

West Seattle High Level Bridge

Technical Assessment Memo

SDOT

Project Number 221-498

17 March 2014

Prepared by

John H. Clark, P.E., PhD.

In association with

HDR Engineering, Inc. 500 108th Ave NE Suite 1200 Bellevue, WA 98004

EXPIRES 7/26/2014

Table of Contents

1	Intro	duction	3
	1.1	Authorization	3
	1.2	Background	3
	1.3	Purpose	4
	1.4	Physical Investigations	4
2	Possi	ble Causes	5
	2.1	Dead Load	5
	2.2	PT Losses	5
	2.3	Creep	6
	2.4	Shrinkage	6
	2.5	Live Load	6
	2.6	Seismic Displacement	7
	2.7	Differential Temperature	7
	2.8	Local Effects	8
	2.9	Termination of Reinforcing at Intermediate Anchorages	9
	2.10	Location of Cantilever Moment Post-tensioning	9
3	Analy	ytical Studies	11
4	Conc	lusions	12
5	Poten	ntial Repairs	13
	5.1	Epoxy Grouting	13
	5.2	Carbon Fiber Reinforcement	13
	5.3	Post-tensioning	13
6	Reco	mmendations	14
7	Refer	rences	15
		Figures	
Figu	re 1. C	rack Locations (between Joints 37 & 38)	3
_		palling at NE crack location	
_		ecommended Temperature Distributions (Dimensions °C, cm)	
_		ection A-A Detail at Positive Moment Post-tensioning Buttress	
Figu	re 5. D	etail between Joints 37 and 38	10

Appendices

APPENDIX A. GTSTRUDL MODEL	
A. 1. Cantilever Construction Model	
A. 2. Symmetrical Continuous Structure	24
A. 3. Asymmetrical Structure	35
A. 4. Principal Results	42

Introduction 1

1.1 **Authorization**

This assessment is submitted in accordance with the request of John Buswell, Roadway Structures Manager, Seattle Department of Transportation (SDOT) and the agreement between HDR and John H. Clark, Consulting Engineer dated 30 October 2013.

1.2 **Background**

An under bridge inspection (UBIT) in August 2013 by SDOT revealed cracking in the soffit on the main span box girders at four similar locations, approximately 112 feet shoreward from the centerline of the main span. (See Fig 1, Segment 11 between Joints 37 & 38.) At one location, NE, the cracking showed evidence on relative movement and some spalling of the concrete. (See Fig 2.)

Figure 1. Crack Locations (between Joints 37 & 38)

Figure 2. Spalling at NE crack location

1.3 **Purpose**

The purpose of this assessment is to assist SDOT in determining 1) the cause of the cracking; and 2) an appropriate repair of the cracking

1.4 **Physical Investigations**

See Buswell (2013) for report of inspection discovering cracks.

SDOT is planning to conduct the following further physical inspections of the cracked areas:

- UBIT visual re-inspection and crack measurement;
- Coring of slab at crack locations to determine depth of cracking;
- Installation of crack gages to monitor movement.

2 **Possible Causes**

Possible causes of the cracking are listed below with discussion as to probable magnitude of stresses at the locations where cracks have been observed. The observed fact that cracking has occurred in four similar locations indicates that the cause may be something related to design assumptions or procedures assumed in design being different from what has actually occurred. Determination of stresses required to produce cracking is a difficult task since there are many variables of unknown magnitude. Menn (1990) states the following:

It is impossible to know the steel stresses under service conditions. Stresses in the steel are a function of many different factors, some of which are subject to considerable variability. The most important of these include prestressing losses, the redistribution pf sectional forces, self-equilibrating states of stress, and restrained deformations.

It thus follows that whatever accuracy promised by an "exact" calculation of steel stresses under service conditions is illusory. Simplifications based on rational models of structural behavior should therefore be used to calculate steel stresses, crack widths, and deformations. It also follows that the criteria used to evaluate cracking behavior and deformations need not be regarded as "exact" values but rather as rough, conservative estimates.

The statements above with regard to steel stresses also apply to concrete stresses.

2.1 Dead Load

Unit weight of the concrete assumed in design was 160 pounds per cubic foot (pcf). This is consistent with local practice. Cylinder weights of 152 pcf are common for concrete in this area. Reinforcing steel weight from the plan quantities adds another 4 pcf and prestressing steel 2 pcf. Thus the design assumption was adequate. Another source of additional dead load is variations from plan dimensions. The section is made up of relatively thin, wide members. A variation of 1/8 inch of deck and soffit thickness (within normal tolerance) could add 0.7% to the unit weight of the mid-span section. An allowance was made in the design calculations for a deck overly of 2" of asphalt or latex modified concrete, median and side barriers, and miscellaneous utilities. The overlay was applied at the end of construction.

The design plans (Sheet S-16, 782-138) indicate that the structural dead load moment (DL1) at the location of the cracking after PT losses, creep and shrinkage is very nearly zero. This sheet also indicates a superimposed dead load (dead load added after completion of construction of the girder) of 3.75 kip per foot (klf). The median and edge barriers and the allowance for future overlay only account for 2.05 klf. An allowance of 800 plf (for the full width bridge) was specified in the design criteria to cover utilities, drains, and light standards.

2.2 PT Losses

Prestressing losses include elastic shortening, relaxation, anchor set, friction, creep, and shrinkage. Elastic shortening in post-tensioned structures only effects tendons previously anchored since the tendon is elongated as the concrete shortens (at least for the tendon being jacked). Relaxation is the reduction in stress for a tendon held at a constant elongation. Relaxation occurs relatively quickly, (in a few hours) and was estimated in the design to be 3% of the jacking stress. Anchor set influences only a short distance from the anchor.

Friction in essentially straight tendons such as used here is small and most of it occurs at the curvature near the anchorages. Relaxation, anchor set, and friction were accounted for in the design as shown on the VSL shop drawing for cantilever tendons. VSL elected to provide 19 strand tendons using 0.5" diameter strands (As = 0.153 square inches per strand) in lieu of the 12 strand tendon using 0.6" diameter strands. The total number of tendons was adjusted to meet the design plan requirements.

2.3 Creep

Creep is the plastic deformation of concrete under sustained load. It is a function of atmospheric humidity, fineness of cement, cement content of the mix, water/cement ratio, concrete dimensions, concrete age at loading, and time since load application. Many of these variables are not known by the designer at the time of preparation of the plans, therefore an estimate is made. Creep influences prestress losses, deformations and moment redistribution due to a change in the structural system (i.e. closure at mid-span). Creep is usually expressed as an ultimate (time = infinity) value dependent upon material properties and environmental conditions. This value is then modified by a correction factor for the concrete age at the time of load application and by a function describing the time rate of development of the creep. The function for the time rate of development is primarily a function of the dimensions of the section or the effective thickness, he.

Various codifications of creep are available for use, including AASHTO LRFD Specifications for Bridge Design and other European codes. The AASHTO formulation is based primarily on experience with prestressed girders of modest dimensions. Most of the research has been done on 6" diameter cylinders (h_e = 3"). The dimensions of the box girders are such that the effective thickness varies from 16.4" at the midspan section to 28.6" at the pier section. Bazant (1982) states the time rate of development of creep varies as the square of the effective thickness since creep is essentially a diffusion process. This means that creep develops much more slowly in a thick section than in a thin section. The design criteria specified an ultimate (at time infinity) creep factor of 2.0. A typical design assumption is that this is reached after 10 to 20 years.

Each segment in the box girder is of a different age and the load application is a series of events. Thus it is impossible to characterize the creep with a single number as was done in the design.

2.4 Shrinkage

Shrinkage is the reduction in size due to the chemical reaction of the cement and to drying shrinkage as the concrete cures. It is influenced by the same factors as is creep. A value of 160 microstrain (160*10⁻⁶ inches/inch) was used in the design. The time rate of development is similar to creep

2.5 Live Load

Live load in the main span produces positive moment (tension in the bottom slab) at this location. The design live load was based on 5 lanes of HS20 loading reduced for the improbability of multiple lane loading. It is conceivable that two fully loaded trucks (36 tons each) could be on the bridge simultaneously.

2.6 Seismic Displacement

Longitudinal seismic displacement produces both positive and negative moment and a tensile or compressive axial load at the locations of concern. Magnitude of the displacement is dependent upon the seismic event and upon the extent to which the foundations are softened by liquefaction. The 28 February 2001 Nisqually event produced longitudinal displacements estimated to be on the order of 3" according SDOT's post-earthquake inspection. This displacement would produce tensile stresses of approximately 2.0 ksi at this location.

2.7 Differential Temperature

Temperature differences through the depth of the section create restraint stresses in statically determinate structures. These differences occur because of the lag in the response to external temperature differences due to change in the air temperature and solar radiation. Clear summer days following a period of cloudy weather create the most severe differences. On August 11, 2013 the maximum temperature at SEATAC was 27.3 °F above the running three day mean. This indicates a day with strong solar radiation.

A deck temperature of 20 °F above the average ambient temperature was used in the analytical studies. This temperature was assumed to decrease according to a 5th order parabola over a depth of 40 inches. This is similar to the differential temperature distribution recommended in the AASHTO LRFD Bridge Design Specifications.

Figure 3. Recommended Temperature Distributions (Dimensions °C, cm)

The design criteria specified a differential temperature situation where the deck slab was 18 °F hotter than the remainder of the section. This is more extreme than current design recommendations.

The assumed temperature profile was integrated over the section and then a uniform increase was calculated by dividing this integral by the area of the section. Similarly the temperature

and width times the depth from the neutral axis was integrated over the section. Dividing this integral by the moment of inertia and multiplying by the coefficient of thermal expansion yields the curvature which would exist in a simply supported section. These two integrations are necessary for plane sections to remain plane. The expansion due to the uniform increase of temperature and the curvature are restrained in this structure leading to forces and moments which produce stresses.

The curvature is applied as a uniform distortion of each member of the superstructure and the temperature at the neutral axis is applied as a temperature load. These loads yield the restraint moments and forces on the continuous structure.

The calculation procedure described above is only an indication of the moments that could be produced by differential temperature effects but it is sufficient to show that these are significant.

