and the existing soil is deemed suitable for seeding by the Engineer, no planting soil or decomposed organic mulch will be required. Where fill is required, playfield soil shall be provided to bring the surface to final grade.

 If the existing soil is unacceptable for seeding, the Contractor shall remove enough Material to allow for the placement of 2 inches of playfield soil to bring the surface to the finish grade for seeding (1” of decomposed organic mulch may be substituted for 2” playfield soil when approved by the Engineer).

2. After the playfield soil or decomposed organic mulch, have been spread to the thickness specified and lime has been added at the rate of 100 pounds per 1000 square feet, the area shall be mechanically tilled with Subgrade soils to a depth of 4 inches. Soil shall then be raked by approved hand or mechanical methods to remove all large clods, rocks, debris, and litter over 1 inch in any dimension which shall be disposed of by the Contractor.

3. The area shall then be rolled in 2 directions, the second rolling at right angles to the first. The roller shall be of a standard, water-filled type to apply 150 to 300 pounds per square foot ground pressure.

4. The finished grade shall be 1/2-inch below all curbs, sidewalks, and other appurtenances.

5. Apply a 10-10-10 fertilizer at the rate of 15 pounds per 1,000 square feet. The fertilizer shall be applied by an approved hand or mechanical method. Application in one direction is sufficient.

6. Apply lawn seed mix as described in Section 9-14.2 unless otherwise directed in the Project Manual.

7. Rake seed and fertilizer into the top 1/2 to 1 inch of soil.

8. Roll the area in 1 direction.

NOTE: Items 5 to 9 may be accomplished by hydro-seeding as described in Section 8-01.3(4)A.

8-02.3(14)C SODDED LAWNS

A sod installation shall proceed through the following sequence of steps in its construction:

1. Areas to receive sod shall be cleared and grubbed and the surface graded to a uniform level surface 1 inch below adjacent curbs and sidewalks. If the cleared and grubbed surface is at or near required grade to receive sod and the existing soil consists acceptable soil as determined by the Engineer, no planting soil or decomposed organic mulch will be required. If the existing soil is unacceptable for sodding, the Contractor will be required to remove enough Material to allow for placement of 2 inches of playfield soil to bring the surface to finish grade (1” of decomposed organic mulch may be substituted for 2” playfield soil when approved by the Engineer).

2. After the planting soil or decomposed organic mulch, have been spread to the thickness specified and lime has been added at the rate of 100 pounds per 1000 square feet, the area shall be mechanically tilled with Subgrade soils to a depth of 4 inches or more to produce a 50-50 homogeneous blend.

3. The area shall then be raked by approved hand or mechanical methods in order to remove all large clods, rocks, debris, and litter (over 1 inch in size) to be disposed of by the Contractor.

4. The area shall then be compacted by rolling in two directions. The second rolling shall be done at right angles to the first. The roller shall be of a standard, water-filled type applying 150-300 pounds per square foot ground pressure. The grade after compaction shall be such that the root crown of the sod is flush with the finish grade.

5. Immediately prior to placement of sod, a 10-10-10 fertilizer (per Section 9-14.3) shall be raked into the soil at a rate of 15 pounds per 1,000 square feet. The fertilizer shall be applied by approved hand or mechanical methods. Application in one direction is sufficient.

6. The sod strips shall be placed within 48 hours after being cut. Soil shall be moistened by sprinkling prior to the laying of the sod. Sod shall be placed without voids and shall have the end joints staggered. The root crown shall be set to the grade of the sidewalk or curb. Butt joints
shall be staggered and tightly fitted. On sloped areas, sod shall be laid with the long dimension across the slope, parallel to the top or toe of the slope. When installing sod to restore partially disturbed lawn areas, the Contractor shall set the root crown of the new sod flush with the root crown of the adjacent lawn. Areas of existing lawn bordering on partial lawn restorations shall be hand-seeded and top-dressed with a mixture of 50 percent sand and 50 percent decomposed organic mulch when called for by the Engineer. Such areas, not more than 2 to 4 feet in width, shall constitute a smooth transition between new and existing stands of grass.

7. Following placement, the sod shall be rolled with a smooth, water-filled type roller. After rolling, the sod shall be heavily watered by sprinkling. Lawn areas shall be uniformly level.

8. When directed by the Engineer, the Contractor shall apply a mixture of 50 percent sand and 50 percent decomposed organic mulch to fill voids between sod strips.

9. The Contractor shall commence watering immediately as specified in Section 8-02.3(15). Watering and fertilizing shall be the Contractor’s responsibility during the lawn establishment period. Watering shall be scheduled to prevent drying of joints between the sod strips.

8-02.3(15) LAWN ESTABLISHMENT

Lawn establishment shall consist of providing adequate and proper care for all public and private lawn areas installed within the limits of the Project. The lawn establishment period shall begin upon physical acceptance by the Engineer based upon a uniform stand of grass as described in 8-01.3(10) and based upon completion of a first mowing. Lawn Establishment shall extend for a minimum of 90 Days during the active growing season (defined as consecutive Days between April 30th and October 30th).

During the lawn establishment period the Contractor shall provide adequate and proper care to ensure the continuing healthy growth of the turf. Adequate and proper care shall include the labor, Materials, and Equipment necessary to keep the planted areas in a presentable condition including, but not limited to, mowing, trimming, removal or adequate mulching of grass clippings, litter and debris, edging, fertilization, insecticide and fungicide applications, weed control, repair and reseeding damaged areas, and repairing and keeping in operation irrigation systems installed as part of the Work.

During this period and as a part of the lawn establishment, the Contractor shall satisfy the following minimum requirements:

1. Mowing and edging shall be done as often as conditions dictate. Maximum height of lawn shall not exceed 3 inches. The cutting height shall be 1 1/2-inches with all cuttings removed unless otherwise approved.

2. A slow-release form of nitrogen fertilizer shall be applied at the end of the lawn establishment period, rate of application and formulation per Section 9-14.3. Fertilizer shall be thoroughly watered in.

3. Watering shall be accomplished each week from March through September and shall be done only at night or early morning. A uniform application of 1 inch of water minimum shall be required over all lawn areas per week. The Contractor shall adjust the rate and frequency of water application, as designated by the Engineer, depending on weather and soil conditions.

4. Temporary barriers shall be removed after the grasses have developed into a heavy sod mat and only on written permission from the Engineer.

5. Lawn areas will be inspected regularly by the Engineer during the lawn establishment period. Should the Engineer determine at any time that the Contractor is not providing adequate and proper care of the lawn or is performing substandard lawn establishment Work, the Engineer will order the Contractor in writing to correct and remedy such unsatisfactory Work or practices. The Contractor shall make the necessary corrections within a 5-Day period immediately following receipt of such notice. Notice will be made in writing to the Contractor or the Contractor’s representative following inspection of the Project Site. Acceptance of lawn planting as specified herein shall be based on a uniform stand of grass at uniform grade at the end of the lawn establishment period. Areas that are bare, have a poor stand of grass, or do not have a uniform grade through any cause shall be regraded, reseeded or resodded and refertilized. Dead or dying sod or sod with brown spots will be rejected.

Approximately 10 Days before the end of the lawn establishment period, the Contractor may be required to accompany the Engineer or the Engineer’s representative on a walking inspection of the Project. Conditions
found unacceptable by the Engineer shall be corrected by the Contractor within a 10-Day period immediately following the inspection. After correction, the lawn establishment period shall extend an additional 45 Days including the requirements listed in items 1 through 4 above.

All Work performed under lawn establishment shall be performed by qualified turf management personnel and shall comply with good turf management practices.

8-02.3(16) INSTALLING REMOVABLE PAVER BLOCKS IN TREE CUT-OUTS

The Contractor shall install paver blocks of the size and type specified at the locations shown on the Drawings. Paver blocks shall be installed after the trees have been planted and the tree pits backfilled and compacted to a finished grade to allow for the paver blocks to be below the top surface of adjacent sidewalk. A bed of compacted sand shall be used as a setting bed for the pavers.

The top surface of the pavers shall be set flush with the adjacent sidewalk. All voids between pavers and sidewalk and between pavers shall be filled with sand. The installation method shall provide a secure edge adjacent to the tree trunk to ensure that pavers remain in place. If for any reason paver installations in the tree pits become loosened or dislodged during the landscape establishment period, the Contractor shall restore the installation to a condition acceptable to the Engineer. Excess sand and dirt shall be swept up and disposed of off the Project Site. The Contractor shall ensure that sand and soil is kept out of the gutters and catch basins.

8-02.3(17) GRID BLOCKS

The Contractor shall install grid blocks of the type specified in areas shown on the Drawings or designated by the Engineer. Areas receiving grid blocks shall be excavated, graded and compacted to a minimum depth of 8-inches below the top surface of adjacent sidewalks and curbs. After the Subgrade has been approved, the Contractor shall install a sub-base of mineral aggregate type 1 to a compacted average depth of 6 inches. Compaction shall be to a 95% maximum.

Thereafter, a 2-inch sand setting bed shall be spread and tamped or rolled on top of the crushed rock base. The grid blocks shall then be placed on the sand bed and each block leveled with each adjacent block. The top of the blocks shall be laid flush with the top surface of adjacent sidewalks and curbs. After the blocks have been installed and leveled, Planting Soil Type D shall be spread and worked into all voids. The area receiving grid blocks shall thereafter be seeded with grass seed of the type and in the quantity specified in the Project Manual.

8-02.3(18) EDGING

8-02.3(18)A EDGING, CEDAR

The Contractor shall install cedar edging for each cut-out as required and indicated on the Drawings. Edgings shall be installed on edge with the top of the form level with the top of the existing grades or the top of the existing adjacent concrete sidewalks and curbs. Forms shall be secured with 2-inch by 2-inch by 12-inch cedar stakes in accordance with the detail shown on the Drawings, driven to the inside of the forms and attached to the cedar edging with eight penny galvanized common nails.

8-02.3(18)B EDGING, PAVER RESTRAINT SYSTEM

Where a paver edge restraint system is shown on the Drawings, the Contractor shall prepare the soil Subgrade, place and compact the base course (if required), and install the paver edge restraint system in accordance with the manufacturer’s instructions. The edging shall be black or dark in color. For added support, select Material or planting soil shall be placed against the restraint system before pavers are installed. The paver restraint system shall be inspected and approved by the Engineer before any backfilling occurs.

8-02.3(18)C EDGING, PRESSURE-TREATED LANDSCAPE TIMBERS

The Contractor shall install 6-inch by 8-inch pressure-treated landscape timbers as required and indicated on the Drawings. Timbers shall be installed on the 8-inch base with the top of the timber flush with the top of the concrete sidewalk or the interlocking pavers or finished surfacing as indicated on the Drawings. Timbers shall be secured with four No. 4 by 30-inch long reinforcing steel bars placed along the centerline axis and driven flush with the timber surface. Reinforcing steel shall be provided minimum 2’ on center. Each timber shall have a
minimum of 2 reinforcing steel bar. The Contractor shall arrange the timber edging such that no individual timber length is less than 4 feet.

Pressure-treated landscape timbers will not be allowed as paver restraint for tree pits.

8-02.3(19) BOLLARDS

8-02.3(19)A GENERAL

The Contractor shall install bollards of the type specified on the Drawings. Bollards shall be installed where indicated on the Drawings or designated by the Engineer and in accordance with the requirements specified in the Project Manual and shown on the Drawings.

Bollards shall be installed true to line and grade and set in a plumb position from all angles.

The Contractor shall furnish one padlock with each removable bollard. Padlock cores shall be provided per the Engineer’s requirements.

8-02.3(19)B WOOD BOLLARDS

The tops of concrete footings for wood bollards shall be formed and troweled level with surrounding surfaces.

8-02.3(19)C CONCRETE BOLLARDS

The Contractor shall construct reinforced concrete bollards where shown on the Drawings. Bollards shall be of the size and shape indicated in the Drawings.

Bollards shall be set in excavated holes true to line and grade in a plumb position with backfill thoroughly tamped around them.

8-02.3(19)D STEEL BOLLARDS

The Contractor shall construct steel bollards where shown on the Drawings. Bollards shall be of the size and shape indicated in the Drawings. Steel bollard material shall be as specified in the Project Manual.

Bollards shall be set in excavated holes true to line and grade in a plumb position with backfill thoroughly tamped around them.

8-02.3(20) BENCHES

The Contractor shall install benches of the type indicated on the Drawings and specified in the Project Manual. Benches shall be located where indicated on the Drawings or designated by the Engineer. Final location of benches shall be verified and approved by the Engineer prior to placement.

8-02.3(21) TREE GRATES

The Contractor shall install tree grates at locations indicated on the Drawings. Tree grates shall meet the requirements of Section 9-14.14 and Standard Plan Nos. 130.1 and 131.

The tree pit opening in concrete sidewalk shall be sized to accommodate the tree grate. The tree grate shall be supported by an angle iron frame, with a horizontal tolerance of 1/4-inch between grate edges and vertical legs of the angle iron support frame. This frame shall be dimensioned for compatibility with the grate, and shall typically consist of legs which are 1-inch by 1-inch by 1/4-inch structural shapes, mitered and welded at the corners. To secure the steel frame in place, anchors made of No. 4 reinforcing bars 6 inches long shall be welded to the horizontal bottom leg of the angle iron frame at 18-inch centers, and embedded in the concrete sidewalk. The grates shall be sized to have a minimum of 1/2-inch bearing on each horizontal angle frame leg. Top of grates shall be flush with top of adjacent sidewalk. A continuous tooled scribe line shall be made in the concrete sidewalk, 6 inches from and parallel to each leg of steel angle around the tree opening. Where tree grates are adjacent to curb, the scribe line shall end at the curb.

Concrete sidewalk placed against the tree grate frame shall have a thickened edge surrounding the grate. The thickened edge shall be 8 inches wide with the depth of thickened edge nearest the grate being 8 inches deep for a width of 4 inch. The thickened edge thickness shall taper to sidewalk thickness in the remaining 4 inch width.
When concrete collar is detailed on the Drawing in lieu of thickened edge, such collar shall be no less than 8 inches deep by 8 inches wide, and shall be separated from the sidewalk pavement by a through joint. The angle iron frame details and anchorage shall be the same as for thickened edge.

8-02.3(22) RELOCATE TREE

The Contractor shall perform the Work in accordance with good nursery practice. The tree shall be relocated while in a dormant State (after November 1 or first frost and before April 1).

The tree to be relocated shall be dug by hand or approved machine; use of backhoe will not be permitted. The Contractor shall exercise extreme caution when working within the drip line of the tree to avoid damage to the trunk, branches or root structure. The Contractor shall be held liable for damage to adjacent plant material. The root ball shall be formed in such a manner so as to encompass the entire fibrous root system within the circle diameters given for corresponding tree trunk diameters in the following table:

<table>
<thead>
<tr>
<th>Tree Trunk Size</th>
<th>Min. Root Ball Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 4 inches</td>
<td>2-1/2 feet</td>
</tr>
<tr>
<td>4 - 5 inches</td>
<td>4 feet</td>
</tr>
<tr>
<td>5 - 7 inches</td>
<td>5 feet</td>
</tr>
<tr>
<td>7 - 10 inches</td>
<td>6 - 7 feet</td>
</tr>
</tbody>
</table>

The depth of the root ball shall be no less than 1/2 of the diameter listed above. Exposed tree roots of 1-inch diameter and more shall be cut clean before wrapping the root ball. The root ball shall be thoroughly wrapped with burlap and laced with 1/4-inch polypropylene rope.

Tree removal Work shall be performed with the Engineer present. The Contractor shall handle the tree by the root ball only. Under no circumstances will the Contractor be allowed to lift or remove the tree by the trunk. The tree shall be carefully reset into the designated tree pit and planted in the same manner as a new tree.

The requirements of landscape establishment of Section 8-02.3(12) shall apply to relocated trees. If a relocated tree is damaged and cannot reasonably and acceptably establish itself after relocation as determined by the Engineer, then the Contractor shall replace the tree at the sole expense of the Contractor. Replacement trees, if necessary, shall be provided in a minimum 3.5 inch caliper size and shall be installed as specified for new trees, (see 8-02.3(6)B). When the replacement tree is smaller in caliper than the relocated tree to be replaced, then the Contractor shall reimburse the Engineer for the difference in value between the in accordance with the “Guide For Establishing Values of Trees and Other Plants” prepared by the Council; of Tree and Landscape Appraisers, current edition. Removal and disposal of unacceptable trees shall be the responsibility of the Contractor.

8-02.3(23) TREE ROOT PRUNING PROCEDURE

See Section 1-07.16(2).

8-02.3(24) TUNNELING OR TRENCHING, AND TREE ROOTS

See Section 107.16(2).

8-02.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

The pay quantities for plant materials will be determined by count of the number of satisfactory plants in each category accepted by the Engineer.

Seeded lawn and sod installations will be measured by ground slope measurement in square feet of actual lawn completed, established, and accepted.

Measurement for “Planting Soil,” “Mulch, Bark” and “Decomposed Organic Mulch” shall be per cubic yard measured in the hauling conveyance at the point of delivery. The Contractor shall notify the Engineer at least 24 hours prior to Material delivery to ensure the Engineer’s presence for measurement at the time of delivery. No payment will be made for Material deliveries not witnessed by the Engineer.
Compensation for the cost necessary to complete the Work described in Section 8-02 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Tree, (Type), (Size)”, per each.
2. “Shrub, (Type), (Size)”, per each.
3. “Ground Cover, (Type), (Size)”, per each.

The Contract unit price for trees, shrubs and ground cover plants shall include all costs for the Work specified in Section 8-02 (not otherwise provided for hereinafter) to furnish, plant, fertilize, cultivate, mulch, stake and maintain until the initial acceptance of the planting.

4. “Landscape Establishment, Minimum Bid ($ _____)”, per lump sum.

The Contract unit price for “Landscape Establishment, Min. Bid ($ _____)” shall include all costs for the Work required by Section 8-02.3(12) and additional Work as specified in the Project Manual along with all costs for the Work required to remove and replace plant Material, provide and apply water including all costs associated with Section 2-07, weeding, as required by Section 8-02.3(13). To prevent unbalanced Bids, the price Bid for “Landscape Establishment” shall not be less than the minimum price noted in the Bid Form. Bids received on this Contract which contain a cost for landscape establishment of less than the minimum Bid will be rejected.

 Payment shall be made at the rate of 25 percent of the Bid item lump sum for “Landscape Establishment Min. Bid ($ _____)” at the following periods: May 31, July 31, September 30 and the final 25% at the end of the landscape establishment period after the necessary corrections and replacements have been made. The Contractor shall submit a statement on the 25th of May, 25th of July and the 25th of September including the schedule for work provided to maintained the plantings during that period as required in the Specifications. In the event the Engineer finds the Contractor failing to perform any of the Work required, the Owner may:

a. Cause the Work to be done by others and the costs thereof deducted from the Contractor’s payment or payments. Should the money due the Contractor be insufficient to cover such costs, the Owner will have the right to recover the balance from the Contractor.

b. Withhold a portion, or all, of the Contractor’s payment. Money that is withheld for non-performance shall not be recovered by the Contractor. The amount withheld shall be determined by the Engineer.

c. Terminate the Contract.

 The above remedies shall not waive the Owner’s rights to pursue other corrective measures or remedies which may be permitted by law.

 At the end of the landscape establishment period, any plant which, in the opinion of the Engineer, does not show normal growth will be rejected. The final payment will not be made to the Contractor until all corrections and replacements have been made and approved.

5. “Planting Soil” or “Playfield Soil”, per cubic yard.

The Contract unit price for “Planting Soil” or “Playfield Soil” shall include all costs to furnish, mix, place and grade the soil as specified.

6. “Mulch, (Type)”, per cubic yard.

The Contract unit price for “Mulch, (Type)” shall include all costs to furnish, install and rototill the mulch as specified. If the Bid Form does not include a Bid item for Decomposed Organic Mulch, then the required use of this Material shall be considered as incidental to roadside planting.

7. “Paver Block, (Size)”, per each.

The Contract unit price for “Paver Block, (Size)” shall include all costs to furnish and install the paver blocks as specified.

8. “Grid Block”, per square foot.
The Contract unit price for “Grid Block” shall include all costs to furnish and place the grid including crushed rock base, sand setting bed, planting soil and seed as specified.

 The Contract unit price for “Edging, (Material)” shall include all costs to furnish and install edging as specified.

10. “Bollard, (Type)”, per each.
 The Contract unit price for “Bollard (Type)” shall include all costs to furnish and install the bollard of the type and size specified, with 1 padlock as specified in Section 8-02.3(19)A for each removable bollard.

11. “Bench”, per each.
 The Contract unit price for “Bench” shall include all costs for the Work required to furnish and install the bench of the type and size specified.

 The Contract unit price for “Tree Grate” shall include all costs for the Work required to furnish and install a set of the specified tree grates including the thickened sidewalk edge or collar and iron frame as indicated on the Drawings or specified in the Project Manual. See Section 8-14.5 regarding payment for sidewalk collar to support the tree grate.

13. “Relocate Tree”, per each.
14. “Relocate Shrub”, per each.
15. “Relocate Ground Cover”, per each.
 The Contract unit price for “Relocate Tree”, “Relocate Shrub”, and “Relocate Ground Cover” shall include all costs for the Work required to remove, protect, store and replant the tree, shrub, or ground cover.

16. “Sodding”, per square foot.
17. “Seeded Lawn Installation”, per square foot.
 The Contract unit price for “Seeded Lawn Installation” and “Sodding” shall include all costs for the Work required to prepare the area, plant or sod the lawn, and establish lawn areas as specified in Section 8-02.3(14) and 8-02.3(15). If no Bid item for Lawn Establishment is included in the Bid Form, no additional payment will be made for the Work required to maintain the area to meet the requirements of Section 8-02.3(15).

 When the Bid item “Seeded Lawn Installation” is included in the Bid Form, sodding in lieu of seeding for lawn installation, in accordance with Section 8-02.3(14)A, shall be paid at the Contract unit price Bid for “Seeded Lawn Installation” and no additional payment will be made.

 Any incidental Work required to complete the seeded lawn installation or sod installation, as specified herein but not specifically mentioned, shall be incidental to, and all costs therefore shall be included in the Contract unit price of the Bid item.

18. “Lawn Establishment, Minimum Bid ($_____)”, per lump sum.
 The Contract unit price for “Lawn Establishment, Min. Bid ($_____)” shall include all costs for the Work required by Section 8-02.3(15) and additional Work as specified in the Project Manual along with all costs provide and apply water as required by Section 8-02.3(13). To prevent unbalanced Bids, the price Bid for “Lawn Establishment” shall not be less than the minimum price noted in the Bid Form. Bids received on this Contract which contain a cost for lawn establishment of less than the minimum Bid will be rejected.

 Payment shall be made in two payments at the rate of 50% of the Bid item lump sum for “Lawn Establishment Min. Bid ($_____)”. The first payment shall be processed based on the Contractors statement including a 60-Day schedule for mowing and other Work provided to maintain the lawn as required by the Specifications. The second and final payment shall be processed at the end of the lawn establishment period based on the Contractors statement including a schedule for mowing and other Work provided to complete the Contract requirements. In the event the Engineer finds the Contractor failing to perform any of the Work required, the Owner may:
a. Cause the Work to be done by others and the costs thereof deducted from the Contractor’s payment or payments. Should the money due the Contractor be insufficient to cover such costs, the Owner will have the right to recover the balance from the Contractor.

b. Withhold a portion, or all, of the Contractor’s payment. Money that is withheld for non-performance shall not be recovered by the Contractor. The amount withheld shall be determined by the Engineer.

c. Terminate the Contract.

The above remedies shall not waive the Owner’s rights to pursue other corrective measures or remedies which may be permitted by law.

At the end of the lawn establishment period, any lawn area which, in the opinion of the Engineer, does not show normal growth will be rejected. The final payment will not be made to the Contractor until all corrections and replacements have been made and approved.

19. Other payment information.

Payment for clearing and grubbing shall be in accordance with Section 2-01.5

Payment for establishing the Subgrade of planting areas prior to actual planting by excavation or embankment construction shall be in accordance with Section 2-03.5

Payment for fill Material of the type specified shall be by the cubic yard in accordance with Section 4-01.5.

Fertilizer and other soil amendments specified in Section 8-02 but not set forth in the Bid Form as a separate Bid item shall be included in the Contract unit price of the Bid item for which its use was necessary.

Any incidental Work required to complete the roadside planting specified herein, but not specifically mentioned in these Specifications shall be incidental to the roadside planting, and all costs therefore shall be included in the Contract unit prices of the Bid items.

SECTION 8-03 IRRIGATION SYSTEM

8-03.1 DESCRIPTION

This Work shall consist of furnishing and installing a sprinkler irrigation system in accordance with these Specifications and with the details shown on the Drawings and the Standard Plans.

The Contractor or Subcontractor shall be a Washington State licensed irrigation Contractor. The irrigation system shall be installed by a journeyman irrigation mechanic or journeyman plumber and shall be installed according to the local plumbing codes. No plumbing permit will be required for in-street Work. At least 3 Working Days before backfilling, the Contractor shall provide notice to the Engineer for Seattle Public Utilities’ Water Operations to inspect and approve the piping and back flow prevention devices.

Electrical Work shall be performed by a licensed Electrical Contractor. The Contractor shall obtain a class 2 electrical permit from the Seattle Department of Construction and Land Use, when required.

Excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A5, Trench Safety Systems.

8-03.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation System</td>
<td>9-15</td>
</tr>
<tr>
<td>Hose Bib</td>
<td>9-15.10</td>
</tr>
<tr>
<td>Sleeve</td>
<td>9-15.5</td>
</tr>
<tr>
<td>Valve Box</td>
<td>9-15.5</td>
</tr>
<tr>
<td>Electrical Materials</td>
<td>9-31</td>
</tr>
<tr>
<td>Backflow Prevention Devices</td>
<td>9-15.11</td>
</tr>
<tr>
<td>Detectable Marking Tape</td>
<td>9-15.18</td>
</tr>
</tbody>
</table>
8-03.2(1) APPLICABLE ELECTRICAL CODES

See Section 8-30.1(2).

8-03.3 CONSTRUCTION REQUIREMENTS

8-03.3(1) GENERAL

The Contractor shall check and verify all pertinent dimensions on the site before proceeding with the Work. Before installing the irrigation system, the Contractor shall carefully note all finish grades. Finish grades changed in the course of the Work shall be restored so that the terrain conforms to the finished grade.

The Contractor shall furnish the necessary Equipment for proper execution and completion of all irrigation Work and shall make the connections to the water and electrical services. Seattle Public Utilities’ Water Operations will furnish and install the service tap, water meter and meter box. The Contractor shall be responsible to request service coordination by the Engineer and shall allow 8 weeks for installation by Seattle Public Utilities’ Water Operations. The Contractor shall be responsible for requesting inspection and approval of electrical installations before Seattle City Light will make the final service connection to the hot line. Thirty Days advance notice is required for the inspection and service connection by Seattle City Light.

Where indicated on the Drawings, piping and wiring shall be installed within plastic pipe sleeves of sufficient inside diameter to permit easy withdrawal and reinserting of the piping or wire. Pipe sleeves shall have a minimum of 12 inches cover for water pipes and a depth of cover conforming to the applicable electrical code for electrical wires.

8-03.3(2) LAYOUT OF IRRIGATION SYSTEM

Before construction begins, the Contractor shall stake the irrigation system following the schematic design shown in the Drawings. Alterations of the design and changes in the layout may be expected in order to conform to ground conditions and to obtain full and adequate coverage of sprinkler water. The Contractor shall be responsible for informing the Engineer of any anticipated coverage inadequacies. However, no changes in the system as planned shall be made without the prior authorization of the Engineer.

8-03.3(3) EXCAVATION

All pipe shall be laid in trenches shall be no wider than necessary to lay pipe and install Equipment. The top 6 inches of topsoil, when such exists, shall be kept separate from subsoil and shall be replaced as the top layer when backfill is made. Trench bottoms shall be relatively smooth and of sand or other suitable Material free from rocks, stones, or other deleterious Material which might damage the pipe. All trenches shall be excavated 4 inches below the required depth and backfilled to the required depth with sand or other suitable Material free from rocks or stones as approved by the Engineer.

If possible, all trenches shall be on a straight line between sprinkler heads or other appurtenances and without abrupt changes in grade.

Care shall be exercised by the Contractor when excavating trenches near existing trees. In addition to the requirements of Section 1-07.16(2), where roots are 2 inches or more in diameter, the pipe trench shall be hand-excavated and tunneled. When large roots are exposed, they shall be wrapped with heavy burlap for protection and to prevent excessive drying. Trenches dug by machines adjacent to trees having roots 2 inches or less in diameter shall have the sides hand-trimmed and the roots clean cut. Trenches with exposed tree roots shall be backfilled within 24 hours.

Detectable marking tape shall be placed in the trench 6 inches directly above, parallel to, and along the entire length of all nonmetallic water pipes and all nonmetallic and aluminum conduits placed under existing or future pavement. The width of the tape shall be as recommended by the manufacture for the burial depth encountered on the Project.

8-03.3(4) PIPING

All lateral lines shall be a minimum of 18 inches below finished grade measured from the bottom of the pipe or as shown in the Drawings. All mainlines shall be 24 inches below finished grade. All irrigation pipe placed under pavement, without exception, shall be placed in sleeves. Such sleeves shall extend a minimum of 1 foot beyond the limits of pavement. All jacking operations shall be performed in accordance with an approved jacking
Mainlines and lateral lines shall be defined as follows:

Mainlines: All pressurized supply pipe and fittings between the water meter and the irrigation control valves.

Lateral lines: All supply pipe and fittings between the irrigation control valves and the connections to the irrigation heads. Swing joints, thick-walled poly pipe, flexible risers, rigid pipe risers, and associated fittings are not considered part of the lateral line but incidental components of the irrigation heads.

Pipe pulling will not be allowed for installation and placement of irrigation pipe.

All sleeves required but not used in this Contract shall be capped and their locations marked with metal stakes and painted blue to provide reference for as-built Drawings upon completion of the Work.

8-03.3(5) JOINTING

During construction, pipe ends shall be plugged or capped to prevent entry of dirt, rocks, or other debris.

All galvanized steel pipe shall have sound, clean cut, well fitted standard pipe threads. All pipe shall be reamed to the full diameter and have all burrs removed before assembly. Threaded joints shall be constructed using either a nonhardening, nonseizing multipurpose sealant or teflon tape or paste as recommended by the pipe manufacturer. All threaded joints shall be made tight with wrenches without the use of handle extensions. Joints that leak shall be cleaned and remade with new Material. Caulking or thread cement for making joints tight will not be permitted.

PVC pipe, couplings, and fittings shall be installed in accordance with the manufacturer's recommendation. The outside of the PVC pipe shall be chamfered to a minimum of 1/16 inch at approximately 22 degrees. Pipe and fittings shall be joined by solvent welding.

Solvants used must penetrate the surface of both pipe and fitting in order to produce complete fusion at the joint. Use solvent and cement only as recommended by the pipe manufacturer.

PVC pipe ends shall be cut at 90 degrees to their longitudinal axis and cleaned of all cutting burrs prior to cementing. Use approved reaming tool. Pipe ends shall be wiped clean with a rag and lightly wetted with PVC primer. A light coat of cement shall be applied on the inside of the fitting and a heavier coat on the outside of the pipe. The pipe shall be inserted into the fitting and given a quarter turn to seat the cement. Excess cement shall be wiped from the outside of the pipe. Pipe shall be tested as indicated elsewhere in these Specifications. No backfilling will be permitted, other than at the midsection of pipe lengths, leaving joints exposed until the pressure test is completed and approved.

When connecting plastic pipe to metal pipe, install a female-threaded Schedule 80 PVC coupling onto the metal pipe first; then glue the plastic pipe into the other end of the PVC coupling. No PVC pipe may be threaded or connected to a threaded fitting without an adapter.

Due to the nature of PVC pipe and fittings, the Contractor shall exercise care in their handling, loading, unloading and storing to avoid damage. The pipe and fittings shall be stored under cover. Pipe shall be transported on a vehicle bed long enough to support its entire length so as not to subject it to undue bending or concentrated external loads. Pipe that has been dented or damaged shall be set aside until such damage has been cut out and the pipe sections rejoined with a coupling.

Solvent-welded joints shall be given at least 15 minutes set-up time before moving or handling. Pipe shall be partially center-loaded to prevent arching and slipping. No water shall be permitted in pipe until a period of at least 10 hours has elapsed for solvent weld setting and curing.

Backfilling shall be done when pipe is not in an expanded condition due to heat or pressure. Cooling of the pipe can be accomplished by operating the system for a short time before backfilling or by backfilling in the early part of the morning before the heat of the Day.

Before pressure testing, solvent-welded joints shall be given at least 24 hours curing time.

8-03.3(6) INSTALLATION

Final position of planting bed sprinkler heads shall be between 1/2 and 1 inch above finished grade measured from the top of the sprinkler, with depth of planting mulch adjusted to expose heads in planting beds.
Final position of turf sprinkler heads shall be flush with finish grade. All sprinklers adjacent to walks, curbs, and pavement shall be placed 6 inches clear of the edge unless otherwise indicated.

Shrub sprinkler heads, unless otherwise specified, shall be placed on permanent risers approximately 12 inches above finished grade, or on pop-up risers when located adjacent to walks or driveways. All risers shall have approved flexible swing joints.

Final position of valve boxes, capped sleeves, and quick coupler valves in planting beds shall be between 1/2 and 1 inch above finished grade or mulch. Final position of valve boxes shall be flush with finish grade.

Drip irrigation emitters shall be installed in accordance with the manufacturer's recommendations.

The irrigation plan is diagrammatic and is not intended to show exact locations of existing or proposed pipe valves or controllers. New items shall be located in landscaped areas as closely as possible to adjacent curbs or paving.

8-03.3(7) ELECTRICAL WIRE AND CONTROLLER INSTALLATION

Wiring between the automatic controller and automatic valves can share a common neutral. Separate control conductors shall be run from the automatic controller to each valve. A white colored wire shall be used for the neutral as specified in the National Electrical Code. Wires shall be taped together with electrical tape at 5-foot intervals and attached to the irrigation mains by at least 3 wraps of electrical tape at 10-foot intervals.

Wire shall be common to each valve in the system. A loop shall be provided at each valve in any wire that passes or terminates at that valve. Loop knot end of spare wire at valves where wire dead-ends.

Splice insulation shall consist of electrical conductors twisted and bonded by approved pressure connectors and contained in a rigid plastic epoxy-filled mold. Splices will be permitted only at junction boxes, valve boxes, pole bases or control cabinets. An additional 2-foot minimum length of conductor shall be left at each junction box and automatic control valve to facilitate splicing and inspection.

Electrical service shall be provided at controller enclosures as shown on the Drawings.

A diagram of the wiring schedule shall be pasted in the controller cabinet to facilitate the selection of valves to be operated.

The minimum size of wire shall be determined strictly by the following chart:

<table>
<thead>
<tr>
<th>No. of Valves</th>
<th>500 ft.</th>
<th>1000 ft.</th>
<th>2000 ft.</th>
<th>3000 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>14</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>---</td>
</tr>
</tbody>
</table>

The control wires shall be color-coded as follows:

<table>
<thead>
<tr>
<th>Wire Type</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral or common</td>
<td>White</td>
</tr>
<tr>
<td>Lead-in wire</td>
<td>Black</td>
</tr>
<tr>
<td>Extra wire</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Automatic irrigation installations include an automatic controller inside a weatherproof and tamperproof metal housing as described in Section 9-15.3. Power supply to the controller shall be installed by an electrician licensed in the State of Washington.

Completion of Work may require inspection and approval of the electrical system by DCLU. It is the Contractor’s responsibility to arrange for inspection.
8-03.3(8) BACKFLOW PREVENTION DEVICE (BPD)

Backflow prevention devices meeting the requirements specified in Section 9-15.11 shall be furnished and installed in an approved vault as indicated on the Standard Plans. All backflow prevention device installations shall be verified acceptable by the Engineer (note - backflow prevention devices are subject to inspection and certification by SPU Water Operations). Proper drainage shall be provided at all backflow prevention devices. Drainage problems shall be brought to the attention of the Engineer at the time of system layout. All types backflow prevention devices shall not be submerged in water. The double check valve backflow prevention device is the only BPD which will be allowed installed below ground surface.

8-03.3(9) FLUSHING AND TESTING

After BPD installation and approval of the Engineer, all flushing and pressure-testing shall be completed before backfilling irrigation line trenches.

The Contractor shall notify the Engineer at least 24 hours before conducting pressure tests.

All gauges used in the testing of water pressures shall be certified correct by an independent ASTM accredited testing laboratory immediately prior to use on the Project. Gauges shall be retested when ordered by the Engineer.

Automatic controllers shall be tested for a period of two weeks under normal operating conditions. Should adjustments be required, the Contractor shall carry them out according to the manufacturer’s directions and continue tests until operation is satisfactory.

Flushing shall be accomplished as follows:

Main Line Flushing: All main supply lines shall receive two fully-open flushings to remove debris that may have entered the line during construction: the first one before placement of valves; the second one after placement of valves and prior to testing.

Main Line Testing: All main supply lines shall be purged of air and tested with a minimum static water pressure of 150 psi for 60 minutes without introduction of additional service or pumping pressure. Testing shall be done with one pressure gauge installed on the line where directed by the Engineer. An additional pressure gauge shall be installed at the pump when so directed by the Engineer. Lines which show loss of pressure exceeding 5 psi at the ends of specified test periods will be rejected.

The Contractor shall correct rejected installations and retest them for leaks as specified herein.

Lateral Line Flushing: All lateral lines shall receive one fully-open flushing prior to placement of sprinkler heads, emitters, and drain valves. The flushing shall be of sufficient duration to remove any dirt or debris that may have entered the lateral lines during construction.

Lateral Line Testing: All lateral lines shall be purged of air and tested under operating line pressure with risers capped and drain valves closed. The operating line pressure shall be maintained for 30 minutes through open valves and pressure regulating devices. Lines which show leaks at the end of the specified test periods shall be rejected. When conditions exist which prevent effective visual inspection of lateral lines, the Engineer may require that the lines be tested by use of pressure gauges. In that event, static water pressure, equal to operating line pressure, shall be maintained in the lines for 30 minutes with valves closed and without introduction of additional service pressure. Lateral lines which show loss of pressure exceeding 5 psi at the end of specified test periods will be rejected.

The Contractor shall correct and retest lateral line installations that have been rejected.

Throughout the life of the Contract, the Contractor shall repair, flush, and test, all main and lateral lines that have sustained a break or disruption of service. Upon restoration of the water service, the affected lines shall be brought up to operating pressure. The Contractor shall then conduct a thorough inspection of all sprinkler heads, emitters, etc., located downstream of the break, disruption of service, and repair. This inspection is required to ensure that the entire irrigation system is operating properly.

8-03.3(10) ADJUSTING SYSTEM

Before inspection for acceptance, the Contractor shall adjust and balance all sprinklers to provide adequate and uniform coverage. Spray patterns shall be balanced and fogging minimized by adjusting individual
sprinkler heads with the adjustment screws or replacing nozzles to produce a uniform pattern. Sprinkler spray on pavement, walks, or Structures will not be permitted.

Inadequacies not rectified by adjusting or replacing nozzles shall be corrected by the Contractor to the satisfaction of the Engineer at the Contractor’s expense.

8-03.3(11) BACKFILL

The Contractor may begin backfilling (except at joints, fittings, risers and valves) as soon as the section of piping and wiring has been inspected and approved by the Engineer. Once the system has been tested against leaks, and the “as built” location of the risers, fittings, and valves have been recorded by the Engineer, the remaining trench openings may be backfilled. All backfill Material placed within 6 inches of the pipe shall be sand or select Material approved by the Engineer. Backfilling from the bottom of the trench to approximately 6 inches above the pipe shall be done by continuous compacting in a manner that does not damage pipe or wiring and shall proceed evenly on both sides of the pipe. The remainder of the backfill shall be thoroughly compacted, except that heavy Equipment shall not be used within 18 inches of any pipe. The top 6 inches of the backfill shall consist of topsoil Material or the first 6 inches of Material removed in excavation.

The Contractor shall give 24-hour notice to the Engineer each time an inspection or a check on system location is required. If any part of the sprinkler system is backfilled before being approved for correct location or before full inspection or testing have been carried out, the trench shall be re-excavated, the system uncovered and left exposed until it is approved for backfilling by the Engineer.

Restoration of ground surface shall include the resetting of removed sod. Sod survival shall be the responsibility of the Contractor.

8-03.3(12) AS-BUILT DRAWINGS AND SYSTEM ORIENTATION

Upon physical completion of the Work, the Contractor shall submit corrected Shop Drawings, schematic circuit diagrams, or other Drawings necessary for the Engineer to prepare corrected Drawings to show the Work as constructed. These Drawings shall be on sheets conforming in size to the provisions of Section 1-05.3.

The Contractor shall conduct a training and orientation session covering the operation, adjustment, and maintenance of the irrigation system. The as-built Drawings shall be reviewed and all features explained. At this session, the Contractor shall provide the Engineer with an Operations and Maintenance Manual. The Contractor shall notify the Engineer in writing two weeks prior to the training and orientation session. The date and time of the session shall be subject to approval of the Engineer.

The Operations and Maintenance Manual shall include the following:

1. Catalogues of Materials used;
2. Parts lists;
3. Summary of all operations (spring start-up and winterization techniques, controller programming, valve cleaning, sprinkler adjustment, backflow prevention, etc.); and
4. Names and addresses of local distributors.

Upon acceptance of the system by the Engineer, the Contractor shall provide the Engineer all necessary keys and tools to activate, operate and drain the system and provide all needed instructions to insure that it continues to operate normally after departure of the Contractor.

Upon completion and approval of all tests, acceptance of the system will be contingent upon the Contractor providing signed and approved sprinkler, plumbing, electrical and health department permits as well as reproducible Shop Drawings and all catalogue cuts, manufacturer’s instructions and maintenance and operating information.

8-03.3(13) SYSTEM OPERATION

The irrigation system shall be completely installed, tested, and fully operable in the automatic mode prior to planting in the sprinkled area except where otherwise specified in the Drawings or approved by the Engineer. The Contractor shall, in the presence of the Engineer, do a water coverage test for each sprinkler zone in the system. The Contractor shall change nozzles and make all necessary adjustments to obtain full coverage with minimum overspray. All balancing and adjusting of the system shall be completed before requesting a final inspection. The Contractor shall be fully responsible for all maintenance, repairs, tests, inspections, and the automatic operation of the system until Work is considered complete as determined by the final inspection.
specified in Section 1-05.11. The Contractor’s responsibility also includes draining the system before winter and reactivating it in the spring and at other times when ordered by the Engineer. This responsibility continues through the landscape establishment period if included in the Project. Irrigation system maintenance shall include restoration of the ground surface to compensate for settling of trenches.

For the life of the Contract, the Contractor shall be responsible for having annual inspections and tests performed on all cross connection control devices as required and specified by the Department of Social and Health Services, Health Services Division.

8-03.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

8-03.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-03 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

 The Contract unit price for “Irrigation System, Automatic” shall include all costs for the Work required to furnish, install, and test a complete working system and including excavation, backfill, controller, vaults, valves, conduit, wiring, quick couplers, risers, sprinkler heads and piping. If a hose bib assembly is included on the Drawings with an irrigation system, it shall be considered incidental to “Irrigation System, Automatic.”

 The Contract unit price for “Irrigation System, Manual” shall include all costs for the Work required to furnish, install and test a complete working system and including excavation, backfill, valves, vaults, quick couplers, risers, sprinkler heads and piping.

3. “Hose Bib Assembly”, per each.
 The Contract unit price for “Hose Bib Assembly” shall include all costs for the Work required to furnish and install the type and size of hose bib assembly specified when not installed as a component of an automatic irrigation system.

4. “Sleeve, (Material), (Schedule), (Size)”, per linear foot.
 The Contract unit price for “Sleeve, (Material), (Schedule), (Size)” shall include all costs for the Work required to furnish and install sleeve of the type and size specified.

5. “Valve Box, Plastic”, per each.
 The Contract unit price for “Valve Box, Plastic” shall include all costs for the Work required to furnish and install valve box of the type specified when not installed as a component of an automatic or manual irrigation system.

6. Other payment information.
 All costs of annual inspections and tests performed on cross connection control devices during the life of the Contract shall be included in the Contract unit prices for the complete irrigation system as shown in the Drawings or as directed by the Engineer.

SECTION 8-04 CEMENT CONCRETE CURB, CURB AND GUTTER

8-04.1 DESCRIPTION

This Work shall consist of constructing cement concrete curb, and curb and gutter.
8-04.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Concrete Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Premolded Joint Filler</td>
<td>9-04.1</td>
</tr>
<tr>
<td>Epoxy Resins</td>
<td>9-26</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
<tr>
<td>Curing Compounds</td>
<td>9-23</td>
</tr>
</tbody>
</table>

The Portland cement concrete shall meet the requirements of Section 5-05. Concrete mix for curb and gutter Type 410B shall be Class 5 (1-1/2), and for curb Type 410C shall be Class 5 (3/4). Slump of the concrete mix shall not exceed 3-1/2 inches.

Dowels and reinforcing steel shall be #3 deformed steel billet bars, ASTM A615, Grade 60.

Forms may be of wood or metal or any other material at the option of the Contractor, provided that the forms as set result in a curb, or curb and gutter of the specified thickness, cross section, grade and alignment shown on the Drawings.

8-04.3 CONSTRUCTION REQUIREMENTS

8-04.3(1) GENERAL

Excavation work to install forms for concrete curb and gutters within the dripline of trees shall be accomplished by hand methods. Where curb or curb and gutter construction is in an area with exposed tree roots 2 inch or greater in diameter, the Contractor shall work with the Engineer as indicated in Section 1-07.16(2).

The Subgrade shall be prepared in accordance with Section 2-06 and properly compacted to the specified grade and width. The compacted Subgrade shall extend at least one foot beyond each edge of the curb and gutter sections to provide a solid base for erecting forms.

Curb associated with monolithic curb and sidewalk shall comply with the requirements of Section 8-14.

8-04.3(1)A ERECTING FORMS

Before erecting forms, the Contractor shall bring the Subgrade to the required line, grade and compaction. Curbs shall not be set until the Subgrade has been compacted to within one inch of established grade.

Forms, wood or steel, shall be staked securely in place, true to line and grade. Sufficient support shall be given to the form to prevent movement. Forms shall be clean and well oiled prior to setting in place. When set, the top of the form shall not depart from grade more than 1/8 inch when checked with a 10-foot straightedge. The alignment shall not vary more than 1/8 inch in 10 feet. Immediately prior to placing the concrete, forms shall be carefully inspected for proper grading, alignment and rigid construction. Adjustments and repairs as needed shall be completed before placing concrete.

8-04.3(1)B PLACING CONCRETE

The Subgrade shall be properly compacted and brought to specified grade before placing concrete. The Subgrade shall be thoroughly dampened immediately prior to the placement of concrete. Concrete shall be placed and consolidated into the forms to provide a dense, compacted concrete free of rock pockets. The exposed surfaces shall be floated, finished, and brushed longitudinally with a fiber hair brush approved by the Engineer.

The rate of concrete placement shall not exceed the rate at which the various placing and finishing operations can be acceptably performed in accordance with these Specifications.

8-04.3(1)C DOWELS

Dowels shall be placed in the pavement slab as detailed on Standard Plan No. 411.

The dowel bars shall be set while the concrete is still plastic enough to not require hammering them into place.
8-04.3(1)D STRIPPING FORMS AND FINISHING

The face form of the curb shall be stripped early enough in the curing process to permit correction of all irregularities that may appear.

Forms may be removed on the Day following the pour if the concrete has set sufficiently to retain its true shape and removal causes no chipping or spalling. When forms are removed before the expiration of the curing period, the concrete shall be protected and cured. The exposed surface of the curb shall be brushed with a fiber hair brush.

8-04.3(1)E CURING

Transparent curing compound shall be applied to all exposed surfaces immediately after finishing. Transparent curing compounds shall contain a color dye of sufficient strength to render the film distinctly visible on the concrete for a minimum period of 4 hours after application.

If, at any time during the curing period any of the forms are removed, a coat of curing compound shall be applied immediately to the exposed surface. The curing compound shall be applied in sufficient quantity to obscure the natural color of the concrete. Additional coats shall be applied if the Engineer determines that the coverage is not adequate. The concrete shall be cured for the minimum period of time set forth for pavement in Section 5-05.3(13)A.

8-04.3(1)F EXPANSION AND DUMMY JOINTS

Joints shall be constructed in the manner shown on Standard Plans Nos. 410 and 411, at locations to match joints in concrete pavement, or as directed by the Engineer. In no case shall joint spacing exceed 15 feet center to center. All expansion and construction joints shall extend entirely through the curb section. Joint filler in the curb shall be normal to the pavement and in full butt contact with pavement joint filler. Joints shall match existing transverse joints or cracks in existing pavement.

Joints associated with depressed curbs for curb ramps shall be located as specified in Sections 8-14.3(7) and 8-14.3(8).

8-04.3(1)G FINISHED WORK

When checked with a 10-foot straightedge, grade shall not deviate more than 1/8-inch, and alignment shall not vary more than 1/4 inch.

8-04.3(2) CURB BLOCK-OUTS AT CURB RAMPS

At intersections where new cement concrete curb is to be constructed and curb ramps are to be provided under the Contract, the Contractor shall block out the new curb at the locations of the new curb ramps. The locations and limits of the depressed curb when other than shown on Standard Plan Nos. 422a and 422b will be designated by the Engineer.

8-04.3(3) RESERVED

8-04.3(4) TYPE 410B CURB AND GUTTER

Curb and gutter shall be constructed as shown on Standard Plan No. 410 on a compacted Subgrade prepared in accordance with applicable Subgrade Specifications for cement concrete pavement in Section 5-05. When extruded curb and gutter is called for, it may be extruded as a unit in accordance with Section 8-06, or the curb may be extruded upon the gutter section in which case steel dowels shall be provided as specified in Section 8-04.3(1)C.

8-04.3(5) TYPE 410C CURB

8-04.3(5)A CEMENT CONCRETE CURB ON EXISTING PAVEMENT

Cement concrete curb constructed on an existing pavement shall be doweled into the existing pavement where indicated on the Drawings or designated by the Engineer, as shown on Standard Plan Nos. 410 and 411.

Drill 1-inch minimum diameter holes to a 5 ½ inch depth into the rigid portion of concrete pavement. After cleaning the hole of debris, place 9 inch long #3 dowel pins into the hole and fill with ASTM C881 Type 1 epoxy.
8-04.3(5)B CEMENT CONCRETE CURB ON NEW PAVEMENT

Doweled curb on new pavement shall be constructed as shown on Standard Plan Nos. 410 and 411. The pavement width shall extend to the back of the curb. The pavement where the curb is to be placed shall be roughened or otherwise treated so that a permanent bond can be secured between the curb and the pavement.

Dowels, as detailed in Standard Plan Nos. 410 and 411 shall be placed at 28 inches on center in the fresh concrete pavement.

8-04.3(6) MOUNTABLE CURB

Mountable curb for traffic circles shall be constructed with the alignment and configuration as shown on the Standard Plans.

8-04.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for curb, or curb and gutter of the type specified will be by the linear foot along the front face of the curb for the length constructed, including that portion installed through driveways and curb ramps.

Where curb ramps or driveways are “cut in” areas of existing improvements where adjacent curb is to remain, no measurement for curb will be made.

8-04.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-04 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Curb, Cement Concrete”, per linear foot.
2. “Curb, Cement Concrete, Mountable”, per linear foot.
3. “Curb and Gutter, Cement Concrete”, per linear foot.

The Contract unit price for “Curb, Cement Concrete”, “Curb, Cement Concrete, Mountable”, and “Curb and Gutter, Cement Concrete” shall include all costs for the Work required to construct the curb or curb and gutter of the size and type specified.

Curb does not include the pavement slab upon which it is placed. That portion of the pavement slab underneath the curb will be paid for as concrete pavement in accordance with Section 5-05.5.

SECTION 8-05 RESERVED

SECTION 8-06 EXTRUDED CURB

8-06.1 DESCRIPTION

This Work shall consist of constructing extruded asphalt concrete and cement concrete curb in accordance with these Specifications at locations shown on the Drawings and to the dimensions shown on Standard Plan No. 412. Except as noted otherwise in this section, all requirements for cement concrete curb, Section 8-04, shall apply to extruded cement concrete curb.

8-06.2 MATERIALS

Materials shall meet the requirements of the following Sections:
Extruded asphalt concrete curb shall consist of a hot mix asphalt concrete Class A or B mix meeting the requirements of Section 5-04.

The concrete mix design for extruded cement concrete curb shall be the following (quantities for 1 cubic yard of mix):

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>658 pounds</td>
</tr>
<tr>
<td>Asphalt</td>
<td>1,800 pounds</td>
</tr>
<tr>
<td>Aggregates</td>
<td>1,260 pounds</td>
</tr>
<tr>
<td>Water</td>
<td>245 pounds</td>
</tr>
<tr>
<td>Air</td>
<td>5% ±1-1/2%</td>
</tr>
</tbody>
</table>

Aggregate for cement concrete shall meet the requirements of Grading for Fine Aggregate as specified in Section 9-03.1(2)C. Transparent curing compound as specified in Section 9-23.3 shall be used. Air-entrained concrete shall be used as specified in Section 9-23.6 except that air content shall be a minimum of 3 percent and a maximum of 6 percent by volume.

8-06.3 CONSTRUCTION REQUIREMENTS

8-06.3(1) PREPARATION OF PAVEMENT SURFACE

8-06.3(1)A EXTRUDED ASPHALT CONCRETE CURB

The asphalt pavement shall be dry and cleansed of loose or deleterious material. Immediately after cleaning the pavement surface, a **tack coat shall be applied to the area of the pavement the curb is to be placed** at the rate of 0.08 to 0.20 gallons per 15 square feet of curb area contact surface with pavement, depending on the width of curb and age of pavement. Care shall be taken to prevent applying too wide or too heavy a tack coat.

8-06.3(1)B EXTRUDED CEMENT CONCRETE CURB

The pavement shall be dry and cleansed of loose or deleterious Materials prior to curb placement. **At the Contractor’s option, concrete curbs shall be anchored to the existing pavement** either by placing steel tie bars one foot on each side of every joint or by using an adhesive. Tie bars shall meet the dimensions shown on Standard Plan No. 412. The adhesive shall meet the requirements of Section 9-26 for Type II epoxy resin.

8-06.3(2) RESERVED

8-06.3(3) EQUIPMENT FOR LAYING CURB

8-06.3(3)A EXTRUDED ASPHALT CONCRETE CURB

The machine for laying the curb shall be of the self-propelled type, equipped with a Material hopper, distributing screw, and adjustable curb forming devices capable of laying and compacting the hot-mix asphalt concrete to the lines, grades and cross section shown on the Drawings and in accordance with Standard Plan No. 412. Curbs shall be placed in an even homogenous manner, free of honeycombs.

8-06.3(3)B EXTRUDED CEMENT CONCRETE CURB

Extruded cement concrete curb shall be placed, shaped and compacted true to line and grade with an approved extrusion machine. The extrusion machine shall be capable of shaping and thoroughly compacting the concrete to the required cross section.
8-06.3(4) MIXING AND PLACING

8-06.3(4)A EXTRUDED ASPHALT CONCRETE CURB

The asphalt concrete mixture shall be homogeneously mixed to conform with Section 5-04.3(8) and shall be delivered to the hopper of the laying machine at a temperature no lower than 200°F nor higher than 300°F. Each hopper load of the asphalt concrete mix shall be run through the curb laying machine, properly adjusted to form a well compacted asphalt concrete curb.

8-06.3(4)B EXTRUDED CEMENT CONCRETE CURB

The cement concrete mixture shall be homogeneously mixed to conform with Section 5-05 when delivered to the hopper of the curb machine. Each hopper load of cement concrete shall be run through the curb laying machine, adjusted properly to form and compact the cement mix for the concrete curb.

8-06.3(5) JOINTS

8-06.3(5)A EXTRUDED ASPHALT CONCRETE CURB

Asphalt concrete curb construction at the specified temperature shall be a continuous operation in one direction so as to eliminate curb joints. However, where conditions are such that this is not possible, the joints between successive Days Work shall be carefully made in such a manner as to ensure a continuous bond between the old and new sections of the curb. The contact surface of the previously constructed curb shall be painted with a thin, uniform coat of tack coat or cutback emulsion immediately prior to placing the fresh asphalt concrete curb against it.

8-06.3(5)B EXTRUDED CEMENT CONCRETE CURB

Joints in the extruded cement concrete curb shall be spaced at 15-foot intervals or shall match existing transverse joints or cracks in existing pavement. Joints shall be cut vertically. Joints shall not be placed at location of curb dowels.

8-06.3(6) CURING EXTRUDED CEMENT CONCRETE CURB

Transparent liquid curing compound shall be used. Sufficient pigment shall be present so that the sprayed compound is easily discernible. Application shall be as specified in Section 9-23.3.

8-06.3(7) BARRICADES AND SAFEGUARDS

The newly laid extruded asphalt concrete curb shall be protected from traffic by barricades or other suitable means until the heat of the asphalt concrete mixture has been dissipated and the mixture has attained its proper degree of hardness.

The newly placed extruded cement concrete curb shall be protected from traffic by barricades or other suitable means for at least 72 hours when it has attained its required strength of 2500 psi. See Sections 1-07.23 and 1-10.

8-06.3(8) SUBSTITIONS

The Contractor may substitute extruded cement concrete curb for asphalt concrete curb upon receiving written permission from the Engineer. There will be no change in Contract unit price if this substitution is allowed.

8-06.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

The extruded concrete curb will be measured by the linear foot along the front face of the curb and returns.
8-06.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-06 will be made at the Contract unit price Bid only for the pay items listed or referenced below:

1. "Extruded Curb, (Material)", per linear foot.
 The Contract unit price for "Extruded Curb, (Material)" shall include all costs for the Work required to furnish and install extruded concrete curb as specified.

SECTION 8-07 PRECAST TRAFFIC CURB AND BLOCK TRAFFIC CURB

8-07.1 DESCRIPTION

This Work shall consist of furnishing and installing precast cement concrete traffic curb and concrete block traffic curb of the design and type specified in the Drawings, conforming to these Specifications and to Standard Plan Nos. 413 and 414. They shall be installed in the locations indicated in the Drawings or where designated by the Engineer.

8-07.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint Formulas-General</td>
<td>9-08</td>
</tr>
<tr>
<td>Precast Traffic Curb</td>
<td>9-18.1</td>
</tr>
<tr>
<td>Block Traffic Curb</td>
<td>9-18.3</td>
</tr>
<tr>
<td>Water Repellent Compound</td>
<td>9-18.4</td>
</tr>
<tr>
<td>Sodium Metasilicate</td>
<td>9-18.5</td>
</tr>
</tbody>
</table>

8-07.3 CONSTRUCTION REQUIREMENTS

8-07.3(1) INSTALLING CURBS

The curb shall be firmly bedded for its entire length and breadth on a mortar bed composed of one part Portland cement and two parts of concrete sand. The anchor grooves in the bottom of the curb shall be entirely filled with the mortar.

Before the cement mortar bed is laid, the pavement surface shall be cleaned of all dirt or other deleterious Material which is not oil, grease, tar, or other “oily” substance as determined by the Engineer, by flushing with water using a stiff brush to produce a surface capable of bonding new concrete as approved to the Engineer.

Pavement surfaces covered with oil, grease, tar, or other oily substance as determined by the Engineer shall be cleaned as follows:

1. The pavement shall be flushed with water.
2. While the pavement is still wet, sodium metasilicate shall be evenly distributed over the pavement surface at a rate of 1 to 2 pounds per 100 square feet of pavement surface.
3. The sodium metasilicate shall remain on the pavement for at least 15 minutes. Areas where patches of oil, tar, or grease occur shall be scrubbed with a stiff brush or broom.
4. The pavement surface shall then be thoroughly rinsed.
5. Steps 2 through 4 shall be repeated until a surface is obtained which is acceptable to the Engineer.

All joints between adjacent pieces of curb, except joints for expansion and/or drainage as designated by the Engineer, shall be filled with mortar composed of one part Portland cement and two parts sand.

Joints between adjacent units of block traffic curb shall not be filled with mortar.

The alignment and the top surface of adjoining sections of curb shall be true and even with a maximum tolerance of 1/16 inch.

For both types of traffic curbs, nosing pieces, connecting dividers, and radial sections as detailed on the Drawings, shall be required at the ends of the curb lines, at transitions from Type 413C traffic curb to Type 413A traffic curb, and at Type 413A traffic curb installation with radii less than 10 feet.
8-07.3(2) PAINTING OF CURBS
Concrete traffic curbs shall be painted with 2 full coats of approved traffic paint in accordance with Section 9-29 as specified on the Drawings. The second coat shall have glass traffic paint beads uniformly sprinkled in the wet paint at the rate of 12 pounds per 100 linear feet of curbing. The beads shall conform to the requirements of Section 8-22.2 and 8-22.3(4)A.

8-07.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for precast traffic curb and block traffic curb will be by the linear foot along the top surface of the curb and return. The nosing pieces and dividers will be measured as traffic curb.

8-07.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 8-07 will be made at the Contract unit price Bid only for the pay items listed or referenced below:

2. “Curb, Traffic, Block”, per linear foot.

The Contract unit price for “Curb, Traffic, Precast” and “Curb, Traffic, Block” shall include all costs for the Work required to furnish and install the precast traffic curb and block traffic curb as specified.

Payment for painting precast curb shall be in accordance with Section 8-22.5.

SECTION 8-08 PLASTIC LANE MARKERS AND TRAFFIC BUTTONS

8-08.1 DESCRIPTION
This Work shall consist of furnishing and installing plastic lane markers and traffic buttons with an epoxy adhesive in accordance with these Specifications and Standard Plan Nos. 700 and 710.

Color of Type 1, Type 2A, and Type 2B lane markers and traffic buttons shall match the color of the pavement markings on which they are installed. The color of applicable pavement markings are set forth in Section 8-22.

8-08.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Markers Type 1</td>
<td>9-21</td>
</tr>
<tr>
<td>Lane Markers Type 2</td>
<td>9-21</td>
</tr>
<tr>
<td>Plastic Traffic Buttons</td>
<td>9-21</td>
</tr>
<tr>
<td>Adhesive</td>
<td>9-26</td>
</tr>
</tbody>
</table>

8-08.3 CONSTRUCTION REQUIREMENTS

8-08.3(1) GENERAL
Location and spacing shall be as indicated on the Drawings or designated by the Engineer. The Engineer will provide necessary control points. The Contractor shall be responsible for preliminary spotting of plastic buttons and lane markers from the control points prior to installation. Approval by the Engineer of the layout shall be obtained before traffic button or markers are installed.

8-08.3(2) SURFACE PREPARATION
Traffic buttons and lane markers shall be bonded to clean and dry pavement with an adhesive as specified herein.

All sand, dirt and loose extraneous Material shall be removed from the marker lane location.
Large areas of tar, grease or foreign Materials may require sand blasting, steam cleaning or power brooming to accomplish complete removal. Application of traffic buttons and lane markers shall not proceed until the cleaned surface has been approved by the Engineer.

8-08.3(3) ADHESIVE PREPARATION

At the time of use, the contents of Packages A and B specified in Section 9-26 shall be thoroughly blended by mixing to produce a uniformly distributed mixture. One volume or weight of Package A shall be mixed with one volume or weight of Package B until a uniform gray color is achieved without visible streaks of white or black. Formulation may be revised, if approved by the Engineer.

Catalyst shall be added to the base just before use. Unused mixed adhesive shall be discarded when catalytic action has caused stiffening and reduction of workability or a small ball of jelled resin has formed in the center of the container.

The adhesive shall be maintained at a temperature between 60 and 85 °F. before use and during application.

8-08.3(4) APPLICATION PROCEDURE

Applications of traffic buttons and lane markers to pavement shall not be done if the ambient air temperature is below 40°F.

The mixed adhesive shall be applied to the base of the traffic button and lane marker with a quantity sufficient to overfill all voids between the base of the traffic button or lane marker and the pavement, such that as the traffic button and marker is worked into final position, the excess adhesive is forced out to form a bead rim around the entire perimeter of the traffic button or lane marker.

Traffic buttons and lane markers shall be spaced and aligned as indicated on the Drawings or designated by the Engineer. A displacement of not more than 1/2 inch left or right of the established guide line will be permitted. Improperly placed buttons shall be removed and replaced at the Contractor’s expense.

Bonding shall be considered satisfactory when adhesive develops a minimum bond strength in tension of not less than 10 pounds per square inch for plastic traffic buttons, and not less than 2 pounds per square inch for lane markers Type 1, Type 2A and Type 2B. Traffic will not be allowed to pass over the traffic buttons and lane markers until the minimum bonding strength has been achieved.

Where it is required that both paint striping and Lane Marker Type 1 are to be installed on the same alignment, the Contractor shall install the lane markers prior to the application of the paint striping.

At the option of the Contractor, a hot melt bitumen adhesive may be used to cement markers to the pavement in lieu of epoxy adhesive. The bitumen adhesive shall conform to the requirements of Section 9-02.1(8).

Markers shall not be placed using bitumen adhesive when the pavement or air temperature is 50 °F or less.

Bitumen adhesive shall be indirectly heated in an applicator with continuous agitation. The adhesive shall be applied at a temperature between 400°F and 425°F. Markers shall be placed immediately after application of the adhesive.

Lane markers shall not be placed over longitudinal or transverse joints in the pavement surface.

8-08.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

8-08.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-08 will be made at the Contract unit price Bid only for the pay items listed or referenced below.

1. “Lane Marker, (Type)”, per each.
2. “Plastic Traffic Button, (Type)”, per each.
SECTION 8-09 RESERVED

SECTION 8-10 FLEXIBLE GUIDE POSTS

8-10.1 DESCRIPTION
This Work shall consist of furnishing and placing flexible guide posts of the type specified in the Drawings in accordance with these Specifications and WSDOT Standard Plan No. H-1, at the locations indicated in the Drawings or where designated by the Engineer.

8-10.2 MATERIALS
Flexible posts and reflective sheeting shall be made of approved Materials and purchased from manufacturers listed in the Contract.

All posts shall be a minimum length of 72 inches. Posts shall be painted white or brown as called for on the Drawings.

All flexible guide posts shall have a permanent mark identifying the manufacturer’s recommended burial depth.

8-10.3 CONSTRUCTION REQUIREMENTS
Flexible guide posts shall be installed as shown in WSDOT Standard Plan No. H-1 or as specified by the Engineer. When in place, the posts shall not vary more than 1 inch in 40 inches from any vertical plane.

Flexible guide posts shall be installed according to the manufacturer’s recommendations. The Contractor shall provide the Engineer with the manufacturer’s recommended installation procedures at least 5 working Days prior to installation. Only one type of flexible guide post shall be used on each Project.

If the ground adjacent to the posts is disturbed in any manner, it shall be backfilled to the level of the existing surface and thoroughly compacted. The surface of the ground adjacent to the post shall be replaced with like Materials, including bituminous treatment if previously existent.

8-10.4 MEASUREMENT
Flexible guide posts will be measured by the unit for each post furnished and installed.

8-10.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 8-10 will be made at the Contract unit price Bid only for the pay items listed or referenced below:

1. “Flexible Guide Post”, per each.
 The Contract unit price for “Flexible Guide Post” shall include all costs for the Work required to furnish and install the guide posts of the type specified, including reflectorizing and any excavating and backfilling that may be required.

SECTION 8-11 GUARDRAIL

8-11.1 DESCRIPTION
This Work shall consists of constructing, modifying, removing and resetting guardrail and anchors of the kind and type specified in the Drawings, in these Specifications and in the WSDOT C-Series Standard Plans, in conformity with the lines and grades as stakes by the Engineer.

8-11.2 MATERIALS
Materials shall meet the requirements of the following Sections:
8-11.3 CONSTRUCTION REQUIREMENTS

8-11.3(1) BEAM GUARDRAIL

8-11.3(1)A ERECTION OF POSTS

The posts shall be set to the true line and grade of the roadway and spaced as indicated on the Drawings. When the Drawings require that the ends of a section of guardrail be curved outward or downward, the posts shall be set to accommodate the curve. End treatment shall be in accordance with the appropriate WSDOT Standard Plans or as shown in the Drawings.

The dimensions of posts to be installed shall be as shown in the WSDOT C-Series Standard Plans unless a detailed modified design is approved by the Engineer. The length of posts for beam guardrail Type 1 with long posts shall be as specified in the Drawings.

Posts may be placed in dug or drilled holes. Ramming or driving the post will be permitted only if approved by the Engineer and if no damage to the pavement, shoulders, adjacent slopes, and the post results therefrom.

In broken rock embankments, the pre-punching of holes will be permitted only prior to final Shoulder or median compaction, surfacing, and paving.

The posts shall be protected from traffic at all times by attaching the rail elements or by a method approved by the Engineer.

8-11.3(1)B RESERVED

8-11.3(1)C ERECTION OF RAIL

All metal work shall be fabricated in the shop. No punching, cutting, or welding shall be done in the field, except that holes for special details in exceptional cases may be drilled in the field when approved by the Engineer. The rail shall be erected so that the bolts at expansion joints are located at the centers of the slotted holes.

Rail plates shall be assembled with the splice joints lapping in the direction of the traffic.

Galvanized rail plates shall be fastened to the posts with galvanized bolts, washers, and nuts of the size and kind shown in the Drawings. Weathering steel rail plates shall be fastened to the posts with weathering steel bolts, washers, and nuts of the size and kind showing in the Drawings and shall not be galvanized.

All bolts, except where otherwise required at expansion joints, shall be drawn tight. Bolts through expansion joints shall be drawn up as tight as possible without being tight enough to prevent the rail elements from sliding past one another longitudinally. Bolts shall be sufficiently long to extend at least 1/4-inch beyond the nuts. Except where required for adjustments, bolts shall not extend more than 1/2-inch beyond the nuts.

After completing the installation of weathering steel beam guardrail, the Contractor shall wash the rail with clean water under high pressure. If the rail is contaminated by oil or grease, sandblasting shall be used as necessary to clean the rail.

8-11.3(1)D ANCHOR INSTALLATION

All excavation and backfilling required for installation of anchors shall be performed in accordance with Section 2-09.

Bolts shall be tightened to the tension specified. The anchor cable shall be tightened sufficiently to eliminate all slack.
Where additional posts are required, field drilling of the rail will be permitted when approved by the Engineer.

Type 2 concrete anchors may either be pre-cast or cast-in-place at the option of the Contractor.

8-11.3(1)E PLANS
The Contractor shall submit for approval by the Engineer additional detailed Plans and Shop Drawings of rail punchings, fittings, and assemblies to verify integrity and constructability.

8-11.3(2) GUARDRAIL CONSTRUCTION EXPOSED TO TRAFFIC
Any section of beam guardrail that is removed for modification shall be put back in place within 5 calendar Days of the date the guardrail was removed.

The Contractor’s operations shall be conducted in such a manner that fixed objects including beam guardrail posts shall be protected from traffic at all times by attachment of the rail elements and all associated hardware or by a method approved by the Engineer.

At the end of each Day, guardrail sections having an exposed end toward oncoming traffic shall have a Type G terminal end section bolted securely in place.

See Section 1-07.23 and Section 1-10.

8-11.3(3) ACCESS CONTROL GATES
Access control gates shall be placed to line and grade as shown in the Drawings or as staked by the Engineer. After the posts have been set, the holes shall be backfilled with suitable Material and the Material thoroughly tamped.

8-11.3(4) RAISING GUARDRAIL
Guardrail shall be raised to the height shown in the Drawings, measured from the top of the rail to the finished Shoulder surface. The Material around each post shall be tamped to prevent settlement of the raised rail.

8-11.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement of beam guardrail and beam guardrail Type 1 long posts will be by the linear foot measured along the line of the completed guardrail, including expansion sections, and will also include the terminal section for Type F connections.

Measurement of beam guardrail transition sections will be per each for the type of transition section installed. Terminal sections, except of Type F connections, will be considered part of the transition section and will be included in the measurement of the transition section.

Measurement of beam guardrail anchors of the type specified will be per each for the completed anchors, including their attachment to the guardrail.

Measurement of raising beam guardrail, and removing and resetting beam guardrail will be by the linear foot measured along the line of guardrail actually raised or removed and reset. This includes transition sections, expansion sections, and terminal sections.

8-11.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 8-11 will be made at the Contract unit price Bid only for the pay items listed or referenced below:

1. “Beam Guardrail, (Type)”, per linear foot.
3. “Weathering Steel Beam Guardrail, (Type)”, per linear foot.
The Contract unit price for “Beam Guardrail, (Type)”, “Beam Guardrail, (Type) Long Post”, and “Weathering Steel Beam Guardrail, (Type)” shall include all costs for the Work required to furnish and install the beam guardrail, including all standard and CRT treated timber posts to which the guardrail is attached.

4. “Beam Guardrail Anchor, (Type)”, per each.
 The Contract unit price for “Beam Guardrail Anchor, (Type)” shall include all costs for the Work required to furnish and install the anchor as specified, including excavation, backfilling, compaction, disposal of surplus excavated material, and surface restoration. Where Type 2 anchors are required, the additional depth of post embedment shall be included in the Contract unit price of the anchor. 10-inch x 10-inch treated timber posts (or steel Alternate) will be paid separately as outlined herein.

5. “Beam Guardrail Transition Section (Type)”, per each.
 The Contract unit price per each for “Beam Guardrail Transition Section (Type)” shall include posts, terminal sections, and attaching the transition section to masonry Structures.

6. “Access Control Gate”, per each.
 The Contract unit price for “Access Control Gate” shall include all costs for the Work to furnish and install the access control gate as specified, including excavating, backfilling, compacting and surface restoration.

 The Contract unit price for “Removing and Resetting Beam Guardrail” shall include all costs for the Work required to remove and relocate the beam guardrail with posts.

8. “Raising Existing Beam Guardrail”, per linear foot.
 The Contract unit price per linear foot for “Raising Existing Beam Guardrail” shall be full pay for removing and resetting or raising the guardrail and for backfilling and compacting holes.

SECTION 8-12 CHAIN LINK FENCE AND WIRE FENCE

8-12.1 DESCRIPTION
 This Work shall consist of furnishing and constructing chain link fence and wire fence of the types specified in accordance with the Drawings, these Specifications and Standard Plan Nos. 450a, b, and c and WSDOT Standard Plan No. L-1, at the locations shown in the Drawings and in conformity with the lines as staked by the Engineer.

8-12.2 MATERIALS
 Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Class C</td>
<td>6-02</td>
</tr>
<tr>
<td>Chain Link Fence and Gates</td>
<td>9-16.1</td>
</tr>
<tr>
<td>Wire Fence and Gates</td>
<td>9-16.2</td>
</tr>
</tbody>
</table>

 Chain link fence shall be of diamond woven wire mesh mounted on steel posts.
 Wire fence shall be of barbed wire or barbed wire combined with wire mesh fastened to posts. Steel posts and steel braces, or wood posts and wood braces may be used, provided only one type shall be selected for use in any Contract.
 Gates shall consist of a steel frame or frames covered with chain link or wire mesh.

8-12.3 CONSTRUCTION REQUIREMENTS

8-12.3(1) GENERAL
 Clearing of the fence line will be required. Clearing shall consist of the removal and disposal of all trees, brush, logs, upturned stumps, roots of fallen trees, rubbish, and debris.
For chain link type fences, the clearing width shall be approximately 10 feet. For wire type fences, the clearing width shall be approximately 3 feet. Grubbing will not be required except where short and abrupt changes in the ground contour necessitate cuts or fills in order to properly grade the fence line. All stumps within the clearing limits shall be removed or close cut.

Grading of the fence line sufficient to prevent short and abrupt breaks in the ground contour and to improve the aesthetic appearance of the top of the fencing when installed shall be required. It is expected that in the performance of this Work, machine operations will be required for chain link fencing, and hand work will be required for wire fencing except where sufficient width exists for machine work.

The fence shall be constructed close to and inside the Right of Way line unless otherwise directed by the Engineer or shown in the Drawings. Deviations in alignment to miss obstacles will be permitted only when approved by the Engineer and only when such deviation is not visible to the traveling public or adjacent property owners.

8-12.3(2) CHAIN LINK FENCE AND GATES

8-12.3(2)A POSTS

Posts shall be placed in a vertical position and, except where otherwise directed by the Engineer, shall be spaced at 10-foot centers. Spacing shall be measured parallel to the slope of the ground.

All posts, except line posts for Type 3 fence, shall be set in concrete to the dimensions shown in Standard Plan Nos. 450a and 450c. All concrete footings shall be crowned so as to shed water. Line posts on Type 3 fence shall be set in undisturbed earth either by driving or drilling, except as specified. Driving shall be accomplished in such a manner as not to damage the post. Voids around the post shall be backfilled with suitable Material and thoroughly tamped.

Concrete footings shall be constructed to embed the line posts on Type 3 fence at grade depressions where the Engineer determines tension on the fence may pull the post from the ground.

Where solid rock is encountered without an overburden of soil, line posts shall be into the solid rock set a minimum depth of 14 inches, and end, corner, gate, brace, and pull posts a minimum of 20 inches. The holes shall have a minimum width 1 inch greater than the largest dimension of the post section to be set. The posts shall be cut before installation to lengths which give the required length of post above ground, or if the Contractor so elects, an uncut length of post set at a greater depth into the solid rock.

After the post is set and plumbed, the hole shall be filled with grout consisting of one part Portland cement and three parts clean, well graded sand. The grout shall be thoroughly worked into the hole so as to leave no voids. The grout shall be crowned to carry water from the post.

Where solid rock is covered by an overburden of soil or loose rock, the posts shall be set to the full depth shown in the Standard Plans unless penetration into solid rock reaches the minimum depths specified above, in which case the depth of penetration may be terminated. Concrete footings shall be constructed from the solid rock to the top of the ground. Grouting will be required on the portion of the post in solid rock.

Pull posts, as shown in Standard Plan Nos. 450a and 450c, shall be braced to adjacent line posts and spaced at 1000 foot maximum intervals for Type 1, 3 and 6 fence and at 500 foot maximum intervals for Type 4 fence.

End, gate, corner, and pull posts shall be braced to the adjacent brace post(s) in the manner shown in Standard Plan Nos. 450a and 450c. Changes in line amounting to 2 foot tangent offset or more between posts shall be considered as corners for all types of fence.

Steep slopes or abrupt topography may require changes in various elements of the fence. It shall be the responsibility of the Contractor to provide all posts of sufficient length to accommodate the chain link fabric and ornamental tops adapted to receive the top rail.

All posts for chain link fence Types 1 and 6 shall be fitted with an approved top designed to fit securely over the post and carry the top rail. All round posts for chain link fence Types 3 and 4 shall have approved tops fastened securely to the posts. The base of the top fitting for round posts shall carry an apron around the outside of the posts.
8-12.3(2)B TOP RAIL

Top rails shall pass through the ornamental tops of the line posts, forming a continuous brace from end to end of each stretch of fence. Lengths of tubular top rail shall be joined by sleeve couplings. Top rails shall be securely fastened to terminal posts by pressed steel fittings or other appropriate means.

8-12.3(2)C TENSION WIRE

One continuous length of tension wire shall be used between pull posts. Sufficient tension shall be applied to avoid excess sag between the posts. Tension wires shall be tied or otherwise fastened to end, gate, corner, or pull posts by methods approved by the Engineer.

8-12.3(2)D CHAIN LINK FABRIC

Chain link fabric on Type 1, 3, 4, and 6 fence shall be placed on the face of the post away from the Highway, except on horizontal curves where it shall be placed on the side designated by the Engineer.

Chain link fabric on Type 1, 3, 4, and 6 fences shall be placed approximately 1 inch above the ground and on a straight grade between posts by excavating high points of ground. Filling of depressions will be permitted only upon approval of the Engineer.

The fabric shall be stretched taut and securely fastened to the posts. Fastening to end, gate, corner, and pull posts shall be with stretcher bars and fabric bands spaced at intervals of 15 inches or less or by weaving the fabric into the fastening loops of roll-formed posts. Fastening to line posts shall be with tie wire, metal bands, or other approved method attached at 14 inch intervals. The top and bottom edge of the fabric shall be fastened with the wires spaced at 24 inch intervals to the top rail, or top and bottom tension wires as may be applicable.

Rolls of wire fabric shall be joined by weaving a single strand into the ends of the rolls to form a continuous mesh.

8-12.3(2)E CHAIN LINK GATES

Chain link fabric shall be fastened to the end bars of the gate frame by stretcher bars and fabric bands and to the top and bottom bars of the gate frames by tie wires in the same manner as specified for the chain link fence fabric, or by other standard methods if approved by the Engineer.

Welded connections on gate frames where the spelter coating has been burned shall be thoroughly cleaned by wire brushing and all traces of the welding flux and loose or cracked spelter removed. The clean areas shall then be painted with two coats of galvanizing repair paint, Formula A-9-73.

The drop bar locking device for the wire gates shall be provided with a 12 inch round by 18 inch deep footing of Class C concrete, crowned at the top and provided with a hole to receive the locking bar. The depth of the penetration of the locking bar into the footing shall be as specified by the manufacturer of the locking device. A lock approved by the Engineer shall be installed on all locking gates. Four keys shall be supplied with each lock.

8-12.3(3) WIRE FENCE AND GATES

8-12.3(3)A POSTS

Line posts shall be spaced at intervals not to exceed 14 feet. All intervals shall be measured center to center of posts. In general, in determining the spacing of posts, measurements will be made parallel to the slope of the existing ground, and all posts shall be placed in a vertical position except where otherwise directed by the Engineer.

Line posts may be driven in place provided the method of driving does not damage the post. Steel corner, gate, and pull posts shall be set in Class C concrete footings to the dimensions shown in WSDOT Standard Plan No. L-1 and crowned at the top to shed water.

Class C concrete footings shall be constructed to embed the lower part of steel line posts, and wood anchors shall be placed on wood posts at grade depressions wherever the Engineer determines tension on the line wires tend to pull the post from the ground. The concrete footings shall be 3 feet deep by 12 inches in diameter and crowned at the top.

Where solid rock is encountered without an overburden of soil, line posts shall be set into the solid rock a minimum depth of 14 inches, and end, corner, gate, and pull posts a minimum depth of 20 inches into the solid
rock. The hole shall have a minimum dimension 1 inch greater than the largest dimension of the post section to be set. The posts shall be cut before installation to lengths which give 4-1/2 feet of post above ground, or if the Contractor so elects, 6 foot posts set 18 inches into the solid rock may be used.

After the post is set and plumbed, the hole shall be filled with grout consisting of one part Portland cement and three parts clean, well graded sand. The grout shall be thoroughly worked into the hole so as to leave no voids. The grout shall be crowned to carry water away from the post. Where posts are set in the above manner, anchor plates and concrete footings will not be required.

Where solid rock is covered by an overburden of soil or loose rock, the posts shall be set to the full depth of 2-1/2 feet unless the penetration into solid rock reaches the minimum depths specified above, in which case the depth of penetration may be terminated. When the depth of the overburden is greater than 12 inches, anchor plates will be required on the steel line posts, and concrete footings shall be constructed from the solid rock to the top of the ground on steel end, gate, corner, and pull posts. When the depth of overburden is 12 inches or less, anchor plates and concrete footings will not be required. Grouting will be required on the portion of the post in solid rock.

Steel braces shall be anchored to soil or loose rock with a Class C concrete footing not less than 18 inches on any one side and set in solid rock to a minimum depth of 10 inches in the same manner as specified above for posts. The braces shall be set on the diagonal as shown in the Standard Plans and connected to the post with an approved connection.

Wood braces shall be dapped 1/4-inch into the posts and shall be fastened to each post with three 20d galvanized nails.

Wire braces shall consist of a 9 gage wire passed around the wood posts to form a double wire. The wire shall be fastened to each post with two staples and fastened together to form a continuous wire. The wires shall then be twisted together until the wire is in tension.

Where the new fence joins an existing fence, the two shall be attached in a manner satisfactory to the Engineer, end or corner posts being set as necessary.

Pull posts shall be spaced not more than 1000 feet apart, but spacing shall be such as to use standard rolls of wire mesh with a minimum of cutting and Waste.

Changes in alignment of 30 degrees or more shall be considered as corners, and corner posts shall be installed. Where it is deemed by the Engineer that a change in alignment of less than 30 degrees materially lessen the strength of the fence, the line post at the angle shall be supported by the addition of braces or wires in a manner satisfactory to the Engineer.

8-12.3(3)B BARBED WIRE AND WIRE MESH

After the pull posts have been placed and securely braced, the barbed wire and mesh shall be pulled taut to the satisfaction of the Engineer, and each longitudinal wire shall be cut and securely fastened to the pull post with devices customarily used for the purpose. Wire or mesh shall not be carried past a pull post, but shall be cut and fastened to the pull post independently for the adjacent spans.

After the tensioning of the wire or mesh between two pull posts, all longitudinal wires shall be properly fastened at proper height to each intervening line post.

Wire mesh and barbed wire shall be placed on the face of the post which is away from the Highway, except that on horizontal curves, the mesh and wires shall be fastened to the face on the outside of the curve unless otherwise directed by the Engineer.

Where unusual ground depressions occur between posts, the fence shall be guyed to the ground by means of a 9 gage galvanized wire attached to a deadperson of approximately 100 pounds buried 2 feet in the ground. The guy wire shall be securely attached to each strand of barbed wire and to the top and bottom wires of the wire mesh fabric in a manner to maintain the entire fence in its normal shape. If necessary to guy the fence in solid rock, the guy wire shall be anchored in a grouted hole 2 inches in a diameter and 10 inches deep. The operation of guying shall leave the fence snug with the ground.

8-12.3(3)C VERTICAL CINCH STAYS

Vertical cinch stays shall be installed midway between posts on both types of fence. The wire shall be twisted in such a manner as to permit weaving into the horizontal fence wires to provide rigid spacing. All barbed wires and the top, middle, and bottom wire of the wire mesh shall be woven into the stay.
8-12.3(3)D WIRE GATES

The wire mesh fabric shall be taut and securely tied to the frame and stays in accordance with recognized standard practice for wire gate construction.

Welded connections on gate frames shall be treated as specified for chain link fence gates.

The drop bar locking device for double wire gates shall be provided with a footing of Class C concrete 12 inches in diameter and 12 inches deep, crowned on top and provided with a hole to receive the locking bar. The diameter and depth of the hole in the footing shall be as specified by the manufacturer of the locking device.

8-12.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Chain link fence, and wire fence, will be measured by the linear foot of completed fence, along the ground line, exclusive of openings.

8-12.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-12 will be made only at the Contract unit prices Bid for the pay items listed or referenced below:

1. “Chain Link Fence, (Type)”, per linear foot.
2. “Wire Fence (Type)”, per linear foot.

 The Contract unit price for “Chain Link Fence, (Type)” and “Wire Fence, (Type)” shall include all costs for the Work required to furnish and install a complete fence including posts, fabric, tension wire, concrete footings, excavation, backfill and compaction, and all incidentals.

3. “Chain Link Gate, Single 6 Ft. Wide”, per each.
4. “Chain Link Gate, Double 14 Ft. Wide”, per each.
5. “Chain Link Gate, Double 20 Ft. Wide”, per each.
6. “Wire Gate, Single, 14 Ft. Wide”, per each.
7. “Wire Gate, Double, 20 Ft. Wide”, per each.

 The Contract unit price for chain link gate and wire gate of the type specified shall include all costs for the Work required to furnish and install a complete gate including posts, fabric, concrete footings, excavation, backfill and compaction, and all incidentals including locks and keys.

8. Other payment information.

 When there is no clearing and grubbing item included on the Bid Form, the Work required to clear and grub the area around the proposed fence shall be included in the Contract unit price for the fence or gate.

SECTION 8-13 MONUMENT CASES

8-13.1 DESCRIPTION

This Work consists of furnishing and setting survey monument frame and cover castings, and removing and resetting monument castings which may be covered over, damaged, or otherwise rendered useless due to construction activities.

8-13.2 MATERIALS

Materials shall meet the requirements of the following Sections:

Monument Frame and Covers 9-22
8-13.3 CONSTRUCTION REQUIREMENTS

8-13.3(1) REFERENCE POINTS
The Engineer will reference all monuments in advance of construction and will reset the points and grades at the proper time.

It shall be the responsibility of the Contractor to furnish and install required castings and Materials in accordance with the Drawings as and where directed by the Engineer. The Contractor shall carefully protect all reference points to the monuments and shall give the Engineer reasonable notice of the schedule for monument work in order to avoid destruction of the points.

The monument will be furnished and set by the Engineer.

8-13.3(2) FURNISH AND PLACE MONUMENT CASTINGS
Where indicated on the Drawings or where designated by the Engineer, the Contractor shall furnish and install Type 020 monument frames and covers to the lines and grades established by the Engineer.

8-13.3(3) ADJUST EXISTING MONUMENT CASTINGS TO GRADE
Existing monument castings shall be adjusted to grades in accordance with Section 7-20.3(1).

8-13.3(4) RESET OR RELOCATE MONUMENT CASTINGS
When monument castings are required to be relocated, or removed and reset, the Contractor shall give the Engineer a minimum advance notice of 5 Working Days to allow time for the Engineer to establish offset reference points.

The Contractor shall remove monument castings as required during construction and shall store the castings in a safe place.

Monument castings designated for removal and not reused on the Project, shall be carefully removed and salvaged in accordance with Section 2-02.3(7)A.

The Contractor shall give the Engineer a minimum notice of 5 working Days before resetting monument castings to allow time for the Engineer to set reference points for locating monument castings.

The monument castings shall be reset by the Contractor at street grade in locations designated by the Engineer.

The Contractor shall replace lost or damaged castings with new castings.

8-13.3(5) MISSING AND BROKEN CASTINGS, AND EXTRA WORK
Where an existing monument or benchmark is not identified on the Drawings as not having a casting, or not having a broken casting, or where extra Work is directed by the Engineer which may adversely impact an existing casting, the Contractor shall immediately notify the Engineer.

Where an existing casting is to be removed and replaced, the Work shall be as specified in Sections 8-13.3(1), and 8-13.3(4), and as directed by the Engineer. Payment will be made in accordance with “Reset Monument Frame and Cover”.

Where it is found that a casting is missing, the Work shall be as specified in Sections 8-13.3(1) and 8-13.3(2), and as directed by the Engineer. Payment will be made in accordance with “Monument Frame and Cover”.

Where it is found that extra Work may adversely impact an existing casting, monument, or benchmark, the Work shall be as specified in Sections 8-13.3(1), and 8-13.3(4), and as directed by the Engineer. Payment will be made in accordance with “Reset Monument Frame and Cover”.

8-13.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.
8-13.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-13 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Monument Frame and Cover”, per each.
 The Contract unit price for “Monument Frame and Cover” shall include all costs for the Work required to furnish and set the monument castings.

2. “Reset Monument Frame and Cover”, per each.
 The Contract unit price for “Reset Monument Frame and Cover” shall include all costs for the Work required to remove, store, and reset the monument castings.

3. “Relocate Monument Frame and Cover”, per each.
 The Contract unit price for “Relocate Monument Frame and Cover” shall include all costs for the Work required to remove, store and reset the monument casting in a new location.

4. Other payment information.
 Lost or damaged castings resulting from the Contractor’s operations as specified in Section 8-13.3(4) shall be replaced with a new Type 020 casting at no cost to the Owner.

SECTION 8-14 CEMENT CONCRETE SIDEWALKS

8-14.1 DESCRIPTION

This Work shall consist of constructing cement concrete sidewalks, thickened edge for sidewalk, monolithic curb and sidewalk, curb ramps, and bus shelter pads, including excavation for the depth of the sidewalk and Subgrade preparation, in accordance with these Specifications and as shown on the Drawings and Standard Plan No. 420 through 423, or as designated by the Engineer.

8-14.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement Concrete Class 5(3/4)</td>
<td>5-05.3(1)</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Aggregates</td>
<td>9-03</td>
</tr>
<tr>
<td>Premolded Joint Filler</td>
<td>9-04.1</td>
</tr>
<tr>
<td>Concrete Curing Materials and Admixtures</td>
<td>9-23</td>
</tr>
</tbody>
</table>

Slump of the concrete mix shall not exceed 3-1/2 inches.

Lamp black coloring agent for matching the color of newly constructed cement concrete sidewalks to the color of adjacent existing cement concrete sidewalks shall be added to the concrete during mixing in an amount not to exceed 1-1/2 pounds per cubic yard of concrete. No lamp black shall be used in curb ramps.

8-14.3 CONSTRUCTION REQUIREMENTS

8-14.3(1) GENERAL

The curb and gutter section shall be placed prior to the placement of the sidewalk section unless otherwise directed by the Engineer. Where sidewalk construction is in an area with exposed tree roots 2 inch or greater in diameter, the Contractor shall work with the Engineer as indicated in Section 1-07.16(2).

8-14.3(2) EXCAVATION AND SUBGRADE

Excavation for sidewalks shall be as described in Section 2-03. Where designated by the Engineer, unsuitable Material in the Subgrade shall be removed to a depth determined by the Engineer and then backfilled with suitable Material.

Embankments shall be compacted by Method B as specified in Section 2-03.3(14)D.
Before the forms are set, the Subgrade shall be graded to within 1 inch of established grade and the area between the sidewalk and the adjacent private property line shall be shaped to line, grade, and section shown on the Drawings.

If the Drawings call for sidewalk drains or the Engineer directs sidewalk drains to be installed, they shall be installed before forms are placed. Sidewalk drains shall be installed according to Section 7-01 and Standard Plan No. 241.1b.

8-14.3(3) FORMS AND FINE GRADING

Forms shall conform to requirements specified in Section 5-05.3. Wood forms shall be 2” x 4” (nominal) in lengths of not less than 10 feet. Steel forms may be used upon approval of the Engineer. Forms shall be staked to a true line and grade. A Subgrade template shall then be set upon the forms and the fine grading completed so that the compacted Subgrade shall be a minimum of 3-1/2 inches below the top of the forms. The Subgrade shall be thoroughly dampened prior to the time the concrete is placed.

Forms shall be provided around all street name sign posts and traffic sign posts that are placed in concrete areas. Forms used for this purpose shall provide a 1 foot square or 1 foot diameter blockout, as approved by the Engineer.

Forms for the curb section of monolithic curb and sidewalk shall be as specified in Section 8-04.3(1)A.

8-14.3(4) PLACING AND FINISHING CONCRETE

8-14.3(4)A PLACING CONCRETE

The concrete shall be spread uniformly between the forms and thoroughly consolidated. Through joints and dummy joints shall be located and constructed in accordance with Section 8-14.3(6). In construction of through joints, the premolded joint filler shall be adequately supported straight and vertical until the concrete is placed on both sides of the joint.

Whenever castings are located in the sidewalk area, joints shall be installed at the casting location to control cracking of the sidewalk. Concrete sidewalk placed around fire hydrant shall include reinforcing steel and a joint with 3/8 inch premolded joint filler as detailed on Standard Plan No. 311a. Concrete sidewalk placed to accommodate a tree pit with a tree grate shall include a concrete collar with reinforcing steel and a joint with 3/8 inch premolded joint filler as indicated on Standard Plan No. 100b, or a concrete thickened edge as indicated on Standard Plans Nos. 131 and 420. If spacing of joints or scoring is such that installation of joint Material would be unsuitable, the Contractor shall install rebar to strengthen the sidewalk section as required by Section 5-05.3(9) for castings in the pavement area.

Dummy joints shall be formed by first cutting a groove in the concrete with a tee bar to a depth equal to, but not greater than the joint filler Material, and then working the premolded joint filler into the groove. Premolded joint filler for both through and dummy joints shall be positioned in true alignment at right angles to the line of the sidewalk and be normal to and flush with the surface. Where the sidewalk is contiguous with the curb, it shall be constructed with a thickened edge as shown on Standard Plan No. 420.

After the concrete has been thoroughly compacted and leveled, it shall be floated with wood floats and finished at the proper time with a metal float. Joints shall be edged with a 1/4 inch radius edger and the sidewalk edges shall be tooled with a 1/2 inch radius edger.

Additional requirements for placing concrete in cold weather shall be as specified in Section 5-05.3(14).

Placing concrete for the curb section of the monolithic curb and sidewalk shall be as specified in Section 8-04.3(1)B.

8-14.3(4)B FINISHING CONCRETE

The surface shall be brushed with a fiber hair brush of an approved type in a transverse direction except that at driveway and alley crossings it shall be brushed in a longitudinal direction. The placing and finishing of all sidewalk shall be performed in a manner acceptable to the Engineer, and the tools used shall be acceptable to the Engineer. After brush finish, the edges of the sidewalk and all joints shall be lightly edged again with an edging tool to give it a finished appearance.
Sidewalk typically 120 feet in length or less as determined by the Engineer, shall be scored to match the pattern of existing sidewalk to which new sidewalk joins unless directed otherwise by the Engineer. All other sidewalk shall be divided into panels by scoring 1/4 inch deep in the manner indicated on Standard Plan No. 420.

Additional requirements for finishing concrete in cold weather shall be as specified in Section 5-05.3(14).

8-14.3(5) CURING AND PROTECTION

The curing Materials and procedures specified in Section 5-05.3(13) shall prevail, except that white pigmented curing compounds shall not be used on sidewalks. The curing agent shall be applied immediately after brushing and shall be maintained for a period of 5 Days.

The Contractor shall have readily available sufficient protective covering, such as waterproof paper or plastic membrane, to securely cover the sidewalk pour of an entire Day in event of rain or other unsuitable weather.

The sidewalk shall be protected against damage or defacement of any kind until it has been accepted by the Owner.

Additional requirements for curing in hot weather shall be as specified in Section 5-05.3(13)C. Additional requirements for curing in cold weather shall be as specified in Section 5-05.3(14).

Curing for the curb section of the monolithic curb and sidewalk shall be as specified in Section 8-04.3(1)E.

8-14.3(6) THROUGH AND CONTRACTION JOINTS

Standard locations for through joints for sidewalks are:

1. At street margins produced and at 30-foot or 28-foot intervals.
2. To separate concrete driveways, stairways, curb ramps and their landings from sidewalks.
3. Around the vertical barrel of fire hydrants, around utility poles and large diameter underground utility cover castings when located in the sidewalk area.
4. Longitudinally between concrete walks, curbs, paved planting strips and solid masonry or concrete walls where they abut.
5. To match as nearly as possible the through joints in the adjacent pavement and curb when sidewalk abuts curb.

Transverse Contraction joints (dummy joints) shall be constructed with premolded Material 1/4-inch thick by 2 inches wide, and set at approximately 15-foot intervals, or as directed by the Engineer. At no time shall joint spacing exceed 15 feet.

Transverse and longitudinal through joints as shown on Standard Plan No. 420 shall be 1/2-inch thick premolded non-extruding joint Material, cut to a width equal to the full depth of the concrete, where located, plus 1/2-inch. When installed, they shall be placed with top edge 1/8-inch below the finished surface of the concrete, in a perpendicular plane to the surface and with the bottom edge embedded in the Subgrade. All joints shall be in straight alignment, except where placed in curved locations as required by the Drawings.

Construction joints for sidewalks shall conform to the applicable requirements for through joints for pavement except for thickness of joint Material being 3/8 inch and width of 2 inches. The top edge shall be 1/8-inch below the finished surface of the sidewalk. At no time shall joint spacing exceed 15 feet.

8-14.3(7) CURB RAMP, TYPE 1

Curb Ramp, Type 1 shall be installed at locations where the Drawings call for installation of curb ramps along with new sidewalk installed as a part of the same Contract.

Curb ramp locations designated on the Drawings are schematic and the exact location will be marked in the field by the Engineer. See Section 8-22.3(1) for coordination with stop bar and crosswalk pavement marking. The Contractor shall give the Engineer at least 3 Working Days advance notice. Where curb ramps are to be constructed, the Contractor shall construct monolithic depressed curb and sidewalk. Curb ramps shall be constructed separately from the sidewalk to produce a definite break line between the ramp and the sidewalk. A 3/8 inch non- extruded through joint Material shall be installed between the curb ramp and the sidewalk with edging as specified in Section 8-14.3(4).
The triangular shaped sidewing areas shall be brush finished with brushing parallel to the curb face. The adjacent sidewalk “V” groove scoring pattern shall not extend into the curb ramp sidewing areas. The inclined plane of the ramp shall have a coarse textured surface similar to the impression which is obtained through the use of a 3/4 inch x 9-1/2 flattened expanded metal mesh screen pressed into the fresh concrete. The long axis of the diamond shaped impression shall be perpendicular to the curb line.

The Subgrade for curb ramps shall be graded, compacted and formed to provide a minimum concrete depth of 6 inches adjacent to the curb and tapering to a minimum depth of 3-1/2 inches at the back terminus. Concrete for curb ramps shall not contain any coloring Additives, be overlayed, or be topped. Curb ramps shall be considered as beginning at a point flush with the pavement and terminating at a point flush with the sidewalk or sidewalk landing. The sloping triangular shaped sidewings are considered part of the curb ramp.

8-14.3(8) CURB RAMP, TYPE 2
Curb Ramp Type 2 shall be installed at locations where the Drawings require removal of existing curb and sidewalk improvements and where new sidewalk immediately adjacent to the new curb ramp is not required by the Contract Documents. Curb ramp locations designated on the Drawings are schematic and the exact location will be marked in the field by the Engineer. See Section 8-22.3(1) for coordination with stop bar and crosswalk pavement marking. The Contractor shall give the Engineer at least 3 Working Days advance notice.

Curb Ramp Type 2 shall consist of the following Work:
1. Saw cutting existing concrete sidewalk and curb required for curb ramp installation.
2. Removal and disposal of all sidewalk, asphalt, sod, etc., plus required excavation in the area of the curb ramp.
3. Removal and disposal of all curb, including pavement under the curb, from the area of the curb ramp.
4. Removal and disposal of all pavement and asphalt overlay from the face of the curb to the cut line used to remove the curb.
5. Installation of the curb ramp as described in Section 8-14.3(7).
6. Replacement of all removed pavement to match existing.
7. Shaping existing granite curb, when present, to a non-skid surface.

8-14.3(9) BUS SHELTER FOOTING
The Contractor shall construct a bus shelter footing according to the details shown on Standard Plan No. 423 unless indicated otherwise on the Drawings. Prior to construction, the Contractor shall notify METRO so that the installation of the bus shelter by METRO forces shall be coordinated effectively.

8-14.3(10) INTERLOCKING CONCRETE PAVERS
8-14.3(10)A GENERAL
Cement concrete sidewalk and curbs shall be placed and completely cured prior to placing concrete pavers shown on Drawings.

8-14.3(10)B PRESSURE MOLDED INTERLOCKING CONCRETE PAVER
8-14.3(10)C BASE COURSE
In areas where crushed rock base is to be placed between the existing Subgrade and the sand bedding layer, the base course shall be spread in layers not exceeding 4 inches after compaction. Compaction shall be at 95% maximum density while at optimum moisture in accordance with Section 2-09.

8-14.3(10)D BEDDING SAND
After crushed rock base course installation has been approved by the Engineer, the bedding sand shall be spread uniformly over the working area and screeded accurately to the limit indicated on the Drawings. The screeded and leveled surface shall not be disturbed in any manner. Any area of bedding sand, which become compacted by any means (including foot prints), shall be removed immediately, and the bedding sand shall be replaced and re-screeded to a loose compacted condition.
Sand shall not be placed more than 6 feet ahead of pavers. Sand shall not be allowed to sit overnight. Filter fabric shall be placed between the sand bed and the leveling course.

8-14.3(10)E PAVER BLOCK PLACEMENT

Pavers shall be placed on the screeded sand from the low side to the high side, in a herringbone pattern. Joints between pavers shall be 1/8 inch.

The pavers must not be placed so that they are touching. Development of interlock depends on the use of narrow joints filled with compacted sand.

Full pavers shall be laid first with the gaps at the edges filled with standard edge pieces or with pieces cut to fit. The pieces shall not be less than 25% of a full paver. Pavers shall be cut to a straight even surface without cracks or chips. Cutting shall be done with a masonry saw or a guillotine cutter. The cut surface shall be at 90 degrees to the top/bottom of the paver. Any cut paver failing to meet this requirement shall be discarded.

Except where it is necessary to correct minor variations in the laying pattern, pavers should not be hammered into positions. The face shall be laid in such a manner that the paver is forced into a space.

It is required that pavers be laid from at least three bundles to minimize the effect of color variation. Pre manufactured edging material shall be installed directly adjacent to concrete curb or sidewalk.

8-14.3(10)F COMPACTION

After placing the pavers, the Contractor shall use a vibrating plate compactor to consolidate the pavers and sand to the finished grade. Compaction shall be continued until the level of the pavers has stabilized.

The plate compactor shall be a high frequency, low amplitude vibrator of sufficient size to compact the sand layer and have a plate surface of at least 2-1/2 square feet.

