Assessing the Water Savings Impact of Irrigation and Landscape Management Strategies

Jenna Smith, CLIA

King County Housing Authority Resource Conservation Manager

Representing Seattle Public Utilities & the Saving Water Partnership

www.savingwater.org

Special thank you...

- JSH Properties
- Signature LLC
- City of Renton
- Hunter Irrigation

Presentation

- Background
- Objectives
- Study Process
 - AMR
 - Field Observation
- Findings and Results

Discovery Tools

- Automatic Meter Reading
- Field Observation

Background

- 13 Years with SPU on Irrigation Efficiency Program
- Managed the Water Efficient Irrigation Program
 - Rebates
 - Technical Information
 - On-line irrigation run-time calculator
 - Market Transformation
- Worked directly
 - Landscape and Irrigation Professionals
 - Property Managers and Owners
 - Residential, Commercial, Multifamily
 - Industry groups
- Landscape Team Utility Related Resource Conservation
 - Water
 - Solid Waste
 - Drainage
 - Water Quality

Background

- Industry change
- More customer interest in sustainability
- Identified site
- Developed approach
- Implemented and documented
- Publish findings

Objectives

- Save Water Efficiency
- Analyze the impact of water saving strategies:
 - Technology
 - Management
- Understand how to manage efficiently while maintaining high quality landscape:
 - Fine-tuning the scheduling
 - Checking for problems

Questions:

- Unknown
- Requirements
- Time
- Cost
- Issues
- Who
- Skills
- Opportunity

Study Process

Assessment

- Utility bills
- Walk-about
- Record irrigation runtimes and frequency
- Audit irrigation zones

Implement

- Change irrigation schedules
- Assess/Analyze
 - Watch and record
- Adjustments
 - Change irrigation schedules
- Analyze/Results

Test Site Selection

Landmark East & West in Renton, WA

- Good case study candidate
 - Two similar landscapes
 - Separately metered
 - Sustainability specialist
 - Real-time meter data
 - Landscape contractor

Landmark East & Landmark West

Landmark East & Landmark West

Assessment

- Historical water consumption
- Irrigation runtimes
- Management
- Observe
- Identify issues
- Review consumption

Historical Water Consumption

- 1 CCF or 748 gallons
- City of Renton Irrigation Water \$3.92 per CCF
- Generally around \$8,000 per year
- Consumption patterns

1 Unit = 1CCF or 748 gallons

West	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2005	2	0	0	0	127	182	246	482	463	620	10	0	2,132
2006	0	0	4	28	23	331	500	447	569	100	247	0	2,249
2007	0	0	0	0	0	0	816	377	493	250	0	2	1,938
2008	64	1	0	12	4	153	175	613	345	186	6	0	1,559
2009	0	0	0	8	8	87	200	424	338	214	141		1,420
2010	11	10	8	11		547	213	538		115	1	0	1,454
2011	0	0	0	0	9	2	119	284	296	108	0	0	818
2012	0	0	0	2	9	133	323	314	236	149	0	0	1,166
2013	0	0	2	10	0	156	369	355	199	0	0	0	1,091

East	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2005			0		20	300	369	680	713	1062	0	0	3,144
2006	0	0	0	12	1	419	464	397	576	471	79	0	2,419
2007	0	0	0	0	47	433	492	418	635	306	0	0	2,331
2008	0	0	0	11	7	234	274	651	472	233	3	0	1,885
2009	0	0	0	12	43	208	381	778	654	285	2		2,363
2010	6	0	13	0		424	373	520		94	0	0	1,430
2011	0	0	0	2	9	0	82	228	433	0	148	0	902
2012	0	0	0	0	5	216	371	369	248	164	0	0	1,373
2013	0	0	0	7	1	182	482	421	264	0	0	0	1,357

Utility Billing Information

• Multiple Years by Month

AMR – Years, Months, Days & Hours

AMR – Months & Days

AMR – Week & Days

AMR - Hourly

AMR – Cost of the Stuck Valve

Irrigation Runtimes

- Document existing schedules
- Assess use of conservation features
- Compare to standard

Hunter controller with Solar Sync (rain and weather sensor)

Irrigation Scheduling Tools

Free online tools from the Irrigation Water Management • Sprinkler Calculators: Create custom schedules • Daily Irrigation Index & Weekly Watering Forecast—sign up for • Water Budget Calculator: Check your water bills

Month-by-Month Watering Schedules for the S These schedules assume there is a rain shut-off device on the

	MONTH	DAYS PER WEEK	LAV	
ultiple cycles run times reduce noff and increase			ROTOR Heads	<u>s</u>
e amount of water lat is absorbed into le soil. If runoff con- nues with two run mes, break the total in time into three or ur cycles. Divide tal minutes by num- er of start times to et number of	May	2	26 (2 cycles of 13 mins.)	(2
	June	3	26 (2 cycles of 13 mins.)	(2
	July	4	26 (2 cycles of 13 mins.)	(2
	Aug	4	26 (2 cycles of 13 mins.)	(2
to controller.	Sept	3	26 (2 cycles of 13 mins.)	(2