2.8 **Local Effects**

Local effects are present at this location in addition to the global effects discussed above. These include the termination of reinforcing in the bottom slab near the positive moment post-tensioning and transmission of the effect of the cantilever post-tensioning to the bottom slab. (See Section A-A Plan Sheet S13 and Figure 3.) These local effects were not quantified in this assessment. A detailed finite element model beyond the scope of this study would be required to do so.

Figure 4. Section A-A Detail at Positive Moment Post-tensioning Buttress

2.9 Termination of Reinforcing at Intermediate **Anchorages**

The positive moment post-tensioning in the main span is terminated in the blisters at Joints 38 and 40. Additional reinforcing is required in the slab beyond these blisters to prevent cracking. The design called for 6 #7 bars at each anchorage (spaced 14" cc) and extending 5'-0" beyond the segment joint. Normal slab reinforcing is two layers of #5 at 12" cc. Leonhardt (1964) recommends provision of for a force of one-half of the tendon force in such reinforcing. In this case the required tendon force before losses is 478 kips. The corresponding stress in this reinforcing and the normal bottom slab reinforcing would be approximately 48 ksi and the stress on the concrete approximately 0.62 ksi. This local effect tension acts simultaneously with any global stresses. Again a detailed finite element model would be required to definitively quantify these stresses.

2.10 **Location of Cantilever Moment Post-tensioning**

The anchorages for the cantilever moment post-tensioning in each segment are located as high in the section as possible. The force from these tendons cannot be assumed to be distributed over the whole section closer than about the depth of the section. (Bernoulli's principle.) Thus, it is conservative to assume that the axial force from each group of tendons is not effective until the next joint is reached. It is also conservative to assume that the induced moment acts at the section where the tendon is anchored. (See Figure 4 below.) The net effect is an increase of tension of 0.227 ksi at the location of the observed cracking.

Note: Not all reinforcing is shown.

Figure 5. Detail between Joints 37 and 38

3 **Analytical Studies**

A two dimensional GTSTRUDL model of the structure was created to attempt to define the state of stress at the location of the cracking. (See Appendix A.) One quarter of the structure (one box from Pier 15 to the centerline of the main span) was modeled including the structure as it existed after completion of the cantilever construction and both a symmetrical and asymmetrical model of the final structure. Loads applied included self weight of the structure, superimposed dead loads, live load, shrinkage, post-tensioning, differential temperature, uniform live load, HS20 truck, and longitudinal lateral loads.

Redistribution of the loads from the cantilever condition to the final condition was estimated according to Menn (1990) as:

$$\begin{split} \sigma^{inf} &= \sigma^A + 0.8*(\sigma^E \text{-} \sigma^A) \text{ where} \\ \sigma^{inf} &= \text{stress (force or moment) at time} = \text{infinity} \\ \sigma^A &= \text{stress in cantilever condition} \\ \sigma^E &= \text{stress as if all loads applied to the final continuous structure.} \end{split}$$

This formulation gives results similar to Leonhardt's (1964) method that combines the two load sets according to:

> $\sigma^{inf} = \sigma^A e^{-\phi} + \sigma^E (1 - e^{-\phi})$ where ϕ is the creep factor at time infinity less the creep factor when the structure was made continuous.

Both of these are simplifications that are not realized in practice since it is impossible to characterize creep by a single number. Each segment is of a slightly different age and the east portion of the structure was completed a few months before the west half. Age at loading is different for each segment. These differences tend to disappear with increasing time but the difference due to the age at loading can be significant in the ultimate creep.

The results from the analytical studies indicate tension in the area of the observed cracks. Local effects not accounted for in the model or more severe differential temperature or earthquake events would increase this indicated tension, possibly to the point of rupture. The most severe tension resulted from the longitudinal earthquake loading.

The tensile stress at cracking can be estimated as $f_r = 6\sqrt{f'c}$ where f_r is the tensile stress at rupture and f_c is the characteristic concrete compressive stress. The minimum design concrete compressive stress was 5000 psi. The increase of strength with age and normal distribution of strengths could make this 25% higher than the minimum. Thus the rupture strength could be estimated to be between 420 and 530 psi. The design criteria specified no tension in the box girders except for loads combined with temperature. In this case a tension of 3 times the square root of $f_c(212 \text{ psi})$ was allowed provided that mild steel was provided to carry the total tensile force at a stress of 24 ksi. The stresses at the location of the observed cracking for the case of permanent loads (all dead loads, post-tensioning, creep and shrinkage) plus differential temperature indicated by this study result in tensile stresses of 0.226 ksi at the top of the bottom slab and 0.375 ksi at the soffit. This is a total tension of 43.2 kips to be resisted by 4 #5 bars or about 35 ksi. It should be noted that the differential temperature load case used in this analysis was significantly less that called for by the design criteria. It is possible that differential temperature stresses could have been higher.

Conclusions 4

The analytical studies did not reveal a definitive cause for the cracking although the longitudinal earthquake (2001 Nisqually) could have produce tensile stresses sufficient to cause cracking in the region of the observed cracks. The cracks were not reported in the postearthquake inspection. The resultant stresses for all load combinations deemed likely were tensile at the location of the observed cracking but less than the probable tensile strength of the concrete. Therefore it must be concluded that the principal cause of the cracking is due to the combination of global loads covered by the analytical studies and local effects not quantified here or the result of the 2001 Nisqually earthquake.

The cracking does not influence the ultimate load capacity of the bridge. The load capacity would be very nearly the same if a hinge were inserted at the location of the observed cracking. Stresses due to restrained strain are relieved by the cracking.

5 **Potential Repairs**

5.1 **Epoxy Grouting**

Epoxy grout can be used to seal open cracks and restore most of the tensile capacity. Sealing the cracks is essential to protection of the reinforcing from corrosion.

Carbon Fiber Reinforcement 5.2

Placement of carbon fiber strips, glued to the slab could be used to increase the stiffness and strength of the slab in the cracked regions. Ideally this would be applied to the exterior but constructability issues may make it necessary to do this in the interior of the cell.

5.3 Post-tensioning

The bridge as designed included provision for additional tendons at the Pier 16 and 17 diaphragms. Tendons anchored here would need to have deviation blocks near Section 37. These tendons would be encased in plastic ducts and greased for corrosion protection. It is assumed that these anchorages could accommodate a total of four 12 0.6" diameter strands or four 19 0.5" diameter strands in each box. (See Sheet S-33.)

Recommendation 6

6.1 **Epoxy Grouting**

Cracks over 0.006" wide should be injected with low viscosity epoxy to restore the tensile capacity of the section. Cracks finer than 0.006" should be sealed with a surface applied sealant.

6.2 **Crack Monitoring**

The cracks should be monitored by placing crack movement gages across them. The principal purpose of this is to determine if the cracking potential is still active or whether the cracks have relieved the tensile stresses caused by local effects.

U-BIT inspections should be continued at frequent intervals.

6.3 **Additional Post-tensioning**

If it is determined that the cracks are active, consideration should be given to addition of additional post-tensioning. This would be the most expensive approach; but a permanent remedy for the cracking.

7 References

Menn, C., 1990. Prestressed Concrete Bridges, Birkhauser Verlag, Basel

Bazant, Z.P. and F.H. Wittman (Ed.). 1982 Creep and Shrinkage in Concrete Structures, John Wiley & Sons, New York

Leonhardt, F. 1964. Prestressed Concrete, Design and Construction, Wilhelm Ernst & Sohn, Berlin

Buswell, J. 2013. Special Bridge Inspection 8-26-13. Internal SDOT Report

Anon. 1980. Structural Design Criteria for West Seattle Freeway Bridge Replacement, West Seattle Bridge Design Team

APPENDIX A. GTSTRUDL MODEL

The structure model used for the analytical studies is a 2 dimensional "stick" model of one box including the column and foundation. The model extends from the bearing at Pier 15 to the centerline of mid span. The boundary conditions at the centerline of mid-span are changed to represent the symmetrically loaded structure, the asymmetrically loaded structure and the cantilever structure. Members and joints not present in the cantilever structure are inactivated. The cantilever post-tensioning is represented by truss members offset from the box girder center of gravity by a rigid link. The positive moment posttensioning and coupling post-tensioning are represented by beam members with eccentric ends (offset from the box girder center of gravity) with a minimal moment of inertia.

Loading applied are described in the input files (see below) and various combinations thereof are included. Output is in the form of Excel files for sorting and combination.