Compaction shall be done as close as possible to within three (3) feet from the overlaid paver laying faces. At no time shall the length of uncompacted pavers exceed six (6) feet.

Initial compaction shall be completed before any joint filling.

The pavers shall be compacted at the completion of each day’s laying.

Any pavers that are cracked or structurally damaged during compaction shall be removed and replaced at no expense to the Owner.

8-14.3(10)G FILLING JOINTS

As soon as practicable after compaction, joint filling sand shall be swept into joints. Excess sand shall be swept from the top surface of the pavers before vibrating. A vibrating plate compactor shall be run over the pavers to work the sand into the joints. This procedure shall be done until the joints do not need to receive any more sand.

The Contractor shall return one week after this last placement of sand to sweep and vibrate additional sand into the paver joints. This process shall be repeated on a weekly basis until the joints are filled and do accept no more sand.

8-14.3(10)H FINISHED SURFACE

After final compaction, the finished surface shall be true to grade and not vary by more than 1/8 inch when tested with a 10 foot straight edge. Any pavers or paver areas which do not meet these tolerances shall be removed and reset.

8-14.3(10)I MAINTENANCE

The pavement shall be maintained form installation through the maintenance period. Maintenance period shall for two years from the date of acceptance by SPU.

Maintenance shall include, but not be limited to, the following:

1. Resetting settled pavers to finished grade, which have settled or rutted greater than 3/8 inch in 10 feet in any direction.
2. Periodic joint filling of sand shall be reviewed on the following schedule: 1st week, 2nd week, 4th week, 3rd month, 6th month, 9th month, 12th month, 15th month, 18th month, 21st month, and 24th month.
8-14.3(11) STRIPPING FORMS AND FINISHING

Stripping forms and finishing for the curb section of the monolithic curb and sidewalk shall be as specified in Section 8-04.3(1)D.

The concrete shall be cured for at least 72 hours by one of the methods specified in Section 5-05.3(13)B.

8-14.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Sidewalk, Cement Concrete” will be by the square yard for the surface of concrete walk placed. Deductions will be made for blocked out areas, castings, or other discontinuities in the sidewalk 9 square feet or larger.

Measurement for “Sidewalk, Thickened Edge” will be by the linear foot along the face of the thickened edge for the length constructed. Measurement for payment of thickened edge will not be made through curb ramps or driveways.

Measurement for mineral aggregate of the type specified will be as specified in Section 4-01.4.

Measurement for monolithic curb and sidewalk shall be considered as three component sections as follows:

1. The first component, “Sidewalk, Cement Concrete” shall be that portion of the combined section not including the area within 6 inches of the curb face and shall be the square yards of actual sidewalk constructed.

2. The second component, “Curb, Cement Concrete,” shall be that portion of the combined section beginning at back of curb and extending to the face of the curb, and shall be the actual linear feet of curb constructed, as measured along the front curb face.

3. The third component, “Sidewalk, Thickened Edge,” shall be the triangular cross-sectional portion of the combined section below the bottom of sidewalk and butting against the back of the curb section. The thickened edge shall be the actual linear feet of thickened edge constructed, as measured along the face of the thickened edge.

Measurement for “Interlocking Concrete Pavers” will be by the square yard of total concrete paver surface area installed.

Measurement for “Interlocking Paver Maintenance, Min. Bid = _____” will be by lump sum.

8-14.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-14 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Sidewalk, Cement Concrete”, per square yard.

 The Contract unit price for “Sidewalk, Cement Concrete” shall include all costs for the Work required to construct the sidewalk as specified including the earth Work required to excavate Material from the top surface of the sidewalk to the sidewalk Subgrade, Subgrade preparation, and furnishing and installing all Materials as specified.

 Payment for the volume of earth Work involved in excavating Material above the top surface of the sidewalk will be made in accordance with Section 2-03 “Common Excavation”.

 All costs for reinforcing bars constructed around castings shall be included in the Contract unit price for “Sidewalk, Cement Concrete.”

2. “Sidewalk, Thickened Edge”, per linear foot.

 The Contract unit price for “Sidewalk, Thickened Edge” shall include all costs for the Work required to construct the thickened edge where required.

3. “Curb Ramp, Cement Concrete, (Type)”, per each.
The Contract unit price for “Curb Ramp, Cement Concrete, Type 1” shall include all costs for the Work required to construct the curb ramp as specified including the ramp, the sidewings, joint Materials, and excavation.

The Contract unit price for “Curb Ramp, Cement Concrete, Type 2” shall include all costs for the Work required to remove existing improvement within area of new curb ramp and to construct the curb ramp at “cut-in” locations as specified in Section 8-14.3(8).

4. “Bus Shelter Pad”, per square yard.
 The Contract unit price for “Bus Shelter Pad” shall include all costs for the Work required to construct the bus shelter pads as specified.

5. “Interlocking Concrete Pavers”, per square yard.
 The Contract unit price for “Interlocking Concrete Pavers” shall include all costs for the Work required to furnish and install the interlocking concrete pavers as specified in Sections 8-14.3(10)A through 8-14.3(10)H.

 The Contract unit price for “Interlocking Paver Maintenance, Min. Bid = _____” shall include all costs for the Work required to furnish and maintain the interlocking paver area as specified in Section 8-14.3(1)I.

 To prevent unbalanced Bids, the price Bid for “Interlocking Paver Maintenance, Min. Bid = _____” shall not be less than the minimum price noted in the Bid Form. Bids received on this Contract which contain a cost for interlocking paver maintenance of less than the minimum Bid will be rejected.

 Payment shall be made at the rate of 25 percent of the Bid item lump sum for “Interlocking Paver Maintenance, Min. Bid = _____” on the following payment dates: 25% on the last day of the sixth month, 25% on the last day of the twelfth month, 25% on the last day of the eighteenth month, and the final 25% on the last day of the twenty-fourth month unless 5 Working Days after all necessary corrections and replacements have been made. The Contractor shall submit a statement 5 Working Days prior to each payment date including the schedule for work provided to maintain the interlocking pavers during that period as required in the Specifications. In the event the Engineer finds the Contractor failing to perform any of the Work required, the Owner may:

 a. Cause the Work to be done by others and the costs thereof deducted from the Contractor’s payment or payments. Should the money due the Contractor be insufficient to cover such costs, the Owner will have the right to recover the balance from the Contractor.

 b. Withhold a portion, or all, of the Contractor’s payment. Money that is withheld for non-performance shall not be recovered by the Contractor. The amount withheld shall be determined by the Engineer.

 c. Terminate the Contract.

 The above remedies shall not waive the Owner’s rights to pursue other corrective measures or remedies which may be permitted by law.

 At the end of the interlocking paver maintenance period, any paver or paver area which, in the opinion of the Engineer, does not comply with the Specifications will be rejected. The final payment will not be made to the Contractor until all corrections and replacements have been made and approved.

7. Other payment information.
 Payment for imported mineral aggregate of the type specified for sidewalk fill will be made per ton in accordance with Section 4-01.5.

 Payment for sidewalk drains will be made in accordance with Section 7-01.5.

 Payment for monolithic curb and sidewalk or monolithic curb, gutter and sidewalk will be made for the individual Bid items as described in Section 8-14.4.

 Payment for relocations of signs will be made in accordance with Section 8-21.5.

 Payment for finishes, edging, joints, joint Materials, and other minor Work incidental to these constructions shall be included in the Contract unit prices listed above.
Payment for furnishing and installing the concrete collar for tree grate (see Section 8-02.3(21)) will be paid as “Sidewalk, Thickened Edge”.

SECTION 8-15 RIPRAP

8-15.1 DESCRIPTION
This Work shall consist of furnishing and placing riprap protection, including the furnishing and placing of geotextile and filter blanket protection of the type specified at the locations and to lines and dimensions shown in the Drawings or established by the Engineer.

Riprap will be classified as heavy loose, light loose, hand-placed, sack, and concrete slab riprap.

8-15.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Material</td>
<td>9-03.16</td>
</tr>
<tr>
<td>Gravel Backfill for Drains</td>
<td>9-03.12(4)</td>
</tr>
<tr>
<td>Geotextile</td>
<td>9-05.22</td>
</tr>
<tr>
<td>Heavy Loose Riprap</td>
<td>9-13.2(2)</td>
</tr>
<tr>
<td>Light Loose Riprap</td>
<td>9-13.2(3)</td>
</tr>
<tr>
<td>Hand Placed Riprap</td>
<td>9-13.3</td>
</tr>
<tr>
<td>Sack Riprap</td>
<td>9-13.4</td>
</tr>
<tr>
<td>Quarry Spalls</td>
<td>9-13.7</td>
</tr>
</tbody>
</table>

Filter Material shall meet the gradation requirements for Ballast. The geotextile shall be as specified in Section 9-05.22, Permanent Erosion Control, High Survivability. Class will be specified in the Contract.

8-15.3 CONSTRUCTION REQUIREMENTS

8-15.3(1) GENERAL
The foundation for riprap shall be excavated below probable scour or to the elevation shown in the Drawings. No stones shall be laid or concrete placed until the foundation is approved by the Engineer. Excavation below the level of the intersection of the slope to be riprapped and the adjacent original ground, or the channel floor, or the slope, shall be classified as ditch excavation in accordance with Section 2-10. Before placing riprap, the slopes shall be dressed to the lines and grades as staked by the Engineer.

If specified in the Contract or directed by the Engineer, the slope or the area to be protected shall first be covered with a geotextile. A filter blanket shall be required for hand-placed riprap, sack riprap and concrete slab riprap. A filter blanket is a layer of selected aggregate, or a mineral aggregate, of specified thickness placed over the geotextile as a cushioning medium upon which the riprap is placed.

8-15.3(2) LOOSE RIPRAP
Loose riprap shall be placed in such a manner that all relatively large stones shall be essentially in contact with each other, and all voids filled with the finer Materials to provide a well graded compact mass. The stone shall be dumped on the slope in a manner that ensures the riprap attains its specified thickness in one operation. When dumping or placing, care shall be used to avoid disturbing the underlying Material. Placing in layers parallel to the slope will not be permitted. A 12-inch tolerance for loose riprap will be allowed from slope plane and grade line in the finished surface.

8-15.3(3) HAND-PLACED RIPRAP
The stones shall be laid by hand on prepared slopes to such thickness as may be ordered by the Engineer. The riprap shall be started at the toe of the embankment by digging a trench and placing a course of the largest stones therein. Each stone shall be placed so that it shall rest on the slope of the embankment and not wholly on the stone below, and it shall be thoroughly tamped or driven into place. The exposed face of all hand-placed riprap shall be made as smooth as the shape and size of the stones permit and shall not vary more than 3 inches from a plane surface on the required slope.
8-15.3(4) SACK RIPRAP

Sack riprap conforming to the requirements of Section 9-13.4 shall be deposited in the trench and on the slope of the embankment to be protected in accordance with the Drawings or as directed by the Engineer.

The concrete shall be placed in the sacks to a uniform volume leaving sufficient room for effectively tying the sacks. The sacks shall then be placed in longitudinal rows in the trench and on the slope to lie parallel with the slope. In placing the sacks on the slope, their outside faces shall be laid against a heavy timber header or screed so that each layer is true to line and grade. The tied end of the sack shall be turned under and the sack firmly pressed into place against the header or screed. Each sack shall rest equally on two sacks below it such that vertical joints shall be staggered in succeeding horizontal rows. Sack riprap shall not be placed in freezing weather, and Work damaged by frost shall be removed and replaced by the Contractor.

8-15.3(5) CONCRETE SLAB RIPRAP

Concrete slab riprap shall consist of concrete placed in slabs 4 inches thick unless otherwise shown in the Drawings or directed by the Engineer.

A trench of the dimensions shown in the Drawings or as staked by the Engineer shall be dug at the toe of the slope. The forms shall be of the depth of the concrete to be placed.

The panel length shall be 10 feet unless otherwise shown in the Drawings, and the concrete panels shall be placed in layers. The joints between panels in one layer shall alternate with the joints in progressive layers to present a staggered and regular joint pattern among all layers. Care shall be taken not to injure the concrete in place when constructing the fill-in panels. Expansion joint Material will not be required at the joints.

The concrete shall be placed and rodded true to the plane of the embankment and shall be finished smooth by troweling or other methods approved by the Engineer. The edges shall be tooled to a 1/2 inch radius.

The riprap shall be protected from flood waters and tides during the hardening of the concrete.

Weep holes shall be constructed every 10 feet. All Material placed in back of the riprap and within 18 inches of weep holes shall be gravel backfill for drains.

8-15.3(6) QUARRY SPALLS

Quarry spalls shall be placed in ditches and channels, and on slopes to be protected in accordance with the Drawings or as directed by the Engineer. After placement, the quarry spalls shall be compacted by tracked Equipment making a minimum of three passes. On steep slopes, the Contractor shall compact the quarry spall in a manner approved by the Engineer.

8-15.3(7) FILTER BLANKET

When required, a filter blanket shall be placed on the prepared slope or area to the thickness specified in the Drawings using methods which do not cause segregation of particle sizes within the bedding. The surface of the finished layer shall be even and free from mounds or windrows. Additional layers of filter Material, when required, shall be placed using methods which do not cause mixing of the Materials in the different layers.

8-15.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Loose riprap will be measured by the ton of riprap actually placed.

Hand-placed riprap will be measured by the cubic yard of riprap actually placed.

Filter Material will be measured by the cubic yard in the hauling conveyance at the point of delivery on the Project.

Sack riprap will be measured by the cubic yard. The number of cubic yards of sack riprap placed shall be computed from the number of sacks of cement actually used in the concrete mix and the yield per batch of concrete as determined by the Engineer from actual predetermined measurement.

Concrete slab riprap will be measured by the cubic yard based on the dimensions of the slabs placed and accepted.

Quarry spalls will be measured by the ton of spalls actually placed.
Geotextile will be measured by the square yard as specified in Section 2-10.4.

8-15.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-15 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Heavy Loose Riprap”, per ton.
4. “Sack Riprap”, per cubic yard.
5. “Concrete Slab Riprap”, per cubic yard.

The Contract unit price for “Heavy Loose Riprap”, “Light Loose Riprap”, “Hand-Placed Riprap”, “Sack Riprap”, and “Concrete Slab Riprap” shall include all costs for the Work required to furnish and install the riprap of the type specified including all excavation and backfill above the level of the intersection of the slope to be riprapped and the adjacent original ground or the channel floor or channel slope as specified in Section 8-15.3(1). When it is necessary to dump and sort individual loads, payment will be made only for that portion accepted by the Engineer.

All costs in connection with constructing the weep holes and with excavation and backfilling with gravel backfill for drains, as specified in Section 8-15.3(5), shall be included in the Contract unit price for “Concrete Slab Riprap”.

The unit price for “Quarry Spalls” shall include all costs for the Work required as specified in Section 8-15.3(6).

The Contract unit price for “Filter Material” shall include all costs for the Work required as specified in Section 8-15.3(7).

8. Other payment information.

Payment for ditch excavation as defined in Section 8-15.3(1) will be made in accordance with Section 2-10.5.

Payment for “Geotextile” will be made in accordance with Section 2-12.5.

SECTION 8-16 CONCRETE SLOPE PROTECTION

8-16.1 DESCRIPTION

This Work shall consist of constructing concrete slope protection, in accordance with these Specifications and the details shown in the Drawings, at the locations and in conformity with the lines, grades, and dimensions as staked by the Engineer.

8-16.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Class B</td>
<td>6-02</td>
</tr>
<tr>
<td>Concrete Slope Protection</td>
<td>9-13.6</td>
</tr>
<tr>
<td>Semi-Open Concrete Masonry Units Slope Protection</td>
<td>9-13.6(2)</td>
</tr>
<tr>
<td>Poured Portland Cement Concrete Slope Protection</td>
<td>9-13.6(3)</td>
</tr>
<tr>
<td>Pneumatically Placed Portland Cement Concrete Slope Protection</td>
<td>9-13.6(4)</td>
</tr>
<tr>
<td>Wire Mesh</td>
<td>9-07.7</td>
</tr>
</tbody>
</table>
8-16.3 CONSTRUCTION REQUIREMENTS

8-16.3(1) FOOTING AND PREPARATION OF SLOPE
The footing for the slope protection shall be constructed in accordance with Sections 2-09 and 6-02.
The surface on which application is to be made shall be thoroughly compacted and neatly trimmed to line and grade as necessary to conform to the detail on the Drawings.

8-16.3(2) PLACING SEMI-OPEN CONCRETE MASONRY UNITS
The concrete masonry units shall be placed in a uniform plane, as indicated on the Drawings, in such a manner that they rest firmly and evenly against the slope with no rocking. The concrete masonry units shall be placed in horizontal parallel courses, and successive courses shall break joints with the preceding course to form a running bond.

8-16.3(3) CAST IN PLACE CEMENT CONCRETE
The wire mesh shall lap a minimum of one mesh spacing, and laps shall be securely fastened at the ends. During the placement of the concrete, the reinforcement shall be supported in place so as to provide a minimum of 1-1/4 inches of cover.
Where Class B cement concrete is to be placed upon the slope, the method of depositing and compacting shall result in a compact, dense, and impervious concrete which shows a uniformly plane surface.
The newly constructed concrete shall be finished by means of a wood float and shall be striated with a rustication joint as shown in the Drawings.
Curing shall be performed in accordance with Section 5-05.3(13).

8-16.3(4) PNEUMATICALLY PLACED CONCRETE
Workers: Only workers experienced in pneumatically placed concrete shall be employed; and satisfactory evidence of such experience shall be submitted when requested by the Engineer.
Equipment: The Contractor shall submit to the Engineer two copies of the manufacturer’s Specifications and operating instructions for the Equipment used. Before placement of any portion of the slope protection, the type of Equipment and method of operation shall be approved by the Engineer.
Proportions of Materials: The sand/cement ratio shall be 4-1/2 parts sand to 1 part cement based on loose dry volume.
Water shall be maintained at a constant pressure which shall be at least 15 psi above atmospheric pressure at the nozzle. For lengths of hose up to 100 feet, pneumatic pressure at the gun shall be 45 psi or greater. Pressure shall be increased 5 psi for each additional 5 foot increment over 100 feet of hose required. A steady pressure shall be maintained.
Method of Application: Portland cement and sand shall be mixed dry, passed through a cement gun and conveyed by air through a flexible tube, hydrated at a nozzle at the end of the flexible tube, and deposited in place by air pressure.
All surfaces are to be wetted, but application shall not be made on any surface on which free water exists.
Reinforcement: The wire mesh shall lap a minimum of one mesh spacing, and laps shall be securely fastened at the ends. During the placement of the concrete, the reinforcement shall be held so as to provide a minimum of 1-3/4 inches of cover at the recess.
Finishing: The newly constructed concrete shall be finished by means of a wood float and shall be striated with a rustication joint as shown in the Drawings.
Curing: Curing shall be in accordance with Section 5-05.3(13).
Protection of Facilities: During the construction, the Contractor shall protect all retaining walls, columns and Structures from concrete splash or overspray. Suitable covering shall be provided if such protection is deemed necessary by the Engineer.
Test Cylinders: Two test cylinders shall be made for each full Day’s operation. The Contractor shall furnish the cylinders 6 inches in diameter and 12 inches high made of 3/4-inch mesh hardware cloth. The test cylinder shall be filled with concrete by utilizing the same pneumatic application described above. Contact the SPU Materials Laboratory at 386-1236 for coordinating pick-up of the test cylinders and for testing requirements.
The cylinders will be tested for the minimum compressive strength for Class B at the age of 28 Days, unless another Class of concrete is specified in the Contract.

8-16.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for concrete slope protection will be by the square yard and will include the actual area of the slope protection face covered excluding the footings. Footings will be measured by the cubic yard within neatlines indicated on the Drawings (see Section 6-02.5).

8-16.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-16 will be made at the Contract unit price Bid only for the pay items listed or referenced below:

1. “Concrete Slope Protection”, per square yard.
 The Contract unit price for “Concrete Slope Protection” shall include all costs for the Work required to construct the slope protection as specified in Section 8-16 including the Work required to construct the footing.

SECTION 8-17 RESERVED

SECTION 8-18 CEMENT CONCRETE STAIRWAYS, LANDINGS, AND STEPS

8-18.1 DESCRIPTION

This Work shall consist of constructing, on a prepared compacted Subgrade, cement concrete stairways, landings, and steps, and such subsidiary Work as may be necessary, including the construction of handrails, in accordance with these Specifications and in conformity with the lines, grades, and cross sections indicated on the Drawings, Standard Plan Nos. 440, 441 and 442, or established by the Engineer.

8-18.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement Concrete</td>
<td>5-05</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Aggregates</td>
<td>9-03</td>
</tr>
<tr>
<td>Joint and Crack Sealing Materials</td>
<td>9-04</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
<tr>
<td>Concrete Curing Materials and Admixtures</td>
<td>9-23</td>
</tr>
</tbody>
</table>

The concrete mix shall be Class 6(3/4) for steps and stairways. Landings shall be Class 5(3/4). See Section 5-05.3(1) for concrete mix requirements.

Galvanized steel pipe railing shall be fabricated from standard weight steel pipe meeting the requirements of ASTM Designation A 53. After fabrication, the railings shall be hot-dipped galvanized per ASTM A 123.

Aluminum paint for handrails shall be Formula D-1-57 aluminum paint meeting the requirements of Section 9-08.2.

Wood for railings shall be as indicated on the Drawings.

8-18.3 CONSTRUCTION REQUIREMENTS

8-18.3(1) SITE PREPARATION AND GRADING

At locations where cement concrete stairways, landings, or steps are to be constructed, the area shall be cleared, grubbed, excavated, graded, and prepared in accordance with Sections 2-01 and 2-03 to the limits indicated on the Drawings or staked by the Engineer. Where stairways, landings, or step construction is in an
area with exposed tree roots 2 inch or greater in diameter, the Contractor shall work with the Engineer as indicated in Section 1-07.16(2).

8-18.3(2) SUBGRADE PREPARATION AND FORMS
The necessary Subgrade preparation and compaction required in the construction of cement concrete stairways, landings, and steps shall meet the requirements for pavement Subgrade preparation set forth in Section 2-06.

Forms shall meet the requirements of Section 5-05.3(21) except that wood side forms shall be not less than 2 inches nominal in thickness and shall be straight and true.

8-18.3(3) REINFORCING STEEL
Reinforcing steel for cement concrete stairways shall be placed as shown on Standard Plan No. 440. The reinforcing steel shall be assembled and securely tied with annealed wire of not less than No. 16 gauge at each bar lap or crossing and be rigidly supported above the Subgrade during the concrete placement.

8-18.3(4) HANDRAIL
Handrails shall be of welded steel pipe construction, fabricated and installed as indicated on Standard Plan Nos. 440 and 442 or the Drawings. Welds shall be made by certified welders and each weld shall be ground and buffed to a smooth surface. Rails shall be hot dip galvanized according to ASTM A 123 after fabrication. If field welds are required, they shall be coated with a zinc alloy solder to a minimum thickness of 2.0 mils per ASTM A 780.

Either the railing shall be placed completely assembled at the time when stairway concrete is placed, or recesses shall be provided in the concrete for grouting the railing posts after the concrete has been placed, finished, and cured. The installed railing shall be in true alignment, on proper grade, and with posts plumb.

8-18.3(5) PLACING, FINISHING, AND CURING CONCRETE
Placing, finishing and curing concrete shall conform to the applicable requirements in Section 5-05.3, as they apply to cement concrete stairway construction.

Front and side edging of concrete stair treads shall be to a radius of 1/2 inch.

Landings for stairways shall be scored as specified for concrete sidewalks in Section 8-14 except that transverse and longitudinal scoring shall be modified as necessary to result in uniform size of squares in each landing. Where gutters are along the side of the stairways, the gutter portion of stairway landing shall be smooth finished without markings to conform with the stairway gutter.

8-18.3(6) GUTTER
Where Type 440 stairway is specified, or where a gutter is specified, a concrete gutter shall be constructed in accordance with the detail on Standard Plan No. 440. The gutter shall be constructed along and outside the stairway, adjacent to the concrete walk or landing that joins flights of stairs connecting the stairway gutters, and shall be sloped for continuous flow.

8-18.3(7) STEPS
Steps shall be constructed in accordance with Standard Plan No. 441.

The largest tread run within any flight of stairs shall not exceed the smallest tread run by more than 3/8 inch. The greatest riser height within any flight of stairs shall not exceed the smallest riser height by more than 3/8 inch.

8-18.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Excavation for stairways, landings, and gutters will be measured by the cubic yard of common excavation in accordance with Section 2-03.
Measurement of “Steps, Cement Concrete” and “Stairway, Cement Concrete, Special” will be by the square foot of tread surface installed.

“Stairway, Cement Concrete, Type 440” will be measured by the linear foot for the horizontal distance from a point 2 feet 2 inches from the back of the top tread to a point 2 feet 2 inches from the face of the bottom riser.

Handrail of the type specified will be by the linear foot of actual handrail installed measured along the top of the top rail only from end post to end post.

Concrete landings or walkways outside the stairway measurement limits will be measured as “Sidewalk, Cement Concrete” by the square yard in accordance with Section 8-14. Asphalt walks will be measured in accordance with Section 5-04.

Gutter will be measured by the linear foot along the gutter end to end including stairway slope, landing, and concrete walk where gutter is indicated on the Drawings or directed by the Engineer.

8-18.5 PAYMENT

Compensation for the costs necessary to complete the Work described in Section 8-18 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Stairway, Cement Concrete, Type 440”, per linear foot.
 The Contract unit price for “Stairway, Cement Concrete, Type 440” shall include all costs for the Work described in Section 8-18, and not otherwise provided for separately hereinafter, necessary to construct a 5-foot wide concrete stairway in accordance with Standard Plan No. 440, including gutter.

2. “Stairway, Cement Concrete, Special”, per square foot.
 The Contract unit price for “Stairway, Cement Concrete, Special” shall include all costs for the Work described in Section 8-18 and not otherwise provided for separately herein but necessary to construct a stairway in accordance with Standard Plans for Type 440 Stairway, except with a width other than 5 feet.

3. “Handrail, (Type)”, per linear foot.
 The Contract unit price for “Handrail, (Type)” of the type specified shall include the costs for the Work required to furnish, fabricate and install the handrail along the stairway or sidewalk as specified.

4. “Steps, Cement Concrete”, per square foot.
 The Contract unit price for “Steps, Cement Concrete” shall include all costs for the Work required to construct concrete steps as specified.

5. “Gutter, Cement Concrete, Type 440”, per linear foot.
 The Contract unit price for “Gutter, Cement Concrete, Type 440” shall include all costs for the Work described in Section 8-18 to construct a gutter section along the edge of stairways in accordance with the cross section indicated on Standard Plans for Type 440 Stairway.

6. Other payment information.
 Payment for excavation required for stairways, landings, and gutter sections will be paid as “Common Excavation” in accordance with Section 2-03.
 Payment for concrete landings and walkways will be made as “Sidewalk, Cement Concrete” in accordance with Section 8-14.
 Reinforcing steel shall be considered as incidental to the unit cost for stairway construction.

SECTION 8-19 CEMENT CONCRETE DRIVEWAY

8-19.1 DESCRIPTION

This Work shall consist of cement concrete driveway and alley returns constructed at the locations shown on the Drawings and where directed by the Engineer and shall be in accordance with these Specifications and the Standard Plans.
The number of private driveways may be increased over that shown on the Drawings, if required by the Engineer. Sufficient notice of the additional installations will be given by the Engineer to enable the Contractor to schedule the private driveways along with other construction in the same general area without moving Equipment back for the purpose.

Driveways for alleys shall be 8 inch depth concrete constructed as specified in the Standard Plans.

8-19.2 MATERIALS
Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-structural Cement Concrete</td>
<td>5-05</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>9-01</td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>9-03</td>
</tr>
<tr>
<td>Joint and Crack Sealing Materials</td>
<td>9-04</td>
</tr>
<tr>
<td>Reinforcing Steel</td>
<td>9-07</td>
</tr>
<tr>
<td>Curing Materials and Admixtures</td>
<td>9-23</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
</tbody>
</table>

The concrete mix shall be as specified for Class 6(1-1/2) or Class 6(3/4) (See Section 5-05.3(1)).

8-19.3 CONSTRUCTION REQUIREMENTS

8-19.3(1) EXCAVATION AND SUBGRADE
Subgrade preparation for driveways and the required compaction shall conform to the applicable requirements in Section 2-06 to provide a firm, unyielding Subgrade, acceptable to the Engineer. Where driveway construction is in an area with exposed tree roots 2 inch or greater in diameter, the Contractor shall work with the Engineer as indicated in Section 1-07.16(2).

8-19.3(2) FORMS AND FINE GRADING
Forms shall have a height of not less than the specified depth of concrete to be placed and shall be of ample strength to resist deformation. All forms shall be securely staked and braced plumb and true to line and grade.

A template shall be set upon the forms, and the Subgrade shall be fine graded and compacted to conform to the required section. Prior to the placement of concrete, the Subgrade shall be thoroughly dampened.

8-19.3(3) PLACING AND FINISHING CEMENT CONCRETE DRIVEWAY
The concrete shall be spread uniformly and consolidated between the forms (See Section 6-02.3(9)). Through joints and Contraction joints shall be located in accordance with the Standard Plan 430.1. The concrete driveway shall be brush finished with the sidewalk portion scored, all in accordance Section 8-14.3(4)B. The concrete driveway shall be brush finished with the sidewalk portion scored, all in accordance Section 8-14.3(4)B. In the construction of through joints, the premolded joint filler shall be adequately supported until the concrete is placed on both sides of the joint.

Contraction joints (dummy joints) shall be formed with a tee bar by first cutting a groove in the concrete to a depth equal to, but not greater than the joint filler Material and then working the premolded joint filler into the groove. Premolded joint filler for both through joints and dummy joints shall be positioned in true alignment and at right angles to the center line of the driveway or alley return.

After the concrete has been thoroughly compacted and leveled, it shall be floated with wood floats and finished at the proper time with a metal float. Joints shall be edged with 1/4 inch radius edger and the driveway or alley return edges shall be tooled with 1/2 inch radius edger. Curbs shall be tooled with a 1 inch radius edger.

The surface shall be brushed in a transverse direction in relation to the center line of the driveway or alley return with a fiber hair brush of approved type.

Driveways and alley returns shall not be constructed at the same time the pavement is placed unless authorized by the Engineer.
8-19.3(4) CURING AND PROTECTION

Curing Materials and procedures shall be as specified in Sections 5-05 and 9-23.

Before placing any concrete, the Contractor shall have enough protective plastic sheet on the Job Site to cover the pour of an entire Day in the event of rain or other unsuitable weather conditions.

8-19.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for cement concrete driveway and alley return will be by the square yard for the class and thickness of driveway actually placed, measured from the back of the curb to the back of the sidewalk.

8-19.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-19 will be made at the Contract unit prices Bid only for the pay item listed or referenced below:

1. “Driveway, Cement Concrete, (Thickness)”, per square yard.

2. “Driveway, Cement Concrete, HES, (Thickness)”, per square yard.

The Contract unit price for “Driveway, Cement Concrete, (Thickness)” and “Driveway, Cement Concrete, HES, (Thickness)” shall include all costs for the Work required to construct the driveway as specified, including excavation and Subgrade preparation.

Payment for alley return will be made as “Driveway, Cement Concrete, (Thickness).”

Payment for excavation below the prepared Subgrade and additional selected Materials will be made as “Common Excavation” in accordance with Section 2-03.5 and “Mineral Aggregate, (Type)” specified for ballast in accordance with Section 4-01.5.

No separate or additional payment will be made for driveway thickness, or for common excavation, greater than the thickness specified.

SECTION 8-20 RESERVED

SECTION 8-21 PERMANENT SIGNING

8-21.1 DESCRIPTION

This Work shall consist of furnishing and installing new traffic signs and posts, street designation signs, installing Owner furnished street name signs, and bus zone signs; relocating existing traffic signs, street name signs, and posts in accordance with the Drawings, these Specifications, and with Standard Plan Nos. 601b through 626, and as directed by the Engineer. The removal of signs shall be as specified in Section 2-02.

8-21.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Signing Materials</th>
<th>9-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Materials</td>
<td>9-09</td>
</tr>
</tbody>
</table>

8-21.3 CONSTRUCTION REQUIREMENTS

8-21.3(1) SIGN INSTALLATION

8-21.3(1A) TRAFFIC SIGN

The multiple panel signs and sign Structures shall be installed in accordance with the Drawings, the Standard Plans, and signing details included in the Appendix of the Project Manual.

The sign shall be mounted level and face in the direction indicated on the Drawings or designated by the Engineer.
When mounting a sign on a wood post or wood pole, 5/16-inch x 3-1/4-inch galvanized or cadmium plated lagscrews shall be used, with 1/8-inch thick x 1-inch O.D. nylon washers. For details, see Standard Plan Nos. 620 and 621.

When mounting a sign on a steel pole 0.1793 inch or thicker, the “drill & tap” method or rivnuts shall be used with 5/16-inch stainless steel bolts and 1/8-inch thick x 1-inch O.D. nylon washers. For a steel pole less than 0.1793 inch, 5/16-inch stainless steel rivnuts shall be used. On an aluminum pole, 5/16-inch bolts and aluminum rivnuts shall be used. Stainless steel sign banding shall not be used unless approved by the Engineer. For details, see Standard Plan Nos. 615 and 616.

Field repair of galvanized surfaces of drill holes shall be done with galvanized repair paint meeting the requirements of Federal Specification MIL-P-21035 (Ships) paint, high zinc dust content, galvanizing repair.

When mounting a 9-inch x 12-inch or larger sign on a parking meter post, the Contractor shall use 1/4-inch x 3-1/2-inch galvanized bolts, galvanized nuts, and 1-inch O.D. nylon washers. A smaller sign on a parking meter post shall be mounted with 1/4-inch x 3/4-inch galvanized self-tapping screws with 1-inch O.D. nylon washers. For details, see Standard Plan No. 628.

Signs mounted on span wire or mast arms shall be mounted as indicated on the Drawings and in traffic signing details shown in Standard Plan Nos. 601b and 612. Sag in the span shall be maintained between 5 percent and 8 percent. Clearance between the bottom of the sign and the roadway centerline shall be maintained at a minimum 17 feet and a maximum 19 feet. Use standard signal mounting hardware & span wire assemblies in accordance with Section 8-31. For mast arm mounting use aluminum C3X2.1 by “Drill & Tap” method.

8-21.3(1)B STREET NAME, STREET DESIGNATION, AND BUS ZONE SIGNS

Street name, street designation, and bus zone signs shall be mounted as indicated on the traffic signing details shown in the Standard Plans, unless indicated otherwise in the Contract.

8-21.3(2) POST INSTALLATION

8-21.3(2)A SIGN POST INSTALLATION

Holes for wood sign post shall be of sufficient size to allow placement and compaction of backfill Material completely around the posts. Selected backfill Material shall be placed and compacted to meet the requirements of Section 2-03. The area disturbed during wood sign post installation shall be surfaced to match the surrounding surfaces. Where a wood sign post is to be installed in an existing paved concrete area, a neat 12-inch x 12-inch cut-out shall be provided by saw cutting, or an 8-inch diameter hole shall be provided by core drilling.

Where the Drawings or the Engineer require a traffic sign post to be located within the area of new sidewalk paving, the Contractor shall provide a 12-inch square or a 12-inch diameter blockout, with depth to match the thickness of the proposed paving.

After a post is installed, and backfilled and compacted with select Material, the cutout or blockout shall be filled with Material matching surrounding Material and capped with additional Material from 3/4-inch above surrounding finished grade to finished grade, to shed water away from the post. Where concrete is the surrounding Material, a ¾ inch performed joint Material shall be placed in the joint. See Standard Plan Nos. 620, 621, and 624 for details.

When required, street name sign and bus zone sign posts shall be installed in an 8-inch diameter post hole, and backfilled with Class 5 drypack concrete as indicated in Standard Plan No. 622.

8-21.3(2)B METER POST INSTALLATION

Parking meters shall be mounted either on direct burial meter posts as detailed on Standard Plan No. 629 or on surface-mounted meter posts as shown on Standard Plan Nos. 627 and 628. The posts shall be made of either 2-inch nominal diameter standard black pipe or 2-inch diameter standard ASTM A 53 Schedule 40 galvanized pipe. Black pipe shall receive one coat of rust inhibitive primer and 2 final coats of aluminum paint.

Surface-mounted meter posts shall have a 5/16-inch thick base plate welded to the bottom with 1/4-inch fillet weld all around. The base plate and anchors shall be covered with a metal canopy made of spun aluminum as specified in Section 9-28.2(3) and filled with a non-shrink cement sand grout meeting the requirements of section 9-04.3(2).
Where a meter post is used as a sign post with no parking meter, a 2-inch diameter oak or ash wood finial shall be provided. The finial shall receive one undercoat and 2 finish coats of black exterior enamel. For details see Standard Plan No. 628.

8-21.3(3) SIGN COVERING

As indicated on the Drawings or at the direction of the Engineer, the Contractor shall be prepared to provide a temporary covering to hide or expose select signs to maintain safety and control of Project operations. The covering shall consist of 4 mil minimum thickness black polyethylene sheeting of sufficient size to cover the entire face or faces of the sign, shall extend over the edges of the sign, and shall be either securely fastened on the back of a single face sign or securely fastened to itself on a double face sign. The Contractor shall not use any type of Material which may permanently adhere to the face of the sign or damage the face of the sign. The covering, and method of fastening the covering to the sign, is subject to the approval of the Engineer.

8-21.3(4) SIGN RELOCATION

Existing signs and sign posts shall be relocated to new locations called out on the Drawings or designated by the Engineer. Temporarily stockpiled signs and posts shall be protected against loss or damage. Removal of signs and posts required for “sign relocation” shall conform to Section 2-02.

Requirements for reinstalling posts shall be the same as for placing new posts.

8-21.3(5) SIGN CLEANING

Signs shall be cleaned after relocation or installation to the satisfaction of the Engineer. The Contractor shall not use cleaning solvents that harm the sign finish.

8-21.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Sign, Traffic” will be by the square foot of sign measured on one face only.

Measurement for “Sign, Street Name, (Owner Furnished)”, Street Name Post Mounted” will be by each. One unit of measurement will consist of all street name sign blades together with all block number plates mounted on street name sign post.

Measurement for “Sign, Street Name, (Owner Furnished, Steel/Aluminum Pole Mounted” will be by each. One unit of measurement will consist of 2 street name sign blades together with 2 block number plates mounted on steel or aluminum pole.

Measurement for “Sign Covering” will be by the square foot of sign covered measured on one face only.

8-21.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-21 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Sign, Traffic”, per square foot.
2. “Sign, Street Designation”, per each.

The Contract unit price for “Sign, Traffic” and “Sign, Street Designation” shall include all costs for the Work required to furnish the sign and mounting hardware and mount the signs as specified.

3. “Sign, Street Name (Owner Furnished), Street Name Post Mounted”, per each.

The Contract unit price for “Sign, Street Name (Owner Furnished), Street Name Post Mounted” shall include all costs for the Work required to mount one unit of Owner furnished street name sign blades and block number plates. The Owner will furnish the sign mounting hardware as indicated on Standard Plan Nos. 622 and 623.

4. “Sign, Street Name (Owner Furnished), Steel/Aluminum Pole Mounted”, per each.
The Contract unit price for “Sign, Street Name (Owner Furnished), Steel/Aluminum Pole Mounted” shall include all costs for the Work required to mount one unit of Owner furnished street name sign blades and block number plates. The Contractor shall furnish all the sign mounting hardware as shown on Standard Plan No. 615.

5. “Sign, Bus Zone (Owner Furnished)”, per each.
 The Contract unit price for “Sign, Bus Zone (Owner Furnished)” shall include all costs for the Work required to install the Owner furnished post including concrete foundation, and mounting the Owner furnished bus zone sign including the mounting hardware.

6. “Post, Traffic Sign”, per each.
7. “Post, Parking Meter”, per each.
8. “Post, Street Name”, per each.
9. “Post Bus Zone”, per each.
 The Contract unit price for “Post, Traffic Sign”, “Post, Parking Meter”, “Post, Street Name”, and "Post Bus Zone" shall include all costs for the Work required to furnish and install the post as specified including foundation, select backfill and surface restoration. The Contract unit price for “Post, Street Name” shall include all costs for installing Owner furnished street name sign as specified.

10. “Relocate Sign, Traffic”, per each.
11. “Relocate Sign, Street Name”, per each.
12. “Relocate Sign, Bus Zone”, per each.
 The Contract unit price for “Relocate Sign, Traffic”, “Relocate Sign, Street Name”, and “Relocate Sign, Bus Zone” shall include all costs for the Work required to remove and relocate the traffic sign, street name sign or bus zone sign including posts, foundations, disposal, and cleaning as specified. If a new post is installed on the new location, the post will be paid for separately. No payment will be made for the post when furnished by the Owner.
 When relocating street name signs to a newly installed street name sign post, the relocation cost shall be incidental to the cost of installing the post.
 Where the Drawings indicate the relocating of street name sign to an existing Steel or Aluminum Pole, the Contractor will be paid for relocating the street name signs under Bid item “Relocate Sign, Street Name.” This shall include removal of street name signs, mounting on the pole, and furnishing and installing mounting brackets and hardware in accordance with the Standard Plans.

13. “Sign Covering”, per square foot.
 The Contract unit price for “Sign Covering” shall include all costs for the Work required to furnish and install the covering Material as specified. Removal of sign covering shall be considered incidental to the unit price Bid for sign covering. Covering any signs for the convenience of Contractor’s activities prior to new channelization shall be at the Contractor’s expense.

14. Other payment information.
 Unless the Bid Form includes specific traffic control pay items for the Work specified in Sections 1-07.23 or 1-10, all costs for the erection and maintenance of temporary warning, and detour signs necessary to protect and safeguard the public from injury or damage shall be the responsibility of the Contractor, and shall be considered incidental to the construction and no separate payment will be made.

SECTION 8-22 PAVEMENT MARKING

8-22.1 DESCRIPTION

8-22.1(1) GENERAL
 This Work shall consist of furnishing and installing pavement markings upon the roadway surface at locations shown in the Drawings, or where designated by the Engineer, in accordance with these Specifications and Standard Plan Nos. 710, 711, 712, 720a and b, and 721. Pavement markings shall be for channelization, warnings, instructions, or curb usages.
PAVEMENT MARKING DESIGNATIONS

Pavement markings are defined as follows:

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1</td>
<td>Two parallel solid 4-inch yellow stripes with 4-inch space between stripes</td>
<td>Double center line (Major arterials)</td>
</tr>
<tr>
<td>L-2</td>
<td>Solid 4-inch yellow stripe</td>
<td>Median line</td>
</tr>
<tr>
<td>L-3</td>
<td>Dashed 4-inch yellow stripe (10 feet paint with 20 feet skip)</td>
<td>Centerline (Minor arterials)</td>
</tr>
<tr>
<td>L-4</td>
<td>Solid 4-inch yellow stripe with parallel dashed 4-inch yellow strips (10 feet paint with 20 feet skip) with 4-inch space between the two paint stripes</td>
<td>One side of two-way left turn lane</td>
</tr>
<tr>
<td>L-5</td>
<td>Dashed 4-inch white stripe (10 feet paint with 20 feet skip)</td>
<td>Lane line</td>
</tr>
<tr>
<td>L-6</td>
<td>4-inch white stripe</td>
<td>Approach line, edge line, guide line</td>
</tr>
<tr>
<td>L-7</td>
<td>4-inch white stripe</td>
<td>Parking stall line</td>
</tr>
<tr>
<td>L-8</td>
<td>8-inch white stripe</td>
<td>Barrier line, crosswalk and crosshatch</td>
</tr>
<tr>
<td>L-8A</td>
<td>16-inch white stripe</td>
<td>Stop bar</td>
</tr>
<tr>
<td>L-8B</td>
<td>24-inch white stripe</td>
<td>Stop bar</td>
</tr>
<tr>
<td>L-10</td>
<td>6-inch white curb stripe</td>
<td>Various zones</td>
</tr>
<tr>
<td>L-11</td>
<td>6-inch red curb stripe</td>
<td>Tow-away zone</td>
</tr>
<tr>
<td>L-12</td>
<td>6-inch yellow curb stripe</td>
<td>Various zones</td>
</tr>
<tr>
<td>L-13</td>
<td>6-inch combination curb stripe (3 feet red - 4 feet yellow - 3 feet red)</td>
<td>Bus zone</td>
</tr>
<tr>
<td>L-17</td>
<td>Left and right arrow combination</td>
<td></td>
</tr>
<tr>
<td>L-18</td>
<td>Oblique left arrow</td>
<td></td>
</tr>
<tr>
<td>L-19</td>
<td>Oblique right arrow</td>
<td></td>
</tr>
<tr>
<td>L-20</td>
<td>Left arrow</td>
<td></td>
</tr>
<tr>
<td>L-21</td>
<td>Right arrow</td>
<td></td>
</tr>
<tr>
<td>L-22</td>
<td>Through arrow</td>
<td></td>
</tr>
<tr>
<td>L-23</td>
<td>Left and through arrow combination</td>
<td></td>
</tr>
</tbody>
</table>

Paint (continued)

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-24</td>
<td>Right and through arrow combination</td>
<td></td>
</tr>
<tr>
<td>L-25</td>
<td>"ONLY" legend</td>
<td></td>
</tr>
<tr>
<td>L-26</td>
<td>"OK" legend</td>
<td></td>
</tr>
<tr>
<td>L-27</td>
<td>Pedestrian symbol</td>
<td></td>
</tr>
<tr>
<td>L-28</td>
<td>Bicyclist symbol (include arrows)</td>
<td></td>
</tr>
<tr>
<td>L-29</td>
<td>Disabled person symbol</td>
<td></td>
</tr>
<tr>
<td>L-30</td>
<td>"Bus" legend</td>
<td></td>
</tr>
</tbody>
</table>
II. Thermoplastic (Denoted by "T" Suffix)

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-8T</td>
<td>8-inch white stripe</td>
<td>Crosswalk</td>
</tr>
<tr>
<td>L-8AT</td>
<td>16-inch white stripe</td>
<td>Stop bar</td>
</tr>
<tr>
<td>L-8BT</td>
<td>24-inch white stripe</td>
<td>Stop bar</td>
</tr>
<tr>
<td>L-17T</td>
<td>Left and right arrow combination</td>
<td></td>
</tr>
<tr>
<td>L-18T</td>
<td>Oblique left arrow</td>
<td></td>
</tr>
<tr>
<td>L-19T</td>
<td>Oblique right arrow</td>
<td></td>
</tr>
<tr>
<td>L-20T</td>
<td>Left arrow</td>
<td></td>
</tr>
<tr>
<td>L-21T</td>
<td>Right arrow</td>
<td></td>
</tr>
<tr>
<td>L-22T</td>
<td>Through arrow</td>
<td></td>
</tr>
<tr>
<td>L-23T</td>
<td>Left and through arrow combination</td>
<td></td>
</tr>
<tr>
<td>L-24T</td>
<td>Right and through arrow combination</td>
<td></td>
</tr>
<tr>
<td>L-25T</td>
<td>"ONLY" legend</td>
<td></td>
</tr>
<tr>
<td>L-26T</td>
<td>"OK" legend</td>
<td></td>
</tr>
<tr>
<td>L-27T</td>
<td>Pedestrian symbol</td>
<td></td>
</tr>
<tr>
<td>L-28T</td>
<td>Bicyclist symbol (include arrows)</td>
<td></td>
</tr>
<tr>
<td>L-29T</td>
<td>Disabled person symbol</td>
<td></td>
</tr>
<tr>
<td>L-30T</td>
<td>"Bus" legend</td>
<td></td>
</tr>
<tr>
<td>L-31T</td>
<td>"Lane" legend</td>
<td></td>
</tr>
<tr>
<td>L-32T</td>
<td>"Carpool" legend</td>
<td></td>
</tr>
<tr>
<td>L-33T</td>
<td>Diamond symbol</td>
<td></td>
</tr>
<tr>
<td>L-35T</td>
<td>"School" legend</td>
<td></td>
</tr>
</tbody>
</table>

III. Pressure Sensitive Tape (Denoted by "S" Suffix)

<table>
<thead>
<tr>
<th>Item Designation</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-10S</td>
<td>4-inch white curb tape</td>
<td>Various zones</td>
</tr>
<tr>
<td>L-11S</td>
<td>4-inch red curb tape</td>
<td>Tow-away zone</td>
</tr>
<tr>
<td>L-12S</td>
<td>4-inch yellow curb tape</td>
<td>Various zones</td>
</tr>
<tr>
<td>L-13S</td>
<td>4-inch combination curb tape (3 feet red - 4 feet yellow - 3 feet red)</td>
<td>Bus zone</td>
</tr>
<tr>
<td>L-14S</td>
<td>4-inch white tape</td>
<td>Parking meter stall, motorcycle stall, barrier area</td>
</tr>
</tbody>
</table>
8-22.2 MATERIALS

Materials shall meet the requirements of the following Sections:

| Pavement Marking Materials | 9-29 |

Glass beads shall comply with the Specifications for adherence coated glass spheres as approved by WSDOT Headquarters Materials Laboratory, 1655 South Second, Tumwater, Washington 98502.

Paint, and sprayed or extruded plastic Material, shall be applied with a top dressing of glass beads. Material for pavement marking shall be paint and/or thermoplastic as specified on the Drawings, and selected from approved Materials unless indicated otherwise in the Contract.

8-22.3 CONSTRUCTION REQUIREMENTS

8-22.3(1) PRELIMINARY SPOTTING

The Contractor shall coordinate the location of pavement markings with the Engineer at least 3 Working Days in advance for the following:

1. Loop detector locations and existing or proposed stop bars (see Section 8-31.3(5)).
2. Wheel Chair Ramp blockout, and stop bar and crosswalk pavement marking (see Sections 8-14.3(7) and 8-14.3(8)).

The Engineer will provide the preliminary layout as indicated on the Drawings for permanent pavement marking alignment following paving operations by the Contractor. Preliminary layout will consist of providing the Contractor with necessary control points at intervals agreed upon with the Contractor to enable the Contractor to complete the preliminary spotting of the pavement marking alignment before marking begins. Control points for crosswalks will be marked near or adjacent to the curb. Control points for stop lines will be marked near or adjacent to the curb and at the center line. Control points for legend and symbols shall be the responsibility of the Contractor Legend and symbols shall be located in accordance with Standard Plan Nos. 720 through 722 or the Drawings, or as designated by the Engineer. Approval by the Engineer shall be obtained before installation begins. Preliminary spotting to guide the striping machine is required for all longitudinal lines except where a clearly visible separation is present.

Permanent pavement markings such as crosswalks, stop lines, center lines, legends and lane stripes shall be installed by the Contractor within 5 Working Days, weather permitting, after preliminary layout of the control points has been completed by the Engineer. Temporary pavement marking tape for centerline or lane lines or other pavement markings, if required by the Engineer, shall be installed in accordance with Section 5-04.3(17). Temporary pavement marking tape shall meet the requirements of Section 9-29.4.

8-22.3(2) PREPARATION OF SURFACES

Surface dirt and all contaminants within the areas to receive pavement markings shall be removed. Large areas of tar, grease or foreign Materials may require sandblasting, steam cleaning, power brooming, or chemical stripping to accomplish complete removal. Grass obstructing curb painting shall be trimmed to the back edge of the curb and the curbs cleaned of foreign Material before painting.

Existing pavement markings shall be completely removed. Cleaning and removal methods used shall not damage the pavement surface to a depth or width greater than that required to provide adequate bond between the pavement and the pavement marking Material. The pavement surface shall be approved by the Engineer before application of the markings.

8-22.3(3) PAINTED PAVEMENT MARKING

8-22.3(3)A GENERAL

Equipment used for application of pavement markings shall be designed and operated to produce painted pavement markings of uniform quality to meet all specified requirements.

Traffic paint shall be applied at a rate of not more than 100 square feet per gallon (approximately 15 mils wet thickness). This rate is effectively 16 gallons of paint per mile of solid 4-inch wide line, which will be the basis for the measurement of yield. A tolerance not to exceed minus 10 percent will be allowed for film thickness or yield in paint application.
On "ladder type" crosswalks, pedestrian and bicyclist symbols (including arrows), white sharp sand shall be spread over fresh paint at a rate of approximately 1 pound per 20 square feet.

8-22.3(3)B TOLERANCES FOR STRIPES

The allowable tolerances for line striping are as follows:

1. **Length of Stripe**: The longitudinal accumulative error within a 30-foot length of lane line shall not exceed plus or minus 1 inch.
2. **Width of Stripe**: The width of stripe shall not vary more than plus or minus 1/4 inch.
3. **Lane Width**: The lane width, which is defined as the lateral width from the edge of pavement to the center of the lane line or between the centers of successive lane lines, shall not vary from the widths shown in the Drawings by more than plus or minus 4 inches.

8-22.3(4) THERMOPLASTIC PAVEMENT MARKING

8-22.3(4)A TYPE “A” INSTALLATION

The thermoplastic pavement marking shall be applied to an initially dry pavement surface after sufficient time has elapsed to insure that the primer, if required, has adequately dried and further curing of the primer does not adversely affect the thermoplastic Material.

Type “A” thermoplastic Material shall be applied in accordance with the manufacturer’s recommended temperature ranges for ambient air temperature, pavement temperature, and temperature of the molten Material.

Hot-laid thermoplastic Material shall be applied to the pavement by a gravity or an extrusion method, or a combination of both. If the stripe width is obtained by two or more side-by-side applications, the adjacent applications shall be fused together with no apparent overlap or gap.

Glass beads, Type II, shall be applied separately to the thermoplastic Material as it is being placed. The glass beads shall be uniformly distributed over the entire width of thermoplastic Material so that no objectionable irregularities in the Material’s reflectorization occur. The beads shall be applied separately and uniformly at the rate of 1 pound for every 50 square feet of pavement marking. The dispenser shall be located behind and controlled simultaneously with the pavement marking extrusion die such that the beads are imbedded in the pavement marking to a depth of at least 1/2 the bead diameter.

8-22.3(4)B TYPE “B” INSTALLATION

Type “B” prefabricated thermoplastic Material shall be applied to the pavement in a manner which provides a uniform surface over the various widths required. At application, the ambient air temperature shall be within the range recommended by the manufacturer.

Type “B” thermoplastic Material may be supplied complete with a precoated, factory applied adhesive, or may be furnished with separate adhesive, as recommended by the manufacturer. Whether precoated or supplied separately, the adhesive shall be such as to allow the thermoplastic Material to be repositioned on the pavement surface before permanently fixing it in its final position with a downward pressure.

When completed, the pavement markings shall not be less than 0.06 inches (1.5 millimeters) in thickness, exclusive of any precoated adhesive Material, and shall have a uniform cross-sectional configuration.

If the required pavement marking width is 12 inches or more, it may be fabricated from 12-inch or 6-inch wide Material. Longitudinal splices will be permitted, provided the gap at any splice does not exceed 1/16 inch.

Excess thermoplastic Material left on the pavement shall be removed prior to continuation of the operation.

8-22.3(5) PRESSURE SENSITIVE TAPE PAVEMENT MARKING

Application procedures for pressure sensitive tape shall be as recommended by the tape manufacturer.

8-22.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1 Measurement of Quantities unless otherwise provided for by individual measurement paragraphs in this Section.
Measurement for “Pavement Marking, Paint, (Width) Stripe” will be by the linear foot of stripe, except dashed center lines and dashed lane lines will be measured as continuous lines with no deduction for the unpainted area caused by the skip pattern specified.

Measurement for “Pavement Marking, Paint, Legend/Symbol” will be by each legend or symbol.

Measurement for “Pavement Marking, Thermoplastic, 8-inch stripe” will be by the linear foot of 8-inch stripe actually placed and will not include unmarked space.

Measurement for “Pavement Marking, Thermoplastic, Legend/Symbol” will be by each legend or symbol.

The legends “ONLY” and “OK” will be measured as 1 unit each.

The symbol “Bicyclist” with “Arrows” will be measured as 1 unit each.

Stop lines, 16 or 24 inches wide and comprised of multiple 8-inch wide stripes, will be measured by the linear foot of 8-inch width stripe.

Measurement for “Pavement Marking, Pressure Sensitive Tape” will be by the linear foot of tape actually placed and will not include unmarked space.

8-22.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-22 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

2. “Pavement Marking, Paint, Legend/Symbol”, per each.
3. “Pavement Marking, Thermoplastic, 8-inch Stripe”, per linear foot.
4. “Pavement Marking, Thermoplastic, Legend/Symbol”, per each.
5. “Pavement Marking, Pressure Sensitive Tape”, per linear foot.

The Contract unit prices for the above listed Bid items shall include all costs for the Work required to furnish and install the types of pavement marking as specified.

SECTION 8-23 RESERVED

SECTION 8-24 RESERVED

SECTION 8-25 GLARE SCREEN

8-25.1 DESCRIPTION

This Work shall consist of furnishing and constructing glare screen of the types specified, in accordance with the Drawings, these Specifications, WSDOT Standard Plan Nos. L-5 and L-5a, or as directed by the Engineer.

Glare screen consists of diamond-woven wire mesh fence of aluminum, galvanized iron or aluminum-coated steel wire fabricated and placed to reduce glare from headlights of opposing traffic or other adjacent light sources.

8-25.2 MATERIALS

Materials shall meet the requirements of Section 9-16.6.

8-25.3 CONSTRUCTION REQUIREMENTS

8-25.3(1) GLARE SCREEN FABRIC

Glare screen fabric shall be placed on the face of the posts designated by the Engineer. On curves the fabric shall be placed on the face of the post which is on the outside of the curve.

The fabric shall be stretched taut and securely fastened to the posts. Fastening to end, brace, and pull posts shall be with stretcher bars and fabric bands spaced at 1-foot intervals. The fabric shall be cut and each span attached independently at all pull and corner posts. Fabric shall be securely fastened to line posts with tie wires, metal bands, or other approved methods at 14 inch intervals. The top and bottom of the fabric shall be fastened to the tension cable and tension wire with hog rings spaced at 24-inch intervals.
Rolls of wire fabric shall be joined by weaving a single strand into the end of the rolls to form a continuous mesh.

8-25.3(2) SLATS

The slats shall be fastened into the weave by using staples, screws, or other methods as approved by the Engineer. Allowing the tension of the mesh to hold the slats in place will not be permitted.

Slat broken or split during construction shall be removed and replaced by the Contractor at no expense to the Owner.

8-25.3(3) POSTS

Posts, other than for Type 1 Design A, shall be constructed in accordance with the WSDOT Standard Plans and applicable provisions of Section 8-12.3(3)A.

Posts for Type 1 Design A shall be bolted to the beam guardrail posts as detailed in WSDOT Standard Plan No. L-5. Drilling of the guardrail posts shall be done in such a manner to ensure that the glare screen posts are set plumb and centered over the guardrail posts unless otherwise directed.

All round posts for Type 1, Design B and Type 2 glare screen shall be fitted with a watertight top securely fastened to the post. Line posts shall have tops designed to carry the top cable.

8-25.3(4) TENSION WIRE

Tension wires shall be attached to the posts as detailed in the Standard Plans or as approved by the Engineer.

8-25.3(5) TENSION CABLES

The tension cable shall pass through the top of the line post. One continuous length of cable shall be used between pull posts. Sufficient tension shall be applied to the cable to allow a maximum sag of 1/4-inch between posts after the chain link mesh has been attached to the cable. The Contractor shall provide temporary bracing on pull posts when applying tension to one length of cable at a time to prevent undue stresses on the pull post.

The cable shall be fastened to the top of the pull post with an eye bolt through the post and a turnbuckle connecting the eye bolt to the cable. Pull posts shall be braced to the bottom of the end or anchor posts with a short length of cable or tension wire as shown in the Standard Plans. All turnbuckles shall have a minimum of 1-inch takeup clearance after tensioning.

The ends of all cables shall be seized with annealed iron wire for a distance of at least 1 inch.

8-25.3(6) FITTINGS, ATTACHMENTS, AND HARDWARE

A lead washer shall be placed against the Shoulder of the eye nut, eye bolt, or backup nut, and a lead washer backed by the steel washer shall be placed between the pipe and lock washer and the nut tightened sufficiently to seal the hole in the pipe.

A galvanized iron strap 1/4 inch in thickness by 2 inches in width, formed as shown in the WSDOT Standard Plans, shall be provided for the attachment of eye bolts to the base of the H column post in order to take the strain of the cable tension off the web of the H column.

8-25.4 MEASUREMENT

Measurement of glare screen will be by the linear foot of completed glare screen for the particular type and design specified.

8-25.5 PAYMENT

Payment will be made for each of the following Bid items that are included in the proposal:

1. "Glare Screen Type 1 Design ______", per linear foot.
2. "Glare Screen Type 2", per linear foot.

The Contract unit price per linear foot for glare screen of the type and design specified shall be full pay for furnishing and assembling in place the completed installation including excavation, backfilling, tamping, concrete
footings, miscellaneous hardware, smoothing the irregularities of the ground at the site, clearing the line for the glare screen, and disposing of all debris to the satisfaction of the Engineer.

SECTION 8-26 ROCK PROTECTION FENCE

8-26.1 DESCRIPTION
This Work shall consist of furnishing and constructing rock protection fence at the locations shown in the Drawings, or where directed by the Engineer, in accordance with these Specifications and the details shown in WSDOT Standard Plan No. D-8.

8-26.2 MATERIALS
Materials shall meet the requirements of the following Sections:

| Rock Protection Fence | 9-16.7 |

Rock protection fence shall be diamond woven wire mesh mounted on steel cable and steel posts.

8-26.3 CONSTRUCTION REQUIREMENTS

8-26.3(1) POSTS
Posts shall be spaced as shown in WSDOT Standard Plan No. D-8. In determining the post spacing, measurement will be made parallel to the slope of the existing ground and all posts shall be placed in a vertical position except where designated otherwise by the Engineer.

All posts shall be set in concrete Class C (see Section 6-02.3(2)A), and the footings shall be crowned to shed water.

Where solid rock is encountered without an overburden of soil, posts shall be set a minimum of 18 inches into the solid rock. The hole shall have a minimum dimension one inch greater than the largest dimension of the post section to be set. The posts shall be cut before installation to lengths which result in 6 feet of post above ground. After the post is set and plumb ed, the hole shall be filled with grout consisting of one part Portland cement and three parts clean, well graded sand. The grout shall be thoroughly worked into the hole so as to leave no voids. The grout shall be crowned to carry water away from the post. Where posts are set in the above manner, concrete footings will not be required.

Where solid rock is covered by overburden of soil or loose rock or surfacing Materials, the posts shall be set to the full depth of 3 feet unless the penetration into solid rock reaches 18 inches, in which case the total depth of penetration may be reduced.

Positions B and C shall have anchors for each individual fence post as shown in WSDOT Standard Plan No. D-8. The anchor rods shall be laced on the uphill side of the fence and securely bolted to the fence. The length of the anchor rod required shall be determined by the Engineer and if there is any deviation in the anchor rod lengths for the various posts, the rods shall be marked to ensure that each rod occurs in its proper position. After the anchor has been placed in the ground, the hole shall be backfilled with the Material removed and thoroughly tamped.

8-26.3(2) TENSION CABLE AND END ANCHORAGE
Tension cable shall be installed in the posts as shown in WSDOT Standard Plan No. D-8, care being taken to ensure that the cable moves freely in the hook bolt hangers. One continuous length of cable shall be used between anchorages. The end anchorage shall be installed with Material removed for placing, the anchor being thoroughly tamped in place after backfilling. The Contractor shall then tension the cable so there is a maximum of 1 inch sag at position A and 2 inches at positions B and C when the fence fabric is in place. The cable shall be passed through the eye of the turnbuckle on the thimble and, after full tension has been applied, two wire rope clips shall be placed around both cables and securely tightened. Additional tension can be applied with the turnbuckles, care being taken to ensure that a minimum takeup of 4 inches remains in each turnbuckle when full tension has been applied.
8-26.3(3) CHAIN LINK FABRIC

Chain link fabric shall be placed on the ditch side of the posts for position A and on the downhill side for position B and C. The fabric shall be secured to the tension cable with galvanized steel hog rings at 6-inch spacing. The fabric shall not be tensioned in any direction, but is to remain loose to increase its dampening effect on rolling rocks. The fabric is not to be fastened to the fence posts or any other part of the fence except as shown in the plan for end posts. The bottom 2 feet of fabric for position A and the bottom 6 feet for positions B and C shall rest on the slope as shown in WSDOT Standard Plan No. D-8. Rolls of wire fabric shall be joined by weaving a single strand into the ends of the rolls to form a continuous mesh.

8-26.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

The length of rock protection fence shall be the number of linear feet of completed fence in the position specified excluding the length of the end anchorages.

8-26.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-26 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Rock Protection Fence (Position)”, per linear foot.

The Contract unit price for “Rock Protection Fence (Position)” shall include all costs for Work required to furnish and install rock protection fence as specified in Section 8-26.

SECTION 8-27 PROJECT IDENTIFICATION SIGN

8-27.1 DESCRIPTION

This Work consists of furnishing and installing Project identification signs at the Project Site in accordance with these Specifications and with the Drawing in the appendix of the Project Manual.

The quality of the signs and supports shall be such that they present a workmanlike appearance with the paint remaining in good condition for the duration of the Project.

The Work shall include removing and disposing of the signs and supports after construction is completed.

8-27.2 MATERIALS AND FABRICATION

8-27.2(1) GENERAL

Project identification signs shall be constructed with Medium Density Overlay plywood.

8-27.2(2) PLYWOOD

Plywood signs shall be made of Medium Density Overlay plywood meeting the requirements of “Products Standard PS 1-83 for Softwood Plywood, Construction and Industrial” grade, published by the Products Standards Section of the U.S. Department of Commerce. The plywood shall be free of contaminants which would adversely affect the application and life of the paint. Face veneers shall be Grade B or better. Core and crossband veneers shall be solid. Core veneers shall be jointed. Core gaps shall not exceed 1/8 inch in width. The entire area of each contacting veneer surface shall be bonded with a waterproof adhesive that meets the requirements of the U.S. Department of Commerce for exterior type plywood.

The overlay shall be high density type. It shall have a minimum weight of 60 pounds per thousand square feet and shall be at least 0.012 inches thick before pressing. The overlay shall have a sufficient resin content to bond itself to the plywood, a content equal to 45 percent of the dry weight of the impregnated fiber.

The sign dimensions shall be as shown on the Drawing. The thickness of the single panel plywood sign shall be 1/2-inch.
8-27.2(3) SIGN BORDERS
Every Project identification sign shall have a border frame of 2 X 4’s as shown on the Drawing in the Appendix of the Project Manual.

8-27.2(4) LETTERING AND SPACING FORMULA
Letters and symbols shall be of the type, size, and color specified on the Drawing in the Appendix of the Project Manual.

Letters and symbols shall be of Material compatible with the sign surface Material recommended by the sign surface manufacturer.

The Contractor shall submit one sample of a finished Project identification sign for the Engineer’s approval prior to fabricating the remaining signs required under this Contract.

8-27.2(5) SIGN SUPPORTS
Project identification signs shall be securely mounted on pressure-treated 4-inch x 4-inch posts, installed to a minimum depth of 3 feet below grade. The supports shall be sturdy and shall be installed to provide the needed stability to prevent movement caused by moderate wind conditions.

8-27.3 CONSTRUCTION REQUIREMENTS

8-27.3(1) LOCATION OF SIGNS
The Contractor shall install Project identification signs at locations approved by the Engineer. Signs facing in each direction of traffic shall be placed at all Project Sites prior to construction. Signs shall be placed so as to convey their message effectively without restricting lateral clearances or sight distance.

8-27.3(2) SIGN REMOVAL
The Contractor shall remove all Project identification signs and supports from the Project Site when Work is completed at that location or when required by the Engineer.

All removed Materials become the property of the Contractor and shall be taken from the Project Site. The area shall be restored as approved by the Engineer.

8-27.4 MEASUREMENT
Measurement for “Sign, Project Identification” will be per each sign fabricated and actually used on the Project Site.

Measurement for sign supports will not be made.

Measurement for relocating signs will not be made.

8-27.5 PAYMENT
Payment will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Sign, Project Identification”, per each.

The Contract unit price for “Sign, Project Identification” shall include all costs for the Work necessary to fabricate, paint, install, relocate, remove and dispose of signs and sign supports, and restore the area(s) after Project completion.

SECTION 8-28 RESERVED

SECTION 8-29 WIRE MESH SLOPE PROTECTION

8-29.1 DESCRIPTION
This Work shall consist of constructing wire mesh slope protection in accordance with these Specifications and the details shown in WSDOT Standard Plan Nos. D-7 and D-7a and in conformity with the lines and dimensions shown in the Drawings or established by the Engineer.
8-29.2 MATERIALS

Materials shall meet the requirements of the following Sections:

| Wire Mesh Slope Protection | 9-16.4 |

8-29.3 CONSTRUCTION REQUIREMENTS

8-29.3(1) ANCHORS

The Contractor shall install anchors of the type shown in conformance to the layout shown in the Drawings. The spacing and number of the anchors and cables as shown in the Drawings are approximate only, and the Engineer will arrange the spacing in such a manner as to hold the wire mesh against the slope. Backfill Material shall be thoroughly compacted.

8-29.3(2) CABLE ASSEMBLY

The cable assembly shall be in place before the wire mesh is attached. The bottom cable shall not be tensioned. No cable splicing will be allowed.

8-29.3(3) WIRE MESH

The wire mesh shall be fastened to the completed cable assembly as shown in the WSDOT Standard Plan Nos. D-7 and D-7a, and as directed by the Engineer. Hog rings on the vertical lap splices shall be placed in a single row centered on the splice. Horizontal splices joining two rolls of mesh shall be made by removing a horizontal end wire and reweaving through the ends of the fabric to form a continuous mesh. All top and bottom laps shall be made by folding the mesh to the outside, away from the slope, to avoid the possibility of falling Material hanging up in the folds. The bottom of the mesh shall be located so that Material dislodged under the mesh can drain freely from the bottom, yet does not flow or bounce onto the roadway. The ends of all tie wires shall be secured to the mesh with a minimum of 1-1/2 turns.

The wire mesh shall not be tensioned in any direction but is to remain loose so as to increase its dampening effect on rolling rocks. The Contractor shall use care in the handling and installing of the wire mesh and cable. Any mesh or cable damaged due to the Contractor’s operations shall be replaced by the Contractor.

8-29.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement of anchors will be per each for the completed anchor. Anchor types will not be differentiated.

Galvanized wire mesh will be measured by the square foot of the completed area.

Galvanized wire rope will be measured by the linear foot of wire rope actually used in the completed Project.

8-29.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-29 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Wire Mesh Slope Protection Anchor”, per each.

 The Contract unit price for “Wire Mesh Slope Protection Anchor” shall include all costs for the Work required to furnish and install the anchors of the type required, as specified herein and as shown in the Drawings, including removing obstructions, excavating, drilling, backfilling and grouting.

2. “Galvanized Wire Mesh”, per square foot.

3. “Galvanized Wire Cable”, per linear foot.

 The Contract unit price for “Galvanized Wire Mesh” and “Galvanized Wire Cable” shall include all costs for the Work required to furnish and install the wire mesh and cable, including all rings, U-bolts, thimbles, wire rope,
clips, hog rings, and tie wire necessary to complete the wire mesh slope protection as set forth in these Specifications and as shown in the Drawings.

SECTION 8-30 ILLUMINATION AND ELECTRICAL SYSTEMS

8-30.1 DESCRIPTION

8-30.1(1) GENERAL
This Work shall consist of furnishing and installing a complete and functional illumination and electrical system shall be as specified in the Contract and in accordance with these specifications and the Standard Plans.

Service connections and energizing of illumination and electrical street lighting systems to overhead secondary or to secondaries in vaults or handholes will be made by Seattle City Light, unless specified otherwise.

Required permits for electrical Work other than street lighting and signals shall be obtained by the Contractor at the Department of Construction and Land Use office, 710 Second Avenue, Suite 200, Dexter Horton Building, City of Seattle, 206-684-8464, 206-684-8113 (FAX), in accordance with Section 1-07.6.

8-30.1(2) APPLICABLE ELECTRICAL CODES
In addition to the safety rules and standards specified in Section 1-07.1(2), electrical Work shall be performed in accordance with the current applicable provisions of the following codes:
1. SCL Material Standards, SCL Construction Guidelines, and Requirements for Electrical Service Connection.
2. State of Washington Electrical Workers Safety Rules, Chapter 296-45 WAC.
5. Edison Electric Institute (EEI).

8-30.1(3) SHOP DRAWINGS
The Contractor shall submit Shop Drawings for the following items in accordance with Section 1-05.3.
1. Luminaires (Include photometrics and socket position)
 a. Lamps
 b. Photoelectric Cells
 c. Wire
 d. Wire Connectors
 e. Ground Rods
 f. Ground Clamps
 g. Fuse Kits
 h. Splice Kits

8-30.1(4) ELECTRICAL AND ELECTRONIC WORDS AND PHRASES
See Section 1-01.3.

8-30.2 MATERIALS
Materials shall meet the requirements of the following Sections:
Illumination and Electrical Materials 9-31
8-30.3 CONSTRUCTION REQUIREMENTS

8-30.3(1) GENERAL

To maintain safe traffic conditions, existing luminaires shall remain in service until cut-over to new luminaires can be accomplished, unless directed otherwise by the Engineer. Roadways shall not be opened to traffic before all of the required lighting system is operating properly.

8-30.3(2) LUMINAIRES

The luminaire glassware, reflector and lamp shall be thoroughly cleaned before installation on the tenon on the bracket arm. The luminaire shall be secured and adjusted according to the manufacturer's recommendations. The luminaire refractor shall be level in the transverse roadway axis and parallel to the roadway grade in the longitudinal roadway axis after the pole has been plumbed with all loads added, according to SCL Construction Guidelines D12-9.

Date of installation shall be marked on the bottom of the photoelectric cell with an indelible ink. The luminaire shall have the installation date marked in the metal base adjacent to the photo cell.

The photoelectric cell receptacle shall be adjusted such that the photoelectric cell faces north.

8-30.3(3) RESERVED

8-30.3(4) RELOCATING EQUIPMENT

When Equipment and associated Material is to be relocated, the Contractor shall furnish and install all the Equipment and Material, including additional new Material as necessary, required to complete the installation. All Material and Equipment shall meet the requirements of these Specifications.

8-30.3(5) WIRING, FUSING, AND SPLICING

Individual luminaire fuses shall be rated at 10 amps except for 400 watt luminaires at 120 volts which shall be rated at 15 amps.

Festoon outlets shall be fused at 15 amps.

The Contractor shall provide wiring from luminaire terminal boards to in-line fuseholders and to the source of secondary service.

The Contractor shall coil a minimum 8 feet of wire at the source of secondary service to allow for connections by Seattle City Light. The Contractor shall coil 3 feet of excess conductor in each type handhole.

Each “hot” conductor shall have an in-line fuseholder and fuse located as indicated on the Drawings. Poles fed underground shall be fused in the pole base and shall have at least 3 feet of wire above the pole base to provide sufficient slack wire so the fuseholders can be withdrawn through the pole handhole for servicing.

Wire attached to the face of a wood pole, not enclosed in conduit, shall be covered with plastic molding meeting SCL Material Standards.

Caution shall be exercised in working near and within Seattle City Light Vaults. Voltages present can be 26,000 volts or higher, and the vault wiring will not be de-energized while the qualified Contractor is working. The Contractor shall arrange for scheduling a Seattle City Light Electrical Safety Observer when Work is required in a Seattle City Light vault (see Sections 1-05.2(2) and 1-07.28).

When cables or single conductors are being installed, care shall be exercised not to exceed tension limitations recommended by the manufacturer. Conductors may be pulled directly by hand; however, conductors pulled by mechanical means require a dynamometer with drop-needle hand shall be used on every pull. On mechanical pulls, either the insulation shall be stripped off each conductor, and conductors formed into a pulling eye and firmly taped before pulling, or a cable grip shall be used. The pulling force shall be applied directly to the conductor.

Secondary insulator racks required for new construction shall be in accordance with SCL Material Standards and installed in accordance with SCL Construction Guidelines.

Where new cable is to be installed in existing conduits which are occupied, the Contractor shall protect existing wiring from damage. Cable pulling compound shall be used to minimize cable pulling tensions and
adverse effects on existing wire insulation, jacket and shield. Care shall be exercised in pulling cable into poles and pedestals since sharp metal edges may be present.

 Aluminum wire and connectors shall be prepared and coated with an oxide-inhibiting compound.

 Where triplex wire is installed overhead to feed only one street light, the two hot conductors shall be tied together (brothered) at each pole.

 Wire insulation shall be removed by a method that does not “ring” or nick the wire. “Ringing” will be cause for rejection of the splice.

 Wire splices shall be made mechanically and electrically secure. Each individual splice or termination of extra leads shall be insulated and made waterproof.

 All cables shall be marked with a permanent waterproof tag in handholes or access points with feed point circuit number.

 For above ground splices, the connector shall be torqued to the manufacturer’s recommended level. The splice and termination of extra leads shall be covered with rubber base insulating and waterproofing tape as specified in SCL Material Standards. This tape shall be worked around the wire insulation to insure a water tight assembly. The splice assembly shall be protected with two layers of electrician tape.

 For below ground splices, connectors shall be tightened or crimped in accordance with the manufacturer’s Specifications. Only manufacturer’s approved crimping tools shall be used to compress crimp splices. The metal splice shall be centered in the enclosure. The encapsulant shall be mixed and installed in accordance with manufacturer’s recommendation. The encapsulant shall completely fill the enclosure and be free of voids and impurities.

 Where festoon outlets are installed on poles a separate circuit shall be provided.

8-30.3(6) RESERVED

8-30.3(7) GROUNDING AND BONDING

All metallic appurtenances containing electrical conductors, including cabinets, metallic conduit, metal poles, pedestals, and junction boxes, shall be made mechanically and electrically secure to form a continuous system which shall be effectively grounded.

 Where conduit (including steel conduit) systems are used, all metallic appurtenances shall be electrically bonded by a separate insulated ground conductor.

 Where parallel electrical circuits exist in an electrical conduit, the Equipment grounding conductor shall be sized as determined by the rating of the largest overcurrent device serving any circuit contained in the conduit (minimum size shall be #8 copper). Only one Equipment grounding conductor is required in any conduit.

 All conduit runs with phase conductors (with the exception of the run from the riser to the first handhole) shall have a ground wire installed in the conduit unless noted otherwise on the Drawings.

 A ground wire shall interconnect all ground rods in each circuit.

 Metal conduit, ground wires and the service neutral shall be bonded and grounded at the service entrance point as required under the NEC and the City of Seattle Electrical Code.

 Only one wire shall be installed under any ground clamp.

 Ground rods shall be installed in firm undisturbed earth. In areas with loose or soft soil conditions, extensions shall be coupled until the rod cannot be removed by hand. Minimum spacing between ground rods shall be 6 feet.

8-30.3(8) REMOVAL AND SALVAGE OF EXISTING EQUIPMENT

 Refer to Section 2-02.3(3)G and 2-02.3(7)C.

8-30.3(9) FIELD TESTING

 Prior to completion of the Work, the Contractor shall make the following tests on all electrical circuits:

 1. Test for grounds in each circuit by physically examining the installation to ensure that all required ground jumpers, devices and appurtenances are in place, that they are mechanically and
electrically firm, and that they meet the requirements of Article 250 of the National Electrical Code.

2. Insulation resistance test (with all readings recorded when requested by the Engineer). The insulation test shall be performed after all field connections have been made.

3. A functional test in which it is demonstrated that each and every part of the system functions as specified or intended herein. The functional test shall be performed after all field connections are completed.

8-30.3(10) FINAL INSPECTION

See Section 1-05.11.

8-30.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

8-30.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-30 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Luminaire, High Pressure Sodium, (Wattage), Roadway”, per each.
 The Contract unit price for “Luminaire, High Pressure Sodium, (Wattage), Roadway” shall include all costs for the Work required to furnish and install the luminaire including the fuse, hardware, photoelectric cell and wiring to the fuseholder at the secondary source or at the base of the pole.

2. “Luminaire, High Pressure Sodium, (Wattage), Underdeck Mounted”, per each.

3. “Luminaire, High Pressure Sodium, (Wattage), Wall Mounted”, per each.
 The Contract unit price for “Luminaire, High Pressure Sodium, (Wattage), Underdeck Mounted” and for “Luminaire, High Pressure Sodium, (Wattage), Wall Mounted” shall include all costs for the Work required to furnish and install these luminaire units specified in Sections 9-31.1(6) and 9-31.1(7) including wiring to the conduit.

4. “Relocate (Item)”, per each.
 The Contract unit price for “Relocate (Item)” shall include all costs for the Work required to remove the item and reinstall the item at the new location, including either new or existing as directed by the Engineer hardware, and cleaning and relamping relocated luminaires.

5. “Wiring, Street Lighting”, per lump sum.
 The lump sum Contract Price for “Wiring, Street Lighting” shall include all costs for the Work required to furnish and install wiring for the street light system as specified from the service point to the luminaire fuseholder, including taps, splices, tape, fuseholder, excess wire for connections, and any other Material for a complete illumination and electrical system.

6. Other payment information.
 All final service connections of the illumination and electrical street lighting systems to overhead secondaries, or to secondaries in vaults or handholes will be made by Seattle City Light at no cost to the Contractor.

 All costs for the return and replacement of Material or Equipment found to be defective within the guarantee period shall be at the Contractor’s expense.

 All costs for furnishing and installing hardware not specifically called out, but required to complete the Work shall be included in the Contract unit prices or lump sum prices, as applicable, for the Bid items comprising the improvement.
The Contractor will be charged with the actual cost to the Owner due to any retesting made as required by the provisions in Section 8-30.3(10).

Payment for the first Electrical Safety Observer at each vault on a Project will be at Owner expense. All costs for Electrical Safety Observer required at each vault on a Project other than the first Electrical Safety Observer shall be the sole expense of the Contractor and shall be included in the costs for the appropriate Bid item.

SECTION 8-31 TRAFFIC SIGNAL SYSTEM

8-31.1 DESCRIPTION

8-31.1(1) GENERAL

This Work shall consist of furnishing and installing a complete and functional traffic control system consisting of controller assembly, signals, miscellaneous traffic devices, and appurtenances in accordance with the Contract Documents.

The Contractor shall become thoroughly familiar with the electrical environment within the Project Site and with the relevant Work.

All final service connections of signal systems to a secondary overhead or underground shall be made by Seattle City Light.

If, for any reason, vehicular or pedestrian signal(s) fail to function properly, the Contractor shall immediately call for an off duty Uniformed Peace Officer to control the intersection. The Contractor shall also immediately notify the Engineer and the Owner’s Signal Maintenance Office (206-386-1206) of the nature of the malfunction. The Contractor shall immediately undertake the necessary repairs. The Engineer may require the Work to be done by Owner forces.

8-31.1(2) ELECTRICAL AND ELECTRONIC WORDS AND PHRASES

See Section 1-01.3.

8-31.1(3) APPLICABLE ELECTRICAL CODES

See Section 8-30.1(2).

8-31.1(4) SUBMITTALS AND REFERENCE MATERIALS

8-31.1(4A) SHOP DRAWINGS

The Contractor shall submit Shop Drawings including catalog cuts in accordance with Section 1-05.3 for the following items:

1. Signal Heads and Mounting Assemblies
2. Cable and Wire
 a. Wire Connections
 b. Fuse Kits
 c. Splice Kits
3. Pole Line Hardware
4. Interior Illuminated Signs
5. Miscellaneous
 a. Telephone Station Protector
 b. Pedestrian Push Button
 c. Aerial Terminal Compartments
 d. Ground Rods
6. Detector Loops
 a. loop sealant
 b. wire
The Contractor shall submit three prints and one transparency of the “as built” wiring diagrams to the Engineer for each signalized intersection at least 3 working Days prior to requesting the Engineer’s approval for turn-on or cut-over. All prints and transparencies shall be reasonably readable.

Transparencies shall be of a quality providing clear and readable reproductions.

8-31.1(4)B SAMPLES

The Contractor shall submit a sample to the Engineer for approval of the type of vehicle and pedestrian signal heads, illuminated signs, and mounting hardware used. Approved samples will be retained for future comparison for the remaining Equipment to be installed.

8-31.1(5) CONTROLLER ASSEMBLY TESTING REQUIREMENTS

8-31.1(5)A RESERVED

8-31.1(5)B RESERVED

8-31.1(5)C RESERVED

8-31.1(5)D FIELD TESTING

The Contractor shall make the following tests on all new electrical circuits. Test Equipment shall be calibrated as recommended by the test Equipment manufacturer.

1. Test for continuity of each circuit.
2. Test for grounds in each circuit which consists of the physical examination of the installation to ensure that all required ground jumpers, devices and appurtenances do exist and are mechanically firm, meeting the requirements of Article 250 of the National Electrical Code.
3. A megger test on each circuit between the conductor and ground with all switchboards, panel boards, fuse holders, switches, receptacles and over current devices in place and all readings recorded. The megger test shall be performed with all wiring installed but connections not made to controller, conflict monitor, load switches, or other plug connected accessories. The Contractor shall submit to the Engineer with 3 copies of the test results identifying observed readings with their respective circuits at least 3 Working Days prior to any checkout of the installation to be turned on or cut over. One copy shall be filed in the controller cabinet.

The insulation resistance on all electrical circuits whose nominal voltage is between 115 volts and 600 volts, other than direct burial cable, shall not be less than 6 megohms between the conductor and ground on circuits with total single conductor lengths of more than 2,500 feet, nor less than 8 megohms for circuits with single conductor length 2,500 feet or less.

For circuits below 115 volts nominal and all direct burial circuits, the insulation resistance shall not be less than 2 megohms to ground, and for loop wire not less than 10 megohms.

Any change in the above stated minimum readings must be approved in writing by the Engineer. Only those factors based on dielectric properties of conductor insulation, splicing insulations, terminal strips, etc., will be cause for consideration of variance.

4. A functional test (intersection check-out) in which it is demonstrated that each and every part of the system functions as specified or intended herein. The functional test will be performed after all field connections to the controller cabinet have been made.

Any fault in any Material or in any part of the installation revealed by these tests shall be justification for the Material to be replaced or for the part to be repaired by the Contractor in a manner approved by the Engineer, and the same test shall be repeated until the system is approved by the Engineer.

8-31.1(6) GUARANTEE

See Section 1-05.10.
8-31.2 MATERIALS

Materials shall meet the requirements of Section 9-32, Signal System Materials.

8-31.3 CONSTRUCTION REQUIREMENTS

8-31.3(1) INTERSECTION CHECK-OUT AND TURN-ON PROCEDURES

8-31.3(1)A TRAFFIC CONTROL

The Contractor shall provide an off duty Uniformed Peace Officer at any time a signalized intersection is dark or inoperative, such as during controller change-out, cable installation, signal turn-on or cut-over, or similar circumstances. The Contractor shall have all traffic controls (i.e., pavement markings, channelization, and signing) in place prior to requesting Engineer’s approval for turn-on or cut-over. See Section 1-07.23 and Section 1-10.

To maintain safe traffic conditions, existing signals shall remain in operation until a simultaneous cut-over to the signal can be accomplished.

At the time of turn-on of new signals, temporary advanced warning signs approved by the Engineer shall be installed on all approaches. These signs shall remain in place for not less than 7 nor more than 21 calendar Days. All signs shall be highly visible and placed in a safe and secure location.

At the time of cut-over of revised signals having phasing which is different from the old signal operation (i.e., added phase, split phase, etc.) temporary “SIGNAL REVISION” signs shall be placed upstream on all approaches. These signs shall remain in place for not less than 7 nor more than 14 calendar Days. At a cut-over of revised signals having phasing which is the same as the old signal operation, no temporary signing is necessary. All signs shall be highly visible and placed in a safe and secure location.

See Sections 8-31.3(16) Turn-On / Cut-Over Procedure, 1-07.23, and 1-10.

8-31.3(1)B RESERVED

8-31.3(1)C CONTROLLER ASSEMBLY REPLACEMENT

At each location which requires that an existing controller assembly be replaced by a new one using the existing foundation, the Work shall proceed as specified below:

The Contractor shall check and tag all field circuits.

After field circuits have been tagged, the Engineer will de-energize the controller assembly, and disconnect and remove existing controller and auxiliary Equipment from the cabinet. The Contractor shall then remove the field wiring, remove the existing controller cabinet, install the new controller cabinet, and connect the field wiring as directed by the Engineer.

At each location selected for modification Work that requires removal or rebuilding of the existing controller cabinet foundation, the Engineer will de-energize the controller cabinet and remove electronic Equipment while the Contractor temporarily relocates the existing cabinet as approved by the Engineer. The Contractor shall provide a minimum 3 working Days advance notice. The cabinet shall be temporarily relocated in such a manner that the intersection operates in its present mode during foundation reconstruction or modification. The Contractor shall protect the controller assembly within the Work area, as approved by the Engineer.

Following foundation reconstruction, the new controller assembly shall be installed on the new or modified foundation.

8-31.3(2) TRAFFIC SIGNAL CONTROLLER ASSEMBLY

8-31.3(2)A GENERAL

The Contractor shall install the controller cabinet. The Engineer will install the controller and associated electronic Equipment.

Auxiliary Equipment added to existing controller cabinets shall be installed as indicated on the Drawings and as specified herein.

Any field modifications shall require the Contractor to submit to the Engineer for approval a modification plan 3 weeks prior to scheduling the Work. The submittal shall include Equipment layout and wiring diagrams
detailing the work to be done, as well as the portion of the critical path schedule to be followed. A description of how the Work affects traffic and signal operation shall also be submitted at this time, along with information on measures to be taken to minimize negative effects on traffic. See Sections 1-07.23 and 1-10.

The Engineer shall be notified 2 Working Days in advance of energizing the unit.

After signing the Owner’s functional test report, the Contractor shall pick up the controller cabinet at the Traffic Signal Shop (at 4200 Airport Way South, 206-386-1206, 2 working Days advance notice required) for installation. If the Contractor does not plan to install the controller cabinet immediately, it shall be stored at the Contractor’s expense in a dry secure area.

8-31.3(2)B RESERVED

8-31.3(3) SIGNAL HEADS, VEHICLE AND PEDESTRIAN

8-31.3(3)A GENERAL

Signal heads shall not be installed at any intersection earlier than 10 Working Days prior to turn-on or cut-over.

Mounting shall be bracket, mast arm, post top, span wire, or clamshell as indicated on the Drawings. Signals mounted on post tops shall utilize standard 4-inch slipfitters. Bracket-mounted signal heads shall utilize the signal bracket assembly and type of mounting indicated on the Drawings. The bracket assembly shall be installed in line with the pole center line.

Attachments such as visors, backplates or adapters shall conform and readily fasten to existing mounting surfaces without affecting the weatherproofing and light integrity of the signal.

Electrical service shall be neatly formed to the supporting structure with only sufficient slack for wind effect when span wire mounted.

All new vehicular and pedestrian signals shall be temporarily, securely, and completely covered with a 6 mil minimum thickness black, or blue, polyethylene sheeting until the time of turn-on or cut-over.

Alignment of vehicular and pedestrian signal heads and the overall readiness of other traffic control devices and channelization will be approved by the Engineer prior to activating signal locations.

8-31.3(3)B VEHICLE SIGNAL HEADS

The bottom of vehicle signals mounted over roadways, excluding backplates shall have a range of clearance between 17 feet to 19 feet above roadway grade at the crown of the roadway. On designated truck and overhead trolley routes, the range of clearance shall be 18 feet to 19 feet. Under no circumstances shall the bottom of the vehicle green section be more than 19 feet above roadway grade at the crown of the roadway. Vehicle signals mounted on poles or pedestals shall be 11 to 15 feet above sidewalk grade. Pole plates used for bracket mounted installations shall be of the type that shall fit flush against the pole surface without altering the pole or pole plate.

The signal shall be mounted with standard 1-1/2 inch fittings as a single section or as a multiple section head. The signal section shall be provided with an adjustable connection that permits incremental tilting from zero to at least 10 degrees above or below the horizontal while maintaining a common vertical axis through couplers and mounting. Terminal connection shall permit external adjustment about the mounting axis in 5-degree increments. The signal shall be mountable with ordinary tools and capable of being lamped without tools.

Signal heads located over the roadway shall not be in conflict physically or visually with trolley wires, span wires, electrical wires or any other hardware existing or proposed for the location. A 3-foot edge to edge clearance shall be maintained between signal heads and trolley wires. Span wires and tether lines within 4 feet of trolley lines shall be properly insulated. If it becomes evident that a conflict exists, the Contractor shall immediately notify the Engineer and allow 5 working Days to resolve the problem.

Balance adjusters shall not be installed when the approach grade is less than 10%.

When balance adjusters are required, the vehicular heads shall be adjusted in the field such that persons standing on the pavement, four times the speed limit in feet back from the stop bar, shall see the brightest image of the red section. Heads shall be plumbed as viewed from the direction in which they face.
Optically programmed type traffic signal heads shall be programmed before traffic signal system turn-on. Programming shall be performed in the presence of the Engineer (note - also a representative of the traffic signal shop) by giving 2 Working Days advance notice.

Vehicle signal heads shall be attached to the mast arm with a signal coupling unit as detailed on Std. Plan 510.1. Mounts shall include elevator straight plumbizer units between the red and yellow signal sections, or 90 degree plumbizers.

Vehicle signal heads shall be attached to the span wire by means of a hanger clamp, balance adjuster, and suspension fittings as shown on the Standard Plans. The sag in the span wire after loading shall be within the range of 5 percent to 7 percent of the total span. Span wires shall be attached to the poles such that the signal head mounted at the lowest point on the span does not require a signal height adjuster. The top (red) section of all heads hanging on the same span shall be approximately level when viewed from the approach direction.

For optically programmed signals which are span wire mounted, a tether cable with connections and hardware as recommended by the signal head manufacturer shall be used to provide and maintain proper optical visibility of all indications. The tether cable clamps used shall be designed to release under severe wind loads and impact. The tether cable shall be insulated, bright yellow, and shall be installed a minimum 18 feet above roadway grade.

8-31.3(3)C PEDESTRIAN SIGNAL HEADS

Pedestrian signal heads shall be aligned to focus on the center of the far end of the crosswalk which it is associated with and at a point 5 feet above the opposing sidewalk.

Multiple pedestrian signal heads mounted on a pedestal shall be stagger mounted so that the distance to the bottom of the lower housing is 8 feet above the sidewalk, and the distance to the bottom of the upper housing is 9 feet 6 inches above the sidewalk.

The Contractor shall use a “Clamshell” type mounting assembly for pedestrian signals.

Pedestrian signal heads mounted on the same pole (not pedestal) shall be installed so that the bottom of the housing of each head is a minimum 8 feet above sidewalk grade. On poles where the signal housings interfere with each other, stagger mounting shall be required as indicated on the Standard Plans.

8-31.3(4) PEDESTRIAN PUSH BUTTON ASSEMBLY

The push button assembly shall be located on the side of the pole as shown on the Drawings. The mounting height shall be as indicated on the Standard Plans.

8-31.3(5) DETECTOR LOOPS

8-31.3(5)A LOOP WIRE

Vehicle loop detectors indicated on the Drawings are located schematically and actual loop detector locations will be verified by the Engineer prior to sawcut or installation. The Contractor shall mark out proposed detector loops on the roadway at least 3 working Days before any sawcut or installation occurs. The location of stop bar pavement marking shall be obtained by the Contractor prior to sawcut or loop detector installation. In general, loop locations shall be located behind existing or proposed stop bar pavement marking, and shall not be located where pavement dowel or tie bars or metal supports within the pavement are located. Loops located within or beyond the stop bar pavement marking will not be allowed. The Contractor shall not begin sawcutting pavement until loop locations have been approved by the Engineer. When parallel to a pavement joint or edge, the sawcut shall be at least 1 foot away from the edge or joint. All saw cuts shall be cleaned of debris as approved by the Engineer.

See Section 8-22.3(1) for loop detector and pavement marking coordination.

The Contractor shall sawcut pavement to a depth which provides a minimum 1 inch cover between the top of loop wire and pavement surface.

One single continuous length of loop wire shall be used to form a loop with the number of turns indicated on the loop schedule on the Drawings. The wire shall be placed by tamping it into the saw cut with a blunt wooden stick, taking care not to damage the insulation. To reduce abrasion of the insulation, the Contractor shall
sawcut all corners at least once to reduce the corner angle. This corner angle shall then be filed or smoothed acceptably free of sharp edges.

The sawcut in concrete shall be filled with a quick-drying high strength Highway concrete patching Material.

In asphalt installations, the loop wire shall be sealed with an asphaltic sealant approved by the Engineer. Sealing shall not be performed when the pavement is damp.

When placing loops across joints or cracks in pavement, the portion of wires across the joint or crack shall be protected by placing it in tubing as indicated on the Standard Plans. The tubing shall be sliced open to insert the wire in the tubing and then placed across the joint or crack extending a minimum six inches each side of the joint or crack.

Loop wire, from the loop to the lead-in splice, shall be twisted a minimum of 3 turns per foot. Care shall be taken so that the twists are uniform.

A minimum of 60 inches of loop wire shall be brought into the handhole and spliced to the lead-in cable with a crimped soldered, waterproof splice per Standard Plans.

8-31.3(5)B LOOP LEAD-IN CABLE

The Contractor shall sawcut pavement to a depth which provides a minimum 1 inch cover between the top of loop wire and pavement surface.

Lead in cable shall be one continuous length from the splice at the handhole to the termination point in the controller cabinet.

The cable shield and drain wire shall be grounded at the system ground only at the controller cabinet and shall be continuous and insulated.

Each loop lead-in wire shall have a permanent cloth or plastic tag with the label number shown on the loop detector wiring chart specified on the Drawings. These tags shall be placed at handhole splice and controller cabinet terminations.

A dated as built drawing, provided by the Contractor, of the complete loop system indicating their size, direction, lane location, inductance reading and identifying number assigned shall be installed in the controller cabinet.

8-31.3(5)C INDUCTANCE TESTING AT THE HANDHOLE

Before splicing the loop wire to the loop lead-in cable, an inductance test shall be performed by the Engineer to ensure the inductance is within the acceptable range of plus or minus 15 percent of the calculated inductance. If the inductance does not fall within the acceptable range, the Contractor shall take necessary corrective measures until the desired readings are obtained or as approved by the Engineer. Inductance readings shall be recorded on the as-built Drawings showing the reading for each loop, with one copy filed in the controller cabinet.

8-31.3(5)D LOOP CONTINUITY TESTING

The completed loop and lead-in configuration after splicing shall be checked for continuity, using a tester that does not exceed the voltage rating of the lead-in and loop wire.

The Contractor shall also perform a megger test on the loop and lead-in configuration to make certain that the resistance to ground is 10 megohms or greater. If resistance to ground prior to placing the sealant is less than 10 megohms, all splices and wires should be checked for insulation damage. Corrective measures shall be taken as directed by the Engineer. After the slot has been sealed, the Contractor shall perform the resistance and continuity tests again. If the continuity and resistance tests do not meet the above-mentioned requirements, the Contractor shall take corrective measures at the direction of the Engineer until acceptable readings are obtained.

8-31.3(5)E INDUCTANCE TESTING AT THE CONTROL CABINET

After loop wire and lead-in cable splices have been made, and the continuity test has been completed, the Engineer shall test the inductance of the loop and loop lead-in cable at the controller cabinet. The inductance must be within the acceptable range of plus or minus 15 percent of the calculated inductance. If the inductance does not fall within the acceptable range, the Contractor shall take corrective measures at the direction of the
Engineer until acceptable readings are obtained. Final readings shall be recorded on the as-built Drawings of the total inductance for each of the loops plus lead-in circuits.

8-31.3(5)F ENCAPSULATED DETECTOR LOOP
The requirements of 8-31.3(5), excluding Section 8-31.3(5)A, shall apply to encapsulated detector loops. Encapsulated detector loops shall be installed and tested prior to the pavement being installed.

The Contractor shall mark out proposed loop detector locations for the Engineer’s approval at least 2 working Days prior to installation.

Loop and home-run locations referenced to the face of the nearest curb shall be noted on the as-built Drawings.

The Contractor shall install the loop wire and conduit within the base course of the pavement system. Neither the loop nor any of its components shall be installed within concrete pavement Material. A minimum of 60-inches of loop wire shall be brought into the handhole and spliced to the lead-in cable with a crimped/soldered waterproof splice per Standard Plans.

Before paving operations begin, the Engineer will conduct an inductance test per Section 8-31.3(5)C. An inductance test will again be performed after the pavement has been installed and before turn-on or cut-over. Also, the Contractor shall conduct the tests required by Section 8-31.3(5)D after the pavement has been installed and before turn-on or cut-over. Such tests shall be performed in the presence of the Engineer.

8-31.3(6) INTERIOR ILLUMINATED SIGN
Interior illuminated signs shall be temporarily covered completely with a 6 mil opaque polyethylene sheeting until the sign is ready to be energized and the Engineer authorizes the Contractor to remove the sheeting.

The sign shall be mounted as indicated on the Standard Plans. The sign shall be mountable and capable of being serviced with common tools. The distance to the bottom of the sign at the lowest point on the span shall be a minimum of 16-1/2 feet and a maximum of 19 feet above the roadway. On designated truck routes the minimum shall be 18 feet.

The sign shall be adjusted in the field as directed by the Engineer. Signs shall be plumb as viewed from the direction in which they face.

8-31.3(7) RESERVED

8-31.3(8) INTERCONNECT CABLE
8-31.3(8)A GENERAL
The Contractor shall match the sag as closely as possible with wires already on poles to ensure minimal movement in windstorms and adjacent wire conflict.

All cable pulled through underground ducts shall be lubricated with an approved cable pulling compound.

The Contractor shall use grip or “come-along” to hold on to the jacketed messenger when pulling and tensioning. Pulling and tensioning shall be done in such manner as to not damage the jacket. When separating the messenger from the jacketed conductor assembly for dead-ending or splicing, the web shall be split in the middle. Cable with damaged jackets will be rejected and promptly replaced by the Contractor at no expense to the Owner.

At corners and run ends, the messenger strand shall be dead-ended with either automatic strand vises or preformed guy grip dead-end. When dead-ending with strand vises, the Contractor shall cut the strand and remove the jacket from the steel strand, exposing enough strand so that the ends of the strand coming through the chuck of both strand vises can be overlapped and bonded together to form a continuous ground. A 1-bolt guy clamp shall be used to bond the strand ends together.

Interconnect cable shall not be spliced. The cable shall be a continuous run between the terminal strip of one controller to the terminal strip of the next controller. The messenger wire shall be removed from aerial figure 8 cable in pole risers and conduit.
The shield of all cables entering an aerial terminal compartment shall be terminated on a common terminal. The shield shall be connected to the terminal strip of the controller at the start of a system and then connected only at Alternate controls along the route of the system.

The installation of controllers and the connection to the energized interconnect cable shall be done starting at the master control point and going to the end of the system. When controllers are to be connected into new or existing systems, care shall be taken not to disrupt the integrity of the entire system. A plan of order for converting from an old to a new system must first be submitted and approved by the Engineer at least 10 Working Days in advance.

An extra six (6) feet of interconnect cable shall be coiled in the nearest handhole to the controller cabinet. After the cable has been pulled into the controller cabinet, the outside jacket shall be stripped back 3-feet. All exposed wiring shall have the gel removed from each wire individually. The jacket end shall be sealed to prevent the gel from leaking out of the cable. Sealing shall be done by applying a small portion of duct seal, well pressed between the wires and jacket and then firmly taped with 4-6 wraps of friction type extending two (2) inches from each side of the jacket end to hold the seal in place. After cleaning and sealing, the exposed length of wiring shall be rewound as a pair with the original mate. An approved shield grounding connector shall be used to ground the shielding.

Interconnect cable in conduit shall be installed in accordance with Section 8-30.3(5).

8-31.3(8)B TELEPHONE INTERCONNECT CONNECTION

The Contractor shall notify the Engineer at least 4 weeks, but not more than 6 weeks, in advance of the expected turn-on in order that the Engineer can request the telephone service provider to install the two-pair interconnect drop to the telephone station protector.

The Contractor shall have completed the telephone station protector, with associated wiring to the controller, before the phone connection can be installed and tested when the request is made.

8-31.3(9) SIGNAL WIRING

8-31.3(9)A CONDUCTOR INSTALLATION

The Contractor shall be responsible for making all circuits fully functional after pulling in new cables.

Cable and wire which is damaged in pulling shall be promptly replaced with new cable to the satisfaction of the Engineer at the sole expense of the Contractor.

When conductors and cables are being installed, care shall be exercised not to exceed tension limitations recommended by the manufacturer. Conductors may be pulled directly by hand. However, if conductors are pulled by any mechanical means, a dynamometer with drop-needle hand shall be used on every mechanical pull.