** Or use the current Watering Forecast at www.iwms.org

g

***Rotator or rotary noz-	meann	PER	Shk		lar syn	
zles can be retrofitted		VVEEK	P			
These nozzles have a lower precipitation rate, which increases runtimes, and typical- ly provide more aven			ROTOR Heads	SPRAY Heads	ROTATOR*** Nozzles	
	May	2	34 (2 cycles of 17 mins.)	14 (2 cycles of 7 mins.)	52 (2 cycles of 26 mins.)	70%
coverage.	June	2	34 (2 cycles of 17 mins.)	14 (2 cycles of 7 mins.)	52 (2 cycles of 26 mins.)	80%
	July	2	34 (2 cycles of 17 mins.)	14 (2 cycles of 7 mins.)	52 (2 cycles of 26 mins.)	100%
	Aug	2	34 (2 cycles of 17 mins.)	14 (2 cycles of 7 mins.)	52 (2 cycles of 26 mins.)	80%
	Sept	2	34 (2 cycles of 17 mins.)	14 (2 cycles of 7 mins.)	52 (2 cycles of 26 mins.)	60%

Site.	L.M	A him		_Controller	Location	Đơ			_
Progra	ms	Type of Pla	ant Materia	al St	art times		Days	per week	-
	A B			17	2:30ac		- T,	with,	F, S
	C								
					F	all sun	vinfit		
Zone	Program	Minutes	Total Minutes	Cycly	Zone	Program	Minutes	Total Minutes	
1	LA A	10		014/20	North	entrs			
2	15 A	15		15/15	North	Shee	ł	Turf	
3	20 A	20		15/15	NEO	Stree f		Jur-	
4	20 A	20		15/15	NE(2)	Shreet		Turf	
5		nolwo	Ling?	64/30	brok	m			
6	HAD	10		01.1/30	NE	beds	orten	r sh	~5
7		10		040/30	Mode	lle be	63	broke	head
8		20		15/15	NESTI	ret	16,	ohen h	eads
9		10		OF /37	inside	N per	imete	- sh.	-5
10		10		0FC/30	NEP	crimet	cr s	hrub	
11		25		15/15	Æ /	iwn			
2		10		044/30	Insid	e N	shrub	park	in
13		10		0H1/30	MES	in galle	4361	EL NE	inside
14		18		10/15	17 Bri	Hugh	shat	2 10 7	and a
15		10		10/15	NB	ildu,	Strac	6 cente	r build
16		15		041/30	N	widy	Tur	mag	stude
		13	L	r		ĺ		Contaction of the	

Management

- Determine who is in charge of landscape and irrigation system
- Walk the site with irrigation manager
 - Wet areas
 - Broken heads

Observe

- Operate each zone for 5 minutes
 - Leaks and breaks
 - Other hardware issues
 - Document:
 - Plant material
 - Microclimate
 - Head type
 - Mulch

Identify Problem Areas

- Audit a few zones
- Compare programmed, and audited to standard schedules
- Estimate savings potential