A. 1. Cantilever Construction Model

```
'WSB I High Level Bridge 1 Box'
STRUDL 'WSB I'
$ Created 10 Oct 2013 JH Clark'
$ 2D model of one box modelled along cg of section
$ Coordinates are station and elevation
$ Final condition, complete structure, all PT
$ PT as per VSL shop drawings
$ Cantilever PT modelled as truss members between offset joints
$ Continuity (+M) PT modelled as eccentric beam members
$ Revised 20 October Added column at Pier 16, seismic response
spectra (WSB design and AASHTO 2009 D)
$ Revised 25 Nov 2013 Corrected cantilever PT added creep for
cantilever PT
UNIT FEET KIPS FAHRENHEIT
JOINT COORDINATES
$ Box section cqc
 1
     9302.5
                 128.890
                           S
                                  $ CL brg Pier 15
 2
     9315.5
                 129.670
     9332.0
 3
                 130.660
 4
     9348.5
                 131.650
 5
     9354.0
                 131.980
 6
     9365.0
                 132.640
 7
     9377.0
                 133.360
 8
     9385.5
                 133.870
 9
     9396.5
                 134.530
10
     9413.0
                 135.520
11
     9429.5
                 136.500
12
     9446.0
                 137.428
13
     9462.5
                 137.181
14
     9479.0
                 138.839
15
     9495.5
                 139.401
16
     9512.0
                 139.864
17
     9528.5
                 139.687
18
     9545.0
                 139.458
19
     9561.5
                 139.184
20
     9578.0
                 138.844
```

```
21
      9594.5
                  138.425
22
      9611.0
                  137.938
23
      9627.5
                  137.322
24
      9644.0
                  136.637
25
                  135.568
                                    $ Face column Pier 16
      9666.5
26
      9675.0
                  135.858
                                    $ CL
                                             column Pier 16
261
     9675.0
                   -5.000
                             S
                                    $ CL Footing Pier 16
                                    $ End of bottom plastic hinge
262
                   18.000
     9675.0
     9675.0
                   47.741
263
264
     9675.0
                   77.482
265
     9675.0
                 107.223
                                    $ Start of upper plastic hinge
266
     9675.0
                                    $ Soffit of box girder
                 122.477
27
      9683.5
                  136.141
                                    $ Face column Pier 16
28
      9698.0
                  137.813
29
      9714.5
                  139.638
30
      9731.0
                  141.375
      9747.5
31
                  143.019
32
      9764.0
                  144.571
33
      9780.5
                  146.034
34
      9797.0
                  147.414
35
      9813.5
                  148.726
36
      9830.0
                  149.990
37
      9846.5
                  151.191
38
      9863.0
                  151.811
39
      9879.5
                  152.330
40
      9896.0
                  152.755
41
                  152.969
      9912.5
42
      9929.0
                  153.094
43
      9945.5
                  153.156
44
      9962.0
                  153.186
45
      9970.0
                  153.190
                             S
                                   $ CL Span 16
$ Cantilever PT cgs
307
     9377.0
                  137.120
                 137.630
308
     9385.5
309
     9396.5
                 138.290
310
     9413.0
                 139.280
     9429.5
                 140.270
311
312
     9446.0
                 141.260
313
     9462.5
                 142.233
314
     9479.0
                 143.174
315
     9495.5
                 144.084
     9512.0
                 144.963
316
317
     9528.5
                 145.812
318
     9545.0
                 146.629
319
     9561.5
                 147.414
320
     9578.0
                 148.169
321
     9594.5
                 148.893
322
     9611.0
                 149.585
323
     9627.5
                 150.247
324
     9644.0
                 150.877
325
     9666.5
                 151.686
                               $ CL Pier 16
326
     9675.0
                 151.977
327
     9683.5
                 152.260
```

```
328
    9698.0
                152.722
329 9714.5
                153.220
330 9731.0
                153.686
331
    9747.5
                154.121
332 9764.0
                154.525
333
    9780.5
                154.898
334
    9797.0
                155.420
335
    9813.5
                155.550
336
    9830.0
                155.830
337
    9846.5
                156.078
338 9863.0
                156.296
339
    9879.5
                156.482
340 9896.0
                156.637
341
    9912.5
                156.761
342
    9929.0
                156.854
343 9945.5
                156.916
344 9962.0
                156.946
345 9970.0
                156.950
                             $ CL Span 16
$
JOINT RELEASES
      FOR X MOM Z KFY 1.544E06 $ 1/2 Pier 15 (32 24" Octagonal
Hollow PSC 38.5' eff length)
       KFX 565.9E03 KFY 3.640E06 KMZ 878.2E06 $ 1/2 Pier 16 (28
36"x3/4"wall Conc filled steel 50' eff length)
TYPE PLANE TRUSS
MEMBER INCIDENCES
$ Cantilever PT
GENERATE 38 MEMBERS ID 307 INC 1 FROM 307 INC 1 TO 308 INC 1
DEFINE GROUP 'PT1' ADD MEMBERS 307 TO 344
TYPE PLANE FRAME
MEMBER INCIDENCES
$ Span 16 Column
  1601 261 262
 1602 262 263
 1603 263 264
 1604 264 265
 1605 265 266
  1606 266
            25
 1607 266 27
$ Rigid links from cgc to cgs cantilever
GENERATE 39 MEMBERS ID 407 INC 1 FROM 7 INC 1 TO 307 INC 1
GENERATE 44 MEMBERS ID 201 INC 1 FROM 1 INC 1 TO 2 INC 1
DEFINE GROUP 'CONST' ADD MEMBERS 201 TO 209 242 TO 244
DEFINE GROUP 'PIER'
                     ADD MEMBERS 225 226
DEFINE GROUP 'VAR'
                     ADD MEMBERS 210 TO 224 227 TO 241
DEFINE GROUP 'PT_LINK' ADD MEMBERS 407 TO 445 1606 1607
DEFINE GROUP 'COLUMN_PH' ADD MEMBERS 1601 1605
DEFINE GROUP 'COLUMN'
                       ADD MEMBERS 1602 TO 1604
```

```
$
MEMBER ECCENTRICITIES
$ Column 16 ends
  1601 START Y 8.000
MEMBER PROPERTIES PRISMATIC
  GROUP 'CONST' AX 106.185 AY 32.634 IZ
                                             2217.8
                                                      YC
                                                           4.260
                                                                   YD
                                                                       12.000
  210
                   106.322
                                             2228.6
                                                           4.265
                                                                       12.013
              AX
                            AY 32.670
                                         IZ
                                                      YC
                                                                   YD
  211
                   106.564
                             AY 32.942
                                             2270.9
                                                      YC
                                                           4.301
                                                                       12.113
              AX
                                                                   YD
                                         IZ
  212
              AX
                   107.929
                             AY 33.634
                                         IZ
                                             2416.5
                                                      YC
                                                           4.442
                                                                   YD
                                                                       12.368
  213
              AX
                   110.452
                             AY 34.763
                                         IZ
                                             2684.3
                                                      YC
                                                           4.630
                                                                   YD
                                                                       12.783
                             AY 36.332
                                             3051.3
                                                                       13.360
  214
              AX
                   113.388
                                         IZ
                                                      YC
                                                           5.009
                                                                   YD
  215
              AX
                   116.721
                             AY 38.339
                                         IZ
                                             3537.3
                                                      YC
                                                           5.391
                                                                   YD
                                                                       14.098
  216
              AX
                   124.872
                             AY 40.785
                                         IZ
                                             4374.4
                                                      YC
                                                           6.112
                                                                   YD
                                                                       14.997
  217
                                             5722.0
                                                           7.148
                                                                       16.058
              AX
                   137.951
                             AY 43.669
                                         IZ
                                                      YC
                                                                   YD
  218
              AX
                  151.294
                            AY 46.993
                                         IZ
                                             7303.2
                                                      YC
                                                           8.201
                                                                   YD
                                                                       17.280
  219
              AX
                   168.484
                             AY 50.754
                                         IZ
                                             9178.4
                                                      YC
                                                           9.278
                                                                   YD
                                                                       18.663
  220
              AX
                   177.411
                             AY 54.955
                                         IZ 11429.7
                                                      YC 10.397
                                                                   YD
                                                                       20.208
  221
              AX
                   189.689
                             AY 59.594
                                         IZ 14134.0
                                                      YC 11.558
                                                                   YD
                                                                       21.914
  222
                   201.816
                             AY 64.672
                                         IZ 17396.5
                                                      YC 12.786
                                                                       23.781
              AX
                                                                   YD
  223
                   213.679
                             AY 70.188
                                                      YC 14.083
              AX
                                         IZ 21327.2
                                                                   YD
                                                                       25.809
  224
              AX
                   226.404
                             AY 77.320
                                         IZ 26801.4
                                                      YC 15.685
                                                                   YD
                                                                       28.432
  GROUP 'PIER' AX 233.531 AY 81.584
                                         IZ 30856.1
                                                      YC 16.618
                                                                       30.000
                                                                   YD
                             AY 78.790
  227