On mechanical pulls, sufficient insulation shall be stripped off the conductor to form a pulling eye and then firmly taped before pulling; or a cable grip shall be used. The pulling force applied directly to the conductor, when pulling eyes are used or when the conductor is formed into a loop, shall be limited to 0.008 pound per circular Mil area of copper conductor but shall not exceed the recommended limits of the conductor's manufacturer. When a cable grip is applied over nonmetallic sheathed cables, the maximum pulling force shall be limited to 1,000 pounds, provided this is not in excess of the force as calculated above.

To limit the side wall pressure at bends in duct and conduit runs, the pulling force in pounds shall not exceed 100 times the radius of the bend in feet or the manufacturer's recommendation, whichever is less. Adequate lubrication of the proper type to reduce friction in conduit and duct pulls shall be utilized. Lubricant shall be of a non-hardening type approved by the Engineer.

In existing conduits where new cable is to be installed which contain existing traffic and street light wiring as noted on the Drawings, the Contractor shall protect existing wiring from damage due to pulling new cable. Cable pulling compound shall be used to minimize cable pulling tensions and adverse effects on existing insulation, jackets and shields.

Enough cable shall be pulled into controller cabinets to allow approximately 4 feet of cable to be stripped and coiled around the bottom of the cabinet before connections are made.

Cable routings on span wire shall be securely attached to the span wire by means of 4-6 wraps of friction tape spaced no more than 18 inches apart. Drip loops shall be left at the point of entrance to span mounted signal heads and steel pole conduit entrance fittings to allow moisture to drip from the cable rather than run down the side of the cabinet.
the cable into entrances. Where the drip loop from the pole outlet to the span wire exceeds 18 inches, the cable shall be secured to the pole to give a neat appearance.

All electrical cable for traffic signal facilities passing through handholes, junction boxes, conduit bodies, vaults and manholes shall be properly identified. Each cable shall be identified as to its function by using 3 wraps of colored plastic tape as follows:

<table>
<thead>
<tr>
<th>Cable Function</th>
<th>Tape Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicular Signal Circuits</td>
<td>Red</td>
</tr>
<tr>
<td>Detector Circuits</td>
<td>Yellow</td>
</tr>
<tr>
<td>Pedestrian Signal Circuits</td>
<td>Green</td>
</tr>
<tr>
<td>Push Button Circuits</td>
<td>Brown</td>
</tr>
<tr>
<td>Interconnect</td>
<td>White</td>
</tr>
<tr>
<td>Telephone Circuit</td>
<td>Two White</td>
</tr>
<tr>
<td></td>
<td>(White-White)</td>
</tr>
<tr>
<td>Service</td>
<td>Orange</td>
</tr>
<tr>
<td>Fire Pre-empt</td>
<td>Blue (light)</td>
</tr>
</tbody>
</table>

Colored tape identification shall also apply to cables spliced in pole and pedestal bases and aerial splices. Each cable shall be identified with the appropriate colored tape within 6 inches of a splice. Cable in handholes, junction boxes and conduit bodies shall be appropriately marked near the center of the enclosed section of cable. Cable passing through Seattle City Light handholes, manholes and vaults shall be identified with a permanent waterproof marker secured to the cable. The cable marker shall indicate “SED SERVICE” for traffic signal service cable, “SL SERVICE” for street lighting cable, or “SED SIGNAL” for all other traffic signal cable usage.

Work in manholes and vaults shall be done in accordance with the National Electric Safety Code and Seattle City Light Standards. Cable being installed in manholes and vaults with existing power cable should be racked on the wall opposite the power cable. If cable must be racked on the same wall with power cable, it shall be mounted above the power cable, maintaining a 6-inch minimum separation. Every effort should be made to minimize any negative impact of power cable noise and transients upon the new communications cable, while adhering to all safety regulations. See Section 1-07.28 regarding notifications required for work in Seattle City Light structures. In handholes, all cables and conductors shall be orderly to provide easy recognition and quick access.

Requirements for cable bending, training and racking shall be in accordance with Seattle City Light Construction Standard U4-2.8. For convenience, several of the frequently needed requirements are:

1. Rack opposite the primary.
2. Maintain proper cable separation.
3. Signal cable should be above all other existing cable.
4. Elevation changes shall be made behind other cable.
5. Use existing rack, if available or use stud gun for installation to wall at 4-foot spacing, with 2-foot spacing near cable entrances.
6. NEMA boxes should be on an end wall, 2-feet from the ceiling and be visible from the manhole opening.

Care shall be exercised in working near and within any Seattle City Light vaults. Voltages present are as high as 26,000 volts, and the vault wiring will not be de-energized while the Contractor is working. Seattle City Light safety and Electrical Safety Observer standards shall be adhered to while working in vaults. See Sections 1-05.2(2) and 1-07.28.

8-31.3(9)B SPLICES

Signal cable shall be spliced only in poles, pedestal bases, or overhead within 2 feet of the poles. Aerial splices shall be covered by reverse wrapping of the first layer with electrician insulating tape, then a built-up rounded end of electrical tape, then a minimum of 2 layers forward with electrician tape.

At locations where existing signal cables are being utilized, the traffic signal cables shall be spliced in pole or pedestal bases and each individual conductor shall be insulated and the entire splice shall be waterproofed.
Each individual splice or termination of extra leads shall be insulated, taped and made waterproof. Loop wire shall not be spliced, except with the loop lead-in wire within the handhole. Service cable or master cable shall not be spliced except as indicated on the Drawings.

8-31.3(9)C TERMINATIONS

Except at a splice, conductors shall be terminated on a terminal strip or push-on connectors at the signal Equipment which it is serving. Only terminal strips with screw-type pressure binding posts shall be used. Stranded conductors shall use compression-type pressure fittings at the terminal strip. Single solid conductors shall attach directly to the screw post; otherwise compression-type pressure fittings shall be used when more than one conductor is attached.

All electrical terminations shall be tightened to their prescribed torque value.

All terminals shall be marked with field wiring numbers printed on back or front-mounted marking strips.

8-31.3(9)D PEDESTRIAN PUSH BUTTON CABLE

The cable shield shall be grounded to the system ground only at the controller end. The cable shield between cabinet and splice shall be continuous throughout intermediate junction boxes and shall be insulated to prevent grounding in any junction box or in any conduit.

8-31.3(9)E ELECTRICAL SERVICE CONNECTIONS

The Contractor shall furnish and install Equipment and wiring for 2 parallel 120 volts, 60 Hz AC electrical services. The electrical service cable shall be installed as indicated on the Drawings.

All final service connections of signal system to overhead secondaries or to secondaries in vaults or handholes will be made by Seattle City Light. The Contractor shall arrange a schedule with the Engineer for service connections at the preconstruction conference.

8-31.3(10) GROUNDING AND BONDING

All metallic appurtenances containing electrical conductors, including cabinets, metallic conduit, metal poles, pedestals, junction boxes, and handhole frames and lids shall be made mechanically and electrically secure by forming a continuous system which shall be effectively grounded.

Where conduit systems are employed, all metallic appurtenances shall be electrically bonded as required by Article 250-95 of the NEC.

The Equipment grounding conductor shall in all cases be sized consistent with Table 250-95 of the NEC. All proportional adjustments in grounding conductor capacities shall be considered as accomplished by the installation of a ground rod at each handhole. The metal ring on the handhole and its metal cover shall also be grounded locally per NEC requirements.

Equipment grounding conductors, if insulated, shall employ insulation rated at 60 °C or higher and shall be chemically compatible to other insulations contained within the system.

Identification of the Equipment grounding conductor shall conform to all NEC requirements.

Grounding of conduit and neutral at the service point shall be as required under the NEC.

Service ground and neutral shall kept isolated from the logic ground circuits in the controller cabinet.

A ground wire shall bond all system ground rods. A ground clamp shall be used to secure the ground wire to the ground rod. The neutral bus on the service switch shall be connected to the closest ground rod.

8-31.3(11) POLE LINE HARDWARE INSTALLATION

Span wire portions that are directly above METRO trolley wires shall be covered with plastic cable guard. The cable guard shall extend a minimum of four (4) feet beyond each side of the trolley wire track. The cable guard will be furnished by the Owner. The Contractor shall give the Engineer at least 5 working Days advance notice prior to installation. See Section 1-07.28 regarding coordination of Work with METRO trolley lines.

Span wire shall be secured to steel strain poles by means of pole bands, and to timber poles by means of single strand guy eye bolts. Span wire sag shall be 5 to 7 percent of the total span. Pole bands and eye bolts shall be installed as detailed on the Standard Plans.
Span wire shall be secured to eye bolts or strain clamps at poles by use of self-locking cable clamp type dead-ending devices. Span wire shall be secured to bull rings and anchors by the use of cable guy wrap and guy thimbles. Span wire shall be secured to strain insulators by the use of cable guy wraps.

Strain insulators shall be installed on all spans and down guys at a distance of 9 feet from the face of wood poles, and 3 feet from the face of steel poles.

Tether wire shall be mounted a minimum of 18 feet above the roadway.

On steel poles, no lag or through bolts shall be used.

8-31.3(12) RELOCATING EQUIPMENT

When existing Equipment is to be relocated, the Contractor shall furnish and install all necessary new Materials and Equipment (including all hardware) required to install the salvaged Equipment in the new installation. Any new hardware required to complete the installation shall be of the same quality and type as hardware required in these Specifications for all other new Work.

All traffic signals, flashing beacons, and illuminated signs to be relocated shall be cleaned and relamped.

8-31.3(13) REMOVAL AND SALVAGE OF EXISTING EQUIPMENT

Refer to Section 2-02.3(3)G and 2-02.3(7)C.

8-31.3(14) OWNER FURNISHED EQUIPMENT AND MATERIALS

The Contractor shall pick up equipment and Material, as specified and at pickup locations indicated in the Contract, and install such as indicated on the Drawings.

8-31.3(15) CHECK-OUT PROCEDURE

The Contractor shall arrange a schedule with the Engineer at least 2 Working Days in advance for a complete intersection check-out after having completed the installation of the controller cabinet, all signal and illuminated sign Equipment, pedestrian signal activators, vehicle detection, interconnect cable system and all the associated wiring and connections as called for in the Drawings. The Contractor shall be present and assist with the check-out by energizing each field circuit and assisting as necessary to verify completeness of the installation except for the controller unit and auxiliary units of the controller assembly. If the intersection is found to be incomplete or inadequate, the Contractor will be notified of the deficiencies to be corrected.

8-31.3(16) TURN-ON/CUT-OVER PROCEDURE

See Section 8-31.3(1)A. Upon satisfactory check-out of an intersection, the Contractor, after conferring with the Engineer, shall arrange a tentative schedule a cut-over from the old signals or a turn-on of a new installation. A request for “turn-on” of a new signalized intersection or “cut-over” modifications to existing signalized intersection shall be submitted in writing to the Engineer at least 5 working Days prior to the proposed date of an existing signal cut-over, and 5 working Days prior to the proposed date of a new signal turn-on. The Contractor shall submit an as-built wiring diagram to the Engineer at checkout. The Engineer will respond to the Contractor within 5 Working Days of receipt of request for cut-over or turn-over.

Turn-ons and cut-overs will not be permitted on Friday, Saturday, Sunday, Monday, Holidays or a Day before a Holiday. Only one turn-on or cut-over will normally be permitted in a single Day. Turn-on or cut-over Work shall be scheduled and completed between the hours of 9:30 AM and 3:30 PM.

The Owner will deliver to the site and plug into the controller cabinet, the controller unit and the auxiliary units. The signal timing for the controller unit will be done by the Owner. The Contractor shall not energize the signals until the Engineer is on site and has authorized the Contractor to proceed. To maintain safe traffic conditions, existing signals shall remain in operation until a simultaneous cut-over to the signal can be accomplished, unless an Alternate procedure is approved in writing by the Engineer. New signals shall not obscure existing traffic controls.

The Contractor shall be present and shall be prepared at such turn-on time, with Materials and tools necessary to correct any malfunctions which may occur. Turn-on shall not take place if any subsequent Work necessitates turning off the signal system.

All new vehicular and pedestrian signals and illuminated signs shall be temporarily covered (sacked) completely with a 6 mil opaque polyethylene sheeting until the new signals are ready to be energized.
diameter hole (i.e., 1 inch) shall be cut into the opaque plastic cover in front of each vehicular signal lens and a 1 inch by 3 inch slot in front of each pedestrian signal lens to allow for a visual check of indications during performance testing.

Immediately after turn-on or cut-over, all existing vehicular and pedestrian signals that have been deactivated shall be sacked or removed. The old signal heads shall not obscure the new traffic controls at any time.

8-31.3(17) FINAL INSPECTION

See Section 1-05.11

As soon as practicable after completion of all signal and related Work, the Contractor shall submit as-built wiring drawings indicating revised field wiring and revised controller assembly wiring.

8-31.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Signal Wiring, (Location)” will be by lump sum for each intersection.

Measurement for “Detector Loop, (Size)” will be by each complete installation.

8-31.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-31 will be at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Traffic Signal Controller Cabinet, (Description)”, per each.

The Contract unit price for “Traffic Signal Controller Cabinet, (Description)” shall include all costs for the Work required to install the Owner furnished cabinet on the foundation and make all field terminal connections with the cabinet.

2. “Signal Head, (Type) (Description)”, per each.

The Contract unit price for “Signal Head, (Type) (Description)” shall include all costs for the Work required to furnish and install the signal head, including all mounting hardware for the mounting specified, installation, alignment, testing; and when specified, bimodal fiber optic arrow lens, louvers, backplates, and programming as may be required.

The Owner reserves the right to return any signal head or heads, within 1 year from the date of receipt, which fail to comply with these Specifications. The Contractor shall fully reimburse the Owner for all such heads.

3. “Pedestrian Push Button Assembly”, per each.

The Contract unit price for “Pedestrian Push Button Assembly” shall include all costs for the Work required to furnish and install the pedestrian push button assembly, including the button and housing, 1 or 2 directional signs as specified, and required mounting hardware as indicated on the Standard Plans. Payment for pedestrian push button posts and foundations will be made in accordance with Section 8-32.5.

4. “Detector Loop, (Size)”, per each.

The Contract unit price for “Detector Loop, (Size)” shall include all costs for the Work required to saw cut the pavement and furnish and install the loop detector wire and conduit to the first handhole from the loop, tar, splices, hardware, and restore the pavement surface as specified in Section 8-31.3(5)A herein.

5. “Sign, Interior Illuminated, (Size)”, per each.

The Contract unit price for “Sign, Interior, Illuminated (Size)” shall include all costs for the Work required to furnish and install the interior illuminated sign, including all mounting hardware and sign wiring.

6. “Sign, Crosswalk, Illuminated”, per each.
The Contract unit price for "Sign, Crosswalk, Illuminated" shall include all costs for the Work required to furnish and install the illuminated crosswalk signal, including all mounting hardware, photoelectric cell installed on a photoelectric control mounting bracket, service wiring, and sign wiring as indicated on the Drawings and in the Specifications.

7. “Interconnect Cable, (Type)”, per linear foot.
 The Contract unit price for “Interconnect Cable, (Type)” shall include all costs for the Work required to furnish and install the cable in conduits or on poles; and shall include all hardware, taps and splices for a complete, interconnected system as specified.

8. “Aerial Terminal Compartment”, per each.
 The Contract unit price for “Aerial Terminal Compartment” shall include all costs for the Work required to furnish and install the compartment, and shall include mounting hardware and sealing for a complete compartment as specified.

9. “Signal Wiring, (Location)”, per lump sum.
 The lump sum Contract Price for “Signal Wiring (Location)” shall include all costs for the Work required to furnish and install all signal wiring at the intersection indicated, including signal lead wiring, push-button wiring, sign (attached to signal) wiring, service wiring, and loop lead-in cable. Interconnect cable wiring will be included in payment for “Interconnect Cable.” Internal controller wiring will be included in payment for “Traffic Signal Controller.”

11. “Span Wire, Catenary”, per linear foot.
 The Contract unit price for “Span Wire” and “Span Wire, Catenary”, shall include all costs for the Work required to furnish and install the spanwire, including wire, clamps, insulators and all hardware for the span wire installation complete.

12. “Relocate (Item)”, per each.
14. “Relocate (Item)”, per lump sum.
 The Contract unit price for “Relocate (Item)” shall include all costs for the Work required to remove and reinstall the item, including hardware and rehabilitating signals and signs if required.

15. “Detector Loop, Encapsulated, (Size)”, per each.
 The Contract unit price for “Detector Loop, Encapsulated, (Size)” shall include all costs for the Work required to furnish and install the encapsulated detector loop as specified in the Contract Documents.

16. Other payment information.
 Existing Materials required to be relocated and found to be unsatisfactory by the Engineer shall be replaced by new Material and the cost thereof will be paid for as extra Work per Section 1-09.4.

 All costs for providing an off duty Uniformed Peace Officer shall be in accordance with Section 1-10.
 All final service connections of electrical signal systems to overhead secondaries or to secondary in vaults or handholes will be made by Seattle City Light at no cost to the Contractor.
 All costs for furnishing and installing hardware not specifically called out, but required to complete the Work and approved by the Engineer shall be included in the Contract unit prices for the Bid items comprising the improvement.
 The Contractor will be charged with the actual cost to the Owner for the testing of the controller assembly and associated control Equipment as required by the provisions in Section 8-31.3(2) and 8-31.3(15).
 If an intersection is found to be incomplete or inadequate, in accordance with Section 8-31.3(1)B, the Contractor will be charged the actual costs to the Owner for the unsuccessful review of the intersection. The Contractor will not be billed for the inspection which indicates the signal system is ready for flashing or cut-over.

 See Section 8-30.5 regarding payment for Electrical Safety Observer.
SECTION 8-32 POLES, PEDESTALS, AND FOUNDATIONS

8-32.1 DESCRIPTION

8-32.1(1) GENERAL
This Work shall consist of furnishing and installing poles, luminaire arms, pedestals, posts, mastarms, concrete foundations and back guy assemblies in accordance with these Specifications and Standard Plans.

8-32.1(2) APPLICABLE ELECTRICAL CODES
See Section 8-30.1(2).

8-32.1(3) SHOP DRAWINGS
The Contractor shall submit Shop Drawings and catalog cuts in accordance with Section 1-05.3 for the following Materials items:
1. Metal poles and appurtenances
2. Fiberglass lighting poles
3. Mast arms
4. Anchor bolts, nuts, washers
5. Anchor bolt extenders
6. Pedestals
7. Bracket arms

All strain pole(s) or street light only pole(s) or both which deviate from the Drawings will be considered an Alternate proposal and requires a submittal to the Engineer at least 10 Working Days in advance of ordering the poles. The Alternate pole shall meet all requirements of Section 9-33, the needs of the Project, and shall not adversely impact the Contractor’s accepted critical path schedule. This submittal shall be in accordance with Section 1-05.3(2).

All strain poles (Type T,V,X,Z) are pre-approved by the following pole manufacturers:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Drawing No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Metal</td>
<td>71035-C20</td>
</tr>
<tr>
<td></td>
<td>71035-C21</td>
</tr>
<tr>
<td></td>
<td>71035-C26</td>
</tr>
<tr>
<td></td>
<td>71035-C27</td>
</tr>
<tr>
<td>NW Signal Supply</td>
<td>NWS2298</td>
</tr>
<tr>
<td></td>
<td>NWS2299</td>
</tr>
<tr>
<td>Valmont</td>
<td>DB00229</td>
</tr>
</tbody>
</table>

If the Contractor chooses to buy poles from one of the above pole manufacturers, the Contractor shall submit the following information to the Engineer for approval prior to ordering the pole:
1. Job name
2. Pole manufacturer’s name
3. Drawing number with current revision specified
4. Quantity per each
5. Pole type (T,V,X or Z)
6. Davit or bracket arm, and arm length
7. Specify if second cable outlet with orientation, if festoon outlet, and number of guy clamps.
8. Equipment delivery time frame

8-32.1(4) ELECTRICAL AND ELECTRONIC WORDS AND PHRASES
See Section 1-01.3.
8-32.2 MATERIALS

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete for foundation</td>
<td>5-05</td>
</tr>
<tr>
<td>Poles, Mast Arms Pedestals, and Foundations</td>
<td>9-33</td>
</tr>
<tr>
<td>Back Guy Assemblies</td>
<td>9-33.8</td>
</tr>
</tbody>
</table>

8-32.3 CONSTRUCTION REQUIREMENTS

8-32.3(1) POLES

8-32.3(1)A GENERAL

See Section 8-32.3(2)A for foundation concrete mix design requirements.

The Contractor shall lay out pole locations and grades as indicated on the Drawings. Poles shall be located to provide a minimum of 3 feet clearance from the face of the curb to the face of pole, unless directed otherwise by the Engineer.

Poles shall be handled in loading, unloading and erecting in such a manner that they are not damaged.

Field repair of galvanized surfaces shall be accomplished by coating with a heated zinc alloy solder to a minimum thickness of 3 mils per ASTM A 780.

The Contractor shall repair or replace all rejected poles at no expense to the Owner. Should the Contractor elect to repair the rejected pole, the Contractor shall submit a repair plan at least 5 Working Days in advance to the Engineer for approval.

8-32.3(1)B METAL POLES AND PEDESTALS

Poles shall not be erected before concrete foundations have cured for a minimum 7 Working Days or have attained a minimum 70% of specified strength. Poles shall not be loaded before concrete foundations have cured for a minimum of 10 Days and when concrete reaches 3000 psi compressive strength. If the Contractor elects to use Type 3 cement (high early), the pole may be loaded after 7 Days curing or when the compressive strength reaches 3,000 psi whichever occurs first. The Contractor may request concrete test samples or provide an ASTM accredited testing Laboratory approved by the Engineer to sample and test the concrete.

Signal related poles shall not be grouted until after turn-on or cut-over.

Leveling nuts shall be used on all metal poles. Leveling nuts and washers shall be placed on anchor bolts to allow between 2 and 4 inches of dry pack mortar under the base plate. Poles shall be placed on the bolts and the leveling nuts and washers. The leveling and locking nuts and washers shall then be adjusted to plumb the pole.

The pole shall be raked before loading such that it is plumb after all loads have been applied. Plumb shall be defined as the condition existing when an imaginary vertical line from the center line of the pole top passes through the center line of the pole base at ground level. A tolerance of plus or minus 0.17 inches per foot of pole height above the ground will be permitted with the exception that in no case shall the pole lean toward the street. Locking nuts shall be torqued to the manufacturer’s recommendations.

After pole anchor bolts and rake have been inspected and approved by the Engineer with loads applied, tape shall be placed around the periphery of the anchor bolts and leveling nuts, then non-shrink cement sand grout (see Section 9-04.3(2)) shall be placed under the pole to completely fill the void under the base outside the anchor bolts by packing from the bolts and finishing towards the outside. The grout shall be sloped at approximately 60 degrees away from the base plate. There shall be a 1/2 inch drain tube in the mortar on the lowest side of the base to provide drainage from within the pole or pedestal to the outside.

Installation of pedestals shall meet the same requirements for installation of metal poles, except raking will not be required.

8-32.3(1)C WOOD POLES

Wood poles shall be set at the depth indicated in the following table:
Recommended Pole Setting Depth

<table>
<thead>
<tr>
<th>Length of Pole</th>
<th>Minimum Set Depth</th>
<th>Set Depth in Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>25</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>30</td>
<td>5.5</td>
<td>3.5</td>
</tr>
<tr>
<td>35</td>
<td>6.0</td>
<td>4.0</td>
</tr>
<tr>
<td>40</td>
<td>6.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

After each wood pole is set in the ground to the specified depth as indicated on the Standard Plans, the space around the pole shall be backfilled with selected earth or sand, free of rocks and other deleterious material, placed in layers approximately 4 inches thick. Each layer shall be moistened and thoroughly compacted.

When wood poles are used as strain poles, the poles shall be raked to be plumb after loading as defined in Section 8-32.3(1)B.

8-32.3(1)D FIBERGLASS LIGHTING POLES

8-32.3(1)D1 GENERAL

Fiberglass lighting poles shall be round, hollow and uniformly tapered. The poles shall be electrically non-conductive and chemically inert.

Fiberglass poles shall be designed with a minimum safety factor of 2 and have a maximum deflection of 10% under full wind loading. The poles shall be capable of withstanding 2 times the EPA (effected projected area) wind force of 90 mph with a 1.3 gust factor.

Fiberglass poles shall deflect no more than 5% of the above-ground length with a 200-lb. laterally applied top load (stiffness) and a vertical top load of 1200 lbs. simultaneously applied (strength) before failure occurs.

Pole tops shall be prepared for attaching side-mounted luminaires or tenon-mounted luminaires or side-mounted mast arms with holes drilled as required and with pole wall reinforcing provided at bolt holes, hand holes, and similar pole wall penetrations.

A cast aluminum or galvanized steel top cap shall be securely mounted to each pole top. The cap shall be coated with a urethane finish color to match that of the pole.

The pole finish shall be uniform and consistent over its entire length and shall be either of textured, woodgrain, smooth or brushed aluminum appearance. The resin shall contain colored pigment to match the finish coat on the pole. Coloration shall be uniform throughout the pole wall thickness. The finish coating shall be pigmented urethane finish capable of withstanding exposure to ultraviolet light, chemicals, and extreme weather conditions. The coating shall be formulated to match the fixture manufacturer’s colors.

Fiberglass poles shall be reinforced at handholes, bolt holes and wire entry holes. Their location along the pole length (below and above the ground line) shall be as shown on the Engineer-approved manufacturer’s Shop Drawings. Handhole covers shall be cast aluminum or galvanized steel, painted to match the pole color.

Fiberglass lighting poles shall be either “Embedded” or "Anchor Base" type.

8-32.3(1)D2 EMBEDDED-TYPE FIBERGLASS LIGHTING POLES

For round tapered poles, the butt end of embedded type poles shall be enlarged and square in order to provide ground bearing resistance to rotation. Burial depth of embedded type poles shall conform to manufacturer's recommendations for each pole height. For an above-ground height of 30 to 45 feet, for instance, the buried depth shall be approximately 5 to 6 feet.

8-32.3(1)D3 ANCHOR BASE TYPE FIBERGLASS LIGHTING POLE

Anchor base type poles shall have a galvanized steel base mount whose shaft is factory arc-welded to a steel base plate. The anchor base mount shall be bonded to the pole with a high-strength epoxy adhesive and coated with color matching urethane finish.

Base plate dimensions, bolt circle diameter and hole size shall be as required by the manufacturer of the selected fiberglass pole and as called out on the manufacturer's Engineer-approved Shop Drawings.
When erecting the pole, the anchor bolt leveling nut shall be adjusted to allow for 2 inch to 4 inch depth of non-shrink grout under the base plate perimeter. After plumbing, raking, and grouting, the pole shall be fastened down with hex nuts and lock washers over the base plate, leaving a 5 thread length of anchor bolt protruding above the tightened nut as indicated on the Standard Plans. A half inch round drain tube shall be installed within the grout to permit water to escape from inside the pole to finished grade.

8-32.3(2) FOUNDATIONS

8-32.3(2)A GENERAL

Concrete foundations shall meet the following minimum requirements (see Section 5-05.3(1)A):

<table>
<thead>
<tr>
<th>Type</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain Poles</td>
<td>6 (1 ½)</td>
</tr>
<tr>
<td>Non-Strain Metal Poles</td>
<td>5 (1 ½)</td>
</tr>
<tr>
<td>Chief Seattle Pole</td>
<td>5 (1 ½)</td>
</tr>
<tr>
<td>Metal Street Light Pole</td>
<td>5 (1 ½)</td>
</tr>
<tr>
<td>Pedestal</td>
<td>5 (1 ½)</td>
</tr>
<tr>
<td>Pedestrian Push Button</td>
<td>5 (1 ½)</td>
</tr>
</tbody>
</table>

Foundations shall be augered and constructed against undisturbed soil. Concrete shall be placed against undisturbed earth within a dry hole. Should a dry hole not be maintained, the Contractor shall select a method of concrete placement which does not adversely impact the strength or durability of the concrete as approved by the Engineer. In unstable ground, forms shall be used for the top 18 inches of foundation, and the Contractor shall be prepared to install sonotube or other approved form Material to provide undisturbed concrete placement. Each foundation shall be poured in one continuous pouring operation. Where new excavations are near an existing foundation, the Contractor shall provide temporary support for the existing structure as appropriate.

Anchor bolts shall be set securely in place and held in a vertical position with the specified bolt projection and at the specified bolt circle to match the exact hole pattern of the item to be installed. The tops of the bolts shall all be at the same elevation. A steel template shall be used at the lower end, and a wood or steel template shall be used at the upper end of the anchor bolts, to maintain the correct bolt pattern and spacing until the concrete has set. Anchor bolts shall not be altered in any way after fabrication. Bending of anchor bolts shall be cause of rejection and removal of entire foundation.

Prior to placing concrete, all projecting anchor bolts shall be taped with a corrosion protection tape from a point 6 inches below the top of the foundation to the top of the bolt. Tape shall be in accordance with SCL Material Standard 7367.3 and shall remain permanently in place. Nuts and washers shall be installed over the tape. Immediately after concrete is placed, the location of the anchor bolts shall be checked with a template conforming to the bolt pattern of the bases of the poles. After the concrete is placed, anchor bolts and conduit shall be cleaned and kept free of concrete splatter and mortar.

Concrete shall be float-finished, edged and brushed where necessary. Adjusting anchor bolts to make them fit the hole pattern in the base plate will not be allowed after concrete has begun to set.

8-32.3(2)B CONTROLLER FOUNDATIONS

Anchors, cinch anchors, nut couplers, square washer and bolts shall be installed per Standard Plans, or by an Alternate method recommended by the manufacturer. Where the manufacturer recommends installation differing from the Standard Plans, the Contractor shall submit the manufacturer’s recommendations to the Engineer for approval at least 5 working Days in advance. The cinch anchors shall be sized as recommended by the controller manufacturer. A bead of waterproof sealant shall be installed under the lip of the controller cabinet prior to installing the cabinet to prevent moisture penetration.

Tops of the controller foundations shall be level, and shall be 6 to 8 inch above adjacent finished grade.

A 3/4-inch PVC conduit drain shall be installed in all concrete foundations for signal controllers Type II and III cabinet foundations to provide drainage from within the cabinet to the outside finished grade.

8-32.3(2)C POLE, PEDESTAL AND PEDESTRIAN PUSH-BUTTON POST FOUNDATIONS

Anchor bolts shall be supplied by the Contractor on foundation installations unless specified otherwise in the Contract.
Reinforcing steel shall be kept 3 inches clear from surrounding earth within the concrete pole foundation, and shall be set securely in place.

Where the foundation is in, or adjacent to, a proposed sidewalk/paved area, the top of the foundation shall be at or just below the bottom of the adjacent sidewalk or paving material. The Contractor shall first coat the foundation top with a pond breaker, and then place sidewalk or paving material over the top of the foundation. Install premolded joint material in the construction joint where new pavement or sidewalk is placed over and around the foundation.

Where the foundation is in an unpaved area, the top of the foundation shall be 1” above the finished ground level. The top 6 plus inches of foundation concrete shall be formed into a square.

Conduits shall extend 3 inch to 4 inch above the anchor bolts. Anchor bolts shall be installed, or be cut off, with sufficient projection above the foundation to allow 3 to 5 threads above the upper nut. Where inadequate projection is provided, bolt extenders may, if approved by the Engineer, be utilized, or complete removal and replacement of the foundation will be required at no expense to the Owner.

8-32.3(3) BACK GUY ASSEMBLIES
Back guy assemblies for wood poles shall be constructed in accordance with details on Plans Standard. All through bolts shall be properly trimmed and treated.

8-32.3(4) RELOCATING EQUIPMENT
When Equipment is to be relocated, the Contractor shall furnish and install all necessary Materials and Equipment including all new hardware required to complete the new installation. Any new hardware required to complete the installation shall be of the same quality and type as hardware required in the Specifications for other new Work.

8-32.3(5) BRACKET ARMS
Mounting point of the bracket on wood poles shall be located as necessary to provide the required mounting height of the luminaire above the pavement. The mounting height shall be adjusted to provide required wire clearances as approved by the Engineer.

Wood pole bracket arms shall be attached by one through bolt and two lag bolts. Through bolts on wood poles shall be cut off so no more than 4 threads nor less than 3 threads are left exposed beyond the captive nut. The exposed end shall be treated with galvanizing repair paint approved by the Engineer. This through bolt shall not be used to mount any other hardware.

8-32.4 MEASUREMENT
Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for davit poles and the attached davit arm will be per each as a combined unit.

8-32.5 PAYMENT
Compensation for the cost necessary to complete the Work described in Section 8-32 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:

1. “Pole, Steel Strain, (Type)”, per each.
2. “Pole, Steel Mast Arm”, per each.
 The Contract unit price for “Pole, Steel Strain, (Type)” and “Pole, Steel Mast Arm” shall include all costs for the Work required to furnish and install the pole, including pole cap, handhole, handhole cover, nut covers, bracket arm flange and bolts, base plate, all necessary hardware, raking, plumbing, and grouting.

3. “Pole Steel Strain Davit (Type) w/(Length) Arm”, per each.
4. “Pole, (Material) Lighting Davit (Length) with (Length) Arm”, per each.
 The Contract unit price for “Pole, Steel Strain Davit, (Type) with (Length) Arm” and “Pole, (Material) Lighting Davit (Length) with (Length) Arm” shall include all costs for the Work required to furnish and install the...
pole, pole cap, the extension arm, including handhole, handhole cover, nut covers, steel pole extension tenon, steel pole luminaire tenon, welding, base plate, all necessary hardware, raking, plumbing, and grouting.

5. “Pole, Steel Lighting (Length)”, per each.
6. “Pole, Aluminum Lighting (Length)”, per each.
 The Contract unit price for “Pole, Steel Lighting (Length)” and “Pole, Aluminum Lighting (Length)” shall include all costs for the Work required to furnish and install the pole, including handhole, handhole cover, and all necessary hardware, raking, plumbing, and grouting.

7. “Pole, Fiberglass Lighting (Length), Direct Embedded”, per each.
 The Contract unit price for “Pole, Fiberglass Lighting (Length), Direct Embedded” shall include all costs for the Work required to furnish and install the pole, including pole cap, handhole, handhole cover, all necessary hardware, excavating, backfill and compacting, raking and plumbing.

8. “Pole, Fiberglass Lighting (Length), Anchor Base”, per each.
 The Contract unit price for “Pole, Fiberglass Lighting (Length), Anchor Base” shall include all costs for the Work required to furnish and install the pole, including pole cap, handhole, handhole cover, nut covers, ground rod, galvanized steel base mount with base plate, and all necessary hardware; raking, plumbing and grouting.

9. “Pole, Wood, (Length), (Type), (Class)”, per each.
 The Contract unit price for “Pole, Wood (Length), (Type), (Class)” shall include all costs for the Work required to furnish and install the wood pole, with pole cap, including excavation, backfill Material, and compaction.

10. “Mast Arm (Length)”, per each.
 The Contract unit price for “Mast Arm, (Length)” shall include all costs for the Work required to furnish and install the mast arm with all necessary hardware, fittings and end cap.

11. “Pedestal, Steel, (Length)”, per each.
 The Contract unit price for “Pedestal, Steel, (Length)” shall include all costs for the Work required to furnish and install the Pedestal, and shall include pipe, cap, base, and all hardware as detailed on Standard Plans.

 The Contract unit price for “Pedestrian Push-Button Post,” shall include all costs for the Work required to furnish and install the post, including all drilling and tapping, plumbing, steel pipe, pipe cap “meter collar”, grout, pipe flange, and all required hardware.

13. “Foundation, Traffic Signal Controller (Type)”, per each.
14. “Foundation, (Use)”, per each.
 The Contract unit price for “Foundation, Traffic Signal Controller (Type)” and “Foundation, (Use)” shall include all costs for the Work required to construct the foundation in place as specified and detailed on the Standard Plans, including excavation, backfill, forming, concrete, reinforcing steel, anchor bolts, ground rods, washers, nuts, nut covers, grout and drainage hardware as specified.
 All costs for the Work required to provide temporary support for existing foundations or other Structures near the construction of new foundations as specified in Section 8-32.3(2)A shall be included in the Contract unit price Bid for “Foundation, (Use).”

15. “Back Guy Assembly”, per each.
 The Contract unit price for “Back Guy Assembly” shall include all costs for the Work required to furnish and install the Back Guy Assembly, and shall include installation of all guy cable, hardware, insulators, pipe, fittings, and anchor as detailed on Standard Plans.

16. “Relocate (Item)”, per each.
The Contract unit price for “Relocate (Item)” shall include all costs for the Work required to remove and reinstall the item, including all new hardware and rehabilitation as required.

17. “Bracket Arm, (Length)”, per each.
 The Contract unit price for “Bracket Arm, (Length)” shall include all costs for the work required to furnish and install the bracket arm, including hardware.

18. Other payment information.
 When installation of a new pole, pedestal, or post disturbs existing surface improvement that remain, the cost of surface restoration will be included in the Contract unit price of the pole, pedestal, or post as appropriate.
 All costs for the return and replacement of Material or Equipment found to be defective within the guarantee period shall be at the Contractor’s expense.
 The installation of the pole number plate furnished by Seattle City Light will be considered as incidental to the cost of installing the pole.
 If the Contractor proposes an Alternate pole which is approved by the Engineer, no separate or additional payment will be made from the Contract unit price for the replaced pole in the Proposal.
 See Section 8-30.5 regarding payment for Electrical Safety Observer.

SECTION 8-33 CONDUIT AND TRENCHING

8-33.1 DESCRIPTION

8-33.1(1) GENERAL
 This Work shall consist of trench excavation, furnishing and installing conduit, conduit, condulets, and handholes for illumination and signal systems as indicated in the Contract in accordance with these Specifications and Standard Plans.
 In areas where deteriorated conduits are encountered during trenching, the Engineer shall be promptly notified of these conduit conditions. The Engineer will then determine if sleeving of conduits is required so as to keep backfill from entering the conduit. It is important to preserve conduits whenever economically practical for future use.

8-33.1(2) APPLICABLE ELECTRICAL CODES
 See Section 8-30.1(2).

8-33.1(3) SHOP DRAWINGS
 The Contractor shall submit Shop Drawings and catalog cuts in accordance with Section 1-05.3 for the following items:
 1. Conduit and Fittings
 2. Condulets Junction Box
 3. Stand-off Brackets
 4. Expansion Fittings
 5. Weatherhead
 6. Seals and Sealing Compounds
 7. Galvanizing Repair Material
 8. PVC Coatings to be field installed
 9. Handholes and handhole lids
 10. Flexible Conduit

8-33.1(4) ELECTRICAL AND ELECTRONIC WORDS AND PHRASES
 See Section 1-01.3.
8-33.2 MATERIAL

Materials shall meet the requirements of the following Sections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduits</td>
<td>9-34</td>
</tr>
<tr>
<td>Handholes</td>
<td>9-34</td>
</tr>
<tr>
<td>Paint</td>
<td>9-08</td>
</tr>
</tbody>
</table>

8-33.3 CONSTRUCTION REQUIREMENTS

8-33.3(1) TRENCHING

Excavation required for the installation of conduit, foundations, and other Materials shall be performed in such a manner as to cause the least possible damage to the streets, sidewalks, and other improvements. Trenches shall not be excavated wider than necessary for the proper installation of the electrical appliances and foundations. The Material from the excavation shall be placed where the least interference to vehicular and pedestrian traffic and to surface drainage occurs.

Excavating shall not be performed until immediately before installation of conduit and other Materials. Excavation after backfilling shall be kept well filled and maintained in a smooth and well drained condition until permanent repairs are made. Work shall be scheduled to permit placing of conduit prior to paving or landscaping operations.

The Contractor shall take all necessary steps to keep excavated native Material from becoming saturated beyond the critical moisture limits. Native excavated Material shall be protected from weather and contamination by waterproof sheeting or other means approved by the Engineer. When otherwise suitable native backfill Material from the trench excavation becomes unsuitable due to failure by the Contractor to protect the Material from moisture or contamination, the Contractor shall backfill the trench with mineral aggregate Type 17 at no expense to the Owner. In general, backfill Material from excavation shall be free from large or frozen lumps, wood or other extraneous Material. Backfill shall be of a quality acceptable to the Engineer.

If the trench is not backfilled the same Day conduit is placed, one end of the conduit shall be left free until backfilling is started, or a rigid non-metallic conduit expansion joint shall be installed in the conduit run.

At the end of each Day’s Work and at all other times when construction operations are suspended, all Equipment and other obstructions shall be removed from that portion of the roadway which may be required to be open for use by public traffic.

Special care shall be taken in backfilling tunnel sections used for conduit installations under existing pavement so that all voids are completely filled. Water saturated sand-pea gravel mixture mineral aggregate Type No. 5 may be used provided the space can be completely filled using vibrators.

Conduit shall be laid to provide a minimum of 24 inches of cover at street crossings, 36 inches cover under asphalt roadways, 48 inches of cover under the bottom of railroad ties (conduit under railroad tracks shall be rigid steel), and 18 inches of cover at all other locations, unless otherwise noted on the Drawings.

Bottom of trenches for all conduit shall be free of sharp irregularities which would cause damage to the PVC conduit coating and excessive bending of the conduit. The first 6 inches of backfill shall be free of rocks. The Engineer shall approve all conduit installations prior to backfilling the trench.

Trench backfilling shall be compacted to 95 percent of maximum density in accordance with Section 7-10.3(11) (COMPACTION OF BACKFILL). Optimum moisture content and maximum density will be determined in accordance with Section 2-03.3(14)E (COMPACTION CONTROL TESTS).

Excavations over 4 feet deep are subject to the provisions of Section 7-17.3(1)A7a, Trench Safety Systems.

8-33.3(2) CONDUIT INSTALLATION

8-33.3(2)A GENERAL

Conduit shall be installed as indicated on the Drawings. When installing conduit under existing pavement or sidewalks, removal shall meet the requirements of pavement and sidewalk removal Sections 2-02.3(3)A, 2-02.3(3)C, and Section 2-02.3(3)F respectively. Pavement restoration shall conform with the requirements of Sections 5-05.3(26). Sidewalk restoration shall comply with Section 8-14. Conduit and fittings within drainage
Conduit shall be installed in the number, type, size and location indicated on the Drawings.

For conduit runs that deviate from the planned location and are to be buried in concrete Structures such as floor slabs, retaining walls, abutments, or bridge Superstructures, the Contractor shall be required to submit an as-built drawing showing the location of all roughed-in conduit to the Engineer at least 5 Working Days prior to pouring the concrete. The as-built drawing shall show the conduit run and conduit Material type in red and shall be dimensioned to the nearest 1 inch.

Conduit cable runs shall be parallel to building lines and grouped together where possible.

Conduit runs parallel to curbs shall be placed adjacent to back of curb, or according to the details on the Drawings.

Changes of conduit direction shall be made with manufactured or fabricated elbows of radius not less than that noted in the NEC.

Conduit installed totally within the metering and disconnect enclosure shall be rigid metal and may be without PVC coating.

It shall be the option of the Contractor to use larger size conduit when approved by the Engineer. Where larger size conduit is used, it shall be for the entire length of the run from outlet to outlet.

Conduit terminating in enclosures (poles, cabinets, pedestals, etc.) shall extend vertically above the foundation a minimum of 1 inch, unless indicated otherwise on the Drawings. Reducing couplings will not be permitted. Conduit shall not change size between handholes, or conduit access point.

Conduit entering through the bottom of a handhole shall be located near the end walls to leave the major portion of the box clear. Conduit shall enter from the direction of the run, terminating 6 to 8 inches below the handhole lid and near the box wall.

All conduit shall be thoroughly cleaned and a proper size mandrel pulled through it prior to installing wires or pull cord. Mandreling shall be done in the presence of the Engineer.

Existing conduit to be incorporated into a new system shall be cleaned with a mandrel and a cylindrical wire brush and blown out with compressed air and a pull cord installed extending at least 3 feet beyond the conduit at each end.

Conduit repairs: When small portions of damaged conduit repairs are necessary, repairs are permitted by using PVC in its place. The PVC shall be coupled to the local conduit by means of beveled edge couplings slipped into place and then sealed with PVC cement. On repairs to steel conduit using PVC, a bonding #6 AWG jumper shall be installed connecting the metal sections together with bonding clamps approved by the Engineer.

Marker stakes or tacks shall be set flush with the ground to locate the ends of stubbed out conduits which may be buried so that they may be located in the future. All stubbed out conduits shall be capped.

Conduit entrances into metal junction boxes (Except NEMA 1) shall be drilled and tapped a minimum of 3 full threads for the size conduit used. Bosses shall be provided where the wall thickness is not sufficient for the minimum number of threads.

Entry to electrical vaults or other Structures shall be made such that the physical integrity of the vault or structure is not impaired. Any hole for entry to vaults or Structures shall be core drilled of a diameter no greater than 1-1/2 times the diameter of the conduit entering the vault. See Sections 1-05.2(2) and 1-07.28 for Electrical Safety Observer requirements.

Annular spaces around conduit, ground wire, ducts, at wall penetrations of vault or other structural walls shall be filled with non-shrink cement sand grout (see Section 9-04.3(2)). Threaded inserts shall be coated with an approved rust preventative compound which is soluble in petroleum solvent.

Conduit entering through the bottom of a handhole shall enter near the end walls so as to leave the major portion of the handhole clear. Conduit shall enter from the direction of the run, terminating 6 to 8 inches below the handhole lid and near the box wall.

At locations designated by the Engineer, fittings shall be installed to provide a conduit channel that permits freedom for installing the electrical control wires. When conduit fittings are indicated on the Drawings, or where their installation is required by the Engineer, the Contractor shall also furnish all necessary covers and gaskets. Expansion/deflection fittings per Standard Plans shall be installed at all structure expansion joints.
Conduits shall be attached to walls and other surfaces (except poles) using approved one hole malleable iron pipe clamps and clamp backs.

Rigid steel conduit may be jacked or bored when approved by the Engineer.

New conduit that does not have wire installed (vacant) shall have a pull cord installed extending at least 3 feet beyond the conduit at each end.

Conduit entrances into metal junction boxes shall be drilled and tapped a minimum of 5 full threads for the size conduit used. Bosses shall be provided where the wall thickness is not sufficient for the minimum number of threads.

8-33.3(2)B RIGID STEEL CONDUIT AND PVC-COATED RIGID STEEL CONDUIT

When rigid steel conduit is cut, the ends shall be made square and true with conventional pipe cutting Equipment. Conduit shall be threaded with a standard conduit cutting die. Burrs and sharp corners at the end of each conduit shall be removed with a tapered reamer. Threads shall be cleaned of all metal, lubricants, red lead, and any other Material which prevents joining with threaded counterparts. Conduit threads shall be coated with a conduit thread compound designed to ease assembly and disassembly, and to improve electrical conductivity. The compound shall be Appleton Company Type TLC-3 or approved equal. Conduit shall be joined by the use of rigid steel conduit couplings. Running threads will not be permitted for coupling conduit. When a standard coupling cannot be used, an approved threaded union coupling shall be used. Conduit shall be tightened securely to prevent the entrance of moisture, concrete or other foreign Material and to provide a good electrical connection throughout the entire length of the conduit run. The method of tightening shall not damage the conduit or coupling. Where the galvanizing on the conduit or the coupling has been damaged, it shall be thoroughly painted with galvanizing repair paint Federal Spec. MIL-P-21035 per the manufacturer's recommendations. An Alternate repair method shall consist of applying a heated zinc alloy solder coating to a minimum thickness of 2 mils, in accordance with ASTM A780.

Bushings shall be of the insulated throat type. The entire conduit system shall be properly bonded and grounded in accordance with N.E.C.

Installation of the PVC-coated system shall be made in conformance with the following:

1. **Coupling and Joining:** All conduit connections shall be made mechanically tight with strap wrenches to assure rigidity and maximum electrical conductivity. Over-tightening that results in gouging of the PVC coating will not be permitted. After each connection is completed, any gouges, cuts or abrasions shall be repaired. Solvent weld the sleeves to the conduit at each connection by applying touch-up compound to the PVC coating before screwing on the sleeve. Cutting off plastic sleeves shall be cause for rejection of that length of conduit.

2. **Cutting:** The conduit shall be tightened securely in a vise or chuck. The cut shall be made with a roll cutter or hack saw. When using either a jaw vise or a chain vise, the use of vise adapters will be required. If vise adapters are unavailable, a jaw vise shall be used and the portion of the coated conduit to be gripped in the vise shall be wrapped with emery cloth with the coarse side toward the conduit. The use of a chain vise without adapters will not be permitted.

3. **Threading:** When using a hand threader, a tool with an adjustable guide shall be used. If the threader to be used does not have an adjustable guide, ream the stationary guide 0.10 inch to accommodate the plastic coating. Whittling of the PVC coating will not be permitted. After threading, apply touch-up compound to indentations made by the vise. Raw field cut threads shall be protected by the methods set forth above. For machine threading, the use of a threader designed for coated conduit shall be used.

4. **Bending:** PVC-coated conduit may be bent with conventional bending Equipment; however, the internal walls of the shoes shall be machined out approximately 0.050 inch. Bending shall be accomplished by segmented bending rather than a one-shot bend. For sharp bends, saddles, or offsets, a PVC-coated hickey shall be required. Any cuts, gouges, or abrasions shall be coated with touch-up compound. Coating the exterior of the conduit, prior to bending, with a slippery substance, such as wire-pulling compound, will be permitted.

5. **Touch-up:** During the installation of the coated conduit, the Contractor shall assure that no metal is left exposed or uncoated. Metal exposed as the result of field cuts shall be coated with touch-up compound. If an uncoated accessory must be used, it shall also be coated.
6. One hole malleable iron pipe strap, pipe spacers (clamp backs), and mounting brackets shall be PVC coated.

8-33.3(2)C PVC CONDUIT

PVC conduit shall be assembled with solvent welded joints in accordance with the manufacturer’s written instructions. Bends and fittings shall be factory-produced.

8-33.3(3) CONDUIT RISERS

Conduit less than 2 inches in diameter mounted on wood poles shall be mounted by use of 2-hole malleable conduit clamps spaced per N.E.C. A minimum of 2 clamps shall be used per length of conduit.

Conduit sized 2 inches and larger, or more than 1 conduit installed on wood poles, shall be installed using stand-off type brackets. Stand-off brackets shall be installed per N.E.C. with a 10 foot maximum spacing. Attachment shall be near the top of each 10 feet length of conduit.

All conduit risers shall be grounded with a ground clamp installed 8 feet above finished grade. Where conduit risers are connected to a ground rod, a ground rod handhole well shall be provided.

The conduit shall be wrapped with corrosion protection tape conforming to SCL Material Standard 7367.3, 8 inches above and below finished grade.

Conduit risers shall be the size indicated on the Drawings. The 90 degree bend and conduit up the pole to 10 feet above the surface shall be rigid steel. The riser above the 10-foot level shall be PVC, Schedule 80. The riser shall be equipped with a PVC weatherhead and shall be grounded as indicated on Standard Plans.

8-33.3(4) HANDHOLES

Handholes shall be installed per Standard Plans. The frame (ring) and lid shall be grounded with an approved grounding clamp(s) to the ground rod at the locations shown on the Drawings. Unless dimensioned, handholes are located schematically, and shall always be located outside the pedestrian travel way, unless directed otherwise by the Engineer.

When required by the Drawings, handhole extensions shall be provided and installed.

Unused conduit openings in handholes shall be capped to afford protection against debris from entering the conduits.

8-33.3(5) JACKING OR BORING

Rigid steel conduit may be jacked or bored when approved by the Engineer. Rigid non-metallic type conduit may be installed under existing pavement if a hole larger than the conduit is predrilled and the conduit installed by hand.

8-33.4 MEASUREMENT

Bid items of Work completed pursuant to Contract Documents will be measured as provided in Section 1-09.1, Measurement of Quantities, unless otherwise provided for by individual measurement paragraphs in this Section.

Measurement for “Conduit, (Material), (Size),” will be by the linear foot measured on the ground along the alignment of the conduit between center line of poles or to the 90 degree bend of a conduit riser, or Equipment or to the inside face of handholes or vaults.

Measurement for “Conduit Riser, (Size)” will be by each from and including the weatherhead to and including the 90 degree rigid steel bend underground.

No separate measurement will be made for jacked or augered conduit. No measurement will be made for removal or restoration of surface improvements where the conduit is jacked or augered, but such measurement will be made at jacking pits and access holes in accordance with Section 2-02.

8-33.5 PAYMENT

Compensation for the cost necessary to complete the Work described in Section 8-33 will be made at the Contract unit prices Bid only for the pay items listed or referenced below:
1. “Conduit, (Material), (Size)”, per linear foot.
 The Contract unit price for “Conduit, (Material), (Size)” shall include all costs for the Work required to
 furnish and install the conduit, including all bends, fittings, condulets and hardware required.

 The Contract unit price for “Trenching, Conduit” shall include all costs for the Work required to excavate,
 backfill with native Material, and compact the trench section for the installation of conduit, including trenching for
 conduit riser. Backfill from sources other than the trench excavation required due to the unsuitability of native
 Material will be paid for separately in accordance with Section 4-01.5, unless the native Material is determined by
 the Engineer to be unsuitable due to the Contractor’s not meeting the requirements for protection from weather
 and contamination.

3. “Conduit Riser, (Size)”, per each.
 The Contract unit price for “Conduit Riser, (Size)” shall include all costs for the Work required to furnish
 and install the complete riser, including all conduit, fittings, clamps and hardware from and including the
 weatherhead to and including the 90 degree rigid steel bend underground.

4. “Handhole (Type)”, per each.
 The Contract unit price for “Handhole (Type)” shall include all costs for the Work required to furnish and
 install the handhole, including excavation, backfill and compaction, groundrod, and handhole extensions when
 required.

5. Other payment information.
 Where conduit is jacked or augered, payment will be made for conduit trenching that would have been
 required had the conduit been placed in open cut.

 All costs for ground rod wells shall be incidental to the various Bid items.

 See Section 8-30.5 regarding payment for Electrical Safety Observer.
DIVISION 9 MATERIALS

SECTION 9-00 DEFINITIONS AND TESTS

9-00.1 FRACTURE
Fractured aggregate is defined as aggregate particles which have one or more fractured faces. A face will be counted as fractured whenever one-half or more of the projected area of the particle is comprised of a fractured face when viewed normal to the fractured face.

9-00.2 WOOD WASTE
Wood waste is defined as all Material which, after drying to constant weight, has a specific gravity of less than 1.0.

9-00.3 TEST FOR WEIGHT OF GALVANIZING
At the option of the Engineer, the weight of zinc in ounces per square foot required by the various galvanizing Specifications may be determined by an approved magnetic thickness gage calibrated within last 6 months for accuracy and demonstrated to the approval of the Engineer, in lieu of the other methods specified.

9-00.4 SIEVE ANALYSIS OF AGGREGATES
Sieve analysis for acceptance of aggregate gradation shall be performed by procedures described in WSDOT Test Method 104 as follows:

1. Procedure A (full-washed testing) shall be the sole basis of acceptance for Portland cement concrete aggregate, aggregate for BST, and for aggregate for ACP that is being stockpiled for use on a future Contract. All other aggregates may be accepted based on Procedure A or as provided below.
2. Procedure B (partial washed testing, with correlation) may be used as the basis of acceptance for all aggregate other than those described in item 1. above.
3. Procedure C (dry sieving with correlation) may be used for informational testing or acceptance testing for all aggregates except as restricted in item 1. above. In case of disputed results obtained by Procedure C, Procedure A shall be the reference test method.

9-00.5 DUST RATIO
The dust ratio is defined as the percent of Material passing the U.S. No. 200 sieve divided by the percent of Material passing the U.S. No. 40 sieve.

9-00.6 SAND/SILT RATIO
The sand/silt ratio is defined as the percent of Material passing the U.S. No. 10 sieve divided by the percent of Material passing the U.S. No. 200 sieve.

9-00.7 GALVANIZED HARDWARE, AASHTO M 232
An acceptable alternate to hot-dip galvanizing in accordance with AASHTO M 232 will be zinc coatings mechanically deposited in accordance with AASHTO M 298, providing the minimum thickness of zinc coating is not less than that specified in AASHTO M 232, and the process does not produce hydrogen embrittlement in the base metal. Sampling and testing will be made by the Engineer in accordance with commonly recognized national standards and methods used in SPU Materials Laboratory.

SECTION 9-01 PORTLAND CEMENT

9-01.1 TYPES OF CEMENT
Cement shall be classified as Portland cement Type II or Type III.
9-01.2 SPECIFICATIONS

9-01.2(1) TYPE II PORTLAND CEMENT
Type II cement shall conform to the requirements for Type II cement of the Standard Specifications for Portland cement, AASHTO M 85, except that the content of alkalies shall not exceed 0.75 percent by weight calculated as Na₂O plus 0.658 K₂O.

Type II cement shall meet the requirements of the above Specifications for compressive strength and for time of setting by the Vicat method, AASHTO T 131.

9-01.2(2) TYPE III PORTLAND CEMENT
Type III cement in cloth bags shall not be used. Type III cement shall conform to the requirements for Type III cement of the Standard Specifications for Portland cement, AASHTO M 85, except that the content of alkalies shall not exceed 0.75 percent by weight calculated as Na₂O plus 0.658 K₂O. It shall meet the requirements of the above Specifications for compressive strength and for time of setting by the Vicat method, AASHTO T 131.

9-01.2(3) LOW ALKALI CEMENT
The percentage of alkalies in low-alkali cement shall not exceed 0.60 percent by weight calculated as Na₂O plus 0.658 K₂O. This limitation shall apply to all types of Portland cement. Percentage of alkalies shall be determined in accordance with ASTM Designation C114.

9-01.2(4) BLENDED HYDRAULIC CEMENT
Blended hydraulic cement shall conform to the requirements for Type IP (MS) or Type I (PM)(MS) cement of AASHTO M 240 “Standard Specification for Blended Hydraulic Cements”, with the additional requirement that the maximum fly ash content shall be 20 percent of the cementitious Material. The source of the fly ash, as well as the weight of fly ash as a percent by weight of total cement plus fly ash, shall be certified on the cement mill test certificate.

9-01.3 TESTS AND ACCEPTANCE
Cement may be accepted by the Engineer based on the manufacturer’s Certification of Cement Shipment indicating full conformance to the Specifications. All shipments of the cement to the Contractor or concrete Supplier shall be accompanied by a Certification of Cement Shipment. The concrete Supplier or Contractor shall countersign three copies of this certificate and submit all three copies to the Engineer.

Each mixing facility or plant utilizing Portland cement shall be equipped with a suitable means or device for obtaining a representative sample of the cement. The device shall enable the sample to be readily taken in proximity to the cement weigh hopper and from a container or conveyor holding only cement.

9-01.4 STORAGE ON THE WORK SITE
The cement shall be stored on the site in a manner as to permit easy access for inspection and identification.

Cement shall be adequately protected at all times from rain and dampness. Cement which, in the opinion of the Engineer, contains lumps that can not be pulverized in the mixer shall be rejected.

Type III Portland cement stored by the Contractor for a period longer than 30 Days, or Type II Portland cement stored by the Contractor for a period longer than 60 Days, shall be held for retest. If the cement has lost strength during the period of storage, as shown by tests conducted by SPU Materials Laboratory, sufficient additional cement shall be added to the mix to overcome such loss, or the cement may be rejected. The amount of cement to be added to the mix shall be determined by the Engineer.

9-01.5 CONTROLLED DENSITY FILL (CDF)
For filing pipe, see Section 9-05.23.
For pipe bedding, the following mix design shall be used:
PIPE BEDDING CDF

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement Type I-II</td>
<td>94 pounds/cubic yard</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>300 pounds/cubic yard</td>
</tr>
<tr>
<td>Sand, Type 7</td>
<td>2800 pounds/cubic yard</td>
</tr>
<tr>
<td>Water</td>
<td>300 pounds/cubic yard</td>
</tr>
<tr>
<td>Air Entrainment</td>
<td>10 ounce/cubic yard</td>
</tr>
</tbody>
</table>

Slump shall not exceed 7 inch.

For trench backfill, the following mix design shall be used:

TRENCH BACKFILL CDF

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement Type I-II</td>
<td>30 pounds/cubic yard</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>300 pounds/cubic yard</td>
</tr>
<tr>
<td>Sand, Type 7</td>
<td>2860 pounds/cubic yard</td>
</tr>
<tr>
<td>Water</td>
<td>300 pounds/cubic yard</td>
</tr>
<tr>
<td>Air Entrainment</td>
<td>10 ounce/cubic yard</td>
</tr>
</tbody>
</table>

Slump shall not exceed 7 inch.

9-01.6 POZZOLAN

Pozzolan shall meet the requirements of ASTM C 618-80 Class C, F, and N.
9-02.1 ASPHALT MATERIAL

9-02.1(1) GENERAL

Asphalt furnished under these Specifications shall not have been distilled at a temperature high enough to injure by burning or to produce flecks of carbonaceous matter, and upon arrival at the Work, shall show no signs of separation into lighter and heavier components.

9-02.1(2) MEDIUM-CURING (MC) LIQUID ASPHALT

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>WSDOT Test Method</th>
<th>MC-70</th>
<th>MC-250</th>
<th>MC-800</th>
<th>MC-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic Viscosity at 140°F. cSt</td>
<td>202</td>
<td>70-140</td>
<td>250-500</td>
<td>800-1600</td>
<td>3000-6000</td>
</tr>
<tr>
<td>Flash Point (Tag Open Cup)</td>
<td>Min. F.</td>
<td>207</td>
<td>100</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Water Content</td>
<td>Max. %</td>
<td>217</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Distillation: volume % of total distillate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to 680°F</td>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to 437°F</td>
<td>0-20</td>
<td>0-10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>to 500°F</td>
<td>20-60</td>
<td>15-55</td>
<td>0-35</td>
<td>0-15</td>
<td></td>
</tr>
<tr>
<td>to 600°F</td>
<td>65-90</td>
<td>60-87</td>
<td>45-80</td>
<td>15-75</td>
<td></td>
</tr>
<tr>
<td>Residue of 680°F: distillation % volume by difference</td>
<td>Min. %</td>
<td>55</td>
<td>67</td>
<td>75</td>
<td>80</td>
</tr>
</tbody>
</table>

1 If the ductility at 77°F is less than 100, the Material will be acceptable if its ductility at 60°F is more than 100.

The Material shall not foam when heated to the application temperature recommended in Section 5-02.3(3).
RAPID-CURING (RC) LIQUID ASPHALT

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>WSDOT Test Method</th>
<th>RC-70</th>
<th>RC-250</th>
<th>RC-800</th>
<th>RC-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematic Viscosity at 140°F cSt</td>
<td>202</td>
<td>70-140</td>
<td>250-500</td>
<td>800-1600</td>
<td>3000-6000</td>
</tr>
<tr>
<td>Flash Point (Tag Open Cup)</td>
<td>207</td>
<td>---</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Water Content</td>
<td>Max. %</td>
<td>217</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Distillation: volume % of total distillate</td>
<td>211</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>To 680°F</td>
<td>Min. %</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>To 640°F</td>
<td>Min. %</td>
<td>55</td>
<td>65</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Absolute viscosity at 140°F, poise</td>
<td>203</td>
<td>600-2400</td>
<td>600-2400</td>
<td>600-2400</td>
<td>600-2400</td>
</tr>
<tr>
<td>Ductility, 5 cm/min. at 77°F, cm</td>
<td>Min. %</td>
<td>213</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Solubility in trichloroethylene</td>
<td>Min. %</td>
<td>214</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
</tr>
</tbody>
</table>

The Material shall not foam when heated to application temperature recommended in Section 5-02.3(3).

9-02.1(4) ASPHALT CEMENT

9-02.1(4)A PAVING ASPHALT

Paving asphalt cement shall be PG 64-22 and shall meet the requirements of AASHTO MP1 for performance graded asphalt cement.

9-02.1(5) REJUVENATING (RECYCLING) AGENTS

The rejuvenating agent shall be a liquid emulsion of selected resin petroleum oil approved for use by the Materials Laboratory. Rejuvenating agents shall meet the following Specifications for the grade designated:
<table>
<thead>
<tr>
<th>Test</th>
<th>RA 5</th>
<th>RA 25</th>
<th>RA 75</th>
<th>RA 250</th>
<th>RA 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>ASTM Test Method</td>
<td>Min.</td>
<td>Max.</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Original Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity @ 140°F, cst</td>
<td>D2170 or D2171</td>
<td>200</td>
<td>800</td>
<td>1000</td>
<td>4000</td>
</tr>
<tr>
<td>Flashpoint, COC, °F</td>
<td>D92</td>
<td>400</td>
<td>--</td>
<td>425</td>
<td>--</td>
</tr>
<tr>
<td>Saturates, Wt. %</td>
<td>D2007</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>Residue test from RTFC</td>
<td>D2872</td>
<td>--</td>
<td>--</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Viscosity Ratio</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Weight Change ± %</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>--</td>
</tr>
</tbody>
</table>

1. The final acceptance of recycling agents meeting this Specification is subject to the compliance of the reconstituted asphalt blends with the requirements in Section 9-02 for the class of asphalt mix required.

2. The use of ASTM D1754 has not been studied in the context of this Specification; however, it may be applicable. In cases of dispute, the reference method shall be ASTM D2872.

3. Viscosity Ratio = \(\frac{\text{RTFC Viscosity at 140°F, cst}}{\text{Original Viscosity at 140°F, cst}} \)
SECTION 9-02.1(6) CATIONIC EMULSIFIED ASPHALT

<table>
<thead>
<tr>
<th>Type</th>
<th>WSDOT Test Method</th>
<th>CRS-1</th>
<th>CRS-2</th>
<th>CMS-2S</th>
<th>CMS-2</th>
<th>CMS-2h</th>
<th>CSS-1</th>
<th>CSS-1h</th>
<th>STE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test on Emulsions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity SSF @ 77°F (25°C) sec.</td>
<td>212</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Viscosity SSF @ 122°F (50°C) sec.</td>
<td>212</td>
<td>20</td>
<td>100</td>
<td>150</td>
<td>400</td>
<td>50</td>
<td>450</td>
<td>50</td>
<td>450</td>
</tr>
<tr>
<td>Storage stability Test 1 day %</td>
<td>212</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>Demulsibility 35 m.l. 0.8% sodium dioctyl sulfosuccinate, %</td>
<td>212</td>
<td>40</td>
<td>---</td>
<td>40</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coating ability & water Resistance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating, dry aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating, after spraying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating, wet aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coating, after spraying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle charge testb</td>
<td></td>
<td>212</td>
<td>Positive</td>
<td>positive</td>
<td>positive</td>
<td>positive</td>
<td>Positive</td>
<td>positive</td>
<td>positive</td>
</tr>
<tr>
<td>Sieve Test, %</td>
<td>212</td>
<td>---</td>
<td>0.10</td>
<td>---</td>
<td>0.10</td>
<td>---</td>
<td>0.10</td>
<td>---</td>
<td>0.10</td>
</tr>
<tr>
<td>Cement mixing test, %</td>
<td>212</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Distillation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil distillate by vol. of emulsions %</td>
<td>212</td>
<td>---</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
<td>---</td>
<td>20</td>
<td>---</td>
<td>12</td>
</tr>
<tr>
<td>Residue, %</td>
<td>212</td>
<td>60</td>
<td>---</td>
<td>65</td>
<td>---</td>
<td>60</td>
<td>---</td>
<td>65</td>
<td>---</td>
</tr>
<tr>
<td>Tests on residue from distillation test:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penetration, 77°F (25°C)</td>
<td>213</td>
<td>40</td>
<td>---</td>
<td>40</td>
<td>---</td>
<td>40</td>
<td>---</td>
<td>40</td>
<td>---</td>
</tr>
<tr>
<td>Solubility in trichlorethylene, %</td>
<td>214</td>
<td>97.5</td>
<td>---</td>
<td>97.5</td>
<td>---</td>
<td>97.5</td>
<td>---</td>
<td>97.5</td>
<td>---</td>
</tr>
</tbody>
</table>

*a The demulsibility test shall be made within 30 days from date of shipment.

*b If the particle charge test for CSS-1 and CSS-1h is inconclusive, material having a maximum pH value of 6.7 will be acceptable.
This page intentionally blank.
9-02.1(7) ASPHALT FOR SUB-SEALING

Asphalt for sub-sealing shall conform to the requirements of AASHTO M 238 except that the minimum softening point shall be 170°F.

9-02.1(8) HOT MELT TRAFFIC BUTTON ADHESIVE

The bitumen adhesive Material shall conform to the following requirements:

<table>
<thead>
<tr>
<th>Specification</th>
<th>ASTM Test Method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Point, COC °F</td>
<td>D 92</td>
<td>550 Min.</td>
</tr>
<tr>
<td>Softening Point, °F</td>
<td>D 36</td>
<td>200 Min.</td>
</tr>
<tr>
<td>Brookfield Viscosity, 400°F</td>
<td>D 2196</td>
<td>7,500 cP, Max.</td>
</tr>
<tr>
<td>Penetration, 100g, 5 sec, 77°F</td>
<td>D 5</td>
<td>10 - 20 dmm</td>
</tr>
<tr>
<td>Filler Content, % by weight (Insoluble in 1,1,1 Trichloroethane)</td>
<td>D 2371</td>
<td>50 – 75</td>
</tr>
</tbody>
</table>

Filler Material shall be calcium carbonate and shall conform to the following fineness:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 100</td>
<td>100</td>
</tr>
<tr>
<td>No. 200</td>
<td>95</td>
</tr>
<tr>
<td>No. 325</td>
<td>75</td>
</tr>
</tbody>
</table>

Hot melt bitumen adhesive shall develop bond pull-off strength greater than 100 psi between 0°F and 120°F.

9-02.1(9) COAL TAR PITCH EMULSION

Coal tar pitch emulsion shall conform to all requirements of Federal Specification R-P-355. The emulsion shall be prepared from straight run, high temperature, coke oven tar meeting the requirements of Federal Specification RC 1424. The emulsion shall be homogeneous and shall show no separation or coagulation of components that cannot be overcome by moderate stirring. It shall be capable of being applied completely by squeegee, brush, or other approved mechanical methods to the surface of bituminous Pavements when spread at the specified rates.

9-02.2 SAMPLING AND ACCEPTANCE

9-02.2(1) CERTIFICATION OF SHIPMENT

Bituminous Materials may be accepted by the Engineer based on the manufacturer’s certification in the form of a Notice of Asphalt Shipment. This certification (Form 350-053 supplied by WSDOT will be provided by contacting the SPU Materials Laboratory at 206-386-1236) shall be supplied in triplicate at the time of shipment of each truck load, truck and trailer, or other lot of asphalt. All information required on the form shall be completed. The original copy shall be mailed on the Day of shipment to the SPU Materials Laboratory, the duplicate to the Consignee; and the triplicate with the shipment.

9-02.2(2) SAMPLES

When requested by the Engineer, the asphalt Supplier shall ship, by prepaid express or US mail, samples of asphalt that represent current production to the SPU Materials Laboratory.

9-02.3 TEMPERATURE OF ASPHALT

The temperature of paving asphalts in storage tanks when loaded for transporting to destination shall not be greater than 400°F.

9-02.4 ANTI-STRIPPING ADDITIVE

When directed by the Engineer, asphalt Material shall be treated with an approved heat-stable anti-stripping additive. The anti-stripping additive shall be added to the asphalt at the point of shipment and shall be a percentage designated by the Engineer, not to exceed 1 percent by weight of the asphalt. The anti-stripping additive shall be approved by the SPU Materials Laboratory prior to use. Once designated for use on the Project, the brand, grade, or percentage of anti-stripping additive shall not be changed without approval of the Engineer.
SECTION 9-03 AGGREGATES

9-03.0 GENERAL

Mineral aggregates most commonly used for backfill have been given an aggregate type number to identify each particular aggregate. Requirements for mineral aggregates identified by a type number are contained in Section 9-03.9 through Section 9-03.16.

Mineral aggregates shall be composed of clean, uniform (in quality) particulate size groups essentially free from wood waste and other deleterious materials. They shall be obtained only from sources approved by the Engineer. Written requests for source approval shall be submitted to the Engineer not less than 10 Days prior to the intended use of the mineral aggregate. Should the proposed source be one that the Engineer has no history of material performance with, the Engineer reserves the right to take preliminary samples at the proposed source, and make preliminary tests, prior to approval to determine acceptability. Continued approval of a source is contingent upon the mineral aggregates from that source continuing to meet Contract requirements.

Unless otherwise specified, mineral aggregates shall meet the Specifications for grading and quality for use in the Work. The Engineer shall reserve the right to sample and test mineral aggregate at any time including at the source.

Crushed concrete shall meet the requirements specified in Section 4-01.2.

Unless specified otherwise, all percentages are by weight.

9-03.1 AGGREGATES FOR PORTLAND CEMENT CONCRETE

9-03.1(1) GENERAL REQUIREMENTS

Portland cement concrete aggregates shall be manufactured from ledge rock, talus, or sand and gravel in accordance with the provisions of Section 3-01. They shall possess the characteristics of shape and size such that the concrete, resulting from a mixture of fine and coarse aggregates in the specified proportions, has the workability which is satisfactory to the Engineer. Regardless of compliance with all other provisions of these Specifications, if the concrete is not of a workable character, or does not exhibit a proper surface when finished, either the fine or the coarse aggregate or both, will be rejected, or shall be altered as required by the Engineer.

If, in the judgment of the Engineer, based on previous experience or on Laboratory tests, concrete aggregates from a given source are detrimentally reactive with alkalies in Portland cement, corrective measures, including use of only low-alkali cement may be required as a condition of approval.

9-03.1(2) FINE AGGREGATE FOR PORTLAND CEMENT CONCRETE

9-03.1(2)A GENERAL

Fine aggregate for Portland cement concrete shall consist of sand or other inert materials, or combinations thereof, approved by the Engineer, having hard, strong, durable particles free from adherent coating. Fine aggregate shall be washed thoroughly to remove clay, loam, alkali, organic matter, or other deleterious matter.

9-03.1(2)B DELETERIOUS SUBSTANCES

The amount of deleterious substances in the washed aggregate shall not exceed the following values:

1. Particles having a specific gravity less than 1.95 shall not exceed 1.0 percent of total weight.
2. Organic matter, by calorimetric test, shall not be darker than the reference standard color (organic plate No. 3) AASHTO T 21 unless other tests prove a darker color to be harmless.

9-03.1(2)C GRADING

Fine aggregate for Portland cement concrete shall be graded to conform to the following requirements expressed as percentages by weight:
<table>
<thead>
<tr>
<th>Sieve Number</th>
<th>Permissible Variation in Individual Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 30 and coarser</td>
<td>2.0 percent</td>
</tr>
<tr>
<td>No. 50 and finer</td>
<td>0.5 percent</td>
</tr>
</tbody>
</table>

9-03.1(2)D USE OF SUBSTANDARD GRADINGS

Fine aggregate with more than the maximum percentage passing any sieve may be accepted provided the cement content of the finished concrete is increased, at the Contractor’s cost, by 1/3 percent for each 1 percent the fine aggregate passing each sieve is in excess of the maximum.

Under no circumstances shall fine aggregate Class 1 be used which has a grading finer than the following:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. No. 8</td>
<td>95</td>
</tr>
<tr>
<td>U.S. No. 16</td>
<td>80</td>
</tr>
<tr>
<td>U.S. No. 30</td>
<td>60</td>
</tr>
<tr>
<td>U.S. No. 50</td>
<td>25</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>2.5</td>
</tr>
</tbody>
</table>

All percentages are by weight.

9-03.1(3) COARSE AGGREGATE FOR PORTLAND CEMENT CONCRETE

9-03.1(3)A GENERAL

Coarse aggregate for Portland cement concrete shall consist of gravel, crushed stone, or other inert Material or combinations thereof approved by the Engineer, having hard, strong, durable pieces free from adherent coatings. Coarse aggregate shall be washed thoroughly to remove clay, silt, bark, sticks, alkali, organic matter, or other deleterious Material. When required by the Engineer, coarse aggregate shall be handpicked to remove harmful Material.

9-03.1(3)B DELETERIOUS SUBSTANCES

The amount of deleterious substances shall not exceed the following values:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount finer than U.S. No. 200</td>
<td>0.5 percent by weight</td>
</tr>
<tr>
<td>Pieces with a specific gravity less than 1.95</td>
<td>2.0 percent by weight</td>
</tr>
<tr>
<td>Clay lumps</td>
<td>0.5 percent by weight</td>
</tr>
<tr>
<td>Shale</td>
<td>2.0 percent by weight</td>
</tr>
<tr>
<td>Wood Waste</td>
<td>0.05 percent by weight</td>
</tr>
</tbody>
</table>
9-03.1(3)C WEAR IN LOS ANGELES MACHINE
Coarse aggregate shall not have a percentage of wear in the Los Angeles machine in excess of 35 after 500 revolutions in accordance with ASTM C 131.

9-03.1(3)D GRADING
Coarse aggregate for Portland cement concrete shall conform to one of the following gradings:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Grading No. 2</th>
<th>Grading No. 4</th>
<th>Grading No. 5</th>
<th>Grading No. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2" square</td>
<td>100</td>
<td>100</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1-1/4" square</td>
<td>95</td>
<td>100</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>1" square</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3/4" square</td>
<td>40</td>
<td>70</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1/2" square</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3/8" square</td>
<td>5</td>
<td>20</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>U.S. No. 4</td>
<td>0</td>
<td>2</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

All percentages are by weight.
In individual tests, a variation of four percent under the minimum percentages or over the maximum percentages will be allowed. The average of three successive tests shall be within the percentages stated above. Coarse aggregate shall contain no pieces larger than two times the maximum sieve size for the specified grading measured along the line of greatest dimension.

Acceptance of grading and quality of the aggregate will be based on samples taken from stockpiles at the concrete plant. The exact point of acceptance will be determined in the field by the Engineer.

When the Engineer approves, the coarse aggregate may be blended from other sizes if:
1. The resulting aggregate meets all requirements for specified grading;
2. Each size used makes up at least 5 percent of the blend;
3. The Contractor supplies the Engineer with gradings for the proposed sizes, along with their proper proportions before producing the aggregate. If the aggregate comes from commercial sources, the Contractor shall supply this information and have it approved before proportioning and mixing the concrete.

In place of Grading No. 2, the Contractor may substitute a 50-50 mix of Grading Nos. 4 and 5.

9-03.1(3)E USE OF SUBSTANDARD GRADINGS
Coarse aggregate containing more than the maximum percentage passing any sieve may be accepted provided the cement content of the finished concrete is increased at the Contractor’s sole expense, The cement content shall be increased) 0.25 percent for each 1 percent the amount passing each of the 3/4 inch, 3/8 inch, and No. 4 sieves is in excess of the maximum specified in 9-03.1(3)D. Coarse aggregate No. 2 shall not be used under any circumstances when the combined amount passing any of the sieve sizes listed below exceeds the following:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" square</td>
<td>70</td>
</tr>
<tr>
<td>3/8" square</td>
<td>30</td>
</tr>
<tr>
<td>U.S. No. 4</td>
<td>5</td>
</tr>
</tbody>
</table>

Coarse aggregate No. 5 shall not be used under any circumstances when the combined amount passing any of the sieve sizes listed below exceeds the following:
9-03.1(3)F RESERVED
9-03.2 RESERVED
9-03.3 RESERVED
9-03.4 AGGREGATE FOR BITUMINOUS SURFACE TREATMENT
9-03.4(1) GENERAL REQUIREMENTS
Aggregate for bituminous surface treatment shall be manufactured from ledge rock, talus, or gravel, in accordance with Section 3-01, which meets the following test requirements:

<table>
<thead>
<tr>
<th>Test Requirement</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Wear, 500 Rev.</td>
<td>35% max.</td>
</tr>
<tr>
<td>Degradation Factor</td>
<td>30% min.</td>
</tr>
</tbody>
</table>

9-03.4(2) GRADING AND QUALITY
Aggregate for bituminous surface treatment shall conform to the requirements in the table below for grading and quality. The particular type or grading to be used shall be as shown in the Drawings. All percentages are by weight.

The Material shall meet the requirements for grading and quality when placed in hauling vehicles for delivery to the roadway, or during manufacture and placement into a temporary stockpile. The exact point of acceptance will be determined by the Engineer.

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>Percent Passing</th>
<th>Crushed Cover Stone</th>
<th>Crushed Screening</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3/4"- 1/2"</td>
<td>5/8"- 1/4"</td>
<td>1/2"- 1/4"</td>
</tr>
<tr>
<td>1" square</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3/4" square</td>
<td>100</td>
<td>95-100</td>
<td>100</td>
<td>---</td>
</tr>
<tr>
<td>5/8" square</td>
<td>95-100</td>
<td>---</td>
<td>95-100</td>
<td>100</td>
</tr>
<tr>
<td>1/2" square</td>
<td>---</td>
<td>0-20</td>
<td>---</td>
<td>95-100</td>
</tr>
<tr>
<td>3/8" square</td>
<td>---</td>
<td>0-5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1/4" square</td>
<td>30-50</td>
<td>---</td>
<td>0-10</td>
<td>0-15</td>
</tr>
<tr>
<td>U.S. No. 10</td>
<td>---</td>
<td>---</td>
<td>0-3</td>
<td>0-3</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>0-7.5</td>
<td>0-1.0</td>
<td>0-1.0</td>
<td>0-1.0</td>
</tr>
<tr>
<td>% fracture, by weight, min.</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Sand equivalent min.</td>
<td>40</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Static Stripping Test</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
</tbody>
</table>

All percentages are by weight.

The fracture requirement shall be at least one fractured face and applies to Material retained on each sieve size No. 10 and above if that sieve retains more than 5 percent of the total sample.

The finished product shall be clean, uniform in quality, and free from wood, bark, roots, clay, any organic material, and other deleterious materials.

Crushed screenings shall be substantially free from adherent coatings. The presence of a thin, firmly adhering film of weathered rock shall not be considered as coating unless it exists on more than 50 percent of the surface area of any size between successive Laboratory sieves.
The portion of aggregate for bituminous surface treatment retained on the 1/4 inch sieve shall not contain more than 0.1 percent deleterious materials by weight.

9-03.5 RESERVED

9-03.6 AGGREGATES FOR ASPHALT TREATED BASE (ATB)

9-03.6(1) GENERAL REQUIREMENTS

Aggregates for asphalt treated base shall be manufactured from ledge rock, talus, or gravel, in accordance with the provisions of Section 3-01 that meet the following test requirements:

- Los Angeles Wear, 500 Rev.: 30% max.
- Degradation Factor: 15% min.

9-03.6(2) GRADING

Aggregates for asphalt treated base shall meet the following requirements for grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>100</td>
</tr>
<tr>
<td>1/2" square</td>
<td>56-100</td>
</tr>
<tr>
<td>1/4" square</td>
<td>40-78</td>
</tr>
<tr>
<td>U.S. No. 10</td>
<td>22-57</td>
</tr>
<tr>
<td>U.S. No. 40</td>
<td>8-32</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>2.0-9.0</td>
</tr>
<tr>
<td>Asphalt Cement, Percent</td>
<td></td>
</tr>
<tr>
<td>of Total Mixture</td>
<td>2.5-4.5</td>
</tr>
</tbody>
</table>

(Exact percentage of asphalt to be determined by the Engineer.) All percentages are by weight. Acceptance of the grading and quality of the aggregates will be based on samples taken from the final mix.

9-03.6(3) TEST REQUIREMENTS

When the aggregates are combined within the limits set forth in Section 9-03.6(2) and mixed in the Laboratory with the designated grade of asphalt, the mixture shall be capable of meeting the following test values:

- Stabilometer Value: 30 min.
- Cohesiometer Value: 50 min.
- Modified Lottman Stripping Test: Pass

The sand equivalent value of the mineral aggregate for asphalt treated base shall not be less than 35.

9-03.7 RESERVED

9-03.8 AGGREGATES FOR ASPHALT CONCRETE

9-03.8(1) GENERAL REQUIREMENTS

Aggregates for asphalt concrete shall be manufactured from ledge rock, talus, or gravel, in accordance with the provisions of Section 3-01. The Material from which they are produced shall meet the following test requirements:

- Los Angeles Wear, 500 Rev.: 30% max.
- Degradation Factor, Wearing Course: 30 min.
- Degradation Factor, Other Courses: 20 min.

It shall be uniform in quality, substantially free from wood, roots, bark, extraneous Materials, and adherent coatings. The presence of a thin, firmly adhering film of weathered rock is not considered as coating unless it exists on more than 50 percent of the surface area of any size between consecutive Laboratory sieves.
Aggregate removed from deposits contaminated with various types of wood Waste shall be washed, processed, selected, or otherwise treated to remove sufficient wood Waste so that the oven-dried Material retained on a 1/4 inch square sieve shall not contain more than 0.1 percent by weight of Material with a specific gravity less than 1.0.

9-03.8(2) TEST REQUIREMENTS
Aggregate for asphalt concrete shall meet the following test requirements:

<table>
<thead>
<tr>
<th>Class of Asphalt Concrete</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture, by weight</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sand Equivalent Min.</td>
<td>40</td>
<td>40</td>
<td>---</td>
<td>40</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Notes
1. The fracture requirements are at least 1 fractured face on 90 percent of the Material retained on each sieve size U.S. No. 10 and above, if that sieve retains more than 5 percent of the total sample.
2. The fracture requirements are at least 1 fractured face on 75 percent of the Material retained on each sieve size U.S. No. 10 and above, if that sieve retains more than 5 percent of the total sample.
3. The fracture requirements are at least 2 fractured faces on 75 percent and at least 1 fractured face on 90 percent of the Material retained on each sieve, U.S. No. 8 and above, if that sieve retains more than 5 percent of the total sample.
4. The fracture requirements are at least 1 fractured face on 50 percent of the Material retained on each sieve size U.S. No. 10 and above, if that sieve retains more than 5 percent of the total sample.

When Material is being produced and stockpiled for use on a specific contract or for a future contract, the fracture and sand equivalent requirements shall apply at the time of stockpiling. When Material is used from a stockpile that has not been tested as provided above, the requirements for fracture and sand equivalents shall apply at the time of its introduction to the cold feed of the mixing plant.

The properties of the aggregate in a preliminary mix design for asphalt concrete shall be such that when it is combined within the limits set forth in Section 9-03.8(6) and mixed in the Laboratory with the designated grade of asphalt, mixtures with the following test values can be produced:

<table>
<thead>
<tr>
<th>Class of Asphalt Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Stabilometer Value, Min.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>Cohesiometer Value, Min.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>Percent Air Voids</td>
</tr>
<tr>
<td>2 - 4.5</td>
</tr>
<tr>
<td>Modified Lottman Stripping Test</td>
</tr>
<tr>
<td>Pass</td>
</tr>
</tbody>
</table>

The stabilometer value for asphalt concrete containing 50 percent or greater of recycled asphalt concrete shall be 30 minimum.

Mineral aggregates utilized in MC 250 and MC 800 asphalt concrete mixes shall meet the same requirements as the aggregates used in asphalt concrete Cl B.

9-03.8(3) GRADING
9-03.8(3)A GRADATION - IMMEDIATE USE
The Contractor may furnish aggregates for use on the same Contract from a single stockpile or from multiple stockpiles. The gradation of the aggregates shall comply in all respects with the pertinent requirements of Section 9-03.8(6).
Acceptance of the aggregate gradation shall be based on samples taken from the final mix.

9-03.8(3)B GRADATION - RECYCLED ASPHALT PAVEMENT AND MINERAL AGGREGATE
Asphalt concrete planings or old asphalt concrete utilized in the production of asphalt concrete shall be sized prior to entering the mixer so that a uniform and thoroughly mixed asphalt concrete is produced in the mixer.
If there is evidence of the old asphalt concrete not breaking down during the heating and mixing of the asphalt concrete, the Engineer may elect to modify the maximum size entering the mixer. No contamination by deleterious Materials will be allowed in the old asphalt concrete used.

The gradation for the new mineral aggregate used in the production of the asphalt concrete shall be the responsibility of the Contractor, and when combined with recycled Material, the combined Material shall meet the gradation Specification requirements for the specified Class ACP as listed in Section 9-03.8(6) or as shown in the Project Manual. The new aggregate shall meet the general requirements listed in Section 9-03.8(1) and shall meet the appropriate fracture and sand equivalent requirements as listed in Section 9-03.8(2).

9-03.8(4) BLENDING SAND

In the production of aggregate for asphalt concrete, there is often a deficiency of Material passing the U.S. No. 40. When this occurs, blending sand in an amount specified by the Engineer may be used to make up this deficiency, provided that a satisfactory final mix is produced, including fracture requirements.

Blending sand shall be clean, hard, sound Material, either naturally occurring sand or crusher fines, and must be Material which readily accepts an asphalt coating. The exact grading requirements for the blending sand shall be such that, when it is mixed with an aggregate, the combined product shall meet the requirements of Section 9-03.8(6) for the class of Material involved. Blending sand shall meet the following quality requirement:

- Sand Equivalent 30 min.

Blending sand shall be tested by the Materials Laboratory before it may be approved for use.

9-03.8(5) MINERAL FILLER

Mineral filler used in asphalt cement pavement mix shall conform to the requirements of AASHTO M 17.

9-03.8(6) PROPORTIONS OF MATERIALS

The Materials of which asphalt concrete is composed shall be of such sizes, gradings, and quantities that, when proportioned and mixed together, produce a well graded mixture within the requirements listed in the tables which follow.

For the determination of a Project mix design, the Contractor shall submit to the Engineer representative samples of the various aggregates to be used along with gradation data showing the stockpile averages and variation of the aggregates as produced together with proposed combining ratios and average gradation of the completed mix. The initial asphalt content shall be determined by the Engineer from the aggregates and data provided.

The percentages of aggregate, including mineral filler, when used, refer to the completed dry mix. The percentage of asphalt refers to the complete asphalt concrete mixture.

Aggregate gradings within the above ranges shall be such that there is a minimum of 2 percent of the total aggregate retained between any successive pair of sieves finer than the U.S. No. 10. The gradings shall be of such uniformity that the fractions of aggregate passing the 1/4 inch and U.S. No. 10 during the Day’s run shall conform to the following limitations:

<table>
<thead>
<tr>
<th>Maximum variation in percentage of Material passing 1/4" square</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum variation in percentage of Material passing U.S. No. 10</td>
<td>8</td>
</tr>
</tbody>
</table>

For asphalt concrete Classes A, B, E, F and G produced using recycled asphalt Materials, the sand silt requirements and the gradation for the U.S. No. 200 sieve for the asphalt concrete for placement in areas other than the wearing course of traveled lanes are revised as follows:

50%-60% Recycled Material	3.0 - 8.0%	Waived
61%-70% Recycled Material	3.0 - 9.0%	Waived
71%-100% Recycled Material	3.0 - 10.0%	Waived
GRADING REQUIREMENTS

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Class A</th>
<th>Class B</th>
<th>Class D</th>
<th>Class E</th>
<th>Class F</th>
<th>Class G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent Passing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/4" square</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>100</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1" square</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>90 - 100</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3/4" square</td>
<td>100</td>
<td>100</td>
<td>---</td>
<td>---</td>
<td>100</td>
<td>---</td>
</tr>
<tr>
<td>5/8" square</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>67 - 86</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1/2" square</td>
<td>90 - 100</td>
<td>90 - 100</td>
<td>100</td>
<td>60 - 80</td>
<td>80 – 100</td>
<td>100</td>
</tr>
<tr>
<td>3/8" square</td>
<td>75 - 90</td>
<td>75 - 90</td>
<td>97 - 100</td>
<td>---</td>
<td>---</td>
<td>97 - 100</td>
</tr>
<tr>
<td>1/4" square</td>
<td>55 - 75</td>
<td>55 - 75</td>
<td>---</td>
<td>40 - 62</td>
<td>45 - 78</td>
<td>60 - 88</td>
</tr>
<tr>
<td>U.S. No. 4</td>
<td>---</td>
<td>---</td>
<td>30 - 50</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U.S. No. 8</td>
<td>---</td>
<td>---</td>
<td>5 - 15</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U.S. No. 10</td>
<td>30 - 42</td>
<td>30 - 42</td>
<td>---</td>
<td>25 - 40</td>
<td>30 - 50</td>
<td>32 - 53</td>
</tr>
<tr>
<td>U.S. No. 40</td>
<td>11 - 24</td>
<td>11 - 24</td>
<td>---</td>
<td>10 - 23</td>
<td>---</td>
<td>11 - 24</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>3 - 7</td>
<td>3 - 7</td>
<td>2 - 5</td>
<td>2 - 9</td>
<td>2 - 8</td>
<td>3 - 7</td>
</tr>
<tr>
<td>Mineral Filler</td>
<td>3.0 - 7.0</td>
<td>3.0 - 7.0</td>
<td>2.0 - 5.0</td>
<td>2.0 - 9.0</td>
<td>2.0 - 8.0</td>
<td>3.0 - 7.0</td>
</tr>
<tr>
<td>Asphalt % of total mixture</td>
<td>4.0 - 7.5</td>
<td>4.0 - 7.5</td>
<td>5.5 - 8.5</td>
<td>3.5 - 7</td>
<td>4 - 7</td>
<td>4 - 7.5</td>
</tr>
<tr>
<td>Sand-Silt Ratio</td>
<td>5.5 - 10.5</td>
<td>5.5 - 10.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>5.5 - 10.5</td>
</tr>
</tbody>
</table>

All percentages are by weight.

9-03.9 AGGREGATES FOR BALLAST AND CRUSHED SURFACING

9-03.9(1) BALLAST

Roadway ballast shall be manufactured from ledge rock or talus obtained from sources approved by the Engineer. Roadway ballast shall meet the requirements of Section 9-03.16 for Mineral Aggregate Type 14.

That portion of roadway ballast retained on a 1/4 inch square sieve shall not contain more than 0.2 percent wood Waste.

The Material from which ballast is to be manufactured shall meet the following test requirements:

<table>
<thead>
<tr>
<th>Test Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Wear, 500 Rev</td>
</tr>
<tr>
<td>Degradation Factor</td>
</tr>
<tr>
<td>40% max.</td>
</tr>
<tr>
<td>15 min.</td>
</tr>
</tbody>
</table>

When approved by the Engineer, Mineral Aggregate, Type 1 or 2 may be utilized for roadway ballast in lieu of Mineral Aggregate, Type 14.

Ballast shall be a crushed Material with no naturally occurring surfaces. The term, “ballast” shall apply to Material retained on each sieve size 1/4 inch and above if that sieve retains more than 5 percent of the total sample.

9-03.9(2) SHOULDER BALLAST

Shoulder ballast shall meet the requirements of Section 9-03.9(1) for ballast except the gradation shall meet the requirements of Section 9-03.16 for Mineral Aggregate, Type 13 or such other mineral aggregate manufactured from ledge rock or talus as may be specified by the Engineer or Contract Documents. The sand equivalent value and dust ratio requirements of Section 9-03.16 shall not apply.

9-03.9(3) CRUSHED SURFACING

Except as otherwise specified below, crushed surfacing shall be manufactured from ledge rock or talus and shall meet the grading requirements of Section 9-03.16 for Mineral Aggregate Type 1, Type 2, and Type 3.

Crushed surfacing shall be a totally crushed Material with no naturally occurring faces and shall apply to Material retained on each sieve size No. 10 and above if that sieve retains more than 5 percent of the total sample.
The portion of crushed surfacing retained on sieves with 1/4 inch screen size and larger shall not contain more than 0.15 percent wood Waste.

Crushed surfacing may be manufactured from gravel if its use meets the requirements set forth in Section 9-03.11 for Mineral Aggregate Type 1G and 2G.

9-03.9(4) MAINTENANCE ROCK

Maintenance rock shall meet all requirements of Section 9-03.9(3) for crushed surfacing top course except that it shall meet the following Specifications for grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" square</td>
<td>100</td>
</tr>
<tr>
<td>1/4" square</td>
<td>55-70</td>
</tr>
<tr>
<td>U.S. No. 40</td>
<td>10-25</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>7 max.</td>
</tr>
</tbody>
</table>

All percentages are by weight.

9-03.9(5) SAND FILLER

Sand filler shall consist of angular sand grains screened from natural deposits and meeting the requirements of Section 9-03.16 for Mineral Aggregate Type 11.

9-03.10 AGGREGATE FOR GRAVEL BASE

Gravel base shall meet the requirements of Section 9-03.12(2) for Mineral Aggregate Type 17.

9-03.11 CRUSHED GRAVEL

Crushed gravel shall be manufactured from mechanically crushed clean, washed gravel, and shall meet the grading requirements of Section 9-03.16 for Mineral Aggregate Types 1G, 2G, and 21 through 24. The number of fractured surfaces and the minimum percent of crushed particles required to have the fractured surfaces specified are as follows:

<table>
<thead>
<tr>
<th>Mineral Aggregate Type</th>
<th>Number of Fractured Surfaces</th>
<th>Minimum Percent Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G</td>
<td>2 or more</td>
<td>90%</td>
</tr>
<tr>
<td>2G</td>
<td>2 or more</td>
<td>90%</td>
</tr>
<tr>
<td>21</td>
<td>1 or more</td>
<td>75%</td>
</tr>
<tr>
<td>22</td>
<td>1 or more</td>
<td>75%</td>
</tr>
<tr>
<td>23</td>
<td>1 or more</td>
<td>75%</td>
</tr>
<tr>
<td>24</td>
<td>2 or more</td>
<td>95%</td>
</tr>
</tbody>
</table>

These fracture requirements shall apply to aggregates retained on all sieves sized 1/4 inch and larger, retaining at least 5 percent of total mineral aggregate weight.

Mineral Aggregate, Type 1G and Type 2G may be used as Top and Base Course in lieu of a crushed cock Type 1 and 2 only if specified and meeting one or more of the following:

1. The crushed surfacing mineral aggregate type 1G and 2G is covered and confined completely with asphalt or cement concrete Pavement; or
2. Confined within a trench; and
3. Costs shall be adjusted in accordance with Section 4-04.

Crushed gravel and crushed rock shall be substantially free from adherent coatings. The presence of a thin, firmly adhering film of weathered rock shall not be considered as coating unless it exists on more than 50 percent of the surface area of any size between successive Laboratory sieves.

The combined portion of mineral aggregate retained on all sieves of 1/4 inch openings shall not contain more than 0.1 percent wood Waste by weight. The portion of Material passing a U.S. No. 10 sieve shall not have wood Waste that results in more than 250 parts per million of organic matter by calorimetric tests when tested. The color shall be measured after the sample has been in the test solution for 1 hour.
9-03.12 GRAVEL BACKFILL

Gravel backfill shall consist of crushed, partially crushed, or naturally occurring granular Material depending on the type of mineral aggregate specified by the Engineer or in the Contract Documents.

9-03.12(1) GRAVEL BACKFILL FOR FOUNDATIONS

9-03.12(1)A CLASS A BACKFILL

Class A gravel backfill for foundations shall meet the requirements of Section 9-03.9 and 9-03.16 for Type 2 or Type 14 Mineral Aggregates. When not specified in the Contract, Class A gravel backfill shall be Mineral Aggregate Type 2.

9-03.12(1)B CLASS B BACKFILL

Class B gravel backfill for foundations shall meet the requirements of Section 9-03.16 for Type 17 Mineral Aggregate.

9-03.12(2) GRAVEL BACKFILL FOR WALLS

Gravel backfill for walls shall consist of free draining sand and gravel from naturally occurring or screened sources; have such characteristics of size and shape that it readily compacts; and meets the requirements of Section 9-03.16 for Mineral Aggregate Type 17.

The combined portion of Material retained on all sieves of 1/4 inch openings and larger, shall contain no more than 0.20 percent by weight of wood Waste.

9-03.12(3) GRAVEL BACKFILL FOR PIPE BEDDING

Pipe bedding Material shall meet the requirements of Section 9-03.16 for Mineral Aggregate Type 9 and Mineral Aggregate Type 22 as specified on the Drawings and Standard Plan No. 285.

Pea gravel bedding, Mineral Aggregate Type 9, shall consist of screened sand, gravel, or other inert Materials, or combinations thereof, from sources approved by the Engineer, and shall have hard, strong, durable particles free from adherent coatings. The Material shall be washed thoroughly to remove clay, loam, alkali, organic matter, or other deleterious substances. The amount of deleterious substances remaining in the washed pea gravel shall not exceed values specified in Section 9-03.1(2)B.

Crushed gravel bedding, Mineral Aggregate Type 22 shall be manufactured from screened crushed gravel. The finished product shall be clean, uniform in quality, and free from wood, bark, roots, and other deleterious Materials. The crushed screenings shall be substantially free from adherent coatings. The presence of a thin, firmly adhering film of weathered rock shall not be considered as coating unless it exists on more than 50 percent of the surface area of any size between successive Laboratory sieves. The portion of Mineral Aggregate Type 22 retained on all sieves with a 1/4 inch opening and larger shall not contain more than 0.1 percent deleterious Materials by weight.

9-03.12(4) GRAVEL BACKFILL FOR DRAINS

Gravel backfill for drains shall meet the requirements for Mineral Aggregate Type 26 in Section 9-03.16.

9-03.12(5) PIT RUN SAND AND GRAVELS

Pit run sand and gravels shall consist of free draining granular Materials obtained from naturally occurring deposits or manufactured from screened gravel.

Pit run sand shall meet the requirements of Section 9-03.16 for Mineral Aggregate Type 10.

Pit run sandy gravel shall meet the requirements of Section 9-03.16 for Mineral Aggregate Type 15.

9-03.12(6) WASHED SAND AND GRAVELS

Washed sand and gravels shall meet the gradation requirements of Section 9-03.16 for Mineral Aggregate Types 4, 5, 6, 7, and 26, whichever is specified in the Contract.

Washed sand and gravels shall consist of screened sand, gravel or other inert Materials, or combinations thereof, from sources approved by the Engineer, having hard, durable particles free from adherent coatings. The Materials shall be washed thoroughly to remove clay, loam, alkali, organic matter, or other deleterious substances. The amount of deleterious substances in the washed sand or gravel shall not exceed the values specified in Section 9-03.1(2)B for Mineral Aggregate Types 6, 7, and 26 and Section 9-03.1(3)B for Mineral Aggregate Types 4 and 5.
9-03.13 BACKFILL FOR SAND DRAINS

9-03.13(1) SAND DRAIN BACKFILL
Backfill for sand drains shall conform to the following grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2” square</td>
<td>90-100</td>
</tr>
<tr>
<td>1/4” square</td>
<td>65-100</td>
</tr>
<tr>
<td>U.S. No. 10</td>
<td>40-100</td>
</tr>
<tr>
<td>U.S. No. 50</td>
<td>3-30</td>
</tr>
<tr>
<td>U.S. No. 100</td>
<td>0-4</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>0-3.0</td>
</tr>
</tbody>
</table>

All percentages are by weight.

9-03.13(2) SAND DRAINAGE BLANKET
 Aggregate for the sand drainage blanket shall consist of granular Material, free from wood, bark, or other extraneous Material and shall meet the following requirements for grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1/2” square</td>
<td>90-100</td>
</tr>
<tr>
<td>1/4” square</td>
<td>30-100</td>
</tr>
</tbody>
</table>

The portion passing 1/4” shall meet the following requirements for grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. No. 10</td>
<td>50-100</td>
</tr>
<tr>
<td>U.S. No. 50</td>
<td>0-30</td>
</tr>
<tr>
<td>U.S. No. 100</td>
<td>0-7.0</td>
</tr>
<tr>
<td>U.S. No. 200</td>
<td>0-3.0</td>
</tr>
</tbody>
</table>

All percentages are by weight.

That portion of backfill for sand drains and sand drainage blanket retained on all sieves 1/4 inch openings and larger shall contain not more than 0.05 percent by weight of wood Waste.

9-03.14 GRAVEL BORROW
Unless otherwise specified on the Drawings or in the Project Manual, gravel borrow shall meet the requirements of Section 9-03.12(2) and the grading requirements in Section 9-03.16 for Mineral Aggregate Type 17.

If requested by the Contractor, the screen size may be increased if it is determined by the Engineer that larger size aggregate will be satisfactory for the specified backfilling or embankment construction.