	So	il Moisture Irrig	ation	Sched	lule – S	Spra	y W	orksheet # 8
-	- A Marrie						-	Date
Proj	ect Name					_	Ca	indidate ID #
	Address							Station
	City, State		1	-				Caureo
alant	Water Reg	uirement	1940	Val	ue	Unit	5 .	ald abeaution
A	Water reeq	type		Turf	cs /1	5	- 0	and observation.
A.	Deforance	period	- unde		7	days	-	anthor data
B.	Reference	FTIET			1.25	in,	-	
0.	Londecape	coefficient [K_]			.64	-	-1	hada & tablas
D.	Lanuscape	ntant factor [Kr or Kr]		18		-	-	charts & tables
	12 Turio	tion density factor [K.]		1		-	-	charts & tables
	2) Vegeu	timate factor [Kar]		18		-	-	charts & tables
-	3) NICION	ET IFT.1			18	in.		C * D
E.	Landscap	BEI (LIL)			,11	in.	-	E + B
F.	Average	any LIL		Va	alue	Un	ts	Source
Spri	nkler Pond	on rate IPRI	1.04	-59	1.25	in./h	-	audit or calculation
G,	Precipitat	- uniformity IDI hol			139	dec	mal	audit of estimate
H.	Distributic	n unioning [Sola		10000	1.58		_	table or equation
1.	Scheduli	g muluplier [am]		V	alue	Un	its	Source
Soi	Moisture	BUCKOL		Mod	fre	-		field observation
J.	Soil cate	lory		-	116	In./	n.	charts & tables
K	Available	water (Avv)	-		3	in.		field measurement
L	Root zon	e depui	1.0.5		,48	in.		K × L
M.	Plant ave	illable water [PAVV]	INADI		1.50	dei	cimal	50% for landscapes
N.	Manager	nent allowable deplete	All passes		,24	In.		M×N
0	. Allowabl	e depletion (AD)	111203	19.50	Value	U	nits	Source
Sc	heduling P	arameters			2	da	ys .	O + F (round down)
P	. Irrigation	n interval		-	.27	in.		F×P
0	. Water to	apply	1 612	En	10 48	5 m	n	(Q + G) × 60 (round down)
R	Lower b	oundary	10	1	17	m	in	(R × I) (round up)
S	, Upper t	oundary	14	1	6 10	m	in	management decision
1	. Selecte	d Run Time	ENETHO	0	V			
1	Determ	ine cycle starts (criscos		Sec.	-		-	sald sheeputtop
-	A OR B)	anied time to runoff		1007	1	D m	in	field observations
	a. 00	conditions			400	0	ycles	pased on site construction
10	D. SI	Soil category		3	Coarse	0 = 1,	Mediu	m = 2, rmu = 3
	1)	Slong		0	Flat =	0, Slig	ht = 1	, Moderate = 2, Studp = 5
1	2)	Slope	100	10	No = (), Yes	= 1	
	3)	Compared time	5.17	1	Rotor	= 0, S	pray =	=1
-	4)	Rummary	23.63		Val	ue	Units	Source
1	Scheduling	Summary	Water b	o be appl	iod .Z	2	in.	Line Q
				Inter	val 2		days	Line P
1			Cycle s	tarts per o	tay 🔰	14	_	(Line T + 0.a or 0.0) (Idding
-1			Minut	tes per cu	rcle 2	14	min	Line T + Cycle starts

Discovery

- Rain sensors working
- Weather sensors turned on but not adjusting schedules

Discovery

- Solar Sync
 - Controller requires Programs to be set to specific type of sensor Solar Sync

Step 2 – New Irrigation Schedules:

Programmed the Clocks

- Aug 8 New schedules on East Landmark Used standard and audited schedules, turned on weather sensors and set for Seattle area climate (Solar Sync)
- West Changed one zone that was audited and turned on weather sensors
 - Fixed module Aug. 20

Step 2 – New Irrigation Schedules:

Step 3 – Monitoring:

- Visit the site weekly and review billing data or read the meter to monitor consumption and visual quality of plant material.
- Adjust irrigation schedules.

AMR Insights

Turf – Looks okay but not perfect

September 19, 2015

September 25, 2015

1.5 inches of rain

Step 4 – Results:

- Identify major issues affecting irrigation
- Program controllers for 2015
- Estimate savings

Bottom-line: Rain Sensors

Rain sensors work

Bottom-line: Rain Sensors

Rain sensors saving money

Bottom-line: Weather Sensors

Weather sensors work – Weekly comparison

Bottom-line: Weather Sensors

Weather sensors save money – Weekly comparison

Bottom Line: Evapotranspiration

Historical Water Needs and Precipitation

Bottom-line: Irrigation Scheduling

- Guessing
- Standard Schedules
- Audit Schedules
- Fine-tuned

Bottom-line: Irrigation Scheduling

- Guessing 20 minutes, 5 days per week: 100 minutes
- Standard Schedules 5 minutes, 2 starts, 4 days: 40 minutes
- Audit Schedules 4 minutes, 3 starts, 7 days: 84
- Fine-tuned: 3 minutes, 5 starts, 4 days: 60 minutes

Discovery

- There's an opportunity for a service
 - Estimate costs and benefits
- Verify sensors work
- Standard schedules good place to start
 - May need adjustment.
- Auditing provides much more insight
 - Auditing still requires some guesswork
- The environment makes a big difference
 - Fine mulch may create barrier

Final Bottom Line

Row Labels	Ian	Feb	Mar	Apr	May	lun	Inl	Α11σ	Sen	Oct	Nov	Dec	Grand Total	
	Juii	100	Inter	- · P1	inaj	Juli	Jui	ing	sep	occ	1101	Dee		
2011	C	0	0	2	18	2	201	512	729	108	148	0		1720
							_	6.0						
2012	C	0	0 0	2	14	349	694	683	484	313	0	0		2539
2012	C			. 17	, 1	228	851	776	462	0	0	0		2448
2015			_		-	.))0	100	110	403	Ū	0	0		2440
2014	C	1	o	11	. 6	425	724	692	314	35	0	0		2208

Final Bottom Line

- Good question!
- Depends on weather
- Based on pre and post schedules
 - about 30% reduction in number of minutes

-Potentially \$3,000 per year