              AX
                   227.197
                                         IZ 28262.6
                                                      YC 16.014
                                                                   YD
                                                                       28.972
  228
              AX
                   219.654
                             AY 73.021
                                         IZ 23517.7
                                                      YC 14.745
                                                                   YD
                                                                       26.851
  229
                   208.858
                             AY 67.292
                                         IZ 19270.0
                                                      YC 13.446
                                                                       24.744
              AX
                                                                   YD
  230
                   197.481
                             AY 62.001
                                                      YC 12.206
                                                                       22.799
              AX
                                         IZ 15718.0
                                                                   YD
  231
                   185.260
                            AY 57.149
                                         IZ 12766.0
                                                      YC 11.028
              AX
                                                                   YD
                                                                       21.015
  232
              AX
                   173.370
                             AY 52.736
                                         IZ 10323.1
                                                      YC
                                                           9.909
                                                                   YD
                                                                       19.392
  233
              AX
                   160.840
                             AY 48.762
                                         IZ
                                             8304.2
                                                      YC
                                                           8.845
                                                                   YD
                                                                       17.931
                                                      YC
  234
                   148.115
                            AY 45.226
                                         IZ
                                             6627.9
                                                           7.826
                                                                       16.630
              AX
                                                                   YD
  235
                   135.282
                             AY 42.129
                                             5216.6
                                                      YC
                                                           6.832
                                                                   YD
                                                                       15.491
              AX
                                         IZ
  236
                  122.822
                             AY 39.470
                                             4019.8
                                                           5.864
                                                                       14.514
              AX
                                         IZ
                                                      YC
                                                                   YD
                   114.964
                             AY 37.250
                                             3270.1
  237
              AX
                                         IZ
                                                      YC
                                                           5.186
                                                                       13.698
                                                                   YD
  238
              AX
                   111.527
                             AY 35.469
                                         IZ
                                             2832.0
                                                      YC
                                                           4.819
                                                                   YD
                                                                       13.043
  239
              AX
                   108.517
                             AY 34.127
                                         IZ
                                             2504.1
                                                      YC
                                                           4.517
                                                                   YD
                                                                       12.549
  240
                                                           4.337
                                                                       12.217
              AX
                   106.813
                             AY 33.223
                                         IZ
                                             2314.8
                                                      YC
                                                                   YD
  241
              ΑX
                  106.399
                             AY 32.757
                                         IZ
                                             2242.1
                                                      YC
                                                           4.276
                                                                   YD
                                                                       12.045
  GROUP 'COLUMN_PH' AX 150.25 AY 85.0 IZ 3277. YC 8.5 YD 17.0
     $
         60% I gross
                   AX 150.25 AY 85.000 IZ 5462. YC 8.5 YD 17.0
  GROUP 'COLUMN'
     $100% I gross 17.0' x 17.75', 2.5' Walls
  GROUP 'PT_LINK' AX 100.0 AY 100.0 IZ 1E04
     $ Rigid link cgc to cgs cantilever PT
$
UNITS INCH
MEMBER PROPERTIES PRISMATIC
  307 308
            ΑX
                11.628
                         $
                              4 tendons 19x0.5" diam
  309
       AX
            23.256
                     $
                         8 tendons 19x0.5" diam
  310
            34.884
                     $
                        12 tendons 19x0.5" diam
       AX
  311
       ΑX
            52.326
                     $
                        18 tendons 19x0.5" diam
  312
       AX
            69.768
                     $
                        24 tendons 19x0.5" diam
```

```
313 AX 87.210 $ 30 tendons 19x0.5" diam
  314 AX 98.838 $ 34 tendons 19x0.5" diam
  315
     AX 116.280 $ 40 tendons 19x0.5" diam
      AX 133.722 $ 46 te36ons 19x0.5" diam
  316
      AX 151.164 $ 52 tendons 19x0.5" diam
 317
 318 AX 168.606 $ 58 tendons 19x0.5" diam
 319 AX 186.048 $ 64 tendons 19x0.5" diam
 320 AX 203.490 $ 70 tendons 19x0.5" diam
  321
     AX 215.118 $ 74 tendons 19x0.5" diam
  322
     AX 232.560
                  $ 80 tendons 19x0.5" diam
 323
     AX 250.002 $ 86 tendons 19x0.5" diam
 324 TO 328 AX 273.258 $ 94 tendons 19x0.5" diam
 329
      AX 255.816 $ 88 tendons 19x0.5" diam
 330
     AX 238.374 $ 82 tendons 19x0.5" diam
 331
      AX 220.932 $ 76 tendons 19x0.5" diam
 332 AX 209.304 $ 72 tendons 19x0.5" diam
 333 AX 191.862 $ 66 tendons 19x0.5" diam
 334 AX 174.420 $ 60 tendons 19x0.5" diam
 335 AX 156.978 $ 54 tendons 19x0.5" diam
  336 AX 139.528 $ 48 tendons 19x0.5" diam
 337
     AX 122.094 $ 42 tendons 19x0.5" diam
 338 AX 104.652 $ 36 tendons 19x0.5" diam
 339
         93.024 $ 32 tendons 19x0.5" diam
     AX
 340 AX
         75.582 $ 26 tendons 19x0.5" diam
 341
      AX 58.140 $ 20 tendons 19x0.5" diam
 342
     AX 40.698 $ 14 tendons 19x0.5" diam
 343 AX 29.070 $ 10 tendons 19x0.5" diam
  344 AX 17.442 $ 6 tendons 19x0.5" diam
$
UNITS FEET
CONSTANTS
$ 5000 psi concrete
           GROUP LIST 'CONST'
    580000
                                'PIER'
                                         'VAR'
    217000
             GROUP LIST 'CONST'
                                 'PIER'
                                         'VAR'
 DEN 0.160
             GROUP LIST 'CONST'
                                 'PIER'
                                         'VAR'
 CTE 5.5E-06 GROUP LIST 'CONST'
                                 'PIER'
                                         'VAR'
$ 4000 psi concrete
 E 508000 GROUP LIST 'COLUMN PH' 'COLUMN'
 G 215000
             GROUP LIST 'COLUMN_PH' 'COLUMN'
 DEN 0.160
             GROUP LIST 'COLUMN_PH' 'COLUMN'
 CTE 5.5E-06 GROUP LIST 'COLUMN_PH' 'COLUMN'
$ 0.5" Diam Lo-lax strand
 E 3888000 GROUP LIST 'PT1'
 DEN 0.335
              GROUP LIST 'PT1' $ Density difference between steel &
concrete
 CTE 6.5E-06 GROUP LIST 'PT1'
$ Rigid link cgc to cgs cantilever PT
 E 4E07
          GROUP 'PT_LINK'
 DEN 1E-06 GROUP 'PT_LINK'
 G 4E07
           GROUP 'PT_LINK'
 CTE 1E-09 GROUP 'PT_LINK'
```

```
$
$
SELF WEIGHT LOAD 'DC1' 'Member weight' DIR -Y FACTOR 1.00 ALL MEMBERS
LOAD 'DC2' 'Blister & diaphragm dead load'
 JOINT LOADS
    1 FOR Y -216.3
                       $ End diaphragm 5.5' thick
MEMBER LOADS
    225 226 FOR Y GLO UNIF W -41.0 LA 0.0 LB 8.5
                                                    $ Thickened top
slab and webs
    225
            FOR Y GLO UNIF W -85.0 LA 3.5 LB 8.5
                                                    $ Diaphragm + pier
strut
    226
           FOR Y GLO UNIF W -85.0 LA 3.5 LB 8.5
                                                    $ Diaphragm + pier
strut
            FOR Y GLO UNIF W -25.6 LA 0.0 LB 2.5
                                                    $ Diaphragm between
    225
piers
    226
            FOR Y GLO UNIF W -25.6 LA 6.0 LB 8.5
                                                    $ Diaphragm between
piers
    201
            FOR Y GLO CONC P -39.3 L 8.25 $ Bottom EQ blister
    211 213 FOR Y GLO CONC P -26.5 L 2.76 $ Bottom blister
    238 240 FOR Y GLO CONC P -21.3 L 2.76 $ Bottom blister
    244
            FOR Y GLO CONC P -6.3 L 4.00 $ Top closure blister
$
$
LOAD 'CANT_PT' 'Cantilever PT'
 MEMBER TEMPERATURE LOAD
                                 $ T seated w/ friction per VSL shop
dwgs and 3% relaxation
           FR 0.0 1.0 AXIAL -1293
     307
     308
           FR 0.0 1.0 AXIAL -1293
     309
           FR 0.0 1.0 AXIAL-1266
     310
           FR 0.0 1.0 AXIAL -1261
     311
           FR 0.0 1.0 AXIAL -1257
     312
           FR 0.0 1.0 AXIAL -1268
     313
           FR 0.0 1.0 AXIAL-1273
     314
           FR 0.0 1.0 AXIAL -1278
     315
           FR 0.0 1.0 AXIAL-1280
     316
           FR 0.0 1.0 AXIAL-1283
     317
           FR 0.0 1.0 AXIAL-1297
     318
           FR 0.0 1.0 AXIAL -1293
     319
           FR 0.0 1.0 AXIAL -1299
     320
           FR 0.0 1.0 AXIAL-1282
     321
           FR 0.0 1.0 AXIAL-1308
     322
           FR 0.0 1.0 AXIAL-1310
     323
           FR 0.0 1.0 AXIAL -1312
     324
           FR 0.0 1.0 AXIAL -1257
     325
           FR 0.0 1.0 AXIAL-1317
     326
           FR 0.0 1.0 AXIAL-1317
     327
           FR 0.0 1.0 AXIAL -1317
     328
           FR 0.0 1.0 AXIAL-1317
     329
           FR 0.0 1.0 AXIAL-1309
     330
           FR 0.0 1.0 AXIAL -1304
     331
           FR 0.0 1.0 AXIAL -1299
           FR 0.0 1.0 AXIAL-1291
     332
```

```
FR 0.0 1.0 AXIAL-1286
     333
     334 FR 0.0 1.0 AXIAL -1276
     335 FR 0.0 1.0 AXIAL -1268
     336 FR 0.0 1.0 AXIAL -1270
         FR 0.0 1.0 AXIAL-1264
     337
         FR 0.0 1.0 AXIAL -1260
     338
     339
          FR 0.0 1.0 AXIAL-1244
     340 FR 0.0 1.0 AXIAL-1234
     341 FR 0.0 1.0 AXIAL -1228
     342 FR 0.0 1.0 AXIAL -1233
     343 FR 0.0 1.0 AXIAL -1219
     344 FR 0.0 1.0 AXIAL -1259
FORM LOAD 'DC' FROM 'DC1' 1.0 'DC2' 1.0
FORM LOAD 'CNSTRUCT' FROM 'DC' 1.0 'CANT_PT' 1.0
Ś
 ACTIVE JOINTS ALL BUT 1 TO 6 45 345
 ACTIVE MEMBERS ALL BUT 201 TO 206 344 244 445
LOAD LIST 'DC1' 'DC2' 'DC' 'CANT PT' 'CNSTRUCT'
$
STIFFNESS ANALYSIS
OUTPUT DEC 1
LIST REACTIONS
LIST SUM REACTIONS
OUTPUT BY LOAD
OUTPUT DECIMAL 5
LIST DISPLACEMENTS JOINTS 7 10 18 22 26 30 34 38 42 44
OUTPUT DEC 1
OUTPUT BY LOAD
SECTION FR NS 1 0.7 MEMBERS EXISTING 207 TO 243 307 TO 344
OUTPUT FIELD F
LIST SECTION FORCES SUMMARY MEMBERS EXISTING 207 TO 243 307 TO 344
$
OUTPUT DEC 3
UNITS INCH
LOAD LIST 'CNSTRUCT'
SECTION FR NS 1 0.7 MEMBERS EXISTING 237
LIST SECTION STRESSES SUMMARY MEMBERS EXISTING 237
LOAD LIST 'DC' 'CANT_PT' 'CNSTRUCT'
OUTPUT BY LOAD
UNITS FEET
OUTPUT DEC 1
WRITE REPLACE JOINT RESULTS JOINTS EXISTING
WRITE REPLACE MEMBER RESULTS MEMBERS EXISTING
WRITE REPLACE SECTION FORCES NS 2 MEMBERS EXISTING
```