9-03.15 TEST METHODS FOR AGGREGATES
The properties enumerated in these Specifications shall be determined in accordance with the following methods of test:
<table>
<thead>
<tr>
<th>Title</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>AASHTO T 2</td>
</tr>
<tr>
<td>Organic Impurities</td>
<td>WSDOT No. 21</td>
</tr>
<tr>
<td>Clay Lumps in Aggregates</td>
<td>AASHTO T 112</td>
</tr>
<tr>
<td>Abrasion of Coarse Aggregates by Use of the Los Angeles Machine</td>
<td>AASHTO T 96</td>
</tr>
<tr>
<td>Material Finer than U.S. No. 200 Sieve in Aggregates</td>
<td>AASHTO T 11</td>
</tr>
<tr>
<td>Sieve Analysis of Fine and Coarse Aggregates</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Determination of Degradation Value</td>
<td>WSDOT No. 113</td>
</tr>
<tr>
<td>Determination of Fineness Modulus</td>
<td>AASHTO T 27</td>
</tr>
<tr>
<td>Lightweight Pieces in Aggregates</td>
<td>WSDOT No. 122</td>
</tr>
<tr>
<td>Mortar Strength</td>
<td>WSDOT No. 311</td>
</tr>
<tr>
<td>Percentage of Particles Smaller than 0.025 mm and 0.005 mm</td>
<td>AASHTO T 88</td>
</tr>
<tr>
<td>Stabilometer R Value, Untreated Materials</td>
<td>WSDOT No. 611</td>
</tr>
<tr>
<td>Swell Pressure and Permeability</td>
<td>WSDOT No. 611</td>
</tr>
<tr>
<td>Stabilometer S Value, Treated Materials</td>
<td>WSDOT No. 703</td>
</tr>
<tr>
<td>Cohesiometer</td>
<td>WSDOT No. 719</td>
</tr>
<tr>
<td>Compressive Strength of Concrete</td>
<td>AASHTO T 22</td>
</tr>
<tr>
<td>Flexural Strength of Concrete</td>
<td>WSDOT No. 802</td>
</tr>
</tbody>
</table>
Section 9-03.16 Mineral Aggregate Chart

Sieve Analysis-Percent Passing By Weight

| No. | Aggregate Type | Use | Section | (Wet Sieving) | 50 | 40 | 10 | 8 | 6 | 4 | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2-1/2 | 3 | Sand Equivalent (Min.) | Dust Ratio (Max.) | L.A. Abrasion (Max.) % |
|-----|-----------------------------|----------------------|---------------|---------------|----|----|----|----|----|----|-----|----|----|----|----|----|------|-----|------------------------|
| 1. | 5/8" Minus Crushed Rock | Top Course & Keystone| 9-03.9(3) | 0-10 | | | 8-24| | | | 55-75| | | 100 | | | | 40 | | 35 |
| 1G. | 5/8" Minus Crushed Gravel | Top Course & Keystone| 9-03.11 | 0-10 | | | 8-24| | | | 55-75| | | 100 | | | | 40 | | 35 |
| 2. | 1-1/4" Minus Crushed Rock | Base Course | 9-03.9(3) | 9-03.12(1) | 0-7.5 | | 3-18| | | | 30-50| | | 50-80| | 100 | | 100 | 40 | 35 |
| 2G. | 1-1/4" Minus Crushed Gravel| Base Course | 9-03.9(11) | 0-7.5 | | | 3-18| | | | 30-50| | | 50-80| | 100 | | 100 | 40 | 35 |
| 3. | 1/2" Minus Crushed Rock | | 9-03.9(3) | 9-03.9(4) | 0-7 | | 10-25| | | | 55-70| | | 100 | | | | 40 | | 35 |
| 4. | 1-1/2" Washed Gravel | | 9-03.1(3)D | 0-0.5 | | | | | | | 0-2 | | | 0-20| | 90-100| 100 | | | 35 |
| 5. | 1" Washed Gravel | | 9-03.1(3)D | 0-0.5 | | | | | | | 0-4 | | | 0-10| | 80-100| 100 | | | 35 |
| 6. | Washed Sand | | 9-03.1(2)C | 0-2.5 | 9-20| | | | | | 68-86| 82-98| 96-100| 100 | | 100 | | | | 35 |
| 7. | Building Sand | | 9-03.1(2)C | 0-2.5 | 15-30| | | | | | 85-95| 93-100| 100 | | 100 | | | | 35 |
| 8. | 3/8" Washed Gravel | Pipe Bedding | 9-03.12(3) | 0-3 | | | | | | | 0-10| | | 95-100| 100 | | | | 35 |
| 10. | Pit Run Sand | Backfill Embankment | 9-03.12(5) | 0-10 | 10-60| | | | | | 40-100| 90-100| 100 | | | | | | | 35 |
| 11. | Sand Filler | | 9-03.9(5) | 0-15 | | | 15-40| 40-75| | | 90-100| 100 | | | | | | | | 40 |
| 13. | 2-1/2" Minus Crushed Rock | Shoulder Ballast | 9-03.9(2) | | | | | | | | 0-5 | | | 40-80| | 100 | | | | 40 |
| 14. | 2-1/2" Crushed Rock | Roadway Ballast | 9-03.9(1) | 9-03.12(1) | 0-9 | | 0-16| | | | 30-50| | | 50-85| | 65-100| 100 | | 35 | 2/3 |
| 15. | Pit Run Sandy Gravel | Backfill Embankment | 9-03.12(5) | 0-10 | | | | | | | 20-40| | | 100 | | | | | | 35 |
| 17. | Bank Run Gravel | Select Backfill | 9-03.10 | 9-03.12(2) | 9-03.14| 0-5 | | | | | 25-75| | | 95-100| 60 | 2/3 | | | | 30 |
| 21. | 1-1/2" Crushed Gravel | | 9-03.11 | | | | | | | | 0-25| | | 45-70| 85-100| 100 | | | | 30 |
| 22. | 5/8" Crushed Gravel | PVC & CMP Pipe Bedding| 9-03.11 | 9-03.12(3) | | | | | | | 0-25| | | 75-100| 100 | | | | |
| 23. | 1/2" Minus Crushed Rock | Cover Rock | 9-03.11 | 2-12 | | | 40-75| | | | 70-100| 100 | | | | | | | 30 |
| 24. | 1/2" Minus Crushed Gravel | Chip Rock | 9-03.11 | 0-3 | 0-5 | 0-10| 0-20| 25-55| 50-90| 98-100| 100 | | | | | | | | 30 |
| 26. | 3/4" Washed Gravel | Filter Material | 9-03.12(4) | 0-1 | 3-12| 20-50| 30-60| | | | | | | 100 | | | | | |

Table showing various mineral aggregates with their sieve analysis and uses.
9-03.17 ROCK FACING MATERIAL

Rock for constructing new rock facing shall be large, broken pieces of igneous and metamorphic rock types. Each rock shall be rectangular, intact sound material, resistant to weathering and free of soft weathered material and seams of soft rock susceptible to deterioration.

Minimum density of the Material shall be 165.4 pounds per cubic foot. The size categories for rock shall be as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Approx. Weight</th>
<th>Min. Approx. Dimensions</th>
<th>Approx. Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-man rock</td>
<td>200 - 400 lbs.</td>
<td>12 inches</td>
<td>2 cf</td>
</tr>
<tr>
<td>Two-man rock</td>
<td>500 - 800 lbs.</td>
<td>13 inches</td>
<td>4 cf</td>
</tr>
<tr>
<td>Three-man rock</td>
<td>900 - 1200 lbs.</td>
<td>16 inches</td>
<td>6.6 cf</td>
</tr>
<tr>
<td>Four-man rock</td>
<td>1300 - 2000 lbs.</td>
<td>18 inches</td>
<td>12.5 cf</td>
</tr>
<tr>
<td>Five-man rock</td>
<td>2000 - 4000 lbs.</td>
<td>24 inches</td>
<td>18.5 cf</td>
</tr>
<tr>
<td>Six-man rock</td>
<td>4100 - 6000 lbs.</td>
<td>30 inches</td>
<td>31 cf</td>
</tr>
</tbody>
</table>

Rocks less than 1.5 cubic foot in volume shall not be used.

The Contractor shall provide the services of an ASTM accredited testing laboratory approved by the Engineer to sample the rock from the quarry source, ensuring that rock samples are representative of the rock anticipated for use on this Project, and to perform the following laboratory tests:

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>ASTM C-127</td>
<td>Minimum 2.65</td>
</tr>
<tr>
<td>Soundness</td>
<td>AASHTO T 104</td>
<td>Not greater than 5 % loss</td>
</tr>
<tr>
<td>Accelerated Expansion</td>
<td>CRD-C-148</td>
<td>Not greater than 15% breakdown</td>
</tr>
<tr>
<td>Absorption</td>
<td>ASTM C-127</td>
<td>Not greater than 2%</td>
</tr>
<tr>
<td>L.A. Abrasion</td>
<td>ASTM C-131</td>
<td>Maximum 20% loss @ 500 revolutions</td>
</tr>
</tbody>
</table>

All rock to be delivered to and incorporated into the Project where rock facing is over 6 feet high, shall meet the minimum testing requirements noted above; the rock shall be stockpiled at the quarry prior to delivery to the site and protected from contamination with other, untested rock sources.

SECTION 9-04 JOINT AND CRACK SEALING MATERIALS

9-04.1 PREMOLDED JOINT FILLERS

9-04.1(1) ASPHALT FILLER FOR CONTRACTION AND LONGITUDINAL JOINTS IN CONCRETE PAVEMENTS

Premolded joint filler for use in Contraction and longitudinal joints shall be 3/8 inch in thickness and shall consist of a suitable asphalt mastic encased in asphalt-saturated paper or asphalt-saturated felt. It shall be sufficiently rigid for easy installation in summer months and not too brittle for handling in cool weather.

Premolded joint filler shall meet the requirements of ASTM Standard D994 or AASHTO Designation M33.

9-04.1(2) PREMOLDED JOINT FILLER FOR EXPANSION JOINTS

Premolded joint filler for through joints shall be 3/4 inch thick and as wide as the depth of the Pavement. Premolded joint filler shall meet the requirements of ASTM Standard D1751 or AASHTO Designation M213.

9-04.1(3) RESERVED

9-04.1(4) ELASTOMERIC EXPANSION JOINT SEALS

Premolded elastomeric expansion joint seals shall conform to the requirements of AASHTO M 220 and shall be formed by an extrusion process with uniform dimensions and smooth exterior surfaces. The cross-section of the seal shall be shaped to allow adequate compressed width of the seal, as approved by the Engineer.

9-04.2 JOINT SEALANTS

9-04.2(1) JOINT SEALANTS FOR SAWED CONTRACTION JOINTS

Joint sealants for sawed contraction joints shall meet the requirements of one of the following types: (1) AASHTO M 173, Concrete Joint Sealer, Hot Poured Elastic Type, or (2) ASTM D 1120, Concrete Joint Sealer, Cold Application Type; except that the test for evaluation of the bond requirements in each of the above requirements shall be in accordance with the bond test methods referred to in Section 9-04.2(2). Unless otherwise stated in the Contract, the Contractor shall have the option of using either of the above two types.

9-04.2(2) POURED JOINT SEALER FOR PAVEMENT AREAS

The physical properties of the joint sealer, when mixed in accordance with the manufacturer's recommendations, shall be as follows:

1. Color: Gray or black.
2. Viscosity: Must be pourable and self-leveling at 50°F.
3. Application Life: Not less than 3 hours at 72°F and 50 percent relative humidity.
4. Set to Touch: Not more than 24 hours at 72°F and 50 percent relative humidity.
5. Curing Time: Not more than 96 hours at 72°F and 50 percent relative humidity.
6. Non-Volatile Content: Not less than 92 percent.
8. Resiliency: Not less than 80 percent.
9. Bond test methods shall be in accordance with WSDOT Test Method No. 412A.

*Viscosity and application life may be waived providing the Material is mixed and placed by a pump and mixer approved by the Engineer, or if the Contract requires fast cure.

Suitable primer, if required by the manufacturer, shall be furnished with each joint sealer. The primer shall be suitable for brush or spray application at 50°F or higher and shall cure sufficiently at 50°F to pour the joint within 24 hours. It shall be considered as an integral part of the sealer system. Any failure of the sealer in the test described herein, attributable to the primer, shall be grounds for rejection of the sealer.

Acceptance of joint sealing compound for use on a Project shall be on the basis of Laboratory tests of samples representative of each batch of Material to be used on the job. A period of at least two weeks shall be allowed for completion of tests. Each container of the compound shall be clearly identified as to batch number.

9-04.2(3) POURED JOINT SEALER FOR WALKWAYS

Poured joint sealer used to seal sawed joints in sidewalks, stairs, plazas, and other walkways shall be a polyurethane sealer conforming to the requirements of Federal Specification TT-S-00227E Type I (Self-leveling) Class A or Type II (Non-sag) Class A.

9-04.3 MORTAR AND NON-SHRINK CEMENT SAND GROUT

9-04.3(1) JOINT MORTAR

Mortar shall be produced using Type II or III cement, fine aggregate Class 1 or 2, and water in proportion applicable to the application. Generally the proportions are one part cement to two or three parts fine aggregate with just enough water to make a stiff consistency. The mortar mix shall be approved by the Engineer before use.

9-04.3(2) NON-SHRINK CEMENT SAND GROUT

Non-shrink cement sand grout used for grouting anchor bolts and bridge bearings, and for use in drainage Structures, may be a prepackaged grout, or produced using Type I, II, or III cement; fine aggregate Class 1 or 2; and sufficient water to make a workable mix with flowability suitable for the intended application. Compressive strength shall be 4000 psi @ 3 Days.

Non-shrink cement sand grout for pipe connections to manholes, catch basins, inlets, and similar utility appurtenances; installing tees; grouting under poles and pedestals; and similar uses shall meet the following requirements:

1. 1-part, by weight, Type III (HES) cement;
2. 2-parts, by weight, clean fine aggregate Class 1 or 2; and
3. Sufficient water complying with Section 9-25.1 to obtain a stiff consistency. The use of calcium chloride will not be allowed.

Unpolished aluminum powder shall be added to the dry cement in the proportion of one heaping teaspoonful per sack of cement no more than 30 minutes before the grout mixture reaches its final in-place position. The required compressive strength (f’c) shall be 4,000 psi @ 7 Days.

Non-shrink cement sand grout used for grouting tendons shall be as specified in Section 6-02.3(26)G. Compressive strength shall be determined by fabricating cubes per WSDOT Method 813 and testing their compressive strength per AASHTO T-106.

The strength shall be confirmed by Schmidt hammering of the pads. The grout shall be covered with burlap sacks after the initial concrete set and wetted at regular intervals until the required strength is obtained.

9-04.4 RUBBER GASKETS

9-04.4(1) RUBBER GASKETS FOR CONCRETE PIPES AND PRECAST MANHOLES
Rubber gaskets for use in joints of concrete Culvert or storm Sewer pipe and precast manhole sections shall conform to the applicable requirements of ASTM C443.

9-04.4(2) RESERVED

9-04.4(3) RUBBER GASKETS FOR ALUMINUM OR STEEL CULVERT OR STORM SEWER PIPE
Gaskets for use with metal Culvert or storm Sewer pipe shall be continuous closed cell, synthetic expanded rubber gaskets conforming to the requirements of ASTM D 1056, Grade 2B3.

9-04.4(4) RUBBER GASKETS FOR ALUMINUM OR STEEL DRAIN PIPE
Gaskets for metal drain pipe shall be self-adhering, butyl-based scrim-supported type. When specified, the gaskets shall be as described in the Standard Plans.

9-04.4(5) PROTECTION AND STORAGE
Rubber gasket Material shall be stored in a clean, cool place, protected from contaminants. They shall be protected from direct sunlight at all times except during actual installation. Pipes with gaskets affixed shall be installed in the line within 28 Days of date of delivery from the manufacturer. Rubber gaskets found on-site more than 28 Days after delivery from the manufacturer will be rejected. The Contractor shall submit an invoice from the manufacturer stating date of delivery.

9-04.5 FLEXIBLE PLASTIC GASKETS
The gasket Material shall be produced from blends of refined hydro-carbon resins and plasticizing Materials reinforced with inert mineral filler and shall contain no solvents. It shall not depend on oxidizing, evaporating, or chemical action for adhesive or cohesive strength. It shall be supplied in extruded rope-form of such cross-section and size as to adequately fill spaces between the precast sections.

The gasket Material shall be protected by a suitable removable two piece wrapper so designed as to permit removing one half, longitudinally, without disturbing the other. Its composition and properties shall conform to those set forth below.
SECTION 9-04 JOINT AND CRACK SEALING MATERIALS

<table>
<thead>
<tr>
<th>Test Method Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen (Petroleum plastic content) ASTM D 4</td>
<td>50</td>
</tr>
<tr>
<td>Ash-inert Mineral Matter AASHTO T 111</td>
<td>30</td>
</tr>
<tr>
<td>Penetration ASTM D 217</td>
<td>---</td>
</tr>
<tr>
<td>32°F (300gm) 60 sec</td>
<td>75</td>
</tr>
<tr>
<td>77°F (150gm) 5 sec</td>
<td>50</td>
</tr>
<tr>
<td>115°F (150gm) 5 sec</td>
<td>---</td>
</tr>
<tr>
<td>Softening Point, °F ASTM D 36</td>
<td>320</td>
</tr>
<tr>
<td>Specific Gravity at 77°F ASTM D 71</td>
<td>1.20</td>
</tr>
<tr>
<td>Weight per gallon, lb.</td>
<td>10.4</td>
</tr>
<tr>
<td>Ductility at 77°F (cm) ASTM D 113</td>
<td>5.0</td>
</tr>
<tr>
<td>Flash Point C.O.C., °F ASTM D 93</td>
<td>600</td>
</tr>
<tr>
<td>Fire Point C.O.C., °F ASTM D 92</td>
<td>625</td>
</tr>
<tr>
<td>Volatile Matter ASTM D 6</td>
<td>---</td>
</tr>
</tbody>
</table>

9-04.6 EXPANDED POLYSTYRENE

Expanded polystyrene shall be of a cellular molded type with a density of 1.5 plus or minus 0.25 pounds per cubic foot.

9-04.7 EXPANDED RUBBER

Closed cell expanded rubber joint filler shall conform to ASTM D 1056, Grade No. 2B3.

9-04.8 FLEXIBLE ELASTOMERIC SEALS

Flexible elastomeric seals for PVC drain pipe and underdrain pipe shall conform to the requirements of ASTM D 3212 (verify).

9-04.9 SOLVENT CEMENTS

Solvent Cements for PVC underdrain pipe shall conform to the requirements of ASTM D 2564.

9-04.10 CRACK SEALING - RUBBERIZED ASPHALT

Rubberized asphalt for crack sealing asphalt concrete Pavement shall conform to AASHTO M 173 (ASTM D 1190) and have a COC flash point (AASHTO T 48) of 400°F minimum. AASHTO M 173 (ASTM D 1190) is modified to delete the Bond Test requirement. AASHTO T 48 is modified to require careful agitation of the rubberized asphalt sample during testing to prevent local overheating.

SECTION 9-05 STORM DRAIN AND SANITARY SEWER STRUCTURES, CULVERTS, AND CONDUITS

9-05.0 ACCEPTANCE BY MANUFACTURER’S CERTIFICATION

Certain drainage Materials may be accepted by the Engineer based on a Manufacturer’s Certificate of Compliance meeting the requirements of Section 1-06.3. These Materials are as follows:

- Metal drain and underdrain pipe,
- PVC and corrugated polyethylene drain pipe and underdrain pipe,
- Metal Culvert, Storm Drain pipe and pipe arch less than 30 inches in diameter,
- Metal Culvert end sections,
- Corrugated metal structural plate pipe, pipe arch, and under passes, and
- Ductile iron pipe.

9-05.1 DRAIN PIPE

9-05.1(1) CONCRETE DRAIN PIPE

Concrete drain pipe shall meet requirements of ASTM Designation C14 Class 3 for pipe less than 12 inches in diameter; ASTM C76 Class IV for 12 and 15 inches diameter pipe; and ASTM C76 Class III for pipe 18 inches in diameter and larger, unless noted otherwise on the Drawings.
For concrete pipe 27" in diameter or less, pipe acceptance report (PAR) shall be submitted to SPU Engineers at the time of delivery. SPU Engineers reserve the right to reject pipe that does not meet requirements in Section 9-05.1(1).

For concrete pipe over 27" in diameter, the Contractor shall notify SPU Materials Laboratory 15 working days prior to shipping for inspection.

9-05.1(2) ZINC COATED (GALVANIZED) OR ALUMINUM COATED (ALUMINIZED) CORRUGATED IRON OR STEEL DRAIN PIPE

9-05.1(2)A GENERAL
Zinc coated (galvanized) or aluminum coated (aluminized) corrugated iron or steel drain pipe shall meet the requirements of AASHTO M 36. The galvanized or aluminized sheet thickness shall be 0.052 inch for 6 inch diameter drain pipe and 0.064 inch for 8 inch diameter and larger drain pipe. Welded seam aluminum coated (aluminized) corrugated iron or steel drain pipe with metallized coating applied inside and out following welding is acceptable.

9-05.1(2)B COUPLING BANDS
Coupling bands for zinc coated (galvanized) or aluminum coated (aluminized) corrugated iron or steel drain pipe shall meet the requirements of coupling bands for Type I pipe of AASHTO M 36, except that bands using projections (dimples) shall not be permitted. The bands shall be fabricated of the same material as the pipe, and with the same metallic protective treatment as the pipe.

Acceptable coupling bands for corrugated metal pipe shall be made using a 2-piece, 24 inch wide corrugated coupling band, held together with angles and bolts, a neoprene gasket between the pipe and the bands, be of the same Material and corrugations as the pipe, and meet the requirements of Section 9-05.4(7).

9-05.1(3) CORRUGATED ALUMINUM DRAIN PIPE

9-05.1(3)A GENERAL
Corrugated aluminum drain pipe shall meet the requirements of AASHTO M 196, without perforations.

9-05.1(3)B COUPLING BANDS
Coupling bands for corrugated aluminum alloy drain pipe shall meet the requirements of coupling bands for Type I pipe of AASHTO M 196, except that bands using projections (dimples) shall not be permitted. The bands shall be fabricated of the same material as the pipe.

Coupling bands for aluminum corrugated pipe shall be 24 inch, two-piece half-circle corrugated pipe held together with angles and bolts. A neoprene gasket shall be placed between the pipe and the bands. The bands shall be made of the same Material and have the same corrugations as the pipe, and shall meet the requirements of Section 9-05.5(5).

9-05.1(4) GALVANIZED STEEL PIPE
Galvanized steel pipe (GSP) shall be 4 inch inside diameter, Schedule 40 pipe meeting the requirements of ASTM A 53.

9-05.1(5) POLYVINYL CHLORIDE (PVC) DRAIN PIPE
Polyvinyl Chloride drain pipe and fittings shall meet the requirements of ASTM D3034 SDR35 with restrained gasket joints, unless otherwise indicated in the Contract.

9-05.1(6) CORRUGATED POLYETHYLENE DRAINAGE TUBING DRAIN PIPE
Corrugated polyethylene drainage tubing drain pipe shall meet the requirements of AASHTO M 252. The maximum size pipe shall be 10 inches in diameter.

9-05.1(7) CORRUGATED POLYETHYLENE DRAIN PIPE
Corrugated polyethylene drain pipe, 12 inches through 36 inches diameter maximum, shall meet the minimum requirements of AASHTO M 294 Type S.
9-05.2 SUBSURFACE DRAIN PIPE

9-05.2(1) RESERVED

9-05.2(2) PERFORATED CONCRETE SUBSURFACE DRAIN PIPE

Perforated concrete subsurface drain pipe shall meet the requirements of AASHTO M 175, Type I, except that the perforations shall be approximately 1/2 inch in diameter. Strength requirements shall be as shown in Table I of AASHTO M 86.

9-05.2(3) RESERVED

9-05.2(4) ZINC COATED (GALVANIZED) OR ALUMINUM COATED (ALUMINIZED) CORRUGATED IRON OR STEEL SUBSURFACE DRAIN PIPE

9-05.2(4)A GENERAL

Zinc coated (galvanized) or aluminum coated (aluminized) corrugated iron or steel subsurface drain pipe shall meet the requirements of AASHTO M 36, except that perforations required in Class I, II, and III pipe may be located anywhere on the tangent of the corrugations provided the other perforation spacing requirements remain as specified. Welded seam aluminum coated (aluminized) corrugated iron or steel subsurface drain pipe with metallized coating applied inside and out following welding is acceptable.

The pipe may conform to any one of the Type III pipes specified in AASHTO M 36, and perforations in Class I, II, and III pipe may be drilled or punched. The galvanized or aluminized sheet thickness shall be 0.052 inch for 6 inch diameter subsurface drain pipe and 0.064 inch for 8 inch and larger diameter subsurface drain pipe.

9-05.2(4)B COUPLING BANDS

Coupling bands for zinc coated (galvanized) or aluminum coated (aluminized) corrugated iron or steel subsurface drain pipe shall meet the requirements of coupling bands for Type III pipe of AASHTO M 36. The bands shall be fabricated of the same Material as the pipe, if metallic bands are used.

Acceptable coupling bands are two-piece, helically-corrugated, with nonreformed ends and integrally formed flanges; universal bands (dimple bands); a smooth sleeve-type coupler; and those bands meeting the requirements of Section 9-05.4(7). Smooth sleeve-type couplers may be either plastic or steel suitable for holding the pipe firmly in alignment without the use of sealing compound or gaskets.

9-05.2(5) PERFORATED CORRUGATED ALUMINUM SUBSURFACE DRAIN PIPE

9-05.2(5)A GENERAL

Perforated corrugated aluminum subsurface drain pipe shall meet the requirements of AASHTO M 196, except that the perforations may be located anywhere on the tangent of the corrugations providing the other perforation spacing requirements remain as specified.

9-05.2(5)B COUPLING BANDS

Coupling bands for corrugated aluminum subsurface drain pipe shall meet the requirements of coupling bands for Type III pipe of AASHTO M 196. The bands shall be fabricated of the same Material as the pipe, if metallic bands are used.

Acceptable coupling bands are two-piece, helically-corrugated, with nonreformed ends and integrally formed flanges; universal bands (dimple bands); a smooth sleeve-type coupler; and those bands meeting the requirements of Section 9-05.5(5). Smooth sleeve-type couplers may be either plastic or aluminum, suitable for holding the pipe firmly in alignment without the use of sealing compound or gaskets.

9-05.2(6) PERFORATED PVC SUBSURFACE DRAIN PIPE

Perforated PVC subsurface drain pipe shall meet the requirements of AASHTO M 278. Pipe size shall not exceed 8 inch diameter unless indicated otherwise on the Drawings.
9-05.2(7) PERFORATED CORRUGATED POLYETHYLENE DRAINAGE TUBING SUBSURFACE DRAIN PIPE

Perforated corrugated polyethylene drainage tubing subsurface drain pipe shall meet the requirements of AASHTO M 252. The maximum size pipe shall be 8 inches in diameter.

9-05.2(8) PERFORATED CORRUGATED POLYETHYLENE SUBSURFACE DRAIN PIPE

Perforated corrugated polyethylene subsurface drain pipe, 12 inch through 24 inch diameter, shall meet the minimum requirements of AASHTO M 294. Perforations shall be in accordance with AASHTO M 252.

9-05.3 CONCRETE CULVERT PIPE

9-05.3(1) PLAIN CONCRETE CULVERT PIPE

9-05.3(1)A GENERAL

Plain concrete pipe shall meet the requirements of ASTM C 14 Class 2.

9-05.3(1)B END DESIGN

The end designs for plain concrete Culvert pipe shall conform to the applicable requirements of AASHTO M 198 when rubber gasketed joints are required. Unless specified otherwise in the Contract, the Contractor shall have the option of providing rubber gasket or cement mortar joints. The planes of the ends of the pipes shall be perpendicular to their longitudinal axes.

9-05.3(1)C BASIS FOR ACCEPTANCE

The basis for acceptance of plain concrete Culvert or drain pipe shall be based on a Manufacturer’s Certificate of Compliance indicating acceptable results of three edge bearing tests performed at the manufacturer’s plant within the 90-Day period immediately preceding shipment of the pipe.

9-05.3(1)D AGE AT SHIPMENT

Plain concrete Culvert pipe may be shipped when it meets all test requirements. Unless it is tested and accepted at an earlier age, it shall not be considered ready for shipment sooner than 28 Days after manufacture when made with Type II Portland cement, nor sooner than 7 Days when made with Type III Portland cement.

9-05.3(2) REINFORCED CONCRETE CULVERT PIPE

9-05.3(2)A GENERAL

Reinforcing concrete Culvert pipe shall conform to the requirements of ASTM C76 Class III.

9-05.3(2)B END DESIGN

Section 9-05.3(1)B will apply to reinforced concrete Culvert pipe.

9-05.3(2)C BASIS FOR ACCEPTANCE

The basis for acceptance of reinforced concrete pipe 60 inches in diameter and smaller shall be determined by the results of the three edge bearing test for the load to produce a 0.01 inch crack, and testing to the ultimate load will ordinarily not be required, except as necessary to obtain samples for making the absorption test. In lieu of broken pieces of pipe obtained as above provided, 4 inch diameter cores from pipe sections selected by the Engineer may be furnished for performing the absorption test. Sections of pipe which have been tested to the actual 0.01 inch crack limitation will ordinarily not be further load tested; and such sections which meet or exceed the required strength and workmanship standards may be accepted for use on the Project.

Acceptance of reinforced concrete pipe larger than 60 inches diameter shall be based on inspection of the size and placement of the reinforcing steel, and, at the option of the Engineer, on compressive strength tests of 4 inch diameter cores cut from the pipe, or on compressive strength of representative test cylinders cast with and cured with the pipe.

9-05.3(2)D AGE AT SHIPMENT

Reinforced concrete Culvert pipe may be shipped when it meets the requirements of Section 9-05.3(1)D.
9-05.3(3) **BEVELED CONCRETE END SECTIONS**

Beveled concrete end sections shall be plain concrete conforming to AASHTO M 86 or reinforced concrete conforming to the applicable sections of AASHTO M 170 with the design requirements as listed in Table 2, Wall B, Circular Reinforcement in circular pipe, and WSDOT Standard Plan No. B-7a.

9-05.4 **STEEL CULVERT PIPE AND PIPE ARCH**

9-05.4(1) **GENERAL**

Steel Culvert pipe and pipe arch shall meet the requirements of AASHTO M 36, Type I and Type II. Welded seam aluminum coated (aluminized) corrugated steel pipe and pipe arch with metallized coating applied inside and out following welding is acceptable.

9-05.4(2) **ELLIPTICAL FABRICATION**

When elongated pipes are specified, circular pipes shall be fabricated 5 percent out of round to form an elliptical section. The longer axis of the elliptical section shall be clearly marked before shipping.

9-05.4(3) **RESERVED**

9-05.4(4) **ASPHALT COATINGS AND PAVED INVERTS**

Asphalt for asphalt coatings and paved inverts shall meet the requirements of AASHTO M 190, Section 4. The coatings for Treatments 1, 2, and 5 as specified in Section 7-02.3(1)C3A shall be uniform, inside and out, and applied in accordance with the following requirements:

The metal shall be free from grease, dirt, dust, moisture, or other deleterious contaminants. Either process described below may be used for application.

1. **Pipe Not Preheated:**

 The temperature of the asphalt at the time of pipe immersion shall be 400°F (± 5°F), and the duration of the immersion shall conform to the following schedule:

<table>
<thead>
<tr>
<th>Thickness in Inches</th>
<th>Minimum Immersion Time-Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>Aluminum</td>
</tr>
<tr>
<td>.064</td>
<td>.060</td>
</tr>
<tr>
<td>.079</td>
<td>.075</td>
</tr>
<tr>
<td>.109</td>
<td>.105</td>
</tr>
<tr>
<td>.138</td>
<td>.135</td>
</tr>
<tr>
<td>.168</td>
<td>.164</td>
</tr>
</tbody>
</table>

2. **Pipe Preheated:**

 The asphalt shall have a temperature of 380°F (± 5°F), and the pipe shall be brought to a temperature of 300°F to 350°F before immersion.

 Paved inverts for Treatments 2 and 4 as specified in Section 7-02.3(1)C3A shall consist of bituminous Material applied in such a manner that one or more smooth pavements are formed in the invert filling the corrugations for at least 40 percent of the circumference. The Pavement shall have a minimum thickness of 1/8 inch above the crest of the corrugations except where the upper edges intercept the corrugation. The Pavements shall be applied following the coating with asphalt or fiber bonding.

 Treatment 5 may be substituted for Treatment 2, and Treatment 6 for Treatment 4 at the option of the Contractor.

9-05.4(5) **RESERVED**

9-05.4(6) **SPUN ASPHALT LINING**

Asphalt for spun linings over 100 percent periphery shall conform to AASHTO M 190, Section 4. Asphalt spun linings shall provide a smooth surface for the full interior of the pipe by completely filling the corrugations to a minimum thickness of 1/8 inch above the crests. The interior lining shall be applied by centrifugal or other approved methods. The interior shall be free from sags or runs, but slight residual corrugations due to cooling
shrinkage of the lining will not be cause for rejection. At the three-sheet laps, an interior nonuniformity equal to the thickness of the sheet is allowable. The thickness of the lining shall be maintained to the ends of the pipe.

The thickness of the lining over the crest of the corrugation shall not vary by an amount in excess of 1/2 inch over the entire area of the spun lining.

In the case of helical corrugated pipe manufactured with a continuous lock seam, an interior nonuniformity over the lock seam equal to the thickness of two Culvert sheets is allowable.

9-05.4(7) COUPLING BANDS
Coupling bands shall be flange bands or corrugated bands as shown in the Drawings or WSDOT Standard Plan Nos. B-13a through B-14 and shall be fabricated of the same Material as the pipe and with the same metallic protective treatment as the pipe. The corrugated bands shall conform to the pipe and shall meet all applicable requirements of AASHTO M 36 except that coupling bands for all sizes of steel pipe arch with 3 inch x 1 inch corrugations shall be 24 inches wide. Bands having projections in lieu of corrugations will not be allowed.

Steel bolts and nuts for coupling bands shall meet the requirements of ASTM A 307 and shall be galvanized in accordance with ASTM A 153.

Steel angles, when required for coupling bands, shall meet the requirements of AASHTO M 36.

Asphalt coating shall not be used on coupling bands.

Coupling bands meeting the requirements of Section 9-05.10(2) shall also be acceptable.

Coupling bands shall be made by the same manufacturer as the steel pipe selected for installation.

9-05.4(8) STEEL PIPE ARCH
Steel pipe arch shall meet the requirements for steel pipe and pipe arch of these Specifications except in the method of fabrication. Circular pipe shall be fabricated in two semi-circles, and the pipe arch shall be fabricated in two separate sections, the upper portion or arch, and the bottom section including the connecting arcs.

Both longitudinal edges of the lower section of the pipe arch shall be notched to provide interlocking seams which form the two segments into the full section when it is erected in the field. Hook and eye bolts, or other approved means, shall be provided to hold the segments firmly together.

Individual plates shall be a minimum of 2 feet in length except for short or half sections required to complete the end section of the Culvert.

When protective treatment is specified in the Drawings, pipe arch shall be coated with one of the treatments as provided in Section 7-02.3(1)C3A.

9-05.4(9) STEEL END SECTIONS

9-05.4(9)A GENERAL
The applicable provisions of AASHTO M 36 shall apply to the construction of steel end sections, except that the end sections shall be fabricated of the same Material with the same metallic protective treatment as the pipe.

Asphalt coating shall not be used on steel end sections.

9-05.4(9)B FABRICATION
The shape, thickness, dimensions, and number of pieces shall conform to WSDOT Standard Plan No. B-9 for the size and shape of pipe shown in the Drawings. They shall be manufactured as integral units or so formed that they can be readily assembled and erected in place. When bolts are used for assembly, they shall be 3/8 inch diameter or larger and shall be galvanized. No field welding or riveting shall be permitted.

9-05.4(9)C GALVANIZED HARDWARE
Bolts, nuts, and miscellaneous hardware shall be galvanized in accordance with the provisions of AASHTO M 232.

9-05.4(9)D TOE PLATE EXTENSIONS
Toe plate extensions shall be furnished only when so designated in the Drawings. When required, the toe plate extensions shall be punched with holes to match those in the lip of the skirt and fastened with 3/8 inch or larger galvanized nuts and bolts. Toe plate extensions shall be the same Material and thickness as the end
section and shall be fabricated of the same Material with the same metallic protective treatment as the end section.

9-05.5 ALUMINUM CULVERT PIPE

Aluminum Culvert pipe shall conform to the applicable requirements of AASHTO M 196.

9-05.5(1) ELLIPTICAL FABRICATION

Section 9-05.4(2) shall apply to aluminum pipes.

9-05.5(2) MITERED ENDS

Section 7-02.3(1)C2C shall apply to aluminum pipes.

9-05.5(3) PROTECTIVE TREATMENT

When protective treatment is specified for aluminum pipe, it shall be Treatment 5 as shown in Section 7-02.3(1)C3A.

9-05.5(4) ASPHALT COATINGS

Asphalt coatings for aluminum Culvert pipe shall meet the requirements of Section 9-05.4(4).

9-05.5(5) COUPLING BANDS

Coupling bands shall meet applicable requirements of AASHTO M 196. Bands having projections in lieu of corrugations will not be allowed.

Steel bolts and nuts for coupling bands shall meet the requirements of ASTM A 307 and shall be galvanized in accordance with AASHTO M 232 or AASHTO B 633.

Aluminum angles shall be of the same Material as the coupling bands.

Rods, when required, shall meet the requirements of ASTM B 221, Alloy 6061-T6.

Asphalt coating shall not be used on coupling bands.

Coupling bands shall be made by the same manufacturer as the aluminum pipe selected for installation.

9-05.5(6) ALUMINUM END SECTIONS

The applicable provisions of AASHTO M 196 shall apply to the construction of end sections and toe plate extensions for aluminum pipes. In addition, they shall conform to the requirements of Section 9-05.4(9).

Asphalt coating shall not be used on aluminum end sections.

9-05.6 STRUCTURAL PLATE PIPE, PIPE ARCH, ARCH, AND UNDERPASS

9-05.6(1) GENERAL

Structural plate pipes shall be full circle of the type, gage or thickness, and diameter specified.

Structural plate pipe arches shall be a multi-centered shape, made up of four circular arcs tangent to each other at their junctions and symmetrical about the vertical axis, and of the type, gage or thickness, and span specified.

Structural plate arches shall be a single-centered circular arc shape placed on a reinforced concrete foundation, and of the design, type, gage or thickness, and span as provided for in the Drawings.

Structural plate underpasses shall be a multi-centered shape, made up of a variable number of circular arcs tangent to each other at their junctions and symmetrical about the vertical axis, and of the design, type, gage or thickness, and span specified.

9-05.6(2) FABRICATION

The plates at longitudinal and circumferential seams shall be connected by bolts; the bolt holes shall be staggered in rows 2 inches apart, one hole being punched in the valley and one in the crest of each corrugation along both edges of each plate. Bolt holes on circumferential seams shall be spaced at approximate 12 inch intervals. No hole shall be closer to the edge of the plate than twice the diameter of the bolt.

The ends of structural plate pipes, pipe arches, arches, or underpasses shall not be mitered unless called for in the Drawings, the Special Provisions, or Standard Plans. If mitered ends are specified, the slope shall.
conform to the slope of the embankment in which the Culvert is to be placed. The miter on pipe arches shall be limited to the top arc only.

9-05.6(3) ELLIPTICAL FABRICATION

When elongated structural plate pipes are specified, they shall be fabricated 5 percent out of round to form an elliptical cross section. The vertical axis (the longer axis of the elliptical section) shall be clearly marked on the plates before shipping.

9-05.6(4) STRUCTURAL PLATE PIPE ARCH

Plates for structural plate pipe arches shall be formed so that the top shall be an arc of not more than 180 degrees nor less than 155 degrees; the bottom shall be an arc of not more than 50 degrees nor less than 10 degrees; and the top shall be joined at each end to the bottom by an arc having a radius between 18 and 31 inches and of not more than 87-1/2 degrees nor less than 75 degrees.

9-05.6(5) STRUCTURAL PLATE ARCH

Structural plate arches and their foundations shall be as shown in the Drawings.

9-05.6(6) STRUCTURAL PLATE UNDERPASS

Structural plate underpasses shall be as provided for in WSDOT Standard Plan Nos. B-8 and B-8a, or, in the case of a special design, as provided for in the Drawings.

9-05.6(7) CONCRETE

Concrete required for constructing structural plate arch foundations shall be Class B concrete in conformance with the requirements of Section 6-02.3(2)A. Steel reinforcing bars shall conform to the requirements of Section 9-07.1.

9-05.6(8) PLATES

9-05.6(8)A CORRUGATED STEEL PLATES

Galvanized corrugated steel plates for constructing structural plate pipe, pipe arches, arches, and underpasses, and nuts and bolts used in their assembly shall conform to the requirements of AASHTO M 167 except that the minimum weight of spelter coating on the plates shall be 3 ounces of zinc per square foot of double exposed surface. If the average spelter coating as determined from the required samples is less than 3.0 ounces, or if any one specimen shows less than 2.7 ounces, the lot samples shall be rejected. Nuts, bolts, and miscellaneous hardware shall be galvanized in accordance with AASHTO M 232.

9-05.6(8)B CORRUGATED ALUMINUM PLATES

Aluminum alloy plates and fasteners intended for use in the construction of structural plate pipe, pipe arches, arches, and underpasses shall conform to the requirements of AASHTO M 219. Nuts, bolts, and miscellaneous hardware shall be galvanized in accordance with AASHTO M 232.

9-05.7 CONCRETE PIPE

9-05.7(1) PLAIN CONCRETE PIPE

9-05.7(1)A GENERAL

Plain concrete pipe shall meet the requirements of ASTM C 14 Class 3, unless otherwise called for on the Drawings. Permeability test shall be conducted as follows:

The pipe selected for test shall be placed either end down on a soft rubber pad, at the option of the Engineer, and filled with water. The pipe shall be kept full of water for a period of 2 minutes. At the end of that period the outer surface of the pipe shall be examined for leaks.

A leak is herein defined as a moist spot on which, when wiped dry with a cloth, moisture quickly reappears.

The Engineer may test a maximum of 2 percent of all pipes but in no case less than 5 pipes of each size.

9-05.7(1)B BASIS FOR ACCEPTANCE

The basis for acceptance of plain concrete Sewer pipe shall be the same as specified in Section 9-05.3(1)C.
9-05.7(2) REINFORCED CONCRETE PIPE

Reinforced concrete pipe shall conform to ASTM Designation C 76, and shall be of the class specified in the Contract.

Pipe ends of reinforced concrete pipe may be bell and spigot, modified bell and spigot, or tongue and groove unless otherwise specified in the Contract.

Acceptance shall be based on load bearing tests, Material tests and inspection of the product at all stages of construction. Acceptance by cylinders or cores instead of load bearing tests is permissible when agreed upon by the manufacturer and the Engineer at least 5 Working Days prior to manufacture.

Both bells and spigots shall be reinforced in pipe 30 inches or more in diameter.

The identification of the minor axis of elliptical reinforcement shall be in accordance to Section 7-02.3(1)B4.

9-05.7(3) CONCRETE PIPE JOINTS

All concrete pipe shall be joined with rubber gaskets. The joints and gasket Material shall meet the requirements of ASTM C 443. Gasket Material shall be handled and stored in accordance to Section 9-04.4(5).

9-05.7(4) TESTING CONCRETE SEWER PIPE JOINTS

9-05.7(4)A GENERAL

When a particular type of pipe joint design, Material or joining method has not previously been tested and approved, the following test shall be made on one test length of the assembled concrete pipe to qualify the design, Material or method of joining the pipe. At the option of the Engineer, additional testing may be requested if subsequent field testing of installed pipe indicates difficulty in obtaining properly joined pipe. The tests shall be conducted at the manufacturer's yard, and the manufacturer shall make available space and facilities for conducting the tests in an efficient and workmanlike manner.

9-05.7(4)B HYDROSTATIC PRESSURE ON PIPES IN STRAIGHT ALIGNMENT

Hydrostatic pressure tests on pipes in straight alignment shall be made in accordance with the procedure outlined in paragraph 8(a) of AASHTO M 198, except that they shall be performed on an assembly consisting of not less than three nor more than five pipe sections selected from stock by the Engineer and assembled in accordance with standard installation instructions issued by the manufacturer. The end sections shall be bulkheaded and restrained against internal pressure.

9-05.7(4)C HYDROSTATIC PRESSURE TESTS ON PIPES IN MAXIMUM DEFLECTED POSITION

Upon completion of the test for pipe in straight alignment, the test section shall be deflected until at least two of the joints have been deflected to the maximum amount shown in the manufacturer's standard installation instructions. When thus deflected, there shall be no leakage at the joints from an applied internal hydrostatic pressure of 5 psi.

9-05.7(4)D HYDROSTATIC PRESSURE TEST ON 15 INCH DIAMETER AND LARGER PIPE UNDER DIFFERENTIAL LOAD

The test sections shall be suitably supported so that one of the pipes of the test assembly is suspended freely between adjacent pipes, bearing only on the joints. The suspended pipe shall then be loaded at its midpoint, in addition to the weight of the pipe, in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 inches</td>
<td>7,400 lbs.</td>
</tr>
<tr>
<td>18 inches</td>
<td>8,800 lbs.</td>
</tr>
<tr>
<td>21 inches</td>
<td>10,000 lbs.</td>
</tr>
<tr>
<td>24 inches and over</td>
<td>11,000 lbs.</td>
</tr>
</tbody>
</table>

While under this load, the stressed joints shall show no leakage when subjected to an internal hydrostatic pressure of 5 psi. At the option of the manufacturer, 1/2 of the load may be applied on the bell end of the suspended pipe in lieu of the full load on the center of the suspended pipe.
VITRIFIED CLAY PIPE

This Material shall not be used in the City of Seattle unless specified in the Contract Documents. Vitrified clay pipe shall conform to ASTM C 700, and all joints shall be factory manufactured in accordance with ASTM C 425.

9-05.9 STEEL SPIRAL RIB DRAIN PIPE

9-05.9(1) GENERAL

Steel spiral rib drain pipe shall meet the requirements of AASHTO M 36 and these Specifications. The size, coating, metal and protective treatment shall be as specified in the Contract.

The manufacturer of spiral rib drain pipe shall furnish to the Engineer a Manufacturer’s Certificate of Compliance stating that the Materials furnished comply in all respects with these Specifications. The Engineer may require additional information or tests to be performed by the Contractor, at no expense to the Owner.

Unless otherwise specified in the Contract, spiral rib drain pipe shall be furnished with pipe ends cut perpendicular to the longitudinal axis of the pipe. Pipe ends shall be cut evenly. Spiral rib pipe shall be fabricated either by using a continuous helical lock seam with a seam gasket or a continuous helical welded seam paralleling the rib.

Spiral rib drain pipe shall have helical ribs that project outwardly, shall be formed from a single thickness of Material, and shall conform to one of the following configurations:

1. AASHTO M 36, Section 7.2.2.
2. 0.375 inch, +1/8 inch wide by 0.4375 inch (minimum) deep at 4.80 inches center to center.
3. 3/4 inch wide by 5/8 inch deep at 12 inches center to center.

Pipe shall be fabricated with ends that can be effectively jointed with coupling bands.

When required, spiral rib pipe shall be bituminous treated or paved. The bituminous treatment for spiral rib pipe shall conform to the requirements of sections 7-02.3(1)C3A and 9-05.4(4).

9-05.9(2) CONTINUOUS LOCK SEAM PIPE

9-05.9(2)A GENERAL

Pipes fabricated with a continuous helical seam parallel to the rib may be used for full circle pipe. The lock seam shall be formed in the flat between ribs and shall conform to Sections 7.5.1 through 7.5.3 of AASHTO M 36.

For narrow pitch spiral rib pipe, the lap width specified in Section 7.5.1 shall be 1/4 inch.

For use in applications without bituminous treatment, the continuous lockseam must be qualified by tests conducted by the Materials Laboratory.

9-05.9(2)B BASIS FOR ACCEPTANCE

The basis for acceptance will be a qualification test, conducted by the Materials Laboratory, for each manufacturer of helically corrugated, gasketed spiral rib, or narrow pitch spiral rib lock seam steel pipe. Only those specific pipe sizes and gasket Materials approved under the qualification test will be accepted.

Continuous lock seam pipe shall be sampled and tested in accordance with AASHTO T 249 and a Manufacturer’s Certificate of Compliance shall be submitted indicating compliance of the pipe with these Specifications.

9-05.9(3) CONTINUOUS WELDED SEAM PIPE

Pipes fabricated with a continuous helical welded seam parallel to the ribs may be used for full circle pipe. The welding process for galvanized steel pipe shall be so controlled that the combined width of the weld and adjacent spelter coating burned by the welding does not exceed three times the thickness of the metal. If spelter is burned outside these limits, the weld and burned spelter shall be repaired as required for damaged galvanizing. Testing for welded seam quality control shall conform to AASHTO T 241. Welded pipe fabricated from aluminized steel pipe shall have the coating of the welded area repaired by flame-sprayed metallizing inside and out after welding.

Repair of Damaged Galvanizing: When the galvanized (zinc coated) surface has been burned by gas or arc welding, all surfaces of the welded connections shall be thoroughly cleaned by wire brushing and all traces
of the welding flux and loose or cracked galvanizing removed, after which the areas shall be repaired by flame spray metallizing both inside and out.

9-05.9(4) COUPLING BANDS

Coupling bands shall be of the same Material as the pipe. Coupling bands and gaskets shall conform to Section 9-05.10(2).

9-05.10 STEEL PIPE FOR SEWERS

9-05.10(1) GENERAL

Steel pipe shall conform to the requirements of Section 9-05.4 for steel Culvert pipe, except that protective coating shall be Treatment 5 as specified in Section 7-02.3(1)C3A, and shall be constructed of either helically corrugated lock seam or helically corrugated continuous welded steel pipe. When gasketed helically corrugated lock seam steel pipe is called for, Treatment 5 is not required. Welded seam aluminum coated (aluminized) steel pipe shall require metallized aluminum coating inside and out following welding and shall not require Treatment 5.

9-05.10(2) COUPLING BANDS

Coupling bands for steel pipe shall conform to the details shown in WSDOT Standard Plan Nos. B-13a through B-14 and to these Specifications:

Bands shall be made of the same base metal as the pipe and may be two nominal thicknesses lighter than used for the pipe but not thicker than 0.109 inch or lighter than 0.064 inch. Corrugations on the bands shall be the same size and shape as those on the pipe to be connected. Steel bolts and nuts shall meet the requirements of ASTM A 307, and galvanized in accordance with AASHTO M 232. Welds shall develop the full strength of the parent metal.

Type F bands may be used as an Alternate to all other types shown for steel pipe sizes 12 inch to 84 inch diameter inclusive, provided that two annular corrugations are formed on each pipe end to be joined. The end corrugation shall be 2 inches x 1/2 inch and the inside adjacent corrugation shall be 2-2/3 inches x 1/2 inch.

When annular corrugated bands are used to connect lock-seam helically corrugated pipes, the seam shall be welded at the pipe ends prior to recorrugating to prevent unraveling of the seam.

Coupling bands shall be made by the same manufacturer as the steel pipe selected for installation.

9-05.10(3) BASIS FOR ACCEPTANCE

The basis for acceptance of steel pipe will be the same as specified in Section 9-05.0, except when gasketed helically corrugated lock seam steel pipe is called for. A qualification test conducted by the Materials Laboratory will be required for each manufacturer of gasketed helically corrugated lock seam steel pipe. Only those specific pipe sizes and gasket Materials approved under the qualification test will be accepted.

9-05.11 ALUMINUM PIPE

9-05.11(1) GENERAL

Aluminum pipe shall conform to the requirements of Section 9-05.5 for aluminum Culvert pipe, except that the protective coating shall be Treatment 5 as specified in Section 7-02.3(1)C3A, and the pipe shall be constructed of helically corrugated lock seam aluminum pipe.

When gasketed helically corrugated lock seam aluminum pipe is called for, Treatment 5 is not required.

9-05.11(2) COUPLING BANDS

Section 9-05.10(2) shall apply to aluminum pipes, except the band shall not be more than 0.105 inches or less than 0.060 inches in thickness.

Coupling bands shall be made by the same manufacturer as the aluminum pipe selected for installation.

9-05.11(3) BASIS FOR ACCEPTANCE

The basis for acceptance of aluminum pipe will be the same as specified in Section 9-05.0, except when gasketed helically corrugated lock seam aluminum pipe is called for. A qualification test, conducted by the Materials Laboratory, will be required for each manufacturer of gasketed helically corrugated lock seam aluminum pipe. Only those specific pipe sizes and gasket Materials approved under the qualification test will be accepted.
9-05.12 PVC PIPE

Polyvinyl chloride pipe shall conform to the requirements of ASTM D 3034 SDR 35. Joints for PVC pipe shall conform to ASTM D 3212 using restrained gasket conforming to ASTM F 477. Fittings for PVC pipe shall be injection molded tees or factory solvent cemented saddle tees. Normally, all fittings shall be the same Material as the pipe being connected except that fittings using other Materials or constructed with more than one Material may be used subject to the approval of the Engineer. Fittings shall have sufficient strength to withstand handling and load stresses normally encountered.

9-05.13 DUCTILE IRON PIPE

Ductile iron pipe shall conform to ANSI A 21.51 or AWWA C 151 and shall be cement mortar lined, push-on joint, or mechanical joint. The ductile iron pipe shall be Class 50 unless indicated otherwise in the Contract.

Joints for ductile iron pipe shall be rubber gasketed conforming to the requirements of ANSI A 21.11 or AWWA C 111.

Cast iron fittings may be used with ductile iron pipe. Saddles fastened to pipe with external bands will not be acceptable on any new system. Normally, all fittings shall be the same Material as the pipe being connected, except that fittings using other Materials or constructed with more than one Material may be used subject to the approval of the Engineer at least 3 Working Days in advance. Fittings shall have sufficient strength to withstand handling and load stresses normally encountered.

9-05.14 PLASTIC FOAM

Polyethylene plastic foam used in sanitary Sewer and Storm Drain construction shall meet the Federal Specification PPP-C-1752C Type 1, Class 2, (Ethafoam).

9-05.15 RESERVED

9-05.16 RESERVED

9-05.17 ALUMINUM SPIRAL RIB PIPE

9-05.17(1) GENERAL

Aluminum spiral rib pipe shall meet the requirements of AASHTO M 196 and these Specifications. The size, alloy, and protective treatment shall be as indicated in the Contract.

The manufacturer of spiral rib pipe shall furnish to the Engineer the Manufacturer’s certificate of compliance stating that the Materials furnished comply in all respects with these Specifications. The Engineer may require additional information or tests to be performed by the Contractor, at no expense to the Owner.

Unless indicated otherwise in the Contract, spiral rib pipe shall be furnished with pipe ends cut perpendicular to the longitudinal axis of the pipe. Pipe ends shall be cut evenly. Spiral rib pipe shall be fabricated by using a continuous helical lock seam with a seam gasket.

For spiral rib pipe, helical ribs shall project outwardly from the smooth pipe wall and shall be fabricated from a single uniform thickness Material. The ribs shall be 3/4 inch wide by 3/4 inch deep with a nominal spacing of 7-1/2 inches center to center. Pipe shall be fabricated with ends that can be effectively jointed with coupling bands.

For narrow pitch spiral rib pipe, helical ribs shall project outwardly from the smooth pipe wall and shall be fabricated from a single thickness of Material. The ribs shall be .375 inch plus or minus 1/8 inch wide (measured outside to outside) and a minimum of .4375 inch high (measured as the minimum vertical distance from the outside of pipe wall to top surface of the rib). The maximum spacing of ribs shall be 4.80 inches center to center (measured normal to the direction of the ribs). The radius of bend of the metal at the corners of the ribs shall be a minimum of 0.0625 inch with an allowable tolerance of plus or minus 10 percent.

For wide pitch spiral rib pipe, helical ribs shall project outwardly from the smooth pipe wall and shall be fabricated from a single thickness of Material. The ribs shall be 3/4 inch ± 1/8 inch wide (measured outside to outside) and a minimum of 0.95 inch high (measured as the minimum vertical distance from the outside of pipe wall to top surface of the rib). The maximum spacing of ribs shall be 11.75 inches center to center (measured normal to the direction of the ribs). The radius of bend of the metal at the corners of the ribs shall be 0.0625 inch with an allowable tolerance of ± 10 percent.
CONTINUOUS LOCK SEAM PIPE

Pipes fabricated with continuous helical lock seam parallel to the rib may be used for full circle pipe. The lock seam shall be formed in the flat between ribs and shall conform to Section 13.2.1 through 13.2.5 of AASHTO M 196.

BASIS FOR ACCEPTANCE

The basis for acceptance will be a qualification test, conducted by the Materials Laboratory, for each manufacturer of helically corrugated spiral rib, narrow pitch spiral rib or wide pitch spiral rib lock seam pipe. Only those specific pipe sizes and gasket Materials for manufacturers approved under the qualification test will be accepted.

Continuous lock seam pipe shall be sampled and tested in accordance with AASHTO T 249.

COUPLING BANDS

Coupling bands shall be of the same Material as the pipe. Coupling bands and gaskets shall conform to Section 9-05.10(2).

SAFETY BARS FOR CULVERT PIPE

Steel pipe used as safety bars and steel pipe used as sockets shall conform to the requirements of ASTM A 53 for steel pipe. Steel tubing used as safety bars shall conform to ASTM A 500 for steel tubing. Steel plate shall conform to AASHTO M 183. All parts shall be galvanized after fabrication in accordance with AASHTO M 111 and AASHTO M 232.

FLOW CONTROL STRUCTURE

The flow control Structure shall be made from a standard manhole section with diameter as indicated on the Drawings and on Standard Plan No. 270a.

Where surface water is to enter directly through the cover of the flow control Structure, the cast iron frame and grate shall be as shown on Standard Plan No. 264, and the precast slab shall be as shown on Standard Plan Nos. 243a and 243b with opening details to fit the diameter of the chamber. In all other cases, standard ring and cover (see Standard Plan 230.1) shall be used with a precast slab conforming to Standard Plans Series 200 with a 24 inch round opening. Manhole sections, castings and slabs shall meet the requirements of Section 7-05.

The control device and connection shall consist of PVC pipe cross with an orifice, a pipe connection, and shear gate with a galvanized steel chain. The diameters of the control device and connection shall be the same as the diameter of the outlet pipe as indicated on the Drawings. The PVC pipe used for the cross and connection shall meet the specifications of ASTM D 1785 Schedule 40. The PVC Material used for the orifice plate and the shear gate shall be plate Material meeting the Specifications of ASTM D 1784, PVC Class 12454-B. The orifice plate Material shall be 1/4 inch thick; the shear gate Material shall be 1/2 inch thick. The shear gate pin shall be of the same PVC Material as the shear gate. The sheargate chain shall be 12 gauge galvanized steel straight link chain.

ALUMINUM PIPE FOR DETENTION

Aluminum detention pipe shall be helical or annular corrugated aluminum pipe, meeting the requirements of AASHTO M 196 Type I with the gauge as indicated on the Drawings. The end plate and all end plate reinforcement shall be aluminum alloy 6061-T6 structural plate with the thickness as indicated on the Drawings. The aluminum surfaces that are to be in contact with the Portland cement product (Controlled Density Fill (CDF), concrete, grout, mortar) shall first be cleaned with solvent and then painted with two coats of paint. This paint shall be aluminum surface treatment, shall extend a minimum two feet beyond the area of contact with the Portland Cement product. The paint shall conform to Federal Specification TT-P-645 (Primer, Paint, Zinc Chromate, Alkyd Vehicle). Coupling bands for corrugated aluminum detention pipes shall be Type "D" per WSDOT Standard Plan B-13a.

See Section 7-16.2 for additional requirements.

STEEL PIPE FOR DETENTION

Steel detention pipe shall be galvanized helical or annular corrugated steel pipe, meeting the requirements of AASHTO Designation M36 Type 1, asphalt coated to requirements of AASHTO Designation M190 Type A with the gauge as indicated on the Drawings. The end plate and all end plate reinforcement shall
be structural steel plate of the type and thickness as designated on the Drawings. Coupling bands for steel detention pipes shall be Type “D” per WSDOT Standard Plan B-13a.

See Section 7-16.2 for additional requirements.

9-05.22 GEOTEXTILES

9-05.22(1) GEOTEXTILE AND THREAD FOR SEWING

The material shall be a geotextile consisting only of long chain polymeric fibers or yarns formed into a stable network such that the fibers or yarns retain their position relative to each other during handling, placement, and design service life. At least 95 percent by weight of the material shall be polyolefins or polyesters. The material shall be free from defects or tears. The geotextile shall also be free of any treatment or coating which might adversely alter its hydraulic or physical properties after installation. The geotextile shall conform to the properties as indicated in Tables 1 through 6 for each use specified on the Drawings. Specifically, the geotextile uses included in this section and their associated tables of properties are as follows:

<table>
<thead>
<tr>
<th>Geotextile Application</th>
<th>Applicable Property Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Drainage, Low Survivability, Classes A, B, and C</td>
<td>Tables 1 and 2</td>
</tr>
<tr>
<td>Underground Drainage, Moderate Survivability, Classes A, B, and C</td>
<td>Tables 1 and 2</td>
</tr>
<tr>
<td>Separation</td>
<td>Table 3</td>
</tr>
<tr>
<td>Soil Stabilization</td>
<td>Table 3</td>
</tr>
<tr>
<td>Permanent Erosion Control, Moderate Survivability, Classes A, B, and C</td>
<td>Tables 4 and 5</td>
</tr>
<tr>
<td>Permanent Erosion Control, High Survivability, Classes A, B, and C</td>
<td>Tables 4 and 5</td>
</tr>
<tr>
<td>Ditch Lining</td>
<td>Table 4</td>
</tr>
<tr>
<td>Temporary Silt Fence</td>
<td>Table 6</td>
</tr>
</tbody>
</table>

Thread used for sewing shall consist of high strength polypropylene, polyester, or polyamide. Nylon threads will not be allowed. The thread used to sew permanent erosion control geotextiles must also be resistant to ultraviolet radiation. The thread shall be of contrasting color to that of the geotextile itself.

9-05.22(2) GEOTEXTILE PROPERTIES

TABLE 1
Geotextile for underground drainage strength properties for survivability.

<table>
<thead>
<tr>
<th>Geotextile Property</th>
<th>Test Method</th>
<th>Low Survivability Woven/Nonwoven</th>
<th>Moderate Survivability Woven/Nonwoven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Tensile Strength, min. in machine and x-machine directions</td>
<td>ASTM D 4632</td>
<td>180 lbs. / 115 lbs. min.,</td>
<td>250 lbs. / 160 lbs. Min</td>
</tr>
<tr>
<td>Grab Failure Strain, in machine and x-machine directions</td>
<td>ASTM D 4632</td>
<td><50% / >50%</td>
<td><50% / >50%</td>
</tr>
<tr>
<td>Seam Breaking Strength</td>
<td>ASTM D 4632</td>
<td>160 lbs. / 100 lbs. min.</td>
<td>220 lbs. / 140 lbs. min.</td>
</tr>
<tr>
<td>Puncture Resistance</td>
<td>ASTM D 4833</td>
<td>67 lbs. / 40 lbs. min.</td>
<td>80 lbs. / 50 lbs. min.</td>
</tr>
<tr>
<td>Tear Strength, min. in machine and x-machine directions</td>
<td>ASTM D 4533</td>
<td>67 lbs. / 40 lbs. min.</td>
<td>80 lbs. / 50 lbs. Min.</td>
</tr>
<tr>
<td>Ultraviolet (UV) Radiation stability</td>
<td>ASTM D 4355</td>
<td>50% strength retained min.,</td>
<td>50% strength retained min.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>after 500 hrs. in weatherometer</td>
<td>after 500 hrs. in weatherometer</td>
</tr>
</tbody>
</table>

See Notes after Table 6.
TABLE 2
Geotextile for underground drainage filtration properties.

<table>
<thead>
<tr>
<th>Geotextile Property</th>
<th>Test Method ²</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>ASTM D 4751</td>
<td>.43 mm max. (No. 40 sieve)</td>
<td>.25 mm max. (No. 60 sieve)</td>
<td>.18 mm max. (No. 80 sieve)</td>
</tr>
<tr>
<td>Water Permittivity</td>
<td>ASTM D 4491</td>
<td>.5 sec⁻¹ min.</td>
<td>4 sec⁻¹ min.</td>
<td>.3 sec⁻¹ min.</td>
</tr>
</tbody>
</table>

TABLE 3
Geotextile for separation or soil stabilization.

<table>
<thead>
<tr>
<th>Geotextile Property</th>
<th>Test Method ²</th>
<th>Separation Woven/Nonwoven</th>
<th>Soil Stabilization Woven/Nonwoven</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>ASTM D 4751</td>
<td>.60 mm max. (No. 30 sieve)</td>
<td>.43 mm max. (No. 40 sieve)</td>
</tr>
<tr>
<td>Water Permittivity</td>
<td>ASTM D 4491</td>
<td>.02 sec⁻¹ min.</td>
<td>.25 sec⁻¹ min.</td>
</tr>
<tr>
<td>Grab Tensile Strength, min. in machine and x-machine direction</td>
<td>ASTM D 4632</td>
<td>250 lbs./160 lbs. min.</td>
<td>315 lbs./200 lbs. min.</td>
</tr>
<tr>
<td>Grab Failure Strain, min. in machine and x-machine direction</td>
<td>ASTM D 4632</td>
<td><50% / /50%</td>
<td><50% / /50%</td>
</tr>
<tr>
<td>Seam Breaking Strength</td>
<td>ASTM D 4632 ³</td>
<td>220 lbs./140 lbs. min.</td>
<td>270 lbs./180 lbs. min.</td>
</tr>
<tr>
<td>Puncture Resistance</td>
<td>ASTM D 4833</td>
<td>80 lbs. / 50 lbs. min.</td>
<td>112 lbs./79 lbs. min.</td>
</tr>
<tr>
<td>Tear Strength, min. in machine and x-machine direction</td>
<td>ASTM D 4533</td>
<td>80 lbs./50 lbs. min.</td>
<td>112 lbs./79 lbs. min.</td>
</tr>
<tr>
<td>Ultraviolet (UV) Radiation stability</td>
<td>ASTM D 4355</td>
<td>50% strength retained min., after 500 hrs. in weatherometer</td>
<td>50% strength retained min., after 500 hrs. in weatherometer</td>
</tr>
</tbody>
</table>

See Notes after Table 6.
TABLE 4
Geotextile for permanent erosion and ditch lining.

<table>
<thead>
<tr>
<th>Geotextile Property</th>
<th>Test Method</th>
<th>Permanent Erosion Control</th>
<th>Woven / Nonwoven</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>ASTM D 4751</td>
<td>See Table 5</td>
<td>.60 mm max (No. 30 sieve)</td>
</tr>
<tr>
<td>Water Permittivity</td>
<td>ASTM D 4491</td>
<td>See Table 5</td>
<td>.02 sec⁻¹ min.</td>
</tr>
<tr>
<td>Grab Tensile Strength, min. in machine and x-machine direction</td>
<td>ASTM D 4632</td>
<td>250 lbs. / 160 lbs. min</td>
<td>250 lbs. / 160 lbs. min</td>
</tr>
<tr>
<td>Grab Failure Strain, in machine and x-machine direction</td>
<td>ASTM D 4632</td>
<td>15%-50% / > 50%</td>
<td><50% / > 50%</td>
</tr>
<tr>
<td>Seam Breaking Strength</td>
<td>ASTM D 4632²</td>
<td>220 lbs. / 140 lbs. min.</td>
<td>220 lbs. / 140 lbs. min.</td>
</tr>
<tr>
<td>Burst Strength</td>
<td>ASTM D 3786</td>
<td>400 psi / 190 psi min.</td>
<td>500 psi / 320 psi min.</td>
</tr>
<tr>
<td>Puncture Resistance</td>
<td>ASTM D 4833</td>
<td>80 lbs. / 50 lbs. min.</td>
<td>80 lbs. / 50 lbs. min.</td>
</tr>
<tr>
<td>Tear Strength, min. in machine and x-machine direction</td>
<td>ASTM D 4533</td>
<td>80 lbs. / 50 lbs. min.</td>
<td>80 lbs. / 50 lbs. min.</td>
</tr>
<tr>
<td>Ultraviolet (UV) Radiation stability</td>
<td>ASTM D 4355</td>
<td>70% strength retained min., after 500 hrs. in weatherometer</td>
<td>70% strength retained min., after 500 hrs. in weatherometer</td>
</tr>
</tbody>
</table>

TABLE 5
Filtration properties for geotextile for permanent erosion control.

<table>
<thead>
<tr>
<th>Geotextile Property</th>
<th>Test Method</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>ASTM D 4751</td>
<td>.43 mm max. (#40 sieve)</td>
<td>.25 mm max. (#60 sieve)</td>
<td>.22 mm max. (#70 sieve)</td>
</tr>
<tr>
<td>Water Permittivity</td>
<td>ASTM D 4491</td>
<td>.7 sec⁻¹ min.</td>
<td>.4 sec⁻¹ min.</td>
<td>.2 sec⁻¹ min.</td>
</tr>
</tbody>
</table>

See Notes after Table 6.
TABLE 6
Geotextile for temporary silt fence.

<table>
<thead>
<tr>
<th>Geotextile Property</th>
<th>Test Method 2</th>
<th>Unsupported Between Posts</th>
<th>Supported Between Posts with Wire or Polymeric Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOS</td>
<td>ASTM D 4751</td>
<td>.60 mm max. for slit film wovens (No. 30 sieve)</td>
<td>.60 mm max. for slit film wovens (No. 30 sieve)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.30 mm max. for all other geotextile types (No. 50 sieve)</td>
<td>.30 mm max. for all other geotextile types (No. 50 sieve)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.15 mm min. (No. 100 sieve)</td>
<td>.15 mm min. (No. 100 sieve)</td>
</tr>
<tr>
<td>Water Permittivity</td>
<td>ASTM D 4491</td>
<td>.02 sec^{-1} min.</td>
<td>.02 sec^{-1} min.</td>
</tr>
<tr>
<td>Grab Tensile Strength, min. in machine and x-machine direction</td>
<td>ASTM D 4632</td>
<td>180 lbs. min. in machine direction, 100 lbs. min. in x-machine direction</td>
<td>100 lbs. min.</td>
</tr>
<tr>
<td>Grab Failure Strain, min. in machine direction only</td>
<td>ASTM D 4632</td>
<td>30% max. at 180 lbs. or more</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet (UV) Radiation Stability</td>
<td>ASTM D 4355</td>
<td>70% Strength retained min., after 500 hrs. in weatherometer</td>
<td>70% Strength retained min., after 500 hrs. in weatherometer</td>
</tr>
</tbody>
</table>

Notes

1. All geotextile properties in Tables 1 through 6 are minimum average roll values (i.e., the test result for any sampled roll in a lot shall meet or exceed the values shown in the table).
2. The test procedures used are essentially in conformance with the most recently approved ASTM geotextile test procedures, except for geotextile sampling and specimen conditioning, which are in accordance with WSDOT Test Methods 914 and 915, respectively.
3. With seam located in the center of 8 inch long specimen oriented parallel to grip faces.

9-05.22(3) AGGREGATE CUSHION OF PERMANENT EROSION CONTROL GEOTEXTILE

Aggregate cushion for permanent erosion control geotextile, Class A shall meet the requirements of Section 9-03.9(2). Aggregate cushion for permanent erosion control geotextile, Class B or C shall meet the requirements of Section 9-03.9(3) and 9-03.9(2).

9-05.22(4) GEOTEXTILE APPROVAL AND ACCEPTANCE

9-05.22(4)A SOURCE APPROVAL

The Contractor shall submit to the Engineer the following information regarding each geotextile proposed for use:

- Manufacturer’s name and current address, Full product name, geotextile structure, including fiber/yarn type, and proposed geotextile use(s). If the geotextile source has not been previously evaluated, a sample of each proposed geotextile shall be submitted to the SPU Materials Laboratory for evaluation. After the sample and required information for each geotextile type have arrived at the SPU Materials Laboratory, a maximum of 14 calendar Days will be required for this testing. Source approval will be based on conformance to the applicable values from Tables 1 through 6 in Section 9-05.22.

Source approval shall not be the basis of acceptance of specific lots of material unless the lot sampled can be clearly identified and the number of samples tested and approved meet the requirements of WSDOT Test Method 914.

9-05.22(4)B GEOTEXTILE SAMPLES FOR SOURCE APPROVAL

Each sample shall have minimum dimensions of 1.5 meters by the full roll width of the geotextile. A minimum of 6 square yards of geotextile shall be submitted to the Engineer for testing. The geotextile machine direction shall be marked clearly on each sample submitted for testing. The machine direction is defined as the direction perpendicular...
to the axis of the geotextile roll. Source approval for temporary silt fences will be by Manufacturer’s Certificate of Compliance as described under “Acceptance Samples.”

The geotextile samples shall be cut from the geotextile roll with scissors, sharp knife, or other suitable method which produces a smooth geotextile edge and does not cause geotextile ripping or tearing. The samples shall not be taken from the outer wrap of the geotextile roll nor the inner wrap of the core.

9-05.22(4)C ACCEPTANCE SAMPLES

Samples will be randomly taken by the Engineer at the job site to confirm that the geotextile meets the property values specified.

Approval will be based on testing of samples from each lot. A “lot” shall be defined for the purposes of this Specification as all geotextile rolls within the consignment (i.e., all rolls sent to the Project Site) which were produced by the same manufacturer during a continuous period of production at the same manufacturing plant and have the same product name. After the samples have arrived at the SPU Materials Laboratory, a maximum of 14 calendar Days will be required for this testing. If the results of the testing show that a geotextile lot, as defined, does not meet the properties required for the specified use as indicated in Tables 1 through 6 in Section 9-33.2, the roll or rolls which were sampled will be rejected. Two additional rolls for each roll tested which failed from the lot previously tested will then be selected at random by the Engineer for sampling and retesting. If the retesting shows that any of the additional rolls tested do not meet the required properties, the entire lot will be rejected. If the test results from all the rolls retested meet the required properties, the entire lot minus the roll(s) which failed will be accepted. All geotextile which has defects, deterioration, or damage, as determined by the Engineer, will also be rejected. All rejected geotextile shall be replaced at no expense to the Owner.

9-05.22(4)D ACCEPTANCE BY CERTIFICATE OF COMPLIANCE

When the quantities of geotextile proposed for use in each geotextile application are less than or equal to the following amounts, acceptance shall be by Manufacturer’s Certificate of Compliance:

<table>
<thead>
<tr>
<th>Application</th>
<th>Geotextile Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Drainage</td>
<td>600 sq. yards</td>
</tr>
<tr>
<td>Soil Stabilization and Separation</td>
<td>1,800 sq. yards</td>
</tr>
<tr>
<td>Permanent Erosion Control</td>
<td>1,200 sq. yards</td>
</tr>
<tr>
<td>Temporary Silt Fence</td>
<td>All quantities</td>
</tr>
</tbody>
</table>

The Manufacturer’s Certificate of Compliance shall include the following information about each geotextile roll to be used:

- Manufacturer’s name and current address,
- Full product name,
- Geotextile structure, including fiber/yarn type,
- Geotextile roll number,
- Proposed geotextile use(s), and
- Certified test results.

9-05.22(4)E APPROVAL OF SEAMS

If the geotextile seams are to be sewn in the field, the Contractor shall provide a section of sewn seam which can be sampled by the Engineer before the geotextile is installed. The seam sewn for sampling shall be sewn using the same Equipment and procedures as are to be used to sew the production seams. If production seams are to be sewn in both the machine and cross-machine directions, the Contractor must provide sewn seams for sampling which are oriented in both the machine and cross-machine directions. The seams sewn for sampling must be at least yards in length in each geotextile direction. If the seams are sewn in the factory, the Engineer will obtain samples of the factory seam at random from any of the rolls to be used. The seam assembly description shall be submitted by the Contractor to the Engineer and are to be included with the seam sample obtained for testing. This description shall include the seam type, stitch type, sewing thread type(s), and stitch density.
9-05.23 CEMENT SLURRY - ABANDONING PIPE AND FILLING ANNULAR SPACE BETWEEN 2 PIPES

Cement slurry used to fill the annular space between an inner and outer pipe shall be pumpable, flowable, and shall completely fill the annular space. Materials shall have the following properties:

<table>
<thead>
<tr>
<th>Material Reference</th>
<th>Material Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement, ASTM C 150</td>
<td>Type I/II</td>
</tr>
<tr>
<td>Slurry Density, ASTM C 138</td>
<td>65 pcf (minimum)</td>
</tr>
<tr>
<td>Foamed Slurry Density, ASTM C 138</td>
<td>45 pcf (minimum)</td>
</tr>
<tr>
<td>Water / Cement Ratio</td>
<td>0.90 (maximum)</td>
</tr>
<tr>
<td>Flow, ASTM C 939</td>
<td>18 seconds (maximum)</td>
</tr>
<tr>
<td>Shrinkage, ASTM C 827</td>
<td>non-shrink</td>
</tr>
<tr>
<td>Bleeding, ASTM C 232</td>
<td>no bleed</td>
</tr>
<tr>
<td>Set Time, ASTM C 403</td>
<td>3 - 6 hours (^1)</td>
</tr>
<tr>
<td>Compressive strength</td>
<td></td>
</tr>
<tr>
<td>ASTM C 403 @ 24 hours</td>
<td>75 psi (minimum)</td>
</tr>
<tr>
<td>ASTM C 495 @ 7 Days</td>
<td>150 psi (minimum)</td>
</tr>
<tr>
<td>ASTM C 495 @ 28 Days</td>
<td>250 psi (minimum)</td>
</tr>
</tbody>
</table>

\(^1\) Set time depends on temperature and site conditions.

SECTION 9-06 STRUCTURAL STEEL AND RELATED MATERIALS

9-06.1 STRUCTURAL CARBON STEEL

Structural carbon steel shall conform to the requirements of AASHTO M 183, Structural Steel.

9-06.2 STRUCTURAL LOW ALLOY STEEL

Structural low alloy steel shall conform to the requirements of AASHTO M 223 or M 222 as specified in the Plans.

9-06.3 STRUCTURAL HIGH STRENGTH STEEL

Structural high strength steel shall be high yield strength, quenched and tempered structural steel conforming to the requirements of AASHTO M 244.

9-06.4 RESERVED

9-06.5 BOLTS

9-06.5(1) UNFINISHED BOLTS

Unfinished bolts (ordinary machine bolts) shall conform to the specification requirements of ASTM A 307 Grade A or B. Nuts shall comply with ASTM A 563 Grade A requirements. Washers, unless otherwise specified, shall meet ASTM F 844 Specifications.

The Contractor shall submit a Manufacturer’s Certificate of Compliance for the bolts, nuts, and washers prior to installing any of them.

9-06.5(2) RESERVED

9-06.5(3) HIGH STRENGTH BOLTS

High strength bolts for structural steel joints shall conform to the requirements of AASHTO M 164 or M 253 Type 1, 2, or 3.

Bolts conforming to AASHTO M 164 that are galvanized in accordance with AASHTO M 232 shall be tested for embrittlement after galvanization. Test for embrittlement shall be in accordance with ASTM F 606, Section 7. Bolts conforming to AASHTO M 253 shall not be galvanized. AASHTO M 253 Type 1 and 2 bolts shall
be painted with two coats of zinc rich paint, formula A-9-73, consisting of a minimum dry film thickness of 2 mils per coat.

Unpainted and nongalvanized bolts shall conform to AASHTO M 164 and M 253 Type 3.

Nuts for high strength bolts shall meet the following requirements:

<table>
<thead>
<tr>
<th>AASHTO M 164 Bolts</th>
<th>AASHTO M 291 Grade C, C3, HD, DH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Type 1</td>
<td>AASHTO M 291 Grade C3 and DH3</td>
</tr>
<tr>
<td>AASHTO M 292 Grade 2H</td>
<td>AASHTO M 291 Grade DH</td>
</tr>
<tr>
<td>Black weathering Type 3</td>
<td>AASHTO M 292 Grade DH3</td>
</tr>
<tr>
<td>Galvanized Type 1</td>
<td>AASHTO M 292 Grade 2H</td>
</tr>
<tr>
<td>AASHTO M 253 Bolts</td>
<td></td>
</tr>
<tr>
<td>Black Type 1 and 2</td>
<td>AASHTO M 291 Grade DH, DH3</td>
</tr>
<tr>
<td>Black weathering Type 3</td>
<td>AASHTO M 292 Grade 2H</td>
</tr>
<tr>
<td>Black weathering Type 3</td>
<td>AASHTO M 291 Grade DH3</td>
</tr>
</tbody>
</table>

Nuts that are to be galvanized shall be tapped oversized the minimum required for proper assembly. The amount of overtap shall be such that the nut assembles freely on the bolt in the coated condition and shall meet the mechanical requirements of AASHTO M 291 and the rotational capacity test specified in AASHTO M 164. The overlapping requirements of AASHTO M 291 Section 7.4 shall be considered maximum values.

Galvanized nuts shall be lubricated in accordance with AASHTO M 291 including supplementary requirement S2. Documentation shall include the name, method of application, and dilution of the lubricant applied to the nuts.

Washers for AASHTO M 164 Type 1 and 3 bolts, and AASHTO M 253 Type 1, 2, and 3 bolts shall meet the requirements of AASHTO M 293. The surface condition and weathering characteristics of the washers shall be the same as for the bolts being specified.

Direct Tension Indicators shall conform to the requirements of ASTM F 959 and may be used with either AASHTO M 164 or M 253 bolts. Direct tension indicators shall be galvanized by mechanical deposition in accordance with AASHTO M 298 class 55. Hot dip galvanizing will not be allowed.

All bolts, nuts, and direct tension indicators shall be marked and identified as required in the pertinent Specifications.

Lock-pin and collar fasteners which meet the Materials, manufacturing, and chemical composition requirements of AASHTO M 164 or AASHTO M 253, and which meet the mechanical property requirements of the same specification in full size tests, and which have a body diameter and bearing areas under lock-pin head and collar not less than those provided by a bolt and nut of the same nominal size may be used. The Contractor shall submit a detailed installation procedure to the Engineer for approval. Should approval to use a lock-pin and collar fastener be given by the Engineer, it will be given prior to use on these types of fasteners.

The Contractor shall provide Manufacturer’s Certificate of Compliance for all bolts, nuts, washers, and load indicators. The Manufacturer’s Certificate of Compliance shall include certified mill test reports and test reports performed on the finished bolt confirming that all of the Materials provided meet the requirements of the applicable AASHTO or ASTM specification. The documentation shall also include the name and address of the ASTM accredited test Laboratory, the date of testing, the lot identification of the bolts and nuts, and coating thickness for galvanized bolts and nuts. Shipping containers (not lids) shall be marked with the lot identification of the item contained therein.

Bolts shall be sampled prior to incorporating into a Structure. For the purposes of selecting samples, a lot of bolts shall be the quantity of bolts of the same nominal diameter and same nominal length in a consignment shipped to the Project Site. The minimum number of samples from each lot shall be as follows:
Lot Size & Sample Size

<table>
<thead>
<tr>
<th>Lot Size</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 50</td>
<td>1</td>
</tr>
<tr>
<td>51 to 150</td>
<td>4</td>
</tr>
<tr>
<td>151 to 1,200</td>
<td>6</td>
</tr>
<tr>
<td>1,201 to 10,000</td>
<td>10</td>
</tr>
<tr>
<td>10,001 to 35,000</td>
<td>16</td>
</tr>
<tr>
<td>35,001 and over</td>
<td>24</td>
</tr>
</tbody>
</table>

*Manufacturer's Certificate of Compliance — samples not required.
1 If bolts are galvanized, increase the sample size by 1.5 times the table value for the number of bolts being sampled.
2 Nuts, washers, and load indicator devices shall be sampled at the same frequency as the bolts.

All testing of bolts, nuts, washers, and load indicating devices shall be performed on specimens as they are to be installed.

All samples shall include a Manufacturer's Certificate of Compliance for each lot of bolts provided as defined in Section 1-06.3.

9-06.5(4) ANCHOR BOLTS

Anchor bolts shall meet the requirements of ASTM A 449. Galvanized anchor bolts shall be tested for embrittlement after galvanization in accordance with ASTM A 143. For galvanized anchor bolts with a length less than five times the nominal bolt diameter, the bolts shall be tested for embrittlement in accordance with ASTM F 606 Section 7.

Nuts for ASTM A 449 black anchor bolts shall conform to AASHTO M 291, Grade C. Nuts for ASTM A 449 galvanized bolts shall conform to AASHTO M 291, Grade DH and shall conform to the lubrication requirements of Section 9-05.4(3). Nuts for AASHTO M 164 black anchor bolts shall conform to AASHTO M 291, Grade C, C3, DH, and DH3 or AASHTO M 292, Grade 2H. Nuts for AASHTO M 164 galvanized anchor bolts shall conform to AASHTO M 291, Grade DH or AASHTO M 292, Grade 2H. Washers for ASTM A 449 anchor bolts shall conform to AASHTO M 293. Washers for AASHTO M 164 anchor bolts shall conform to ASTM F 436.

The bolts shall be tested by the manufacturer in accordance with the requirements of the pertinent specification and as specified in these Specifications. Anchor bolts, nuts, and washers shall be inspected prior to shipping to the Project Site. The Contractor shall submit to the Engineer for approval a Manufacturer's Certificate of Compliance for the anchor bolts, nuts, and washers, as defined in Section 1-06.3. If the Engineer deems it appropriate, the Contractor shall provide a sample of the anchor bolt, nut, and washer for testing.

All bolts, nuts, and washers shall be marked and identified as required in the pertinent specification.

9-06.5(5) RESERVED

9-06.6 RESERVED

9-06.7 RESERVED

9-06.8 STEEL CASTINGS

Steel castings shall conform to the requirements of AASHTO M 103, Mild to Medium Strength Carbon-Steel Castings for General Application, grade 70-36, unless otherwise designated in the Plans or in the Special Provisions.

9-06.9 GRAY IRON CASTINGS

Gray iron castings shall conform to the requirements of AASHTO M 105. The class of castings to be furnished shall be that designated on the Drawings or in the Project Manual.

9-06.10 MALLEABLE IRON CASTINGS

Malleable iron castings shall conform to the requirements of ASTM A 47.
9-06.11 STEEL FORGINGS AND STEEL SHAFTING
Steel forgings shall conform to the requirements of AASHTO M 102. The classes of forgings to be furnished shall be those specified on the Drawings or in the Project Manual.

Steel shafting shall conform to the requirements of AASHTO M 169, Grade Designation 1016 to 1030 inclusive, unless otherwise specified.

9-06.12 BRONZE CASTINGS
Bronze castings shall conform to the requirements of AASHTO M 107, Bronze Castings for Bridges and Turntables.

9-06.13 COPPER SEALS
Copper sheets for seals shall conform to the requirements of AASHTO M 138. They shall be UNS C12500, light cold rolled, and furnished in flat sheets each not less than 0.018 inch in thickness.

All splices or joints shall be carefully brazed or soldered to produce a continuous watertight seal for the full length of each unit.

9-06.14 DUCTILE IRON CASTINGS
Ductile iron castings shall conform to the requirements of ASTM A 536, Grade 80-55-06, unless otherwise specified on the Drawings or in the Project Manual.

9-06.15 WELDED SHEAR CONNECTORS
Welded shear studs shall be made from cold drawn bar stock conforming to the requirements of AASHTO M 169, Grades 1010 through 1020, inclusive, either semi-killed or killed deoxidation.

The Material shall conform to the following mechanical properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>60,000 psi min.</td>
</tr>
<tr>
<td>Yield Strength</td>
<td>50,000 psi min.</td>
</tr>
<tr>
<td>Elongation</td>
<td>20% min.</td>
</tr>
<tr>
<td>Reduction of Area</td>
<td>50% min.</td>
</tr>
</tbody>
</table>

Mechanical properties shall be determined in accordance with AASHTO Methods and Definitions T 244.

At the manufacturer’s option, mechanical properties of the studs shall be determined by testing either the steel after cold finishing, or the full diameter finished studs.

9-06.16 ROADSIDE SIGN STRUCTURES
All bolts shall conform to AASHTO M 293. Washers for bolts shall be per AASHTO M 293.

Posts for single post sign structures shall meet the requirements of ASTM A 500 Grade B or ASTM A 53 Grade B.

Posts for multiple post sign structures shall meet the requirements of AASHTO M 183. Posts meeting the requirements of AASHTO M 222 or AASHTO M 223, Grade 50 may be used as an acceptable alternate to the AASHTO M 183 posts. All steel not otherwise specified shall conform to AASHTO M 183.

Triangular base stiffeners for one-directional multi-post sign posts shall meet the requirements of AASHTO M 222 or AASHTO M 223, Grade 50.

Base connectors for multiple directional steel breakaway posts shall conform to the following:

<table>
<thead>
<tr>
<th>Bracket</th>
<th>Aluminum Alloy 6061 T-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosses for Type 2B Brackets</td>
<td>ASTM A 582</td>
</tr>
<tr>
<td>Coupling Bolts</td>
<td>AASHTO M 164</td>
</tr>
<tr>
<td>Anchor Bolts</td>
<td>Type 304 stainless steel for threaded portion, AISI 1038 steel rod and AISI 1008 coil for cage portion.</td>
</tr>
</tbody>
</table>

Anchor couplings for multiple directional steel breakaway posts shall have a tensile breaking strength range as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2A</td>
<td>17,000 to 21,000 lb.</td>
</tr>
<tr>
<td>Type 2B</td>
<td>47,000 to 57,000 lb.</td>
</tr>
</tbody>
</table>
For multi-directional breakaway base connectors, shims shall be fabricated from pregalvanized sheet steel. For one-directional breakaway base connectors, single post or multi-post, shims shall be fabricated from brass conforming to ASTM B 36.

9-06.17 RESERVED

9-06.18 METAL BRIDGE RAILING

Metal bridge railing shall conform to the type and Material Specifications set forth in the Drawings.

Section 8, part (b) of the Aluminum Association Standard Specifications for Aluminum Railing Posts Alloy A 344-T4 is hereby revised to provide that no X-ray inspection will be required after a foundry technique has been established for each mold which ensures production of castings which are free from harmful defects. Inspection for approval of castings will be made by the Engineer after the finished castings have been anodized as noted on the Drawings.

Welding of aluminum shall be in accordance with Section 9-28.15(3).

9-06.19 RESERVED

9-06.20 RESERVED

9-06.21 RESERVED

9-06.22 BOLTS, WASHERS, AND OTHER HARDWARE

Ordinary machine bolts and flat head bolts shall be made from commercial bolt stock meeting the Specifications of ASTM A 307, and shall be grade A. Drift bolts and dowels may be either wrought iron or medium steel. Washers may be cast iron or malleable iron or may be cut from medium steel or wrought iron plate.

All bolts and other hardware which are to be galvanized and which require bending or shaping shall be hot forged to the required shape before galvanizing. Cold bending of such Material will not be permitted because of the tendency toward embrittlement during the galvanizing process. Galvanizing shall be in accordance with AASHTO M 232.

Split rings for log cribbing of 4 inches inside diameter shall be manufactured from hot rolled, low-carbon steel conforming to ASTM A 711 AISI, Grade 1015. Each ring shall form a true circle with the principle axis of the cross-section of the ring metal parallel to the geometric axis of the ring. The thickness of the metal section shall be 0.195 inch plus or minus 0.010 inch and the section shall be beveled from the central portion toward the edges to a thickness of 0.145 inch plus or minus 0.010 inch. It shall be cut through in one place in its circumference to form a tongue and slot. Split ring connectors shall be galvanized in accordance with AASHTO M 232.

Spike-grid timber connectors shall be manufactured according to ASTM A 47 for malleable iron castings. They shall consist of 4 rows of opposing spikes forming a 4-1/8 inch square grid with 16 teeth which are held in place by fillets which are diamond shaped in cross-section.

Nails shall be round wire of standard form. Spikes shall be wire spikes or boat spikes, as specified on the Drawings. Bolts, dowels, washers, and other hardware, including nails, shall be black or galvanized as specified on the Drawings, but if not so specified shall be galvanized when used in treated timber Structures.

SECTION 9-07 REINFORCING STEEL

9-07 REINFORCING STEEL

9-07.1 GENERAL

Deformed steel bar shall be free from loose mill scale, dirt, grease, or other defects affecting the strength of bond with concrete. Deformed steel bar coated with rust shall be vigorously wire brushed clean. Size numbers shall be taken to represent the diameter of the bar in 1/8 inch units, except where standard wire gauge sizes are indicated in the Contract.

9-07.1(1) ACCEPTANCE BY MANUFACTURER’S CERTIFICATION

Reinforcing steel may be accepted by the Engineer based on the Manufacturer’s Certificate of Compliance.
9-07.1(2) BENDING

Steel reinforcing bars shall be cut and bent by careful and competent workmen. They shall be bent cold to templates, which shall not vary appreciably from the shape and dimension shown in the Drawings.

Hooks and bends of steel reinforcing bars shall be bent to the following inside diameters unless shown otherwise on the Drawings:

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Stirrups and Ties</th>
<th>All Other Bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 3</td>
<td>1 1/2"</td>
<td>6 bar diameters</td>
</tr>
<tr>
<td>No. 4</td>
<td>2"</td>
<td>6 bar diameters</td>
</tr>
<tr>
<td>No. 5</td>
<td>2 1/2"</td>
<td>6 bar diameters</td>
</tr>
<tr>
<td>No. 6</td>
<td>4 1/2"</td>
<td>6 bar diameters</td>
</tr>
<tr>
<td>No. 7</td>
<td>5 ¾"</td>
<td>6 bar diameters</td>
</tr>
<tr>
<td>No. 8</td>
<td>6"</td>
<td>6 bar diameters</td>
</tr>
<tr>
<td>No. 9 through No. 11</td>
<td></td>
<td>8 bar diameters</td>
</tr>
<tr>
<td>No. 14 through No. 18</td>
<td></td>
<td>10 bar diameters</td>
</tr>
</tbody>
</table>

The supplementary requirements of AASHTO M 31 for bend tests shall apply to size No. 14 and No. 18 steel reinforcing bars which have hooks or bends.

9-07.1(3) LENGTHS

Net lengths of bent bars shown in the “LENGTH” column of the bar list on the Drawings are rounded to the nearest inch. Net length is the length of bar after all bend deductions are subtracted from the gross length.

The following bend deductions per 90 degrees bend have been subtracted from the gross length:

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Stirrups and Ties</th>
<th>All Other Bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 3</td>
<td>¾"</td>
<td>1"</td>
</tr>
<tr>
<td>No. 4</td>
<td>1"</td>
<td>1 ¼"</td>
</tr>
<tr>
<td>No. 5</td>
<td>1 1/4"</td>
<td>1 ½"</td>
</tr>
<tr>
<td>No. 6</td>
<td>1 7/8"</td>
<td>1 7/8"</td>
</tr>
<tr>
<td>No. 7</td>
<td>2 1/4"</td>
<td>2 ¼"</td>
</tr>
<tr>
<td>No. 8</td>
<td>2 ½"</td>
<td>2 ½"</td>
</tr>
<tr>
<td>No. 9</td>
<td>3 3/8"</td>
<td>3 ¾"</td>
</tr>
<tr>
<td>No. 10</td>
<td></td>
<td>4 1/8"</td>
</tr>
<tr>
<td>No. 11</td>
<td></td>
<td>5 ¾"</td>
</tr>
<tr>
<td>No. 14</td>
<td></td>
<td>7 5/8"</td>
</tr>
</tbody>
</table>

For bends other than 90 degrees, a direct proportion of these deductions will be used. The bend deductions listed will apply, except where bending radii are shown on the Drawings.

For standard hooks on the ends of bars, the following hook lengths, in addition to the out to out detailed dimension, have been provided:
9-07.1(4) INSPECTION

The provisions of Section 6-03.3(1) shall apply to the inspection of rolling and fabricating reinforcing steel.

9-07.2 DEFORMED STEEL BARS

Deformed steel bars for concrete reinforcement shall conform to the requirements of AASHTO M 31, Deformed and Plain Billet Steel Bars for Concrete Reinforcement, Grade 60, or ASTM A 706, Low-Alloy Steel, Deformed Bars for Concrete Reinforcement. However, in computing the ultimate unit tensile stress from test data, the area may be corrected for mass per linear foot of the bar within the weight tolerances listed. No such correction for mass shall be used in calculating the yield stress; the nominal area of the bar, as given in Table 1 of AASHTO M 31 or ASTM A 706, shall be used in this computation.

Deformed steel bars are referred to in the Drawings and Specifications by number: for example, No. 3, No. 4, No. 5, etc.

9-07.3 EPOXY-COATED STEEL REINFORCING BARS

Epoxy-coated rebar shall be coated according to AASHTO M 284 with the additional following modifications:

1. The list of steel reinforcing bars acceptable for coating shall include ASTM A 706.
2. The Contractor shall furnish a written certification that properly identifies the material, the number of each batch of coating material used, quantity represented, date of manufacture, name and address of manufacturer, and a statement that the supplied coating material meets the requirements of AASHTO M 284.
3. The Contractor shall supply to the Engineer a representative sample of 8 ounces of the coating material from each batch. The sample shall be packaged in an airtight container and identified by batch number.
4. Prior to coating the bars, the Contractor shall submit to the Engineer for review, the coating material manufacturer’s recommendation on the proper use and application requirements of the coating material.
5. A certification stating that all bars have been coated in accordance with the coating material manufacturer’s recommendations and these Specifications shall be furnished with each shipment. This certification shall include for each bar size the preheat temperatures, cure times, thickness checks, holidays detected, and test results. Two copies of these certifications shall be furnished to the Engineer.
6. The Contractor shall give advance notice to the Engineer of the coating schedule in the coating plant so that Owner inspection may be provided. The Engineer may inspect the coated bars at the coating plant for approval.
7. The patching material, compatible with the coating material and inert in concrete, shall be supplied to the purchaser.

8. For Projects where epoxy-coated steel reinforcing bars are used in the top mat of bridge decks only, the maximum amount of damage to the coating shall not exceed 0.25 percent of the surface area of each bar.

9. The thickness of epoxy-coating shall be 10 mils ± 2 mils.

10. All samples shall be submitted to the SPU Materials Laboratory.

9-07.4 PLAIN STEEL BARS

Where plain steel bars are specified, they shall conform to the chemical and physical properties of AASHTO M 31, Grade 60, unless specifically noted otherwise. Plain steel bars are indicated in the Contract by fractions of an inch; for example, 3/8 inch Ø, 1/2 inch Ø, 5/8 inch Ø, etc.

9-07.5 DOWEL BARS (FOR CEMENT CONCRETE PAVEMENT)

Dowel bars shall be plain steel bars of the dimensions shown in the Standard Plans. They shall conform to AASHTO M 31, Grade 60 or AASHTO M 255, Grade 60, and shall be coated in accordance with AASHTO M 284. The ends of the bars shall be coated to a minimum of 4 mils. In addition, the requirements of Section 9-07.3, items 2, 3, 4, 5, 6, 7, and 10 shall apply.

9-07.6 TIE BARS (FOR CEMENT CONCRETE PAVEMENT)

Tie bars shall conform to the requirements of the Standard Specifications for Deformed Billet-Steel Bars for Concrete Reinforcement, AASHTO M 31, Grade 60 and shall be coated in accordance with AASHTO M 284. The form of the deformed bar shall be subject to approval by the Engineer. Tie bars shall be free from dirt, grease, or other defects affecting the strength or bond with the concrete. Tie bars shall be epoxy encapsulated.

9-07.7 WIRE MESH

Wire mesh for concrete reinforcement shall conform to the requirements of AASHTO M 55, Welded Steel Wire Fabric for Concrete Reinforcement or AASHTO M 221, Welded Deformed Steel Wire Fabric for Concrete Reinforcement. All wire mesh shall be of an approved kind and quality of manufacture.

9-07.8 DEFORMED WIRE

Deformed wire shall conform to the requirements of AASHTO M 225, Deformed Steel Wire for Concrete Reinforcement.

Deformed wire is noted in the Drawings and Specifications by the letter D, followed by a number indicating the cross-sectional area of the wire in square millimeters; for example, D2, D5, D20, etc.

9-07.9 COLD DRAWN WIRE

Cold drawn wire shall conform to the requirements of AASHTO M 32, Cold Drawn Steel Wire for Concrete Reinforcement.

Cold drawn wire is noted in the Drawings and Specifications by the letter W followed by a number indicating the cross-sectional area of the wire in square millimeters; for example, W2, W5, W20, etc.

9-07.10 PRESTRESSING REINFORCEMENT

Prestressing reinforcement shall be 1/2 inch diameter for prestressed concrete girders or precast-prestressed concrete piles and 1/2 inch or 0.6 inch diameter for cast-in-place prestressed concrete.

Prestressing reinforcement shall be mill bright high-tensile-strength seven wire low-relaxation strand conforming to the requirements of AASHTO M 203, Grade 270.

All prestressing reinforcement furnished for a given structural member shall have a maximum elongation differential of 3 percent at stress of 0.8 of the ultimate strength of the prestressing steel. Each reel of prestressing reinforcement shall be accompanied by a Manufacturer’s Certificate of Compliance, a mill certificate, and a test report. The mill certificate and test report shall include the chemical composition, the yield and ultimate strengths, elongation at rupture, modulus of elasticity, and the stress strain curve for the actual prestress reinforcing intended for use. All values certified shall be based on test values and actual sectional areas of the material being certified.
For each reel furnished, a sample, not less than 5 feet long, shall be sent to the SPU Materials Laboratory for testing.

SECTION 9-08 PAINTS

9-08.1 RAW MATERIALS

The acceptance of particular lots of raw materials shall in no way obligate the Engineer to accept lots of finished paint that do not conform to the requirements of these Specifications. When not specifically detailed, the raw materials shall meet the requirements of the applicable Federal Specification in effect at the time of manufacture. Products not covered by State or Federal Specifications shall be of top quality, meeting prevailing commercial standards. Raw Materials for paints shall conform to the requirements of the Specifications listed below.

- Alkyd resin solution, Federal TT-R-266, Type I or Type II.
- Aluminum paste, ASTM D 962, Type 2, Class B. Paints made with the paste shall be smooth and highly lustrous.
- Anti-skimming agent shall have no deleterious effect on the drying time of the finished paint. It shall effectively prevent skimming when added in the amounts specified in each formula and tested in accordance with Federal Test Std. No. 141a, Method 3021.
- Aromatic petroleum thinner - water white low aniline petroleum solvent Kauri-Butanol value 0.70 (min.)
- Barium sulfate pigment, ASTM D 602.
- Chrome oxide green, ASTM D 263. The tinting properties shall be such that the standard color of the formulas using chrome oxide green can be produced without departing from the limits of composition given in those formulas.
- Chrome yellow pigment and paste, ASTM D 211, Type III.
- Fibrous magnesium silicate (talc), ASTM D 605.
- Lampblack pigment and paste, ASTM D 209.
- Liquid drier, ASTM D 600.
- Raw linseed oil, ASTM D 234.
- Red iron oxide pigment, ASTM D 3721, D 3722 & D 3724.
- Silica shall be finely ground amorphous or crystalline Material. It shall have a maximum oil absorption of 50 when tested in accordance with ASTM D 281.
- Soya lecithin shall be pure.
- Spar varnish, Federal TT-V-119.
- Titanium pigments, ASTM D 476. Titanium dioxide for use in exterior white paints shall conform to Type II.
- Titanium pigments used in tinted paints and enamels shall be exterior chalk resistant, Type III.
- Turpentine shall be gum spirits of turpentine, ASTM D 13.
- Yellow iron oxide, hydrated, ASTM D 768.
- Zinc oxide pigment and paste, ASTM D 79.
- Zinc yellow (zinc chromate), ASTM D 478.

Raw Materials not specifically covered shall meet current Federal Specifications for said Material.

9-08.2 PAINT FORMULAS - GENERAL

All paints shall be made from Materials meeting the requirements specified in Section 9-08.1. The paint shall be made in accordance with the following formulas and shall meet the requirements set forth above as well as the special requirements set forth for each formula. The formulas are stated in terms of dry pigment. Each formula shall contain the specified raw Materials which shall be proportioned to give the compositions in percentages by weight or parts by weight, as shown in the formulas that follow.
1. **Formula A-5-61 - Vinyl Pretreatment:**
 The primer shall meet the requirements of Federal Specification MIL-P-15328B or MIL-P-15328C, Primer Pretreatment (Formula 117B for Metals).
 Vinyl Wash Primer shall be mixed by adding 1 volume of acid component (diluent) to 4 volumes of resin component (base solution) slowly and with constant stirring. The Material shall be used within 8 hours of mixing. The wash primer coat shall be spray applied to all surfaces at a coverage rate of 250 to 300 square feet per gallon to yield a dry film of 0.5 to 0.9 mils thickness. If necessary to maintain a wet spray, additional thinning with normal Butanol or 99 percent Isopropanol will be allowed. Acid component above the required amount shall not be used for thinning. A drying time of 1 hour is required before recoating.
 b. Isopropanol (99 percent) shall conform to ASTM D 770 Isopropyl Alcohol.

2. **Formula A-6-86 - Zinc Dust Zinc Oxide Primer:**
 The primer shall meet the requirements of Federal Specification TT-P-641 Primer - Paint: Zinc Dust-Zinc Oxide Type III.

3. **Formula A-9-73 - Galvanizing Repair Paint, High Zinc Dust Content:**
 The galvanizing repair paint shall meet the requirements of Federal Specification MIL-P-21035 (Ships) Paint, High Zinc Dust Content, Galvanizing Repair.

4. **Formula C-6-90 - Green Phenolic Finish Coat for Steel:**

<table>
<thead>
<tr>
<th>Material</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc chromate (dry pigment)</td>
<td>13.8</td>
</tr>
<tr>
<td>Chrome green oxide (dry pigment)</td>
<td>16.1</td>
</tr>
<tr>
<td>Titanium dioxide (dry pigment)</td>
<td>16.7</td>
</tr>
<tr>
<td>Yellow iron oxide (dry pigment)</td>
<td>1.3</td>
</tr>
<tr>
<td>Fibrous magnesium silicate (dry pigment)</td>
<td>5.0</td>
</tr>
<tr>
<td>Aluminum stearate (dry pigment)</td>
<td>0.2</td>
</tr>
<tr>
<td>Spar varnish</td>
<td>22.1</td>
</tr>
<tr>
<td>Raw linseed oil</td>
<td>21.4</td>
</tr>
<tr>
<td>Driers</td>
<td>1.0</td>
</tr>
<tr>
<td>Anti-skinning agent</td>
<td>0.1</td>
</tr>
<tr>
<td>Mineral spirits</td>
<td>2.3</td>
</tr>
<tr>
<td>Weight per gallon (minimum)</td>
<td>12.5 pounds</td>
</tr>
<tr>
<td>Viscosity at 70°F</td>
<td>80 ± 8 k.u.</td>
</tr>
<tr>
<td>Grind (Minimum)</td>
<td>6</td>
</tr>
<tr>
<td>Set to touch</td>
<td>4 hours</td>
</tr>
<tr>
<td>Dry hard</td>
<td>18 hours</td>
</tr>
<tr>
<td>Sag Index</td>
<td>7 min.</td>
</tr>
</tbody>
</table>

 Test Requirements: Prior to shipment:
 Viscosity Adjustment: Mineral spirits to be added at the factory to achieve the specified viscosity.

 The proportions of tinting pigments may be varied to achieve the desired color. The color of the paint when dry must match the color of a standard C-6-90 color chip. Additional tinting pigments may be required.
5. **Formula C-9-90 - Phenolic Finish Coat for Steel**:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Oxide (dry pigment)</td>
<td>10.0 parts</td>
</tr>
<tr>
<td>Titanium Dioxide (dry pigment)</td>
<td>21.0 parts</td>
</tr>
<tr>
<td>Fibrous Magnesium Silicate (dry pigment)</td>
<td>3.2 parts</td>
</tr>
<tr>
<td>Barium Sulfate (dry pigment)</td>
<td>12.8 parts</td>
</tr>
<tr>
<td>Tinting Pigments</td>
<td>5.9 parts</td>
</tr>
<tr>
<td>Treated Bentonite Clay (dry pigment)</td>
<td>0.2 parts</td>
</tr>
<tr>
<td>Anti-Sag Agent</td>
<td>1.9 parts</td>
</tr>
<tr>
<td>Raw Linseed Oil</td>
<td>12.6 parts</td>
</tr>
<tr>
<td>Spar Varnish</td>
<td>29.0 parts</td>
</tr>
<tr>
<td>Anti-Skin Agent</td>
<td>0.1 parts</td>
</tr>
<tr>
<td>Driers</td>
<td>1.0 parts</td>
</tr>
<tr>
<td>Mineral Spirits</td>
<td>1.8 parts</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.5 parts</td>
</tr>
<tr>
<td>Weight per gallon (minimum)</td>
<td>12.3 lbs.</td>
</tr>
<tr>
<td>Viscosity</td>
<td>80 ± 8 K.U.</td>
</tr>
<tr>
<td>Dry Hard (maximum)</td>
<td>18 hours</td>
</tr>
<tr>
<td>Set to Touch (maximum)</td>
<td>4 hours</td>
</tr>
<tr>
<td>Grind (N.S.) (minimum)</td>
<td>5</td>
</tr>
<tr>
<td>Sag Index (minimum)</td>
<td>4</td>
</tr>
<tr>
<td>Total Solids by Weight</td>
<td>80 ± 5%</td>
</tr>
</tbody>
</table>

Test Requirements: Prior to shipment.

Adjustments for tinting pigments and talc, solvents and chemical additives shall be made at the factory to achieve the desired color and physical characteristics. A fungicide, N-(Trichloromethylthio) phthalimide shall be added at the rate of 3 pounds per 100 gallons.

6. **Formula C-10-83 - Vinyl Finish Coat**:

Vinyl Finish Coat shall conform to the following Specifications:

a. Pigment (12 Percent Minimum by Weight) - A combination of titanium dioxide and colored pigments or a combination of colored pigments such that the resultant paint when dry matches the color sample available at the SPU Materials Laboratory.

b. Vehicle (88 Percent Maximum by Weight):

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl Resin Type II¹</td>
<td>9.1 parts</td>
</tr>
<tr>
<td>Vinyl Resin Type III²</td>
<td>9.1 parts</td>
</tr>
<tr>
<td>Tricresyl Phosphate</td>
<td>3.4 parts</td>
</tr>
<tr>
<td>Methyl Isobutyl Ketone</td>
<td>39.2 parts</td>
</tr>
<tr>
<td>Toluene</td>
<td>39.2 parts</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
</tr>
</tbody>
</table>

¹Vinyl Resin Type II shall be hydroxyl containing vinyl chloride-acetate copolymer. It shall contain 89.5 to 91.5 percent (by weight) vinyl chloride, 2.0 to 5.5 percent vinyl acetate and 5.3 to 7.0 percent vinyl alcohol. It shall produce results in the specified formulations equal to the Bakelite Corporation Vinylite resin VAGH.

²Vinyl Resin Type III shall be a vinyl chloride-acetate co-polymer of medium average molecular weight and shall contain 85 to 88 percent vinyl chloride and 12 to 15 percent vinyl...
acetate by weight. It shall produce in the specified formulations results equal to Bakelite Corporation Vinylite resin VYHH.

Lampblack shall be ground in the Vinyl Finish Coat vehicle to yield a smooth well ground paint, Black Vinyl Tinting Paste, satisfactory for tinting the Vinyl Finish Coat.

The Vinyl Finish Coat and Vinyl Tinting Paste shall be ground to a fineness of not less than 5 when testing in accordance with Federal Test Method Std. No. 141b, Method 4411.1.

Vinyl Thinner shall be composed of the following Materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>90%</td>
</tr>
<tr>
<td>Methyl Isobutyl Ketone</td>
<td>10%</td>
</tr>
</tbody>
</table>

The paints as received require thinning with from 20 to 35 percent by volume of Vinyl Thinner to maintain a wet spray.

7. **Formula D-1-57 - Aluminum Paint:**

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum paste Type 2 Class B</td>
<td>2.0 pounds</td>
</tr>
<tr>
<td>Spar Varnish</td>
<td>1.0 gallon</td>
</tr>
</tbody>
</table>

Aluminum paint shall be mixed on the Job Site, and only enough for one Day shall be mixed at a time. The weighed amount of paste shall be placed in a suitable mixing container and the measured volume of vehicle then poured over it. The paste shall be incorporated by vigorous stirring with a paddle.

Test Requirements: Prior to mixing.

8. **Formula D-4-57 - Black Enamel:**

The enamel shall meet the requirements of Federal TT-E-529 Black Enamel, Synthetic, Semi Gloss.

Test requirements: This enamel will be sampled and tested in the ready-mixed form.

9. **Formula D-5-83 - White Guard Rail Paint (Alkyd Vehicle):**

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium dioxide (dry pigment)</td>
<td>28.1 parts</td>
</tr>
<tr>
<td>Zinc oxide (dry pigment)</td>
<td>10.9 parts</td>
</tr>
<tr>
<td>Fibrous magnesium silicate (dry pigment)</td>
<td>4.3 parts</td>
</tr>
<tr>
<td>Aluminum stearate (dry pigment)</td>
<td>0.5 parts</td>
</tr>
<tr>
<td>Alkyd vehicle</td>
<td>37.0 parts</td>
</tr>
<tr>
<td>24% lead naphthenate drier</td>
<td>0.4 parts</td>
</tr>
<tr>
<td>6% Cobalt naphthenate drier</td>
<td>0.2 parts</td>
</tr>
<tr>
<td>6% Manganese naphthenate drier</td>
<td>0.2 parts</td>
</tr>
<tr>
<td>Anti-skinning agent</td>
<td>0.2 parts</td>
</tr>
<tr>
<td>Mineral spirits</td>
<td>18.2 parts</td>
</tr>
<tr>
<td>Weight per gallon (minimum)</td>
<td>11.0 pound</td>
</tr>
<tr>
<td>Viscosity at 70°F</td>
<td>80-90 K.U.</td>
</tr>
<tr>
<td>Nonvolatile content (minimum)</td>
<td>70.2%</td>
</tr>
<tr>
<td>Grind (minimum)</td>
<td>4</td>
</tr>
<tr>
<td>Hiding power (maximum scale reading)</td>
<td>30</td>
</tr>
<tr>
<td>Set to touch</td>
<td>4 hours</td>
</tr>
<tr>
<td>Dry hard</td>
<td>18 hours</td>
</tr>
<tr>
<td>Sag Index</td>
<td>7 min.</td>
</tr>
</tbody>
</table>

Test Requirements: Prior to shipment.

Viscosity Adjustment: Mineral spirits shall be added at the factory to achieve the specified viscosity.

This formula is to be used over primed or previously painted surfaces.
10. **Formula E-1-57 - White for Wood Structures:**
 The Material shall conform to Federal TT-P-102, Class A.

 Primer Requirements: This paint will be sampled and tested in the ready-mixed form.

 Primer: Turpentine may be added to the above paint in quantities not to exceed 1-1/2 pints per gallon of paint for use as a primer.

11. **Formula E-2-62 - Primer for Wood:**
 The primer shall be a ready mixed priming paint for use over unpainted wood surfaces. It shall meet the requirements of Federal Specification TT-P-25 Primer, Paint, Exterior.

 Test Requirements: This paint shall be sampled and tested in the ready mixed form.

12. **Formula F-3-64 - Orange Equipment Enamel:**
 The enamel shall meet the requirements for Enamel, Alkyd, Gloss, Federal Specification TT-E-489, except that the Sag Index shall be seven minimum. The color, when dry, shall match that of Federal Standard No. 595, color 12246.

 Test Requirements: When manufactured on Contract or Purchase Order for maintenance use, the enamel will be sampled and tested in the ready-mix form. No factory inspection will be required; however, a one pint sample representing the batch shall be submitted to the SPU Materials Laboratory for approval before use.

 For factory application to individual items of new Equipment, samples of the enamel will not be required; however, the Equipment manufacturer must match the color and certify the quality of enamel used.

13. **Formula H-1-83 - Primer for Concrete:**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium dioxide</td>
<td>5.0 parts</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>19.7 parts</td>
</tr>
<tr>
<td>Fibrous magnesium silicate</td>
<td>6.8 parts</td>
</tr>
<tr>
<td>Silica</td>
<td>6.8 parts</td>
</tr>
<tr>
<td>Spar varnish</td>
<td>52.3 parts</td>
</tr>
<tr>
<td>Mineral spirits</td>
<td>9.4 parts</td>
</tr>
<tr>
<td>Weight per gallon (minimum)</td>
<td>9.8 pounds</td>
</tr>
<tr>
<td>Drying time (for testing purposes only)</td>
<td>18 hours</td>
</tr>
<tr>
<td>Viscosity at 70° F.</td>
<td>65-75 K.U.</td>
</tr>
<tr>
<td>Consistency: The paint shall not thicken after manufacture to an extent sufficient to impair its brushing qualities.</td>
<td></td>
</tr>
<tr>
<td>Test Requirements: Prior to shipment.</td>
<td></td>
</tr>
</tbody>
</table>

14. **Formula H-2-83 - White Masonry Paint for Precast Curbs**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium dioxide (dry pigment)</td>
<td>11.9</td>
</tr>
<tr>
<td>Calcium carbonate (dry pigment)</td>
<td>25.6</td>
</tr>
<tr>
<td>Mica (dry pigment)</td>
<td>7.4</td>
</tr>
<tr>
<td>Diatomaceous silica (dry pigment)</td>
<td>7.0</td>
</tr>
<tr>
<td>Bentone (body agent)</td>
<td>0.5</td>
</tr>
<tr>
<td>Pliolite S5-A</td>
<td>8.0</td>
</tr>
<tr>
<td>Chlorinated Paraffin 40%</td>
<td>4.0</td>
</tr>
<tr>
<td>Chlorinated Paraffin 70%</td>
<td>4.0</td>
</tr>
<tr>
<td>Aromatic brushing thinner</td>
<td>31.6</td>
</tr>
<tr>
<td>Viscosity at 70°F</td>
<td>90-100 K.U.</td>
</tr>
<tr>
<td>Weight per gallon (minimum)</td>
<td>12.1 pounds</td>
</tr>
<tr>
<td>Drying time (for test purposes only)</td>
<td>18 hours</td>
</tr>
</tbody>
</table>

Test requirements: Prior to shipment

15. **Formula H-3-83 - Yellow Masonry Paint for Precast Curbs**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium dioxide (dry pigment)</td>
<td>1.0</td>
</tr>
<tr>
<td>Medium chrome yellow (dry pigment)</td>
<td>10.9</td>
</tr>
<tr>
<td>Calcium carbonate (dry pigment)</td>
<td>25.6</td>
</tr>
<tr>
<td>Mica (dry pigment)</td>
<td>7.4</td>
</tr>
<tr>
<td>Diatomaceous silica (dry pigment)</td>
<td>7.0</td>
</tr>
<tr>
<td>Bentone (body agent)</td>
<td>0.5</td>
</tr>
<tr>
<td>Pliolite S5-A</td>
<td>8.0</td>
</tr>
<tr>
<td>Chlorinated paraffin 40%</td>
<td>4.0</td>
</tr>
<tr>
<td>Chlorinated paraffin 70%</td>
<td>4.0</td>
</tr>
<tr>
<td>Aromatic brushing thinner</td>
<td>31.6</td>
</tr>
<tr>
<td>Viscosity at 70°F</td>
<td>90-100 K.U.</td>
</tr>
<tr>
<td>Weight per gallon (minimum)</td>
<td>12.1 pounds</td>
</tr>
<tr>
<td>Drying time (for test purposes only)</td>
<td>18 hours</td>
</tr>
</tbody>
</table>

Test requirements: Prior to shipment

16. **Formula K-1-83 - Exterior Acrylic Latex Paint-White**:

This paint shall meet the requirements of Federal Specification TT-P-19, Paint, Acrylic Emulsion, Exterior, except that the viscosity shall be 75-85 K.U. This paint may be used self-primed in multiple coats over salts treated wood and on interior and exterior masonry surfaces.

Test Requirements: This paint will be sampled and tested in the ready-mixed form.

17. **Formula K-2-83 - Traffic Signal Yellow Enamel**:

Traffic signal yellow enamel shall meet the provision of Federal Specification TT-E-489 - Enamel, Alkyd, Gloss - and shall match the color of “Standard Interstate Yellow.”

18. **Paint Formulas – Moisture Cured Urethane Paint**

18-A. **General**

Materials shall meet the requirements of those applicable Specifications in SSPC-PA1, “Shop, Field and Maintenance Painting,” which are not in conflict with these Standard Specifications.
The coating system for the “Moisture Cured Urethane” painting process shall coat the steel surfaces with three single component moisture-cured polyurethane coats. The various coats of paint shall be applied in thicknesses as specified in this Section.

Coating Systems which have a maximum recoat window on primer of less than seven Days shall not be used. Coating systems for steel surfaces shall incorporate a primer capable of being applied at humidities of up to 98 percent, and steel and air temperatures between 35°F and 110°F. The intermediate and top coats shall be full coverage with coating applied to all steel surfaces. All steel coating Materials shall be furnished by the same manufacturer and shall be compatible with one another. The Contractor shall provide a Manufacturer’s Certificate of Compliance for approval at least 5 Working Days before the need arises stating:

a) The coating Materials meet the Materials Specifications.

b) The coating Materials in the coating system are compatible.

c) The manufacturer has manufactured at least one coat of the coating Material in the coating system specified and furnished for the Project. Coating Materials for the other coats shall be from the manufacturer's product line and recommended for use in the coating system.

Application of coating Materials shipped to the Job Site will not be permitted until the coating Materials have been approved.

18-B. Above Ground Application

Paint supplied for this Project shall conform to the following requirements:

(1) Primer (Full Coverage)

<table>
<thead>
<tr>
<th>Generic Type:</th>
<th>Zinc filled, single component, moisture-cured polyurethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Type:</td>
<td>Moisture Cured Polyurethane</td>
</tr>
<tr>
<td>Pigment Type:</td>
<td>Zinc Dust</td>
</tr>
<tr>
<td>Pigment content:</td>
<td>80% minimum zinc by weight in dry film</td>
</tr>
<tr>
<td>Volume Solids:</td>
<td>60% plus or minus 2%</td>
</tr>
<tr>
<td>Dry Film thickness:</td>
<td>3 mils minimum</td>
</tr>
</tbody>
</table>

All Primer shall be tinted sufficiently with color so as to easily distinguish the dry primer from the blast cleaned steel surface.

(2) Intermediate Coat (Full Coverage)

<table>
<thead>
<tr>
<th>Generic Type:</th>
<th>Micaceous iron oxide filled, single component, moisture-cured polyurethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Type:</td>
<td>Moisture Cured Polyurethane</td>
</tr>
<tr>
<td>Pigment Type:</td>
<td>4.0 lbs/gal micaceous iron oxide</td>
</tr>
<tr>
<td>Volume Solids:</td>
<td>60% minimum</td>
</tr>
<tr>
<td>Finish:</td>
<td>Flat (Low Gloss)</td>
</tr>
<tr>
<td>Color:</td>
<td>Tinted to distinguish from Primer and Top Coat</td>
</tr>
<tr>
<td>Dry Film thickness:</td>
<td>3 mils minimum</td>
</tr>
</tbody>
</table>

(3) Top Coat (Full Coverage)

<table>
<thead>
<tr>
<th>Generic Type:</th>
<th>Micaceous iron oxide filled, single component, moisture-cured, aliphatic polyurethane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Type:</td>
<td>Moisture Cured Polyurethane</td>
</tr>
<tr>
<td>Pigment Type:</td>
<td>Micaceous iron oxide</td>
</tr>
<tr>
<td>Volume Solids:</td>
<td>60% minimum</td>
</tr>
<tr>
<td>Finish:</td>
<td>Flat (Low Gloss)</td>
</tr>
<tr>
<td>Dry Film thickness:</td>
<td>3 mils minimum</td>
</tr>
</tbody>
</table>

The Proportions of the tinting pigments shall be varied to closely match the color of the existing Structure. Three color chip options shall be submitted to the Engineer for a final tinting selection.

Steel coating products furnished for this Project shall be manufactured by the same manufacturer and shall be compatible with one another.
18-C. **Below Ground Application**

Paint supplied for this Project shall conform to the following requirements:

Surface Preparation: Per SSPC-10

1. **Primer (Full Coverage)**

Generic Type:	Zinc filled, single component, moisture-cured polyurethane
Vehicle Type:	Moisture-cured polyurethane
Pigment Type:	Zinc dust
Pigment Content:	80% minimum zinc by weight in dry film
Volume Solids:	60% plus or minus 2%
Dry Film Thickness:	3 mils minimum

All primer shall be tinted sufficiently with color so as to easily distinguish the dry primer from the blast cleaned steel surface.

2. **Top Coat (Full Coverage)**

Generic Type:	Single component, moisture-cured, urethane tar with micaceous iron oxide
Color:	Black
Solids by Volume:	61% plus or minus 2%
Flash Point:	> 90°F
Temperature Resistance:	Wet - 180°F continuous, Dry - 240°F continuous
Dry Film Thickness:	4.0 to 6.0 mils

Manufacturing - Steel coating products furnished for this Project shall be manufactured by the same manufacturer and shall be compatible with one another.

9-08.3 **INSPECTION REQUIREMENTS GENERAL**

The manufacturer shall notify the Engineer of the date on which manufacture is started, and the Engineer shall have the right to inspect all details of the manufacturing process.

Quantities of 20 gallons or less of the above formulas will be accepted without inspection upon the manufacturer’s notarized certificate. This certificate shall contain a statement by the manufacturer to the effect that the Material meets the formula Specification, and shall include a list of Materials and quantities used. One copy of the certificate shall accompany the paint when shipped and one copy with a sample of the paint shall be sent to the SPU Materials Laboratory. The paint may be used at once without further release from the SPU Materials Laboratory.

9-08.4 **PROCESS OF MANUFACTURE**

9-08.4(1) **GENERAL**

The following process of manufacture shall be used for each paint except aluminum paint. Pigments shall be ground thoroughly in appropriate portions of the specified vehicle to form a paste meeting the requirements set forth in Section 9-08.4(7).

The grinding shall be done in a mill approved by the Engineer. The use of the “colloid” type of mill will not be approved. Weighed quantities of the paste and weighed or measured quantities of the vehicles shall then be mixed thoroughly and strained, if necessary, to form a paint free from skins, lumps, and foreign materials.

9-08.4(2) **VISCOSITY ADJUSTMENT**

The volatile thinner content of the paint shall be adjusted at the factory to meet the required viscosity, but in no case shall the resultant weight per gallon and nonvolatile content of the paint be below that specified in the formula.

9-08.4(3) **WEIGHT VARIATIONS**

The weight per gallon of the paint in any lot shall not be less than that stated in the formula. A “lot” as used in this section shall be the quantity of paint ground at one time by any one mill.
9-08.4(4) DRYING TIME AND QUANTITY OF DRIER
The paint shall dry within the length of time stated in each formula but shall not contain sufficient quantities of drier to cause the paint to dry to a nonuniform or nonelastic film. The manufacturer will be permitted to vary the quantity of drier given in the formula sufficiently to accomplish the above results.

9-08.4(5) WORKING PROPERTIES
The paint shall contain no caked Material that cannot be broken up readily by stirring. When applied to a clean vertical surface, the paint shall dry without running, streaking, or sagging.

9-08.4(6) STORAGE PROPERTIES
Paints manufactured under these Specifications shall show no skin over the surface after 48 hours in a partially filled container, when tested as outlined in Federal Test Method Standard No. 141. A slight amount of skin or gel formation where the surface of the paint meets the side of the container may be disregarded. Variable percentages of anti-skinning agents are shown in those formulas set forth above that are susceptible to undesirable skin formation. The manufacturer will be allowed to vary the amount of anti-skinning agent given in the formulas provided the above results are accomplished and provided the paint does not dry to a nonuniform or nonelastic film.

9-08.4(7) FINENESS OF GRINDING
The paint shall be ground so that all particles of pigment are dispersed and coated with vehicle, and the residue on a 325 sieve does not exceed 1 percent by weight of the pigment.

9-08.4(8) STANDARD COLORS
When the paint is required to match a standard color, the manufacturer may obtain a sample of the required color without cost upon application to the Materials Laboratory.

9-08.4(9) CONTAINERS
Each container shall be filled with paint and sealed airtight. Each container shall be filled with the amount of paint required to yield the specified quantity when measured at 70°F.

All paint shall be shipped in new suitable containers having a capacity not greater than 5 gallons. Each container shall be marked with a suitable number to identify the particular batch from which it was filled.

9-08.5 TEST METHODS
As set forth in Section 9-08.2, all paints shall meet the special requirements set forth for each formula. The test methods used to check those special requirements shall be as specified by Federal Specification TT-P-141. When test methods are not covered by the above, applicable ASTM methods shall be followed.

9-08.6 SHIPPING
Except for lots of paint in quantities of 20 gallons or less which are accepted upon the manufacturer's certificate, the manufacturer shall not ship any lot of paint until the paint has been tested and released by the Seattle Public Utilities' Materials Laboratory. This release will not constitute final acceptance of the paint. Final acceptance will be based on inspection or testing of jobsite samples as determined by the Engineer.

9-08.7 FIELD SAMPLES
Because of the volatility of the solvents used in the paint, the upper limit on viscosity shall be waived on all paint samples taken in the field.

SECTION 9-09 TIMBER AND LUMBER

9-09 TIMBER AND LUMBER

9-09.1 GENERAL REQUIREMENTS
All timber and lumber for Structures shall be Douglas Fir-Larch, unless specified otherwise in the Contract. The allowable species of timber and lumber for guardrail posts shall be Douglas Fir-Larch or Hem Fir. Timber and lumber for sign posts, mileposts, sawed fence posts, and mailbox posts, shall be Western Red Cedar, Douglas Fir-Larch, or Hem Fir.
9-09.2 GRADE REQUIREMENTS

Timber and lumber shall conform to the grades and usage listed below. Grades shall be determined by the current standards of the West Coast Lumber Inspection Bureau (WCLIB) or the Western Wood Products Association (WWPA).

Structures

Timber and lumber, unless specified otherwise in the Contract, shall conform to the following:

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Grade Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials 2” to 4” nominal thick, 5” nominal and wider (Structural Joists and Planks)</td>
<td>No. 1 and better, grade (Section 123-b of WCLIB) or (Section 62.11 of WWPA)</td>
</tr>
<tr>
<td>Materials 5” nominal and Thicker (Beams and Stringers)</td>
<td>No. 1 and better, grade (Section 130-b of WCLIB) or (Section 70.11 of WWPA)</td>
</tr>
</tbody>
</table>

Timber lagging for soldier pile walls shall be Douglas Fir-Larch, grade No. 2 or better.

Guardrail Posts

Timber and lumber for guardrail posts (classified as Posts and Timbers) shall conform to the grades shown below.

<table>
<thead>
<tr>
<th>Wood Type</th>
<th>Grade Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir</td>
<td>No. 1 and better, grade (Section 131-b WCLIB) or (Section 80.11 WWPA)</td>
</tr>
<tr>
<td>Hem Fir</td>
<td>Select Structural, grade (Section 131-a WCLIB) or (Section 80.10 WWPA)</td>
</tr>
</tbody>
</table>

Sign Posts, Mileposts, Sawed Fence Posts, and Mailbox Posts

Sign posts, mileposts, sawed fence posts, and mailbox posts shall conform to the grades shown below.

<table>
<thead>
<tr>
<th>Material Size</th>
<th>Grade Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x4</td>
<td>Construction grade (Light Framing, Section 122-b WCLIB) or (Section 40.11 WWPA)</td>
</tr>
<tr>
<td>4x6</td>
<td>No. 1 and better, grade (Structural Joists and Planks, Section 123-b WCLIB) or (Section 62.11 WWPA)</td>
</tr>
<tr>
<td>6x6, 6x8, 8x10</td>
<td>No. 1 and better, grade (Posts and Timbers, Section 131-b WCLIB) or (Section 80.11 WWPA)</td>
</tr>
<tr>
<td>6x10, 6x12</td>
<td>No. 1 and better, grade (Beams and Stringers, Section 130b WCLIB) or (Section 70.11 WWPA)</td>
</tr>
</tbody>
</table>

9-09.2(1) SURFACING AND SEASONING

All timber and lumber shall be sized as indicated in the Drawings.

All timber and lumber to be painted shall be surfaced on all sides. All timber and lumber to be painted shall be thoroughly air or kiln dried to an equilibrium moisture content and shall be stored in such a manner as to remain in a thoroughly dry condition until placed into the Work.

9-09.2(2) RESERVED

9-09.2(3) INSPECTION

Timber and lumber must be marked with a certified lumber grade stamp provided by one of the following agencies:

- West Coast Lumber Inspection Bureau (WCLIB)
- Western Wood Products Association (WWPA)
- Pacific Lumber Inspection Bureau (PLIB)
- Any lumber grading bureau certified by the American Lumber Standards Committee

A grading certificate must accompany each order of timber and lumber for use in Structures as specified in Section 9-09.2. The certificate shall be issued by either the grading bureau whose stamp is shown on the material, or by the lumber mill, which must be under the supervision of one of the grading bureaus listed above. The certificate shall include the following:

- Name of the mill performing the grading
- The grading rules being used
- Name of the person doing the grading with current certification
- Signature of a responsible mill official
Date the lumber was graded at the mill
Grade, dimensions, and quantity of the timber or lumber

When the material is delivered to the Project, the Engineer will check the order for the appropriate grade stamp. The invoice and grading certificate accompanying the order must be accurate and complete with the information listed above. The grading certificate and grade markings shall not constitute final acceptance of the Material. The Engineer may reject any or all of the timber or lumber that does not comply with the Specifications or has been damaged during shipping or upon delivery.

9-09.3 PRESERVATIVE TREATMENT
9-09.3(1) GENERAL REQUIREMENTS

All timber and lumber requiring preservative treatment shall be treated in accordance with AASHTO M 133. As specified by AASHTO M 133, the American Wood-Preservers’ Association (AWPA) standards shall govern the Specifications. These specifications include: storing and curing the timber and lumber, the wood preservatives, the preservative treatment process, documenting the results of the treatment, inspection, testing, and the identification of properly treated timber. Unless otherwise specified in the Contract, all timber and lumber shall be treated in accordance with Section C-14 of the latest addition of the AWPA standards.

All cutting, boring, chamfering, routing, surfacing, and trimming shall be done prior to treating. Any field drilling or cutoffs shall be treated by two liberal applications of compatible preservative. The applications shall be in accordance with the requirements of AWPA Standard M-4 entitled, “Standard for the Care of Pressured Treated Wood Products”.

All charges shall consist of pieces of the same species that are similar in form, size, moisture content, and receptivity to treatment. The pieces in the charge shall be separated to ensure contact of treating medium with all surfaces. The method of determining the retention of the preservatives shall be by assay.

As specified in the Contract, all orders of treated timber and lumber shall be stamped “WSDOT Approved for Shipment” or accompanied by a Certificate of Treatment record. The Certificate of Treatment shall include the following information:

Name and location of the wood preserving company
Customer identification
Date of treatment and charge number
Type of chemical used and amount of retention
Treating process and identification of the Specification used
Description of material that was treated
Signature of a responsible plant official

In addition to the Certificate of Treatment, all orders of treated timber or lumber that are not stamped “WSDOT Approved for Shipment”, shall be accompanied by a Grading Certificate in accordance with Section 9-09.2(3). Such certification or approved for shipment tag shall not constitute final acceptance of the material. The Engineer may reject any or all of the timber or lumber that does not comply with the Specifications or has been damaged during prolonged storage, shipping, or upon delivery.

All timber and lumber to be used in aquatic environments, unless specified otherwise in the Contract, shall be chemically treated using Best Management Practices (BMPs). The producer of the chemically treated products shall supply a written certification that the BMPs were utilized, including a description and appropriate documentation of the BMPs used. This information may be included on the Certificate of Treatment record.

SECTION 9-10 PILING
9-10.1 TIMBER PILING
9-10.1(1) GENERAL

Timber piling shall be untreated or treated with the preservatives specified in the Drawings and completely described in Section 9-09.3.

Timber piles shall have the following limiting diameters:
Timber piles shall be strapped with at least three straps: one approximately 18 inches from the butt, one approximately 24 inches from the butt, and one approximately 12 inches from the tip. Additional straps shall be provided at approximately 15-foot centers between the butt and tip. Strapping shall encircle the pile once and be tensioned as tightly as possible. Straps shall be 1-1/4 inches wide, 0.031 inch thick, cold rolled, fully heat treated, high tensile strapping, painted, and waxed, with an ultimate tensile strength of 5100 pounds. The seal shall be 2-1/4 inches long, 20 gage, crimped with a notch type sealer to furnish a joint yielding 80 percent of the strap tensile strength. Treated timber piles shall be strapped after treatment.

9-10.1(2) UNTREATED PILING

Except where specifically provided otherwise, untreated timber piling shall be Douglas fir, Western red cedar, or larch. Piling for foundations shall be Douglas fir. Piling shall be cut from sound, live trees and shall contain no unsound knots. Sound knots will be permitted, provided the diameter of the knot does not exceed 4 inches, or 1/3 of the small diameter of the pile at the point where they occur, whichever is smaller. Any defect or combination of defects which impair the strength of the pile more than the maximum allowable knot will not be permitted.

Piling shall be cut above the butt swell and shall have a uniform taper from butt to tip. A line drawn from the center of the tip to the center of the butt shall not fall outside the center of the pile at any point more than 1 percent of the length of the pile. A spiral grain or twist in excess of 1/4 turn in 10 feet of length will be cause for rejection.

Untreated timber trestle piling shall have an average of at least five annual rings per inch measured radially over a distance of 3 inches at the butt, beginning at a point 3-1/2 inches from the heart. At least 9 inches of heartwood shall show at the butt.

Ring count requirements for untreated timber foundation piling and detour trestle piling will be waived.

9-10.1(3) CREOSOTE TREATED PILING

For creosote treated piling, Douglas fir timber shall be used. All other requirements shall be the same as for untreated piling, except that the ring count requirement will be waived.

9-10.1(4) TIMBER COMPOSITE PILING

Timber composite piling shall consists of a pile made up of two timber sections. The lower section shall be untreated, and the upper section shall be creosote treated.

The treated and untreated sections of timber composite pile shall meet the respective requirements specified above for full length of treated and untreated timber piling.

9-10.1(5) PEELING

Untreated and creosote treated piles shall be peeled by removing all of the rough bark and at least 80 percent of the inner bark. No strip of inner bark remaining on the pile shall be over 3/4 inch wide or over 8 inches long, and there shall be at least 1 inch of clean wood surface between any two such strips. Not less than 80 percent of the surface on any circumference shall be clean wood. All knots shall be trimmed close to the body of the pile.

9-10.2 CONCRETE PILING

9-10.2(1) CONCRETE

Portland cement meeting the requirements of Section 9-01 shall be used in all precast concrete piles.
The concrete for precast-prestressed piles shall conform to the requirements of Section 9-19.1. The concrete for prestressed piles shall have a minimum compressive strength of 6,000 psi at the age of 28 Days. The minimum compressive strength of concrete at the transfer of prestress shall be 3,300 psi.

The concrete for other precast piles shall be Class AX. Mixing, transporting, and placing concrete shall be in accordance with the provisions of Section 6-02.3.

The Contractor shall mold and test a sufficient number of concrete test cylinders to determine the strength of the concrete as required by the Specifications. Under the surveillance of the Engineer, the test cylinders shall be molded, cured, and tested in accordance with the procedures established by the SPU Materials Laboratory.

In the event that a sufficient number of concrete test cylinders are not molded to satisfy all testing required on any one pile, cores measuring 4 inches in diameter by 5 inches in height shall be taken and tested by the Contractor. If the strength of the core meets the required compressive strength of the concrete, the pile may be accepted. The coring and testing of the core shall be done under the surveillance of the Engineer.

9-10.2(2) REINFORCEMENT
Reinforcement shall meet the requirements of Section 9-07.

9-10.3 CAST-IN-PLACE CONCRETE PILING
9-10.3(1) REINFORCEMENT
Reinforcement for cast-in-place concrete piles shall conform to the requirements of AASHTO M 31, Grade 60.

9-10.4 STEEL PILE TIPS AND SHOES
Steel pile tips and shoes shall be fabricated of cast steel conforming to ASTM A 148 Grade 60-90 [620-415] or ASTM A 27 Grade 65-35 [450-240] and be free from any obvious defects. Pile tips shall be accompanied by a mill test report stating the chemical and physical properties (tensile and yield) of the steel.

9-10.5 STEEL
The material for steel piling, pile tips, and pile splices shall conform to the requirements of the Specifications for Structural Steel, AASHTO M 183, except the material for steel pipe piling, tips, and splices shall conform to the requirements of ASTM A 252, Grade 2. All steel piling may be accepted by the Engineer based on the Manufacturer’s Certificate of Compliance.

SECTION 9-11 WATERPROOFING
9-11.1 ASPHALT FOR WATERPROOFING
Asphalt for waterproofing shall conform to the requirements of ASTM D 312, Type 4.

The Material used as primer shall conform to the requirements of ASTM D 41, “Primer for Use with Asphalt in Damproofing and Waterproofing”.

Acceptance shall be as provided in Section 9-02.2(1).

9-11.2 WATERPROOFING FABRIC
Waterproofing fabric shall be a saturated cotton fabric meeting the requirements of ASTM D 173, “Woven Cotton Fabrics Saturated with Bituminous Substances for Use in Waterproofing”.

9-11.3 PORTLAND CEMENT MORTAR
Portland cement and sand for the mortar protection course shall conform to the following requirements:
Portland Cement Section 9-01
Sand Section 9-03
SECTION 9-12 MANHOLES, CATCH BASINS, AND INLETS

9-12.1 REINFORCED CONCRETE

9-12.1(1) GENERAL
Reinforced concrete shall consist of Portland cement, mineral aggregates and water, in which steel has been embedded in such manner that the steel and concrete act together.

All cast-in-place concrete placed under these Specifications shall have a minimum compressive strength of 3,000 psi at 28 Days. Strength determination shall be in accordance with ASTM C 39, unless otherwise approved by the Engineer. Precast components shall conform to the strength requirements of ASTM C 478.

The use of admixtures shall require prior approval of the Engineer.Concrete with air-entraining admixture shall comply with ASTM C175.

9-12.1(2) CEMENT
Portland cement shall conform to the requirements of Section 9-01.

9-12.1(3) STEEL REINFORCEMENT
Reinforcement shall consist of wire conforming to ASTM A 82 or ASTM A 496, or wire fabric conforming to ASTM A 185, or ASTM A 497 or bars of Grade 60 steel conforming to ASTM A 615 or of bars of Grade 80 steel conforming to ASTM A 306.

9-12.1(4) AGGREGATES
Aggregates for cast-in-place concrete shall conform to ASTM C 33.

9-12.2 STEPS

9-12.2(1) GENERAL
The Material for manhole steps shall be at the Contractor’s option from the choices indicated below.

9-12.2(2) ALUMINUM STEPS
Aluminum steps shall be forged of 6005-T5 alloy having a minimum tensile strength of 38,000 psi. The cross section shall be not less than 3/4 inch wide by 7/8 inch deep with two non-skid grooves not to exceed 1/8 inch deep and 1/8 inch wide.

9-12.2(3) GALVANIZED DEFORMED BAR STEPS
Galvanized deformed bar steps shall be 1 inch diameter deformed bar conforming to ASTM A 615, Grade 40 or Grade 60, hot bent and galvanized after bending. For bending, the temperature shall be at least 1600°F. Galvanizing shall conform to ASTM A 123-84. Step dimensions and pattern shall conform to Standard Plan No. 232.

9-12.2(4) POLYPROPYLENE STEEL REINFORCED STEPS
Polypropylene steel reinforced steps shall be made of copolymer polypropylene plastic that encapsulates a 1/2 inch diameter grade 60 steel reinforcing rod. Steel reinforcing shall conform to the requirements of ASTM A 615, and copolymer polypropylene plastic shall conform to requirements of ASTM D 4101-82. Steps shall have serrated tread, measure 13 inches center to center between legs of the step, and be designed to withstand pullout forces of 1500 pounds.

The Contractor may, with the Engineer’s approval, use Plastic Manhole Steps manufactured by Lane International Corporation, or Steps manufactured by M.A. Industries, Inc.

9-12.2(5) COPOLYMER POLYPROPYLENE PLASTIC
Steps and ladders made of copolymer polypropylene plastic, as manufactured by Lane International Corp., or M.A. Industries, Inc., or by another manufacturer with equal Material, will be acceptable.

9-12.3 LADDERS
Ladders shall be made of Materials conforming to the requirements for steps (see Sections 9-12.2).
9-12.4 MORTAR

9-12.4(1) MORTAR FOR JOINTING

Mortar for jointing precast or masonry manhole, catch basin, or inlet units shall be one part Portland cement to not less than one part nor more than two parts plaster sand, mixed with the least amount of clean water necessary to provide a workable mortar. Joints between precast manhole elements shall also be rubber gasketed as noted in Section 7-05.3(1)K.

9-12.4(2) MORTAR FOR PLASTER-COATING

Mortar for plaster-coating masonry unit manholes shall be proportioned according to either of the two Alternates tabulated below:

<table>
<thead>
<tr>
<th>Parts by volume Portland cement</th>
<th>Parts by volume masonry cement</th>
<th>volume hydrated lime or lime putty</th>
<th>Plaster sand measured in damp loose condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 1</td>
<td>1</td>
<td>1 (Type II)</td>
<td>Not less than 2-1/4 and not more than 3 times the sum of volumes of cement and lime</td>
</tr>
<tr>
<td>Alt. 2</td>
<td>1</td>
<td>0</td>
<td>1/4</td>
</tr>
</tbody>
</table>

9-12.5 CONCRETE MASONRY UNITS

Concrete block shall conform to ASTM C 139, Specification for Concrete Masonry Units for Construction of Catch Basins and Manholes, except that nominal horizontal thickness shall be 6 inches measured radially, and blocks shall have semicircular mortar grooves approximately 1 inch radius at the ends.

9-12.6 CONCRETE BRICK

Concrete brick shall conform to the Specifications for Concrete Building Brick ASTM C 55 Grade S.

9-12.7 CLAY BRICK

Clay brick shall conform to ASTM C 32, Grade MM unless otherwise provided in the Project Manual.

9-12.8 METAL CASTINGS

9-12.8(1) MANHOLE RING AND COVER

Ring and cover dimensions shall conform to the Standard Plans. Rings and ring extensions shall be manufactured from cast iron ASTM A 48 Class 30 or ductile iron ASTM A 536, Grade 80-55-06. Covers shall be manufactured from ductile iron ASTM A 536, Grade 80-55-06. Rings and covers shall be free of defects such as porosity, pittings, shrink cavities, cold shuts, cracks, and surface defects which would impair serviceability. Repair of defects by welding or by the use of "smooth-on plasticized metals" or similar Material will not be accepted. Manufacturer shall certify that the product conforms to the requirements of these Specifications. In accordance with Section 1-06.1, where source of Material is different from manufacturer, the Contractor shall also provide the name and location of the manufacturer.

Castings shall not be artificially coated or painted but shall be bare metal on all surfaces. Artificially coated or painted castings may be cause for rejection.

Castings shall be machine finished on the horizontal seating surface and the vertical facing surface common to the ring and cover, so as to assure full bearing (nonrocking) for the entire width and circumference of the bearing surface, and permit interchangeability with other castings of the same design, no matter what the source. The vertical face common to the ring and cover shall be beveled as shown on the Standard Plans. Upon request of the Engineer, the manufacturer shall furnish at the foundry standard ring and covers for use by Inspectors in testing fit and seating.

All covers shall be labeled with the following information:

1. Name or symbol of the manufacturer;
2. Owner’s name (City of Seattle, min. 1/2 inch letters recessed flush with adjacent surface).
3. Material label “DUC” for Ductile Iron;
4. Identification of its use in 3 inch high lettering (Sewer, Water, Drain, Etc.)
5. Country of manufacture/origin.

Items 2. and 4. shall be on the exposed face of the cover. Items 1., 3., and 5. shall be located at the manufacturer’s option. If located on the exposed face of the cover, item 1. and 3. shall be adjacent to each other and shall be set in at least 1/2 inch high recessed letters.

Where lock-type castings are called for, a locking device shall permit the cover to be readily released from the ring. Movable parts shall be made of non-corrosive metals and be designed to avoid possible binding. Upon request by the Engineer, the manufacturer shall furnish testing apparatus at the foundry capable of applying uplift pressure on the lid of at least 20 foot head of water which the assembly needs to withstand without failure.

All manhole rings shall be labeled with the name or symbol of the manufacturer and the type of Material.

9-12.8(2) METAL FRAME AND GRATE AND METAL COVER FOR CATCH BASINS OR INLETS

The frame and grate and metal cover shall conform to the Standard Plans.

The frame may be made of cast iron, ASTM A 48 Class 30, or ductile iron, ASTM A 536, Grade 80-55-06, at the manufacturer’s option. The grate and cover shall be made of ductile iron only. Other applicable provisions of Section 9-12.8(1) shall apply, except item (4) for identification marking.

Catch Basins, Type 242A and 242B and Inlets, Type 250A and 250B shall be furnished with a vaned type grate as indicated on Standard Nos. 265 and 266.

9-12.8(3) CAST METAL INLETS

The castings for cast metal inlets shall be cast steel or ductile iron as specified in Section 9-06.8 or Section 9-06.14 and as shown in WSDOT Standard Plan No. B-4. Alternate Plans are acceptable provided they conform to fabricator’s Shop Drawings approved prior to Award of Contract.

9-12.9 RESERVED

9-12.10 SHOP FABRICATED CORRUGATED METAL MANHOLES

Where corrugated metal manholes are specified, they shall be as shown on the Drawings and shall conform to the details as shown in the Drawings. The base Material and gage, and coating if required, shall be as shown on the Drawings. All pipe connections to the manhole stubs shall be made with a standard band type as shown in the Drawings.

9-12.11 MONOLITHIC CONCRETE MANHOLES

Monolithic concrete manholes shall conform to the Standard Plans.

9-12.12 TRAPS

Where catch basin traps per Standard Plan No. 267a are required, they shall be constructed in accordance with the Standard Plan and be made of 0.0336 inch thick (22 ga.) galvanized sheet steel or 0.050 inch thick (18 ga.) aluminum.

Where catch basin traps per Standard Plan No. 267b are required, they shall be constructed in accordance with the Standard Plan and as specified therein.

9-12.13 GRATE INLETS AND DROP INLETS

Steel in grates, angles, and anchors for grate inlets and drop inlets shall conform with AASHTO M 183, except structural tube shall conform with ASTM A 500, Grade B. After fabrication, the steel shall be hot-dip galvanized with a minimum coating of 2 ounces of zinc per square foot in accordance with AASHTO M 111 or galvanized with a hot-sprayed (plasma flame applied) 6 mil minimum thickness zinc coating.

Steel grating shall be fabricated by weld connections. Bearing bars and cross bars shall be resistance welded at the intersecting joints. Welds, welding procedures, and welding Materials shall conform to Standard Specifications for Welding issued by the American Welding Society.

Alternate grate designs will be permitted, with the approval of the Engineer, provided the hydraulic capacity is not decreased, the overall dimensions are the same allowing the grate to be interchangeable, and the strength is essentially equal to the grate shown in the Standard Plans unless indicated otherwise in the Contract.

The Contractor has the option of furnishing either cast-in-place or precast inlets unless otherwise shown in the Contract. Alternate designs are acceptable provided they conform to fabricator's Shop Drawings approved prior to Award of Contract.
SECTION 9-13 RIPRAP, QUARRY SPALLS, AND SLOPE PROTECTION

9-13.1 GENERAL

The stone for riprap and quarry spalls shall be hard, sound and durable. It shall be free from segregation, seams, cracks, and other defects tending to destroy its resistance to weather. Riprap and quarry spalls used for new rock facing or slope stabilization shall meet requirements in Section 9-03.17.

9-13.2 LOOSE RIPRAP

Loose riprap shall be free of rock fines, soil, or other extraneous material.

Should the riprap contain insufficient spalls, as defined in Section 9-13.6, the Contractor shall furnish and place supplementary spall material from a source approved by the Engineer, at the Contractor's expense.

The grading of the riprap shall be determined by the Engineer by visual inspection of the load before it is dumped into place, or, if so ordered by the Engineer, by dumping individual loads on a flat surface and sorting and measuring the individual rocks contained in the load.

9-13.2(1) HEAVY LOOSE RIPRAP

Heavy loose riprap shall meet the following requirements for grading:

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Minimum Size</th>
<th>Maximum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% to 90%</td>
<td>1 ton (1/2 cubic yd.)</td>
<td></td>
</tr>
<tr>
<td>70% to 90%</td>
<td>300 lbs. (2 cu. ft.)</td>
<td></td>
</tr>
<tr>
<td>10% to 30%</td>
<td>3 inch</td>
<td>50 lbs. (spalls)</td>
</tr>
</tbody>
</table>

9-13.2(2) LIGHT LOOSE RIPRAP

Light loose riprap shall meet the following requirements for grading:

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Minimum Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% to 90%</td>
<td>300 lbs. to 1 ton (2 cu. ft. to 1/2 cu. yd.)</td>
</tr>
<tr>
<td>15% to 80%</td>
<td>50 lbs. to 1 ton (1/3 cu. ft. to 1/2 cu. yd.)</td>
</tr>
<tr>
<td>10% to 20%</td>
<td>3 inch</td>
</tr>
</tbody>
</table>

9-13.3 HAND PLACED RIPRAP

Hand placed riprap shall be as nearly rectangular as possible, 60 percent shall have a volume of not less than 1 cubic foot. No stone shall be used which is less than 6 inches thick, nor which does not extend through the wall.

The stone shall be hard, sound, and durable. It shall be free from seams, cracks, and other defects tending to destroy its resistance to weather.

9-13.4 SACK RIPRAP

Sack riprap shall consist of concrete placed in sacks made of at least 10 ounce burlap and having a capacity of approximately 2.5 cubic feet. Each sack shall be filled with approximately 1 cubic foot of concrete having a consistency in conformance with Section 6-02.3(4)E for nonvibrated concrete.

For sack riprap exposed to fresh water, the concrete shall be Class C; and for sack riprap exposed and salt water, the concrete shall be Class B as specified in Section 6-02.3.

The cement and fine and coarse aggregates shall conform to the requirements for cement and fine and coarse aggregate of Sections 9-01 and 9-03.1, respectively.
9-13.6 CONCRETE SLOPE PROTECTION

9-13.6(1) GENERAL
Concrete slope protection shall consist of reinforced Portland cement concrete poured or pneumatically placed upon the slope with a rustication joint pattern or semi-open concrete masonry units placed upon the slope closely adjoining each other.

9-13.6(2) SEMI-OPEN CONCRETE MASONRY UNITS SLOPE PROTECTION
Precast cement concrete blocks shall conform to the requirements of ASTM C 90 Type II.

9-13.6(3) POURLED PORTLAND CEMENT CONCRETE SLOPE PROTECTION
Cement concrete for poured concrete slope protection shall be Class B in conformance with Section 6-02.3.

Wire mesh reinforcement shall conform to Section 9-07.7.

9-13.6(4) PNEUMATICALLY PLACED PORTLAND CEMENT CONCRETE SLOPE PROTECTION

- **Cement:** This Material shall be Portland cement as specified in Section 9-01.
- **Aggregate:** This Material shall meet the requirements for fine aggregate as specified in Section 9-03.1. The moisture content of the fine aggregate at the time of use shall be between 3 percent and 6 percent by weight.
- **Reinforcement:** Wire mesh reinforcement shall conform to the provisions of Section 9-07.7.
- **Water:** Water shall conform to the provisions of Section 9-25.1.

9-13.7 QUARRY SPALLS
The stone shall be hard, sound, and durable. It shall be free from segregation, seams, cracks, and other defects tending to destroy its resistance to weathering. *The quarry spall shall meet the 5 test requirements listed in Section 9-03.17.* Quarry spalls shall meet the following requirements for grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inches</td>
<td>100</td>
</tr>
<tr>
<td>3 inches</td>
<td>40 max.</td>
</tr>
<tr>
<td>3/4 inch</td>
<td>10 max.</td>
</tr>
</tbody>
</table>
SECTION 9-14 EROSION CONTROL AND ROADSIDE PLANTING

9-14.1 SOIL

9-14.1(1) TOPSOIL TYPE A

The topsoil shall be imported and shall be friable surface soil from the A horizon as determined by the United States Agriculture Soil Conservation Service Soil Survey. Topsoil shall be free from: Materials toxic to plant growth; noxious weed seeds, rhizomes, roots; subsoil; stones and other debris. One hundred percent of the topsoil shall pass through a 1 inch screen. Maximum electrical conductivity shall be 2.0 milliohms and the maximum exchangeable sodium percentage shall be 10 percent.

Topsoil Type A shall consist of a sandy clay loam, sandy loam, loam, clay loam, silty clay loam, or silt loam soil. These soil textural classes shall be determined by the United States Department of Agriculture Classification System. These textural classes shall be restricted by the following maximum percentage compositions based on the Material passing the Number 10 screen:

<table>
<thead>
<tr>
<th>Separates</th>
<th>Maximum Percentage Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>50%</td>
</tr>
<tr>
<td>Clay</td>
<td>20%</td>
</tr>
</tbody>
</table>

The maximum percentage retained on a 1/4 inch screen shall not exceed 20 percent by volume. Of the Material passing the 1/4 inch screen, the maximum allowable percentage of gravel retained on a Number 10 screen shall not exceed 10 percent by weight. Total organic matter shall be at least 10 percent by volume. Organic matter shall be determined by the Walkley-Black sulphuric acid dichromate digestion process. The pH shall be 5.5 to 7.5.

9-14.1(2) TOPSOIL TYPE B

Topsoil Type B shall be native topsoil taken from within the Project Site, either from the area where roadway excavation is to be performed or from strippings from borrow, pit, or quarry sites, or from other designated sources. The general limits of the Material to be utilized for topsoil will be indicated on the Drawings or specified in the Project Manual. The Engineer will make the final determination of the areas where the most suitable Material exists within these general limits. The Contractor shall reserve this Material for the specified use. The depth of excavation into existing surface soils for obtaining Topsoil Type B shall be determined in the field by the Engineer.

In the production of topsoil Type B, all vegetative matter, except large brush and trees over 4 feet in height, shall become a part of the topsoil. Prior to removal, the Contractor shall mow or otherwise reduce the height of the native vegetation such as sagebrush, snowberry, etc., to be a height not exceeding 1 foot. Noxious weeds, as designated by authorized State and County officials, shall not be incorporated in the topsoil, but shall be removed and disposed of as designated elsewhere or as approved by the Engineer. The designated depth of Material shall then be taken from the designated areas and placed at locations which do not interfere with the construction of the Project as approved by the Engineer. The Contractor shall take all precautions to avoid disturbing the existing ground beyond the Project Site or slope stakes or other areas designated by the Engineer.

Topsoil Type B will not be considered as selected Materials as defined in Section 2-03.3(10), and the conditions of said section shall not apply.

9-14.1(3) RESERVED

9-14.1(4) PLANTING SOIL AND PLAYFIELD SOIL

9-14.1(4)A PLANTING SOIL

Description:

Planting soil shall consist of 67% sandy loam and 33% composted organic material by volume.

A. The soil shall meet the following requirements:
 1. Soil shall be sandy loam or loamy sand consisting largely of sand, but with enough silt and clay present to give it a small amount of stability. Individual sand grains can be seen
and felt readily. On squeezing in the hand when dry, it shall fall apart when the pressure is released; on squeezing when moist, it shall form a cast that does not only hold its shape when the pressure is released, but shall withstand careful handling without breaking.

The mixed soil shall meet the following gradation:

<table>
<thead>
<tr>
<th>Screen Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 inch</td>
<td>100</td>
</tr>
<tr>
<td>1/4 inch</td>
<td>95</td>
</tr>
<tr>
<td>#10</td>
<td>85</td>
</tr>
<tr>
<td>#30</td>
<td>50</td>
</tr>
<tr>
<td>#60</td>
<td>40</td>
</tr>
<tr>
<td>#100</td>
<td>20</td>
</tr>
<tr>
<td>#200</td>
<td>10</td>
</tr>
</tbody>
</table>

B. Shall have a pH range of 5.5 - 7.5 with dolomitic limestone added as necessary to attain this range (pH determined by soil test).

C. Organic material shall consist of composted yard debris or organic waste material composted for a minimum of 3 months. Compost shall consist of 100% recycled content.

In addition, the organic material shall have the following physical characteristics:

1. Shall pass a standard cress test for seed germination (90% germination compared to standard).
2. Shall have a pH from 5.5 to 7.5.
3. Shall have a maximum electrical conductivity of 3.0 ohms/cm.
4. Shall have a maximum carbon to nitrogen ratio of 40:1.
5. Shall be certified by the Process to Further Reduce Pathogens (PFRP) guideline for hot composting as established by the United States Environmental Protection Agency.

D. Submit a certified laboratory analysis from an accredited soils testing laboratory indicating the Material source and compliance with all specifications to the Engineer for approval before delivery to the Project Site. The analysis shall be with a sample size of no less than 2 pounds.

E. Site specific soil testing (after placement of material) may be required for Projects requiring more than 50 cubic yards of planting soil. Laboratory recommendations for amendments required for optimum growth shall be provided by the Contractor at no cost to the Owner. 4 Working Days shall be allowed for testing.

Acceptable Sources:

1. Astec, LLC, Bellevue, WA
2. Cedar Grove Compost Company, Maple Valley, WA
3. Northwest Cascade, Puyallup, WA
4. Pacific Topsoils, Inc., Everett, WA
5. Other approved equal.

(For other available sources refer to the current edition of “Directory of Recycled Content Building and Construction Products” as published by the Clean Washington Center, Department of Trade and Economic Development, 2001 Sixth Avenue, Suite 2700, Seattle, Washington 98121 Phone Number (206) 464-7040.)

9-14.1(4)B PLAYFIELD SOIL

Description:
Playfield Soil shall consist of 2/3 sand and 1/3 composted organic material by volume.

A. Sand shall meet the following:
<table>
<thead>
<tr>
<th>Size</th>
<th>Sieve</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>ASTM E-11</td>
<td>100</td>
</tr>
<tr>
<td>No. 20</td>
<td>ASTM E-11</td>
<td>77 - 100</td>
</tr>
<tr>
<td>No. 60</td>
<td>ASTM E-11</td>
<td>0 - 23</td>
</tr>
<tr>
<td>No. 270</td>
<td>ASTM E-11</td>
<td>0 - 10</td>
</tr>
</tbody>
</table>

B. Shall have pH range of 5.0 - 6.5 with dolomitic limestone added as necessary to attain this range.

C. Organic material shall consist of composted yard debris or organic waste material, and shall consist of 100% recycled content. In addition, the organic material shall have the following physical characteristics:
1. Shall pass a 3/4 inch sieve.
2. Shall pass a standard cress test for seed germination (90% germination compared to standard).
3. Shall have a pH from 5.5 to 7.5.
4. Shall have at least 25% organic matter by dry weight.
5. Shall have a maximum electrical conductivity of 3.0 mhos/cm.
6. Shall have a maximum carbon to nitrogen ration of 40:1.
7. Shall be certified by the “Process to Further Reduce Pathogens” (PFRP) guideline for hot composting as established by the United States Environmental Protection Agency.
8. Composted material shall be fully mature and stable before usage (2 pound minimum size samples required).

D. Submit a certified laboratory analysis from an accredited soils testing laboratory indicating the Material source and compliance with all specifications to the Engineer for approval prior to delivery to the Project Site. Sample size shall be a minimum of 2 pounds.

Acceptable Sources:
1. ASTEC, LLC, Bellevue, WA
2. Northwest Cascade, Puyallup, WA
3. Cedar Grove Compost Company, Maple Valley, WA
4. Pacific Topsoils, Inc., Everett, WA
5. Other approved equal:

(For other available sources, refer to the current edition of the “Directory of Recycled Content Building and Construction Products” as published by the Clean Washington Center, Department of Trade and Economic Development, 2001 6th Avenue, Suite 2700, Seattle, Washington 98121; Telephone Number (206) 464-7040.)

9-14.2 SEED

9-14.2(1) GENERAL
Grasses, legumes, or cover crop seed of the type specified shall conform to the standards for “Certified” grade seed or better as outlined by the State of Washington Department of Agriculture “Rules for Seed Certification,” latest edition. Seed shall be furnished in standard containers on which shall be shown the following information:
1. Common name of seed
2. Lot number
3. Net weight
4. Percentage of purity
5. Percentage of germination (in case of legumes percentage of germination to include hard seed)
6. Percentage of weed seed content and inert material clearly marked for each kind of seed in accordance with applicable State and Federal law.
Upon request, the Contractor shall furnish to the Engineer duplicate copies of a statement signed by the Vendor certifying that each lot of seed has been tested by a recognized and accredited seed testing Laboratory within six months before the date of delivery on the Project. Seed which has become wet, moldy, or otherwise damaged in transit or storage will not be accepted.

Approved Varieties:

A. Turf-type Perennial Rye-grass Blend
 Blend must consist of at least two varieties listed below and mixed in equal portions, by weight:

<table>
<thead>
<tr>
<th>Commander</th>
<th>Brightstar</th>
<th>Palmer II</th>
<th>Nighthawk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blazer II</td>
<td>Prelude II</td>
<td>Assure</td>
<td>Tara</td>
</tr>
<tr>
<td>Fiesta II</td>
<td>SR 4200</td>
<td>Prizm</td>
<td>Affinity</td>
</tr>
<tr>
<td>Stallion Sel</td>
<td>Dimension</td>
<td>APM</td>
<td>Charger</td>
</tr>
<tr>
<td>Satum</td>
<td>Sherwood</td>
<td>Birdie</td>
<td>SR 4100</td>
</tr>
</tbody>
</table>

B. Creeping Red Fescue
 A single variety must be selected from the following list:

<table>
<thead>
<tr>
<th>Cindy</th>
<th>Ensylva</th>
<th>Flyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salem</td>
<td>Jasper</td>
<td></td>
</tr>
</tbody>
</table>

C. Chewings Fescue
 A single variety must be selected from the following list:

<table>
<thead>
<tr>
<th>Longfellow</th>
<th>Promoter</th>
<th>Victory</th>
<th>Weekend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shadow w/Endo</td>
<td>Southport</td>
<td>Tamara</td>
<td>Bridgeport</td>
</tr>
<tr>
<td>Waldorf</td>
<td>Enjoy</td>
<td>Bargreen</td>
<td></td>
</tr>
</tbody>
</table>

9-14.2(2) SEED MIX #1 (EROSION MIX)

The seed mixture and rate of application shall be as follows:

<table>
<thead>
<tr>
<th>Kind and Variety of Seed in Mixture</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf-type Perennial Rye (3 approved types)</td>
<td>50%</td>
</tr>
<tr>
<td>Creeping Red Fescue</td>
<td>20%</td>
</tr>
<tr>
<td>Chewings Fescue</td>
<td>20%</td>
</tr>
<tr>
<td>Hard Fescue</td>
<td>10%</td>
</tr>
</tbody>
</table>

The rate of application shall be 5 pounds per 1000 square feet. The seed mixture shall be no less than 98% pure, and shall have a minimum germination rate of 90%.

9-14.2(3) SEED MIX #2 (NON-IRRIGATED LAWN SEED MIX)

The seed mixture and rate of application shall be as follows:

<table>
<thead>
<tr>
<th>Kind and Variety of Seed in Mixture</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf-type Perennial Rye (3 approved types)</td>
<td>50%</td>
</tr>
<tr>
<td>Creeping Red Fescue</td>
<td>20%</td>
</tr>
<tr>
<td>Chewings Fescue</td>
<td>20%</td>
</tr>
<tr>
<td>Hard Fescue</td>
<td>10%</td>
</tr>
</tbody>
</table>

The rate of application shall be 6 pounds per 1000 square feet. No noxious weeds will be permitted. The seed mixture shall be no less than 98% pure, and shall have a minimum germination rate of 90%.

9-14.2(4) SEED MIX #3 (IRRIGATED LAWN OR ATHLETIC PLAY FIELD)

The seed mixture and rate of application shall be as follows:
Kind and Variety of Seed in Mixture	Percent by Weight
Turf-type Perennial Rye Grasses (choose any 3 of the following approved types) | 100%
Barry | Elka | Palmer
Blazer | Gator | Prelude
Citation | Loretta | Regal
Citation II | Manhattan II | Yorktown II
Derby | Omega
Diplomat | Omega II

The rate of application shall be 8 pounds per 1000 square feet. No noxious weeds will be permitted. The seed mixture shall be no less than 98% pure, shall have a minimum germination rate of 80%, and shall have no more than 0.5% weed seed.

All seed varieties shall be packed in separate, clean, sound containers of uniform weight. The Contractor shall deliver the seed to the Job Site in the original containers showing weight, analysis, and name of grower, and shall store in a manner that prevents all wetting and deterioration of seed, until the seed is approved, mixed and sown.

9-14.2(5) SEED MIX #4 (BIOFILTRATION SWALE MIX)
The seed mixture and rate of application shall be as follows:

<table>
<thead>
<tr>
<th>Kind and Variety</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf-type Perennial Rye</td>
<td>40%</td>
</tr>
<tr>
<td>Turf-type Tall Fescue</td>
<td>20%</td>
</tr>
<tr>
<td>Meadow Foxtail</td>
<td>20%</td>
</tr>
<tr>
<td>Hard Fescue</td>
<td>10%</td>
</tr>
<tr>
<td>Big Trefoil</td>
<td>5%</td>
</tr>
<tr>
<td>Seaside Creeping Bentgrass*</td>
<td>5%</td>
</tr>
</tbody>
</table>

The rate of application shall be 10 pounds per 1000 square feet.

*Seaside Creeping Bentgrass included for areas associated with salt water (as directed by the landscape Architect). For situations not associated with salt water, increase Turf-type perennial rye to 45%.

Biofiltration Swale Mix shall be applied as described in Section 9-14.4(2) for terrain steeper than 2:1 with tackifier (see Section 9-14.4(7)). Fertilizer utilized in seeding biofiltration swales shall be as specified in Section 9-14.3 with 75% of nitrogen supplied as methylene urea for slow release.

9-14.2(6) WILDFLOWER MIX
The seed mixture and rate of application shall be as follows:

Wildflower Mix:

<table>
<thead>
<tr>
<th>Kind and Variety</th>
<th>Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turf Type Perennial Rye (3 types)</td>
<td>45%</td>
</tr>
<tr>
<td>Chewings Fescue</td>
<td>25%</td>
</tr>
<tr>
<td>Hard Fescue</td>
<td>15%</td>
</tr>
<tr>
<td>Wildflowers</td>
<td>15%</td>
</tr>
</tbody>
</table>

Mixes shall be applied in accordance with manufacturers written directions submitted for Engineers approval a minimum of 48 hrs prior to application. Written directions shall include rate of application and the incorporation of specific species of grass seed components when appropriate to the achieve adequate erosion control protection while maximizing flower display and regeneration.

Wildflower seed mix shall have a minimum of 20 wildflower species and shall not contain more than 10% (by weight) of any single species. No noxious weeds will be permitted. The seed mix shall be no less than 98% pure and shall have a minimum germination rate of 90%. Sources of wildflower mixes:
1. “Bloomers”
 Turf Seed
 Hubbard, OR
 (503) 651-2130

2. “Pacific Northwest Wildflower”
 Environmental Seeds
 Lompoc, CA
 (805) 735-8888

3. Pace International LP (a.k.a. Pacific Agro - Nulife)
 P.O. Box 1047
 1601 - 15th Street NW
 Auburn, WA 98071-1047
 (253) 351-6432

4. Protime
 Hobbs & Hopkins, Ltd.
 3964 Southeast Ankeny
 Portland, Oregon 97214
 (503) 239-7518

9-14.3 FERTILIZER

Fertilizer shall be a standard commercial grade of organic or inorganic fertilizer of the kind and quality specified herein. It may be separate or in a mixture containing the percentage of total nitrogen, available phosphoric acid and water-soluble potash in the amounts specified. All fertilizers shall be furnished in standard unopened containers with weight, name of plant nutrients and manufacturer's guaranteed statement of analysis clearly marked, all in accordance with State and Federal law.

Acceptable commercial fertilizer may be supplied in one of the following forms:

1. A dry free-flowing granular fertilizer suitable for application by agricultural fertilizer spreader.
2. A soluble fertilizer ground to a fineness that permits complete suspension of insoluble particles in water, suitable for application by power sprayer.
3. A granular or pelleted fertilizer, suitable for application by blower Equipment.

Fertilizer provided for all hydro-seeding applications shall be 10-10-10 construction grade (50% organic) plus micronutrients, applied at a rate that provides 1 pound of nitrogen per 1000 square feet. Secondary fertilizer applications shall be 3-1-2 construction grade (50% organic) plus micronutrients, applied at a rate to provide 2 pounds of nitrogen per 1000 square feet.

Fertilizer for woody plant material shall be 15-22-15 and shall meet the following analysis:
Total Nitrogen (N)
- 4.6% Ammoniacal Nitrogen
- 3.2% Urea Nitrogen
- 3.3% Coated Slow Release Urea Nitrogen
- 2.3% Slowly Available Water Soluble Nitrogen*
- 1.6% Water Insoluble Nitrogen

Available Phosphoric Acid (P$_2$O$_5$)

Soluble Potash (K$_2$O)

Sulfur (S)

Boron (B)

Copper (Cu)

Iron (Fe)

Manganese (Mn)

Zinc (Zn)

15%

22%

15%

4%

0.06%

0.06%

1%

0.15%

0.14%

Derived from urea, sulfur-coated urea, methylene ureas, ammonium phosphate, sulfate of potash, muriate of potash, iron sulfate, calcium and sodium borate, copper oxide and sulfate, iron oxide sulfate and frit, manganese oxide and sulfate, zinc oxide and sulfate.

*Slowly available water soluble nitrogen from methylene ureas.

The Contractor shall provide a catalog cut of fertilizer and Manufacturer’s Certificate of Compliance indicating all Specifications are met to the Engineer for approval.

9-14.3(1) LIME

Agricultural lime shall be of standard manufacture, flour grade, meeting the requirements of ASTM C 602.

9-14.4 MULCH AND AMENDMENTS

9-14.4(1) STRAW

All straw mulch Material shall be in an air-dried condition, free of noxious weeds and other materials detrimental to plant life. Straw shall be seasoned before baling or loading and shall be suitable for spreading with mulch blower Equipment.

9-14.4(2) WOOD CELLULOSE FIBER

Wood cellulose fiber mulch shall be specially processed 100 percent virgin wood fiber containing no growth or germination-inhibiting ingredients and shall be dyed a suitable color to facilitate inspection of placement of the Material. It shall be manufactured in such a manner that after addition and agitation in slurry tanks with water, the fibers in the Material become uniformly suspended to form a homogenous slurry. When hydraulically sprayed on the ground, the Material shall allow the absorption and percolation of moisture.

Each package of cellulose fiber shall be marked by the manufacturer to show the air dry weight content. The hydro-seeding process shall utilize only 100% virgin wood fiber mulch in which 30% of the fibers shall be 0.15 inches long or longer and which shall have tackifier added to the mulch during the manufacturing process. Tackifier shall be added in accordance with Section 9-14.4(7). Mulch shall be applied at the following rates depending on the slope of the terrain:

1. 35 pounds per 1000 square feet, or 1500 pounds per acre, for areas having zero to 4:1 slope.
2. 50 pounds per 1000 square feet, or 2000 pounds per acre, for areas having between 2:1 and 4:1 slope.
3. 60 pounds per 1000 square feet, or 2500 pounds per acre, for areas having a slope greater than 2:1.

Terrain that is steeper than 2:1, for areas exceeding 10,000 square feet or having a vertical drop greater than 15 feet, shall be treated with a supplemental tackifier in accordance with Section 9-14.4(7).
9-14.4(3) **BARK**

Bark mulch shall consist of Douglas fir, pine, or hemlock bark. It shall be ground so that a minimum of 95 percent of the Material passes through a 1-1/2 inch sieve and no more than 55 percent, by loose volume, passes through a 1/4 inch sieve. The bark mulch shall not contain resin, tannin, or other compounds in quantities that would be detrimental to plant life.

Wood chips salvaged from clearing and grubbing activity *may be* approved as a substitute for bark mulch, if found acceptable by the Engineer prior to application.

9-14.4(4) **FERTILE MULCH**

Description:

A. Fertile mulch shall be a mix of 1/3 composted biosolids and 2/3 composted organic material.
B. Fertile mulch shall be free of weed seed, sticks, roots, trash, and other foreign material.

Quantity Assurance:

A. Biosolids shall be fully composted at an approved facility. Biosolid composting shall meet the requirements of the United States Environmental Protection Agency, Washington State Department of Ecology, and the state and local health departments.
B. Compost shall consist of composted yard debris or organic waste material and shall consist of 100% recycled content. In addition, the organic material shall have the following physical characteristics:

1. Shall be screened using a sieve with openings no smaller than 5/16 inch and no greater than 7/16 inch.
2. Shall pass a standard cress test for seed germination (90% germination compared to standard).
3. Shall have a pH from 5.5 to 7.5.
4. Shall have a maximum electrical conductivity of 3.0 ohms/cm.
5. Shall have a maximum carbon to nitrogen ration of 40:1.
6. Shall be certified by the Process to Further Reduce Pathogens (PFRP) guidelines for hot composting as established by the United States Environmental Protection Agency.

Acceptable products or sources are:

1. “Steerco”
2. “Growco”
3. “Fertil-Mulch”

9-14.4(5) **PEAT**

The peat shall be derived from sphagnum and shall conform to ASTM D 2607 unless otherwise specified. Peat shall be shredded and granulated to pass a 1/2 inch sieve and conditioned in storage piles for at least six months after excavation. The peat shall not contain substances harmful to plant life.

9-14.4(6) **VERMICULITE / PERLITE / PUMICE**

Vermiculite, perlite, or pumice shall be horticultural grade and free of any toxic Materials.

9-14.4(7) **TACKIFIER**

Tackifier used to stabilize mulch shall provide a liquid soil bonding agent which gives immediate erosion protection and remains effective for a minimum of one full year on an undisturbed site.

Tackifier shall not be applied at temperatures below 50°F nor in wet or rainy weather. A minimum of 4 to 6 hours of curing time is required for acceptance of the application.

9-14.4(8) **DECOMPOSED ORGANIC MULCH**

Decomposed organic mulch, or *composted organic Material*, shall be comprised entirely of recycled organic Materials that have been sorted, ground, aerated and aged for a minimum of one year and of which 100% passes a 7/16 inch sieve. The mulch shall have a pH between 5.5 and 7.0 and shall have a carbon to nitrogen ratio...
ratio between 20:1 and 40:1 with a maximum electrical conductivity of 3 ohms/cm. The product shall be tested, and test results shall document specified requirements. The Contractor shall submit at least 2 Working Days in advance, a Manufacturer’s Certificate of Compliance stating all test requirements are met. The product shall be certified free of all plant parasitic organisms, viable weed seeds, heavy metals or parasitic residues.

Decomposed organic mulch quantities exceeding 35 cubic yards shall be tested after incorporation per 8-02.3(4) with testing procedure and correction of deficiencies as described in Section 9-14.1(4).

Decomposed organic mulch for Projects that need less than 35 cubic yards (of the mulch) shall be delivered to the site with a soil fertility and micronutrient analysis from an approved independent Laboratory. Amendments shall be incorporated on site per Section 8-02.3(4) to provide optimum conditions for plant establishment and early growth.

9-14.5 MATTING

9-14.5(1) JUTE MATTING

Jute matting shall be of a uniform open plain weave of unbleached, single jute yarn treated with a fire retardant chemical. The yarn shall be of a loosely twisted construction and shall not vary in thickness by more than 1/2 of its normal diameter. Jute matting shall be furnished in rolled strips approximately 50 yards in length. Matting width shall be 48 inches with an average weight of 0.92 pound per square yard. A tolerance of ±1 inch in width and ±5 percent in weight will be allowed.

Products such as Erosion Control Fabric, ECF, by Hydro-Turf or Soil Saver Textiles by Ludlow, meeting only some of the above Specifications may be used only with the Engineer’s written permission.

9-14.5(2) EXCELSIOR MATTING

Excelsior matting shall be a machine produced mat of wood excelsior covered on one side with a biodegradable plastic netting or twisted paper composition. The Contractor shall submit to the Engineer for approval at least 10 Working Days in advance of proposed Material application, Manufacturer’s Certificate of Compliance stating that the plastic Material(s) are environmentally safe and acceptable. This submittal shall be accompanied by a sample at least 3 square feet in area.

The excelsior matting shall have a minimum dry weight of wood fibers of 0.8 pound per square yard, plus or minus 5 percent. It shall be of uniform thickness, with the fiber evenly distributed over the entire area of the mat.

The width of matting and net shall be a minimum 36 inches, and the rolls shall be approximately 150 feet long.

9-14.5(3) CLEAR PLASTIC COVERING

Clear plastic covering shall meet the requirements of the NBS Voluntary Product Standard, PS 17-69, for polyethylene sheeting having a minimum thickness of 6 mil.

9-14.6 PLANT MATERIALS

9-14.6(1) DESCRIPTION

Seedlings are plants grown from cuttings, seeds, or other approved propagation methods. They do not develop the identifiable appearance characteristic of their species until they are about 3 years old and 24 inches in height.

Live cuttings are freshly cut stems taken from readily rooting species and selected from vigorous two to three-year-old branches. The acceptable range of lengths and diameters of the cuttings shall be as specified in the Contract. The stems shall have clean blunt cuts on the shoot end and diagonal cuts on the rooting end. Cuttings shall be taken from dormant plants and shall not be stored longer than one week except under conditions described in Section 9-14.6(7).

Whips are bareroot, broadleaf trees, generally unbranched and between 2 feet to 6 feet in height. Measurement is by 1-foot height increments.

Broadleaf trees are branched, over 6 feet in height and measured by either caliper or height or both as indicated on the Bid Form.

Coniferous trees are over 2 feet in height and measured in height and occasionally spread.
Shrubs and groundcovers begin to show form characteristic to their normal habit of growth and are measured by height and/or spread.

Container sizes may be specified in addition to other measurements, however, the other measurements shall govern.

9-14.6(2) QUALITY

With the exception of cuttings, all plant Material furnished by the Contractor shall conform to the requirements of the current issue of “American Standard for Nursery Stock,” and, in addition, shall comply with the following provisions:

1. All plant Material shall meet State and Federal requirements with respect to plant health and absence of diseases and insect infestation. Inspection certificates required by law shall accompany each shipment of plant Material and shall be filed with the Engineer. All plant Material specified shall be first-class representatives of their normal species or varieties in healthy growing condition with normal well-developed branch system and vigorous root systems. They shall be free from disease and insect infestation, disfiguring knots, sun-scalds, abrasions of the bark, broken tops, torn roots and any other objectionable features. Large plants cut back to meet specified sizes will not be accepted. All plants shall be nursery grown stock unless otherwise specified. Trees must be self-supporting, with straight trunks and with single straight leaders. Trees having damaged or missing leader, multiple leaders, or “Y” crotches will be rejected. The canopy must be full.

2. Plants shall not have cuts over 3/4 inch diameter which are not satisfactorily callusing over. Leader shall be intact on each plant.

3. Plants furnished in pots or other containers shall be acclimated to outside conditions and equal to field grown stock.

4. Collected plant Material shall conform in quality, size, and grade to standards for nursery stock and shall be listed along with source location for approval at least 5 Working Days in advance of digging by the Supplier or Contractor.

5. Any plant Material that is to be replaced shall be of the same species, cultivar and of equal size to the surviving plant Material.

6. Root balls of plant Materials shall be solidly held together by a fibrous root system and shall be composed only of the soil in which the plant has been actually growing. The ball shall be securely wrapped with non-treated jute burlap or other packing Material not injurious to the plant life. Root balls shall be free of weed or foreign plant growth.

7. Trees intended for installation as street trees shall have been grown with sufficient spacing to allow for symmetrical branch development which reflects the natural characteristics of the species. Trunks shall not be noticeably imperfect in vertical alignment, and there shall be no "included bark" in the crotches between the trunk and side branches.

Container grown plants must be plants transplanted into a container and grown in that container sufficiently long for new fibrous roots to have developed so that the root mass retains its shape and holds together when removed from the container. Plant Material which is rootbound, as determined by the Engineer, will be rejected.

Container sizes for plant Material of a larger grade than provided for in the container grown Specifications of the American Standard for Nursery Stock (A.S.N.S.) shall be determined by the volume of the root ball specified in the A.S.N.S. for the same size plant Material.

All bare root plant Materials shall have a heavy fibrous root system. All plants must be dormant at the time of planting.

Average height to spread proportions and branching shall be in accordance with the applicable sections, illustrations, and accompanying notes of the American Standard for Nursery Stock.

Plants, which have been determined by the Engineer to have suffered damage as the result of girdling of the roots, stem, or a major branch; have deformities of the stem or major branches; have a lack of symmetry; have dead or defoliated tops or branches; or have any defect, injury, or condition which renders the plant unsuitable for its intended use, will be rejected.
9-14.6(3) HANDLING AND SHIPPING

All plant Material shall be dug with care. The root system of all plant Material shall not be permitted to dry out at any time.

Evergreen and deciduous plant Materials shall be furnished balled and burlapped (B&B) unless otherwise specified. Broken or “Made” balls will not be accepted. Balled and burlapped plants shall be handled by the ball of earth and not the plant. Unless otherwise specified, plants may be supplied in suitable containers should the Contractor so desire. Container grown plants shall be well-developed to hold the earth intact after removal from the container without being root bound.

Handling and shipping shall be done in a manner that is not detrimental to the plants.

The nursery shall furnish a notice of shipment in triplicate at the time of shipment of each carload or other lot of plant Material. The original copy shall be mailed to the Engineer, the second copy to the consignee and the third copy shall accompany the shipment to be furnished to the Engineer at the Job Site. The notice shall contain the following information:

1. Name of shipper.
2. Date of shipment.
3. Name of commodity (including all names as specified in the Contract.)
4. Consignee and delivery point.
5. City Contract number.
6. Point from which shipped.
7. Quantity contained.
8. Certificate of grade (statement that Material conforms to the Specifications.)
9. Size (height, runner length, caliper, etc. as required.)
10. Statement of root pruning (date pruned and size of pruning.)
11. Signature of shipper by authorized representative.

To acclimate plant Materials to Northwest conditions, all plant Materials used on a Project shall be grown continuously outdoors north of the 42nd Latitude (Oregon-California Border) from not later than April 1 of the year prior to the time of planting.

All container grown plants shall be handled by the container. Plant Material shall be packed for shipment in accordance with prevailing practice for the type of plant being shipped, and shall be protected at all times against drying, sun, wind, heat, freezing, and similar detrimental conditions both during shipment and during related handling. Where necessary, plant Material shall be temporarily heeled in. When transported in closed vehicles, plants shall receive adequate ventilation. When transported in open vehicles, plants shall be protected by tarpaulins or other suitable cover Material.

9-14.6(4) TAGGING

Plants delivered shall have legible labels attached to each individual plant delivered as a separate unit or to each box, bundle, bale or container containing one or more plants. Labels shall give the necessary detailed information as to horticultural name, size, age, caliper or other data required to identify as conforming to Specifications. When the label is attached to a bundle, box, container, etc., containing more than one plant, information on the label shall show the quantity together with the other required information. Exception: All trees, whether furnished singly or bundled, shall be individually tagged with names, size or caliper, etc., needed as shown above. Contractor may refer to State of Washington Department of Agriculture, Orders 1229 and 1230, Nursery Stock Standards, regarding labeling of plant Material. Plant Material with illegible or missing tags will be rejected by the Engineer. All plants that are patented or trademarked shall have an individual tag on each plant. Plant Material tagged in the field (nursery) by the Landscape Architect shall be delivered with tags in place.

9-14.6(5) INSPECTION

The Contractor shall, as soon as practical, inform the Engineer as to the source of plant Materials for the Project. Approval of plant Material for a Project shall not be considered as final acceptance. The Contractor shall notify the Engineer not less than 48 hours in advance of delivery of plants from the nursery to allow inspection before delivery.

All trees will be inspected by the Engineer at the Project Site prior to planting.
Root condition of plants furnished in containers shall be determined by removal of the plant from the container. Plants not meeting the requirements herein specified shall be immediately removed from the Project and replaced by the Contractor.

Plant Material delivered, inspected and approved for planting shall be planted immediately. Plants not immediately planted by the Contractor may be temporarily stored after receiving approval from the Engineer.

9-14.6(6) SUBSTITUTION OF PLANTS

No substitution of plant Material, species or variety, will be permitted unless evidence is submitted in writing to the Engineer that a specified plant cannot be obtained and has been unobtainable since the Award of the Contract. If substitution is permitted, it can be made only with written approval by the Engineer. The nearest variety, size, and grade as approved by the Engineer shall then be furnished.

9-14.6(7) TEMPORARY STORAGE

Plants stored under temporary conditions shall be the responsibility of the Contractor.

Plants stored in any location for use on the Project shall be protected at all times from extreme weather conditions by insulating the root balls with sawdust, soil, or other approved Material and by keeping the roots moist at all times.

Plant Material delivered and accepted shall be planted immediately. Plants that cannot be planted within 1 Day after arrival shall be “heeled-in” in accordance with accepted horticultural practice, as follows:

1. Bare root plants shall be placed in trenches with roots covered with moist earth, sawdust or other suitable Material. All bare root Material supplied in bundles shall have the bundle broken and the plants placed in the trenches separately.
2. Balled and burlapped plants shall have the root ball protected by moist earth, sawdust or other acceptable Material.
3. Live cuttings may be stored for up to seven Days, provided they are protected against loss of moisture by a six inch thick layer of earth or sawdust, with air allowed to circulate above to prevent fungus growth and ambient temperature kept constant near 40°F. Cuttings taken in November, December or January may be stored if protected by the same atmospheric conditions and if wrapped to produce an airtight condition while temperature is kept between 33°F and 40°F.

9-14.6(8) SOD

Description:
Sod shall be composed of the following:

Turf-type perennial rye grass	50%
Kentucky bluegrass	30% - 40%
Fine fescue	10% - 20%

Approved Varieties:
A. TURF-TYPE PERENNIAL RYE GRASS

Blend must be consist of two or more varieties listed below:

Brightstar	Palmer II	Nighthawk	Prelude II
SR 4200	Prizm	Affinity	Assure
Dimension	APM	Charger	Sherwood
Blazer II	Stallion Sel	Tara	Commander
Saturn	SR 4100	Fiesta II	Birdie II

B. KENTUCKY BLUEGRASS

Blend must consist of two or more varieties listed below:

A-34	Cheri	Merit	Touchdown
Adelphi	Columbia	Parade	Bristol
Baron	Fylking	Shasta	
Bonnie Blue	Majestic	Sydsport	
At least one variety shall be selected from the following list:

<table>
<thead>
<tr>
<th>Cindy Janser Salem Flyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shadow d/Endo Southport Ensylva Barcrown</td>
</tr>
<tr>
<td>Marker Longfellow Weekend Tamara</td>
</tr>
<tr>
<td>Barskol Promormer</td>
</tr>
</tbody>
</table>

All sod shall comply with State and Federal law, including guaranty, with respect to inspection, plant diseases and insect infestation. Sod shipments shall have a certificate of origin and certification of approved treatment when shipment originates in known infected areas.

Sod shall be mature, densely rooted grass composed of equal amounts of two or more approved varieties of turf-type perennial rye grass and fine leafed fescues. Kentucky bluegrass may be included to provide stability for non-netted sod. Sod shall be free of weeds and reasonably free of objectionable grasses. Plastic mesh is not allowed unless otherwise specified. Sod shall be cut to a 1 inch mowing height prior to lifting from the field.

9-14.6(9) RESERVED

9-14.7 STAKES, GUYS, AND WRAPPING

Stakes shall be 2 inch diameter pressure-treated wood stakes, with chamfered tops and 6 inch long conical points. When directed by the Engineer, the Contractor shall be prepared to provide No. 5 deformed steel reinforcing bar as a substitute stake for compatibility with tree grates or similar circumstances.” - Shane) specified by the Landscape Architect at the time of installation. The stakes shall be installed as shown in the Standard Plans or in the Project Manual.

Pre-manufactured adjustable ties shall be made of plastic Material such as No. 2 Chainlock or approved equal.

9-14.8 SHEAR BOARDS

Shear Boards shall be 2 inch x 8 inch x 8 foot non-treated, rough finished lumber.

9-14.9 PAVER BLOCKS AND INTERLOCKING CONCRETE PAVERS

9-14.9(1) PAVER BLOCKS

Paver blocks shall be exposed aggregate concrete of the size indicated on the Drawings. Pavers shall be made from the following mix:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity per cubic yard</th>
</tr>
</thead>
<tbody>
<tr>
<td>gray cement</td>
<td>564 pounds</td>
</tr>
<tr>
<td>5/8 inch minus gravel</td>
<td>2,400 pounds</td>
</tr>
<tr>
<td>building sand</td>
<td>1,030 pounds</td>
</tr>
</tbody>
</table>

A sample of exposed aggregate showing the desired amount of exposure is available at the Seattle Public Utilities’ Materials Laboratory at 707 South Plummer Street.

The Contractor shall provide two sample paver blocks, which are representative of those to be used in the Project, for the Engineer's approval.

Exposed aggregate surface of all concrete paver units shall be sealed with a heavy-duty concrete enamel containing a 10% methylacrylate solution or approved equal. On request by the Engineer, the Contractor shall provide a 1 pint sample of sealant for testing. Sealant Material shall be approved by the Engineer prior to application.

9-14.9(2) INTERLOCKING CONCRETE PAVERS

Interlocking paver blocks shall be “Unistone” regular paver blocks manufactured by Westcon Construction Products Ltd., Olympia, Washington, or an approved equal.

The manufactured product shall meet the following Specifications in color, materials, physical properties configuration, and tolerances:

The color of the unit concrete paver shall be natural conforming to samples available from the Engineer. The nominal dimensions shall be:
9 inches in length
4.5 inches in width
2.375 inches in thickness

The length sides of the paver shall have two projections and two recessions per side. The projection on one side shall correspond to a recession on the opposite side. The projections and recessions shall be 0.375 inches when measured from the extension of the nominal width lines for the length of the paver.

The width sides of the paver shall have one projection and one recession per side. The projection on one side shall correspond to a recession on the other side. The projections and recessions shall be 0.375 inches when measured from the extension of the nominal length lines for the width of the paver.

The top and bottom surfaces shall be flat and parallel. The top side edge shall be chamfered ¼ inch. The sides shall be perpendicular to the top and bottom surfaces. Full size edging pavers shall have one width side flat. ½ size edging pavers shall be ½ the nominal length with one width side flat.

9-14.9(3) CEMENTITIOUS MATERIALS
Materials shall conform to the following:

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement</td>
<td>ASTM C 150</td>
</tr>
<tr>
<td>Blended Cement</td>
<td>ASTM C 595, Type 1S or 1P</td>
</tr>
<tr>
<td>Hydrated Lime</td>
<td>ASTM C 207, Type S</td>
</tr>
<tr>
<td>Pozzolan</td>
<td>ASTM C 618</td>
</tr>
</tbody>
</table>

9-14.9(4) AGGREGATES AND OTHER CONSTITUENTS
Aggregates shall conform to the following, except that grading requirements may not necessarily apply:
Normal weight - ASTM C33, for Concrete Aggregates.
Lightweight - ASTM C331, for Lightweight Aggregates for Concrete Masonry Units.
Air-entraining agents, color pigments, integral water repellents, finely ground silica, etc., shall be previously established as suitable by the Engineer for use in concrete, and shall conform to ASTM Standards where applicable, or shall be shown by test or experience not be detrimental to concrete.

9-14.9(5) PHYSICAL REQUIREMENTS
At the time of delivery to the Project Site, the average compressive strength of test samples shall not be less than 8000 psi with no individual paver unit less than 7200 psi.
The average absorption shall not be greater than 5%, with no individual unit greater than 7%.
The manufacturer shall satisfy the Owner either by proven field performance of the laboratory freeze-thaw test that the paving units have adequate durability when subject to a freeze-thaw environment.
Satisfactory field performance is achieved when units similar in composition and produced by the same manufacturing process exhibit no objectionable deterioration for at least 3 years. The paver units used as the basis for proven field performance shall have been exposed to the same general type of environment, temperature, range, and traffic volume.

When tested in accordance with Section 8 of ASTM C 67-73, Specimens shall not have breakage or, greater than 1.0% loss on dry weight of any individual paver unit when subjected to 50 cycles of freezing and thawing. This test shall be conducted not more than 12 months prior to delivery of units. When tested in accordance with ASTM C 418-76. "Abrasion Resistance of Concrete By Sandblasting," specimens shall not have volume loss greater then 0.915 cubic inch per 7.75 square inch. The average thickness loss shall not exceed 1/8 inch.

9-14.9(6) PERMISSIBLE TOLERANCE IN DIMENSIONS
Length or width of paver unit shall not differ by more than 0.059 inches and heights shall not differ by more than 0.11 inches from the specified dimensions.

9-14.9(7) VISUAL INSPECTION
All paver units shall be sounded and free of defects that would interfere with the proper placing of unit; or impair the strength of the construction. Minor cracks or chippings due to the usual method of manufacture and
customary method of handling shipment and delivery may be allowed subject to the discretion of the Engineer. All rejected paver units shall be replaced.

9-14.9(8) SAMPLING AND TESTING
The Contractor shall submit three (3) samples of the paver unit to the SPU Material Laboratory for approval.

Sample units will be tested in accordance with ASTM C 140.

9-14.9(9) BASE COURSE (6" DEPTH)
The Base Course shall conform to the requirements so Section 9-03.9(3) Crushed Surfacing and shall consist of Mineral Aggregate Type 2, 1-1/4 inch minus crushed rock, as describe in Section 9-03.16. 20% “ISOLITE” CG2 shall be incorporated into the Base Course in paver in areas extending the width of the sidewalk adjacent to tree pits (an 8’ x 7” surface area per pit).

9-14.9(10) TOP COURSE OR KEYSTONE (2” DEPTH)
The Top Course shall conform to the requirements of Section 9-03.9(3) Crushed Surfacing and shall consist of Mineral Aggregate Type 1, 5/8” inch minus crushed rock, as describe in Section 9-03.16. 20% “ISOLITE” CG2 shall be incorporated into the Base Course in paver in areas extending the width of the sidewalk adjacent to tree pits (an 8’ x 7” surface area per pit).

9-14.9(11) LEVELING COURSE
The Leveling Course shall conform to the requirements of Section 9-03.11 Crushed Gravel, as modified herein.

The material shall be 3/8 inch minus chip rock with the following gradations:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 inch</td>
<td>98</td>
</tr>
<tr>
<td>1/4 inch</td>
<td>50 - 90</td>
</tr>
<tr>
<td>No. 4</td>
<td>25 - 55</td>
</tr>
<tr>
<td>No. 6</td>
<td>0 - 20</td>
</tr>
<tr>
<td>No. 10</td>
<td>0 - 10</td>
</tr>
<tr>
<td>No. 40</td>
<td>0 - 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 3</td>
</tr>
</tbody>
</table>

No. 200 sieve size passing shall be brought to the job bagged and dry.

9-14.9(12) BEDDING SAND
The Bedding Sand shall conform to the requirements of Section 9-03.12(6) Washed Sand and Gravel and shall consist of Mineral Aggregate, Type 6, washed sand, as described in Section 9-03.16.

9-14.9(13) JOINT FILLING SAND
The joint filling sand shall have the following grading:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>US No. 8</td>
<td>95 - 100</td>
</tr>
<tr>
<td>US No. 16</td>
<td>60 - 70</td>
</tr>
<tr>
<td>US No. 30</td>
<td>15 - 25</td>
</tr>
<tr>
<td>US No. 50</td>
<td>0 - 5</td>
</tr>
<tr>
<td>US No. 100</td>
<td>0 - 2</td>
</tr>
<tr>
<td>US No. 200</td>
<td>0 - 1</td>
</tr>
</tbody>
</table>

The fracture shall be 100%. This material is crushed sand, available from:
Manufacturers Mineral Company
1215 Monster Road Southwest
9-14.9(14) **EDGING**

Pre manufactured edging shall be Pave Edge, or Bric-edge manufactured by Oly’Ola Sales (1-800-EDGINGS) or approved equal.

9-14.10 **TURF REINFORCEMENT**

Turf reinforcement shall be Riter Ring Grass Grid Blocks or approved equal.

9-14.11 **CEDAR EDGING**

Material for edging shall be 2 inch x 4 inch cedar, construction grade or better with tight knots.

9-14.12 **BOLLARDS**

9-14.12(1) **WOOD BOLLARDS**

Bollards shall be nominal 8 inch x 8 inch, 90 Day stack dry, select Douglas Fir. Bollards shall be pressure-treated (by closed cylinder method) with Pentachlorophenol after cutting and predrilling. Tops and four sides of bollards shall be painted (above the notch) with 2 coats of white marine enamel as manufactured by Inter-Lux or approved equal applied per manufacturer’s recommendations.

All metal parts (bolts, nuts, washers, etc.) shall be hot-dipped galvanized.

9-14.12(2) **CONCRETE BOLLARDS**

Concrete bollards shall be made of Class 5 (3/4) concrete, reinforced with four No. 4 deformed steel bars placed one inch clear below the concrete surface and held in place with No. 8 gauge wire ties. After forms are removed, concrete shall show a smooth dense face. Any surface irregularities showing above grade shall be scraped or stoned off; the surface shall then be washed and a 1:1 mortar shall be brushed on. After the initial set but before the final set, the excess mortar shall be rubbed off using burlap sacking or pieces of carpeting. The bollards shall then be cured by being kept damp with water for not less than 2 Days.

9-14.12(3) **RESERVED**

9-14.12(4) **PADLOCKS FOR REMOVABLE BOLLARDS**

The padlock shall be as manufactured by Best Lock Company, Lock number 2B672 with bronze body, 2 inch stainless steel shackle, and equipped with construction core or approved equal.

9-14.13 **BENCHES**

Benches shall be of the type indicated on the Drawings and as specified in the Project Manual.

9-14.14 **TREE GRATES**

Tree grates shall be manufactured in 2 sections made of gray iron conforming to ASTM A 536, GR80-56-06. Grates shall have a 3/4 inch nominal thickness and cover an area not less than 24 square feet. To accommodate tree growth, the grates shall have 3 or 4 concentric break-out rings measuring from 12 to 28 inches in diameter. Break out rings shall have no more than 6 points of attachment per grate section and shall be scored to allow ease of expansion for tree growth. Grates shall not fail under a wheel load of 4000 pounds except at the break-out rings.

SECTION 9-15 IRRIGATION SYSTEM

9-15.1 **PIPE, TUBING, AND FITTINGS**

9-15.1(1) **GENERAL**

Pipe shall be galvanized iron, PVC, or polyethylene, as specified in the Contract.

9-15.1(2) **GALVANIZED PIPE AND FITTINGS**

Pipe shall be standard weight, hot-dipped galvanized iron or steel pipe, threaded and coupled. Pipe shall meet the requirements of ASTM A 120.
9-15.1(3) POLYVINYL CHLORIDE PIPE AND FITTINGS

PVC pipe upstream of the control valves shall be schedule 40 and conform to all requirements of ASTM D 1785.

PVC pipe downstream of the control valves shall be pressure rated for 200 psi and conform to all requirements of ASTM D 2241, SDR 21.

Fittings shall be of the solvent weld type except where risers, valves, etc., require threaded transition fittings. Fittings shall conform to the requirements of ASTM D 2466.

PVC pipe and fittings shall be non-toxic, free from taste and odor, and self-extinguishing.

Pipe shall be homogenous throughout and free of defects cracks, holes, foreign Materials, wrinkles, dents and blisters.

PVC pipe shall be continuously and permanently marked with the following information: manufacturer’s name, kind of pipe, National Sanitation Foundation (NSF) approval and schedule number.

9-15.1(4) POLYETHYLENE PIPE

Polyethylene pipe shall be Class 80, SDR 15, medium density polyethylene pipe, meet the requirements of ASTM D 2239, conform to U.S. Commercial Standard CS-255, and be National Sanitation Foundation (NSF) approved.

9-15.2 CONTROL TUBING

Control tubing shall be copper refrigerator tubing meeting the current requirements of ASTM Designation B 280 in the size specified on the Drawings. Tubing and fittings shall be capable of withstanding a 300 psi operating pressure, and shall be of the size indicated on the Drawings.

9-15.3 AUTOMATIC CONTROLLERS

Automatic controllers shall be installed on a concrete base. They shall be an electrically timed device for automatically opening and closing control valves for predetermined periods of time and mounted so that all normal adjustments are conveniently located for use by the operator. Controllers shall be enclosed in a weatherproof metal enclosure made from 1/8" thick sheet aluminum alloy 3003-3 and fabricated according to Standard Plan Nos. 507a and 507b. The Contractor shall submit a Shop Drawing of the padlock secured enclosure having a minimum height of 30 inches and sized adequately to hold all specified Equipment. The enclosure shall include a modified free-standing shelf measuring 12 inches x 12 inches x 15 inches high to hold the Controller, and one GFI outlet with 15 amp circuit breaker (10,000 amp AIC) located in the upper right hand corner. All 120 volt wiring shall be behind a dead front panel. The controller shall be solid state and capable of operating the irrigation system as designed and constructed and shall include the following operating features:

1. Each controller station shall be adjustable for setting to remain open for any desired period of time - from five minutes or less to at least one hour.
2. Adjustments shall be provided whereby any number of Days may be omitted and whereby any one or more positions on the controller can be skipped. When adjustments are made, they shall continue automatically within a 14 Day cycle until the operator desires to make new adjustments.
3. Controls shall allow any position to be operated manually both on or off whenever desired.
4. Controls shall provide for resetting the start of the irrigation cycle at any time and advancing from one position to another.
5. Controllers shall contain an on-off switch and fuse assembly.
6. Controller adjustments shall be such that the open cycle may be doubled or repeated not less than 3 times during the complete watering cycle.
7. Controller shall have a power failure cutout.
8. Controller shall be UL approved and marked accordingly.

Contractor shall provide an outdoor rated padlock by Best Manufacturing Company with a removable blue core.

9-15.4 SPRINKLER HEADS

Sprinkler heads shall be of the type, pattern, and coverage shown in the Drawings at rated operating pressure specified, discharging not more than the amount of gallons per minute listed.
Sprinkler heads shall be designed so that spray adjustments can be made by either an adjustment screw or interchangeable nozzles. Watering cores shall be easily removed without removing the housing from the pipe. Sprinkler heads shall be of the style, pattern and coverage shown on the Drawings. Sprinklers shall be designed so that spray adjustments can be made by either an adjustment screw or interchangeable nozzles. Watering cores shall be precision machined for accurate performances and shall be easily removed without removing the housing from the pipe. All turn heads shall be designed with turf flanges having 2 gripping holes to facilitate removal of the head.

Irrigation systems that do not specify precise designation of irrigation head make or model or spacing, require the Contractor to submit the unspecified information to the Engineer for approval. Approval, and request for approval of substitution, will be based on compatibility of Materials with other City-owned systems. The Contractor shall have full responsibility for the design and layout of such systems with regard to efficient and adequate coverage without overspray.

9-15.5 VALVE BOXES AND PROTECTIVE SLEEVES

All automatic control valves, flow control valves, and pressure reducing valves shall be provided with valve boxes. Valve boxes shall be sized as appropriate to allow efficient access to components and approved by the Engineer prior to installation. Valve boxes shall be extendable to obtain the depth required. All manual drain valves and manual control valves shall be equipped with a protective sleeve and cap as shown in the Standard Plans.

9-15.6 GATE VALVES

Gate valves, when called for on the Drawings, shall be heavy duty bronze conforming to the requirements of ASTM B 62. Valves shall be of the same size as the pipes on which they are placed and shall have union or flange connections. Service rating (for non-shock cold water) shall be 300 psi. Valves shall be of the double disk, taper seat type, with rising stem, union bonnet and handwheel. Manufacturer’s name, type of valve and size shall be cast on the valve.

9-15.7(1) MANUAL CONTROL VALVES

Manual valves shall be bronze or brass, angle type with hex brass union. Service rating shall be not less than 150 psi nonshock cold water. Valves shall be designed for underground installation with suitable cross wheel for operation with a standard key. The Contractor shall furnish three suitable operating keys per Contract. Valves shall have removable bonnet and stem assembly with adjustable packing gland and shall house long acme threaded stem to ensure full opening and closing. Valve discs shall be full floating with replaceable seat washers.

9-15.7(2) AUTOMATIC CONTROL VALVES

Automatic remote control valves shall be globe pattern with flanged or screwed connections as required. The valve shall be constructed so as to allow all internal parts to be removable from the top of the valve without disturbing the valve installation. Screwed valves shall be provided with union connections.

Valves shall be of a “normally closed” design and shall be electric solenoid operated, having maximum rating of 6.5 watts utilizing 24 volts AC power. Solenoids shall be directly attached to the valve bonnets or body with all control ports and ports completely internal. Valves shall be of 150 psi brass or bronze, or iron body bronze-mounted combination. The time interval for valve closing operation shall be a minimum of 5 seconds for complete closure at constant rate of closing and a minimum of 3 seconds to completely open at a constant rate of opening. A manual control bleed cock shall be included on the valve to operate the valve without electric current. A manual shutoff stem with cross handle for wrench operation is required for manual adjustment from fully closed to wide open. Once the manual adjustment is set, the valve can be operated automatically in the adjusted position. Water flow shall be completely stopped when the control valve is closed either manually or automatically. Automatic control valves and automatic controllers need not be of the same manufacturer.

All automatic control valves shall be pressure reducing unless otherwise specified.
9-15.7(3) AUTOMATIC CONTROL VALVES WITH PRESSURE REGULATOR

The automatic control valve with pressure regulator shall be similar to the automatic control valve and shall also reduce the inlet pressure to a constant lower pressure regardless of supply fluctuations. The regulator must be fully adjustable.