A. 2. Symmetrical Continuous Structure

```
STRUDL 'WSB I'
                'WSB I High Level Bridge 1 Box'
$ Created 10 Oct 2013 JH Clark'
$ 2D model of one box modelled along cg of section
$ Coordinates are station and elevation
$ Final condition, complete structure, all PT
$ PT as per VSL shop drawings
$ Cantilever PT modelled as truss members between offset joints
$ Continuity (+M) PT modelled as eccentric beam members
$ Revised 20 October Added column at Pier 16, seismic response
spectra (WSB design and AASHTO 2009 D)
$ Revised 19 November Added PT Creep Differential Temperature Changed
support conditions at midspan
$ Revised 21 Nov 2013
                       Differential Temperature Curvature corrected
UNIT FEET KIPS FAHRENHEIT
JOINT COORDINATES
$ Box section cgc
     9302.5
                           S
                                  $ CL brg Pier 15
1
                 128.890
 2
     9315.5
                 129.670
 3
     9332.0
                 130.660
 4
     9348.5
                 131.650
 5
     9354.0
                 131.980
 6
     9365.0
                 132.640
 7
     9377.0
                 133.360
 8
     9385.5
                 133.870
 9
     9396.5
                 134.530
10
     9413.0
                 135.520
11
     9429.5
                 136.500
12
     9446.0
                 137.428
13
     9462.5
                 138.181
14
     9479.0
                 138.839
15
     9495.5
                 139.401
16
                 139.864
     9512.0
17
     9528.5
                 139.687
18
     9545.0
                 139.458
19
     9561.5
                 139.184
2.0
     9578.0
                 138.844
21
     9594.5
                 138.425
22
     9611.0
                 137.938
23
     9627.5
                 137.322
24
     9644.0
                 136.637
25
     9666.5
                 135.568
                                  $ Face column Pier 16
26
     9675.0
                                           column Pier 16
                 135.858
                                  $ CL
261
     9675.0
                 -10.500
                           S
                                  $ CL Footing Pier 16
262
     9675.0
                  14.000
                                  $ End of bottom plastic hinge
263
     9675.0
                  45.074
     9675.0
                  76.149
264
                                  $ Start of upper plastic hinge
265
     9675.0
                 107.223
266
     9675.0
                 122.477
                                  $ Soffit of box girder
27
     9683.5
                 136.141
28
     9698.0
                 137.813
29
     9714.5
                 139.638
```

```
30
      9731.0
                  141.375
31
      9747.5
                  143.019
      9764.0
32
                  144.571
33
      9780.5
                  146.034
34
      9797.0
                  147.414
35
      9813.5
                  148.726
36
      9830.0
                  149.990
37
      9846.5
                  151.191
      9863.0
                  151.811
38
39
      9879.5
                  152.330
40
      9896.0
                  152.755
41
      9912.5
                  152.969
42
      9929.0
                  153.094
43
      9945.5
                  153.156
44
      9962.0
                  153.186
45
      9970.0
                  153.190
                              S
                                   $ CL Span 16
$ Cantilever PT cgs
307
     9377.0
                  137.120
308
     9385.5
                  137.630
309
     9396.5
                  138.290
310
     9413.0
                  139.280
311
     9429.5
                  140.270
312
     9446.0
                  141.260
313
     9462.5
                  142.233
314
     9479.0
                  143.174
315
     9495.5
                  144.084
316
                  144.963
     9512.0
317
     9528.5
                  145.812
318
     9545.0
                  146.629
319
     9561.5
                  147.414
320
     9578.0
                  148.169
321
     9594.5
                  148.893
322
     9611.0
                  149.585
     9627.5
                  150.247
323
324
     9644.0
                  150.877
325
     9666.5
                  151.686
326
     9675.0
                  151.977
                               $ CL Pier 16
327
     9683.5
                  152.260
328
     9698.0
                  152.722
329
     9714.5
                  153.220
330
     9731.0
                  153.686
331
     9747.5
                  154.121
332
     9764.0
                  154.525
333
     9780.5
                  154.898
334
     9797.0
                  155.420
335
     9813.5
                  155.550
336
     9830.0
                  155.830
337
     9846.5
                  156.078
                  156.296
338
     9863.0
339
     9879.5
                  156.482
340
     9896.0
                  156.637
341
     9912.5
                  156.761
342
     9929.0
                  156.854
```

```
343 9945.5
               156.916
344 9962.0
               156.946
                        S $ CL Span 16
345 9970.0
               156.950
JOINT RELEASES
                                                  $ 1/2 Pier 15 (32
         FOR X MOM Z KFY 1.544E06
Piles 24" Hollow PSC 38.5 ft effective length)
         KFX 565.9E03 KFY 3.640E06 KMZ 878.2E06 $ 1/2 Pier 16 (28
Piles 36" x 3/4" Concrete Filled 50 ft effective length)
   45 345 FOR Y
                                                  $ Symmetrical
loadings
$
TYPE PLANE TRUSS
MEMBER INCIDENCES
$ Cantilever PT
GENERATE 38 MEMBERS ID 307 INC 1 FROM 307 INC 1 TO 308 INC 1
DEFINE GROUP 'PT1' ADD MEMBERS 307 TO 343
TYPE PLANE FRAME
MEMBER INCIDENCES
$ Span 16 Column
 1601 261 262
 1602 262 263
 1603 263 264
 1604 264 265
  1605 265 266
 1606 266 25
 1607 266 27
$ Span 15 Positive moment PT
                 $ Tendons B1 B3 B5 B7 B9 B11
      1 14
 118
                 $ Tendons B2 B4 B6 B8 B10 B12
 119
       1 12
$ Span 15 Negative moment PT
 120
      1
           9
  121
       1
           7
$ Span 16 Positive moment PT
 122 38 45 $ Tendons B1 B3 B5 B7 B9 B11 B13
  123 40 45
                 $ Tendons B2 B4 B6 B8 B10 B12 B14
$ Span 16 Negative moment PT
 124 44 45
$ Rigid links from cgc to cgs cantilever
GENERATE 39 MEMBERS ID 407 INC 1 FROM 7 INC 1 TO 307 INC 1
GENERATE 44 MEMBERS ID 201 INC 1 FROM 1 INC 1 TO 2 INC 1
DEFINE GROUP 'CONST' ADD MEMBERS 201 TO 209 242 TO 244 $ Constant
depth sections
DEFINE GROUP 'PIER' ADD MEMBERS 225 226
                                                          $ Pier
sections
DEFINE GROUP 'VAR'
                    ADD MEMBERS 210 TO 224 227 TO 241
                                                         $ Variable
depth sections
DEFINE GROUP 'SUPER' ADD MEMBERS 201 TO 244
                                                         $ All
superstructure members
```

```
DEFINE GROUP 'PT2' ADD MEMBERS 118 TO 119
                                                       $ 6 12x0.6"
Diam
DEFINE GROUP 'PT3' ADD MEMBERS 120 TO 121
                                                       $ 16 1 1/4"
DEFINE GROUP 'PT4' ADD MEMBERS 122 TO 123
                                                       $ 6 12x0.6"
DEFINE GROUP 'PT5' ADD MEMBERS 124
                                                       $ 8 1 1/4"
DEFINE GROUP 'PT_LINK' ADD MEMBERS 407 TO 445 1606 1607
                                                       $ Rigid
links for cantilever PT and column
DEFINE GROUP 'COLUMN_PH' ADD MEMBERS 1601 1605
                                                       $ Column
plastic hinges
DEFINE GROUP 'COLUMN' ADD MEMBERS 1602 TO 1604 $ Columns
outside plastic hinge
MEMBER ECCENTRICITIES
$ Span 15 positive moment PT
 118 START Y -7.372 END Y -8.196
 119 START Y -7.372 END Y -7.868
$ Pier 15 Top EQ PT
             3.885 END Y
 120 START Y
                          3.885
 121 START Y 3.885 END Y 3.885
$ Span 16 positive moment PT
 122 START Y -7.636 END Y -7.372
 123 START Y -7.313 END Y -7.372
$ Span 16 CL Closure top PT
 124 START Y 3.885 END Y 3.885
$ Column 16 ends
 1601 START Y
               7.500
 1605 END Y -13.671
 GROUP 'CONST' AX 106.185 AY 32.634 IZ
                                      2217.8 YC 4.260 YD 12.000
 210
            AX 106.322 AY 32.670 IZ
                                      2228.6 YC 4.265 YD 12.013
 211
            AX 106.564 AY 32.942 IZ
                                      2270.9 YC 4.301
                                                        YD 12.113
 212
           AX 107.929 AY 33.634 IZ
                                      2416.5 YC
                                                 4.442 YD 12.368
 213
           AX 110.452 AY 34.763 IZ
                                      2684.3
                                             YC 4.630
                                                        YD 12.783
 214
            AX 113.388 AY 36.332 IZ
                                      3051.3 YC 5.009
                                                        YD 13.360
                                                        YD
 215
           AX 116.721 AY 38.339 IZ
                                      3537.3 YC 5.391
                                                           14.098
 216
           AX 124.872 AY 40.785 IZ
                                      4374.4 YC 6.112 YD
                                                           14.997
 217
            AX 137.951 AY 43.669 IZ
                                      5722.0 YC
                                                  7.148
                                                        YD