9-15.8 QUICK COUPLING EQUIPMENT

Quick coupler valves shall have a service rating not less than 125 psi for nonshock cold water. The body of the valves shall be of cast leaded semi-red brass alloy No. C84400 conforming to ASTM B 584. The base of the valve shall have standard female pipe threads. The design of the valve shall be such that it opens only upon inserting a coupler key and closes as the coupler is removed from the valve. Leakage of water between the coupler and valve body when in operation will not be accepted. The base of the valve receiving the coupler shall be designed with double worm slots to allow smooth action in opening and closing of the valve with a minimum of effort. Slots shall be notched at the base to hold the coupler firmly in the open position. Couplers shall be of the same material as the valve body with stainless steel double guide lugs to fit the worm slots. Couplers shall be of one piece construction with steel reinforced side handles attached. All couplers shall have standard male pipe threads at the top. Couplers shall be furnished with all quick coupler valves unless otherwise specified.

9-15.9 DRAIN VALVES

The Contractor shall install a 3/4 inch male automatic ball check drain valve at the low point in the system. The drain valve shall be drained to a pocket containing a minimum of 1/2 cubic yard of coarse gravel or crushed rock (3/8 inch to 3 inches size).

9-15.10 HOSE BIBS

Hose bibs shall be constructed of bronze or brass, angle type threaded to accommodate a 3/4 inch hose connection, and shall be key operated. Design shall be such as to prevent operation by wrench or pliers.

9-15.11 BACKFLOW PREVENTION DEVICES (BPDs)

9-15.11(1) GENERAL

All backflow prevention devices shall be on the current list of the WSDSHS of backflow prevention devices.

9-15.11(1)A ATMOSPHERIC VACUUM BREAKERS

Atmospheric vacuum breakers shall be of a type included in the Washington State Department of Social and Health Services listing of “Acceptable Atmospheric (Non-Pressure) Type Vacuum Breaker,” or other types with IAPMO approval. They shall be installed downstream of the last shutoff valve and a minimum of 6 inches above the highest outlet or overflow level of the irrigation system.

A vacuum breaker shall be attached to each hose bib.

9-15.11(1)B PRESSURE VACUUM BREAKERS

Pressure vacuum breakers shall be of a type included in the Washington State Department of Social and Health Services listing of “Acceptable Pressure Type Vacuum Breaker” or other types with IAPMO or USC approval. They shall be installed a minimum of 12 inches above the highest outlet or overflow level of the irrigation system and located so that adequate room is available for maintenance and testing.

9-15.11(1)C DOUBLE CHECK VALVE ASSEMBLIES (DCVA)

Double check valve assemblies shall be of a type included in the Washington State Department of Social and Health Services listing of “Approved Double Check Valve Assemblies.” Inspection of the installation and the initial test of the unit, to insure proper operation, will be conducted by SPU Water Operations. DCVA’s shall be inspected and tested periodically during the life of the Contract by backflow device testers certified by the Washington State Department of Health. Units found to be defective shall be repaired or replaced.

Installations shall be according to procedures outlined in the current edition of “Accepted Procedure and Practice in Cross-Connection Control Manual,” published by the Pacific Northwest Section, American Water Works Association.
9-15.11(1)D REDUCED PRESSURE PRINCIPLE BACKFLOW PREVENTION DEVICES (RPBD)

Reduced pressure principle backflow prevention devices will be required if fertilizers or other chemicals are to be injected into the irrigation system. These units shall be of a type included in the Washington State Department of Social and Health Services listing of “Approved Reduced Pressure Backflow Devices.” Inspection of the installation and the initial test of the unit, to insure proper operation, will be conducted by SPU Water Operations. RPBD’s shall be inspected and tested periodically during the life of the Contract by backflow device testers certified by the Washington State Department of Health. Units found to be defective shall be repaired or replaced.

Installation shall be according to procedures outlined in the current edition of “Accepted Procedure and Practice in Cross-Connection Control Manual,” published by the Pacific Northwest Section, American Water Works Association.

9-15.11(1)E RESERVED

9-15.12 CHECK VALVES

Check valves shall be heavy duty bronze or steel. The valves shall function by means of a hinged disc suspended from the body and able to close of its own weight. Valves shall be of the size as the pipes on which they are placed, unless otherwise specified, and shall have union or flanged connections. Service rating (for non-shock cold water) shall be 300 psi. Manufacturer’s name, type of valve and size shall be cast on the valve.

9-15.13 PRESSURE REDUCING VALVES

Pressure reducing valves shall have a minimum of 150 psi working pressure with an adjustable outlet range of 20 to 70 psi. The valves shall be factory set as shown in the Drawings.

Pressure reducing valves shall be rated for safe operation at 175 psi nonshock cold water.

9-15.14 THREE WAY VALVES

Three way valves shall be tight closing, three port, ball or plug type, constructed to permit straight through and 90 degree flow only. The valve shall be of bronze or approved corrosion resistant body Materials and shall have a minimum of 150 psi working pressure. The head of the valve, or handle when applicable, shall be permanently marked to indicate port position. Whenever handles are included as an integral part of the valve, the Contractor shall remove the handles and give them to the Engineer for ultimate distribution to the Maintenance Division.

9-15.15 FLOW CONTROL VALVES

Valve body Materials shall be plastic or metal. Internal parts shall be stainless steel. Valves shall be factory set to design flows. Valves shall have no external adjustment and be tamper proof when installed. One-quarter inch and smaller flow control valves shall have a minimum pressure absorption range of 2 to 32 psi. One and one half inch and larger flow control valves shall have a minimum pressure absorption range of 3 to 50 psi.

Flow shall be controlled to 5 percent of design volumes.

9-15.16 AIR RELIEF VALVE

The air relief valve shall automatically relieve air and break a vacuum in the serviced pipe. Body Materials shall be installed exactly at all high points.

9-15.17 ELECTRICAL WIRE

Wire from controller to valves shall be #14 UF direct burial (UL approved), red or black for the hot side, white for neutral (solid copper). The auxiliary wires, where required, shall be any third color (except green). UF and UL designations shall be clearly marked on the insulation jacket of all wires.

9-15.18 DETECTABLE MARKING TAPE

Detectable marking tape shall consist of inert polyethylene plastic that is impervious to all known alkalis, acids, chemical reagents, and solvents likely to be encountered in the soil, with a metallic foil core to provide the most positive detection and pipeline locators.
The tape shall be color coded and shall be imprinted continuously over its entire length in permanent black ink. The message shall convey the type of line buried below and shall also have the word “Caution” prominently shown. Color coding of the tape shall be as follows:

<table>
<thead>
<tr>
<th>Utility</th>
<th>Tape Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Blue</td>
</tr>
<tr>
<td>Sewer</td>
<td>Green</td>
</tr>
<tr>
<td>Electrical</td>
<td>Red</td>
</tr>
<tr>
<td>Gas-Oil</td>
<td>Yellow</td>
</tr>
<tr>
<td>Telephone-CATV</td>
<td>Orange</td>
</tr>
</tbody>
</table>

The width of the tape shall be as recommended by the manufacture for the depth of installation.

9-15.19 SLEEVE
Pipe sleeves shall be PVC schedule 40. Sizes and installation shall be in accordance with the Drawings and Standard Plans.

Conduit shall meet the requirements of Section 9-34.

SECTION 9-16 FENCE AND GUARDRAIL

9-16.1 CHAIN LINK FENCE AND GATES

9-16.1(1) GENERAL
All Material used in the construction of chain link fence and gates shall be new. Iron or steel Material shall be galvanized unless specified otherwise. Imperfectly galvanized Material or Material upon which serious abrasions of galvanizing occur will not be acceptable.

The base Material for the manufacture of steel pipes used for posts, braces, top rails, and gate frames shall conform to the requirements of ASTM Designation F 1083. The base Material for the manufacture of steel H columns shall meet the requirements of ASTM Designation A 663 or A 675.

Roll-formed posts, braces, and rails shall be made from sheet steel and shall conform with the details as shown in the Drawings or Standard Plan No. 450b. The Material for end, corner, and pull posts shall have a minimum yield strength of 35,000 psi. The minimum yield strength for Alternate A roll-formed line posts shall be 40,000 psi and for Alternate B roll-formed line posts 45,000 psi. Top rail and braces to be used with Alternate A or B line posts shall conform to the minimum yield strength as required for either post respectively.

All posts, braces, top rails, and gate frames shall be hot-dip galvanized. They shall have a minimum average of 1.8 ounces zinc coating per square foot of surface area with no individual test being below 1.6 ounces zinc coating per square foot of surface area. In the case of members made from pipe, this area is defined as the total area inside and outside. A sample for computing the average weight of coating is defined as a 12 inch piece cut from each end of the galvanized member. Fittings shall be galvanized in accordance with the requirements of ASTM F 626. Other Materials shall be galvanized in accordance with the requirements of ASTM A 153.

9-16.1(2) POSTS
All posts for chain link fence shall be of the shape, size, and weight per foot shown in Standard Plan No. 450b. Roll-formed end, corner, and pull posts shall be made from 0.1345 inch minimum thickness sheet steel and shall have integral fastening loops to connect to the fabric for the full length of each post. Roll-formed line posts shall be made from 0.110 inch minimum thickness sheet steel for Type 3 and Type 4 fences and shall be made from 0.120 inch minimum thickness sheet steel for Type 1 and Type 6 fences.

An acceptance tolerance for posts for chain link fence allows for deviation from the weight per linear foot specified in the Standard Plans. This tolerance shall be applied on an individual post basis and shall be plus or minus 5 percent for tubular and H-section posts and plus or minus 6 percent for roll form sections. Materials that exceed the weight per foot or wall thickness Specification may be accepted, providing they do not interfere with the proper construction of the fence.
9-16.1(3) TOP RAIL, BRACES, AND TRUSSES

Top rail and compression braces shall be of the type and size shown in Standard Plan No. 450b. Tension truss rods shall be 3/8 inch round galvanized rods with drop forged turnbuckles, or other approved type of adjustment. Couplings for tubular sections shall be outside sleeve type and at least 6 inches long. Roll-formed top and brace rails shall be made from 0.0747 inch thick sheet steel and shall be an open rectangular section with internal flanges. The acceptable thickness tolerance for sheet steel members shall be plus or minus 0.006 of an inch.

9-16.1(4) TENSION WIRE AND ATTACHMENTS

Top and bottom wire shall be 7 gage coil spring steel wire of good commercial quality and shall have a zinc coating averaging 0.8 ounce per square foot of surface area. All tension wire attachments shall be hot-dip galvanized steel unless otherwise specified. Eye bolts shall be 3/8 inch diameter and of sufficient length to fasten to the type of posts used.

9-16.1(5) RESERVED

9-16.1(6) FITTINGS

All fittings and miscellaneous hardware shall be malleable cast iron or pressed steel. Fittings shall be galvanized in accordance with ASTM F 626. Galvanizing of miscellaneous hardware not covered by ASTM F 626 shall be in conformance with ASTM A 153. Fittings for any particular fence shall be those furnished by the manufacturer of the fence.

9-16.1(7) CHAIN LINK FENCE FABRIC

Chain link fabric shall consist of 11 gage wire (0.120 inch diameter) for Types 3, 4, and 6 fence; and 9 gage wire (0.148 inch diameter) for Type 1 fence. The fabric wire may be one of the following Materials provided that only one type shall be selected for use in any one Contract:

- Galvanized steel wire conforming to ASTM A 392.
- Galvanizing shall be Class I performed by the hot-dip process.
- Aluminum coated steel wire conforming to ASTM A 491.
- Class II aluminum wire conforming to 6061-T94 alloy.
- The wire shall be woven into approximately 2 inch diamond mesh.

The width and top and bottom finish of the fabric shall be as shown in Standard Plan Nos. 450a and 450c.

9-16.1(8) FABRIC BANDS AND STRETCHER BARS

Fabric bands shall be 1/8 inch by 1 inch nominal and stretcher bars 3/16 inch by 3/4 inch nominal. Nominal shall be construed to be the area of the cross-section of the shape obtained by multiplying the specified width by thickness. A variation of plus or minus 5 percent from this theoretical area shall be construed as "nominal" size. Both shall be hot-dip galvanized to meet the requirements of ASTM F 626.

9-16.1(9) TIE WIRE

Tie wire shall be 9 gage aluminum wire complying with the ASTM B 211 or 9 gage galvanized wire meeting the requirements of AASHTO M 279. Galvanizing shall be Class 1. Hog rings shall meet the requirements of AASHTO M 279. Galvanizing shall be Class 1.

9-16.1(10) CHAIN LINK GATES

Gate frames shall be constructed of not less than 1-1/2 inch inside diameter hot-dip galvanized pipe with nominal weight of 2.72 pounds per linear foot. The corners of the gate frame shall be fastened together and reinforced with a malleable iron or pressed steel fitting designed for the purpose, or they may be welded. Welding shall conform to the requirements of Section 6-03.3(25). All welds shall be ground smooth and painted with a high zinc dust content paint meeting the requirements of MIL-P-21035. The paint shall be applied in one or more coats to provide a dry film thickness of 3.5 mils minimum.

Cross trussing shall be 3/8 inch galvanized steel adjustable rods.

Chain link fence fabric for filling the gate frame shall meet the fabric requirement specified for chain link fence of the type being furnished.
Each gate shall be furnished complete with necessary hinges, latch, and drop bar locking device designed for the type of gate posts and gate used on the Project. Gates shall have positive type latching devices with provisions for padlocking.

Gate frames constructed of steel sections, other than pipe, that are fabricated in such a manner as to form a gate of equal or better rigidity may be used provided they are approved by the Engineer.

9-16.1(11) MISCELLANEOUS
All concrete shall be Class B as specified in Section 6-02.

9-16.2 WIRE FENCE AND GATES

9-16.2(1) GENERAL
All Materials used in the construction of the wire fence shall be new. All iron or steel Material shall be galvanized. Imperfectly galvanized Material or Material upon which serious abrasions of galvanizing occur shall not be used.

9-16.2(2) STEEL FENCE POSTS AND BRACES
All posts for chain link fence shall be of the shape, size, and weight per foot shown in Standard Plan No. 450b. Roll-formed end, corner, and pull posts shall be made from 0.1345 inch minimum thickness sheet steel and shall have integral fastening loops to connect to the fabric for the full length of each post. Roll-formed line posts shall be made from 0.110 inch minimum thickness sheet steel for Type 3 and Type 4 fences and shall be made from 0.120 inch minimum thickness sheet steel for Type 1 and Type 6 fences.

Line posts may be channel, T, U, Y, or other approved shape, manufactured solely for use as fence posts. One type of line post shall be used throughout the Project. Line posts shall be studded, slotted, or properly adapted for attaching either wire or mesh in a manner that does not damage the galvanizing of posts, wire, or mesh during the fastening. Line posts shall have a minimum weight of 1.33 pounds per linear foot and shall be provided with a tapered steel anchor plate attached securely having a minimum weight of 0.67 pounds and having a surface area of 20 square inches plus or minus 2 square inches.

End, corner, gate, and pull posts shall meet the requirements specified for line posts, except that the posts shall have a minimum weight of 3.1 pounds per linear foot and anchor plates and special studs, slots, or adaptors for the attachment of wires will not be required.

Braces shall have a minimum weight of 3.1 pounds per linear foot.

All posts, braces, anchor plates, and hardware not covered by ASTM F 626 shall be galvanized in accordance with the requirements of ASTM A 123, or A 153.

A tolerance of minus 5 percent on the weight of individual posts, braces, or anchor plates will be permitted.

9-16.2(3) WOOD FENCE POSTS AND BRACES
Douglas fir, Western red cedar, hemlock, or larch shall be used in the construction of wood fence posts and braces. The Material shall be of good quality and approved by the Engineer before use. Peeler cores shall not be used for round posts. Wood fencing Materials shall have sufficient sapwood in the outer periphery to obtain the specified penetration of preservative. Fencing Materials shall be cut to the correct length before pressure treatment.

Line posts shall be 3 inch minimum diameter round posts or nominal 3 inch by 3 inch square sawed posts. If the posts are to be pointed for driving, they shall be pointed before treatment. Line posts shall be at least 7 feet in length.

Pull posts and brace posts shall be 6 inch diameter round posts or nominal 6 inch by 6 inch Material not less than 7 feet in length.

End, gate, and corner posts, and posts at an intersecting fence shall be 6 inch diameter round posts or nominal 6 inch by 6 inch Material not less than 7 feet 10 inches in length.

All sawed posts and timbers shall meet the requirements in the table under Section 9-09.2.

The preservatives used to pressure-treat wood fencing Materials shall meet the requirements of Section 9-09.3.

The retention and penetration of the preservative shall be as follows:
Preservative

<table>
<thead>
<tr>
<th>Preservative</th>
<th>Minimum Retention in Pounds Per Cubic Foot Sawed Posts</th>
<th>Minimum Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creosote</td>
<td>8.00</td>
<td>3/8 inch or 90% of sapwood impregnated</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>0.40</td>
<td>75% of sapwood impregnated</td>
</tr>
<tr>
<td>CCA, ACA, or ACZA</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

Braced Wire
- Brace wire shall be 9 gage galvanized wire meeting the requirements of ASTM A 116, galvanizing Class 2.

Staples and Wire Clamps
- The staples used to attach the wire fencing to wood posts shall be galvanized 9 gage, 1-1/2 inches long meeting the requirements of AASHTO M 279, galvanizing Class 1.
- The wire clamps used to attach the wire fencing to steel posts shall be galvanized 11 gage wire meeting the requirements of AASHTO M 279, galvanizing Class 1.

Barbed Wire
- Barbed wire shall conform to the requirements of AASHTO M 280, and shall consist of two strands of 12-1/2 gage wire, twisted with four point 14 gage barbs with the barbs spaced an average of 5 inches apart. Galvanizing shall be Class 2 or 3.

Wire Mesh
- Wire mesh shall conform to the requirements of AASHTO M 279, and shall consist of seven horizontal wires with vertical stays spaced 6 inches apart. The top and bottom wires shall be 10 gage, and the intermediate wires and vertical stays shall be 12-1/2 gage. Galvanizing shall be Class 3. The zinc-coated wire as represented by the test specimens shall be capable of being wrapped in a close helix at a rate not exceeding 15 turns/minute around a cylindrical steel mandrel having a diameter the same as the specimen being tested, without cracking or flaking the zinc coating to such an extent that any zinc can be removed by rubbing with the bare fingers.

Vertical Cinch Stays
- Vertical cinch stays shall be 9-1/2 gage galvanized wire meeting the requirements of AASHTO M 279, except that the minimum weight of zinc coating shall be 0.3 ounce per square foot of uncoated wire surface.

Wire Gates
- Gate frames shall be constructed of galvanized standard weight pipe with a nominal diameter of not less than 1 inch. The pipe shall conform to the requirements of ASTM A 53. Wire gates shall be not less than 48 inches in height and shall be designed to fit openings of the widths called for in the Drawings or as indicated by the Bid items. Each gate shall be provided with two upright braces of the same Material as the frame, spaced at 1/3 points in the gate. All gates shall be provided with adjustable 3/8 inch diameter diagonal truss rods from corner to corner.

- The gate frame shall be provided with wire mesh conforming to the requirements specified in Section 9-16.2(7), except that it shall consist of 10 horizontal wires and have a total width of 47 inches (Design No. 1047-6-12-1/2).

- Each gate shall be furnished complete with necessary hinges and latch designed for use with the type of gate posts used on the Project. The hinges shall be so designed as to be securely attached to the gate post and to enable the gate to be swung back against the fence.

- Double gates shall be hinged in the same manner as single gates and shall be provided with an approved drop bar locking device.
9-16.2(10) MISCELLANEOUS

Bolts, nuts, and hinges used in the construction of fence and gates shall be galvanized in accordance with AASHTO M 232.

All concrete shall be Class B as specified in Section 6-02.

9-16.3 BEAM GUARDRAIL

9-16.3(1) RAIL ELEMENT

The W-beam rail element and backup plates shall consist of 12-gage steel formed into a beam not less than 12 inches wide and 3 inches deep. The thrie beam rail element, backup plates, and the transition sections shall consist of 12-gage steel formed into a beam not less than 20 inches wide and 3 inches deep. Thrie beam for bridge rail retrofit shall consist of 10-gage steel formed into a beam not less than 20 inches wide and 3 inches deep. Terminal sections, except Design F terminal sections, shall consist of 12-gage steel. Design F terminal sections shall consist of 10-gage steel. A tolerance of 3 percent on any dimension of the rail element or Design F terminal section will be allowed. The physical properties of the steel shall conform to AASHTO M 180.

The rail splices shall have a minimum total ultimate strength of 80,000 pounds at each joint.

The 6 inch channel rails and splice plates shall be in conformance with AASHTO M 183. All fabrication shall be complete before galvanizing.

The holes in the plate shall be slotted to facilitate erection and to permit expansion and Contraction. The edges of the rail shall be rolled or rounded so they present no sharp edges. Where the rail is on a curve, the plates at the splice shall make contact throughout the area of splice. When the radius of curvature is less than 150 feet, the rail shall be shaped in the shop.

9-16.3(2) POSTS AND BLOCKS

Posts and blocks may be of creosote treated timber, pentachlorophenol treated timber, waterborne chromated copper arsenate (CCA), ammoniacal copper arsenate (ACA), ammoniacal copper zinc arsenate (ACZA), treated timber or galvanized steel; except only treated timber posts and blocks may be used for weathering steel beam guardrail. Except for anchor assemblies, all posts for any one Project shall be of the same type. Posts and blocks shall be of the size and length shown in WSDOT Standard Plan Nos. C-1 and C-1a and meet the requirements of these Specifications. Post and block may be S4S or rough sawn.

Timber posts and blocks shall conform to the grade specified in Section 9-09.2, except pine lumber No. 1 grade may be used for the blocks. Timber posts and blocks shall be fabricated as specified in the Drawings before being treated. Timber posts and blocks shall be treated by the empty cell process to provide a minimum retention, depending on the treatment used, according to the following:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creosote oil</td>
<td>8 lbs. pcf of lumber</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>0.40 lbs. pcf of lumber</td>
</tr>
<tr>
<td>CCA</td>
<td>0.40 lbs. pcf of lumber</td>
</tr>
<tr>
<td>ACA</td>
<td>0.40 lbs. pcf of lumber</td>
</tr>
<tr>
<td>ACZA</td>
<td>0.40 lbs. pcf of lumber</td>
</tr>
</tbody>
</table>

Treatment shall be in accordance with Section 9-09.3.

Steel posts, blocks, and base plates, where used, shall conform to AASHTO M 183, and shall be galvanized in accordance with AASHTO M 111. Welding shall conform to Section 6-03.3(25). All fabrication shall be completed prior to galvanizing.

Timber posts shall be square, 8 inches by 8 inches S4S and shall conform to the grade specified in Section 9-09. The posts shall be shaped as shown on the WSDOT Standard Plans before being treated.

9-16.3(3) GALVANIZING

Beam rail elements and terminal sections shall be galvanized in accordance with AASHTO M-180, Class A, Type 2, except that the rail shall be galvanized after fabrication, with fabrication to include forming, cutting, shearing, punching, drilling, bending, welding, and riveting. In addition, the minimum average weight of zinc coating shall be 2 ounces per square foot of surface (not sheet), the average to be determined on the basis of three individual tests, no one of which may be less than 1.8 ounces per square foot of surface (not sheet). The aluminum content of the zinc bath during actual galvanizing operations shall not exceed 0.01 percent. Channel
rails, splice plates, WF steel posts, and base plates shall be galvanized in accordance with ASTM A 123. Anchor cables shall be galvanized in accordance with Federal Specification RR-W-410, Table II, galvanized at finished size. Bolts, nuts, washers, plates, rods, and other hardware shall be galvanized in accordance with ASTM A 153.

9-16.3(4) HARDWARE

Bolts, unless otherwise specified, shall comply with ASTM A 307 Grade A Specifications. Nuts shall comply with ASTM A 563 Grade A Specifications. Washers, unless otherwise specified, shall meet ASTM F 844 Specifications. The Contractor shall submit a Manufacturer’s Certificate of Compliance for the bolts, nuts, and washers prior to installing any of the hardware.

9-16.3(5) ANCHORS

All Materials shall be in accordance with these Specifications and WSDOT Standard Plan Nos. C-6 through C-6e.

Welding shall conform to Section 6-03.3(25).

All welding shall be equal in strength to the parent metal.

All fabrication shall be complete and ready for assembly before galvanizing. No punching, drilling, cutting, or welding will be permitted after galvanizing unless authorized by the Engineer.

The anchor plate assembly and eye bolt for Type 1 anchor shall develop a minimum tensile strength of 40,000 pounds. The eye may be drop forged or formed with a full penetration weld and shall develop 100 percent of the rod strength.

The anchor plate, W8 x 17 and metal plates shall be fabricated of steel conforming to the Specifications of ASTM A 36.

Anchor cable for Type 1, 4 and 5 anchors shall be 3/4 inch performed, 6 x 19 wire strand core or independent wire rope core (IWRC), galvanized, right regular lay manufactured of improved plow steel with a minimum breaking strength of 42,800 pounds. Two certified copies of mill test reports of the cable used shall be furnished to the Engineer.

Swaged cable fittings shall develop 100 percent of the specified breaking strength of the cable.

One swaged fitting attached to 3 feet of cable shall be furnished to the Engineer for testing.

The swaged fitting and stud assembly shall be of steel conforming to the requirements of American Iron and Steel Institute C-1035 and shall be annealed and galvanized suitable for cold swaging.

Welded wire fabric for Type 1 anchor shall conform to ASTM A 185.

All metal components of the anchor and cable assembly and not less than the top 14 inches of the W8 x 17 for the Type 2 anchor shall be hot-dip galvanized in accordance with Section 9-16.3(3).

Cement concrete of the class specified shall conform to the applicable requirements of Section 6-02.

Cement grout shall consist of one part Portland cement and two parts sand.

9-16.3(6) INSPECTION AND ACCEPTANCE

The Contractor shall give at least 3 Working Days advance notice to the Engineer before the rail elements are fabricated in order that inspections may be provided. The Contractor shall arrange for all facilities necessary for the inspection of Material and workmanship at the point of fabrication of the rail element, and Inspectors shall be allowed free access to necessary parts of the premises.

The Inspector shall have the authority to reject Materials or workmanship which do not fulfill the requirements of these Specifications. In cases of dispute, the Contractor may appeal to the Engineer, whose decision will be final.

The Inspector may accept a mill test report certifying that the steel used in fabricating the rail element meets the requirements of the Specifications. The Owner reserves the right, however, to require the Contractor to furnish samples of the steel proposed for use and to determine to its satisfaction that the steel meets the Specification requirements. Steel rail elements, fittings, terminal section hardware, and bolts may be accepted by the Engineer based on the Manufacturer’s Certification of Compliance.
9-16.4 WIRE MESH SLOPE PROTECTION

9-16.4(1) GENERAL

All metal Material used in the construction of wire mesh slope protection shall be new and galvanized. Imperfectly galvanized Material or Material upon which serious abrasion of galvanizing occurs will not be acceptable.

9-16.4(2) WIRE MESH

The galvanized wire mesh shall consist of No. 9 gage (0.148 inch diameter) commercial quality zinc coated steel wire, 3-1/2 inch x 5-1/2 inch diamond mesh chain link conforming to the requirements of AASHTO M 181. Galvanizing shall conform to the requirements of ASTM A 392 except the weight of zinc coating shall be 0.80 ounce per square foot minimum, of uncoated wire surface. Galvanizing shall be done before weaving.

The wire mesh fabric shall have knuckled selvages.

9-16.4(3) WIRE ROPE

Wire rope shall be 5/8 inch diameter zinc coated steel structural wire rope conforming to the requirements of ASTM A 603, Class A.

9-16.4(4) HARDWARE

All rings shall be drop-forged steel, heat treated after forging. Lightweight wire rope thimbles weighing approximately 13.8 pounds per hundred shall be used with the 1/2 inch diameter wire rope. Wire rope clips may be drop-forged steel or cast steel for use with 1/2 inch wire rope. All rings, thimbles, wire rope clips, and U-bolts shall be galvanized in accordance with AASHTO M 232, Class C, except castings shall be Class A, and forgings shall be Class B.

9-16.4(5) HOG RINGS AND TIE WIRE

Hog ring fasteners and tie wire shall be manufactured of 9 gauge steel wire meeting federal specification QQ-W-461 (AISI numbers 1010 and 1015) finish 5; medium hardness and tensile strength; Class 3 coating.

9-16.4(6) GROUT

When required, grout for anchors shall consist of one part Portland cement and three parts of clean sand. The Portland cement shall conform to the requirements of Section 9-01.2(1).

9-16.4(7) ANCHOR RODS

Anchor rods shall be of good quality steel. The eye may be drop forged or formed with a full penetration weld and shall develop 100 percent of the rod strength. The anchor rod shall be galvanized in accordance with ASTM A 153.

9-16.5 RESERVED

9-16.6 GLARE SCREEN

9-16.6(1) GENERAL

All Material used in the construction of the fence shall be new. Iron or steel Material shall be galvanized or aluminum coated as specified. Imperfectly galvanized or aluminum coated Material, or Material upon which serious abrasions of galvanizing or aluminum coating occur, will not be acceptable.

9-16.6(2) GLARE SCREEN FABRIC

Glare screen fabric shall consist of diamond woven wire mesh. The fabric wire may be 0.148 inch diameter aluminum alloy complying with the Aluminum Association requirements for alloy 6061T94, or it may be 0.148 inch diameter (9 gage) iron or steel wire which shall meet all of the requirements of ASTM A 392 galvanized or A 491 for aluminum coated, except that galvanizing of Type 2 glare screen fabric shall be not less than 0.8 ounce per square foot and shall be done before weaving. Aluminum coating shall be Class II.

Type 1 glare screen mesh size shall be approximately a 1 inch diamond. Type 2 glare screen mesh size shall be a maximum of 3-1/2 inch vertical and 5-1/2 inch horizontal. The design shall permit the slats to be installed in a vertical position as shown in the Standard Plan without distortion of the slats.
9-16.6(3) POSTS

Line posts for Type 1 glare screen shall be 1.5 inches by 1.875 inches hot-dip galvanized steel H column with a minimum weight of 2.8 pounds per linear foot. Line posts for Type 2 glare screen shall be 1.95 inches by 2.25 inches hot-dip galvanized steel H column with a minimum weight of 4.0 pounds per linear foot, or 2 inch inside diameter hot-dip galvanized steel pipe with a nominal weight of 3.65 pounds per linear foot provided only one type shall be used on any one Project.

End, corner, brace, and pull posts shall be 2 inch inside diameter hot-dip galvanized steel pipe with nominal weight of 3.65 pounds per linear foot. Intermediate pull posts (braced line posts) shall be H column as specified for line posts. Brace post sleeves shall be 2-1/2 inch inside diameter hot-dip galvanized steel pipe with nominal weight of 5.79 pounds per linear foot.

The base Material for the manufacture of steel pipes used for posts shall conform to the requirements of ASTM A 53, except the weight tolerance on tubular posts shall be applied as provided below. The base Material for the manufacture of steel H columns shall meet the requirements of ASTM A 663.

Posts provided for glare screen will have an acceptance tolerance on the weight per linear foot, as specified, equal to plus or minus 5 percent for tubular and H-section posts. This tolerance applies to each individual post.

All posts, braces, and top rails shall be hot-dip galvanized. They shall have a minimum average of 1.8 ounces zinc coating per square foot of surface area with no individual test being below 1.6 ounces zinc coating per square foot of surface area. In the case of members made from pipe, this area is defined as the total area inside and outside. A sample for computing the average of weight of coating is defined as a 12 inch piece cut from each end of the galvanized member.

9-16.6(4) TENSION WIRE

Top and bottom tension wire shall be 7 gage coil spring steel wire of good commercial quality and shall have a zinc coating averaging 0.8 ounces per square foot of surface area.

9-16.6(5) CABLE

The tension cable shall be 1/4 inch diameter aluminum coated or hot-dip galvanized, 7 wire strand steel cable conforming to the requirements of ASTM A 474 for aluminum coated or ASTM A 475 for galvanized, High-Strength Grade. Galvanizing shall be Class A.

9-16.6(6) CABLE AND TENSION WIRE ATTACHMENTS

All tension wire and cable attachments shall be hot-dip galvanized steel conforming to the requirements of AASHTO M 232 unless otherwise specified in the Contract. Eye bolts shall have either a Shoulder or a back-up nut on the eye end and be provided with an eye nut where needed or standard hex nut and lock washer and be 5/8 inch diameter for tension cable and 3/8 inch diameter for tension wire and of sufficient length to fasten to the type of posts used. Where the eye bolt is to be installed through a pipe section, two lead washers and one steel washer shall also be provided. Turnbuckles shall be of the shackle end type, 1/2 inch diameter, with standard takeup of 6 inches and provided with 3/8 inch diameter pins. Thimbles shall be light weight wire rope thimbles for use with 1/4 inch diameter cable. Wire rope clips shall have a U-bolt diameter of 5/16 inch for use with 1/4 inch diameter cable. Anchor shackles shall be 3/8 inch diameter with a minimum distance between eyes of 11/16 inch and a pin diameter of 7/16 inch. Seizing shall be 0.032 inch diameter galvanized annealed iron wire.

9-16.6(7) SLATS

9-16.6(7)A WOOD SLATS

Wood slats shall be 3/8 inch by 2-3/8 inch by the height designation of the fence. Material shall be finished and treated cedar or redwood and shall be free from loose knots, cracks, and other imperfections. A dimensional tolerance of plus or minus 1/16 inch in width or thickness is allowed provided that the maximum space between slats does not exceed 3/4 inch.

9-16.6(7)B PLASTIC SLATS

Plastic slats shall be 3/8 inch by 2-3/8 inch by the height designation of the fence. They shall be manufactured from tubular polyethylene color pigmented Material consisting of high density virgin polyethylene and color pigments, designed to retard ultraviolet penetration. The Material shall have a minimum wall thickness
of .0030 inch plus or minus .0003 and shall remain flexible without distortion and without becoming brittle through a temperature range of -70°F to + 250°F. Tensile strength shall be at least 3600 psi and the melt index shall not exceed 0.25.

Plastic slats shall be retained in place by means of U-shaped retainer members at the bottom and top of the fence. Retainer members shall be of the same Material as the slats.

The color for plastic slats will be approved by the Engineer from samples submitted by the Contractor.

9-16.6(8) FITTINGS
Fittings shall be malleable cast iron or pressed steel and galvanized in accordance with the requirements of AASHTO M 232.

Fittings for any particular fence shall be those furnished by the manufacturer of the fence.

9-16.6(9) FABRIC BANDS AND STRETCHER BARS
Fabric bands shall be 1/8 inch by 1 inch nominal and stretcher bars 3/16 inch by 3/4 inch nominal. Nominal shall be construed to be the area of the cross-section of the shape obtained by multiplying the specified width by thickness. A variation of minus 5 percent from this theoretical area shall be construed as “nominal” size. Both shall be hot-dip galvanized to meet the requirements of ASTM F 626.

9-16.6(10) TIE WIRE
Tie wire shall be 9 gage aluminum wire complying with the ASTM B 211 for alloy 1100-H14 or 9 gage galvanized wire meeting the requirements of ASTM F 626. Galvanizing shall be Class 1.

9-16.7 ROCK PROTECTION FENCE

9-16.7(1) GENERAL
All steel Materials used in the construction of the fence shall be new and galvanized. Post and braces shall be galvanized in accordance with requirements of ASTM A 53. Fittings, attachments, and hardware shall be galvanized in accordance with the requirements of ASTM F 626. Imperfectly galvanized Material, or Material upon which serious abrasion of galvanizing occurs, will not be acceptable.

9-16.7(2) POSTS
Fence posts for position A shall be 2 inch inside diameter hot-dip galvanized steel pipe with a nominal weight of 3.65 pounds per linear foot. Fence posts and braces for position B and C shall be 3-1/2 inch inside diameter hot-dip galvanized steel pipe with a nominal weight of 9.1 pounds per linear foot. The posts shall have a hot-dip galvanized steel post cap securely mounted on the top or shall be capped with 1/4 inch steel plate welded in place to completely close the top of the post. All cutting, welding, and drilling shall be completed before the post is galvanized.

9-16.7(3) CABLE
Cable shall be 3/8 inch diameter, hot-dip galvanized, 7 strand, high strength grade, steel cable conforming to the requirements of ASTM A 475. Galvanizing shall be Class A.

9-16.7(4) HOOK BOLTS AND OFFSET BLOCKS
Each post for position A shall have a hook bolt for suspending the cable. Each post for position B and C shall have a hook bolt and offset block for suspending the cable at the post. The hook bolts shall conform to the dimension shown in the Standard Plan and be manufactured of 1/2 inch diameter structural grade steel and hot-dip galvanized after bending and threading. Offset blocks shall be to the dimensions shown in WSDOT Standard Plan No. D-8 and manufactured of gray iron casting AASHTO M 105 and shall be hot-dip galvanized after complete fabrication.

9-16.7(5) HOG RING FASTENERS
Hog ring fasteners shall be 9 gage steel wire with galvanizing in conformance with AASHTO M 279, Class 1.

9-16.7(6) SPRING ANCHORAGE ASSEMBLIES
Spring anchorage assemblies shall be constructed at both ends of each run of rock protection fence and at intermediate points if the run exceeds 1,000 feet in length. The anchorage assembly shall consist of anchor,
anchor rod, anchor spring, turnbuckle, wire rope clips, and wire rope thimble. The Contractor shall have the option of furnishing either cast iron or cement concrete anchors. Concrete anchors may be precast or cast in place. Disc anchors shall be an 18 inch grey iron casting AASHTO M 105. The anchor rod shall be manufactured of 3/4 inch merchant quality hot-rolled carbon steel conforming to ASTM A 575 and shall be hot-dip galvanized after cutting and threading. The anchor spring shall be a helical steel spring meeting the requirements of ASTM A 125. The spring shall have a free length of approximately 9 inches with a 1-1/8 inch pitch and shall develop a minimum compressed strength of 6,000 pounds. The spring holder shall consist of cast iron spring washer, 1 inch thick steel plate, four 3/4 inch bolts, and a 3/4 inch eye and bolt turnbuckle with 8 inch take-up all dimensioned and assembled as shown in the Standard Plans. Wire rope clips shall have a diameter of 7/16 inch for use with 3/8 inch diameter cable. Thimbles shall be light weight wire rope thimbles for use with 3/8 inch diameter cable.

9-16.7(7) CHAIN LINK FENCE FABRIC

Chain link fabric shall consist of 9 gage galvanized steel wire conforming to ASTM A 392. Galvanizing shall be Class I and done after weaving. It shall be woven into approximately 2 inch diamond mesh. The fabric wire shall be furnished in roll widths of 8 feet for position A and 12 feet for positions B & C. The chain link fence fabric shall be finished with a knuckled selvage at the top and bottom.

9-16.7(8) POST ANCHOR RODS FOR POSITIONS B AND C

Post anchor rods for fence positions B and C shall be manufactured of 3/4 inch merchant quality hot-rolled carbon steel conforming to ASTM A 575 and shall be hot-dip galvanized after cutting, forging, bending, and threading. The dimensions shall be as shown in WSDOT Standard Plan No. D-8 except the length of the rod shall be designated by the Engineer for each individual location as dictated by the slope at that location.

9-16.8 WEATHERING STEEL BEAM GUARDRAIL

9-16.8(1) RAIL AND HARDWARE

Steel for rail elements and terminal sections shall conform to ASTM A 606 or ASTM A 607. Bolts, nuts, and washers for installation of the weathering steel shall be manufactured from steel conforming to ASTM A 242 and shall not be galvanized. If required, 6 inch channels and fittings shall conform to ASTM A 242. In addition, all steel for the guardrail components shall conform to one of the following chemical compositions, percent (ladle):

<table>
<thead>
<tr>
<th>Composition</th>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Cu</th>
<th>Cr</th>
<th>Ni</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>0.12</td>
<td>0.20 to 0.50</td>
<td>0.07 to 0.15</td>
<td>0.05</td>
<td>0.25 to 0.75</td>
<td>0.25 to 0.55</td>
<td>0.30 to 1.25</td>
<td>0.65 Max.</td>
<td></td>
</tr>
<tr>
<td>No. 2</td>
<td></td>
<td>0.12 Max.</td>
<td>0.50 to 1.00</td>
<td>0.12 Max.</td>
<td>0.05 to 0.90</td>
<td>0.20 to 0.50</td>
<td>0.50 Max.</td>
<td>0.40 to 1.00</td>
<td>1.00 Max.</td>
</tr>
</tbody>
</table>

Blast cleaning or pickling to remove mill scale will not be required. All fabricated steel parts shall be handled with care to avoid gouges, scratches, and dents. The steel shall be kept clean of all foreign Material, such as paint, grease, oil, chalk marks, crayon marks, concrete spatter, or other deleterious substances. Natural oxidation of the steel will not be considered foreign Material. Storage in transit, in open cars and trucks, for an extended period will not be permitted. Steel parts stored outside in yards or at Job Sites shall be positioned to allow free drainage and air circulation.

9-16.8(2) ANCHORS

Guardrail anchors may either be furnished as provided in Section 9-16.3(5) or they may be nongalvanized and fabricated from steel conforming to ASTM A 242 with the exception that all Type 1 anchors shall have galvanized cable and fittings as specified in Section 9-16.3(5).

SECTION 9-17 FLEXIBLE GUIDE POSTS

9-17.1 GENERAL

Flexible guide posts shall be made of a flexible, nonwarping, nonmetallic, durable plastic Material; shall be resistant to damage due to impact, ultraviolet light, ozone, hydrocarbons, and other effects of atmospheric
weathering; shall resist stiffening with age; and shall be designed for a minimum life equaling 60 months of outdoor service.

The post system shall be designed for permanent installation to resist overturning, twisting, and displacement from wind and impact forces.

Each flexible guide post shall be permanently identified with the manufacturer’s name, the month and year of fabrication and a mark indicating the recommended burial depth. The letters shall be solvent resistant, a minimum of 1/4 inch in height, and permanently affixed to the post unless otherwise specified, the color of the guide post shall be white or brown as indicated on the Drawings. Guide post length shall be in accordance with Section 8-10.3.

The reflective panel on a flat or elliptical guide post shall have a minimum width of 3 inches facing traffic. The reflective sheeting shall have a minimum area of 24 square inches (3 inches by 8 inches). The reflective panel on a round guide post shall have a 9 inch minimum band of reflective sheeting visible for 360 degrees.

9-17.2 LABORATORY TESTS
Ten guide posts of each model shall be conditioned in an oven for two hours at 120°F, plus or minus 3 degrees. After conditioning, the guide post shall be bent backwards at 90 degrees from the vertical to simulate a field impact. The guide post shall, without cracking, recover to within 10 degrees of its original position within five minutes. Color shall remain unchanged. Any appreciable change in color, cracking on more than one face, or not returning to within 10 degrees of vertical, is considered a failure. At least 70 percent of the posts must pass to be considered for preapproval.

The same ten guide posts tested for heat resistance shall be tested for cold resistance. The guide posts shall be conditioned for 24 hours at -20°F, ± 3°F, then subjected to the same testing as for heat resistance. The guide posts shall conform to the same cracking, color, and recovery standards as for heat resistance. At least 70 percent of the posts must pass to be considered for preapproval.

Three guide posts of each model shall be subjected to deflection testing. The guide posts shall be fixed near the base in such a way that 4 feet of the post is cantilevered. The guide posts shall then be loaded 1/2 inch from the free end until collapse is observed. (Collapse is defined as the point at which the guide post can no longer resist any further loading.) The stress at collapse shall be calculated as follows:

\[P = K \left(\frac{Q}{b} \right) \]

Where:

- \(P \) is the equivalent stress in pounds per square foot.
- \(Q \) is the load at collapse in pounds.
- \(b \) is the post width (diameter of major axis) in inches.
- \(K \) is constant equal to 6 inches per square foot.

The value of \(P \) shall be no less than 3.43 pounds per square foot for round guide posts and 5.30 pounds per square foot for flat or elliptical guide posts. Any load below these values or cracking of more than one face of any of the guide posts is considered a failure.

The three guide posts subjected to deflection testing shall be subjected to cyclic loading with an amplitude of 2 inches at the tip, with a cycle testing machine. Each guide post shall be cycled 30,000 times at 60 cycles per minute. When the cyclic tests are completed, the three guide posts shall again be subjected to deflection testing. The average load of the posts after cyclic loading shall be a minimum of 80 percent of the average load of the posts tested before cyclic loading. A value below this limit is considered a failure.

Three guide posts of each model shall be subjected to a 5.5-pound deflection test. The guide posts shall be fixed near the base in such a way that 4 feet of the post is cantilevered. The guide post shall then be loaded 1/2 inch from the free end with a 5.5-pound weight. A deflection greater than 29 inches is considered a failure.

A 9 inch specimen from the unreflectorized portion of each of three guide posts shall be prepared. The specimens shall be cycled at 1000 hours in a weatherometer in accordance with ASTM G 53 (3 hr. 60C UV, 3 hr. 50C CON). The specimens shall show no signs of delamination, distress, or discoloration. Physical properties of tensile strength and rigidity shall be maintained within 80 percent of the unconditioned values.
SECTION 9-17 FLEXIBLE GUIDE POSTS

9-17.3 FIELD TESTS

Ten guide posts of each model, supplied in accordance with Section 9-17.4, shall be installed by the manufacturer’s representative at the SPU Materials Laboratory designated test site. Anchoring Materials shall be driven such that the anchor is flush with, or below, the ground level. The test temperature shall be at or below 50°F.

The ten guide posts shall be struck seven times at 35 mph, then two times at 55 mph, by a car or equivalent hood and bumper device with an 18 inch height. After each impact, the delineators shall be inspected for the following criteria:

1. A minimum of 50 percent of the reflective sheeting shall be retained undamaged. An area of damage greater than 50 percent is considered a failure.
2. If the guide post leans more than 10 degrees from vertical it is considered a failure.
3. Any cracking, other than surface cracking evident on only one face of the post, is considered a failure.
4. Pullout in excess of 3 inches is considered a failure.

If an individual guide post fails any one of the above criteria in the 35 mph series of impacts, the product is unacceptable. At least 70 percent of the guide posts must pass each criteria in the 55 mph series of impacts to be acceptable.

9-17.4 APPROVAL

The Contractor shall submit a Manufacturer’s Certificate of Compliance stating all materials meet or exceed Contract requirements.

SECTION 9-18 PRECAST TRAFFIC CURB AND BLOCK TRAFFIC CURB

9-18.1 PRECAST TRAFFIC CURB

9-18.1(1) AGGREGATES AND PROPORTIONING

The cement, fine and coarse aggregate, and reinforcing steel to be used in the manufacture of precast concrete traffic curb shall meet the following requirements:

1. Aggregates shall conform to the requirements of Section 9-03 except that they shall be uniformly graded up to a maximum size of 3/8 inch and shall contain sufficient fine fractions to permit securing the type of surface finish specified herein. The aggregate shall be approved by the SPU Materials Laboratory before it is used.
2. Reinforcing steel shall conform to the requirements of Section 9-07.
3. The cement concrete mix shall be composed of not less than 1 part Portland cement to approximately 2 parts of fine aggregate and 3-1/4 parts of coarse aggregate adjusted to secure proper workability. The Contractor will be allowed to use a different concrete mix if approved by the Engineer, provided that it develops not less than 4,000 psi compressive strength when tested at the age of 28 Days.

9-18.1(2) MIXING

The mixers shall be kept in good repair and shall be equipped with an automatic timing device, and a positive device for regulating the quantity of water added to each batch. The latter device must be approved by the Engineer before use.

After all Materials, including water, have been placed in the mixer, the Materials shall be mixed for a period of not less than 1-3/4 minutes, or as long as necessary to produce a uniform concrete mix. No water shall be added to any batch after completion of the mixing period. Each batch of concrete shall be completely emptied from the mixer before placing more Materials in it. A batch which has not been placed within 30 minutes from the time water was first added shall not be used.

The amount of water in the concrete shall be kept to a minimum, consistent with the manufacture of a dense mix, free from air bubbles and surface defects in excess of the tolerance limits specified.
9-18.1(3) FORMS
Forms for precast traffic curbs shall be steel or special concrete mold. The use of forms or molds made of plaster of paris, wood, or other absorptive Material will not be permitted.

Bulkheads shall be tight fitting so that there is no leakage of mortar between the bulkhead and form. The Materials and methods used for lubricating the forms shall be such that they do not result in discoloration of the curb at any time. A minimum quantity of lubricant shall be used and all excess lubricant shall be removed.

9-18.1(4) PLACING CONCRETE
The concrete shall be consolidated by external vibration, or by other means if approved by the Engineer, to produce a dense concrete throughout, having a minimum of air bubbles and honeycombing.

Reinforcing steel shall be placed and maintained in its proper position as shown in the Standard Plans. Curb or buttons shall not be manufactured in an atmospheric temperature of less than 50°F.

9-18.1(5) REMOVAL OF FORMS
The curb shall be removed from the molds or forms with the instructions or by some other method acceptable to the Engineer.

The loosening of the curb from the molds shall be carefully performed to avoid excessive shock and straining of the curb. When, in the opinion of the Engineer, undue shock is required to remove the curb from the molds, the stripping operation shall be deferred until such time as the curb may be removed without breakage.

9-18.1(6) CURING CONCRETE
Immediately after the concrete has been placed and consolidated in the mold, each unit shall be placed in a curing room fitted with water sprays and maintained at a relative humidity of not less than 90 percent and a temperature of not less than 60°F, nor more than 100°F. Each unit shall remain in the curing room for a period of not less than 10 Days, except that if Type III cement is used, the period in the curing room may be reduced to 5 Days.

9-18.1(7) FINISH
The curb shall have a smooth, glassy finish on all exposed surfaces.

Excess honeycombing in the back of the curb may be cause for rejection of the curb. Honeycombing areas in the back of the curb which, in the opinion of the Engineer, are not detrimental to the curb need not be patched. The workmanship of the bottom finish shall be such that no mechanical interlocking of the mortar bed and the curb bottom or anchor groove occurs.

9-18.1(8) SURFACE TREATMENT
As soon as the units have been taken out of the curing room and thoroughly surface dried to a depth of at least 1/4 inch, two coats of a water-repellant compound, meeting the requirements of Section 9-18.4, shall be brush applied. When the first coat has dried, the second coat of water-repellent compound shall be applied.

9-18.1(9) DIMENSIONS AND SHAPE
The curb shall conform to the dimensions and shape shown in the Drawings within a tolerance of 1/4 inch in length and 1/8 inch in alignment.

9-18.1(10) CURB LENGTHS
Curb shall be made in pieces not less than 3 feet nor more than 6 feet in length, except when A-block or C-block curbs are specified. Circular curbing shall be made only for such radii as called for in the details on the Drawings.

9-18.1(11) DEFECTIVE CURB
Not more than 2 percent of the top area in any one piece of curb shall be defective, and not more than 5 percent of the total length of the top corners of reflecting faces in any one piece of curb shall be broken or rounded. There shall be not more than 30 air holes in any linear foot of curb nor more than 50 in any 3 linear feet of curb. All curb having defects in excess of any of the above will be rejected immediately upon inspection after removal from the forms. However, failure to reject the curb at that time will not ensure its final acceptance.
percent of the curb laid shall not have more than 10 percent of the maximum allowable number of defects specified above.

An air hole shall be defined as any hole 1/8 inch or larger in diameter or depth.

All defects within the limits permitted, apparent upon removal of forms, shall be repaired immediately.

The sum of the length of the lines of discoloration caused by a cracked mold in any one piece of curb shall not exceed 50 percent of the length of the curb, and the maximum length of any single line of discoloration shall not exceed 18 inches. 75 percent of the curb laid shall be entirely free from lines of discoloration. The employment of heat to obliterate lines of discoloration will not be permitted. The process used to obliterate lines of discoloration shall be subject to the approval of the Engineer.

The repairing of molds which are chipped or broken shall be done in a manner that the broken or chipped areas are not apparent on the curb made in those molds.

All curb in which surface checking develops during the first five Days after manufacture will be rejected.

Hidden air holes at or immediately below the exposed surface of the curb which are in excess of the limits specified and are disclosed by testing the surface by means of a rubber hammer, will be cause for rejection of the curb.

All curb in which cracking is in evidence immediately after removal from the molds will be rejected. A crack is defined as any continuous separation of the concrete greater than 3 inches in length.

All curb which varies in dimensions, alignment, or surface contour in excess of the tolerance specified will be rejected.

Failure to comply with Standard Plan No. 413, Specifications, Drawings, or instructions of the Engineer in the manufacture and laying of any curb will be cause for rejection of such curb.

9-18.1(12) REPAIRING CURB

Curb having defects which are not sufficient cause for its rejection shall be neatly repaired immediately after removal from the molds in a manner subject to the approval of the Engineer. However, no patching or other repairs shall be made without the permission of the Engineer. Patches shall be undercut if, in the opinion of the Engineer, this operation is necessary to achieve a satisfactory patch.

All holes larger than 1/16 inch diameter in the exposed surface of acceptable curb or buttons shall be filled with cement mortar.

9-18.1(13) IDENTIFICATION MARKING

The date of manufacture, the length, and identification number corresponding to the detail layout shall be marked in black paint on the back or end of each piece of curb.

Rejected curb shall be marked on the back or end surfaces in a practical and semi-permanent manner to identify each cause of rejection.

9-18.1(14) SHIPPING

No unit of curb shall be shipped from the manufacturing plant prior to 21 Days after manufacture, except that if Type III cement has been used, the units may be shipped 14 Days after manufacture.

9-18.1(15) SAMPLING AND INSPECTION

The Contractor shall submit, for the approval of the Engineer, an advance sample of curb which shall be at least equivalent in color, surface texture, and bottom finish to the standard as set forth in these Specifications. No repairing of any kind shall be done on the advance sample. Upon approval, the advance sample shall be stored at the plant or site of manufacture in a location readily accessible to the Inspector where there is adequate daylight for examination. The advance sample shall be protected from damage and discoloration and shall be used as a standard of comparison for color, surface texture, and bottom finish for all curb manufactured. All curb furnished shall be equivalent in the foregoing respects.

The inspection at the plant will be made just prior to shipment, at which time examination will be made of the alignment, contour, color, cracks, surface damage or discoloration, broken corners or edges, and any other defects which may have developed, and to check the Laboratory test reports for strength. However, intermediate inspections may be made to determine surface checking and hidden air holes if it is impractical to examine for these defects at the final inspection.
9-18.2 RESERVED

9-18.3 BLOCK TRAFFIC CURB

In construction of the block traffic curb, the Contractor shall have the option of using either length block shown in Standard Plan No. 414, provided the same length block is used throughout the entire Project.

The curb units shall be made from Portland cement and high quality sand and gravel, the proportions of which shall be left to the discretion of the producer as long as the unit develops a minimum compressive strength of 1,600 psi at 28 Days when tested for end loading.

The proportions of sand, gravel, and cement, the type of forms used, and the method of compacting the concrete in the forms shall all be such that as dense, smooth, and uniform a surface as is practicable for a concrete masonry unit is obtained on the finished curb units. The faces that are to be exposed shall be free from chips, air holes, honeycomb, or other imperfections, and cracks shall be tight, with the following exceptions: not more than 5 percent of each curb unit contains cracks, contains small chips which are not larger than 1/4 inch in any dimension, and air holes which are not larger than 1/4 inch in diameter or depth. The units used in any contiguous line of curb shall have approximately the same color and surface characteristics.

9-18.4 WATER-REPELLENT COMPOUND

The water-repellent compound shall be a clear, penetrating type, silicone resin base compound containing no filler or other Material which leaves a film on the surface of the masonry after it is applied, and bonds securely to the masonry. It shall be of such consistency that it can be applied readily by brush or spray to the masonry at atmospheric temperature down to minus 20°F.

The average absorption of three test specimens treated with the water-repellent compound, when tested in accordance with the methods used in the SPU Materials Laboratory shall not exceed 2 percent after being partially immersed in water for 72 hours immediately after curing.

The average moisture vapor transpiration (breathing) of three test specimens, when tested in accordance with the methods used in the SPU Materials Laboratory, shall be not less than 50 percent at seven Days.

The water-repellent compound shall be approved by the SPU Materials Laboratory before it is used.

9-18.5 SODIUM METASILICATE

Sodium metasilicate shall comply with ASTM D 537.

SECTION 9-19 PRESTRESSED CONCRETE GIRDERs

9-19.1 AGGREGATES AND PROPORTIONING

The concrete for prestressed girders shall have the minimum compressive strengths as specified on the Drawings. Aggregates used in the mix shall conform to the following:

Coarse aggregate shall be in accordance with Section 9-03.1(4), and fine aggregate shall be in accordance with Section 9-03.1(2), Class I or Class II. The manufacturer may revise the grading of the coarse aggregate provided that the concrete mix design is qualified with the modified gradation.

The Contractor shall submit for approval a proposed mix design for each design strength. Included shall be evidence satisfactory to the Engineer that the proposed mix design meets design requirements. Approval of the mix design will not preclude any requirements for the concrete placed in the girders.

The concrete mix shall be prepared and placed in accordance with the appropriate sections of Section 6-02.

Water used in mixing the concrete shall conform to the requirements of Section 9-25.1.
Cement shall conform to the requirements of Section 9-01.
Chemical admixtures shall conform to the provisions of Section 9-23.7.
The total chloride ion (C1-) content of the mixed concrete, expressed as a percent by mass of cement, shall not exceed 0.06 percent.

9-19.2 REINFORCEMENT

Reinforcement shall meet the requirements of Section 9-07 and shall be placed in accordance with the requirements of Section 6-02.3(24).

SECTION 9-21 PLASTIC TRAFFIC BUTTON AND LANE MARKERS

9-21.1 PLASTIC TRAFFIC BUTTON AND LANE MARKER TYPE 1

9-21.1(1) GENERAL

Plastic Traffic Button and Lane Marker Type 1 shall be composed of thermosetting resins, pigments and inert ingredients and shall be of uniform composition throughout. The color shall be yellow or white to correspond to the delineation line color.

9-21.1(2) PHYSICAL AND CHEMICAL PROPERTIES

The traffic buttons and lane markers shall be of uniform composition and free from surface irregularities, cracks, checks, chipping, peeling, spalling, crazing, and other physical defects impairing their appearance, application, or durability.

The molding process shall be such that coarse aggregate particles on the curved surface are covered by not less than 1/16 inch of pigmented material.

The plastic traffic button Type 700C and lane marker Type 1 shall meet the following requirements:

<table>
<thead>
<tr>
<th>Lane Marker/Traffic Button (Description)</th>
<th>Lane Marker Type 1</th>
<th>Plastic Traffic Button Type 700C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>3-7/8 inch to 4-1/8 inch</td>
<td>4 inch x 10 inch ± 1/4 inch</td>
</tr>
<tr>
<td>Weight (pounds)</td>
<td>0.275 min.</td>
<td>1.0 max.</td>
</tr>
<tr>
<td>State Reflectance</td>
<td>80% min.</td>
<td>80% min.</td>
</tr>
<tr>
<td>Impact Resistance (Inch-pounds)</td>
<td>15 min.</td>
<td>15 min.</td>
</tr>
<tr>
<td>Planeness of Base:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concavity (Inches)</td>
<td>0.02 max.</td>
<td>0.125 max.</td>
</tr>
<tr>
<td>Convexity (Inches)</td>
<td>0.05 max.</td>
<td>0.125 max.</td>
</tr>
<tr>
<td>Titanium Dioxide (% by weight)</td>
<td>21 min.</td>
<td>----</td>
</tr>
<tr>
<td>(white only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resin Content (% by weight)</td>
<td>20 min.</td>
<td>20 min.</td>
</tr>
</tbody>
</table>

9-21.1(3) TEST METHODS

Test methods shall be as follows:

1. **Reflectance:** Reflectance will be measured with a photovolt Reflectance Meter or its equivalent by comparing the buttons to a 75 percent brightness standard.

2. **Impact Resistance:** Impact resistance will be measured by allowing a 1 pound steel ball to fall 15 inches (free fall) onto the lane marker, supported by but not bonded to a steel base plate.

3. **Titanium Dioxide Content:** The titanium dioxide content will be determined by ashing representative portions of the lane marker, treating the ash with a boiling \(\text{(NH}_4\text{)}_2\text{SO}_4\cdot\text{H}_2\text{SO}_4 \) solution, filtering, and measuring the absorbance of the filtrate at about 410 millimicrons. Calibration shall be with known samples using ASTM Designation D 921.

4. **Resin Content:** Resin content will be determined by ashing and igniting representative portions of the marker.

Additional information on the test methods is available from the Seattle Public Utilities’ Materials Laboratory.
9-21.2 LANE MARKERS TYPE 2A AND TYPE 2B

The markers shall consist of an acrylic plastic shell filled with a tightly adhering potting compound. The shell shall contain prismatic reflective faces as shown in Standard Plan No. 700 to reflect incident light from opposite directions.

9-21.2(1) PHYSICAL PROPERTIES

The shell shall be molded of methyl methacrylate or acrylonitrile butadiene styrene (ABS).

Filler shall be a potting compound selected for strength, resilience, and adhesion adequate to pass physical requirements as outlined herein.

The outer surface of the shell shall be smooth except for purposes of identification and shall contain methyl methacrylate reflective faces in the color specified. As an option, thin untempered glass may be bonded to the prismatic reflective faces to provide an abrasion resistant surface.

The base of the marker shall be substantially free from gloss or substances that may reduce its bond to adhesive. This shall be done by embedding sand or inert granules on the surface of the potting compound prior to its curing.

The markers shall be fabricated as follows:

<table>
<thead>
<tr>
<th>Lane Marker (Description)</th>
<th>Lane Marker Type 2A</th>
<th>Lane Marker Type 2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions of Plastic Shells</td>
<td>4 inch x 4 inch x 0.65 inch or octagonal w/4 inch across flats</td>
<td>4.7 inch x 2.3 inch x 0.52 inch</td>
</tr>
<tr>
<td>Slope of Reflecting Face</td>
<td>20 deg. to 30 deg.</td>
<td>20 deg. to 30 deg.</td>
</tr>
<tr>
<td>Area of Each Reflecting Surface</td>
<td>3.0 to 3.25 square inches</td>
<td>1.87 square inches</td>
</tr>
</tbody>
</table>

9-21.2(2) OPTICAL REQUIREMENTS

1. Definitions:

 Horizontal entrance angle shall mean the angle plane between the direction of incident light and the normal to the leading edge of the marker.

 Observation angle shall mean the angle at the reflector between observer's line of sight and direction of the light incident on the reflector.

 Specific intensity (S.I.) shall mean candlepower of the returned light at the chosen observation and entrance angles for each foot-candle of illumination at the reflector on a plane perpendicular to the incident light.

2. Optical Requirements: The specific intensity of each crystal reflecting surface at 0.2 degrees observation angle shall be not less than the following when the incident light is parallel to the base of the marker:

<table>
<thead>
<tr>
<th>Hor. Ent. Angle</th>
<th>S.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 degrees</td>
<td>3.0</td>
</tr>
<tr>
<td>20 degrees</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Yellow reflectors shall be not less than 60 percent and red reflectors not less than 25 percent of the above values.

3. Optical Testing Procedure: A random lot of markers will be tested. The markers to be tested shall be located with the center of the reflecting face at a distance of 5 feet from a uniformly bright light source having an effective diameter of 0.2 inch.

 The photocell width shall be 0.05 inch. It shall be shielded to eliminate stray light. The distance from light source center to the photocell center shall be 0.21 inch. If a test distance other than 5 feet is used, the source and receiver dimensions and the distance between source and receiver shall be modified in the same proportion as the test distance.

 Failure of more than 4 percent of the samples shall be cause for rejection of the lot.

9-21.2(3) STRENGTH REQUIREMENTS

Markers shall support a load of 2,000 pounds as applied in the following manner:
1. A marker shall be centered over the open end of a vertically positioned hollow metal cylinder. The cylinder shall be 1 inch high with an internal diameter of 3 inches and wall thickness of 1/4 inch. The load shall be slowly applied to the top of the marker through a 1 inch diameter by 1 inch high metal plug centered on the top of the marker.

2. Failure occurs with either a breakage or significant deformation of the marker at any load of less than 2,000 pounds.

SECTION 9-22 MONUMENT FRAMES AND COVERS

9-22.1 GENERAL
Monument castings shall conform to the requirements of ASTM Designation A 48, Class 30 and shall be free of porosity, shrink cavities, cold shuts or cracks, or any surface defects which would impair serviceability. Repair of defects by welding, or by the use of “smooth-on” or similar Material, will not be permitted. The manufacturer shall certify that the product conforms to the requirements of these Specifications.

A bituminous coating meeting the requirements of Section 9-05 shall be applied to all faces.

Monument castings shall be machine finished or ground on seating surfaces to assure non-rocking fit in any position, and interchangeability. The foundry shall make standard frames and covers available to the Engineer to test fit and seating.

SECTION 9-23 CONCRETE CURING MATERIALS AND ADMIXTURES

9-23.1 SHEET MATERIALS FOR CURING CONCRETE
Sheet Materials for curing concrete shall meet the requirements of AASHTO M 171, Sheet Materials for Curing Concrete, except that only white reflective type shall be used.

9-23.2 LIQUID MEMBRANE-FORMING CONCRETE CURING COMPOUNDS
Liquid membrane-forming compounds for curing concrete shall conform to the requirements of AASHTO M 148 (ASTM C 309) Type 1D or 2, Class A or B, except that the moisture loss when tested in accordance with WSDOT Test Method 814 shall be:

2.5 grams maximum for all applications

Each lot of liquid membrane-forming curing compound shall be sampled at the Project Site and tested for acceptance. Liquid membrane-forming curing compound shall not be used in the absence of satisfactory test results.

9-23.3 RESERVED

9-23.4 RESERVED

9-23.5 BURLAP CLOTH
Burlap cloth shall meet the requirements of AASHTO M 182, Class 4.

9-23.6 AIR-ENTRAINING AND CHEMICAL ADMIXTURES
Admixtures for use in concrete shall meet the following Specifications:

<table>
<thead>
<tr>
<th>Admixture</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air entraining</td>
<td>AASHTO M 154</td>
</tr>
<tr>
<td>Water Reducing</td>
<td>AASHTO M 194 Type A</td>
</tr>
<tr>
<td>Set Retarding</td>
<td>AASHTO M 194 Type B</td>
</tr>
<tr>
<td>Water Reducing/Set Retarding</td>
<td>AASHTO M 194 Type D</td>
</tr>
<tr>
<td>High Range Water Reducing</td>
<td>AASHTO M 194 Type F and G</td>
</tr>
</tbody>
</table>

In addition to the above Specifications, admixtures proposed for use shall contain less than one percent chloride ion (Cl-) by weight of admixture.

Acceptance of admixtures will be based on Manufacturer’s Certificate of Compliance. If required by the Engineer, admixtures shall be sampled and tested before they are used.
The use of calcium chloride will not be allowed.

9-23.7 AIR-ENTRAINING AND CHEMICAL ADMIXTURES FOR PRECAST PRESTRESSED CONCRETE

Air-entraining admixture shall meet the requirements of AASHTO M 154. Acceptance will be on the basis of a Manufacturer’s Certification of Compliance.

If required by the Engineer, the air-entraining admixture shall be sampled and tested by the Materials Laboratory before use.

Chemical admixtures shall conform to the requirements of AASHTO M 194, Type A, B, D, or F. Approval of specific admixture products shall be required as a part of the annual approval of prestressed fabricators. Chloride ion content of chemical admixtures shall not exceed one percent by weight.

Acceptance will be on the basis of a Manufacturer’s Certification of Compliance.

If required by the Engineer, the admixture shall be sampled and tested by the SPU Materials Laboratory before use.

9-23.8 RESERVED

9-23.9 CONCRETE MIXES INCORPORATING FLY ASH

Concrete mixes incorporating fly ash may be utilized for all classes of concrete, unless otherwise noted in the Contract. Mix proportions will be subject to approval by the Engineer and shall be in compliance with the following conditions:

1. Fly ash may be used to replace up to 15 percent of Portland cement at the rate of 1-1/4 pounds fly ash for each pound of Portland cement replaced. In concrete mix designs where a specific cement content is not specified, the fly ash content shall not exceed 15 percent of the total cementitious Material. Cementitious Material shall be the sum of Portland cement plus fly ash.

2. Cement replacement in concrete mixes specifying a cement content shall be subject to strength confirmation testing and approval of the proposed mix by the Engineer for the following classes of concrete:

i. Concrete Class A
ii. Concrete Class B when used in bridges, Culverts, and retaining walls
iii. Concrete Class AX
iv. For these classes of concrete, the Contractor shall design the concrete mix to meet an average 28 Day compressive strength of 1.34 times the minimum ultimate compressive strength shown in Section 6-02.3(2) for concrete plants with a coefficient of variation of 20 percent.
v. For concrete plants with a coefficient of variation other than 20 percent, the required average strength shall be:

vi. \(f'cr = \frac{1}{(1 - 1.28 V)} \times f'c \)

vii. where

- \(f'cr \) = required average 28 Day compressive strength
- \(f'c \) = minimum ultimate compressive strength at 28 Days
- \(V \) = coefficient of variation (CV) expressed as a decimal i.e. CV=20% V=0.20

viii. The required average 28-Day compressive strength will be determined from five 6 inch by 12 inch cylinders tested in accordance with WSDOT test methods 801 and 811.

ix. A CV of 20 percent will be assumed unless the concrete Supplier can justify a lower value.

x. To establish a CV for a concrete plant, a minimum of 30 sets of two cylinder compression test breaks will be required. The cylinders will be 6 inch by 12 inch test specimens and will be made, handled, and stored in accordance with WSDOT Test Method 809 (Method 1) and tested in accordance with WSDOT Test Methods 801 and 811. Each set of two cylinders will be produced from separate batches of production concrete. The Equipment used for the production concrete must be the same as will be used for the proposed class of concrete.
xi. The concrete mix design will be approved by the Engineer and verified by submission of ingredients and testing of specimens made in accordance with this mix design prior to the use on the Project.

3. Cement replacement may be used without strength confirmation testing of the proposed mix for concrete Class C, Class D, and Class DX and Concrete Class B for applications other than those listed in item 2.

4. In making calculations relative to cement factor or allowable water content, the total cementitious Material shall be considered to be the weight of Portland cement, plus the weight of fly ash substituted.

5. All concrete of the same class within a Structure shall contain the same proportion of fly ash.

6. Acceptance of concrete containing fly ash will be on the same basis as for comparable class of concrete without fly ash.

As an alternative to the use of fly ash and cement as separate components, a blended hydraulic cement may be used. Concrete made with blended cementitious Material shall meet the requirements listed below. In addition, the origin and percentage of fly ash shall be certified on the cement mill test certificate. The blended hydraulic cement shall comply with ASTM C-595-83 Type 1P(MS).

Fly ash shall conform to the requirements of ASTM C 618 Class F with optional chemical and physical requirements as set forth in Tables 1A and 2A and with a further limitation that the loss of ignition be a maximum of 1.5 percent.

9-23.10 COLORING AGENT

The coloring agent for matching the color of new concrete to the color of adjacent existing concrete shall be dry lamp black, added to the concrete during mixing in an amount not to exceed 1-1/2 pounds per cubic yard of concrete.

Use of liquid concrete coloring agent will be permitted when approved by the Engineer.

SECTION 9-24 PLASTIC WATERSTOP

9-24.1 MATERIAL

Waterstops shall be fabricated from a plastic compound, the basic resin of which shall be polyvinyl chloride. The compound shall contain such additional resins, plasticizers, inhibitors, or other Material that when the Material is compounded, it shall meet the performance requirements given in this Specification.

Single-pass reworked Material of the same composition generated from the fabricator’s waterstop production may be used. No reclaimed polyvinyl chloride shall be used.

All waterstops shall be molded or extruded in such a manner that any cross section is dense, homogeneous, and free from porosity and other imperfections.

Waterstops shall be symmetrical in shape, nominally 4 inches in width by 3/16 inch thick, and have a minimum of four ribs on each side of the bulb. The bulb thickness and diameter shall be as noted in the Drawings.

9-24.1(1) TESTS OF MATERIAL

The waterstops shall meet all of the physical and other test requirements of this Material as defined in the Corps of Engineers Specifications for Polyvinyl Chloride Water Stop CRD-C572, except that the tear resistance of the Material shall be not less than 160 pounds per inch. The Contractor shall furnish such sample Material as required by the Engineer for the purpose of making tests.

SECTION 9-25 WATER

9-25.1 WATER FOR CONCRETE

Water for use with cement in mortar or concrete shall be reasonably clear and free from oil. It shall not contain chlorides calculated as sodium chloride in excess of 2,500 parts per million, nor sulfates calculated as sodium sulfate in excess of 1,000 parts per million. It shall not contain any impurities in amounts sufficient to cause unsoundness or marked change in time of setting in the cement with which it is mixed, nor a reduction in mortar strength of more than 5 percent compared to the results obtained with distilled water.
The properties enumerated above shall be determined in accordance with AASHTO T 26.

9-25.2 WATER FOR IRRIGATION

Water for irrigation shall not contain dissolved or suspended matter which is harmful to the plant Material on which it is to be used.

SECTION 9-26 EPOXY RESINS

9-26.1 GENERAL

These Specifications cover 2-component epoxy resin systems for bonding plastic concrete or mortar to metal or hardened concrete, or for bonding hardened concrete or other Materials to hardened concrete. Epoxy resins used for patching external concrete shall have a concrete-gray color. The epoxy resin systems shall be furnished in the type, grade, and class as specified according to current ASTM C 881.

9-26.1(1) RESERVED

9-26.1(2) AGGREGATE

Aggregate for epoxy mortar or concrete shall be clean, surface dry and inert (defined as not affecting cure rate or physical properties of the epoxy resin system), and shall be of a quality and gradation suitable for Portland cement mortar or concrete. Sand meeting the requirements of Section 9-03.1(2) will be satisfactory.

9-26.1(3) SAMPLING

A representative sample of each component (one pint of each) shall be taken either from a well-blended bulk lot prior to packaging or by withdrawing thief samples from no less than 5 percent of the containers comprising the lot or shipment. Instead of the foregoing, packaged Materials may be sampled by a random selection of containers of each component from each lot. Samples shall be submitted to the SPU Materials Laboratory.

9-26.1(4) REJECTION

Except as noted otherwise, the entire lot of both components may be rejected if samples submitted for test fail to meet any requirements of this Specification.

9-26.1(5) PACKAGING AND MARKING

9-26.1(5)A PACKAGING

The two components of the epoxy resin system furnished under these Specifications shall be supplied in separate containers which are nonreactive with the Materials contained. The contents of each container shall be such that the recommended proportions of the final mixture can be obtained by combining one container of one component with one container of the other component.

9-26.1(5)B MARKING

Containers shall be identified as “Component A - contains Epoxy Resin” and “Component B - contains Curing Agent” and shall show the type, grade, class, and mixing directions as defined by these Specifications. Each container shall be marked with the name of the manufacturer, the lot or batch number, the date of packaging, and the quantity contained in pounds and gallons.

Potential hazards shall be so stated on the package in accordance with the Federal Hazardous Products Labeling Act and State of Washington, Department of Labor and Industries Regulations for Shipment of Hazardous Products.

9-26.1(6) CERTIFICATION

If requested by the Engineer, the manufacturer of the epoxy resin system shall certify that components A and B meet the requirements of this Specification before a sample will be accepted for testing by the Owner. Such certification shall consist of either a copy of the manufacturer’s test report or a statement of the manufacturer, accompanied by a copy of the test results, that components A and B have been sampled and tested. Such certifications shall indicate the date of testing and shall be signed by an authorized agent of the formulator or manufacturer.
9-26.1(7) ACCEPTANCE

Acceptance of a batch lot or shipment of the Material for use on the Project will be on the basis of Laboratory tests of samples, as specified in Section 9-26.1(3) representing the particular batch or shipment of Materials supplied. These tests will be performed at the SPU Materials Laboratory. A period of 10 Days should be allowed for testing, following receipt of samples by the SPU Materials Laboratory.

9-26.2 ADHESIVE FOR LANE MARKERS

9-26.2(1) DESCRIPTION

The adhesive shall be furnished as two components, each packaged separately. The components shall have the following composition:

<table>
<thead>
<tr>
<th>Package A</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Resin</td>
<td>100.0</td>
</tr>
<tr>
<td>Titanium Dioxide</td>
<td>4.55</td>
</tr>
<tr>
<td>Oleophillic Fumed Silica</td>
<td>2.28</td>
</tr>
<tr>
<td>Talc</td>
<td>37.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package B</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Aminoethyl Piperazine</td>
<td>22.53</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>50.88</td>
</tr>
<tr>
<td>Carbon Black</td>
<td>0.14</td>
</tr>
<tr>
<td>Silica</td>
<td>25.32</td>
</tr>
<tr>
<td>Talc</td>
<td>50.63</td>
</tr>
<tr>
<td>Oleophillic Fumed Silica</td>
<td>2.28</td>
</tr>
</tbody>
</table>

At the time of use, the contents of packages A and B shall be thoroughly dispersed by mixing. One volume or weight of Package A shall be mixed with one volume or weight of Package B until a uniform gray color is achieved. The maximum acceptable variation in mix ratio shall be five from the 50/50 ratio (ranging from 45A + 55B to 55A + 45B). The mix ratio shall be determined by analysis for Nitrogen percentage in the mixed and cured adhesive.

9-26.2(2) RAW MATERIALS

Raw Materials for the adhesive shall meet the following Specifications:

1. Epoxy Resin—Viscosity, 70-100 poise at 25°C; epoxide equivalent 175-200; color (Gardner), 5 maximum; manufactured from epichlorohydrin and bisphenol A. The reactive diluent shall be either butane diol diglycerol ether or para tertiary butyl phenyl/glycidal ether.
2. High purity fumed silica—surface treated with a silicone oil, with the following properties: appearance, fluffy white powder; surface area, N2 B.E.T. method; 100 ± 20 M2/gram; weight percent carbon, 4.5 minimum; ignition loss (dry basis) 2 hours at 1,000°C, 7 maximum; specific gravity, 1.8. Moisture, weight percent, 0.5 maximum.
3. Talc—Percent passing 325 mesh screen, 100 percent; oil absorption in grams/100 g. talc, 28-34; Hegman grind in oil, 3 minimum; purity, 98 percent, talc minimum.
4. N-Aminoethyl Piperazine - COLOR (APHA) 50 maximum; amine value, 1250-1350 based on titration which reacts with 3 nitrogens in the molecule; appearance, clear and substantially free of suspended matter.
5. Nonylphenol - Color (APHA) 50 maximum; hydroxyl number, 245-255; distillation range, degrees C at 760 mm, first drop 295 minimum, 5 percent 298 minimum, 95 percent 325 maximum; water, percent (K.F.) 0.05 maximum.
6. Carbon Black - TT-P-343, Form I, Class B.
7. Silica—percent passing through 325 mesh screen, 98 percent minimum. Average particle size, 7 to 10 microns; oil absorption in grams per 100 g. silica, 25 to 31. Hegman grind, 3 minimum. Purity, 98 percent silica (SiO2) minimum.
9-26.2(3) PHYSICAL REQUIREMENTS OF MIXED ADHESIVE

Mixed adhesive shall be a blend of 1 part of component A and 1 part of component B, as specified in Section 9-26.2(1), and shall meet the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel time (150 g./Batch)</td>
<td>5-10 minutes</td>
</tr>
<tr>
<td>Tensile strength 1/16" film between steel blocks, cured 24 hours at 70°F</td>
<td>1,000 psi (Min.)</td>
</tr>
<tr>
<td>Shore D Hardness</td>
<td>(Cured 24 hrs. at 70°F)</td>
</tr>
<tr>
<td>Tested at 70°F</td>
<td>70 – 80</td>
</tr>
<tr>
<td>Tested at 120°F</td>
<td>(Min.) 30</td>
</tr>
<tr>
<td>Deformation Temp.</td>
<td>(Min.) 120°F</td>
</tr>
<tr>
<td>Viscosity of Mixed Adhesive</td>
<td>1,000 – 2,000 poise</td>
</tr>
</tbody>
</table>

Brookfield to Helipath spindal at 77°F.

9-26.2(4) ACCEPTANCE

Adhesive for lane markers may be accepted by the Engineer based on the Manufacturer’s Certificate of Compliance. The manufacturer shall certify that each batch of adhesive conforms to these Specification.

The lot or batch number shall appear on the certificates, on all samples, and on all lots of adhesives delivered. A one pint sample of the A and B components shall be sent to the SPU Materials Laboratory by the Supplier not less than 10 Working Days before using.

SECTION 9-27 CRIBBING

9-27.1 RESERVED

9-27.2 RESERVED

9-27.3 GABION CRIBBING

9-27.3(1) GABION FABRIC

Gabions may be fabricated from either hexagonal twisted wire mesh or from welded wire mesh. Only one type of mesh and protective coating shall be used throughout a Structure.

Baskets shall be furnished in the required dimensions with a dimensional tolerance of plus or minus 5 percent.

Wire for construction of gabions shall be either galvanized steel wire conforming to ASTM A 641, Class 3, Soft Temper, or aluminized steel wire conforming to ASTM A 809, Soft Temper. The wire shall have a minimum tensile strength of 60,000 psi when tested in accordance with ASTM A 370.

9-27.3(2) GABION BASKETS

Gabion baskets 1 foot or greater in the vertical dimension shall have mesh openings with nominal dimensions not to exceed 4-1/2 inches and the maximum area of any mesh opening shall not exceed 10 square inches.

1. Hexagon Twisted Wire Mesh
 a. Wire for galvanized or aluminized hexagonal twisted wire mesh shall be nominal sized 0.120 inch galvanized steel wire or aluminized steel wire.
 b. Hexagonal wire mesh be formed from galvanized or aluminized wire in a uniform hexagonal pattern with nonraveling double twist. The perimeter edges of the mesh for each panel shall be tied to a selvage wire of the same composition as the body mesh and have a minimum diameter of 0.150 inch so that the selvage is at least the same strength as the body of the mesh.

2. Welded Wire Mesh
 a. Welded wire mesh shall be fabricated from galvanized steel wire having a diameter of 0.106 inch. Wire shall be galvanized prior to fabrication.
 b. Welded wire mesh shall be formed in a uniform square pattern with openings 3 inches by 3 inches with a resistance weld at each connection in accordance with ASTM A 185.
c. If required, a PVC coating shall be fusion bonded onto the welded wire mesh to provide a nominal coating thickness of 0.0216 inch per side with a minimum of 0.0150 inch.

3. PVC Coating (for welded wire mesh only). Acceptance of PVC coating Material shall be by certified test reports of an independent Laboratory. The initial properties of PVC coating Material shall have a demonstrated ability to conform to the following requirements:
 a. Specific Gravity — In the range of 1.2 to 1.4, when tested according to ASTM D 792.
 b. Tensile Strength — Not less than 2,275 psi, when tested according to ASTM D 638.
 c. Modulus of Elasticity — Not less than 1,980 psi at 100 Strain, when testing according to ASTM D 638.
 d. Hardness — Shore “A” not less than 15°F when tested according to ASTM D 2240.
 e. Brittleness Temperature — Not higher than 15°F when tested according to ASTM D 746.
 f. Resistance to Abrasion — The percentage of the mass loss shall be less than 12 percent when tested according to ASTM D 1242, Method B at 200 cycles, CSI-A Abrader Tape, 80 Grit.
 g. Salt Spray Exposure and Ultraviolet Light Exposure – The PVC shall show no effect after 3,000 hours of salt spray exposure according to ASTM B 117. The PVC shall show no effect of exposure to ultraviolet light with test exposure of 3,000 hours using apparatus Type E and 63°C, when tested according to Practice D 1499 and Practice G 23. After the salt spray test and exposure to ultraviolet light as specified above, the PVC coating shall not show cracks, blister, split, nor show a noticeable change of color. In addition, the specific gravity, tensile strength, modulus of elasticity, and resistance to abrasion shall not change more than 6, 25, 25, and 10 percent respectively from their initial values.

9-27.3(3) GABION MATTRESSES

Gabion baskets less than 1 foot in the vertical dimension shall have mesh openings with nominal dimensions not to exceed 3.3 inches, and the maximum area of any mesh opening shall not exceed 6 square inches.

1. Hexagonal Twisted Wire Mesh
 a. Wire for galvanized or aluminized hexagonal twisted wire mesh shall be nominal sized 0.086 inch galvanized steel wire or aluminized steel wire.
 b. Hexagonal wire mesh shall be formed from galvanized or aluminized wire in a uniform hexagonal pattern with nonraveling double twisted. The perimeter edges of the mesh for each panel shall be tied to a selvage wire of the same composition as the body mesh and have a minimum diameter of 0.1062 inch so that the selvage is at least the same strength as the body of the mesh.

2. Welded Wire Mesh
 a. Welded wire mesh shall be fabricated from galvanized steel wire having a diameter of 0.080 inch. Wire shall be galvanized prior to fabrication.
 b. Welded wire mesh shall be formed in a uniform rectangular pattern with openings 1-1/2 inches by 3 inches with a resistance weld at each connection in accordance with ASTM A 185.
 c. If required, a PVC coating shall be fusion bonded onto the welded wire mesh to provide a nominal coating thickness of 0.0216 inch per side with a minimum of 0.0150 inch. The PVC coating shall be in conformance with Section 9-27.3(2).

9-27.3(4) FASTENERS FOR BASKET ASSEMBLY

The lacing wire shall be a nominal sized 0.0866 inch galvanized steel wire or aluminized steel wire. Lacing wire shall have the same coating as the basket mesh.

Spiral binders, if used for joining welded wire panels shall be formed from 0.106 inch nominal diameter steel wire with a 3 inch pitch having the same Specifications and coating as the wire mesh. Lacing wire may be used in lieu of spiral binders.

Alternate fasteners for basket assembly shall remain closed when subjected to a 600 pound tensile force when confining the maximum number of wires to be confined. Installation procedures and test results for Alternate fasteners shall be submitted for approval. Internal connecting wires shall be the same as required for lacing wire.

Alternate stiffeners acceptable to the gabion manufacturer may be used.
9-27.3(5) NONRAVELING CONSTRUCTION

The wire mesh shall be fabricated in a manner to be nonraveling. This is defined as the ability to resist pulling apart at any of the connections forming the mesh when a single strand in a section of mesh is cut.

9-27.3(6) STONE

Stone for filling gabions shall have a Degradation Factor of at least 30. The stone shall be dense enough to pass the unit-weight test described in Section 6-09.3(6)F. Stone shall meet the following requirements for gradation:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8" square</td>
<td>100</td>
</tr>
<tr>
<td>6" square</td>
<td>75-90</td>
</tr>
<tr>
<td>4" square</td>
<td>0-10</td>
</tr>
<tr>
<td>Fracture</td>
<td>75</td>
</tr>
</tbody>
</table>

All percentages are by weight.

SECTION 9-28 SIGNING MATERIALS AND FABRICATION

9-28.1 SIGNS

9-28.1(1) GENERAL

Signs to be mounted on wood utility poles (other than Seattle City Light) and signs installed overhead shall be High Density Overlay plywood. Other signs shall be either High Density Overlay plywood or sheet aluminum.

Parking and pedestrian control signs shall be nonreflectorized. All other traffic signs shall be reflectorized.

STOP and YIELD sign backs and edges shall be painted with one coat of red enamel to match the red on the sign face.

Regulatory and warning signs shall have rounded corners with the exception of STOP signs. All other signs shall have square cut corners. Borders for signs having square cut corners shall have a corner radius approximately 1/8 of the lesser side dimension of the sign up to a maximum radius of 12 inches. For signs with rounded corners, the borders shall be concentric with the rounded corners.

9-28.1(2) PLYWOOD

Plywood signs shall be constructed of High Density Overlay plywood, meeting the requirements of “Products Standard PS 1-83 for Softwood Plywood, Construction and Industrial” published by the Product Standards Section of the U.S. Department of Commerce. The plywood shall be free of contaminants which would adversely affect the application or life of the sheeting to be applied. Face veneers shall be Grade B or better.

Core and crossband veneers shall be solid. Core veneers shall be jointed, and core gaps shall not exceed 1/8 inch in width. The entire area of each contacting veneer surface shall be bonded with a waterproof adhesive that meets the requirements of the U.S. Department of Commerce for exterior type plywood.

The overlay shall be of the high density type. It shall have a minimum weight of 60 pounds per thousand square feet of surface and shall be at least 0.012 inches thick before pressing. The overlay shall have a sufficient resin content to bond itself to the plywood, with a minimum resin content of 45 percent based on the dry weight of the impregnated fiber.

Thickness - Single Panel Plywood Signs:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 18 inches inclusive in width</td>
<td>3/8 inch</td>
</tr>
<tr>
<td>Over 18 inches to 36 inches inclusive in width</td>
<td>5/8 inch</td>
</tr>
<tr>
<td>Over 36 inches in width</td>
<td>3/4 inch</td>
</tr>
<tr>
<td>Overhead signs</td>
<td>3/4 inch</td>
</tr>
</tbody>
</table>

Street designation signs and signs mounted on span wires or mast arms shall have the sign back and edges primed with 1 coat of white exterior enamel undercoat and finished with 1 coat of International Green (Forest Green) exterior enamel. All other plywood signs shall have only the edges primed with 1 coat of white exterior enamel undercoat and finished with 1 coat of white exterior enamel. The primer shall be as
recommended by the Supplier of the finish coat. The finish enamel shall meet the requirements of Federal Specification TT-E-489.

9-28.1(3) SHEET ALUMINUM

Sheet aluminum signs shall be constructed of Material conforming to ASTM B209 alloy 6061T6 or alloy 5052-H36 or H38. Alloy 50D5-H34 may be used for sign refacing.

After the sheeting has been fabricated, it shall be degreased and etched by immersion for a minimum of 5 minutes in a 6 ounce per gallon caustic etch solution at 120°F, followed, in order, by a water rinse, de-oxidation, water rinse, hot water rinse, and drying. The etching process shall produce a dull aluminum finish on both sides of the panel which lasts the life of the sign. The treated panel surface shall be compatible with the sign face sheeting to be applied. The Contractor may use an Alodine 1200 application for single panel signs in lieu of the above treatment. Reflectorized aluminum signs shall be comprised of panels 4 feet or less in width. The Contractor shall use the widest panels possible. Parts necessary for assembly shall be constructed of aluminum. Sheet aluminum thickness shall be 0.080 inch.

Metal shall be protected by handling with a suitable device or with clean canvas gloves between cleaning and etching operations and the application of sign face sheeting.

Sheet aluminum edges shall be filed smooth to eliminate sharp edges and burrs.

9-28.1(4) REFLECTIVE SIGN FACE SHEETING

Reflective sheeting shall consist of spherical lens elements embedded within a transparent plastic or adhered to a synthetic resin and encapsulated by a transparent plastic. The sheeting shall have a flat, smooth outer surface, be weather resistant, and have a pre-coated adhesive backing with a protective liner.

The sheeting shall have the following minimum brightness values expressed as average candle power per foot candle per square foot of Material. Measurements shall be conducted in accordance with standard testing procedures for reflex-reflectors in Federal Specification L-S-300.

The brightness of the reflective sheeting, totally wet by rain, shall be not less than 90 percent of the above values. Wet performance measurements shall be conducted in conformance with the Standard Rainfall Test specified in Federal Specification L-S-300C.

The diffuse Day color of the reflective sheeting shall be visually evaluated by comparison with the applicable Highway Color Tolerance Chart. Color comparisons shall be made under north Daylight or a scientific Daylight having a color temperature of from 6500 degrees to 7500 degrees Kelvin. Color shall be illuminated at 45 degrees and viewed at 90 degrees.

The sheeting surface shall be smooth and facilitate cleaning and wet performance and exhibit 85 degree glossmeter rating of not less than 50 (ASTM D 523). The sheeting surface shall be readily processed and compatible with transparent and opaque process colors and show no loss of the color coat with normal handling, cutting, and application. The sheeting shall permit cutting and color processing at temperatures of 60°F to 100°F and 20 to 80 percent relative humidity.

The sheeting surface shall be solvent resistant such that it may be cleaned with gasoline, VM&P Naptha, mineral spirits, turpentine, methanol, or xylol.

The embedded lens sheeting, when applied according to manufacturer’s recommendations to cleaned and etched 0.020 inch x 2 inch x 8 inch aluminum, conditioned 24 hours, and tested at 72°F and 50 percent relative humidity, shall be sufficiently flexible to show no cracking when bent around a 3/4 inch diameter mandrel. Conditioned for 48 hours, the tensile strength of the embedded lens sheeting shall be 5 to 20 pounds per inch width when tested in accordance with ASTM Designation D 828. Following liner removal, the sheeting shall not shrink more than 1/32 inch in 10 minutes nor more than 1/8 inch in 24 hours in any dimension per 9 inch square at 75°F and 50 percent relative humidity.

The encapsulated lens sheeting, with liner removed, conditioned for 24 hours at 72°F and 50 percent relative humidity, shall be sufficiently flexible to show no cracking when bent around a 1/8 inch diameter mandrel with adhesive side contacting the mandrel. The protective liner attached to the adhesive shall be easily removable by peeling without soaking in water or other solvents.

The pre-coated adhesive backing shall be a tack free heat activated type or a pressure sensitive type, either of which shall adhere to the sheeting without the necessity of additional coats of adhesive.
The adhesive shall form a durable bond to smooth corrosion and weather-resistant surfaces and permit the reflective sheeting to adhere securely 48 hours after application at temperatures of 30°F to 200°F. The adhesive bond shall be sufficient to render the applied sheeting vandal-resistant and prevent its shocking off when jabbed with a spatula at 10°F. The sheeting shall resist peeling from the application surface when a 5-pounds per inch width force is applied as outlined in ASTM Designation D 903.

With Embedded Lens Elements:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silver-White #1</td>
<td>Silver-White #2</td>
<td>Yellow</td>
</tr>
<tr>
<td>-4deg</td>
<td>70.0</td>
<td>30.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>80.0</td>
<td>41.0</td>
<td>4.0</td>
</tr>
<tr>
<td>40deg</td>
<td>14.5</td>
<td>8.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>16.5</td>
<td>9.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>10.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Red</td>
<td>Blue</td>
<td>Green</td>
</tr>
<tr>
<td>-4deg</td>
<td>14.5</td>
<td>7.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>40deg</td>
<td>3.0</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.4</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>1.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orange</td>
<td>Brown</td>
</tr>
<tr>
<td>-4deg</td>
<td>25.0</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.35</td>
</tr>
<tr>
<td>40deg</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

With Encapsulated Lens Elements:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silver White</td>
<td>Yellow</td>
</tr>
<tr>
<td>-4deg</td>
<td>250.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>40deg</td>
<td>120.0</td>
<td>54.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Orange</td>
<td>Green</td>
</tr>
<tr>
<td>-4deg</td>
<td>70.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>40deg</td>
<td>33.0</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Red</td>
</tr>
<tr>
<td>-4deg</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>40deg</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
</tr>
</tbody>
</table>

9-28.1(5) **NON-REFLECTIVE SIGN FACE SHEETING**

The non-reflective sheeting shall consist of a white plastic film having a smooth, flat outer surface. The sheeting shall be weather-resistant and have a protected pre-coated adhesive backing.

9-28.1(6) **SHEETING APPLICATION**

Plywood sign faces shall be cleaned with lacquer thinner, heptane, benzene, or solvent recommended by the sheeting manufacturer. The surface shall be sanded with light sandpaper or steel wool and wiped dry and clean with clean cloth. Aluminum sign faces shall be cleaned with a solvent recommended by the sheeting manufacturer.

Sign face sheeting shall be applied by a vacuum applicator recommended by the sheeting manufacturer, or by a continuous roll applicator.

Heat-activated adhesive backed sheeting shall be applied by the vacuum method. The adhesive on the back of the sheeting shall be activated by a minimum temperature of 185°F and with a minimum vacuum pressure of 25 inches of mercury. This operation shall be in effect for a minimum of 3 minutes on plywood and 5
minutes on metal. After aging for 48 hours at 75°F, the adhesive shall form a bond equal to or greater than the strength of the sheeting.

Pressure sensitive adhesive backed sheeting shall be applied by a continuous roll applicator. The process shall be in conformance with the recommendation of the sheeting manufacturer.

Edges and splices of sign face sheeting shall be coated with an edge sealer recommended by the sheeting manufacturer.

9-28.1(7) LETTERS, ARROWS, AND SYMBOLS

Letters, arrows, and symbols shall be of the type, size, and color specified on the Drawings, in the Specifications or WSDOT Sign Fabrication Manual, and the “Standard Highway Signs” by United States Department of Transportation.

Letters, arrows, and symbols shall be of Material compatible with the sign surface Material, as recommended by the sign surface manufacturer or approved by the Engineer.

9-28.1(8) HARDWARE

Bolts, nuts, and washers shall be of the same Material for each attachment. All parts necessary for assembly shall be constructed of the Materials listed below:

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolts</td>
<td>ASTM B 209 2024-T4 Aluminum</td>
</tr>
<tr>
<td></td>
<td>ASTM A 307 Steel</td>
</tr>
<tr>
<td></td>
<td>ASTM F 593 Stainless Steel</td>
</tr>
<tr>
<td>Washers</td>
<td>ASTM B 209 2024-T4 Aluminum</td>
</tr>
<tr>
<td></td>
<td>AASHTO M 183 Steel</td>
</tr>
<tr>
<td></td>
<td>ASTM A 240 Stainless Steel</td>
</tr>
<tr>
<td>Nuts</td>
<td>ASTM B 209 6061-T6 Aluminum</td>
</tr>
<tr>
<td></td>
<td>ASTM A 307 Steel</td>
</tr>
<tr>
<td></td>
<td>ASTM F 594 Stainless Steel</td>
</tr>
<tr>
<td>Locknuts</td>
<td>ASTM B 211 2017-T4 Aluminum</td>
</tr>
<tr>
<td></td>
<td>ASTM A 307 Steel</td>
</tr>
<tr>
<td></td>
<td>ASTM F 594 Stainless Steel</td>
</tr>
<tr>
<td>Rivets</td>
<td>ASTM B 209 6061-T6 Aluminum</td>
</tr>
<tr>
<td></td>
<td>ASTM B 316 6053-T61 Aluminum</td>
</tr>
<tr>
<td>Post Clips</td>
<td>ASTM B 179 356-T6 Aluminum</td>
</tr>
<tr>
<td>Wind Beams</td>
<td>ASTM B 209 6061-T6 Aluminum</td>
</tr>
<tr>
<td>Angle and Z-Bar</td>
<td>ASTM B 209 6061-T6 Aluminum</td>
</tr>
<tr>
<td></td>
<td>AASHTO M 183 Steel</td>
</tr>
<tr>
<td>Strap and Mounting Bracket</td>
<td>ASTM A 276 Stainless Steel</td>
</tr>
</tbody>
</table>

All steel parts shall be galvanized per ASTM A 123. Steel bolts and related hardware shall be galvanized per ASTM 153.

9-28.2 POSTS

9-28.2(1) WOOD SIGN POST

Wood sign post shall be Standard Grade Western Cedar. The top of each sign post shall be chamfered at approximately 45 degrees. STOP and YIELD sign posts shall be painted with 2 coats of white primer. The first coat shall be quick dry alkyd white primer, meeting the requirements of Federal Specification TT-P-636. The second coat shall be reinforcing white primer, semigloss oil base, meeting the requirements of Federal Specification TT-P-102, Class A. They shall also have alternating 6 inch red and white paint stripes of sash and trim type exterior enamel, as indicated on Standard Plan No. 625 for Wood Traffic Sign Posts.
9-28.2(2) DIRECT BURIAL PARKING METER POST

Direct burial meter post shall be fabricated from standard black iron 2 inch inside diameter pipe or standard ASTM A 53 schedule 40 galvanized pipe, 46 inches in length, and with 3 inches on the bottom flattened. Meter post of black iron shall be primed with rust inhibitive paint and painted with 2 coats of aluminum paint. For details, see Standard Plan No. 629.

9-28.2(3) PARKING METER POSTS, SURFACE-MOUNTED TYPE

Bolted-down parking meter and parking sign posts shall be fabricated from 2 inch nominal diameter standard black pipe or from 2 inch nominal diameter standard ASTM A 53 schedule 40 galvanized steel pipe, 40 inches in length, with 5/16 x 5 x 5 inch ASTM A 36 steel base plate. Canopy shall be made of 6061-T6 aluminum. Direct burial and surface-mounted meter posts used as parking sign posts shall have oak or ash wood finials inserted at the top as specified in Section 8-21.3(2B) and as shown on Standard Plan No. 628.

9-28.2(4) STREET NAME SIGN POST

Street name sign post shall be 2-1/2 inch inside diameter x 10 feet 6 inches standard weight galvanized steel pipe, with the bottom 6 inch end section flattened to form a wedge. For details, see Standard Plan No. 622.

9-29 RESERVED

SECTION 9-29 PAVEMENT MARKING

9-29.1 GENERAL

Materials for Pavement markings shall be paint or plastic Material as specified on the Drawings or in the Project Manual.

9-29.2 PAINT

9-29.2(1) GENERAL

Paint shall comply with Specifications for no heat, instant dry Pavement marking. White sharp sand shall comply with Specifications for E-16 sand.

9-29.2(2) PHYSICAL PROPERTIES OF THE COATING

1. Viscosity (in Krebs Units).
 a. At 70°F - 70-75 KU
 b. At 50°F - 86 KU max.
 c. At 122°F - 66 KU min.
2. Weight per gallon at 70°F.
 a. White 12.00 pounds min.
 b. Yellow 12.10 pounds min.
3. Contract ratio at spread rate of 320 sq. ft. per gallon.
 a. White .92 min.
 b. Yellow .92 min.
4. Daylight reflectance (at 10 mils wet film thickness).
 a. White 86 min.
 b. Yellow 64 min.
5. Non-volatile content (total at 212°F.) - 65% to 68%.
6. Pigment content of total weight - 53% max.
7. Dispersion, Hegman standard gauge - 2 min.
8. Flexibility - Pass 1/2-inch mandrel bend.
9. Dry to no-pick-up (beaded) – 15 to 35 sec.
10. Bleeding over asphalt - 90% min.
11. The Material shall not show evidence of heavy caking or settling which requires mechanical means to return the product to usable condition for a period of one year from the date of manufacture or date first shipped to the Owner.
12. Color - The paint shall match a standard color sample which may be obtained upon application to the SPU Materials Laboratory.
SECTION 9-29 PAVEMENT MARKING

9-29.2(3) TEST METHODS

The properties enumerated in these Specifications shall be determined in accordance with the following methods of test:

4. Daylight reflectance - Federal test method standard 141A, Method #6121 using standards as prescribed in Par. 1.3.2.
8. Flexibility - The paint shall show no cracking, flaking, or loss of adhesion when tested in the following manner:
 9. Apply a wet film thickness of .005 inches with a film applicator to a 3 x 5 tin panel weighing 0.39 to 0.51 lbs. per square foot previously cleaned with benzene and lightly buffed with steel wool. Dry the paint film at 70°F to 80°F. in a horizontal position for 18 hours, then bake in an oven 3 hours at 212°F ± 4°F. Cool to room temperature for at least 1/2 hour and bend over a 1/2 inch diameter rod and examine.
10. Dry to no-pick-up - The reflectorized line, when applied at a rate of 10 mils wet film thickness and 4 pounds of glass spheres per gallon of paint, shall dry to no-pick-up in 15 to 35 seconds. For test purposes, the line shall be applied using a striper with accurate thickness control capable of maintaining a uniform thickness with 4 pounds of glass spheres per gallon either dropped or blown onto the stripe. The line shall be dry to no-pick-up within specified time range when the Pavement temperature is 55°F. or more and the relative humidity is 50 percent or less, providing that the Pavement is dry. Dry to no-pick-up tests will be performed by having a standard size sedan or equivalent test vehicle, coast across the paint stripe (no turning or accelerating). A successful no-pick-up test will be considered one in which at least 3 out of 4 samples show no visible paint from the stripe being tracked onto the adjacent Pavement when viewed standing 50 feet from the point where the test vehicle crosses the stripe. All paint samples shall have successfully completed all lab tests prior to the no-pick-up test being performed. All field testing shall be performed blind in that the persons conducting the field test shall have no knowledge of which sample is from which manufacturer. All testing shall be performed without the manufacturer's representatives present. Each manufacturer will be provided test results for their sample(s) upon request.
11. Bleeding over asphalt - ASTM D 969 using substrate as in Par. 3.2 except reflectance measurement over asphalt paper area is compared to reflectance measurement over taped area.
12. Reflectance over asphalt paper area X 100 = % Bleeding Reflectance over taped area or asphalt.