                                                           16.058
                                      7303.2 YC 8.201
 218
           AX 151.294 AY 46.993 IZ
                                                        YD 17.280
           AX 168.484 AY 50.754 IZ
                                     9178.4 YC 9.278
 219
                                                        YD 18.663
  220
            AX
               177.411
                       AY 54.955
                                  IZ 11429.7
                                              YC 10.397
                                                        YD
                                                            20.208
 221
           AX 189.689 AY 59.594 IZ 14134.0 YC 11.558
                                                        YD 21.914
 222
            ΑX
               201.816 AY 64.672 IZ 17396.5 YC 12.786 YD 23.781
 223
            AX
                213.679 AY 70.188 IZ 21327.2 YC 14.083
                                                        YD 25.809
 224
            AX 226.404 AY 77.320 IZ 26801.4 YC 15.685
                                                        YD 28.432
 GROUP 'PIER' AX 233.531 AY 81.584 IZ 30856.1 YC 16.618
                                                        YD 30.000
 227
           AX 227.197
                       AY 78.790 IZ 28262.6 YC 16.014 YD
                                                           28.972
 228
           AX 219.654 AY 73.021 IZ 23517.7 YC 14.745 YD
                                                           26.851
               208.858 AY 67.292 IZ 19270.0 YC 13.446 YD
  229
                                                            24.744
            \mathsf{AX}
  230
            AX 197.481 AY 62.001 IZ 15718.0 YC 12.206 YD
                                                            22.799
  231
           AX 185.260 AY 57.149 IZ 12766.0 YC 11.028 YD 21.015
```

```
232
             AX
                  173.370
                           AY 52.736
                                       IZ 10323.1
                                                    YC
                                                        9.909
                                                                YD
                                                                    19.392
  233
                  160.840
                           AY 48.762
                                       IZ
                                           8304.2
                                                        8.845
                                                                    17.931
             ΑX
                                                    YC
                                                                YD
                                           6627.9
  234
             ΑX
                  148.115
                           AY 45.226
                                       IZ
                                                    YC
                                                        7.826
                                                                YD
                                                                    16.630
  235
             AX
                  135.282
                           AY 42.129
                                       IZ
                                           5216.6
                                                    YC
                                                        6.832
                                                                YD
                                                                    15.491
  236
                  122.822
                           AY 39.470
                                           4019.8
                                                        5.864
                                                                    14.514
             AX
                                       IZ
                                                    YC
                                                                YD
  237
             AX
                  114.964
                           AY 37.250
                                           3270.1
                                                    YC
                                                        5.186
                                                                    13.698
                                       IZ
                                                                YD
  238
             ΑX
                  111.527
                           AY 35.469
                                       IZ
                                           2832.0
                                                    YC
                                                        4.819
                                                                YD
                                                                    13.043
  239
                  108.517
                                           2504.1
                                                        4.517
                                                                    12.549
             AX
                           AY 34.127
                                       IZ
                                                    YC
                                                                YD
  240
                                                        4.337
             AX
                  106.813
                           AY 33.223
                                       IZ
                                           2314.8
                                                    YC
                                                                YD
                                                                    12.217
  241
             ΑX
                  106.399
                           AY 32.757
                                       IZ
                                           2242.1
                                                    YC
                                                        4.276
                                                                YD
                                                                    12.045
$
  GROUP 'COLUMN_PH' AX 150.25 AY 85.0 IZ 3277. YC 8.5 YD 17.0
        60% I gross
     $
  GROUP 'COLUMN'
                   AX 150.25 AY 85.000 IZ 5462. YC 8.5 YD 17.0
     $ 100% I gross 17.0' x 17.75', 2.5' Walls
  GROUP 'PT LINK' AX 100.0 AY 100.0 IZ 1E04
     $ Rigid link cgc to cgs cantilever PT
UNITS INCH
MEMBER PROPERTIES PRISMATIC
               11.628
                            4 tendons 19x0.5" diam
  307 308
           ΑX
                        $
  309
           23.256
                    $
                        8 tendons 19x0.5" diam
       AX
  310
       AX
           34.884
                    $
                       12 tendons 19x0.5" diam
                    $
  311
       AX
           52.326
                       18 tendons 19x0.5" diam
  312
       AX
           69.768
                      24 tendons 19x0.5" diam
  313
           87.210
                    $
                       30 tendons 19x0.5" diam
       AX
  314
           98.838
                    $
                       34 tendons 19x0.5" diam
       AX
  315
       AX 116.280
                    $ 40 tendons 19x0.5" diam
  316
       AX 133.722
                    $ 46 te36ons 19x0.5" diam
  317
                    $
                      52 tendons 19x0.5" diam
       AX 151.164
                    $ 58 tendons 19x0.5" diam
  318
       AX 168.606
  319
       AX 186.048
                    $
                       64 tendons 19x0.5" diam
  320
       AX 203.490
                    $
                       70 tendons 19x0.5" diam
  321
       AX 215.118
                    $
                       74 tendons 19x0.5" diam
  322
       AX 232.560
                    $
                       80 tendons 19x0.5" diam
                    $
  323
       AX 250.002
                       86 tendons 19x0.5" diam
  324 TO 328 AX 273.258
                          $ 94 tendons 19x0.5" diam
  $
  329
       AX 255.816
                       88 tendons 19x0.5" diam
                       82 tendons 19x0.5" diam
  330
       AX 238.374
                    $
  331
       AX 220.932
                    $
                       76 tendons 19x0.5" diam
  332
                       72 tendons 19x0.5" diam
       AX 209.304
                       66 tendons 19x0.5" diam
  333
       AX 191.862
                    $
  334
       AX 174.420
                    $
                       60 tendons 19x0.5" diam
  335
       AX 156.978
                    $
                       54 tendons 19x0.5" diam
  336
       AX 139.528
                    $
                       48 tendons 19x0.5" diam
  337
       AX 122.094
                    $
                       42 tendons 19x0.5" diam
  338
       AX 104.652
                    $
                       36 tendons 19x0.5" diam
                       32 tendons 19x0.5" diam
  339
       ΑX
           93.024
                    $
  340
       AX
           75.582
                    $
                       26 tendons 19x0.5" diam
                       20 tendons 19x0.5" diam
  341
           58.140
                    $
       AX
  342
       AX
           40.698
                    $
                       14 tendons 19x0.5" diam
  343
           29.070
                       10 tendons 19x0.5" diam
       AX
```

```
344 AX 17.442 $ 6 tendons 19x0.5" diam
 GROUP 'PT2' AX 20.382 AY 1E-5 IZ 1E-5