9-29.2(4) COMPOSITIONAL REQUIREMENTS

1. Pigment Composition: Pigments shall be first quality point grade pigments. Medium chrome yellow for the yellow traffic paint shall meet the requirements of ASTM D 211-67, Type III. The Titanium Dioxide for the white traffic paint shall meet the requirements of ASTM D 476-73 Type II, III or IV. The inert or filler pigments must be of a type and quality generally recognized as first quality paint grade products and shall not contribute to settling of the paint in storage or be so hard as to cause excessive wear of the spray application Equipment.
2. Vehicle or Resinous Binder Composition: The vehicle may be any combination of natural or synthetic resinous Materials. Chlorinated rubber combined with other natural and/or synthetic resins and plasticizers is the preferred system. All resins used must be permanently capable of re-dissolving in the solvent combination used in the paint. Therefore, resins which dry by the process of oxidation and/or polymerization such as alkyd resins are specifically excluded as suitable resinous binders in this Specification. The purpose of the above requirement is to minimize build-up of the paint on the sides of tanks, paint lines, and clogging of spray Equipment from undissolvable skins.
9-29.3 THERMOPLASTIC

One of the following types of thermoplastic Pavement marking Material Types “A” or “B” shall be used at the Contractor’s option and in compliance with the manufacturer’s recommendations:

Type “A”: Hot-laid, liquid thermoplastic Material, containing reflective glass bead (with additional glass beads applied separately), 120 mil (3.0 millimeters) or greater thickness. The approved thermoplastic Material Suppliers are as follows:

1. Lafrentz brand, 125 mil thickness, hot extruded thermoplastic manufactured by Lafrentz Road Services Ltd., Edmonton, Alberta, Canada T6E4N7, or
2. Catatherm ABITOL formulation, 125-mil thickness, hot extruded thermoplastic manufactured by Ferro Corporation, Cataphote Division, P.O. Box 2369, Jackson, Mississippi 39205, or
3. M.I.E. Code #R200/80 formulation, 125-mil thickness, hot extruded thermoplastic manufactured by M.I.E. Industries Ltd., Calgary, Alberta, Canada T2C1N6, or
4. Pave-Mark SD formulation, 125-mil thickness, hot extruded thermoplastic manufactured by Pave-Mark Corporation, Smyrna, Georgia 30081.

Type “B”: Cold-laid, prefabricated glass bead reflective thermoplastic ribbon, 60 mil (1.5 millimeters) or greater thickness. The approved thermoplastic Material Suppliers are as follows:

1. Prismo brand thermoplastic Pavement marking Material, 60 mil thickness (HT60), coated with pressure sensitive adhesive, manufactured by Prismo Universal Corporation, 300 Lanidex Plaza, Parsippany, N.J. 07054, or
2. Prismo brand thermoplastic Pavement marking Material, 90 mil thickness (HT90), coated with pressure sensitive adhesive, manufactured by Prismo Universal Corporation, 300 Lanidex Plaza, Parsippany, N.J. 07054, or
3. 3M, Stamark brand pliant polymer Pavement marking film, 60-mil thickness, coated with pressure-sensitive adhesive, manufactured by 3M Company, 3M Center, St. Paul, Minnesota 55101.

The glass beads shall comply with Specifications for Type II waterproof overlay glass spheres. The skid resistance of the Material when installed on the roadway shall be not less than 40 BPN when tested with a British Portable Tester in accordance with ASTM E 303. Primer, if required, shall be as recommended by the thermoplastic Material manufacturer.

9-29.4 PRESSURE-SENSITIVE TAPE

Pressure-sensitive tape shall be a 4 inch wide, pressure-sensitive, reflective-type tape of the form suitable for marking asphalt and concrete pavement surfaces. Biodegradable tape with paper backing is unacceptable. The following pressure-sensitive tape has been approved as a temporary pavement marking tape:

3-M Scotch name brand Pavement marking tape, coated with pressure-sensitive adhesive, manufactured by 3-M Company, 3-M Center, St. Paul, Minnesota 55101.

Surface preparation and application shall be in conformance with all the manufacturer’s specifications.

SECTION 9-30 WATER DISTRIBUTION MATERIALS

9-30.0 GENERAL

All Materials for water distribution and transmission shall be new, except that Materials used for temporary water mains and temporary service connections may be either new or previously used only on temporary potable water Supplies and shall be subject to Seattle Public Utilities’ Water Operation’s inspection and approval prior to installation.

Prior to ordering any pipe to be used in a potable water supply, the Contractor shall submit the Material source as required by Section 1-06.1 and shall obtain the Engineer’s approval.

All direct and indirect drinking water system components which come in contact with potable water shall have National Sanitation Foundation certification.
9-30.1 PIPE

All pipe and fittings shall be clearly marked with the manufacturer’s name, type, class, and thickness as applicable and shall be marked on the component at the place of manufacture. Marking shall be legible and permanent under normal conditions of handling and storage.

9-30.1(1) DUCTILE IRON PIPE

1. Ductile iron pipe shall be centrifugally cast in 18-foot nominal lengths shall be marked conforming to AWWA C151. Ductile iron pipe shall have a cement-mortar lining conforming to AWWA C104. Ductile iron pipe to be joined using restrained joints shall be Standard Thickness Class 52.

2. Non-restrained joints shall be rubber gasket, push-on type, or mechanical joint conforming to AWWA C111.

3. Restrained joints shall be as specified in Section 9-30.2(6).

4. Coatings, other than those required in item 1 above, shall comply with Section 9-30.1(6).

5. Pipe with threaded flanges shall not be used.

9-30.1(2) RESERVED

9-30.1(3) RESERVED

9-30.1(4) STEEL PIPE

9-30.1(4)A STEEL PIPE LESS THAN 4 INCHES DIAMETER

Steel pipe less than 4 inches in diameter shall conform to ASTM Designation A 53, schedule 40 and shall be hot dip galvanized inside and out, including the couplings. The pipe sections shall be coupled by malleable iron screw coupling in accordance with ANSI Specification B16.3.

9-30.1(4)B STEEL PIPE 4 INCH DIAMETER AND LARGER

Steel pipe 4 inches in diameter and larger shall conform to AWWA C200. The type of protective coating and lining and other supplementary information required by AWWA C204 will be included in the Contract.

9-30.1(5) POLYVINYL CHLORIDE (PVC) PIPE (4 INCHES AND OVER)

PVC pressure pipe shall conform to the requirements of AWWA C900, Class 200 (DR 14). Standard lengths shall be 20 feet (nominal). PVC pipe shall have the same outside dimensions as ductile iron pipe. PVC pipe for distribution pipelines shall be pressure Class 150. The Contractor shall furnish the Engineer a Manufacturer’s Certificate of Compliance that all delivered Materials comply with this Specification. Pipe joints shall be made with a rubber ring and thickened bell. Solvent welded pipe joints will not be permitted. All pipe shall be listed by Underwriters’ Laboratories, Inc.

All PVC pipe shall be considered flexible conduit. Joints shall conform to ASTM D 3139 using a restrained rubber gasket conforming to ASTM F 477.

9-30.1(6) PIPE COATINGS

9-30.1(6)A SPECIAL PIPE COATINGS

Special pipe coatings shall be in accordance with the Contract Document.

9-30.1(6)B MULTI-LAYERED POLYETHYLENE TAPE COATING

Acceptable Suppliers of multi-layered polyethylene tape coating shall be Polyken YGIII as manufactured by Kendall Company, or Tapecoat CT 10/40 W as manufactured by Tapecoat Company, or approved equal. The multi-layered polyethylene tape coating shall conform to AWWA C209 and AWWA C214, and shall meet the following requirements:

1. The multi-layered polyethylene tape coating system shall consist of the following components:
 a. One layer of pipeline coating primer and 20 mil inner wrap.
 b. One layer of pipeline wrap coating, 30 mils minimum thickness.
 c. One additional layer of outer wrap coating, 30 mils minimum thickness.

2. The primer shall be fast drying and shall form an instantaneous, firm bond when the adhesive on the tape coating comes in contact with the primed pipe surface. Coating primer shall be compatible with the adhesive and shall be from the same manufacturer.
3. The inner wrap coating shall consist of polyethylene backing with a butyl-based adhesive laminated to one side of the backing. The polyethylene backing and adhesive shall be made by the calendering process in order to ensure the maximum bonding of the adhesive to the backing. The adhesive shall be formulated so that it forms a firm bond upon contact with the primed pipe surface.

4. The pressure sensitive adhesive outer wrap shall consist of a polyethylene backing with a butyl-adhesive laminated to one side of the backing. The pressure sensitive adhesive on the outer wrap shall form a firm continuous bond to the backing of the tape coating.

5. Cutbacks on the spigot end shall be 6 inches or less and shall be made with a cutting device that is guided from the end of the pipe to ensure a straight, uniform cutback. No cutback shall be made on the bell end of the pipe.

6. Following the application of the outer wrap, the coating shall be electrically tested for holidays with a pulse tape holiday detector. The detector voltage range for this coating is 7000-9800 volts. The testing shall conform to NACE RP-02-74. All defects electrically detected shall be repaired by priming and patching with a suitable primer and tape as specified by the manufacturer and approved by the Engineer.

7. Accessory Tape. Accessory tape for fittings and specials shall be YG III as manufactured by Kendall Co., or approved equal. The accessory tape shall conform to AWWA C209, and shall meet the following requirements:
 a. One layer of pipeline coating primer and 50 mil inner wrap.
 b. One layer of 35 mil outer wrap.

 The primer shall be fast drying and shall form an instantaneous, firm bond when the adhesive on the tape coating comes in contact with the primed pipe surface.

 The pressure sensitive adhesive outer wrap shall consist of a polyethylene backing with a butyl-adhesive laminated to one side of the backing. The pressure sensitive adhesive on the outer wrap shall form a firm continuous bond to the backing of the tape coating.

9-30.1(6)C THERMOPLASTIC POWDER COATING

9-30.1(6)C1 GENERAL

The powdered thermoplastic Material shall consist of acid modified polyolefin elastomer to which any stabilizers, pigments, or other additives necessary to meet the performance requirements of this Specification have been added by extrusion compounding. The thermoplastic powder shall be suitable for factory application by fluid bed dipping, and or elastic/flock deposition method. For on-site application, other application methods such as controlled flame spraying are acceptable of carried out by an approved applicator. When applied to a substrate in accordance with the guidelines agreed by the manufacturers and approved applicators, the powder shall form a coating which meets or exceeds all requirements of this Specification.

9-30.1(6)C2 QUALITY ASSURANCE

Surface preparation, application and curing of powder coating, and testing and touch-up of coating shall be performed procedures.

9-30.1(6)C3 SURFACE PREPARATION

The pipe or valves and fittings shall be prepared for coating in accordance with the SSPC SP10 near white blast with a 2-3 mil profile. After proper surface preparation, the parts shall be kept free from fingerprints, dust, flash rust or other contamination. The coating shall be accomplished within two hours of blasting.

9-30.1(6)C4 APPLICATION OF POWDER COATING

Powder Coating

 PPA 571 thermoplastic powder coating, as manufactured by Plascoat Systems Limited or an approved equal.

Masking

 All masking, where required, shall be done using a high powder coating masking tape.

Preheating
All parts shall be preheated to a maximum temperature of 240°F before coating is applied. A Raytek RAYNGER ST SERIES noncontact infrared temperature measurement tool or similar device shall be used for determining coating temperature. Preheating shall be done using a gas fired convection oven or equivalent.

Coating With Electrostatic Deposition

After the part has been preheated to the 240°F temperature followed by the powder application to the surface of the part using a corona powder coating discharge gun, a negative polarity is required and a voltage of 30kv is recommended. The powder is applied across the total surface of the part, taking care that the powder is applied in a level and homogenous build. The coating shall be applied to a dry film thickness of 25 to 30 mil and be totally free of holidays/pinholes.

It is then necessary to convey the part to the oven which shall be set between 285°F and 385°F in order to complete flowing out of powder.

The coating shall be smooth, even and free of runs, sags, streaks and overspray.

Coating With Fluid Bed Dip System

After the part has been preheated to 240°F, the part is then dipped into a fluidized bed of powder and left for a prescribed time to accomplish a coating thickness of 25 to 30 mil.

The part must be conveyed to the oven for a complete flowing of the powder.

The coating shall be smooth, even and free of runs, sags, streaks and overspray.

9-30.1(6)C5 TESTING

Holidays

After completing the coating process the part must be cooled to ambient temperature and then electrically tested for holidays with a Tinker & Rasor AP/S1 holiday detector or equivalent. The voltage should not exceed 6kv for a 25 mil coating. The testing shall conform to NACE RP-02-74. All defects electrically detected shall be repaired by the following method. Clean the area around the holiday/pinhole using mineral spirits, acetone or alcohol. Immediately after cleaning, heat should be applied to the coating surrounding the pinhole to re-melt and flow the coating over the holiday/pinhole repair.

Thickness

Each coated part must also be tested for thickness; an electronic coating thickness gauge Qua Nix 1500 or equivalent is recommended.

9-30.1(6)C6 FIELD REPAIR AND TOUCH-UP

Repair

Damaged coating or repair of cutback areas may be repaired after proper substrate preparation. Exposed substrate should be thoroughly cleaned of corrosion products and contamination to expose bare metal. Abrasive techniques (wire brush, sandpaper, sandblast, etc.) followed by cleaning with mineral sprits, acetone or alcohol are recommended. Immediately after cleaning heat should be applied to the coating adjacent to the damaged area to re-melt and flow the coating over the damaged area. If required, additional PPA571 powder may be added and melted to insure proper installation of a homogenous protective coating of sufficient thickness.

Major repairs (large areas) may require a Contractor with proper training and Equipment to complete a fault-free field repair. If the Contractor feels that the level of damage is such that a fault-free repair cannot be attained then removal of the damaged item for re-coating should be considered.

9-30.1(6)C7 MATERIAL REQUIREMENTS

Test Conditions

Unless otherwise specified the testing conditions shall be in accordance with ASTM D 3924 at standard Conditions: 73.5°F ±3.5°F, 50% ±5% relative humidity.

Specific Gravity

Specific gravity of the powder thermoplastic coating Material shall be between 0.90 and 0.97. Specific gravity shall be determined in accordance with method B specified in ASTM D 729.
Color

Color of the thermoplastic powder coating shall be specified by the purchaser and evaluated for conformance in accordance with ASTM D 1729.

Flexibility

The thermoplastic powder coating shall exhibit no cracking, peeling, or loss of adhesion when bent (coated side in tension) 180 degrees over a conical mandrel in accordance with ASTM D 522, Test Method B. Panels shall be examined immediately after bending.

Adhesion

The thermoplastic powder coating shall exhibit a minimum of 1000 psi adhesion to the aluminum and steel substrates in accordance with ASTM D 4541.

Thermal Shock Resistance

The applied thermoplastic powder coating shall withstand 10 temperature cycles without cracking, checking, or disbonding. Cycles should be from +40°C to -40°C.

Impact Resistance

The applied thermoplastic powder coating shall resist minimum direct and reverse impacts of 36 inch-pounds without cracking, disbonding or holiday formation as determined by visual inspection. Test panels shall be impacted in accordance with ASTM D 2794 using a 2 pound weight with a 0.5" diameter indenter dropped from a height of 18".

Abrasion Resistance

Weight loss from the applied thermoplastic powder shall not exceed 90 milligrams. Test panels shall be tested for 1000 cycles using a Taber Abrader apparatus with CS-17 wheels and 1000 gram weights in accordance with ASTM D 4060. Weight loss shall be determined immediately after test to three significant figures.

Salt Spray Resistance

Unscribed: There shall be no blisters, wrinkles or loss of adhesion nor any general surface corrosion or pitting after 1000 hours of salt spray exposure. Scribed: There shall be no blisters, wrinkles nor any general surface corrosion or pitting after 1000 hours of salt spray exposure. There shall be no more than 10mm loss of adhesion from a scribed line after 1000 hours of salt spray exposure.

Fluid Resistance Properties

The applied thermoplastic powder coatings shall exhibit no objectionable alteration to the surface such as discoloration, change in gloss, blistering, softening, loss of adhesion, formation of holidays or special phenomena after immersion for 7 Days in accordance with ASTM D 1308 in the following fluids.

1. Distilled water
2. Type III hydrocarbon (per Federal Spec. TT-S-735)
3. Hydraulic fluid (per Mil-H-83282)

Chemical Resistance

The applied thermoplastic coating shall exhibit no objectionable alteration to the surface such as discoloration, change in gloss, blistering, softening, loss of adhesion, formation of holidays or special phenomena after immersion for 7 Days in accordance with ASTM D 1308 in the following chemical solutions:

1. 3M aqueous Ca(Cl)₂
2. 3M aqueous NaOH.
3. Saturated aqueous Ca(OH)₂.
4. Aqueous solution of H₂SO₄ (specific gravity = 1.29 ±0.02)

Dielectric Strength

The applied thermoplastic coating shall have a dielectric strength of 900 ±100 v/mil at 15 mil in accordance with ASTM D 149.
Weathering Properties

The applied thermoplastic coating shall exhibit the following resistance to weathering:

1. **Accelerated weathering.** The applied thermoplastic powder coating shall show no cracking, significant color change (fade), chalking, blistering, wrinkling or loss of adhesion, nor shall there be any evidence of substrate corrosion after 2000 hours exposure to accelerated weathering in accordance with ASTM G 53 using UVB-313 fluorescent lamps. The coating, shall exhibit no more than 30% loss in 60 degree specular gloss after exposure.

2. **Humidity resistance.** Test panels shall be exposed to a 120°F ±2°F, 100% relative humidity environment in accordance with ASTM D 2247 for 30 Days. The coating shall show no blistering, wrinkling or loss of adhesion nor shall there be any evidence of substrate corrosion after humidity exposure.

3. **Holidays.** The applied thermoplastic powder coating shall be free of holidays at an application thickness of 25-30 mil. Holiday detection shall be performed with a low voltage (75-100 volts) direct current detector.

4. **Shelf life.** Powder coating Materials shall meet the requirements of the Owner, with a minimum of 2 years from the date of manufacture when stored below 85°F, 50% relative in the unopened original container.

Material Safety Data Sheets (MSDS)

Material Safety Data Sheets shall be provided to the Engineer.

9-30.1(6)D POLYETHYLENE ENCASEMENT

Polyethylene encasement shall conform to Section 9-30.2(13).

9-30.1(6)E HEAT SHRINK JOINT SLEEVE

The sleeve shall be Aqua Shield, or approved equal. The sleeve shall be a wrap around type with a joint closure and shall contain a thermal indicator.

9-30.2 FITTINGS

9-30.2(1) DUCTILE IRON PIPE

Fittings for ductile iron pipe shall be ductile iron conforming to AWWA C110 and C111 or AWWA C153 and shall be cement-mortar lined conforming to AWWA C104.

Except where restrained joint systems are required, *fitting joints shall be mechanical joint.*

Where restrained joint pipe is required, threaded flanges by restrained joint adapters shall not be longer than three pipe diameters. Threaded flanges and pipe shall conform to AWWA C115. The exterior flange lip overlapping the pipe barrel shall be sealed with a bituminous mastic.

Sleeves less than 12 inches in diameter shall be 12 inches minimum length and shall be mechanical joint.

Sleeves greater than 12 inches in diameter shall be of the long body type and shall be 15 inches minimum length and shall be mechanical joint.

Where ductile iron pipe is to be joined to existing cast iron pipe of the same nominal size, and electrical isolation is not required at the connection, and the outside diameter of the existing cast iron pipe varies 0.05 inches or less from the specified outside diameter of the ductile iron pipe being joined, the pipe shall be joined with a mechanical joint sleeve.

Where 10 inch through 24 inch diameter ductile iron pipe is to be joined to existing cast iron pipe of the same nominal size, and electrical isolation is not required at the connection, and the outside diameter of the existing cast iron pipe conforms to AWWA 1908 classifications A, B, C, or D, the pipe shall be joined with a transition mechanical joint sleeve having a single-piece body.

Where 8 inch or smaller diameter ductile iron pipe is to be joined to existing cast iron pipe of the same nominal size, and electrical isolation is not required at the connection, and the outside diameter of the existing cast iron pipe conforms to AWWA 1908 classifications A, B, C, D, E, or F, the pipe shall be joined with a transition mechanical joint sleeve having a single-piece body.

Hub-by-flange fitting length shall conform to AWWA C110 or AWWA C153. The body of hub-by-flange fittings shall be a single-piece casting. Threaded pipe and flange combinations shall not be used.
9-30.2(2) RESERVED

9-30.2(3) RESERVED

9-30.2(4) STEEL PIPE

Fittings for steel pipe 3-1/2 inches in diameter and smaller shall be malleable iron threaded type with a pressure rating of 150 psi. Dimensions shall conform to ANSI B 16.3. Threading shall conform to ANSI B 2.1 Material shall conform to ASTM A 47, Grade 32510. All fittings shall be banded and hot-dip galvanized inside and out.

Unions shall be malleable iron with a pressure rating of at least 150 psi. Material shall conform to ASTM A 47, Grade 32510. Unions shall be ground joint, bronze to iron type.

Steel fittings for pipe 4 inches in diameter and larger shall be in accordance with AWWA C208. The class of the fittings shall be at least the same as that of the pipe. Coatings for the fittings shall be the same as specified for the pipe. Field couplings shall be compression type. When flanges are required, they shall conform to AWWA C207. All couplings shall have the same coating as the pipe coating.

9-30.2(5) POLYVINYL CHLORIDE (PVC) PIPE, 4 INCH DIAMETER AND LARGER

Fittings for PVC pipe 4 inch and larger diameter shall be the same as specified for ductile iron pipe. Dimensions of fittings and design of bell may be modified to conform with the pipe being used.

9-30.2(6) RESTRAINED JOINTS

Restrained joints, where required on the Drawings, shall be a boltless design which is flexible after assembly and can be disassembled without special tools, such as TR Flex Restrained Joint Pipe as manufactured by U.S. Pipe Co., or approved equal, and shall meet the following criteria;

1. The restrained joint shall have a positive metal to metal contact locking system without the use of gripping teeth.
2. The locking system shall allow the same joint deflection, after assembly, and shall weigh no more than twice the weight of
3. The TR Flex restraint system.
4. The joint restraint system for the pipe shall be the same as the joint restraint system for pipe fittings.

9-30.2(7) TRANSITION REDUCING, AND INSULATING FLEXIBLE COUPLINGS

Transition couplings, reducing couplings, transition reducing couplings, sleeves, and flexible insulating couplings for water mains shall be compression type, (Romac or Ford or approved equal, constructed of ductile iron sleeves, and ductile or malleable iron followers. Bolts and nuts shall be corrosion resistant per AWWA C111. Stainless steel bolts require anti-seize compound. Couplings shall be stainless steel. The long body pattern with a minimum length of 10 inches for pipe up to 12 inches diameter and 15 inches minimum length for pipe greater than 12 inches diameter. Factory finish shall be fusion bonded epoxy or Plascoat PPA 571 thermoplastic coating.

9-30.2(7)A INSULATING COUPLINGS

Insulating couplings and flange kits shall be required at any point of connection of two dissimilar metallic Material pipes (i.e., ductile iron to cast iron). The insulating coupling body and end rings shall be ductile iron; coated with either thermoplastic powder coating Plascoat PPA 571 fusion-bounded epoxy conforming to AWWA C213, or high-build polyamide epoxy conforming to AWWA C210, and shall be a liquid coating, portable water grade, capable of 4 to 8 mil dry film thickness per coat, or thermoplastic powder coat per section 9-30.1(6)C; insulating boot shall cover the pipe end to prevent metal contact between pipe sections being joined. The insulating boots and rubber gaskets shall be virgin synthetic butyl rubber compatible for potable water service. The nuts and bolts shall be stainless steel ASTM Type 316. The insulating coupling shall be manufactured by Romac Industries, Inc., or approved equal.

9-30.2(7)B INSULATING FLANGE KITS

Insulating flange kits shall consist of a full-face neoprene faced phenolic, type “E” O-ring gasket; insulating sleeves and washers manufactured from glass reinforced epoxy design; and 1/8 inch thick plated, hot rolled steel washers. Acceptable Suppliers are Pipeline Seal and Insulator (PSI) Inc., Houston, Tx.; Central Plastics Co., Shawnee, OK.; or approved equal.
9-30.2(8) RESTRAINED FLEXIBLE COUPLINGS AND SLEEVES
Restrained flexible couplings or sleeves shall be as indicated on the Drawings.

9-30.2(9) SPECIAL FITTINGS
Special fittings shall be as indicated on the Drawings.

9-30.2(10) TWO-INCH BLOW OFF ASSEMBLY
Two inch blow off assembly shall be as indicated on the Drawings.

Two inch service tube shall be Type K copper. Two inch gate valve shall be of iron-body construction, having bronze seat rings and stem, an o-ring stem seal system, shall be fitted with a 2 inch square operating nut, F.I.P.T. inlet and outlet threading conforming to ANSI B 2.1, and shall be minimum 150 pounds working water pressure rated. Plastic foam Material shall conform to Section 9-30.2(12). Frame and cover shall conform to Section 9-30.3(12)H. Meter Box shall conform with Section 9-30.6(8).

9-30.2(11) PLASTIC FOAM (ETHAFOAM)
Plastic foam shall be in accordance with Section 9-05.14

9-30.2(12) PORTLAND CEMENT CONCRETE
Portland Cement Concrete for pipe support saddles and cradles and for thrust blocking shall be Class 5(1-1/2) (see Section 5-05.3(1)).

9-30.2(13) POLYETHYLENE ENCASEMENT
Polyethylene film for encasement of ductile iron pipe and fittings shall conform to the requirements of Section 9-30.1(6)B.

9-30.2(14) STEEL CASING PIPE
Steel casing pipe shall have a diameter and wall thickness as specified on the Drawings. Pipe shall be smooth and bare.

9-30.2(15) SEALS AND INSULATORS FOR STEEL CASING PIPE
Casing insulators shall be used to electrically isolate the casing pipe from the water main. The insulators shall be equipped with heavy duty fusion bonded epoxy coated stainless steel spacers, minimum 12 inch width, 2” wide glass reinforced plastic runners. A minimum of (2) runners at the bottom and (2) top runners for pipe 4” through 12”. A minimum of (4) runners at bottom and (2) top runners for 14” through 36” pipe. The insulators shall be Pipeline Seal and Insulator (PSI) model C12G-2 as manufactured by Pipeline Seal and Insulator, Inc., or approved equal.

Casing end seals shall be used to seal the ends of the casing with the water main. The seals shall be standard pull-on, model S or custom pull-on, model C as manufactured by Pipeline Seal and Insulator, Inc., or approved equal.

9-30.3 VALVES

9-30.3(1) GENERAL - MANUFACTURE AND MARKING
The valves shall be a standard pattern of a manufacturer whose products are approved by the Engineer and shall have the name or mark of the manufacturer, year valve casting was made, size, and Working pressure plainly cast in raised and legible letters on the valve body. All valves shall be stamped with “NSF APPROVED”.

9-30.3(2) GATE VALVES

9-30.3(2)A GATE VALVES - DOUBLE DISC
In addition to 9-30.3(1), gate valves 3 inch through 12 inch shall conform to AWWA C500, be equipped with non-rising stems and “O” ring stuffing box, and with double disc gates having a bronze wedging device.

Gate valves used in conjunction with restrained joint pipe shall have a ductile iron body; otherwise, valve bodies may be either ductile iron or cast iron.

Valves shall open counterclockwise when viewed from above, and shall be equipped with a standard AWWA 2 inch square operating nut. Valves shall be double disc-bronze seated valves if they have iron bodies.
Three Manufacturer’s Certificates of Compliance demonstrating performance tests comply with AWWA C500 shall be submitted to the Engineer.

Valve ends shall be mechanical joint. Where restrained joints are called out, valve ends shall be flanged with appropriate flange by restrained joint adaptors per Section 9-30.2(1).

The valves shall be as manufactured by Clow, M & H, American Flow Control (ACIPco), Pratt/Mueller, M&H/Kennedy, or approved equal in sizes 12 inches or less.

Gate valves 2-1/2 inch and smaller shall be of ductile iron body construction having bronze seat rings and stem, o-ring seal system, F.I.P.T. (female iron pipe thread) inlet and outlet conforming to ANSI B 2.1, a standard AWWA 2 inch operating nut, and shall be minimum 150 pounds water Working pressure.

The 2 inch and smaller valves shall be manufactured by Kennedy, Nibco-Scott, Stokum, or approved equal.

9-30.3(2)B GATE VALVES RESILIENT SEAT

Gate valves 3 inch through 12 inch shall conform to AWWA C509 and Section 9-30.3(1).

9-30.3(3) RESERVED

9-30.3(4) BUTTERFLY VALVES

In addition to the requirements of section 9-30.3(1), butterfly valves shall conform to AWWA C504 and shall be Class 150B. The valve shall be short-body type and shall have flanged ends. Flanged ends shall be sized and drilled in conformance with ANSI B 16.1 Class 125. Valve shall be suitable for direct burial installation; however butterfly valves 12 inch and larger shall be installed within an access vault sized to permit removal and replacement of the valve.

Where restrained joints are indicated on the Drawings, valve ends shall be flanged with flanged by restrained joint adaptors per Section 9-30.2(1).

Valves shall be mounted on the water main or pipeline such that the operating nut is accessible and operable from above.

Operator shall be manual, fully enclosed, and suitable for buried service. It shall open left (counterclockwise when viewed from above), and shall be equipped with a standard AWWA 2 inch square operating nut.

Operators for 16 inch and larger valves shall be equipped with external indicators, visible from above, which show the position of the valve disc.

The minimum number of turns from fully open to fully closed shall be as follows:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 inches to 8 inches</td>
<td>16 turns</td>
</tr>
<tr>
<td>10 inches to 12 inches</td>
<td>28 turns</td>
</tr>
<tr>
<td>14 inches to 18 inches</td>
<td>30 turns</td>
</tr>
<tr>
<td>20 inches to 24 inches</td>
<td>44 turns</td>
</tr>
<tr>
<td>30 inches</td>
<td>60 turns</td>
</tr>
<tr>
<td>36 inches</td>
<td>72 turns</td>
</tr>
<tr>
<td>42 inches</td>
<td>84 turns</td>
</tr>
<tr>
<td>48 inches</td>
<td>96 turns</td>
</tr>
<tr>
<td>54 inches and larger</td>
<td>200 turns</td>
</tr>
</tbody>
</table>

An Manufacturer’s Certificate of Compliance stating that the valves furnished fully comply with AWWA C504 and the modifications contained herein shall be furnished to the Engineer.

The valve bodies shall be cast iron mounted with approved noncorrosive nuts and bolts. Wearing surfaces shall be bronze or other approved noncorrosive Material and there shall be no moving bearing or contact surface of iron in contact with iron. Contact surfaces shall be machined and finished in the best Workmanlike manner, and all wearing surfaces shall be easily renewable.
The butterfly valves shall be manufactured by Henry Pratt Company, Mueller, M&H/Kennedy Valve Division of McWane Inc., or approved equal.

9-30.3(5) VALVE BOXES

Valve boxes shall be installed on all buried valves. The box and lid shall be cast iron, 2-piece slip type with cast iron extension as necessary, conforming to requirements and dimensions of the latest Seattle Public Utilities - Water Utility Standards.

The cover shall have the word “WATER” or the letter “W” cast in it.

Valve boxes, lids and extensions of the following manufacture and pattern are approved for use.

Lid Section # 1908-33
Top Section # 1106-33
Base Section # 1301-33
Top Section and Lid #045 with Rich standard base and extension.

Each top and lid section shall be tested for accuracy of fit and shall be marked in sets for delivery.

Valve box extension pieces shall be provided for valves with ground cover in excess of the depth of the standard valve box (see Standard Plan Nos. 315.1a and 315.1b).

9-30.3(6) RESERVED

9-30.3(7) COMBINATION AIR RELEASE / AIR VACUUM VALVES

Combination air release/air vacuum valves shall comply with the requirements of ANSI / AWWA C512.

9-30.3(8) END CONNECTIONS

The dimensions of hub or bell end connections shall conform to the dimensions of AWWA C100. The dimensions for the mechanical joint connections shall conform to the ANSI A21.11.

The end flanges of flanged valves shall conform in dimensions and drilling to the standard ANSI B 16.1 for cast iron flanges and flanged fittings. Class 125, unless specifically provided otherwise. The bolt holes shall straddle the vertical center line.

9-30.3(9) TAPPING SLEEVE AND VALVE ASSEMBLY

Tapping sleeves used in conjunction with non-restrained pipe installations (such as gravity-blocked, lateral Watermain extensions) shall be fully encapsulating, mechanical joint type, constructed of gray or ductile iron, with a flanged joint outlet conforming to ANSI B 16.1, Class 125, Drilling, having a tapping gate valve retaining ring groove.

Tapping sleeves used in conjunction with restrained pipe installations (such as hydrant branch installations) where the outlet hole is at least one nominal size smaller than the size of the main to be tapped, may be of epoxy-coated steel construction, having stainless steel fasteners, a ring style outlet gasket, and a flanged joint outlet conforming to ANSI B 16.1, Class 125, Drilling, including a tapping gate valve retaining ring groove. “Size on size” taps shall be made with the use of a mechanical joint tapping sleeve described above under non-restrained pipe installations.

Exception for large taps on cast iron pipe: Whenever a main to be tapped is gray cast iron, and the nominal size of the tapped main, divided by the nominal size of the outlet hole is less than 1.33, the tap shall be made with the use of a fully encapsulating mechanical joint tapping sleeve described above under non-restrained pipe installations.

Tapping sleeves shall be of a size designed by the manufacturer to fit the pipe. It is the Contractor’s responsibility to determine the outside dimension of the pipe and secure proper sleeve to fit. The outlet size shall be as shown on the Drawings.

Prior to ordering tapping sleeves, the Contractor shall submit 10 Working Days in advance manufacturer’s data, installation instructions and maximum air test pressure information to the Engineer for approval.
Tapping gate valves shall be of the size shown on the Drawings and shall conform to the gate valve provisions of Section 9-30.3(2).

In addition, the inlet end shall be flanged with retaining ring extended beyond the flange face. The outlet end shall be mechanical joint.

The valve seat ring openings shall be larger than normal size to permit entry of full diameter tapping machine cutters.

9-30.3(10) OPERATING NUT EXTENSIONS

An operating nut extension conforming to Standard Plan No. 315 shall be furnished and installed by the Contractor on all valves where the finished grade is more than 30 inches above the valve operating nut.

9-30.3(11) PLASTIC FOAM RINGS

Valve boxes shall have a 2 inch thick plastic foam cushion installed between the base flange of the valve box bottom section ring conforming to the dimensions shown on Standard Plan No. 315.1b installed between the base and the valve casting. The plastic foam shall conform to Specifications in Section 9-30.2(11).

9-30.3(12) VALVE CHAMBERS

9-30.3(12)A PRECAST VALVE CHAMBER

Size, shape, and Materials shall be as indicated in the Drawings.

The chambers shall be furnished in precast concrete sections with sufficient strength to withstand H-20 traffic loading together with ladder and access frames and covers to provide the minimum clearance dimensions shown on the Drawings.

The chambers shall be watertight after assembly. Gasket Material shall be installed in the groove of the keyway of each chamber section as it is installed. There shall be no evidence of moisture seeping into the chambers through the walls, floor, or joints.

9-30.3(12)B CONCRETE BLOCKS FOR VALVE CHAMBERS

Portland cement concrete blocks shall be solid, and shall conform to the requirements of ASTM Designation C 139. Overall thickness of block shall be 6 inches with optional lengths and widths. Curved manhole blocks shall be used for round valve chambers.

9-30.3(12)C CONCRETE BRICK FOR VALVE CHAMBERS

Concrete brick shall be solid and conform to ASTM Designation C 55, Grade A.

9-30.3(12)D CLAY BRICK FOR VALVE CHAMBERS

Concrete brick shall conform to ASTM C 62, Grade SW.

9-30.3(12)E MORTAR

Portland cement mortar shall be 1 part Portland cement to not less than 1-1/2 parts nor more than 3 parts of plaster sand, mixed with the least amount of water necessary to provide a workable mix. Dehydrated lime, in an amount not exceeding 50 percent of the Portland cement by weight, may be added to the mix at the option of the Contractor.

9-30.3(12)F PORTLAND CEMENT CONCRETE

Concrete for chamber foundation shall be Class C (see Section 6-02.3(1)A).

9-30.3(12)G CAST IN PLACE CONCRETE VALVE CHAMBER

The design, size, shape, and Materials for cast-in-place concrete valve chambers shall be in accordance with the Drawings. The Contractor shall submit Shop Drawings of the chamber indicating all features for approval by the Engineer per Section 1-05.3.

9-30.3(12)H FRAME AND COVER AND VALVE BOX CASTINGS

Castings for cast iron frame and cover and for cast iron parts of valve boxes shall conform to the requirements of ASTM Designation A-48, Class 30 and shall conform to the Standard Plans.

The word “WATER” shall be cast in the cover in 3 inch letters as indicated on the Standard Plans.

Each ring and cover section shall be tested for accuracy of fit and shall be marked in sets for delivery.
9-30.3(12)I MORTAR FOR PLASTER-COATING

Mortar for plaster-coating masonry unit manholes shall be proportioned according to either of the two Alternates tabulated below:

<table>
<thead>
<tr>
<th>Parts by volume</th>
<th>Parts by volume</th>
<th>Parts by volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement</td>
<td>masonry cement</td>
<td>hydrated lime</td>
</tr>
<tr>
<td>Alt. 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Alt. 2</td>
<td>1</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Mortar for plaster-coating masonry unit manholes shall be proportioned according to either of the two Alternates tabulated above:

Plaster sand for either Alternate 1 or Alternate 2 above shall be measured in a damp, loose condition, and shall be not less than 2-1/4 and not more than 3 times the sum of volumes of cement and lime.

A bituminous coating shall be applied to all surfaces after plastering.

9-30.3(12)J LADDERS

Ladder shall be made of steel, and shall be galvanized after fabrication. They shall be made of 1 inch deformed steel bar conforming to ASTM A 615, intermediate or standard grade, hot bent at least 1600°F. Galvanization shall conform to ASTM A 123.

9-30.3(13) PAINTING AT FACTORY

After the factory test and inspection, all ferrous parts of the valves except finished or bearing surfaces shall be painted inside and out with two coats of asphalt varnish, Federal Specification TT-V-51A or approved equal.

9-30.3(14) WATER PRESSURE REGULATING VALVES

1. Water Pressure Regulating Valves, 3 inch through 12 inch Sizes:

 Valve shall be flanged at both ends, Class 125 ASA drilling, with cast iron body. Valve shall be a diaphragm operated, single seat, globe valve. It shall be spring loaded and hydraulically operated. Seat ring shall be replaceable. The diaphragm shall be fully guided top and bottom. All necessary repairs shall be possible without removing the valve from the line. Packing glands are not permitted. Disc shall be synthetic rubber and have a rectangular cross section. The stem shall be guided by a bearing in the valve cover and an integral bearing in the valve seat. There shall be no piston operating the main valve.

 Valves shall be designed to maintain a constant downstream pressure regardless of varying inlet pressure. They are to be used in handling clean, cold water.

 No control pilots or optional Equipment is to be furnished. Valves shall be CLA Valve No. 90 or approved equal.

2. Water Pressure Regulating Valves, 2 inch Size:

 Valves shall be Mueller No. H-9310 2 inch Water Pressure Reducing Valves or approved equal.

9-30.3(15) COATINGS FOR VALVES

Special coatings, thermoplastic powder coating, and polyethylene encasement shall be per Section 9-30.1(6).

9-30.4 RESERVEd

9-30.5 HYDRANTS

9-30.5(1) GENERAL

Fire hydrants shall conform to AWWA C502 and shall be of standard manufacture and of a pattern approved by SPU Water Operations. The name or mark of the manufacturer, size of the valve opening and year made shall be plainly cast in raised letters on the hydrant barrel to be visible after the hydrant is installed.

Hydrants of the following manufacture and pattern have been approved for use by the City of Seattle:

1. Pacific States
2. Clow Model 5110 (Iowa)
3. Mueller “Centurion” Model A-423
4. American-Darling Model B-62B
5. Kennedy “Guardian”

9-30.5(2) END CONNECTIONS
The end connection shall be 6 inches, standard flange, Class 125 drilling conforming to ANSI B 16.1.

9-30.5(3) HYDRANT DIMENSIONS
The dimensions and details of hydrant and nozzles shall be as follows:
1. Hydrant connection pipe size inside diameter: 6 inches.
2. Standpipe, minimum inside diameter: 7 inches.
3. Valve opening, minimum diameter: 5 inches.
5. Hose nozzles, number and size: two 2-1/2 inches.
6. Thread (National Board of Fire Underwriters): 7-1/2 per inch.
7. Total length of threaded male nipple: 1 inch.
8. Streamer nozzle, number and size: one 4 inch.
9. Hydrants shall be furnished with one pumper nozzle with size and threads conforming to dimensions as identified on the latest City of Seattle Standard Plans for Fire Hydrants.
10. Drain Valve: Drain valve shall be automatic with outlet tapped or plumbed to 3/4 inch female iron pipe threads.
11. Sidewalk flange (ring) to center of pumper nozzle: 14 inches or more.
12. Face: Pumper port toward the street.

All nozzles shall be fitted with cast iron threaded caps with operating nut of the same design and proportions as the hydrant stem nut. Caps shall be threaded to fit the corresponding nozzles and shall be fitted with suitable neoprene gaskets for positive water tightness under test pressures.

9-30.5(4) OPERATING NUTS
The operating nuts on hydrant stem and nozzle caps shall be as follows:

<table>
<thead>
<tr>
<th>Pattern of nut</th>
<th>Tapered pentagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1-1/6 inch</td>
</tr>
<tr>
<td>Size of pentagon</td>
<td>1.35 inch at bottom of nut</td>
</tr>
<tr>
<td></td>
<td>1.23 inch at top of nut</td>
</tr>
<tr>
<td></td>
<td>(measured from point to flat)</td>
</tr>
</tbody>
</table>

The direction of opening shall be clearly marked on the operating nut or hydrant and shall be counterclockwise.

9-30.5(5) HYDRANT RESTRAINT
Shackling rods shall be 3/4 inch diameter with threaded ends, and shall meet ASTM A 36. “All-thread” rod is not acceptable. If a tie bolt restraint system is used, they shall be “COR-TEN Steel Star National Products Super Star Tie Bolt #SST7” or approved equal. If a mechanical joint-gland-with-lugs restraint system is used, it shall conform dimensionally as shown on the hydrant detail, and shall be ductile iron conforming to ASTM A 536 Class 80-55-06. Coating for shackling rods shall be in accordance with Section 9-30.15.

9-30.5(6) SIDEWALK FLANGE CONSTRUCTION
Hydrants shall be provided with a sidewalk flange and be equipped with breaking devices at the sidewalk flange which allow the hydrant barrel to separate at this point with a minimum breakage of hydrant parts in case of damage. There shall also be provided at this point, a safety stem coupling on the operating stem that shears at the time of impact. Unless otherwise specified, all hydrants shall be equipped with 0-ring stem seals.

9-30.5(7) HYDRANT PAINTING

9-30.5(7)A HYDRANT SHOP PAINTING
All iron parts of the hydrant shall be thoroughly cleaned and painted at the factory. All inside surfaces and the outside surfaces below the ground line shall be coated with asphalt varnish, Federal Specification
TT-V-51a or J.A.N.P-450, unless otherwise specified. They shall be covered with two coats, the first having dried thoroughly before the second is applied.

9-30.5(7)B HYDRANT FIELD TOUCH-UP PAINTING

All iron parts of the hydrant shall be thoroughly cleaned and painted at the factory. All inside surfaces and the outside surfaces below the sidewalk flanges shall be coated with asphalt varnish, Federal Specification TT-V-51a or J.A.N.P-450, unless otherwise specified. They shall be covered with two coats, the first having dried thoroughly before the second is applied.

The hydrant curb stand section, including all exposed surfaces of the sidewalk flange, shall receive two coats of oil based gloss enamel paint (Kelly-Moore Luxlite or approve equal) in Caterpillar yellow. Based on the elevation of the hydrant within the surrounding pressure zone, if the maximum static pressure at the hydrant is less than 60 psi, the engine port cap on the hydrant shall be painted with two coats of oil based gloss enamel paint (Kelly-Moore Luxlite or approve equal) with the final coat being Red.

9-30.5(8) HYDRANT FACTORY HYDROSTATIC TEST

All hydrants shall be tested by the manufacturer, as required in AWWA C502. The Contractors shall furnish to the Owner an affidavit of compliance from the manufacturer for all tests.

9-30.5(9) HYDRANT CONNECTION PIPE

Pipe connections from the hydrant to the water main shall be 6 inch Ductile Iron Pipe, Class 52, in accordance with Section 9-30.1(1).

9-30.5(10) HYDRANT VERTICAL EXTENSIONS

Hydrant barrel extensions shall have a 7 inch minimum inside diameter and shall be gray cast iron or Ductile Iron and shall conform to the AWWA Standards for such castings. The drillings of the connecting flanges on the extensions shall match the drillings of the flanges on the hydrant.

Hydrant vertical extensions shall also include the necessary hydrant operating stem extension, complete with safety stem couplings.

Extensions with threaded flanges shall be ductile iron and shall conform to AWWA C115. The exterior flange lip overlapping the barrel pipe shall be sealed with a bituminous mastic.

Vertical extensions shorter than 18 inches shall be installed at the bottom of the factory supplied barrel pipe.

9-30.5(11) HYDRANT BLEEDER

When approved by SPU Water Operations, the hydrant bleeder assembly, as shown on the hydrant detail, shall be constructed of 3/4 inch copper tubing Type K, conforming to Section 9-30.6(4).

9-30.5(12) POLYETHYLENE ENCASEMENT AND SPECIAL TAPE COATING FOR HYDRANTS AND CONNECTIONS

Refer to Section 9-30.1(6).

9-30.5(13) RESERVED

9-30.6 SERVICE CONNECTIONS AND SERVICE PIPE OR TUBING

9-30.6(1) GENERAL

Service piping standards shall be used, and modified when indicated on the Drawings, for 2 inch blow off assembly and hydrant bleeder assembly.

9-30.6(2) SADDLES

Saddles shall be ductile iron, or bronze, double straps with thread standard outlet tapping. Saddles shall be of a size designed by the manufacturer to fit the pipe called for on the Drawings.

9-30.6(3) CORPORATION STOPS

Corporation stops for use with saddle shall be of bronze alloy with inlet M.I.P. (male iron pipe) standard thread and outlet thread compatible with connection piping, with no special adapters. Corporation stops for direct tapping shall be bronze alloy with AWWA tapered inlet Outlets on ¾ inch and 1 inch direct tap corporation stops.
shall be copper tubing size compression, with an external clamping or anti-pullout feature. Outlets on 1-1/2 inch and 2 inch direct tap corporation stops shall be male iron pipe or tubing to be connected.

9-30.6(4) SERVICE PIPE

9-30.6(4)A COPPER TUBING

Copper tubing shall conform to the requirements of ASTM B 88, Type K, annealed. The tubing shall be coupled using compression fittings having a positive external gripping feature to prevent tubing pull-out, conforming to the requirements of AWWA C800, minimum 150 psi Working pressure.

9-30.6(4)B RESERVED

9-30.6(4)C RESERVED

9-30.6(5) COMPRESSION COUPLINGS

Compression couplings for use in connecting plain end water service pipes shall be applicable for the type of pipe being coupled. Compression couplings shall have armored gaskets when similar metal pipes are being joined.

9-30.6(6) RESERVED

9-30.6(7) METER STOPS AND SETTERS

Meter stops and setters shall be in accordance with the SPU Water Operation Standards.

9-30.6(8) RESERVED

9-30.6(9) VALVES

Valves shall conform to Section 9-30.3.

9-30.7 BEDDING, FOUNDATION MATERIAL AND GRAVEL

When the mineral aggregate is specified by a “Type” designation, it shall conform to the requirements shown on the Mineral Aggregate Chart (see Section 9-03.16).

9-30.8 RESERVED

9-30.9 RESERVED

9-30.10 JOINT BOND CABLE

General joint bond cable shall be single-conductor No. 2 AWG stranded copper wire with 600-volt, 7/64” thick high molecular weight polyethylene (HMWPE) insulation. Supply all joint bonds complete with a formed copper sleeve on each end of the wire, as specified under THERMITE WELD MATERIALS, this section.

9-30.11 THERMITE WELD MATERIALS

9-30.11(1) GENERAL

Thermite weld Materials shall consist of wire adapter sleeves, welders, and weld cartridges according to the weld manufacturer’s recommendations for each wire size and pipe or fitting size and Material. All welding Materials and Equipment shall be the product of a single manufacturer. Interchanging Materials of different manufacturers will not be acceptable.

Molds shall be made of graphite. Ceramic “one-shot”. Molds will not be acceptable.

Steel thermite weld cartridges shall be used for steel pipe and fittings. Cast iron thermite weld cartridges shall be used for all cast and ductile iron pipe and fittings. Maximum cartridge sizes for steel thermite welds shall be: 15 grams for wire sizes #14 AWG through #4 AWG stranded, and 32 grams for #2 AWG stranded.

Maximum sizes for cast iron thermite welds shall be: 25 grams for #14 AWG through #6 AWG stranded, and 45 grams for #4 AWG solid through #2 AWG stranded.
Thermite weld Material may be obtained from the following Suppliers: Erico Products Inc. (Cadweld), Cleveland, Ohio; Continental Industries, Inc. (Thermoweld), Tulsa, Oklahoma; or approved equal.

9-30.11(2) ADAPTER SLEEVES
 Provide Adapter Sleeves for all No. 12 AWG through No. 2 AWG test station and joint bond wire. Prefabricated factory sleeve joint bonds or bond wires with formed sleeves made in the field are acceptable. Field-formed joint bond sleeves shall be attached with the appropriate size and type of hammer die provided by the thermite weld manufacturer.

9-30.11(3) THERMITE WELD CAPS AND PRIMER
 Thermite Weld caps shall be prefabricated weld caps with coating and suitable primer, such as Handy Cap II with Royston Primer 707, as manufactured by Royston Laboratories, Inc., or equal.

9-30.11(4) COATING REPAIR AT THERMITE WELD
 Repair of coating of pipe and fittings for spot damage at thermite weld connections not included in standard pipeline coating repair procedure, shall be 100% solid epoxy that cures in submerged or buried conditions. Repair of thermoplastic powder coating shall be as specified in section 9-30.2(10)C.

9-30.12 ELECTROLYSIS TEST STATION

9-30.12(1) GENERAL - NON-TRAFFIC AREA
 An electrolysis test station shall consist of a standard meter box and lid as specified in Section 9-30(6)8, providing a housing for a test box as specified in Section 9-30.11(2)B.

9-30.12(2) TEST BOX
 Test box requirements shall be as follows:
 The 4" (10 cm) deep test box shall provide a single piece enclosure 8" by 6" (20 cm by 15 cm) with a removable, hinged lid. The test box shall be Hoffman No. 864CHQRFG or approved equal.
 The lid shall be manufactured from molded fiberglass reinforced Material, and fitted with a one-piece oil resistant “O” ring gasket. The lid shall be attached to the test box with a monel hinge pin and secured by quick release latches.
 The test box shall comply with NEMA 4X standards, to supply protection against corrosion, windblown dust, rain, splashing water, and hose direct water.
 A watertight connector consisting of a heat-shrinkable cable entry system, shall be used for passage of test wires into the enclosure. The entry system shall be a three part assembly consisting of a rigid plastic nut, a rubber O-ring, and molded heat-shrinkable cable entry seal including tape sealant. The cable entry system shall be type CES-2 or CES-3, with SFTS-1 or SFES-3 tape sealant as manufactured by Sigmaform Corporation; or approved equal.

9-30.12(3) TEST STATION WIRES
 Test station wires shall be single conductor, No. 10 AWG and No. 6 AWG stranded copper with 600 volt XHHW insulation. Color of insulation per Drawings.

9-30.12(4) WIRE CONNECTORS INSIDE TEST BOX
 Wire connectors inside the test box shall be one-piece, tin-plated crimp-on lug connector as manufactured by Burndy Co., Thomas and Betts, or equal.

9-30.12(5) ZINC REFERENCE ELECTRODES
 The electrode shall be packaged in a thoroughly mixed backfill material consisting of 75% gypsum, 20% bentonite clay and 5% sodium sulfate. The package shall be water permeable and of sufficient size to ensure complete envelopment of the reference electrode.

9-30.12(6) ELECTRICAL CONDUIT AND FITTINGS
 PVC conduit and fittings: schedule 40, UL listed for direct burial. Conduit and fittings shall meet the requirements of NEMA TC and TC3, federal specification W-C-1094, UL and NEC.
9-30.13 TURBINE METERS (METER, COLD WATER, MAGNETIC DRIVE TURBINE TYPE, 2" THROUGH 12" SIZES)

9-30.13(1) GENERAL
These requirements apply to Magnetic Drive Turbine Type Cold Water Meters 2 inch through 12 inch in size, manufactured for use on customer water services. Turbine Meters shall consist of a cast bronze case containing the measuring mechanism with a strainer housing attached.

Meters shall meet the requirements of AWWA C701-78, latest revision, Class II type, except as modified herein.

9-30.13(2) REGISTER AND REGISTER BOX
Registration shall be in cubic feet. Register box and cover shall be of a copper alloy.

9-30.13(3) MAIN CASE AND COVER
The main case and cover shall be constructed of a copper alloy containing not less than 75% copper.

9-30.13(4) MEASURING MECHANISM
The measuring mechanism shall be the inline, horizontal axis, high velocity turbine type, and so designed that it can be readily removed from the main case as a complete unit. The measuring mechanism shall be capable of operating within the accuracy limits specified under “Normal Flow Limits,” without recalibration when transferred from one turbine meter case to another.

9-30.13(5) INTERMEDIATE GEAR TRAIN
If an intermediate gear train is utilized, it shall operate in a dry, hermetically sealed compartment, separated from the water passage by a bronze wall.

9-30.13(6) CAPACITY AND ACCURACY
The turbine meter shall register all rates of flow through it with an accuracy of 100% ± 2% at rates of flow within the limits specified under “Normal Flow Limits.”

9-30.13(7) NORMAL FLOW LIMITS

<table>
<thead>
<tr>
<th>Size</th>
<th>Normal Flow Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Inch</td>
<td>5 - 160 GPM</td>
</tr>
<tr>
<td>3-Inch</td>
<td>10 - 350 GPM</td>
</tr>
<tr>
<td>4-Inch</td>
<td>15 - 800 GPM</td>
</tr>
<tr>
<td>6-Inch</td>
<td>30 - 1800 GPM</td>
</tr>
<tr>
<td>8-Inch</td>
<td>50 - 3500 GPM</td>
</tr>
<tr>
<td>10-Inch</td>
<td>55 - 5500 GPM</td>
</tr>
<tr>
<td>12-Inch</td>
<td>70 - 7000 GPM</td>
</tr>
</tbody>
</table>

Note: Above flow limit shall be for continuous flows, all turbine meters shall have a 25% overspeed capacity for intermittent flows.

9-30.13(8) HEAD LOSS
Maximum loss of head shall not exceed 7 psi at the flow rates listed under “Normal Flow Limits.”

9-30.13(9) CONNECTIONS
All main case connections shall be flanged. The flanges for 2 inch meters shall be of the two bolt oval type. Meters shall be furnished without companion flanges.

9-30.13(10) INTERCHANGEABLE PARTS
All parts of turbine meters of the same size, make and model shall be interchangeable.
9-30.13(11) STRAINER

Turbine meters shall be supplied with a strainer attached. Strainers shall be short pattern, 125 lb. ANSI, iron body, with heavy gauge 1/4 inch perforated, stainless steel screen having an effective straining area at least double that of the meter main case inlet.

9-30.13(12) REMOTE READING

Turbine meters shall be compatible with existing SPU Water Operations Demand Recording Hardware and/or switches. Manufacturer, type, and style of switch shall be submitted for approval by the Engineer. (Note: Rockwell Impulse Contractor and Hersey MHR Turbine are compatible with existing SPU Water Operations switches.)

9-30.13(13) MANUFACTURE AND APPROVAL

Only meters manufactured by a well established firm will be considered. Only those meters of a specific model and manufacturer, samples of which have been submitted to SPU Water Operations for inspection and approval, and carrying a minimum 1 year guarantee will be acceptable.

9-30.13(14) INSPECTION

All turbine meters purchased under this Specification will be subject to inspection and testing by SPU Water Meter Shop upon receipt, and if any meter is found not to conform with these Specifications, the lot or any portion thereof may be rejected.

9-30.13(15) GUARANTEE

All turbine meters shall be guaranteed for a period of 1 year after installation. This guarantee shall be against defects in Materials, workmanship, and construction.

9-30.13(16) TEST REPORT

All turbine meters purchased under this Specification shall be accompanied by a notarized test report of the factory accuracy test.

9-30.14 LOCATING WIRE

Locating wire for use with PVC pipe shall be 14 gauge solid copper with neoprene coating. Connections and splices shall be made with Penn Wilson split Bolt Wire Connectors, catalog No. 5-8-5, or approved equal.

9-30.15 COATING FOR ALL BOLTS AND SHACKLE RODS

All bolts and shackle rods, unless otherwise designated by the Engineer, shall be coated with 2 coats of asphaltic varnish Royston Roskote 612 XM, or approved equal.

On corrosion protected Watermains, all shackle rods, concrete blocking anchor rods, and shackle clamps shall have a factory applied protective coating with fusion bonded epoxy in accordance with ASTM A 755. After threading and assembly, the threaded ends, nuts, and washers shall be coated with a wrapping of Trenton wax tape #1 or approved equal.

SECTION 9-31 ILLUMINATION AND ELECTRICAL MATERIALS

9-31.1 LUMINAIRES

9-31.1(1) GENERAL

Luminaires shall have attached to the housing, an ANSI approval decal (3 inches square) which shall be readily visible from the ground, indicating lamp type by color code (i.e., blue for Mercury Vapor, gold for High Pressure Sodium, red for Metal Halide); and lamp wattage by numerical code, i.e.:

<table>
<thead>
<tr>
<th>Numerical Code</th>
<th>Lamp Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>150 Watt</td>
</tr>
<tr>
<td>25</td>
<td>250 Watt</td>
</tr>
<tr>
<td>40</td>
<td>400 Watt</td>
</tr>
</tbody>
</table>

Legends shall be a minimum of 2 inches in height and weather resistant.

A sample luminaire shall be submitted for testing when designated by the Engineer.
9-31.1(2) ROADWAY LIGHTING LUMINAIRE

Luminaires shall be “cobrahead” style and shall consist of a luminaire housing, lamp, ballast, and photoelectric cell. Luminaires shall be in accordance with SCL Material Standard 5723.1 except as modified herein.

Luminaire light distribution patterns shall conform to the IES classification system for Type III medium cutoff for less than 200 watts and Type II short cutoff for 200 watts and more.

Glare control shall be accomplished by use of a flat lens. Minimum streetside utilization shall be 39 percent at 1.5 transverse mounting height. Distribution shall be free from striations and hotspots.

9-31.1(3) LAMPS

High pressure sodium lamps shall be clear lamps suitable for operation in any position meet the following minimum ratings:

<table>
<thead>
<tr>
<th>Wattage</th>
<th>Minimum Life (Hours)</th>
<th>Initial Lumen Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>24,000</td>
<td>16,000</td>
</tr>
<tr>
<td>250</td>
<td>24,000</td>
<td>28,800</td>
</tr>
<tr>
<td>400</td>
<td>24,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

9-31.1(4) RESERVED

9-31.1(5) PHOTOELECTRIC CELLS

Photoelectric controls shall be used with all luminaires and shall meet the requirements of SCL Material Standard 5693.0.

9-31.1(6) UNDERDECK MOUNTED UNDERCROSSING LUMINAIRE

Underdeck luminaire shall be pendant-mounted as called for on the Drawings. The ballast shall be integral with the luminaire. Ballast housing and structural parts shall be of cast aluminum. Mounting devices must provide positive, vibration-proof locking. Luminaires shall be UL listed as “Enclosed and Gasketed” and shall be suitable for wet locations. All exposed screws and/or rivets shall be of stainless-steel Material.

All exposed cast aluminum parts are to be furnished with a baked-enamel paint.

The ballast housing and optical assembly shall be provided with easy-to-read moisture-proof nameplates that can be read without disturbing the luminaire when installed.

Ballast and optical assemblies shall include provision for field mounting of safety chains.

Luminaires shall have a wiring compartment with a single fuse holder.

Mounting of the optical assembly to the ballast assembly or pendant cap shall be secured by positive vibration-proof means. The optical and ballast or pendant cap assemblies shall include a positive aligning electrical disconnect allowing the socket to be shipped factory assembled in the optical assembly.

The luminaire shall be enclosed and gasketed and shall include an activated charcoal filter to permit passage of air.

Heat-resistant polycarbonate plastic shall be used for the refractor. The optical assembly shall be hinged and latched for lamp access. An automatic disconnect shall ensure that optical assembly is electrically cold when servicing. The optical assembly shall be removable from the ballast without tools.

The filter assembly shall be factory installed, but easily removable and shall be located to prevent accidental dislodgement when the luminaire is installed.

The unit shall provide at least 3% uplight dispersed widely across the surrounding area.

Luminaire shall be suitable for continuous service in an ambient temperature of 40°C. The unit shall be weatherproof and dustproof.

Ballasts shall be multi-tap, high power factor, regulator type.

9-31.1(7) WALL-PACK LUMINAIRE

The luminaire shall consist of a rear die-cast back housing which encloses the ballast, lamp socket and reflector, and a refractor frame assembly. The back casting assembly shall mount against the wall (or pole) and the refractor housing assembly shall fasten to it by means of concealed hinges and a single point, positive acting
latch. There shall be plated steel retaining chain attached between the main housing and refractor frame. Overall dimensions shall be approximately 16 inches square by 10-3/8 inches deep.

Units shall be prewired and equipped to be wall mounted directly on conduit for surface wiring without bending the conduit or to a recessed outlet box, and shall require no tools for lamp replacement.

The optical train shall consist of the lamp, fluted specular aluminum reflector, and molded prismatic borosilicate thermal shock-resistant glass refractor. The dimensions of the refractor shall be approximately 16 inches square by 4 inches deep and shall have internal splitting prisms and external dispersing prisms. The refractor frame color shall be anodized aluminum.

The integral ballast shall operate the high-pressure sodium 55-volt lamp at the wattage shown on the Drawings, and provide reliable starting at temperatures as low as -20 °F. The ballast shall be multi-tap to allow field adjustments of voltage.

All insulation shall be UL listed Class H; core, coil, and capacitors shall be positioned for maximum heat dissipation. Supply wires to the unit are to be of proper temperature rating for the type of entry used. The housing shall be finished with a black polyester powder paint coating. The complete unit shall be UL listed as “Suitable for Wet Locations.” The unit shall be Moldcast catalog No. PCL-1 or approved equal, to be furnished with photocontrol, wireway conduit adapter, and polycarbonate shield.

The wall-pack luminaire shall be furnished with photocontrol, wireway conduit adapter, and polycarbonate shield.

9-31.2 RESERVED

9-31.3 WIRE

Street light wire in conduits shall be stranded copper single conductor, with 600 volt type THWN color-coded insulation, size as indicated on the Drawings, and in accordance with SCL Material Standard 6122.3.

Wire used inside of poles and bracket arms (including wood pole mounted bracket arms) or bonded to signal spanwires shall be No. 10 stranded copper “Pole and Bracket” cable with an insulation thickness of 45 mils and a belt thickness of 95 mils. Where the proper combination of colored conductors is unavailable in “Pole and Bracket” cable, No. 12 20-10 cable in accordance with SCL Material Standard 6404.4 may be substituted when approved on a submitted Shop Drawing.

Duplex wire shall consist of one black conductor and one white conductor for circuits with one “hot” conductor and one neutral conductor; and one black conductor and one red conductor for circuits with 2 hot conductors. Multiple conductors shall be color coded in accordance with the NEC. Neutral wire shall always be white. Ground wires shall be green and insulated. The first hot conductor shall be black, the second hot conductor shall be red, and the third hot conductor shall be blue. Triplex wire shall be used for overhead applications, and shall conform with SCL Material Standard 6007.3 but shall be sized as indicated on the Drawings. Wire shall be continuously color coded. Color coding will not be required for triplex wire.

Plastic molding for covering wire attached to the side of wood poles shall be in accordance with SCL Material Standard 5820.5.

9-31.4 RESERVED

9-31.5 WIRE SPLICES

This standard applies to wire connections made in above grade or below grade installations except where the wires are attached directly to the terminal board. All connectors shall be U.L. or equivalent, labeled and approved for the intended use.

1. Above Grade Installations: (Including connections in pole hand holes)
 a. Copper to Copper Connector - The connector shall be a high strength bronze alloy of the split bolt type specified in Material Standard 6688.7.
 b. Copper to Aluminum Connector - The connector shall be of the one or two bolt type labeled CO/ALR and include an approved spacer bar.
 c. Aluminum to Aluminum Connector - The connector shall be of the 1 or 2 bolt type and meet the requirements of SCL Material Standard 6693.5.
 d. Split bolt connections shall be insulated in accordance with Section 8-30.3(5).

2. Below Grade Installations: (Including on Structures)
a. Below grade splices shall be made in a 2 piece rigid body transparent moisture proof spliced enclosure. The body shall be webbed to ensure centering of the splice and even distribution of the encapsulant. The body and encapsulant shall be composed of Material which do not support fungi or mold. The encapsulant shall be a reenterable (gel like), transparent type. (Non-reenterable encapsulant may be approved if each splice is approved by the Engineer prior to installing encapsulant.)

b. Connectors shall be as described in “a” above, or a copper mechanical crimp type may be used when submitted at least 3 Working Days in advance of proposed use and approved by the Engineer, or when indicated on an approved Shop Drawing. Mechanical crimp splices shall be made with an approved crimping tool.

3. Inside Cabinets and Panels: Wire nuts may be used only inside cabinets and panels. Copper or silver plated terminals shall be used at terminal blocks.

9-31.6 FUSES AND FUSE HOLDERS

The in-line fuse holder shall consist of a fuse, a two-section fuseholder body and two insulating boots, all rated at 600 volts. The fuse shall be of the voltage and amperage specified. Fuses rated at 30 amps and less shall be 600V AC non-time delay with a 100,000A interrupting rating. The fuse size shall be 13/32 inches by 1-1/2 inches in a holder rated 30 amp, 600V. Fuses rated 30 to 60 amps shall be 300V AC time delay type with a 100,000A interrupting rating. The fuse size shall be 13/32 inches by 2-1/4 inches in a holder rated 60 amp, 300V.

The fuseholder body shall be made of waterproof molded plastic, in two sections: the line-side section and the load-side section. Their purpose is to provide a visible means of disconnect for circuit repairs or maintenance. The fuse shall be held in the load-side section only. Each section shall be totally enclosed at the wire entrance end and the sections shall be joined by a threaded, gasketed joint. The fuseholder body shall be designed to confine any electric arc, should the fuseholder be closed on a live circuit.

Fuse holder terminals shall be compression or screw type, sized for the actual wire utilized. Only one wire shall be installed in any terminal.

Insulating boots shall be used to waterproof the wire connections. The type of insulating boot shall be a single conductor boot for the load-side and a single conductor boot for the line-side.

The fuse shall be a current limiting type with a high speed opening and an interrupting rating of 100,000 rms symmetrical amperes. The fuse shall have a minimum time delay of 25 seconds at 200 percent load, but not great enough to result in a safety loss during overload or short-circuit conditions.

The fuse shall be designed so that the carrying capacity or opening time is little affected by ambient temperature and shall operate with low watt loss to reduce heating.

9-31.7 GROUND RODS AND CLAMPS

Ground rods shall be fabricated from cold-finished carbon steel shafting in accordance with ASTM Designation A 108 as it applies to Grade 1018. Galvanized ground rods shall not be used.

The covering of the steel core shall be a sheath of electrolytic-grade copper having a minimum thickness of 0.010 inches. The rods shall have rolled threads at each end for joining together with couplings. Rods shall be 10 feet in length and 5/8 inch diameter. Rods shall conform to SCL Material Standard 5642.1, except for length, and shall conform to NEC requirements.

Couplings for sectional rods shall be made of high-strength, corrosion-resistant bronze, internally threaded to fit standard rods.

Driving studs shall be made of high-strength, hardened steel of SAE 1045 or equal quality.

Ground rod clamps shall meet the requirements of SCL Material Standard 5640.3. Ground rod clamps shall conform to NEC requirements.

Ground plates shall be a minimum of 2 square feet surface area copper plate.

9-31.8 ENCLOSURES

Enclosures located outside shall be weather-proof type, NEMA Type 3R. All doors and covers shall be gasketed. All enclosure metal shall be formed of stainless steel or aluminum as noted on the Standard Plans, and shall be constructed to the dimensions shown on the Drawings. All doors shall be provided with a heavy duty hasp suitable for padlocking.
All joints shall be seam welded. Enclosures shall be fabricated to allow for anchor bolt mounting.

A permanent sign shall be attached to the exterior of the enclosure cover or door. The sign shall be engraved into a 2 inch x 6 inch stainless steel plate with a minimum thickness of 18 gauge. The lettering shall be in 3 lines as follows:

DANGER
HIGH VOLTAGE
KEEP OUT

The letters shall be 1/2 inch high with a stroke width of 3/32 inch, and shall be filled with a red paint.

The completed sign shall be coated with a clear polyurethane enamel with exterior catalyst and attached to the enclosure cover with a minimum of 6 stainless steel drive rivets.

9-31.9 RECEPTACLES

All duplex receptacles shall be 20 amp, 125 volt, AC, GFCI, Hospital Grade receptacles, to be UL listed “Hospital Grade” under UL No. 498. Receptacles shall be Hubbell GF-8300, or approved equal.

9-31.10 RESERVED
9-31.11 RESERVED
9-31.12 RESERVED

SECTION 9-32 TRAFFIC SIGNALS SYSTEM

9-32.1 RESERVED
9-32.2 RESERVED
9-32.3 SIGNAL HEADS, VEHICLE
9-32.3(1) GENERAL
9-32.3(1A) SIGNAL HEAD COMPONENTS

Signal heads shall be in accordance with the “Institute of Transportation Engineers” publication, latest edition of “ADJUSTABLE FACE VEHICLE TRAFFIC CONTROL SIGNAL HEAD STANDARD” and the following additional requirements:

The Equipment shall be designed for operation under temperature and humidity conditions encountered in the Pacific Northwestern United States.

Materials and workmanship shall conform to the best commercial standards of the industry.

Signal hanger pins shall include a stainless steel washer between each cotter key and the signal hanger.

A terminal block of an approved type shall be mounted inside at the back of each signal head. It shall have sufficient studs to terminate six (6) lamp wires independently to six(6) field wires. The screws shall be of sufficient length to easily accommodate 14 AWG field wires without having to remove the screws. The terminals to which field wires are attached shall be permanently tagged to facilitate field Work. Lamp socket wires shall consist of a white wire and a wire of the same color as the lens connected to the terminal block.

All signal heads shall be installed as indicated on the Drawings.

The housing, door, visor exterior and mounting hardware/framework shall be dark green in color. The visor interior and both sides of the back plate shall be optical black or flat black in color. The paint shall be of the best quality synthetic resin enamel.

Adjustable signal heads shall consist of separate signal sections, expandable type, for vertical or horizontal mounting, rigidly and securely fastened together into one weather-tight signal assembly. The signal sections shall be 8 inches or 12 inches in diameter, as indicated on the Drawings.

Each section shall consist of a housing, door assembly, optical unit and backplate and shall be so constructed as to provide complete interchangeability of parts.

Weather-resistant mildew-proof gasketing shall be provided between the housing and door assembly and between the lens and reflector, which shall exclude dust and moisture.
9-32.3(1)B HOUSING

The housing shall be cast aluminum alloy, free of flaws, cracks, blowholes and other imperfections. Each vehicular signal head shall have a 1/4 inch drain hole in the bottom of the head. Each section shall house 1 individual optical unit complete with 1-piece hinged square door, mounting for the lens and other parts of the optical system and a simple noncorrodible door-locking device.

Sections shall be interchangeable and so constructed that sections can be added or removed. The top and bottom shall be drilled for 1-1/2 inch supporting pipe fittings. Hexagonal heavy plumbers lock nuts 2-1/2 inches across flats for 1-1/2 inch pipe shall be provided for top and bottom.

The 4 backplate mounting holes (2 in the top of the backplate and 2 in the bottom of the backplate) shall be a maximum distance of 1-1/4 inches on 8 inch signal and 2-1/2 inches on 12 inch signals from the top or bottom edge of the signal housing.

9-32.3(1)C DOOR ASSEMBLY

The door assembly shall consist of the door, lens and visor. The door of each section shall be made of aluminum alloy and shall be hinged to the housing so as to permit access or removal. The door shall be secured to the housing by a single finger type locking device. The door-locking device shall be easily removable to allow door removal.

Each section shall have a visor made from aluminum alloy sheet of a tunnel design attached to the door by means of 4 panhead screws. The mounting holes shall be slotted. Visor length shall be 8 inches for 8 inch signals and 12 inches for 12 inch signals.

The lens shall be glass, circular in shape of the color, type and size specified. The lens shall be designed to give an outward distribution of light with a minimum above the horizontal. Each lens shall be true to color and shall conform to the latest ITE Standard. The lenses shall have a minimum visible diameter of 7-3/4 inches (eight inches nominal) or 11-1/2 inches (12 inches nominal).

9-32.3(1)D OPTICAL UNIT

The optical unit consists of the reflector and lamp receptacle and shall be so mounted to the housing that it can be swung open for ready access or removal without the use of tools. The optical unit lens and visor shall be designed as a whole to reduce sun-phantom. Lamp re-placement shall be through the parabolic side of the reflector, and shall not require removal of the lamp holder from the reflector unit.

The reflectors shall be constructed of silvered glass or specular alzak aluminum in a parabolic design. An opening in the back of the reflector for a lamp holder shall be constructed to eliminate dark spots on the lens. Relamping and cleaning of reflectors shall be easily accomplished upon opening of the door without removal of screws or mounting framework inside the housing.

The lamp receptacle shall be of weather-proof molded construction immune to the operating temperatures in the unit and shall be provided with 2 wires of sufficient length to be connected to the terminal block.

Traffic signal lamps shall meet the following requirements and the current Institute of Transportation Engineers’ Specifications:

<table>
<thead>
<tr>
<th>Lens Size</th>
<th>Voltage</th>
<th>Rated Life</th>
<th>Initial Lumen Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 inch</td>
<td>120 V</td>
<td>8000 Hr.</td>
<td>665</td>
</tr>
<tr>
<td>12 inch</td>
<td>120 V</td>
<td>8000 Hr.</td>
<td>1950</td>
</tr>
</tbody>
</table>

9-32.3(1)E BACKPLATE

The signal, with backplate, shall be designed to meet or exceed the load requirements in accordance with Section 2 of “Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals,” AASHTO latest edition. Back plates shall be furnished and attached to each signal head assembly. Back plates shall be louvered type to reduce wind loading, constructed of anodized, 3-S half-hard aluminum sheet, 0.058 inches minimum thickness. The back plates shall be riveted together with a minimum of 8 5/16 inch stainless steel pop rivets. No bolts or screws will be permitted. Back plates shall not interfere with either the operation of the door or the mounting of the signal. Mounting hole pattern shall match pattern on signal head housing. The front and back of the back plates shall be finished with 2 coats of flat black enamel.
Back plates shall be permanently attached so as to provide a 5 inch border for either 8 inch or 12 inch signal heads. On combination heads (i.e., 12 inch and 8 inch sections) the back plate shall have a 5 inch border relative to the 8 inch head. Therefore, the border on the 12 inch head shall be approximately 3 inches.

Back plates shall be provided with a minimum of 2 mounting holes per signal section, one on each side. The 2 top and 2 bottom backplate mounting holes shall be a maximum distance of 1-1/4 inch from the corners of an 8 inch signal housing, and 2-1/2 inch from the corners of a 12 inch signal housing.

9-32.3(2) BI-MODAL VEHICLE SIGNALS SECTION

The signal section shall display both yellow and green arrow indications from the same face and shall use a fail-safe 2-lamp system to direct light of either color into a fiberoptic display. The section shall be adaptable to conventional 12 inch vehicle signal heads.

9-32.3(3) OPTICALLY PROGRAMMED VEHICLE SIGNAL SECTION

The signal shall permit the visibility zone of the indication to be determined optically and require no hoods or louvers. The projected indication may be selectively visible or veiled anywhere within 15 degrees of the optical axis. No indication shall result from external illumination nor shall one light unit illuminate a second.

The components of the optical system shall comprise: lamps; lamp collar; optical limiter - diffuser; and objective lens.

The lamp shall be nominal 150 watt (75 watt for distance-limiting applications), 120 volt AC, three-prong, sealed beam having an integral reflector with stippled cover and an average rated life of at least 6,000 hours. The lamp shall be coupled to the diffusing element with a collar including a specular inner surface. The diffusing element may be discrete or integral with the convex surface of the optical limiter.

The optical limiter shall provide an imaging surface at focus on the optical axis for objects at a distance of 900 to 1200 feet, and permit an effective veiling mask to be variously applied as determined by the desired visibility zone. The optical limiter shall be provided with positive indexing means and composed of heat resistant glass.

The objective lens shall be a high resolution planar incremental lens hermetically sealed with a flat laminate of weather resistant acrylic or approved equal. The lens shall be symmetrical in outline and may be rotated to any 90 degree orientation about the optical axis without displacing the primary image.

The optical system shall accommodate projection of diverse, selected indicia to separate portions of the roadway such that only one indication is simultaneously apparent to any viewer after optically limiting procedures have been accomplished. The projected indication shall conform to ITE transmittance and chromaticity standards.

9-32.3(4) DIRECTIONAL LOUVERS

Where so indicated on the Drawings, louvers shall be furnished and installed in signal visors. Directional louvers shall be so constructed as to have a snug fit in the signal visor. The outside cylinder shall be constructed of No. 22 U.S. gauge sheet steel, and the vanes shall be constructed of No. 27 U.S. gauge sheet steel. Dimensions and arrangement of vanes shall be as indicated on the Drawings.

Louver shall be galvanized after fabrication by the hot dipped process in conformance with ASTM Designation A 153 and painted flat black.

9-32.3(5) LED TRAFFIC SIGNAL RED SECTION

All vehicle signal heads shall be provided with the “red” section of Light Emitting Diode(LED) technology rather than an incandescent section, unless specified otherwise. A sample of the LED module to be used, the manufacturer’s Specifications and a Manufacturer’s Certificate of Compliance to the Specifications shall be provide to the Engineer for approval. If accepted, the sample will then be held for comparison to the remainder of the units to be installed. Written approval by the Engineer will be required prior to installation.

LED modules shall fit into traffic signal housings built to the VTSCH Standard without modification to the housing and shall not require special tools for installation. The module shall replace red section’s optical unit components, i.e., lens, lamp holder, gaskets, and reflector. It shall be weather tight and fit securely in the housing and shall connect directly to the electrical wiring terminals.
The lens Materials to enhance ON/OFF contrasts shall not affect luminous intensity or chromaticity and shall be uniform across the face of the lens and shall be UV stabilized. The lens shall be a replaceable part without the need to replace the complete module.

The module shall be a single, self-contained device and with its power supply packaged within the module enclosure and shall be completely protected against dust and moisture intrusion.

The LED signal module shall be rated for use in the ambient operating temperature range of -40°C (-40°F) to +74°C (+165°F).

The LED signal modules when operated at nominal voltage and 25°C (77°F) shall provide a power factor of .90 or greater and a total harmonic distortion not to exceed 20 percent on modules with power consumption of 15 watts or greater and 40 percent for modules with power consumption of less than 15 watts.

All electronic components shall be adequately supported to withstand mechanical shock and vibration from high winds and other sources. Materials used for the module enclosure shall be made of UL94VO flame retardant with the exception of the lens. The lens shall have no scratches (abrasions), cracks, chips, discoloration, or other defects. Any such defects shall be cause for rejection.

Each individual LED signal module shall be identified for warranty purposes, nominal operating voltage, power consumption, volt-ampere and a vertical indexing indicator for correct orientation.

The minimum luminous intensity throughout its useful life and at the end of the warranty period, shall not be less than the values shown in Table 1 Section 4.1 of the ITE Specifications for LED traffic signal modules. When operating within the temperature range specified in Section 3.3.1 during the warranty period, the maximum luminous intensity shall not exceed 800 candelas for the red.

The electrical, wiring and terminal blocks shall meet the requirements of section 13.02 of the VTCSH standard. Fluctuations in line voltage over the range of 80VAC to 135VAC shall not affect luminous intensity by more than ±10 percent. The circuitry shall prevent perceptible flicker and include voltage surge protection to withstand high-repetition noise transients and low-repetition high-energy transients as stated in Section 2.1.6, NEMA Standard TS-2, 1992. A catastrophic failure of one LED light source shall result in the loss of not more than 5 percent of the signal module light output. The module shall be operationally compatible with NEMA (TS-1 or later) load switches. All LEDs shall be of the AlnGap technology or proven equal in brightness and bulb life.

Manufacturers shall replace or repair an LED module that fails to function as intended due to workmanship or Materials defects, or if it exhibits luminous intensity of less than the minimum values specified within the first 60 months from the date of installation.

9-32.3(6) RESERVED

9-32.4 SIGNAL HEADS, PEDESTRIAN

9-32.4(1) GENERAL

The pedestrian signal head shall consist of a message module, case, eggcrate visor, transformer, and directional louvers.

The entire pedestrian signal including neon tubing, transformers, and all ABS or polycarbonate plastic parts shall be warranted against defects in workmanship, or Materials, or both.

The case, sun shield and mounting hardware shall be painted dark green in color. The eggcrate visor interior and directional louvers shall be painted flat black in color.

The maximum overall dimension of the signal shall be 19-1/2 inches wide, 19 inches high and 9 inches deep, not including eggcrate visor and hinges. In order to facilitate installation and maintenance, the signal shall be designed so that all components are readily accessible from the front by merely opening the signal door.

Pedestrian signals shall display international symbols (Portland orange “Up Raised Hand” and the lunar white “Walking Person”) illuminated by multiple configuration neon tubes encased in a molded plug-in plastic message module. The Hand-Person symbols shall be a minimum of 12 inches in height and 7 inches in width.

9-32.4(2) MESSAGE MODULE

The message module shall consist of 2 neon gas tubes enclosed and thus protected by a housing made of white acrylonitrile butadiene styrene or polycarbonate plastic and a screened message lens made of polycarbonate plastic.
The tube used for the Portland orange hand symbol shall be coated on the inside with fluorescent material producing the desired Portland orange output. Tubing for the lunar white person symbol shall be coated on the inside with fluorescent material producing the desired lunar white output. It shall be formed to the approximate shape of the person and shall be positioned for maximum lunar white intensity.

The 2 neon tubes shall be enclosed in a single plug-in plastic module via resilient rubber adhesive to prevent transfer of mechanical strain to the glass tubing and to provide effective shock mounting. The plastic housing shall be molded in a manner to provide positive location of the neon tubing in relation to the screened message lens.

The message lens shall consist of 1/8 inch minimum thickness clear, U.V. stabilized refractor type, polycarbonate plastic with outer prisms and shall be weather, craze and heat resistant. The prism pattern shall face the outside of the module with the screened message enclosed within the module.

The inside face of the message lens shall be painted in all areas except where the desired symbols are formed. The first coating of paint shall be black to form a contrasting background when viewed from the outside. The second coating of paint shall be white to reflect internal light.

The message module shall be sealed into an integral assembly with a 1 piece sponge neoprene gasket fitted around the perimeter to provide positive protection of the enclosed neon tubing from handling, weather, and moisture.

The message module shall be provided with electrical contacts which plug directly into recessed contacts in the transformer enclosure when the module is in proper position and shall not require the use of tools for insertion or removal.

Neon pedestrian signal excitation shall be by transformer only. Electronic models are not acceptable.

9-32.4(3) CASE

The case shall consist of a housing and door each made from 1 piece, aluminum alloy die casting. It shall be dustproof, weatherproof and corrosion resistant and shall provide for easy access to and replacement of all components. The housing shall have an integral cast top, bottom, sides, and back. Four integrally cast hinge lug pairs shall be provided for operation of a swing down door.

The housing shall be suitable for left or right hand (with pre-drilled holes and rubber plugs) clamshell mounting hardware, post-top mounting, or bracket mounting.

The top and bottom of the housing shall have an opening to accommodate 1-1/2 inch pipe brackets. The bottom opening of the signal housing shall have a standard 72 tooth locking boss integrally cast into the case. The teeth shall be clean and sharp and provide full engagement. The radial angular grooves of the boss shall provide positive positioning of the entire signal to eliminate rotation or misalignment of the signal.

The door shall be attached to the case by means of 2 stainless steel spring pins. 2 stainless steel hinged bolts with captive stainless steel wingnuts and washers shall be attached to the case with the use of stainless steel spring pins. Hence, latching or unlatching of the door shall require no tools.

A 1/4 inch drain hole shall be provided in the bottom of the case. All unused openings shall be capped with corrosion-resistant metal caps, and weatherproofed with approved washers.

Clamshell mounting shall be a two-piece cast aluminum alloy assembly. One piece shall be the pole “half,” the other piece, the signal housing “half.” The clamshell assembly shall have two integrally cast hinge lug pairs so, that when the clamshell is mounted in final position for pedestrian traffic, the clamshell shall rotate horizontally to the open position for easy access to the control wiring inside the clamshell.

9-32.4(4) EGGCRATE VISOR

Each signal shall be provided with an eggcrate type visor designed to eliminate sun phantom.

The eggcrate type visor shall be installed parallel to the face of the Hand - Person message lens and shall be held in place by stainless steel screws. The eggcrate assembly shall consist of vertical members and horizontal members. The completed assembly shall be approximately 1-1/2 inches deep.

The basic material used in construction of the eggcrate shall be nominally 0.030 inches thick polycarbonate plastic. Additional members may be employed outside the two legend areas but are not required unless needed to develop the full potential structural strength attainable through the particular assembly technique employed.
The assembly shall be enclosed in a mounting frame constructed of 0.040 inches minimum thickness aluminum or polycarbonate plastic. This frame shall be approximately 1-1/2 inches deep and may contain alternate mounting holes for use on alternate types of pedestrian signals.

9-32.4(5) TRANSFORMERS

Two transformers shall be provided with recessed secondary contacts. Each transformer shall have as a minimum 4000 volt, 30 milliampere secondary.

Each transformer shall have 120 volt (nominal) primary windings and a power factor of 90 percent minimum.

A fused switch consisting of 2 cartridge fuses and a lever for disconnecting the fuses shall be provided inside the case on a terminal block for de-energizing the transformer primary circuit. The terminal blocks shall accommodate no less than 5 terminals.

9-32.4(6) OPTICALLY PROGRAMMED PEDESTRIAN SIGNAL (2-SECTIONS)

Each signal head shall permit the visibility zone of the indication to be determined optically and require no hoods or louvers. The projected indication may be selectively visible or veiled anywhere within 15 degrees of the optical axis. No indication shall result from external illumination nor shall one light unit illuminate a second.

The components of the optical system shall comprise: (a) lamp; (b) lamp collar; (c) optical limiter-diffuser; and (d) objective lens.

The lamp shall be nominal 75 watt PAR, 120 volt AC, three-prong, sealed beam having an integral reflector with stippled cover and an average rated life of at least 6,000 hours. The lamp shall be coupled to the diffusing element with a collar including a specular inner surface. The diffusing element may be discrete or integral with the convex surface of the optical limiter.

The optical limiter shall provide an imaging surface at focus on the optical axis for objects 900 to 1200 feet distance, and permit an effective veiling mask to be variously applied as determined by the desired visibility zone. The optical limiter shall be provided with positive indexing means and composed of heat resistant glass.

The objective lens shall be a high resolution planar incremental lens hermetically sealed with a flat laminated weather resistant acrylic or approved equal. The lens shall be symmetrical in outline and may be rotated to any 90 degree orientation about the optical axis without displacing the primary image.

The optical system shall accommodate projection of diverse, selected indicia to separate portions of the crosswalk such that only one indication shall be simultaneously apparent to any viewer after optically limiting procedures have been accomplished. The projected indication shall conform to ITE transmittance and chromaticity standards.

9-32.5 PEDESTRIAN PUSHPUTTON ASSEMBLY

The assembly shall consist of a pushbutton, deep cast aluminum box, molded one-piece aluminum mount, with signs and mounting hardware as indicated in the Standard Plans.

The pushbutton shall be of tamperproof and all weather construction. The pushbutton shall consist of a 2-1/4 inch chrome plated metal plunger and an oil tight switch with single momentary silver contact, rated 125 volts, 10 amperes, all encased in a metal enclosure with stainless steel mounting screws.

The assembly shall be made weatherproof and shockproof by means of synthetic rubber gaskets between the cover and the enclosure and between the plunger and the cover so that it shall be impossible to receive an electrical shock under any weather conditions.

9-32.6 DETECTOR LOOPS

Detectors shall be used for actuating traffic-actuated controllers and sample stations. A complete detector loop installation shall consist of loop wire and lead-in cable from the loop to the amplifier.

Loop wire shall be #14 AWG Class B (104 X 34) stranded tinned copper, high density polyethylene insulated with a .032 inch minimum thickness.

The lead-in from the detector junction box to the controller cabinet or remote amplifier cabinet shall be either single pair #16 AWG 19 X 29, three pair #20 AWG 10x30, or 6 pair #20 AWG 10x30 stranded tinned copper, polyethylene insulated, PVC jacketed, twisted pair cable(s) with copper foil or aluminum-polyester shield. The three pair and the six pair lead-in cables shall have a #22 AWG stranded tinned-copper drain wire. The
conductors shall be twisted together approximately 3 turns per foot. Connections of the loop wire to the lead-in wire shall be made only in a hand hole with a waterproof splice as indicated on the Drawings.

9-32.7 INTERIOR ILLUMINATED SIGNS

The Equipment shall be designed and manufactured for operation under temperature and humidity conditions encountered in the Pacific Northwestern United States.

The sign, when mounted, shall be designed to meet or exceed the load requirements in accordance with Section 2 of “Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals,” AASHTO current edition.

The sign size shall be as indicated on the Drawings. The housing shall be a double faced design made of extruded aluminum alloy or polyvinyl, dark green in color or with a brushed aluminum finish. The interior shall be painted white.

Standard signal mounting hardware shall be used to mount illuminated signs to all street furniture. The sign shall be fitted with a 1-1/2 inch iron pipe (IP) with tapped straight thread hub on top, for mast arm and span wire mount, and on top and bottom for bracket mount.

The front message panel shall be translucent white Rohm and Haas Plexiglass, or Tuflite white fiberglass, or equal. The back message panel shall be constructed of aluminum alloy or polyvinyl, colored dark green or brushed aluminum finish to match the housing, unless the sign is double faced in which case it shall be the same as the front message panel. Sign message shall be as indicated on the Drawings.

A terminal block for power input hookup shall be accessible by opening either message panel.

Signs shall be completely wired and assembled.

Unless otherwise indicated in the Contract, the sign shall be equipped with 4-24 inch T12-CW fluorescent tubes with weatherproof tube type sockets and ballast transformer. The ballast transformer shall be non-flashing 425 mil-amp type, 0°F starting, 120 VAC, 60 Hz.

Hardware (i.e., rivets, screws, bolts, nuts, etc.) and non-aluminum parts shall be stainless steel.

Each interior illuminated sign assembly shall be fused. All fuses shall be accessible by opening either of the message panels. Both message panels shall be of the sliding type with stop bars to prevent total removal, and for ease of maintenance.

9-32.8 RESERVED

9-32.9 INTERCONNECT CABLE

9-32.9(1) UNDERGROUND

Interconnect cable (UIC) shall be #19 or #22 solid aerial/duct communication cable and shall conform to REA Specification PE-39 or I.M.S.A. Specification No. 20-2. The number of pairs and size shall be as indicated on the Drawings.

9-32.9(2) AERIAL (“FIGURE 8”)

Interconnect cable (AIC) shall be #19 or #22 solid “figure 8” communication cable and shall conform to REA Specification PE-38 or I.M.S.A. Specification No. 20-4. The number of pairs and size shall be as indicated on the Drawings.

9-32.9(3) INDOOR

Interconnect cable shall be #19 or #22 multiple pair communications cable and conform to REA Specification PE-22 or I.M.S.A. Specification No. 20-2. The number of pairs and size shall be as indicated on the Drawings.

9-32.9(4) RESERVED

9-32.9(5) RESERVED

9-32.10 RESERVED
9-32.11 SIGNAL WIRING

9-32.11(1) TRAFFIC SIGNAL CABLE

<table>
<thead>
<tr>
<th>Color Code Base/Tracer</th>
<th>1c</th>
<th>2c</th>
<th>3c</th>
<th>5c</th>
<th>7c</th>
<th>10c</th>
<th>13c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>#12</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
<td>#14</td>
</tr>
<tr>
<td>Blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td></td>
</tr>
<tr>
<td>White/Black</td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td>#14</td>
<td></td>
<td>#14</td>
</tr>
<tr>
<td>Red/Black</td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td>#14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green/Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange/Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td>#14</td>
</tr>
<tr>
<td>Blue/Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td></td>
</tr>
<tr>
<td>Black/White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red/White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#14</td>
</tr>
</tbody>
</table>

Signal Cable shall have solid copper conductors and shall conform to I.M.S.A. specification No. 20-1 (polyethylene insulated, polyethylene jacketed signal cable).

9-32.11(2) PEDESTRIAN PUSH BUTTON CABLE

Pedestrian push button cable shall be single pair #16 AWG 19x29 stranded copper, polyethylene insulated, PVC jacketed, twisted pair cable with copper or aluminum-polyester shield and a No. 18 AWG stranded tinned-copper drain wire. The conductors shall be twisted together approximately 3 turns per foot.

9-32.11(3) ELECTRICAL SERVICE CONNECTIONS

All traffic signal services shall be 2 parallel 120 volt, 60 HZ AC electrical services with accompanying Equipment.

Individual service conductors shall be color or number coded type XHHW or THWN No. 6 AWG stranded copper. The outer jacket of cable shall be flame retardant, moisture, heat and sun light resistant thermoplastic or cross linked synthetic polymer suitable for underground conduit or aerial installation with suitable non-hygroscopic fillers.

All final connections and energizing of signal systems (overhead secondary or secondary in vaults or handholes) shall be performed by Seattle City Light.

9-32.11(4) FUSES AND FUSE BLOCKS

See Section 9-31.6.

9-32.11(5) POLE JUNCTION BOXES AND TERMINAL BOXES

Junction and terminal boxes shall be watertight (NEMA 4) rated, cast iron box and cover. Finish shall be hot dipped galvanized. Cover shall mount with a neoprene gasket and brass cover screws. Top and bottom conduit holes shall be bossed, drilled and tapped. Conduit holes in rear of terminal boxes shall be drilled and tapped. The threads in poles and junction boxes shall be sealed to prevent water entry and rusting. Cabinet size shall be as indicated on the Drawings.

9-32.11(6) GROUND RODS, CLAMPS AND BONDING

See Section 9-31.7.

9-32.11(7) SQUEEZE CABLE FITTINGS

Cable fittings for entry of cable through metal walls of poles, signs and signals shall be squeeze-type cable fittings with water-tight neoprene bushings. Size shall be carefully chosen to match the cable diameter to assure a water-tight fitting without damaging the cable.
9-32.12 SPAN WIRE AND INSULATED SPAN WIRE

9-32.12(1) SPAN WIRE
Span wire shall be 5/16 inch, 7-strand aluminum covered steel span wire conforming to ASTM B 415 with rated breaking strength of 10,270 lbs. in accordance with SCL Material Standard No. 5664.1.

Catenary span wire shall be 7/16 inch, 7-strand aluminum covered steel span wire conforming to ASTM B 415 with rated breaking strength of 20,800 lbs. in accordance with SCL Material Standard No. 5664.1.

9-32.12(2) RESERVED

9-32.13 POLE LINE HARDWARE
Strain insulators shall be wet process, porcelain, conforming to EEI-NEMA TDJ-54 as follows:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16 inch</td>
<td>54-2</td>
</tr>
<tr>
<td>7/16 inch</td>
<td>54-3</td>
</tr>
</tbody>
</table>

Tether wire shall be 1/8 inch galvanized steel stranded wire conforming to ASTM A 475, extra high strength grade (rated at 1500 pounds minimum), Class A galvanized.

Bull rings (purse seine rings) shall be low carbon steel with an ultimate strength of 25,000 pounds. The ring shall be closed with a weld equal to or greater than 90 percent of the unwelded steel. The ring shall be galvanized with at least 2 ounces of zinc per square foot, which is equivalent to 3 mils of thickness. The steel shall be 3/4 inches in diameter and shall form a ring with a 3 inch ID. Higher strength steel shall be used when more than 4 signal heads are being supported.

All pole hardware, bolts, plate rods, hangers, clamps, wire guards and pole bands shall be hot-dipped galvanized in conformance with the requirements of ASTM A 153, or shall be stainless steel.

All miscellaneous pole line hardware required to complete the Project as planned shall be standard Material manufactured for pole line construction.

9-32.14 GALVANIZING REPAIR PAINT
Field repair of galvanized surfaces shall be a coating of heated zinc alloy solder to a minimum thickness of 2 mils in accordance with ASTM A 780.

9-32.15 RESERVED

SECTION 9-33 POLES, PEDESTALS, AND FOUNDATIONS

9-33.1 GENERAL

9-33.1(1) POLES, MAST ARMS, AND LUMINARIE ARMS
All metal poles, mast arms and luminaire arms shall be designed and fabricated to conform with the requirements of AASHTO “Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals”, current edition (hereinafter referred to as “AASHTO”), and EEI-TDJ 135 and 139. All load requirements shall be accommodated as indicated on the Standard Plans.

Poles shall be galvanized steel, timber, fiberglass or aluminum in accordance with the Drawings.

Poles not meeting the requirements of the Drawings and Specifications will be rejected. Steel, aluminum or fiberglass poles received damaged or broken shall be repaired or replaced at the option of the Engineer. Wood poles received damaged or broken shall, at the option of the Engineer, be replaced or cut back.

9-33.1(2) ANCHOR BOLTS
Anchor bolts for lightpoles (steel, aluminum or fiberglass) shall conform to ASTM A 307 or A 576, unless otherwise specified in the Contract. Anchor bolts for steel strain poles Type T, and mast arm poles shall conform to ASTM A 576 (Type 1040 or 1045), ASTM A 675 (Gr. 90), or ASTM A 36 Mod, with Fy = 55 ksi minimum. Anchor bolts for steel strain poles Type V,X,Z shall conform to ASTM A 354 Gr. BC, or A 687. Each anchor bolt shall have a hexagonal leveling nut with a washer for leveling and a hexagonal nut with a flat washer and a lock washer for the top of the anchor base plate. All anchor bolts (full length), nuts and washers shall be galvanized in accordance with ASTM A 153. Anchor bolts shall not be bent or cut after fabrication. Bending of anchor bolts shall be cause of rejection and removal of entire foundation.
Anchor bolt extenders (sleeve nuts), where required, shall be of a strength greater than the existing anchor bolts. The bolt extenders shall have a hexagonal tightening nut, and shall be galvanized in accordance with ASTM A 153.

9-33.1(3) GALVANIZING

Before galvanizing, all sharp edges on welds and cut-ins inside the pole shaft, mast arm and luminaire arms shall be removed or filed smooth to prevent damage to the wires in the pole.

Structural Material shall be zinc-coated by hot-dip process in accordance with ASTM A 123 and the final coating shall measure 0.003 inches or more in thickness as determined by a magnetic thickness gauge. Hardware and appurtenances shall be coated in accordance with ASTM A 153. Threads shall be re-cut after galvanizing without exposing base metal. Galvanizing certification of compliance with the applicable ASTM Standards signed by an ASTM accredited independent testing Laboratory shall be submitted to the Engineer before shipment.

The finished pole shall be straight and free from injurious defects. Poles distorted by the galvanizing process shall be straightened without damage to the galvanizing coating. The finish coating shall be smooth and free of dross. After galvanizing, the interior of the pole and arms shall be free from sharp edges to prevent damage to wiring.

9-33.1(4) GROUND LUGS

Metal poles shall have a 3/8 inch tapped hole in the bottom edge of the handhole inside the pole. A 3/8 inch stainless steel bolt with stainless steel lock washer suitable for grounding shall be provided.

9-33.1(5) NUT COVERS

On light poles, the Contractor shall furnish and install separate nut covers to cover anchor bolts and nuts only (not the base flange). Nut covers shall fit snugly to the bolt. Nut covers shall be made of the same Materials as the pole and shall be provided by the pole manufacturer. Nut covers are not required on steel strain or Chief Seattle base type poles unless specified on the Drawings.

9-33.1(6) CONCENTRICITY

Unless otherwise noted on the Drawings, poles, mast arms, and luminaire extensions shall be within plus or minus 1/16 inch of perfect round with a constant taper of approximately 0.14 inches per foot and of uniform thickness.

9-33.2 STEEL POLES, MAST ARMS, BRACKET ARMS, AND LUMINAIRE EXTENSIONS

9-33.2(1) GENERAL

Poles shall be inspected for Material compliance and acceptance by the Engineer prior to installation.

The term “steel strain pole” as used herein refers to any steel pole subjected to a span wire load (including METRO trolley loads) or mast arm load. Luminaires or other street lighting appurtenances may be mounted on a “steel strain pole”. The term “steel lighting pole” refers to any steel pole which carries a luminaire but does not carry a span wire or mast arm load.

The length of the mast arm, height of pole, and size and type of luminaire extension shall be as indicated on the Drawings. An aluminum or stainless steel pole identification plate shall be securely attached immediately above the handhole, and shall indicate gauge, manufacturer, bolt circle, design principle moment in kip-feet, length, and date of manufacture.

Outside diameter of pole shafts shall be as indicated in the Standard Plans.

9-33.2(2) STRENGTH AND DEFLECTION REQUIREMENTS

The pole shaft shall have strength sufficient to support all indicated loads.

The following design loads shall be used: Dead load shall consist of the weight of the signals, luminaires and bracket arms, signs and supporting structure, and associated appurtenances; wind and ice loads shall be as indicated by AASHTO. The signal head mast arm shall be of such size and gauge as to resist the bending moment.

The design of steel strain poles that support overhead trolley loads shall be governed by King County METRO Transit design standards as detailed on the Drawings.
Structural steel having a yield point of 33,000 psi or more shall be used for all structural parts. Silicon content of the steel shall be no more than 0.06 percent to prevent discoloration during galvanizing.

The total deflection at the top of metal poles resulting from all dead loads applied shall not exceed 2.5 percent of pole height.

The deflection of the mast arm after loading shall not cause the end of the mast arm to extend below a horizontal line from the center of the arm flange. The maximum rise of the mast arm after loading from a horizontal line shall be 2 degrees.

The tenon for the luminaire shall be between 1 and 4 degrees above horizontal with the luminaire installed and all other loads applied to the pole.

9-33.2(3) BOLT CIRCLE
Mast arm flange and pole base bolt circles shall be as indicated on the Standard Plans.

9-33.2(4) WELDS
Circumferential butt welds shall have permanent back-up rings and full penetration for 100 percent of the circumference. All exposed butt welds shall be ground flush. All welds shall conform to the requirements of Section 6-03.3(25).

9-33.2(5) HANDHOLES, FESTOONS, AND CABLE OUTLETS
Steel poles shall have one oval 4 inch x 6-1/2 inch handhole, as shown in the Standard Plans, reinforced so as to result in no loss of shaft strength. The handhole shall have matching cover attached with stainless steel bolts. The cover shall be rain tight and removable. The handhole shall be fabricated into the pole in a position 90 degrees clockwise from the side on which the bracket or mast arm is attached.

Festoon outlets, when required, shall be as indicated in the Standard Plans.

Cable outlets (on poles) as shown on Standard Plan No. 563 shall be schedule 40 steel pipe extending perpendicularly from the pole. Both ends of the pipe shall be rounded for wire protection. The cable outlet shall be installed, drilled and edges rounded before galvanizing.

9-33.2(6) RESERVED

9-33.2(7) ANCHOR BASE PLATES
A one-piece steel anchor base plate shall be secured to the lower end of the shaft by continuous electric arc welds as shown in the Standard Plans. The welded connection shall develop the full strength of the adjacent shaft section.

9-33.2(8) POLE AND MAST ARM CAPS
All metal poles (except davit poles) and mast arms shall be equipped with a rain-tight pole cap constructed of the same Material as the pole, and attached with stainless steel bolts.

9-33.2(9) BRACKET ARMS
Luminaire bracket arms shall be per SCL Material Standard 5705.1 or 5705.2 or manufactured as indicated on the Standard Plans and in accordance with AASHTO “Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals”; to support a luminaire of 50 pounds, a 1.2 square foot effective projected area for an 80 mph wind and a coefficient of height of 1.10. Brackets shall include the bolts, nuts and washers galvanized for wood and steel pole mounting and stainless steel for aluminum pole types. Bracket arms shall be the same style as depicted on the Drawings. Small differences in dimensions may be acceptable when structural calculations accompany the Shop Drawings (see Section 1-05.3(2)F).

Luminaire bracket arms shall accommodate a slipfitter luminaire attachment. The terminal end of the arm shall be a straight, tubular section with external dimensions of 2 inches NPS by 6-1/2 inches long.

Bracket arms mounted on metal poles shall be constructed of the same Material as the poles. If the bracket arm and metal pole are of dissimilar metals, they shall be separated by an approved plastic dielectric pad of 5 mils minimum thickness.

The longitudinal axis of the luminaire end of the luminaire support arm shall be not less than 1 degree nor more than 4 degrees above the horizontal with the luminaire installed.
All tubing used for aluminum arm members shall be seamless, Alloy 6063 - heat treated to T-6 after fabrication. Aluminum arms shall meet the requirements of EEI-TDJ 135 & 139. Steel luminaire arms shall meet the requirements of EEI-TDJ 137 & 139.

9-33.3 ALUMINUM POLES

Aluminum street light poles shall meet the requirements of SCL Material Standard 5739.8, except as modified herein and in the Contract.

The shaft shall be round with a continuous taper of approximately 1/8 inch per foot, and shall be made of a high-strength, corrosion-resistant aluminum alloy. The shaft shall have a satin finish, and shall be protected with a wrapping during shipping and installation. A rip cord shall be provided for easy removal of wrapping. An aluminum pole cap shall be attached with stainless steel bolts. Bracket arm flange shall be as indicated on the Drawings. The diameter at the top of the pole shall be 4-1/2 inches ± 1/8 inch.

Poles shall have an oval 4 inch x 6 inch minimum handhole fabricated into the pole in a position 90 degrees clockwise from the side on which the bracket arm is located and reinforced so as to result in no loss of shaft strength. The handhole shall have a matching aluminum cover attached with stainless steel bolts and shall be located 18 inches above the base plate.

Cast aluminum anchor and transformer base shall be made of high-strength, corrosion-resistant aluminum alloy of sound and uniform quality.

Anchor base poles shall have a 3/8 inch tapped hole in the bottom edge of the handhole and 3/8 inch stainless steel bolt and lock washer for grounding. Transformer bases shall have the ground lug inside the base adjacent to the access door. The lug shall be equipped with a stainless steel bolt (1/4 inch minimum), nut and lockwasher.

Anchor bolts for aluminum poles shall be the same as required for steel poles.

9-33.4 WOOD POLES

9-33.4(1) GENERAL

Strain poles shall be either Douglas Fir, class 1, or Western Red Cedar, class 1.

Street light poles shall be Western Red Cedar, class 4.

Poles shall be framed (notched) before treatment with a 1/2 inch deep by 2 inch high setting gain on the pole face, 12 feet from the pole butt.

Poles shall be branded by burning the pole face, as specified by ANSI 05.1, 12 feet, 6 inches above the pole butt. Metal marking tags will not be accepted.

Poles shall be butt-treated in accordance with AWPA C7, and the entire butt section of the pole shall be incised. After framing and roofing, the cuts shall be well brushed with the hot preservative.

9-33.4(2) DOUGLAS FIR

Doug fir wood poles shall meet SCL Material Standard 5082.0.

9-33.4(3) WESTERN RED CEDAR

Western red cedar wood poles shall meet SCL Material Standard 5071.0.

9-33.5 FIBERGLASS LIGHTING POLES

Fiberglass lighting poles shall meet the requirements of SCL Material Standard 5745.0.

9-33.6 STEEL PEDESTALS AND ALUMINUM PEDESTALS

9-33.6(1) STEEL PEDESTALS

Shafts shall be constructed of welded structural steel, open-hearth lap welded steel or standard steel pipe conforming to the requirements of ASTM A53. Shafts shall be 4-1/2 inches (O.D.) schedule 40 galvanized steel pipe with threaded end for mounting to the base. The overall height of the shaft and base shall be as indicated on the Drawings.

Pedestal base shall be of cast iron conforming to the requirements of ASTM A 48, Class 40 and made in accordance to the configuration on the Standard Plans. Bases for pedestals shall be threaded, octagonal cast
iron equipped with an access door for wiring. A 13-1/2 inch diameter bolt circle size shall be used. The base shall have a grounding lug inside which is accessible from the handhole. The base shall be silver in color.

9-33.6(2) **ALUMINUM PEDESTALS**

Shafts shall be 4 inch schedule 80 aluminum pipe with one threaded end for mounting to the base. The overall height of the shaft and base shall be as indicated on the Drawings.

Pedestal base shall be of cast aluminum conforming to the configuration on the Standard Plans. Bases for pedestals shall be threaded, square, aluminum and equipped with an aluminum access door for wiring. A 13-1/2 inch diameter bolt circle size shall be used. The base shall have a grounding lug inside which is accessible from the handhole. The base shall be aluminum in color.

9-33.7 **PEDESTRIAN PUSHBUTTON POSTS**

Pedestrian pushbutton posts shall be constructed of 2 inch I.D. schedule 40 galvanized steel pipe with length as indicated on the Drawings. The post collar, pipe flange, bolts, nuts and washers shall conform to the details of the Drawings.

9-33.8 **BACK GUY ASSEMBLIES**

Unless otherwise indicated in the Contract, guy wire shall be 7/16 inch, aluminum covered steel strand wire.

Guy assembly components including the deadend grips, the porcelain strain insulator, and the automatic feed-thru deadend shall be sized so as to meet or exceed the rated breaking strength of guy wire.

Anchors for back guys shall consist of one of the following types:

1. A 4-way or 8-way steel expanding anchor, having a minimum of 300 square inches, made of pressed steel, coated with asphalt or similar preservative and fitted with 3/4 inch minimum guy eye anchor rod 8 feet long.
2. Plate anchor fitted with 3/4 inch minimum guy eye anchor rod 8 feet long.
3. An approved steel screw, such as a power installed steel helix anchor with extension rods, extension rod coupling, and strand eye nut. The steel screw shall be sized based upon its load and soil conditions by the Engineer.

The following components shall conform with the requirements of SCL Material Standards:

<table>
<thead>
<tr>
<th>Component</th>
<th>SCL Material Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guy Wire</td>
<td>5664.1</td>
</tr>
<tr>
<td>Guy Hook with Integral Spurs</td>
<td>5651.15</td>
</tr>
<tr>
<td>Deadend Grip</td>
<td>5651.4</td>
</tr>
<tr>
<td>Porcelain Strain Insulator</td>
<td>6901.1</td>
</tr>
<tr>
<td>Plastic Wire Guard</td>
<td>5651.8</td>
</tr>
<tr>
<td>Automatic Feed-thru Deadend</td>
<td>5650.3</td>
</tr>
<tr>
<td>Plate Anchor</td>
<td>5620.7</td>
</tr>
<tr>
<td>Single Strand Eye Nut</td>
<td>5652.1</td>
</tr>
<tr>
<td>Guy Pipe Clamp</td>
<td>5601.1</td>
</tr>
</tbody>
</table>

The pipe brace shall be galvanized extra strong steel pipe.

9-33.9 **RESERVED**

SECTION 9-34 **ELECTRICAL AND SIGNAL CONDUITS**

9-34.1 **GENERAL**

Conduit shall be PVC coated galvanized rigid steel, galvanized rigid steel, or schedule 80 PVC conforming to Articles 346 (rigid metal conduit) or 347 (rigid nonmetal conduit) of the NEC type and size as indicated on the Drawings. All conduit, elbows, fittings, and accessories shall be UL listed.

Factory bends and elbows shall be utilized in all cases where they provide the required deflection.
Field bends, when required, shall be performed so as to result in no flattening of conduit or damage to the galvanizing or PVC coating.

9-34.2 RIGID STEEL CONDUIT

9-34.2(1) GENERAL

Exterior and interior surfaces of all steel conduit, including threads, except field cut threads, shall be uniformly and adequately zinc coated by a hot dip galvanizing process. The average weight of zinc coating shall not be less than 0.80 ounces of zinc per square foot of single surface area as determined by tests on 12 inch samples taken from a standard length of conduit of each size. The weight of zinc coating on any individual test specimen shall be not less than 0.7 ounces of zinc per square foot of single surface area. The weight of zinc coating will be determined in accordance with AASHTO T-65. Determinations and nominal weights shall conform to the requirements of the Underwriters Laboratory Publication No. 6 (latest edition). In addition, the exterior as well as the interior conduit samples shall withstand 4 dips in the PREECE test in accordance with ASTM A 239.

Every length of rigid metal conduit shall bear the label of Underwriters Laboratories, Inc., or the label of the Canadian Standards Association, if affected items of Canadian manufacture are approved for use on the Project. Installation shall conform to appropriate articles of the NEC.

Rigid steel conduit may be substituted where PVC is indicated on the Drawings at the Contractor's option when approved by the Engineer at no additional expense to the Owner, except on pole risers.

Fittings for field and factory bends shall be identical and interchangeable.

9-34.2(2) THREADS

The exposed thread ends of rigid steel conduit shall be hot dipped galvanized in accordance with the foregoing. Field cut threads shall be painted with galvanized repair paint acceptable to the Engineer.

9-34.2(3) COUPLINGS AND FITTINGS

Couplings and fittings for rigid steel type conduits shall be hot-dip galvanized, with the same quantities of zinc noted above. Couplings shall withstand 4 dips in the PREECE test as specified above.

9-34.2(4) PVC COATING

All galvanized rigid steel conduit shall be PVC (polyvinyl chloride) coated with dark gray, and U.V. resistant type plastic where indicated on the Drawings.

The zinc surface prior to plastic coating shall be conditioned with chromic acid to provide an anchor for the plastic coating.

Both interior and exterior shall be coated with an epoxy acrylic primer not to exceed 0.0005 inches thick prior to the application of the PVC coating.

A PVC coating shall be bonded to the outside of the pipe (excluding the threads) with a thickness between 0.035 inch and 0.045 inch. The PVC coating shall be applied by the plastisol dip method and shall contain ultraviolet inhibitors.

A urethane coating of a nominal 2 mil thickness shall be applied to the interior of all conduits.

A coupling with the same PVC coating shall be furnished loose with each length of conduit and shall have a plastic sleeve extending 1 pipe diameter or 2 inches (whichever is less) beyond the end of the coupling. The inside diameter of the plastic sleeve shall be the same as the outside diameter of uncoated pipe of the same nominal size. The wall thickness of the plastic sleeve shall be the same as the plastic coating on the pipe. The bond between the metal and the PVC coating shall be equal to or greater than the tensile strength of the PVC coating.

All conduit fittings which are hollow and serve as part of the raceway shall be coated with the same coatings on the outside and inside as described above. The fittings shall have PVC sleeves at all female openings similar to the sleeves on the couplings.

The coated conduit shall conform to NEMA Standard No. RNI-1974 (Type A).

All coated conduit brackets, supports, clamps, NEMA 4 junction boxes, drains, breathers, expansion/deflection fittings, seals, etc., shall be PVC coated by the producer of the conduit. Field repair and touch-up shall be made with Materials approved by the Engineer.
9-34.2(5) RESERVED

9-34.2(6) EXPANSION/DEFLECTION FITTINGS IN NON-HAZARD AREAS

Expansion/deflection fittings shall be installed in all structural expansion joints. The expansion portion of the set shall provide for 4 inches of movement, 2 inches in each direction, unless specified otherwise on the Drawings. The deflection portion of the set shall provide for a movement of 3/4 inch in all directions, and an angular deflection of 30 degrees from normal in any direction. Fittings shall be O.Z. Gedney Type AXDX or approved equal.

9-34.2(7) RESERVED

9-34.3 PVC CONDUIT

Plastic conduit and fittings shall be rigid PVC Type EPC schedule 80.

PVC rigid non-metallic conduit may be used for all installations except the first 10 feet above ground on a pole riser and the adjacent bend, unless specified otherwise in the Contract.

Rigid PVC shall meet the requirements of ASTM D 1785 and ASTM D 2466. The conduit shall be suitable for use above ground, for direct burial, and for corrosive atmosphere areas.

9-34.4 CONDUIT RISER

Refer to Section 8-33.3(3).

9-34.5 PULL CORD

Pull cords shall be 1/4 inch polypropylene meeting the requirements of the Department of Lighting Material Standard 7272.2.

9-34.6 HANDHOLES

Handholes shall be precast concrete, reinforced, and of the type and size indicated in the Standard Plans. Handholes shall have covers with a slide-lock device, non-skid surface and a ground strap. Covers shall be 5/16 inch thick steel having a 3-way raised pattern, and shall be hot-dip galvanized in accordance with ASTM A123. Covers shall be identified with 3 inch high letters “TC” clearly visible on the top wherever traffic control cables occupy the handhole or “SL” where the handhole is used by street lighting only. The marking shall be accomplished by welding or shall be cast onto the cover.

The non-skid surface shall be made of slip resistant steel plate and be 5/16 inch in thickness. Approved plates are Mebac 1 (their most aggressive surface) as manufactured by IKG Industries, or steel SlipNOT Grade 3-coarse as manufactured by W.S. Molnar Co., or approved equal.

The cover shall be identified with permanent marking on the underside with the type of surface (“M1” for Mebac 1; or “S3” for SlipNOT 3; or similar marking for approved equal), and the year of manufacture. The permanent marking shall be clear, and may be bead-welded at the Contractor’s option.

SECTION 9-35 ELASTOMERIC BEARING PADS

Elastomeric bearing pads shall conform to the requirements of AASHTO M 251. The elastomer shall not contain any form of wax.

All bearing pads shall be individually cast with fully molded edges. Corners and edges of molded pads may be rounded at the option of the Contractor. Radius at corners shall not exceed 3/8 inch, and radius of edges shall not exceed 1/8 inch.

Shims contained in laminated bearing pads shall be mill rolled steel sheets not less than 20 gage in thickness with a minimum cover of elastomer on all edges of:

- 1/8 inch for pads up to 3 inches thick, and
- 1/4 inch for pads over 3 inches thick.

The shims shall be spaced to divide the pad thickness into equal laminations. The bond between the elastomer and metal shims shall be such that, when a sample is tested for separation, failure shall occur within the elastomer and not between the elastomer and the metal shim.

The grade or durometer hardness of the bearing pads shall be as noted in the Contract.
Elastomeric bearing pads shall be manufactured with the following tolerances:

<table>
<thead>
<tr>
<th>Overall vertical dimensions:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design thickness 1 1/4 inches or less</td>
<td>-0, + 1/8 inch</td>
</tr>
<tr>
<td>Design thickness over 1 1/4 inches</td>
<td>-0, + 1/4 inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall horizontal dimensions:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36 inches and less</td>
<td>-0, + 1/4 inch</td>
</tr>
<tr>
<td>Over 36 inches</td>
<td>-0, + 1/2 inch</td>
</tr>
</tbody>
</table>
This page intentionally blank.
INDEX TO STANDARD SPECIFICATIONS

A

Abandon catch basin, valve chamber, manhole or inlet ... 2-02.3(4)
Abandon and fill, and plug pipe .. 2-02.3(5)
Abbreviations, associations and miscellaneous ... 1-01.2(1)
Abbreviations, items of work and units of measurement .. 1-01.2(2)
Abbreviations, standard - See Standard Plan No. 002
Abbreviations, standard symbols - See Standard Plan No. 003
Access to work (inspection) ... 1-05.6
Access to private property during construction ... 1-07.23(1)
Access to work (inspection) ... 1-05.6
Acronyms, associations and miscellaneous ... 1-01.2(1)
Addenda ... 1-02.6
Adjusting utility structures to grade
catch basin, new ... 7-05.3(2)A
existing ... 7-20
inlet, new ... 7-05.3(2)D
manhole, new ... 7-05.3(1)P
Admixtures for Concrete - See Concrete Structures
Aggregates .. 9-03
asphalt concrete pavement ... 9-03.8
asphalt treated base 9-03.6
ballast and crushed surfacing 9-03.9
bituminous surface treatment 9-03.4
cement concrete pavement ... 9-03.1
concrete, portland cement ... 9-03.1
mineral aggregate chart .. 9-03.16
test methods for .. 9-03.15
Air entrainment, concrete
admixture .. 9-23.6
pavement ... 5-05.3(1)
structures .. 6-02.3(3)A
Air release/ air vacuum valves .. 9-30.3(7)
Air relief valve, irrigation ... 9-15.16
Alignment and camber
railings, metal ... 6.06.3(2)
steel structures ... 6-03.3(31)
Alkaline soil or water, concrete exposed to ... 6-02.3(8)
Alley, blocking of – notification requirement ... 1-07.28
Alley return – See Concrete Driveway
Aluminum pipe in contact with cement concrete, treatment 7-02.3(1)C3B
Aluminum steps, manhole .. 9-12.2(2)
American-made material requirements - See Section 1-06.5 of Project Manual
Anchor bolts
placed in concrete structure ... 6-02.3(18)
placed in steel structure ... 6-03.3(33)
poles and pedestals, lighting and signal .. 9-33.1(2)
Anti-stripping additive, asphalt concrete ... 5-04.3(20)
Appeals ... 1-03.7
Approval of
materials ... 1-05.6, 1-06.2
shop drawings ... 1-05.3
shop drawings, falsework and formwork ... 6-02.3(16)
source of materials ... 1-06.1
Arch pipe, structural plate ... 7-03
As-built records ... 1-05.3(4)
Asphalt
bituminous ... 9-02
bituminous surface treatment ... 5-02
driveways, asphalt concrete ... 5-04.3(15)
emulsions ... 9-02.1
pavement reclamation .. 4-07
pavement recycling ... 4-05
paving ... 9-02.1(4)
prime coat treatment ... 5-04.3(5)
sidewalk, asphalt concrete ... 5-04.3(22)
subsealing ... 9-02.1(7)
tack coat ... 5-04.3(5)
temperature of application .. 5-02.3(3)
waterproofing ... 6-08.3(3), 9-11.1
Asphalt concrete - See Pavement, asphalt concrete
Asphalt treated base (ATB) .. 4-06
Assignment of contract .. 1-08.2
Assistant
authority ... 1-05.2
definition ... 1-01.3
Audits
measurement and payment ... 1-09.12(1)
claims ... 1-04.5(6), 1-09.12(2)
disputes resolution process ... 1-04.5(4)
retention and, equal employment opportunity .. 1-07.11(10)
wages ... 1-07.9(6)
Authority of contractor's superintendent or project manager ... 1-05.13
Authority of assistants .. 1-05.2
Authority of engineer ... 1-05.1
Award and execution of contract ... 1-03

Backfill
abutments, inverts, piers, walls, etc .. 2-09.3(1)
drains ... 9-03.12(4)
foundations .. 9-03.12(1)
gravel ... 9-03.12
irrigation system .. 8-03.3(9)
pipe bedding .. 9-03.12(3)
sand drains .. 9-03.13
walls .. 9-03.12(2)
Backfiling
catch basins, and inlets .. 7-05.3(2)
embankment construction .. 2-03.3(14)
flow control system ... 7-16.3(1)
gabion cribbing and revetment ... 6-09.3(6)
irrigation system ... 8-03.3(11)
manholes ... 7-05.1
metal cribbing ... 6-09.3(5)
structural plate pipe, arch, and underpass ... 7-03.3(3)
trench, culvert ... 7-02.3(3)
trench, miscellaneous pipe connection ... 7-08.3(1)
trench, sewer ... 7-17.3(3)
trench, side sewer .. 7-18.3(2)
trench, water main ... 7-10.3(10)
unsuitable foundation excavation .. 2-03.3(14)

Backflow prevention devices, irrigation .. 9-15.1
Back guy assembly ... 8-32.3(3), 9-33.7
Ballasting and crushed surfacing .. 4-04
Ballast material ... 4-04.2
Ballasts
interior illuminated signs .. 9-32.7
roadway lighting luminaire .. 9-31.1(2)
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>underdeck mounted undercrossing luminaire</td>
<td>9-31.1(6)</td>
</tr>
<tr>
<td>wall pack luminaire</td>
<td>9-31.1(7)</td>
</tr>
<tr>
<td>Barricades</td>
<td></td>
</tr>
<tr>
<td>protection of concrete pavement</td>
<td>5-05.3(16)</td>
</tr>
<tr>
<td>extruded curb protection, safeguards</td>
<td>8-06.3(7)</td>
</tr>
<tr>
<td>Bars</td>
<td></td>
</tr>
<tr>
<td>dowels, concrete pavement</td>
<td>5-05.3(10), 9-07.5</td>
</tr>
<tr>
<td>reinforcing steel</td>
<td>9-07</td>
</tr>
<tr>
<td>reinforcing steel, concrete pavement</td>
<td>5-05.3(9)</td>
</tr>
<tr>
<td>reinforcing steel, structural concrete</td>
<td>6-02.3(24)</td>
</tr>
<tr>
<td>tie bars, concrete pavement</td>
<td>5-05.3(10), 9-07.6</td>
</tr>
<tr>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>asphalt treated</td>
<td>4-06</td>
</tr>
<tr>
<td>ballasting and crushed surfacing</td>
<td>4-04</td>
</tr>
<tr>
<td>catch basins and inlets</td>
<td>7-05.3(2)A</td>
</tr>
<tr>
<td>gravel</td>
<td>4-02</td>
</tr>
<tr>
<td>manholes</td>
<td>7-05.3(1)E</td>
</tr>
<tr>
<td>Beam guardrail</td>
<td>8-11.3(1), 9-16.3</td>
</tr>
<tr>
<td>Bearing value</td>
<td></td>
</tr>
<tr>
<td>bracing – cable tension systems</td>
<td>6-02.3(17)F</td>
</tr>
<tr>
<td>falsework piling</td>
<td>6-02.3(17)D</td>
</tr>
<tr>
<td>piles, determination of</td>
<td>6-05.3(12)</td>
</tr>
<tr>
<td>Bearings, bridge</td>
<td>6-02.3(19), 9-35</td>
</tr>
<tr>
<td>Beginning of work</td>
<td>1-08.4</td>
</tr>
<tr>
<td>Benches</td>
<td></td>
</tr>
<tr>
<td>reinforcing steel, in field</td>
<td>8-02.3(20), 9-14.13</td>
</tr>
<tr>
<td>reinforcing steel, at manufacturer or fabricator</td>
<td>6-02.3(24)B</td>
</tr>
<tr>
<td>Bid(s)</td>
<td></td>
</tr>
<tr>
<td>appeals</td>
<td>1-03.7</td>
</tr>
<tr>
<td>definition</td>
<td>1-01.3</td>
</tr>
<tr>
<td>documents</td>
<td>1-02.2</td>
</tr>
<tr>
<td>documents (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>consideration of</td>
<td>1-03.1</td>
</tr>
<tr>
<td>form (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>form and style</td>
<td>1-02.5</td>
</tr>
<tr>
<td>guaranty</td>
<td>1-02.7</td>
</tr>
<tr>
<td>guaranty (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>irregular</td>
<td>1-02.13</td>
</tr>
<tr>
<td>modification or withdrawal</td>
<td>1-02.10</td>
</tr>
<tr>
<td>public opening</td>
<td>1-02.12</td>
</tr>
<tr>
<td>procedures and conditions</td>
<td>1-02</td>
</tr>
<tr>
<td>return of guaranty</td>
<td>1-03.6</td>
</tr>
<tr>
<td>submittal</td>
<td>1-02.9</td>
</tr>
<tr>
<td>tabulation</td>
<td>1-03.1(2)</td>
</tr>
<tr>
<td>withdrawal</td>
<td>1-02.10</td>
</tr>
<tr>
<td>Bidder</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>1-01.3</td>
</tr>
<tr>
<td>disqualifications</td>
<td>1-02.14</td>
</tr>
<tr>
<td>qualifications</td>
<td>1-02.1</td>
</tr>
<tr>
<td>Bituminous materials</td>
<td>9-02</td>
</tr>
<tr>
<td>Bituminous surface treatment</td>
<td>5-02</td>
</tr>
<tr>
<td>class A</td>
<td>5-02.1(2)</td>
</tr>
<tr>
<td>class B, C, and D</td>
<td>5-02.1(3)</td>
</tr>
<tr>
<td>patching and correction of defects</td>
<td>5-02.3(7)</td>
</tr>
<tr>
<td>Block traffic curb</td>
<td>8-07, 9-18.3</td>
</tr>
<tr>
<td>Blocking alley, street, sidewalk – notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Bollards</td>
<td>8-02.3(19), 9-14.12</td>
</tr>
<tr>
<td>Bolt holes -See Holes</td>
<td></td>
</tr>
<tr>
<td>Bolted connections, steel</td>
<td>6-03.3(33)</td>
</tr>
<tr>
<td>Bolts, washers, etc. for timber structures</td>
<td>6-04.3(6)</td>
</tr>
</tbody>
</table>
Bond
bid .. 1-02.7
contract ... 1-03.4
Bonding and grounding, electrical ... 8-30.3(7)
Borrow ... 2-03.3(13)
gravel ... 9-03.14
sites ... 2-61.2
Box girder cell, drainage of .. 6-02.3(21)
Bridge
approach slab ... 5-05.3(19)
embankment and trestle end ... 2-03.3(14)J
hardware for timber .. 6-04.3(6)
steel structures .. 6-03
superstructures, steel .. 6-03.3(28)
timber structures .. 6-04
Bridge approach embankment compaction ... 2-03.3(14)J
Bridge drains .. 6-02.3(36), 9-06.19
Bridge drains, maintenance .. 6-01.16
Bridge railings ... 6-06
Bus shelter footing ... 8-14.3(9)
Buttons, traffic .. 8-08, 9-21
"Buy American" requirements - See Section 1-06.5 of the Project Manual

C
Calcium chloride in concrete admixtures ... 9-23.6
Calcium chloride in non-shrink cement sand grout .. 9-04.3(2)
Concrete Barrier .. 6-10
Camber
alignment, structural steel .. 6-03.3(31)
falsework on concrete structures .. 6-02.3(17)
timber trusses .. 6-04.3(17)
Caps, timber bridge .. 6-04.3(10)
Catch basins .. 7-05.3(2), 9-12
Cement
admixtures ... 9-23
concrete, class of for pavement .. 5-05.3(1)
concrete, class of for structures .. 6-02.3(2)A
portland .. 9-01
slurry, abandon pipe .. 2-02.3(5)A, 9-05.23
slurry, annular space between pipes .. 7-17.3(2)J, 9-05.23
types of ... 9-01.1
weighing equipment ... 1-09.2
Cement concrete approach ... 5-05.3(18)
Cement concrete in contact with aluminum pipe, treatment 7-02.3(1)C3B
Cement concrete pavement - See Pavement, cement concrete
Cement concrete structural – See concrete structures
Cement concrete sidewalks .. 8-14
Chain link fence and wire fence .. 8-12
Changed conditions – See Differing site conditions
Changes, equitable adjustment for .. 1-09.4
Channel, preservation of (structural excavation) ... 2-09.3(3)A
Channel excavation .. 2-10
Chemical spill - notification requirement .. 1-07.28
Chloride
in concrete admixtures .. 9-23.6
in prestressed concrete girders ... 9-19.1
in water for concrete .. 9-25.1
ion content in precast prestressed concrete .. 9-23.7
Claims .. 1-04.5(2)
Class concrete, pavement ... 5-05.3(1)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class concrete, structural</td>
<td>6-02.3(2)A</td>
</tr>
<tr>
<td>Cleanup</td>
<td>1-04.11</td>
</tr>
<tr>
<td>Cleaning existing drainage structures</td>
<td>7-07</td>
</tr>
<tr>
<td>Clear plastic covering</td>
<td>8-01.3(8), 9-14.5(3)</td>
</tr>
<tr>
<td>Clearances, underground utilities</td>
<td>1-08.5</td>
</tr>
<tr>
<td>Cleaning existing drainage structures</td>
<td>7-07</td>
</tr>
<tr>
<td>Clear plastic covering</td>
<td>8-01.3(8), 9-14.5(3)</td>
</tr>
<tr>
<td>Clearing, grubbing, and roadside cleanup</td>
<td>2-01</td>
</tr>
<tr>
<td>Coal tar pitch emulsion</td>
<td>9-02.1(9)</td>
</tr>
<tr>
<td>Cold weather work/unfavorable weather - See Weather limitations</td>
<td>1-02.8</td>
</tr>
<tr>
<td>Coloring agent for concrete</td>
<td>8-14.2, 9-23.10</td>
</tr>
<tr>
<td>Combined sewers - See Storm drains and sanitary sewers</td>
<td>1-02.8</td>
</tr>
<tr>
<td>Compacting</td>
<td>5-04.3(10)</td>
</tr>
<tr>
<td>Compaction control test</td>
<td>2-03.3(14)E</td>
</tr>
<tr>
<td>Completion, contract</td>
<td>1-05.12</td>
</tr>
<tr>
<td>Completion date</td>
<td>1-01.3</td>
</tr>
<tr>
<td>completion, contract completion</td>
<td>1-01.3</td>
</tr>
<tr>
<td>definition, physical completion</td>
<td>1-01.3</td>
</tr>
<tr>
<td>definition, substantial completion</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Completion, time for</td>
<td>1-08.5</td>
</tr>
<tr>
<td>Combined sewers - See Storm drains and sanitary sewers</td>
<td>1-02.8</td>
</tr>
<tr>
<td>Concrete - See Concrete structures, or Pavement, cement concrete</td>
<td>6-10</td>
</tr>
<tr>
<td>Concrete barrier</td>
<td>9-12.6</td>
</tr>
<tr>
<td>Concrete, cement – See Cement concrete</td>
<td>9-23</td>
</tr>
<tr>
<td>Concrete curing materials and admixtures</td>
<td>7-02.3(1)C3B</td>
</tr>
<tr>
<td>Concrete slope protection</td>
<td>8-16</td>
</tr>
<tr>
<td>Concrete structures</td>
<td>6-02.3(3), 9-23.6</td>
</tr>
<tr>
<td>admixtures</td>
<td>6-02.3(3)A</td>
</tr>
<tr>
<td>air entrained concrete</td>
<td>6-02.3(3)A</td>
</tr>
<tr>
<td>bonding new concrete to existing</td>
<td>6-02.3(34)A2</td>
</tr>
<tr>
<td>class concrete</td>
<td>6-02.3(1)</td>
</tr>
<tr>
<td>compression seal</td>
<td>6-02.3(13)</td>
</tr>
<tr>
<td>construction joint</td>
<td>6-02.3(12)</td>
</tr>
<tr>
<td>cracks, epoxy injection of</td>
<td>6-02.3(33)</td>
</tr>
<tr>
<td>curing</td>
<td>6-02.3(11)</td>
</tr>
<tr>
<td>drilling holes in</td>
<td>6-02.3(30)</td>
</tr>
<tr>
<td>expansion joint</td>
<td>6-02.3(13)</td>
</tr>
<tr>
<td>exposed to alkaline soils or water</td>
<td>6-02.3(8)</td>
</tr>
</tbody>
</table>

- Inspection of work and materials ... 1-05.6
- Patented devices, materials, and processes .. 1-05.3
- Load limits .. 1-07.7
- Prevailing wages .. 1-07.9
- Responsibility for work and damages ... 1-07.13
- Submittals .. 1-08.3
- Unauthorized work ... 1-05.7

Controlled blasting (see project manual)
Control of materials ... 1-06
Control of work .. 1-05

Controller
- Irrigation .. 8-03.3(7), 9-15.3
- Irrigation, electric wire ... 9-32.1(2)
- Traffic signal .. 8-31.1(1)
- Traffic signal, assembly .. 8-31.3(2)
- Traffic signal, assembly placement .. 8-31.3(1)C
- Traffic signal, assembly testing ... 8-31.15(5)
- Traffic signal, checkout .. 8-31.3(15)
- Traffic signal, detector loops ... 9-32.6
- Traffic signal, foundations ... 8-32.3(2)B

Coordination of contract documents ... 1-04.2
Copper seals ... 9-06.13
Corrosion cleaning, water main thermoplastic powder coating 9-30.1(6)C6 and C7

Corrosion protection
- Water main, coating for bolts and shackle rods 9-30.15
- Water main, electrolysis test station ... 9-30.12(2)

Corrosion resistant material
- Aluminum poles ... 9-33.3
- Ground rods and clamps, electrical ... 9-31.7
- Irrigation ... 9-15.14
- Pedestrian signal heads, case ... 9-32.4(3)
- Reflective sign face sheeting .. 9-28.1(4)
- Water main fittings, bolts and nuts ... 9-30.2(7)

Corrugated Metal pipes, etc ... 9-05
Counter, batch .. 5-05.3(3), 6-02.3(4)C
Crack repair, concrete structure ... 6-02.3(33)
Crack sealing .. 5-04.3(5D)
Creosote oil .. 9-09.3(2)A
Cribbing ... 6-09; 9-27
Critical path schedule .. 1-08.1(3)
Crushed Surfacing .. 4-04
Cultivation ... 8-01.3(1A), 8-02.3(11)
Culverts ... 7-02
Curb
- And gutter .. 8-04.3(4)
- Block ... 8-07, 9-18.3
- Blockouts at curb ramps ... 8-04.3(2)
- Cement concrete .. 8-04
- Extruded ... 8-06
- Mountable .. 8-04.3(6)
- On existing pavement ... 8-04.3(5A)
- On new pavement .. 8-04.3(5B)
- Painting of .. 8-07.3(2)
- Precast .. 8-07, 9-18.1
- Ramps, types 1 and 2 ... 8-14.3 (7) and (8)
- Wall ... 5-05.3(3)(2D)

Curing
- Concrete curb .. 8-04.3(1E)
- Concrete Driveway .. 8-19.3(4)
- Concrete Extruded Curb ... 8-06.3(6)
- Concrete Pavement .. 5-05.3(13)
- Concrete Piles .. 6-05.3(3)D
<table>
<thead>
<tr>
<th>Entry</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete precast girders</td>
<td>6-02.3(25)E</td>
</tr>
<tr>
<td>Concrete precast panels</td>
<td>6-02.3(28)D</td>
</tr>
<tr>
<td>Concrete prestressed girders</td>
<td>6-02.3(25)E</td>
</tr>
<tr>
<td>Concrete sidewalks</td>
<td>8-14.3(5)</td>
</tr>
<tr>
<td>Concrete stairways, landing, and steps</td>
<td>8-18.3(5)</td>
</tr>
<tr>
<td>Concrete structures</td>
<td>6-02.3(11)</td>
</tr>
<tr>
<td>Concrete structures, removal of falsework and forms</td>
<td>6-02.3(17)N</td>
</tr>
<tr>
<td>Pile driving near new concrete</td>
<td>6-05.3(11)H</td>
</tr>
<tr>
<td>Cuts, widening of</td>
<td>2-03.3(1)</td>
</tr>
<tr>
<td>Damage, contractor responsible for work and</td>
<td>1-07.13</td>
</tr>
<tr>
<td>Date numerals, for concrete structures</td>
<td>6-02.3(15)</td>
</tr>
<tr>
<td>Dates for application of seed, fertilizer, mulch – erosion control</td>
<td>8-01.3(15)</td>
</tr>
<tr>
<td>Day - definitions – business, calendar, non-working, working, unworkable</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Debris, clearing and grubbing, disposal of</td>
<td>2-01.2</td>
</tr>
<tr>
<td>Defective and unauthorized work</td>
<td>1-05.7</td>
</tr>
<tr>
<td>Definitions</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Electrical and electronic words and phrases</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Definitions and tests, materials</td>
<td>9-00</td>
</tr>
<tr>
<td>Delaminated concrete, repair</td>
<td>6-02.3(32)</td>
</tr>
<tr>
<td>Delays</td>
<td>1-08.8</td>
</tr>
<tr>
<td>Deleted or terminated work</td>
<td>1-09.5</td>
</tr>
<tr>
<td>Density</td>
<td>4-06.3(7)</td>
</tr>
<tr>
<td>Asphalt concretes</td>
<td>5-04.3(10)B</td>
</tr>
<tr>
<td>Compaction control tests, soils</td>
<td>2-03.3(14)E</td>
</tr>
<tr>
<td>Trench backfill, improved & unimproved areas</td>
<td>7-17.3(3)B</td>
</tr>
<tr>
<td>Detectable marking tape, irrigation system</td>
<td>9-15.18</td>
</tr>
<tr>
<td>Detector loops</td>
<td>8-31.3(5), 9-32.6</td>
</tr>
<tr>
<td>Detention pipe</td>
<td>7-16.3(3)</td>
</tr>
<tr>
<td>Detention pipe in landslide prone area</td>
<td>7-16.2</td>
</tr>
<tr>
<td>Dewatering concrete seals and foundations</td>
<td>6-02.3(6)D</td>
</tr>
<tr>
<td>Differing site conditions</td>
<td>1-04.7</td>
</tr>
<tr>
<td>Disputes and Claims Resolution Process</td>
<td>1-04.5</td>
</tr>
<tr>
<td>Disposal of surplus material</td>
<td>2-01.2, 2-03.3(7)</td>
</tr>
<tr>
<td>Disqualification of bidders</td>
<td>1-02.14</td>
</tr>
<tr>
<td>Ditch and Channel Excavation</td>
<td>2-10</td>
</tr>
<tr>
<td>Ditches, roadway</td>
<td>2-03.3(9)</td>
</tr>
<tr>
<td>Dowel bars, concrete pavement</td>
<td>5-05.3(10), 9-07.5</td>
</tr>
<tr>
<td>Downspouts</td>
<td>6-02.3(29)</td>
</tr>
<tr>
<td>Drainage</td>
<td></td>
</tr>
<tr>
<td>of box girder cells</td>
<td>6-02.3(21)</td>
</tr>
<tr>
<td>of substructure</td>
<td>6-02.3(22)</td>
</tr>
<tr>
<td>Drainage structures, cleaning existing</td>
<td>7-07</td>
</tr>
<tr>
<td>Drains</td>
<td></td>
</tr>
<tr>
<td>Bridge</td>
<td>6-02.3(36), 9-06.19</td>
</tr>
<tr>
<td>Storm - See Storm Drains and Sanitary Sewers</td>
<td></td>
</tr>
<tr>
<td>Subsurface</td>
<td>7-01</td>
</tr>
<tr>
<td>Drawings, contractor responsible for working</td>
<td>1-05.3</td>
</tr>
<tr>
<td>also see Shop details and drawings</td>
<td></td>
</tr>
<tr>
<td>Driveway, cement concrete</td>
<td>8-19</td>
</tr>
<tr>
<td>Drop connections</td>
<td>7-08.3(6)</td>
</tr>
<tr>
<td>Ductile iron castings</td>
<td>9-06.14</td>
</tr>
<tr>
<td>Dust ratio</td>
<td>9-00.5</td>
</tr>
<tr>
<td>Earth embankments</td>
<td>2-03.3(14)</td>
</tr>
<tr>
<td>Edging, landscaped areas</td>
<td>8-02.3(18)</td>
</tr>
</tbody>
</table>
Elastomeric bearing pads ..6-02.3(19)A, 9-35
Elastomeric expansion joint seal ..9-04.1(4)
Elastomeric flexible seals for drain pipes ...9-04.1(4)
Electrical, applicable codes ...8-30.1(2)
Electrical and electronic words and phrases ..1-01.3
Electrical safety observer ...1-05.2(2)
Electrical wire, irrigation system ..9-15.17
Electrical wire and controller installation, irrigation system ..8-03.3(7)
Electrical vaults – construction notification requirement ..1-07.28

Embarkments
- bridge approach (definition) ..1-01.3
- compaction control test ...2-03.3(14)E
- construction of ..2-03.3(14)C
- earth, compaction ...2-03.3(14)D
- end slopes ..2-03.3(16)
- rock, compaction ...2-03.3(14)B
- stepped slope construction ...2-03.3(18)
- trestle and bridge ends ...2-03.3(14)J
- unsuitable foundation treatment ...2-03.3 (14) F

Empty cell process ..9-09.3(2)F
Emulsified asphalt, cationic ..9-02.1(6)

Engineer
- authority of ...1-05.1
- definition ..1-01.3

End slopes ...2-03.3(16)
Entry onto private property, construction – notification requirement1-07.28
Epoxy Resins ..9-26

Equal Employment Opportunity (E.E.O.) ...1-07.11

Equipment
- aeration ..2-03.3(15)
- asphalt pavement ...5-04.3(4)
- bituminous surface treatment ..5-02.3(1)
- concrete pavement ..5-05.3(3)
- contractors ..1-05.13
- pile driving ...6-05.3(9)
- weighing ..1-09.2

Erosion Control and Roadside Planting (materials) ..9-14
Erosion Control ...8-01
Erosion and water pollution control, temporary ...1-07.15

Error, claim of ..1-03.1(3)

Estimates
- progress payment ...1-09.9(1)
- material on hand ...1-09.8

Examination of bid documents and project site ..1-02.4

Excavation
- below grade ...2-03.3(3)
- borrow ...2-03.3(13)
- disposal of surplus and waste material ..2-03.3(7)
- ditch and channel ..2-10
- overbreak ..2-03.3(12)
- roadway ..2-03
- roadway ditches ..2-03.3(9)
- rock cuts ..2-03.3(2)
- selected material ..2-03.3(10)
- slides ..2-03.3(11)
- sluicing ...2-03.3(4)
- stepped slope construction ...2-03.3(18)
- stripping pits and quarries ...3-01
- structure ...2-09
- unsuitable foundation ..2-03.3(14)F
- wasting material ...2-03.3(8)
- widening of cuts ...2-03.3(1)
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation for structures</td>
<td>2-09</td>
</tr>
<tr>
<td>Backfilling</td>
<td>2-09.3(1)E</td>
</tr>
<tr>
<td>Classification</td>
<td>2-09.3(2)</td>
</tr>
<tr>
<td>Depth</td>
<td>2-09.3(1)B</td>
</tr>
<tr>
<td>Dewatering</td>
<td>2-09.3(3)F</td>
</tr>
<tr>
<td>Disposal of excavated material</td>
<td>2-09.3(1)D</td>
</tr>
<tr>
<td>In open pits, extra excavation</td>
<td>2-09.3(3)B</td>
</tr>
<tr>
<td>Shoring and cofferdams</td>
<td>2-09.3(3)D</td>
</tr>
<tr>
<td>Execution of contract</td>
<td>1-03.3</td>
</tr>
<tr>
<td>Existing drainage structures, cleaning</td>
<td>7-07</td>
</tr>
<tr>
<td>Expansion joint filler and sealer</td>
<td>9-04.1 and 2</td>
</tr>
<tr>
<td>Expansion bearings, concrete structure</td>
<td>6-02.3(19)B</td>
</tr>
<tr>
<td>Explosives, use of</td>
<td>1-07.22</td>
</tr>
<tr>
<td>Extension of time</td>
<td>1-08.8</td>
</tr>
<tr>
<td>Execution of contract</td>
<td>1-03.3</td>
</tr>
<tr>
<td>Execution of contract, failure to</td>
<td>1-03.5</td>
</tr>
<tr>
<td>Eyebars</td>
<td>6-03.3(22)</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Fabric, waterproofing</td>
<td>6-08</td>
</tr>
<tr>
<td>Fabrication of steel, notice of rolling</td>
<td>6-03.3(1)</td>
</tr>
<tr>
<td>Falsework and formwork</td>
<td></td>
</tr>
<tr>
<td>Concrete structures</td>
<td>6-02.3(17)</td>
</tr>
<tr>
<td>Removal from concrete structure</td>
<td>6-02.3(17)N</td>
</tr>
<tr>
<td>Shop drawings for concrete structures</td>
<td>6.02.3(16)</td>
</tr>
<tr>
<td>Fence</td>
<td></td>
</tr>
<tr>
<td>Chain link and wire</td>
<td>8-12, 9-16</td>
</tr>
<tr>
<td>Rock protection</td>
<td>8-26, 9-16.7</td>
</tr>
<tr>
<td>Fertilizer</td>
<td></td>
</tr>
<tr>
<td>Dates for application, erosion control</td>
<td>8-01.3(7)</td>
</tr>
<tr>
<td>Erosion control</td>
<td>8-01.3(4)B, 9-14.3</td>
</tr>
<tr>
<td>Planting</td>
<td>8-02.3(8), 9-14.3</td>
</tr>
<tr>
<td>Field office for engineer's staff - See Section 1-07.29 of Project manual</td>
<td></td>
</tr>
<tr>
<td>Field test</td>
<td></td>
</tr>
<tr>
<td>Illumination and electrical</td>
<td>8-30.3(9)</td>
</tr>
<tr>
<td>Irrigation system</td>
<td>8-03.3(9)</td>
</tr>
<tr>
<td>Sewer</td>
<td>7-17.3(4)</td>
</tr>
<tr>
<td>Traffic signal system</td>
<td>8-31.3(15)</td>
</tr>
<tr>
<td>Filter blanket for riprap</td>
<td>8-15.3(7)</td>
</tr>
<tr>
<td>Filter fabric - see Geotextile</td>
<td></td>
</tr>
<tr>
<td>Final cleanup</td>
<td>1-04.11</td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Quarry and pit site reclamation</td>
<td>3-03</td>
</tr>
<tr>
<td>Structures</td>
<td>6-01.12</td>
</tr>
<tr>
<td>Final inspection</td>
<td>1-05.11</td>
</tr>
<tr>
<td>Final payment for contract</td>
<td>1-09.9(4)</td>
</tr>
<tr>
<td>Finishing</td>
<td></td>
</tr>
<tr>
<td>Asphalt concrete pavement</td>
<td>5-04.3(9)</td>
</tr>
<tr>
<td>Bridge roadway slabs</td>
<td>6-02.3(10)</td>
</tr>
<tr>
<td>Cement concrete pavement</td>
<td>5-05.3(11)</td>
</tr>
<tr>
<td>Concrete driveway</td>
<td>8-19.3(3)</td>
</tr>
<tr>
<td>Concrete sidewalk</td>
<td>8-14.3(4)</td>
</tr>
<tr>
<td>Concrete stairways, landings, and steps</td>
<td>8-18.3(5)</td>
</tr>
<tr>
<td>Concrete structure surfaces, classes 1, 2 & 3</td>
<td>6-02.3(14)</td>
</tr>
<tr>
<td>Concrete traffic and pedestrian barrier</td>
<td>6-02.3(11)B</td>
</tr>
<tr>
<td>Flexible Guide Posts</td>
<td>8-10, 9-17</td>
</tr>
<tr>
<td>Floor, timber</td>
<td></td>
</tr>
<tr>
<td>Laminated</td>
<td>6-04.3(15)</td>
</tr>
<tr>
<td>Single plank</td>
<td>6-04.3(14)</td>
</tr>
<tr>
<td>Subfloor for concrete deck</td>
<td>6-04.3(16)</td>
</tr>
<tr>
<td>Section</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Flow control structure</td>
<td>9-05.19</td>
</tr>
<tr>
<td>Flow control systems</td>
<td>7-16</td>
</tr>
<tr>
<td>Flow control systems in landslide prone areas</td>
<td>7-16.2</td>
</tr>
<tr>
<td>Flow control systems to be owned or maintained by the City</td>
<td>7-16.2</td>
</tr>
<tr>
<td>Follower, pile driving</td>
<td>6-05.3(11)E</td>
</tr>
<tr>
<td>Force account</td>
<td>1-09.6</td>
</tr>
<tr>
<td>contractor markup on subcontractors</td>
<td>1-09.6(7)</td>
</tr>
<tr>
<td>equipment</td>
<td>1-09.6(4)</td>
</tr>
<tr>
<td>insurance, B&O tax, bonding</td>
<td>1-09.6(6)</td>
</tr>
<tr>
<td>labor</td>
<td>1-09.6(2)</td>
</tr>
<tr>
<td>materials</td>
<td>1-09.6(3)</td>
</tr>
<tr>
<td>mobilization</td>
<td>1-09.6(5)</td>
</tr>
<tr>
<td>subcontractors</td>
<td>1-09.6(6)</td>
</tr>
<tr>
<td>Force mains</td>
<td>7-17.3(4)F</td>
</tr>
<tr>
<td>Forgings, steel</td>
<td>9-06.11</td>
</tr>
<tr>
<td>Formwork</td>
<td></td>
</tr>
<tr>
<td>concrete pavement</td>
<td>5-05.3(7)A</td>
</tr>
<tr>
<td>concrete pavement, side forms</td>
<td>5-05.3(21)</td>
</tr>
<tr>
<td>concrete pavement, slip form</td>
<td>5-05.3(7)B</td>
</tr>
<tr>
<td>concrete pavement, stationary side forms</td>
<td>5-05.3(7)C</td>
</tr>
<tr>
<td>removal from concrete structure</td>
<td>6-02.3(17)N</td>
</tr>
<tr>
<td>shop drawings for concrete structures</td>
<td>6-02.3(16)</td>
</tr>
<tr>
<td>structural systems and falsework</td>
<td>6-02.3(17)</td>
</tr>
<tr>
<td>Formulas for</td>
<td></td>
</tr>
<tr>
<td>determination of pile bearing values</td>
<td>6-05.3(12)</td>
</tr>
<tr>
<td>paints</td>
<td>9-08.2</td>
</tr>
<tr>
<td>Foundation</td>
<td></td>
</tr>
<tr>
<td>cribbing</td>
<td>6-09.3(1)A</td>
</tr>
<tr>
<td>controller, traffic signal</td>
<td>8-32.3(2)B</td>
</tr>
<tr>
<td>data for structures</td>
<td>6-01.2</td>
</tr>
<tr>
<td>pole, pedestal, and pedestrian pushbutton post</td>
<td>8-32.3(2)</td>
</tr>
<tr>
<td>subsurface information</td>
<td>1-02.4(2)</td>
</tr>
<tr>
<td>Fracture, aggregate (definition)</td>
<td>9-00.1</td>
</tr>
<tr>
<td>Frame and cover</td>
<td></td>
</tr>
<tr>
<td>catch basins or inlets</td>
<td>9-12.8(2)</td>
</tr>
<tr>
<td>flow control structure</td>
<td>9-05.19</td>
</tr>
<tr>
<td>manhole</td>
<td>7-05.3(1)R</td>
</tr>
<tr>
<td>monuments</td>
<td>9-22</td>
</tr>
<tr>
<td>water main, blowoff assemblies</td>
<td>7-11.3(14)</td>
</tr>
<tr>
<td>water main, electrolysis test station</td>
<td>7-11.3(15)C3</td>
</tr>
<tr>
<td>water main, valve chambers</td>
<td>9-30.3(12)H</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Gabion cribbing</td>
<td>6-09.3(6), 9-27.3</td>
</tr>
<tr>
<td>Gaskets, flexible plastic</td>
<td>9-04.5</td>
</tr>
<tr>
<td>Gaskets, rubber for pipes and manholes</td>
<td>9-04.4</td>
</tr>
<tr>
<td>Gates</td>
<td></td>
</tr>
<tr>
<td>access control for guardrail</td>
<td>8-11.3(3)</td>
</tr>
<tr>
<td>chain link</td>
<td>8-12.3(2)E, 9-16.1(10)</td>
</tr>
<tr>
<td>wire</td>
<td>8-12.3(3)D, 9-16.2(9)</td>
</tr>
<tr>
<td>Geotextile</td>
<td>2-12, 9-05.22</td>
</tr>
<tr>
<td>Girders, prestressed concrete</td>
<td>6-02.3(25), 9-19</td>
</tr>
<tr>
<td>deflection requirements</td>
<td>6-02.3(25)N</td>
</tr>
<tr>
<td>erection</td>
<td>6-02.3(25)O</td>
</tr>
<tr>
<td>Glare Screen</td>
<td>8-25, 9-016.6</td>
</tr>
<tr>
<td>Grade Adjustment</td>
<td></td>
</tr>
<tr>
<td>new catch basin</td>
<td>7-05.3(2)K</td>
</tr>
<tr>
<td>new inlet</td>
<td>7-05.3(2)D</td>
</tr>
<tr>
<td>new manhole</td>
<td>7-05.3(1)P</td>
</tr>
<tr>
<td>new pavement, catch basin, inlet, manhole, valve chamber</td>
<td>7-20</td>
</tr>
</tbody>
</table>
bolting, structural steel ... 6-03.3(33)C
erosion control .. 8-01.3(10)
final, of work .. 1-05.11
illumination and electrical, final .. 8-30.3(10)
landscape establishment ... 8-02.3(12)
lawn establishment .. 8-02.3(15)
lumber and timber .. 9-09.2(3)
mill and shop, structural steel ... 6-03.3
paint manufacture ... 9-08.3
piles ... 6-05.3(3)A
planting material ... 9-14.6(5)
precast traffic curb ... 9-18.1(5)
reinforcing steel .. 9-07.1(4)
seeding, fertilizing, mulching .. 8-01.3(10)
steel poles, mast arms, bracket arms, and luminaire extensions 9-33.2(1)
television, sewer and storm drain ... 7-17.3(4)I
water turbine meters .. 9-30.13(14)
welding, structural steel ... 6-03.3(33)B
work and materials, of ... 1-05.6
Inspector - see Assistant
Insurance, public liability and property damages 1-07.18
workers benefits ... 1-07.18(7)
indemnification ... 1-07.18(8)
Intent of contract documents ... 1-04.1
Interconnect cable .. 8-31.3(8), 9-32.9
Interior illuminated sign ... 8-31.3(6)
Irrigation System ... 8-03, 9-15

J

Jets, water, for driving piles .. 6-05.3(9)B
Job shack - See Field office
Joint
- asphalt concrete pavement .. 5-04.3(11)
- compression seals ... 6-02.3(13)B
- concrete culvert pipe .. 7-02.3(1)B
- concrete curb and gutters ... 8-04.3 (1) F
- concrete driveway ... 8-19.3(3)
- concrete pavement .. 5-05.3(8)
- concrete pavement, construction .. 5-05.3(8)C2
- concrete pavement, contraction .. 5-05.3(8)B
- concrete pavement, location ... 5-05.3(8)D
- concrete pavement, placing at through 5-05.3(7)D
- concrete pavement, sawing equipment 5-05.3(3)
- concrete pavement, sealing .. 5-05.3(8)B3, 9-04.2
- concrete pavement, through ... 5-05.3(8)C
- concrete sewer and storm drain ... 7-17.3(2)E-F, 9-05.7(3)
- concrete sewer pipe, testing .. 9-05.7(4)
- concrete structure, construction ... 6-02.3(12)
- connections, at catch basin, inlet, manhole 7-08.3(3)
- expansion for bridge decks .. 6-02.3(13)A
- extruded curb ... 8-06.3(5)
- irrigation ... 8-03.3(5)
- manhole structure ... 7-05.3(1)K
- mortar ... 9-04.3(1)
- mortar for jointing manholes ... 9-12.4(1)
- premolded filler .. 6-01.14
- side sewer .. 7-18.3(3)D
- sidewalks .. 8-14.3(6)
water main, bond cable ... 9-30.10
water main, ductile iron ... 7-11.3(6)
water main, restrained ... 9-30.2(6)
Joint and Crack Sealing Materials ... 9-04
Joint venture (definition) .. 1-01.3

K (none)

L

Labor and Industries, State Department of
flagging ... 1-10.1(3)A
rock drilling safety requirements ... 1-07.21
safety rules and standards .. 1-07.12
subcontracting .. 1-08.1(3)
training and promotion, apprentice utilization requirements and goals .. 1-07.11(7)B2
training and promotion, wage progressions 1-07.11(7)D
wages, disputes ... 1-07.9(4)
wages, posting notices ... 1-07.9(2)
wages, prevailing wage rates, general 1-07.9(1)A
wages, required documents .. 1-07.9(5)
Labor prevailing wage rates ... 1-07.9(1)
Laboratory (definition) .. 1-01.3
Laminated decking, stringers, timber structures 6-04.3(12)
Laminated floor, timber structures .. 6-04.3(15)
Landscaping - See Roadside planting
Landslide prone areas, flow control systems 7-16.2
Laws, to be observed .. 1-07.1
Legal relations and responsibilities to the public 1-07
Liability of public officers, personal ... 1-07.26
License, permits and .. 1-07.6
Lighting / illumination
construction under traffic, public convenience and safety 1-07.23(1)
illumination ... 8-30, 9-31
lighting devices .. 1-10.3(4)E
operational testing ... 1-05.11(3)
protecting of existing ... 1-07.16(1)
traffic control plan .. 1-10.2(5)
traffic control supervisor ... 1-10.2(3)
Lime
agricultural .. 9-14.3(1)
eroison control, liming ... 8-01.3(4)C
eroison control, preparation .. 8-01.3(1)A
hydrated, cementitious materials ... 9-14.9(2)
lawn installation .. 8-02.3(14)
mortar, brick for valve chambers ... 9-30.3(12)E
mortar for plaster coating, catch basin, inlet, manhole 9-12.4(2)
mortar for plaster coating, valve chambers 9-30.3(12)I
Liquidated damages
amount of - See Agreement form in Project manual
contract time overrun ... 1-08.9
definition ... 1-01.3
owner’s right of withhold and dispense certain amounts 1-09.9(3)
training and promotion .. 1-07.11(7)F
Litigation .. 1-04.5(5)
Load limits .. 1-07.7
Lobbying certification .. 1-02.8
Locator, underground utility ... 1-07.28
Log of test borings, subsurface information 1-02.4(2)
Logs of soil borings – see Appendix of Project Manual
Loose riprap ... 8-15.3(2), 9-13.2
Lumber
creosote treatment ... 9-09.3(2)
formwork and falsework for concrete structures 6-02.3(17)
grade requirements ... 9-09.2
hewn and round timbers .. 9-09.2(5)
preservative treatment .. 9-09.3
seasoning, surfacing .. 9-09.2(2)
seasoning for treatment, incising ... 9-09.3(1A, 9-09.3(1)C
timber and ... 9-09
timber structures ... 6-04
Luminares ... 8-30.3(2), 9-31.1

M

Maintenance, during suspension of work .. 1-08.7
Maintenance rock .. 9-03.9(4)
Malleable iron castings ... 9-06.10
Manholes .. 7-05.3(1), 9-12
 adjusting to newly placed pavement 7-20
 adjusting to pavement grade, new manhole 7-05.3(1)P
 base .. 7-05.3(1)E
 brick and masonry units .. 9-12.5, .6, .7
 castings, metal ... 9-12.8
 channels ... 7-05.3(1)M
 concrete, reinforced .. 7-05.3(1)D, 9-12.1
 flat slab cover .. 7-05.3(1)H
 frame and cover ... 7-05.3(1)R
 handholds .. 7-05.3(1)Q
 joints .. 7-05.3(1)K
 ladder .. 7-05.3(1)Q, 9-12.3
 mortar ... 9-12.4
 pipe connections ... 7-05.3(1)N
 rebuilding existing .. 7-05.3(1)U
 rechanneling ... 7-05.3(1)T
 shop fabricated metal ... 9-12.10
 steps .. 7-05.3(1)Q, 9-12.2
 T-top ... 7-05.3(1)J
Manufacturers certificate of compliance ... 1-06.3
Marking material on pavement ... 9-29
Marking, pavement, permanent .. 8-22
Marking, pavement, temporary .. 5-04.3(17), 5-05.3(17)
Materialmen, prompt payment to ... 1-09.14
Materials
 acceptance .. 1-06.2
 American-made requirements - See Section 1-06.5 in Project Manual
defective ... 1-05.7
 found on project site, use of .. 1-04.10
 guarantee ... 1-05.10
 inspection of .. 1-05.6
 on hand, payment for .. 1-09.8
 samples and tests ... 1-06.2(1)
 source of supply and quality .. 1-06.1
 storage and handling ... 1-06.4
 used without inspection ... 1-05.6
Matting, placing for erosion control ... 8-01.3(8), 9-14.5
Measurement and payment ... 1-09
Measurement of quantities .. 1-09.1
Mechanical splices .. 6-02.3(24)G
Mediation .. 1-04.5(4)
Medium curing liquid asphalt ... 9-02.1(2)
Mesh
 for wire fence ... 8-12.3(3)B, 9-16.2(7)
Mixing

- asphalt concrete for paving ... 5-04.3(8)
- cement concrete for paving ... 5-05.3(5)
- cement concrete for structures ... 6-02.3(4)

Mobilization, payment for .. 1-09.7

Mobilization, payment for force account .. 1-09.6(5)

Moisture cured urethane paint ... 6-07.3(7), 9-08.2 item 18

Monorail, Seattle, notification when construction near 1-07.28

Monument cases (frame and cover) .. 8-13, 9-22

Mortar

- brick for valve chambers .. 9-30.3(12E)
- class 2 finish, concrete structure surface ... 6-02.3(14C)
- class 3 finish, concrete structure surface ... 6-02.3(14B)
- for waterproofing .. 9-11.3
- joint, concrete culvert pipe ... 9-04.3(1)
- manhole structure joints ... 9-12.4(1)
- plaster coating, catch basin, inlet, manhole .. 9-12.4(2)
- plaster coating, valve chamber .. 9-30.3(12I)

Mud sills

- falsework and formwork .. 6-02.3(17D)
- framed bent, timber structures .. 6-04.3(9)

Mulch

- erosion ... 8-01.3(2), 9-14.4
- planting ... 8-02.3(9), 9-14.4

N

Name plates, for structures .. 6-01.11
Navigable streams affected by structures ... 6-01.17
Noise pollution ... 1-07.5(4)
Non-collusion declaration and lobbying certification 1-02.8
Normal temperature, bridge drawings dimensions 6-01.15
Notes on drawings – see Specifications for definition 1-01.3
Notice – see Written notice
Notice of award (definition) ... 1-01.3
Notice to proceed (definition) ... 1-01.3
Notice to proceed (NTP) and prosecution of the work 1-08.4
Notifications relative to contractor’s activities ... 1-07.28
- blocking street, sidewalk, alley ... 1-07.28, item 1
- chemical, oil, or contaminant spill ... 1-07.28, item 8
- construction near Seattle Monorail ... 1-07.28, item 9
- electrical safety observer ... 1-07.28, item 6
- emergency work ... 1-07.28, item 4
- entry onto private property ... 1-07.28, item 13
- loop detection systems near signalized intersections 1-07.28, item 17
- METRO and waterfront trolley overhead wires, construction near 1-07.28, item 11
- METRO transit service disruption ... 1-07.28, item 2
- monorail, construction near .. 1-07.28, item 9
- overhead utility lines and trees .. 1-07.28, item 10
overweight loads, over bridges and culverts ... 1-07.7
owner (definition) .. 1-01.3
owner's right to correct defective or unauthorized work ... 1-05.8
owner, rights of the .. 1-03.1(5)
oral agreements .. 1-05.17
no waiver of owner's legal rights .. 1-07.27
operational testing ... 1-05.11(3)
overhead power lines and tree trimming .. 1-07.28
overhead METRO trolley lines, construction near .. 1-07.28
opening obstructions, remove, abandon, relocate .. 2-02
"one call" underground utility location ... 1-07.28
opening bids, public contracts .. 1-02.12
congrate pavement to traffic .. 5-05.3(17)
cement structure to traffic .. 6-02.3(23)
sections to traffic .. 1-07.25
operational testing ... 1-05.11(3)
oral agreements .. 1-05.17
overbreak .. 2-03.3(12)
overhead METRO trolley lines, construction near .. 1-07.28
overhead power lines and tree trimming .. 1-07.28
overtime contractor employees .. 1-07.9(1)B
force account, labor ... 1-09.6(2)
owner employees, reimbursement ... 1-08.1(5)
owner's right to withhold and disburse certain amounts ... 1-09.9(3)
overweight loads, over bridges and culverts ... 1-07.27
owner (definition) .. 1-01.3
owner, rights of the .. 1-03.1(5)
owner's right to correct defective or unauthorized work ... 1-05.8

paint
film thickness ... 6-07.3(5)
formulas ... 9-08.2
materials .. 9-08.1
moisture cured urethane paint (formula no. 18) ... 9-08.2
samples .. 9-08.7
painting .. 6-07
application .. 6-07.3(1)D
field painting ... 6-07.3(1)G
field cleaning ... 6-07.3(1)F
film thickness ... 6-07.3(5)
galvanized surfaces .. 6-07.3(4)
hydrants .. 9-30.5(7)
machine finished surfaces ... 6-03.3(30)E
number of coats and color ... 6-07.3(1)B
protection of property .. 6-07.3(6)
removal of unacceptable paint .. 6-07.3(1)E
repainting existing steel structures ... 6-07.3(2)
sand blasting ... 6-03.3(29)
shop cleaning and shop painting ... 6-03.3(30)
spraying machines ... 6-07.3(1)D
steel structures, new ... 6-07.3(1)
Pavement, Asphalt Concrete

- asphalt concrete driveways
- asphalt distributors
- class asphalt and thickness application
- compaction
- construction requirements
- crack sealing
- equipment
- hauling equipment
- joints
- mix design
- pavers
- planers
- planing
- plant, asphalt mixing
- prelevelling
- preparation of aggregates
- preparation of street surfaces
- rollers
- samples
- soil residual herbicide
- spreading and finishing
- surface smoothness
- tack coat
- weather limitations

Pavement, cement concrete

- air content
- alleys
- cement concrete approach
- class of concrete
- cold weather work
- compacting
- construction requirements
- curing
- edging
- equipment
- finishing
- joints
- joint location
- materials
- mix designs
- mixers
- opening pavements to traffic
- mixing
- opening pavements to traffic
- patching
- placing, spreading, compacting
- plant, batch
- proportioning materials
- protection of pavement
- sawing equipment, joint
- slip form construction
- slump requirements (consistency)
- steel reinforcing bars
- subgrade
- surface smoothness
- tie bars and dowel bars
- unfinished concrete pavement base
<table>
<thead>
<tr>
<th>Topic</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement removal</td>
<td>5-05.3(7)F</td>
</tr>
<tr>
<td>Pavement marking, temporary, new asphalt pavement</td>
<td>5-04.3(17)</td>
</tr>
<tr>
<td>Pavement marking, temporary, new concrete pavement</td>
<td>5-05.3(17)</td>
</tr>
<tr>
<td>Pay, prevailing wages, required documents</td>
<td>1-07.9(5)</td>
</tr>
<tr>
<td>Payment</td>
<td>1-09</td>
</tr>
<tr>
<td>Payroll reports</td>
<td>1-07.9(1)D</td>
</tr>
<tr>
<td>Peace officer</td>
<td>1-10.2(4), 1-10.3(1)B</td>
</tr>
<tr>
<td>Pedestal, signal</td>
<td>8-32.3(1)B, 9-33.6</td>
</tr>
<tr>
<td>Pedestrian control and protection</td>
<td>1-07.23(2)</td>
</tr>
<tr>
<td>Pedestrian signal heads</td>
<td>8-31.3(3)B, 9-32.4</td>
</tr>
<tr>
<td>Perforated drain pipe</td>
<td>7-01, 9-05.2</td>
</tr>
<tr>
<td>Permits and licenses</td>
<td>1-07.6</td>
</tr>
<tr>
<td>Personal liability of public officers</td>
<td>1-07.26</td>
</tr>
<tr>
<td>Piling</td>
<td>6-05, 9-10</td>
</tr>
<tr>
<td>cast-in-place concrete</td>
<td>9-10.3</td>
</tr>
<tr>
<td>completion of cast-in-place concrete</td>
<td>6-05.3(15)</td>
</tr>
<tr>
<td>concrete</td>
<td>6-05.3(3), 9-10.2</td>
</tr>
<tr>
<td>damaged, removal of</td>
<td>6-05.3(11)F</td>
</tr>
<tr>
<td>determination of bearing values</td>
<td>6-05.3(12)</td>
</tr>
<tr>
<td>driven below cut-off</td>
<td>6-05.3(11)G</td>
</tr>
<tr>
<td>driving</td>
<td>6-05.3(11)</td>
</tr>
<tr>
<td>equipment for driving</td>
<td>6-05.3(9)</td>
</tr>
<tr>
<td>jets for driving</td>
<td>6-05.3(9)B</td>
</tr>
<tr>
<td>manufacture of steel casings for cast-in-place concrete</td>
<td>6-05.3(4)</td>
</tr>
<tr>
<td>ordered and not driven</td>
<td>6-05.5</td>
</tr>
<tr>
<td>ordering piling</td>
<td>6-05.3(2)</td>
</tr>
<tr>
<td>splicing steel casings and steel piles</td>
<td>6-05.3(6)</td>
</tr>
<tr>
<td>steel</td>
<td>6-05.3(5)</td>
</tr>
<tr>
<td>steel pile tips and shoes</td>
<td>9-10.4</td>
</tr>
<tr>
<td>storage and handling</td>
<td>6-05.3(7)</td>
</tr>
<tr>
<td>terms</td>
<td>6-05.3(1)</td>
</tr>
<tr>
<td>test piles</td>
<td>6-05.3(10)</td>
</tr>
<tr>
<td>timber</td>
<td>9-10.1</td>
</tr>
<tr>
<td>tips and shoes</td>
<td>6-05.3(8)</td>
</tr>
<tr>
<td>wave equation analysis</td>
<td>6-05.3(1), 6-05.3(9)B</td>
</tr>
<tr>
<td>Pins and rollers, structural steel</td>
<td>6-03.3(24)</td>
</tr>
<tr>
<td>Pin nuts, adjusting</td>
<td>6-03.3(34)</td>
</tr>
<tr>
<td>Pipe</td>
<td></td>
</tr>
<tr>
<td>acceptance by manufacturer's certificate</td>
<td>9-05.0</td>
</tr>
<tr>
<td>pipe in contact with cement concrete, treatment</td>
<td>7-02.3(1)C3B</td>
</tr>
<tr>
<td>aluminum pipe for detention</td>
<td>9-05.20</td>
</tr>
<tr>
<td>aluminum spiral rib</td>
<td>9-05.17</td>
</tr>
</tbody>
</table>
Pipe and fittings for water mains ... 7-09
Pipe anchors .. 7-06
Plastic foam .. 9-05.14
Plugging existing culverts ... 7-02.3(4)
Removing and relaying culverts .. 7-02.3(5)
Sewer, aluminum .. 9-05.11, 9-05.17
Sewer, concrete ... 9-05.7
Sewer, ductile iron .. 9-05.13
Sewer, PVC ... 9-05.12
Sewer, steel ... 9-05.10
Sewer, vitrified clay ... 9-05.8
Spun asphalt lining, steel culvert .. 9-05.4(6)
Steel pipe for detention ... 9-05.21
Steel spiral rib drain .. 9-05.9
Structural plate, arch, and underpass .. 7-03, 9-05.6
Subsurface drain .. 9-05.2
Testing concrete sewer joints .. 9-05.7(4)

Plan for
Apprentice utilization ... 1-07.11(7)B3
Chain link and wire fence .. 8-11.3(1)E
Falsework and formwork erection ... 6-02.3(16)
Interconnect cable, old to new .. 8-31.3(8)A
Jacking irrigation piping .. 8-03.3(4)
Notifications relative to contractor activities .. 1-07.28
Prestress concrete girder erection ... 6-02.3(25)O
Public convenience and safety, construction under traffic 1-07.23(1)
Reclamation .. 3-03.3
Reclamation, borrow and waste sites .. 2-01.2
Removal of falsework and formwork .. 6-02.3(17)N
Removal of structural concrete .. 6-02.3(34)A
Repair, rejected pole .. 8-32.3(1)A
Structural steel erection .. 6-02.3(7)B
Structural steel marking .. 6-03.2
Submittal control document ... 1-08.3(2)
Temporary traffic control ... 1-10.2(5)
Temporary water pollution/erosion control ... 1-07.15
Traffic signal controller modification ... 8-31.3(2)A
Water service connection ... 7-11.3(9)C
Weed control, landscape establishment ... 8-02.3(12)

Plans – see Drawings
Plans and stakes, conformity with and deviation from 1-05.4
Plant materials .. 9-14.6
Plastic covering, clear .. 8-01.3(8), 9-14.5(3)
Plastic lane markers and traffic buttons .. 8-08, 9-21
Plastic waterstop .. 9-24
Plate girders .. 6-03.3(21)
Platform scales .. 1-09.2(3)
Playfield soil .. 8-01.3(2)D, 9-14.1(4)B
Plugging existing culvert ... 7-02.3(5)
Plugging existing pipe .. 2-02.3(5)B

Poles
- aluminum .. 8-32.3(1)B, 9-33.3
- back guy assemblies ... 8-32.3(3), 9-33.8
- concrete foundations .. 8-32.3(2)C
- fiberglass ... 8-32.3(1)D, 9-33.5
- foundations ... 8-32.3(2)A
- shop drawing submittal .. 8-32.1(3)
- steel .. 8-32.3(1)B, 9-33.2
- wood .. 8-32.3(1)C, 9-33.4

Pollution prevention .. 1-07.5
- air quality ... 1-07.5(3)
- archeological and historic preservation 1-07.5(6)
- environmental .. 1-07.5
- noise .. 1-07.5(4)
- sawcutting byproducts .. 1-07.5(2)
- water quality ... 1-07.5(2)

Portland Cement .. 9-01

Posts
- blockout in new concrete sidewalk for 8-14.3(3)
- chain link fence ... 8-12.3(2)A, 9-16.1(1)-(2)
- flexible guide ... 8-10, 9-17
- glare screen ... 8-25.3(3), 9-16.6(3)
- guardrail .. 8-11.3(1)A, 9-09.2,
 9-16.3(2)
- handrail .. 8-18.3(4)
- metal bridge railing .. 9-06.18
- meter ... 8-31.3(2), 9-28.2(2)-(3)
- pedestrian pushbutton .. 9-33.7
- project identification sign ... 8-27.2(5)
- roadside sign structure .. 9-06.16
- rock protection fence ... 8-26.3(1), 9-16.7(1)-(2)
- sign .. 8-21.3(2), 9-28.2
- street name ... 9-28.2(3)
- wire fence .. 8-12.3(3)A, 9-16.2(2)-(3)

Power, telephone, utility - overhead and tree trimming – notification requirements 1-07.28

Pre-award information ... 1-03.1(4)

Precast concrete piles ... 6-03.3(3)A and (7)B

Precast traffic curb and block traffic curb 8-07, 9-18

Precedence, order of contract documents 1-04.2

Preconstruction conference
- apprentice utilization plan ... 1-07.11(7)B3
- equal employment opportunity officer 1-07.11(3)
- hours of work ... 1-08.1(4)
- lump sum breakdown .. 1-09.3(2)
- meeting .. 1-08.1(2)
- progress payments .. 1-09.9(1)
- work force reports ... 1-07.11(10)B2

Preliminary critical path schedule 1-03.1(4), 1-08.1(2)

Premolded joint filler
- concrete pavement, contraction joints 5-05.3(8)B1
- concrete pavement, through joints 5-05.3(8)C1
- concrete pavement, transverse joints 5-05.3(8)D1
- material requirements .. 9-04.1
- structures ... 6-01.14

Preservation of public natural resources 1-07.5

Preservative treatments for timber 9-09.3

Prestressed concrete girders .. 9-19
Prestressing reinforcement ... 9-07.10
Prevailing wage rates .. 1-07.9(1)
Prevention of environmental pollution ... 1-07.5
Private property, construction entry – notification requirement 1-07.28
Production from quarry and pit sites .. 3-01
Professional engineer, submittal prepared by 1-05.3(2)F
Progress estimates and payment ... 1-04.8
Progress schedule to be furnished by contractor (see Schedule) 1-01.3
Project manual (definition) ... 1-01.3
Project site (definition) ... 1-01.3
Prompt payment to subcontractors and materialmen 1-09.14
Property, protection and restoration of ... 1-07.16
Proposal – see Bid
Prosecution and progress ... 1-08
Process, dispute resolution ... 1-04.5
Protection and restoration of property ... 1-07.16
Protection of utilities – see Utilities and similar facilities
Pruning and staking of plant material .. 8-02.3(7)
Public convenience and safety .. 1-07.23
Public officers, personal liability of .. 1-07.26
Public opening of bids .. 1-02.12
Pumping, for concrete seals and foundations 6-02.3(6)D

Q
Qualifications of bidders ... 1-02.1
Quarry and pit sites .. 3-01
Quantities
 increased or decreased ... 1-04.6
 measurement of .. 1-09.1
Quick coupling equipment, irrigation .. 9-15.8

R
Railings, bridge and pedestrian .. 6-06, 9-06.18
Railroads, relations with the – see Section 1-07.31 of the Project manual
Rapid curing liquid asphalt (table) .. 9-02.1(3)
Ready-mixed concrete .. 6-02.3(4)C
Real property ... 1-07.24
Rebuild existing catch basin .. 7-05.3(2)F
Rebuild existing manhole ... 7-05.3(1)U
Reflective sheeting (flexible guide posts) ... 8-10.2
Regulations
 definition ... 1-01.3
 laws to be observed ... 1-07.1(1)
Reinforcing Steel
 bending, by manufacturer or fabricator ... 9-07.1(2)
 bending, in field .. 6-02.3(24)B
 concrete stairway .. 8-18.3(3)
 deformed .. 9-07.2
 epoxy coated ... 6-02.3(24)I, 9-07.3
 materials ... 9-07
 placing and fastening .. 6-02.3(24)D
 splicing ... 6-02.3(24)E
 structural concrete .. 6-02.3(24)
 welding .. 6-02.3(24)F
Rejection of bids .. 1-02.13 and 14
Rejuvenating (recycling) agents ... 9-02.1(5)
Relief of responsibility for completed work .. 1-07.13(2)
Relief of responsibility for damage by public traffic 1-07.13(3)
Removal of

asphalt overlay2-02.3(3)B
bridges, culverts, other drainage structures ... 2-02.3(2)
catch basin, sand box, valve chamber, manhole, inlet .. 2-02.3(3)D
curb, curb and gutter ... 2-02.3(3)E
electrical / traffic control devices .. 2-02.3(3)G
falsework and forms .. 6-02.3(17)N
foundations, basements, sign posts ... 2-02.3(1)
guardrail ... 2-02.3(3)H
pavement, non-rigid ... 2-02.3(3)A
pavement, rigid ... 2-02.3(3)C
replace existing side sewer, and ... 7-18.3(1)C2
salvage ... 2-02.3(7)
sidewalk ... 2-02.3(3)F
structural concrete ... 6-02.3(34)
tree ... 2-02.3(3)
unacceptable paint .. 6-07.3(1)E
Removal of defective and unauthorized work .. 1-05.7
Removal of structures and obstructions ... 2-02
Removing and relaying culverts .. 7-02.3(4)
Rented equipment force account work .. 1-09.6
Repainting existing steel structure .. 6-07.3(2)
Resloping ... 2-03.3(11)
Responsibility for work and damage, contractor’s ... 1-07.13
Retainage ... 1-09.9(2)
Retaining walls drainage, backfill .. 6-02.3(22)
Retaining walls for hydrants ... 7-14.3(9)
Retempering concrete, prohibited ... 5-05.3(5)(a), 6-02.3(4)D
Right-of-way .. 1-07.24
Right-of-way (definition) .. 1-01.3
Rights of the owner ... 1-03.1(5)
Riprap .. 8-15
Riprap, quarry spill, slope protection .. 9-13
Roadbed (definition) ... 1-01.3
Roadside cleanup .. 2-01.3(4)
Roadside planting ... 8-02, 9-14
 benches ... 8-02.3(20), 9-14.13
 bollards ... 8-02.3(19), 9-14.12
 fertilizer ... 8-02.3(8), 9-14.3
 grid blocks .. 8-02.3(17)
 landscape establishment ... 8-02.3(12)
 lawn establishment .. 8-02.3(15)
 lawn installation ... 8-02.3(14)
 layout of planting .. 8-02.3(5)
matting .. 9-14.5
mulch and amendments ... 8-03.3(9)-(10), 9-14.4
paver blocks and interlocking pavers .. 9-14.9
plant materials ... 8-02.3(6)
planting .. 8-01.3(4)
planting area preparation ... 9-14.1(4)A
playfield soil .. 9-14.1(4)B
pruning and staking .. 8-02.3(7)
relocate tree .. 8-02.3(22)
seed mixes ... 9-14.2
shear boards .. 9-14.8
sod ... 9-14.6(8)
stakes, guys, wrapping ... 9-14.7
substitution of plants ... 9-14.6(6)
topsoil, types A and B ... 9-14.1(1) and (2)
tree grates .. 8-02.3(21), 9-14.14
tree root pruning ... 8-02.3(23)
trimming trees near overhead utility wires ... 1-07.28
Roadway
- classification of excavation ... 2-03.1(2)
- cut slope treatment ... 2-03.3(5)
- ditches ... 2-03.3(9)
- embankment construction .. 2-03.3(14)
- excavation and embankment .. 2-03
- rock cuts ... 2-03.3(2)

Rock drilling safety requirements ... 1-07.21

Rock facing / rockery ... 2-08, 9-03.17

Rock protection fence ... 8-26, 9-16.7

Rollers
- asphalt concrete pavement construction ... 5-04.3(4)B
- bituminous surface treatment .. 5-02.3(1)

Rubber gasketed joints ... 8-26, 9-16.7
- catch basin / inlet ... 7-05.3(2)A
- concrete pipe .. 9-05.7(3)
- culvert, concrete .. 7-02.3(1)B2
- ductile iron sewer and storm drain ... 9-05.13
- manhole, precast .. 7-05.3(1)K, 9-12.4(1)
- non-restrained ductile iron water main ... 9-30.1(1)

Rubberized asphalt for crack sealing .. 5-04.3(5)D, 9-04.10

S

- Sack riprap .. 8-15.3(4), 9-13.4
- Safety observer, electrical ... 1-01.3, 1-05.2(2)
- Safety Rules and Standards ... 1-07.1(2)
- Safety systems for trench excavation .. 7-17.3(1)A7a
- Safety watch, construction in electrical vault 1-07.28
- Sales tax, state .. 1-07.2
- Salvage of usable materials ... 2-02.3(2)
- Samples and sampling
 - asphalt materials ... 9-02.2(2)
 - cement ... 9-01.3
 - materials, general .. 1-06.2
- Sand drainage blanket ... 2-03.3(14)1, 9-03.13(2)
- Sandblasting, steel ... 6-03.3(29), 6-07.3(1)F
- Sand/silt ratio .. 9-00.6
- Sanitary provisions ... 1-07.4
- Sanitary sewer spill, construction – notification requirement 1-07.28
- Sanitary sewers - See Storm drains and sanitary sewers
- Sawcutting, planing, and grinding byproducts, pollution control 1-07.5(2)
- Sawing and line drilling .. 2-02.3(6)
- Scales, weighing .. 1-09.2

Schedule
- preliminary ... 1-03.1(4), 1-08.1(2)
- critical path .. 1-08.3(1)
- Scope of payment .. 1-09.3
- Scope of work .. 1-04
- Screw threads .. 6-03.3(26)
- Seal coat, coal tar pitch .. 5-03
- Seal, foundation .. 6-02.3(6)
- Seals, copper .. 9-06.13
- Seattle Monorail, construction near – notification requirement ... 1-07.28
- Seeding, erosion control ... 8-01.3
- Selected material, in excavation ... 2-03.3(10)
- Service connections, water ... 7-15
- Sewer (definition) .. 1-01.3
- Sewer cleanouts ... 7-19
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewer, sanitary spill - notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Sewers, sanitary and combined - See Storm drains and sanitary sewers</td>
<td></td>
</tr>
<tr>
<td>Shear</td>
<td></td>
</tr>
<tr>
<td>connectors</td>
<td>9-06.15</td>
</tr>
<tr>
<td>keys</td>
<td>6-02.3(12)</td>
</tr>
<tr>
<td>Shoes, bridge, setting and grouting</td>
<td>6-03.3(36)</td>
</tr>
<tr>
<td>Shop</td>
<td></td>
</tr>
<tr>
<td>details for prestressed girders</td>
<td>6-02.3(25)D</td>
</tr>
<tr>
<td>details for steel structures</td>
<td>6-03.3(7)A</td>
</tr>
<tr>
<td>details for timber bridges</td>
<td>6-04.3(3)</td>
</tr>
<tr>
<td>drawings - See Section 1-05.3(1) of the Project Manual</td>
<td></td>
</tr>
<tr>
<td>Shop drawings (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Shoring, structure excavation</td>
<td>2-09.3(3)D</td>
</tr>
<tr>
<td>Shoulder, ballast</td>
<td>4-04.3(11), 9-03.9(2)</td>
</tr>
<tr>
<td>Shutdown of water main or service, construction – notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Side sewers</td>
<td>7-18</td>
</tr>
<tr>
<td>Sidewalk, close or restrict during construction – notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Sidewalks, cement concrete</td>
<td>8-14</td>
</tr>
<tr>
<td>Sieves for testing</td>
<td>1-06.6</td>
</tr>
<tr>
<td>Sign posts, timber</td>
<td>9-28.2(1)</td>
</tr>
<tr>
<td>Signal heads</td>
<td></td>
</tr>
<tr>
<td>pedestrian</td>
<td>8-31.3(3), 9-32.4</td>
</tr>
<tr>
<td>vehicle</td>
<td>8-31.3(3), 9-32.3</td>
</tr>
<tr>
<td>Signal system, traffic</td>
<td></td>
</tr>
<tr>
<td>aerial terminal compartment</td>
<td>9-32.10</td>
</tr>
<tr>
<td>controller assembly</td>
<td>8-31.3(2), 9-32.1</td>
</tr>
<tr>
<td>cut-over procedure</td>
<td>8-31.3(1)C</td>
</tr>
<tr>
<td>detector loops</td>
<td>8-31.3(5), 9-32.6</td>
</tr>
<tr>
<td>interconnect cable</td>
<td>8-31.3(8)</td>
</tr>
<tr>
<td>pedestrian pushbuttons</td>
<td>8-31.3(4), 9-32.5</td>
</tr>
<tr>
<td>pole line hardware installation</td>
<td>8-31.3(11)</td>
</tr>
<tr>
<td>relocating equipment</td>
<td>8-31.3(12)</td>
</tr>
<tr>
<td>shop drawings</td>
<td>8-31.1(4)A</td>
</tr>
<tr>
<td>signal head, vehicle</td>
<td>8-31.1(3)B, 9-32.3</td>
</tr>
<tr>
<td>span wire</td>
<td>9-32.12</td>
</tr>
<tr>
<td>traffic control</td>
<td>8-31.3(1)A</td>
</tr>
<tr>
<td>training</td>
<td>9-32.2</td>
</tr>
<tr>
<td>wiring</td>
<td>8-31.1(9), 9-32.11</td>
</tr>
<tr>
<td>Signing materials and fabrication</td>
<td>9-28</td>
</tr>
<tr>
<td>Signs</td>
<td></td>
</tr>
<tr>
<td>interior illuminated</td>
<td>8-31.3(6), 9-32.7</td>
</tr>
<tr>
<td>interior illuminated crosswalk</td>
<td>8-31.3(7), 9-32.8</td>
</tr>
<tr>
<td>posts</td>
<td>9-28.2</td>
</tr>
<tr>
<td>street and traffic</td>
<td>8-21</td>
</tr>
<tr>
<td>Site conditions, differing</td>
<td>1-04.7</td>
</tr>
<tr>
<td>Site, examination of</td>
<td>1-02.4</td>
</tr>
<tr>
<td>Site Reclamation</td>
<td>3-03</td>
</tr>
<tr>
<td>Slides</td>
<td>2-03.3(11)</td>
</tr>
<tr>
<td>Slope protection</td>
<td></td>
</tr>
<tr>
<td>concrete</td>
<td>8-16</td>
</tr>
<tr>
<td>wire mesh</td>
<td>8-29</td>
</tr>
<tr>
<td>Sluicing</td>
<td>2-03.3(4)</td>
</tr>
<tr>
<td>Slump test (consistency)</td>
<td>5-05.3(2), 6-02.3(5)</td>
</tr>
<tr>
<td>Small quantity generator hazardous waste (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Smoothness</td>
<td></td>
</tr>
<tr>
<td>asphalt concrete pavement surface</td>
<td>5-04.3(13)</td>
</tr>
<tr>
<td>concrete pavement surface</td>
<td>5-05.3(12)</td>
</tr>
<tr>
<td>Snow removal, prior to grading</td>
<td>2-03.3(17)</td>
</tr>
<tr>
<td>Source of supply and quality of materials</td>
<td>1-06.1</td>
</tr>
<tr>
<td>Special category waste (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Special provisions (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Special waste (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Specialty items</td>
<td>1-08.1(1)</td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
</tr>
<tr>
<td>coordination with contract documents</td>
<td>1-04.2</td>
</tr>
<tr>
<td>definition</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Splicing</td>
<td></td>
</tr>
<tr>
<td>beam guardrail</td>
<td>9-16.3(1)</td>
</tr>
<tr>
<td>composite piles and steel piles</td>
<td>6-05.3(2)C, 6-05.3(6)D</td>
</tr>
<tr>
<td>illumination and electrical</td>
<td>8-30.3(5), 9-31.5</td>
</tr>
<tr>
<td>locating wire, water main</td>
<td>9-30.1(4)</td>
</tr>
<tr>
<td>mechanical butt splices</td>
<td>6-02.3(24)G</td>
</tr>
<tr>
<td>reinforcing steel</td>
<td>6-02.3(24)E</td>
</tr>
<tr>
<td>signal wiring</td>
<td>8-31.3(9)B</td>
</tr>
<tr>
<td>steel piling</td>
<td>9-10.5</td>
</tr>
<tr>
<td>stringers, wood</td>
<td>6-04.3(12)</td>
</tr>
<tr>
<td>Stairway cement concrete</td>
<td>8-18</td>
</tr>
<tr>
<td>Stakes, construction</td>
<td>1-05.5</td>
</tr>
<tr>
<td>State Departments of Wildlife, Fisheries, and Ecology</td>
<td>1-07.5</td>
</tr>
<tr>
<td>State sales tax</td>
<td>1-07.2</td>
</tr>
<tr>
<td>Statement of intent to pay prevailing wage</td>
<td>1-07.9(6)</td>
</tr>
<tr>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td>bolts for structural steel</td>
<td>9-06.5</td>
</tr>
<tr>
<td>forgings</td>
<td>9-06.11</td>
</tr>
<tr>
<td>painting (shop)</td>
<td>6-03.3(30)</td>
</tr>
<tr>
<td>sandblasting</td>
<td>6-03.3(29)</td>
</tr>
<tr>
<td>shafting</td>
<td>9-06.11</td>
</tr>
<tr>
<td>shop plans for structural</td>
<td>6-03.3(7)A</td>
</tr>
<tr>
<td>shop storage of structural</td>
<td>6-03.3(9)</td>
</tr>
<tr>
<td>straightening</td>
<td>6-03.3(10)</td>
</tr>
<tr>
<td>structural</td>
<td>9-06</td>
</tr>
<tr>
<td>weighing structural steel</td>
<td>6-03.3(6)</td>
</tr>
<tr>
<td>welds</td>
<td>6-03.3(25)</td>
</tr>
<tr>
<td>Steel bars, for reinforcing</td>
<td>9-07</td>
</tr>
<tr>
<td>Steel expansion bearings</td>
<td>6-02.3(19)B</td>
</tr>
<tr>
<td>Steel, structural, materials</td>
<td>9-06</td>
</tr>
<tr>
<td>Steel structures</td>
<td>6-03</td>
</tr>
<tr>
<td>assembling and bolting</td>
<td>6-03.3(32)</td>
</tr>
<tr>
<td>bolted connections</td>
<td>6-03.3(33)</td>
</tr>
<tr>
<td>painting, field</td>
<td>6-07.3(1)</td>
</tr>
<tr>
<td>painting, shop</td>
<td>6-03.3(30)</td>
</tr>
<tr>
<td>placing superstructure</td>
<td>6-03.3(38)</td>
</tr>
<tr>
<td>shop assembly</td>
<td>6-03.3(28)</td>
</tr>
<tr>
<td>shop drawings</td>
<td>6-03.3(7)A</td>
</tr>
<tr>
<td>welding and repair welding</td>
<td>6-03.3(25)</td>
</tr>
<tr>
<td>Stepped slope construction</td>
<td>2-03.3(18)</td>
</tr>
<tr>
<td>Steps, concrete</td>
<td>8-18</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
</tr>
<tr>
<td>cement on work site</td>
<td>9-01.4</td>
</tr>
<tr>
<td>explosives</td>
<td>1-07.22</td>
</tr>
<tr>
<td>lumber and timber for structures</td>
<td>6-04.3(1)</td>
</tr>
<tr>
<td>materials, general</td>
<td>1-06.4</td>
</tr>
<tr>
<td>paint</td>
<td>9-08.4(6)</td>
</tr>
<tr>
<td>piling</td>
<td></td>
</tr>
<tr>
<td>precast concrete</td>
<td>6-05.3(5)B</td>
</tr>
<tr>
<td>prestressed hollow concrete</td>
<td>6-05.3(3)E</td>
</tr>
<tr>
<td>timber</td>
<td>6-05.3(2)A</td>
</tr>
<tr>
<td>structural steel in shop</td>
<td>6-03.3(9)</td>
</tr>
<tr>
<td>waterproofing fabric 6-08.3(1)</td>
<td></td>
</tr>
<tr>
<td>Storm drain and sanitary sewers</td>
<td>7-17</td>
</tr>
<tr>
<td>backfilling trenches</td>
<td>7-17.3(3)</td>
</tr>
<tr>
<td>bedding</td>
<td>7-17.3(1)B</td>
</tr>
<tr>
<td>jacking, augering, tunneling</td>
<td>7-17.3(2)J</td>
</tr>
<tr>
<td>pipe laying</td>
<td>7-17.3(2)</td>
</tr>
</tbody>
</table>
shoring/safety systems ... 7-17.3(1)A1
tee, cut-in ... 7-17.3(2)C3
testing pipe joints ... 9-05.7(4)
testing pipeline, exfiltration / infiltration 7-17.3(4)
trench excavation ... 7-17.3(1)A
TV inspection ... 7-17.3(4)A1

Storm drain and sanitary sewer, materials 9-05
 pipe, concrete sewer .. 9-05.7
 pipe, corrugated steel sewer .. 9-05.9
 pipe, corrugated aluminum sewer 9-05.17
 pipe, culvert .. 9-05.3
 pipe, detention, aluminum ... 9-05.20
 pipe, detention, steel ... 9-05.21
 pipe, drain .. 9-05.1
 pipe, ductile iron .. 9-05.13
 pipe, PVC sewer .. 9-05.12
 pipe, subsurface drain .. 9-05.2
 pipe, vitrified clay .. 9-05.8

Straighten bent material, steel ... 6-03.3(10)

Strength of
 concrete .. 6-02.3(2)A
 forms and falsework from structures 6-02.3(17)K
 quarries, pit ... 3-01.2(1)B
 stringers, timber bridge .. 6-04.3(12)
 stripping, pavement ... 6-22
 stripping ... 6-02.3(17)K

Structural plate pipe, pipe arch, arch, and underpass 7-03

Structural steel and related materials 9-06

Structure excavation ... 2-09
 classification ... 2-09.3(2)
 trench applications ... 2-09.3(4)

Structures
 alignment .. 6-01.4
 approaches to movable spans .. 6-01.8
 cleanup ... 6-01.12
 clearing for ... 6-01.3
 concrete - see Concrete Structures
 foundation data ... 6-01.2
 general requirements .. 6-01
 name plates ... 6-01.11
 steel - see Steel Structures
 Timber - see Timber Structures

Subcontractor (definition) ... 1-01.3
Subcontracting requirements ... 1-08.1(3)
Subcontractor list ... 1-02.9(3)
Subcontractors, prompt payment to 1-09.14

Subgrade .. 2-06
 cement concrete sidewalk .. 8-14.3(2)
 definition ... 1-01.3
 for surfacing ... 2-06.3(1)
 pavement ... 2-06.3(2)

Subletting contract work ... 1-08.1(3)
Submittal, bid ... 1-02.9
Submittal, change of bid date .. 1-02.9(2)
Submittal prepared by professional engineer 1-05.3(2)F

Submittals - see Section 1-05.3(2) of the Project Manual

Submittals, contractor ... 1-08.3
Subsealing ... 5-01

Substantial completion .. 1-05.11(1)
Substantial completion (definition) 1-01.3

Substitution
 steel sections .. 6-03.3(8)
Use of explosives ... 1-07.22
Valves for water mains .. .7-12, 9-30.3
Time to execute agreement form ...1-03.3(2)
Ton, short ... 1-09.1
Topsoil .. 8-01.3(2), 9-14.1
Traffic buttons and lane markers ... 8-08, 9-21
Traffic control ... 1-07.23, 1-10
Traffic control for signal construction ... 8-31.3(1A)
Traffic curb, precast .. 8-07, 9-18.1
Traffic, opening sections to .. 1-07.25
Traffic signal controller assembly ... 8-31.3(2)
Training and promotion ... 1-07.11(7)
Traveled way (definition) ... 1-01.3
Treated
 timber ... 9-09.3
 piling .. 9-10.1(3)
Treatment of aluminum pipe in contact with cement concrete .. 7-02.3(1)C3B
Tree, relocate ... 8-02.3(22)
Tree root trimming ... 8-02.3(23)
Tree trimming near overhead wires .. 1-07.28
Tremie, concrete .. 6-02.3 (6) C
Trench excavation
 connection, catch basin, inlet, and drop ... 7-08.3(1)
 detention pipe .. 7-16.3(1)
 general .. 2-09.3(4)
 side sewers .. 7-18.3(2)
 storm drains & sanitary sewers ... 7-17.3(1)
 water mains ... 7-10.3(7)
Trestle ends, embankment at bridge and .. 2-03.3(14)J
Trimming and Cleanup ... 2-11
Trusses, timber structure .. 6-04.3(17)

U

Unacceptable waste (definition) .. 1-01.3
Unauthorized work, removal of ... 1-05.6, 1-05.7
Unavoidable delays .. 1-08.6, 1-08.8
Uncovering work, payment for ... 1-05.6
Underground construction, pipe installation .. 7-17.3(2)J
Underground traffic clearances (see Clearances, underground utilities) 1-07.28, 2000 Edition
Underground Utilities Locate (one call locate) ... 1-07.28, item 12.
Underpass ... 7-03
Underweights, no pay adjustment .. 1-09.2(5)
Unfinished cement concrete pavement ... 5-05.3(20)
Unsuitable/unstable foundation/base material ... 2-03.3(14)F-G, 2-09.3(1)C
Unsuitable/unstable foundation/base material – classification ... 2-03.1(2)
Urethane paint, moisture-cured ...
 ... 6-07.3(7), 9-08.2 item 18.
Usable materials, salvage of ... 2-02.3(7)
Use of buildings or other structures .. 1-04.9
Use of explosives .. 1-07.22
Use of materials found on the project site .. 1-04.10
Utilities and similar facilities ... 1-07.17
Utilities notifications .. 1-07.28
Utilities underground location center .. 1-07.28

V

Vacuum breakers ... 9-15.11(1)B
Valves for irrigation .. 9-15
Valves for water mains ... 7-12, 9-30.3
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vault, electrical safety watch – notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Vertical drains, prefabricated</td>
<td>2-03.3(14)1</td>
</tr>
<tr>
<td>Vibration</td>
<td></td>
</tr>
<tr>
<td>concrete pavement</td>
<td>5-05.3(7)F</td>
</tr>
<tr>
<td>concrete structures</td>
<td>6-02.3(9)</td>
</tr>
<tr>
<td>Vibratory rollers</td>
<td>2-03.3(14)B, 5-04.3(4)B</td>
</tr>
<tr>
<td>Vitrified clay pipe</td>
<td>9-05.8</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Wage rates, prevailing</td>
<td>1-07.9(1)</td>
</tr>
<tr>
<td>Wages</td>
<td>1-07.9</td>
</tr>
<tr>
<td>Waiver of owner’s legal rights, no</td>
<td>1-07.27</td>
</tr>
<tr>
<td>Wall</td>
<td></td>
</tr>
<tr>
<td>curb</td>
<td>5-05.3(23)D</td>
</tr>
<tr>
<td>edge and support</td>
<td>5-05.3(23)C</td>
</tr>
<tr>
<td>for fire hydrants</td>
<td>7-14.3(9)</td>
</tr>
<tr>
<td>Warranty of title</td>
<td>1-05.10</td>
</tr>
<tr>
<td>Waste or city waste (definition)</td>
<td>1-01.3</td>
</tr>
<tr>
<td>Waste sites, disposal of waste, debris, surplus material</td>
<td>2-01.2, 2-03.3(7)</td>
</tr>
<tr>
<td>Wasting excavated material</td>
<td>2-03.3(8)</td>
</tr>
<tr>
<td>Watch, safety, electrical construction – notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Water</td>
<td>9-25</td>
</tr>
<tr>
<td>concrete</td>
<td>6-02.3(4), 9-25.1</td>
</tr>
<tr>
<td>concrete pavement</td>
<td>5-05.3(5)</td>
</tr>
<tr>
<td>irrigation</td>
<td>9-25.2</td>
</tr>
<tr>
<td>pollution control</td>
<td>1-07.5(2), 1-07.15</td>
</tr>
<tr>
<td>preservation of channel</td>
<td>2-09.3(3)A</td>
</tr>
<tr>
<td>reducing admixture (chemical admixtures)</td>
<td>6-02.3(3)B</td>
</tr>
<tr>
<td>subgrade</td>
<td>2-06.3(2)</td>
</tr>
<tr>
<td>surfacing</td>
<td>4-04.3(5)</td>
</tr>
<tr>
<td>Water distribution materials</td>
<td>9-30</td>
</tr>
<tr>
<td>Water main</td>
<td></td>
</tr>
<tr>
<td>bedding</td>
<td>7-10(3)9, 9-30.7</td>
</tr>
<tr>
<td>blocking, thrust</td>
<td>7-11.3(13)</td>
</tr>
<tr>
<td>blowoff assemblies</td>
<td>7-11.3(14), 9-30.2(10)</td>
</tr>
<tr>
<td>clearance from utilities</td>
<td>1-07.17(2)</td>
</tr>
<tr>
<td>disinfection</td>
<td>7-11.3(12)</td>
</tr>
<tr>
<td>electrolysis monitoring</td>
<td>7-11.3, 9-30.12</td>
</tr>
<tr>
<td>hydrants</td>
<td>7-14, 9-30.5</td>
</tr>
<tr>
<td>materials</td>
<td>9-30</td>
</tr>
<tr>
<td>pipe</td>
<td>9-30.1</td>
</tr>
<tr>
<td>pipe installation</td>
<td>7-11</td>
</tr>
<tr>
<td>service connections</td>
<td>7-11.3(14)C, 9-30.6</td>
</tr>
<tr>
<td>temporary service</td>
<td>7-11.3(9)D</td>
</tr>
<tr>
<td>testing, pressure</td>
<td>7-11.3(11)</td>
</tr>
<tr>
<td>trench excavation</td>
<td>7-10.3(7)</td>
</tr>
<tr>
<td>valve chambers</td>
<td>9-30.3(12)</td>
</tr>
<tr>
<td>valves</td>
<td>7-12, 9-30.3</td>
</tr>
<tr>
<td>Water main shutdown, construction – notification requirement</td>
<td>1-07.28</td>
</tr>
<tr>
<td>Water quality, environmental</td>
<td>1-07.5(2)</td>
</tr>
<tr>
<td>Water pollution / erosion control, temporary</td>
<td>1-07.15</td>
</tr>
<tr>
<td>Water service connection</td>
<td>7-15</td>
</tr>
<tr>
<td>Watering</td>
<td>2-07</td>
</tr>
<tr>
<td>Waterproofing</td>
<td>6-08, 9-11</td>
</tr>
<tr>
<td>Waterstop, plastic</td>
<td>9-24</td>
</tr>
<tr>
<td>Wave equation analysis, pile bearing</td>
<td>6-05.3(9) and (10)</td>
</tr>
<tr>
<td>Weather limitations</td>
<td></td>
</tr>
<tr>
<td>asphalt concrete</td>
<td>5-04.3(16)</td>
</tr>
<tr>
<td>bituminous surface treatment</td>
<td>5-02.3(10)</td>
</tr>
<tr>
<td>concrete paving</td>
<td>5-05.3(14)</td>
</tr>
</tbody>
</table>
Weep holes ...6-03.3(21)A and C
Weed control
 landscape establishment ..8-02.3(12)
 lawn establishment ...8-02.3(15)
Weep holes
 concrete slab riprap ..8-15.3(5)
 structures ..6-02.3(22)
Weighing equipment ...1-09.2
Weight of asphalt ..1-09.1
Wheel guards and railings ..6-04.3(13)
Wire mesh slope protection ..8-29
Wire fence ...8-12.9-16.2
Wire, cold drawn for reinforcing ..9-07.9
Wheelchair ramps (curb ramps) ..8-14.3(7) and (8)
Wiring, fusing and splicing ..8-30.3(5), 9-31.5-6
Withdrawal of bid ..1-02.10
Women and minority business enterprise requirements ...1-07.12
Work
 changes ..1-04.4
 contractor’s responsibility for ...1-05.12
 defective and unauthorized ...1-07.13
 definition ..1-05.7
 delays, unavoidable ..1-08.8
 deleted ...1-09.5
 differing site conditions ..1-04.7
 failure to complete on time (liquidated damages) ...1-08.9
 force account ...1-09.6
 increased or decreased quantities ...1-04.6
 inspection of ..1-05.6
 samples ...1-06.2
 suspension ..1-08.6
 terminated ..1-09.5
 time for completion ...1-08.5
Workers benefits (see Insurance)
Working day, definition (for individual contract, see Agreement form in Project manual)1-01.3
Working hours ..1-08.1(4)
Written notice (definition) ..1-01.3
Written notice, method of serving ..1-05.15

X, Y, Z (none)