                                                    $ 6 12x0.6" Diam
 GROUP 'PT3' AX 19.945 AY 1E-5 IZ 1E-5
                                                    $ 16 1 1/4"
                                                                 Bar
 GROUP 'PT4' AX 15.624 AY 1E-5 IZ 1E-5
                                                   $ 6 12x0.6" Diam
 GROUP 'PT5' AX 9.973 AY 1E-5 IZ 1E-5
                                                   $ 8 1 1/4" Bar
$
UNITS FEET
CONSTANTS
$ 5000 psi concrete
 E 580000
           GROUP LIST 'CONST' 'PIER'
                                        'VAR'
 G 217000
             GROUP LIST 'CONST' 'PIER'
                                         'VAR'
 DEN 0.160 GROUP LIST 'CONST'
                                 'PIER'
                                         'VAR'
 CTE 5.5E-06 GROUP LIST 'CONST'
                                'PIER'
                                         'VAR'
$ 4000 psi concrete
 E 508000
           GROUP LIST 'COLUMN PH' 'COLUMN'
           GROUP LIST 'COLUMN_PH' 'COLUMN'
 G 215000
 DEN 0.160 GROUP LIST 'COLUMN PH' 'COLUMN'
 CTE 5.5E-06 GROUP LIST 'COLUMN_PH' 'COLUMN'
$ 0.5" Diam Lo-lax strand
 E 3888000 GROUP LIST 'PT1' 'PT2' 'PT4'
             GROUP LIST 'PT1' 'PT2' 'PT4' $ Density difference
 DEN 0.335
between steel & concrete
 CTE 6.5E-06 GROUP LIST 'PT1' 'PT2' 'PT4'
$ 1 1/4" Diam D&W bars
 E 4176000 GROUP LIST 'PT3'
                                'PT5'
 DEN 0.335
              GROUP LIST 'PT3' 'PT5' $ Density difference between
steel & concrete
  CTE 6.5E-06 GROUP LIST 'PT3' 'PT5'
$ Rigid link cgc to cgs cantilever PT
 E 4E07
           GROUP 'PT LINK'
 DEN 1E-06 GROUP 'PT_LINK'
 G 4E07
           GROUP 'PT LINK'
 CTE 1E-09 GROUP 'PT LINK'
$
$
SELF WEIGHT LOAD 'DC1' 'Member weight' DIR -Y FACTOR 1.00 ALL MEMBERS
LOAD 'DC2' 'Blister, diaphragm, footing, seal, & overburden dead load'
  JOINT LOADS
   1 FOR Y -216.3 $ End diaphragm 5.5' thick
  261 FOR Y -8204.0 $ Footing, seal, overburden
MEMBER LOADS
   225 226 FOR Y GLO UNIF W -41.0 LA 0.0 LB 8.5 $ Thickened top
slab and webs
    225 FOR Y GLO UNIF W -85.0 LA 3.5 LB 8.5
      $ Diaphragm + pier strut
    226 FOR Y GLO UNIF W -85.0 LA 3.5 LB 8.5
       $ Diaphragm + pier strut
    225 FOR Y GLO UNIF W -25.6 LA 0.0 LB 2.5
       $ Diaphragm between piers
    226 FOR Y GLO UNIF W -25.6 LA 6.0 LB 8.5
      $ Diaphragm between piers
```

```
201 FOR Y GLO CONC P -39.3 L 8.25 $ Bottom EQ blister
    211 213 FOR Y GLO CONC P -26.5 L 2.76 $ Bottom blister
    238 240 FOR Y GLO CONC P -21.3 L 2.76 $ Bottom blister
    244 FOR Y GLO CONC P -6.3 L 4.00 $ Top closure blister
LOAD 'DW1' 'Barriers'
 MEMBER LOADS
    201 TO 244 FOR Y GLO UNIF -0.800
     $ 1 WSB Barrier (562 plf)& 1/2 ctr barrier (238 plf) at 0.155 kcf
LOAD 'DW2' 'Overlay'
 MEMBER LOADS
    201 TO 244 FOR Y GLO UNIF -1.250
                                      $ 25 psf on roadway
LOAD 'BOUY' 'Buoyancy to WS Elev -3.0'
  JOINT LOAD
      261 FOR Y +3432.0
$
$
LOAD 'CANT PT' 'Cantilever PT'
  MEMBER TEMPERATURE LOAD
       $ T seated w/ friction per VSL shop dwgs and 3% relaxation
     307
         FR 0.0 1.0 AXIAL-1293
     308
           FR 0.0 1.0 AXIAL -1293
     309
         FR 0.0 1.0 AXIAL -1266
     310
         FR 0.0 1.0 AXIAL-1261
     311
         FR 0.0 1.0 AXIAL-1257
     312
         FR 0.0 1.0 AXIAL -1268
     313
           FR 0.0 1.0 AXIAL -1273
     314
          FR 0.0 1.0 AXIAL -1278
     315
         FR 0.0 1.0 AXIAL-1280
     316
          FR 0.0 1.0 AXIAL -1283
     317
          FR 0.0 1.0 AXIAL -1297
     318
          FR 0.0 1.0 AXIAL -1293
     319
           FR 0.0 1.0 AXIAL -1299
     320
          FR 0.0 1.0 AXIAL-1282
     321
          FR 0.0 1.0 AXIAL -1308
     322
          FR 0.0 1.0 AXIAL-1310
     323
          FR 0.0 1.0 AXIAL-1312
          FR 0.0 1.0 AXIAL -1257
     324
     325
           FR 0.0 1.0 AXIAL-1317
     326
          FR 0.0 1.0 AXIAL -1317
     327
           FR 0.0 1.0 AXIAL-1317
     328
          FR 0.0 1.0 AXIAL-1317
     329
           FR 0.0 1.0 AXIAL-1309
     330
           FR 0.0 1.0 AXIAL -1304
     331
           FR 0.0 1.0 AXIAL -1299
     332
           FR 0.0 1.0 AXIAL -1291
     333
           FR 0.0 1.0 AXIAL-1286
     334
           FR 0.0 1.0 AXIAL -1276
          FR 0.0 1.0 AXIAL-1268
     335
     336
           FR 0.0 1.0 AXIAL-1270
           FR 0.0 1.0 AXIAL-1264
     337
```

```
FR 0.0 1.0 AXIAL-1260
     338
     339
           FR 0.0 1.0 AXIAL -1244
         FR 0.0 1.0 AXIAL-1234
     341
           FR 0.0 1.0 AXIAL-1228
          FR 0.0 1.0 AXIAL -1233
     342
     343
           FR 0.0 1.0 AXIAL -1219
     344
           FR 0.0 1.0 AXIAL -1259
LOAD 'CREEP' 'Creep for cantilever PT only' $ Estimated as 2 time
elastic shortening from cantilever model Case DC
 MEMBER TEMPERATURE LOAD
     309
           FR 0.0 1.0 AXIAL
                              2
           FR 0.0 1.0 AXIAL
     310
                              6
           FR 0.0 1.0 AXIAL 15
           FR 0.0 1.0 AXIAL 27
     312
     313
          FR 0.0 1.0 AXIAL 51
          FR 0.0 1.0 AXIAL 64
     314
     315
           FR 0.0 1.0 AXIAL 79
     316
           FR 0.0 1.0 AXIAL 97
     317
          FR 0.0 1.0 AXIAL 117
     318
           FR 0.0 1.0 AXIAL 131
     319
           FR 0.0 1.0 AXIAL 144
     320
          FR 0.0 1.0 AXIAL 157
     321
           FR 0.0 1.0 AXIAL 169
     322
           FR 0.0 1.0 AXIAL 179
     323
           FR 0.0 1.0 AXIAL 188
     324
           FR 0.0 1.0 AXIAL 196
     325
          FR 0.0 1.0 AXIAL 207
     326
           FR 0.0 1.0 AXIAL 25
           FR 0.0 1.0 AXIAL 25
     327
           FR 0.0 1.0 AXIAL 194
     328
     329
           FR 0.0 1.0 AXIAL 199
     330
          FR 0.0 1.0 AXIAL 191
     331
           FR 0.0 1.0 AXIAL 182
     332
           FR 0.0 1.0 AXIAL 167
     333
           FR 0.0 1.0 AXIAL 160
     334
           FR 0.0 1.0 AXIAL 147
     335
           FR 0.0 1.0 AXIAL 136
     336
           FR 0.0 1.0 AXIAL 119
     337
           FR 0.0 1.0 AXIAL 104
     338
           FR 0.0 1.0 AXIAL 84
     339
           FR 0.0 1.0 AXIAL 62
     340
           FR 0.0 1.0 AXIAL 48
     341
          FR 0.0 1.0 AXIAL 31
     342
           FR 0.0 1.0 AXIAL 18
     343
           FR 0.0 1.0 AXIAL
                              7
     344
           FR 0.0 1.0 AXIAL
$
  Following 2 loads include creep losses for phi = 2
LOAD 'SPAN15PT' 'Span 15 +M & EQ'
 MEMBER TEMPEERATURE LOAD
    GROUP 'PT2' FR 0.0 1.0 AXIAL -817
```

```
$ Final PT estimated at 143 ksi
    GROUP 'PT3' FR 0.0 1.0 AXIAL -456
      $ Final PT estimated at 86 ksi
LOAD 'SPAN16PT' 'Span 16 +M & Closure'
 MEMBER TEMPEERATURE LOAD
    GROUP 'PT4' FR 0.0 1.0 AXIAL -796
      $ Final PT estimated at 140 ksi
    GROUP 'PT5' FR 0.0 1.0 AXIAL -451
      $ Final PT estimated at
                              85 ksi
$
LOAD 'HS20T' 'HS20 Truck (1/2) at Jt 38'
 MEMBER LOAD
    236 FOR Y CONC P -4.0 L 11.0
    237 FOR Y CONC P -16.0 L
    238 FOR Y CONC P -16.0 L
LOAD 'HS20U' 'HS20 Uniform lane load'
 MEMBER LOAD
    226 TO 244 FOR Y UNIF FR W -0.64 LA 0.0 LB 1.0
LOAD 'SHRINK' 'Shrinkage strain 160 millionths'
 MEMBER TEMPEERATURE LOAD
    GROUP LIST 'CONST' 'VAR' 'PIER' 'COLUMN_PH' 'COLUMN' AXIAL -29.0
UNITS RADIANS
$
LOAD 'DIFFTC'
              'Differential temperature curvature'
 MEMBER DISTORTIONS
201 TO 210 UNIF ROTZ -5.28E-06
211
      UNIF ROTZ -5.27E-06
212
      UNIF ROTZ -5.22E-06
213
      UNIF ROTZ -5.08E-06
214
      UNIF ROTZ -4.86E-06
215
      UNIF ROTZ -4.59E-06
      UNIF ROTZ -4.29E-06
216
217
      UNIF ROTZ -3.93E-06
218
      UNIF ROTZ -3.56E-06
219
      UNIF ROTZ -3.23E-06
220
      UNIF ROTZ -2.93E-06
221
      UNIF ROTZ -2.65E-06
222
      UNIF ROTZ -2.39E-06
223
      UNIF ROTZ -2.16E-06
224
      UNIF ROTZ -1.94E-06
225
      UNIF ROTZ -1.72E-06
$
228
      UNIF ROTZ -1.68E-06
229
      UNIF ROTZ -1.85E-06
230
      UNIF ROTZ -2.05E-06
231
      UNIF ROTZ -2.27E-06
232
      UNIF ROTZ -2.52E-06
233
      UNIF ROTZ -2.79E-06
234
      UNIF ROTZ -3.08E-06
235
      UNIF ROTZ -3.39E-06
```

```
236
      UNIF ROTZ -3.72E-06
237
      UNIF ROTZ -4.09E-06
      UNIF ROTZ -4.57E-06
239
      UNIF ROTZ -4.99E-06
240
      UNIF ROTZ -5.17E-06
241
      UNIF ROTZ -5.25E-06
242 to 244 UNIF ROTZ -5.28E-06$
UNITS FAHRENHEIT
LOAD 'DIFFTNA' 'Axial temperature change'
  MEMBER TEMPERATURE LOAD
    201 TO 210 AXIAL 4.48
    211
         AXIAL 4.47
    212
         AXIAL 4.46
    213
          AXIAL 4.41
    214
         AXIAL 4.31
    215
         AXIAL 4.20
    216
          AXIAL 4.08
    217
         AXIAL 3.82
    218
         AXIAL 3.45
    219
         AXIAL 3.14
    220
         AXIAL 2.89
    221
         AXIAL 2.68
    222
         AXIAL 2.51
    223
         AXIAL 2.36
    224
          AXIAL 2.23
    225
         AXIAL 2.10
    228
         AXIAL 2.08
    229
           AXIAL 2.16
    230
         AXIAL 2.28
    231
         AXIAL 2.41
    232
          AXIAL 2.56
    233
         AXIAL 2.74
    234
         AXIAL 2.96
    235
         AXIAL 3.21
    236
         AXIAL 3.52
    237
         AXIAL 3.88
    238
         AXIAL 4.14
    239
         AXIAL 4.27
    240
          AXIAL 4.38
    241
         AXIAL 4.45
    242
         AXIAL 4.47
    243
          AXIAL 4.47
    244
          AXIAL 4.47
FORM LOAD 'DC'
                  FROM 'DC1' 1.0 'DC2' 1.0 'BOUY' 1.0
FORM LOAD 'DW'
                 FROM 'DW1' 1.0 'DW2' 1.0
FORM LOAD 'PT_ALL' FROM 'CANT_PT' 1.0 'SPAN15PT' 1.0 'SPAN16PT' 1.0
FORM LOAD 'PERM' FROM 'DC' 1.0 'DW' 1.0 'CANT_PT' 1.0 'SPAN15PT' 1.0
'SPAN16PT' 1.0 'BOUY' 1.0
FORM LOAD 'DELTA_T' FROM 'DIFFTNA' 1.0 'DIFFTC' 1.0
$
$
```

STIFFNESS ANALYSIS

\$
OUTPUT DEC 1
LIST REACTIONS
LIST SUM REACTIONS
OUTPUT BY LOAD
OUTPUT DECIMAL 5
LIST DISPLACEMENTS JOINTS 1 4 10 18 22 26 30 34 38 42 45
OUTPUT DEC 1
OUTPUT BY MEMBER
SECTION FR NS 1 0.7 MEMBERS EXISTING GROUP LIST 'SUPER'
WRITE REPLACE JOINT RESULTS JOINTS EXISTING
WRITE REPLACE MEMBER RESULTS MEMBERS EXISTING
WRITE REPLACE SECTION FORCES NS 2 MEMBERS EXISTING

A. 3. Asymmetrical Structure

```
STRUDL 'WSB I'
                'WSB I High Level Bridge 1 Box'
$ Created 10 Oct 2013 JH Clark'
$ 2D model of one box modelled along cg of section
$ Coordinates are station and elevation
$ Final condition, complete structure, all PT
$ PT as per VSL shop drawings
$ Cantilever PT modelled as truss members between offset joints
$ Continuity (+M) PT modelled as eccentric beam members
$ Revised 20 Oct Added column at Pier 16, seismic response spectra
(WSB design and AASHTO 2009 D)
$ Asymmetrical
UNIT FEET KIPS FAHRENHEIT
JOINT COORDINATES
$ Box section cgc
     9302.5
                                  $ CL brg Pier 15
 1
                 128.890
                            S
 2
     9315.5
                 129.670
     9332.0
 3
                 130.660
                 131.650
 4
     9348.5
 5
     9354.0
                 131.980
 6
     9365.0
                 132.640
 7
     9377.0
                 133.360
 8
     9385.5
                 133.870
9
     9396.5
                 134.530
10
     9413.0
                 135.520
11
     9429.5
                 136.500
12
     9446.0
                 137.428
13
     9462.5
                 138.181
14
     9479.0
                 138.839
15
     9495.5
                 139.401
16
     9512.0
                 139.864
17
     9528.5
                 139.687
18
     9545.0
                 139.458
     9561.5
19
                 139.184
20
     9578.0
                 138.844
21
     9594.5
                 138.425
2.2
     9611.0
                 137.938
23
     9627.5
                 137.322
24
     9644.0
                 136.637
25
     9666.5
                 135.568
                                  $ Face column Pier 16
26
     9675.0
                 135.858
                                  $ CL
                                           column Pier 16
                                  $ CL Footing Pier 16
261
     9675.0
                 -10.500
262
     9675.0
                  14.000
                                  $ End of bottom plastic hinge
263
     9675.0
                  45.074
264
     9675.0
                  76.149
265
                 107.223
                                  $ Start of upper plastic hinge
     9675.0
                                  $ Soffit at Pier 16
266
     9675.0
                 122.477
27
                                  $ Face column Pier 16
     9683.5
                 136.141
28
     9698.0
                 137.813
29
     9714.5
                 139.638
30
     9731.0
                 141.375
31
     9747.5
                 143.019
```

```
32
      9764.0
                  144.571
33
      9780.5
                  146.034
34
      9797.0
                  147.414
35
      9813.5
                  148.726
                  149.990
36
      9830.0
37
      9846.5
                  151.191
38
      9863.0
                  151.811
39
                  152.330
      9879.5
40
                  152.755
      9896.0
41
      9912.5
                  152.969
42
      9929.0
                  153.094
43
      9945.5
                  153.156
44
      9962.0
                  153.186
45
      9970.0
                  153.190
                              S
                                    $ CL Span 16
$ Cantilever PT
                  cgs
307
     9377.0
                  137.120
308
     9385.5
                  137.630
309
     9396.5
                  138.290
310
     9413.0
                  139.280
311
     9429.5
                  140.270
312
     9446.0
                  141.260
313
     9462.5
                  142.233
314
     9479.0
                  143.174
     9495.5
315
                  144.084
316
     9512.0
                  144.963
317
     9528.5
                  145.812
318
     9545.0
                  146.629
319
     9561.5
                  147.414
320
     9578.0
                  148.169
321
     9594.5
                  148.893
322
     9611.0
                  149.585
323
     9627.5
                  150.247
324
     9644.0
                  150.877
325
     9666.5
                  151.686
326
     9675.0
                  151.977
                                $ CL Pier 16
327
     9683.5
                  152.260
328
     9698.0
                  152.722
329
     9714.5
                  153.220
330
     9731.0
                  153.686
331
     9747.5
                  154.121
332
     9764.0
                  154.525
333
     9780.5
                  154.898
334
     9797.0
                  155.420
335
     9813.5
                  155.550
336
     9830.0
                  155.830
337
     9846.5
                  156.078
338
     9863.0
                  156.296
339
     9879.5
                  156.482
340
     9896.0
                  156.637
341
     9912.5
                  156.761
342
     9929.0
                  156.854
343
     9945.5
                  156.916
344
                  156.946
     9962.0
```

```
345 9970.0 156.950 $ CL Span 16
$
JOINT RELEASES
      FOR X MOM Z KFY 1.544E06
                                               $ 1/2 Pier 15 (32
Piles 24" hollow PSC 38.5' eff length)
  261 KFX 565.9E03 KFY 3.640E06 KMZ 878.2E06 $ 1/2 Pier 16 (28
Piles 36"x3/4" Conc filled 50' eff length)
   45 FOR X MOM Z $ A/Symmetrical loadings
TYPE PLANE TRUSS
MEMBER INCIDENCES
$ Cantilever PT
GENERATE 38 MEMBERS ID 307 INC 1 FROM 307 INC 1 TO 308 INC 1
DEFINE GROUP 'PT1' ADD MEMBERS 307 TO 344
TYPE PLANE FRAME
MEMBER INCIDENCES
$ Span 16 Column
 1601 261 262
 1602 262 263
 1603 263 264
 1604 264 265
 1605 265 266
 1606 266 25
 1607 266 27
$ Span 15 Positive moment PT
       1 14 $ Tendons B1 B3 B5 B7 B9 B11
 118
      1 12
                 $ Tendons B2 B4 B6 B8 B10 B12
$ Span 15 Negative moment PT
      1 9
 120
 121
         7
       1
$ Span 16 Positive moment PT
 122 38 45
             $ Tendons B1 B3 B5 B7 B9 B11 B13
 123 40 45
                 $ Tendons B2 B4 B6 B8 B10 B12 B14
$ Span 16 Negative moment PT
 124 44 45
$ Rigid links from cgc to cgs cantilever
GENERATE 39 MEMBERS ID 407 INC 1 FROM 7 INC 1 TO 307 INC 1
GENERATE 44 MEMBERS ID 201 INC 1 FROM 1 INC 1 TO 2 INC 1
DEFINE GROUP 'CONST' ADD MEMBERS 201 TO 209 242 TO 244
DEFINE GROUP 'PIER' ADD MEMBERS 225 226
DEFINE GROUP 'VAR'
                    ADD MEMBERS 210 TO 224 227 TO 241
DEFINE GROUP 'PT2' ADD MEMBERS 118 TO 119
                                                         $ 6 12x0.6"
DEFINE GROUP 'PT3' ADD MEMBERS 120 TO 121
                                                         $ 16 1 1/4"
DEFINE GROUP 'PT4' ADD MEMBERS 122 TO 123
                                                         $ 6 12x0.6"
DEFINE GROUP 'PT5' ADD MEMBERS 124
                                                         $ 8 1 1/4"
Bar
```

```
DEFINE GROUP 'PT_LINK' ADD MEMBERS 407 TO 445 1606 1607
DEFINE GROUP 'COLUMN PH' ADD MEMBERS 1601 1605
DEFINE GROUP 'COLUMN'
                           ADD MEMBERS 1602 TO 1604
$
MEMBER ECCENTRICITIES
$ Span 15 positive moment PT
  118 START Y -7.372 END Y -8.196
  119 START Y -7.372 END Y -7.868
$ Pier 15 Top EQ PT
  120 START Y
                3.885 END Y
                               3.885
  121 START Y
                3.885 END Y
$ Span 16 positive moment PT
  122 START Y -7.636 END Y -7.372
  123 START Y -7.313 END Y -7.372
 Span 16 CL Closure top PT
  124 START Y
               3.885 END Y
                               3.885
$ Column 16 ends
  1601 START Y 8.000
MEMBER PROPERTIES PRISMATIC
  GROUP 'CONST' AX 106.185 AY 32.634 IZ
                                             2217.8
                                                          4.260
                                                      YC
                                                                  YD
                                                                      12.000
  210
              AX
                  106.322
                            AY 32.670
                                         IZ
                                             2228.6
                                                      YC
                                                          4.265
                                                                  YD
                                                                       12.013
  211
              AX
                  106.564
                            AY 32.942
                                             2270.9
                                                          4.301
                                                                       12.113
                                         IZ
                                                      YC
                                                                  YD
  212
              AX
                  107.929
                            AY 33.634
                                         IZ
                                             2416.5
                                                      YC
                                                          4.442
                                                                  YD
                                                                       12.368
  213
              AX
                  110.452
                            AY 34.763
                                         IZ
                                             2684.3
                                                      YC
                                                          4.630
                                                                  YD
                                                                       12.783
  214
                  113.388
                            AY 36.332
                                             3051.3
                                                      YC
                                                          5.009
                                                                       13.360
              AX
                                         IZ
                                                                  YD
                  116.721
  215
                                             3537.3
                                                          5.391
                                                                      14.098
              AX
                            AY 38.339
                                         IZ
                                                      YC
                                                                  YD
                  124.872
                                             4374.4
  216
              AX
                            AY 40.785
                                         IZ
                                                      YC
                                                          6.112
                                                                  YD
                                                                       14.997
  217
              AX
                  137.951
                            AY 43.669
                                         IZ
                                             5722.0
                                                      YC
                                                          7.148
                                                                  YD
                                                                       16.058
  218
              AX
                  151.294
                            AY 46.993
                                         IZ
                                             7303.2
                                                      YC
                                                          8.201
                                                                  YD
                                                                       17.280
  219
                  168.484
                            AY 50.754
                                         IZ
                                             9178.4
                                                      YC
                                                          9.278
                                                                       18.663
              AX
                                                                  YD
  220
                  177.411
                            AY 54.955
                                         IZ 11429.7
                                                      YC 10.397
                                                                  YD
                                                                       20.208
              AX
  221
                  189.689
                            AY 59.594
                                         IZ 14134.0
                                                                  YD
              AX
                                                      YC 11.558
                                                                       21.914
                                                                       23.781
  222
                                         IZ 17396.5
              AX
                  201.816
                            AY 64.672
                                                      YC 12.786
                                                                  YD
  223
              AX
                  213.679
                            AY 70.188
                                         IZ 21327.2
                                                      YC 14.083
                                                                  YD
                                                                       25.809
  224
              AX
                  226.404
                            AY 77.320
                                         IZ 26801.4
                                                      YC 15.685
                                                                  YD
                                                                       28.432
  GROUP 'PIER' AX 233.531 AY 81.584
                                                                       30.000
                                         IZ 30856.1
                                                      YC 16.618
                                                                  YD
  227
              AX
                  227.197
                            AY 78.790
                                         IZ 28262.6
                                                      YC 16.014
                                                                  YD
                                                                       28.972
  228
                  219.654
                            AY 73.021
                                         IZ 23517.7
                                                      YC 14.745
                                                                       26.851
              AX
                                                                  YD
  229
                            AY 67.292
                                                                       24.744
              AX
                  208.858
                                         IZ 19270.0
                                                      YC 13.446
                                                                  YD
  230
              AX
                  197.481
                            AY 62.001
                                         IZ 15718.0
                                                      YC 12.206
                                                                  YD
                                                                       22.799
  231
              AX
                  185.260
                            AY 57.149
                                         IZ 12766.0
                                                      YC 11.028
                                                                  YD
                                                                       21.015
  232
                  173.370
                            AY 52.736
                                         IZ 10323.1
                                                      YC
                                                          9.909
                                                                  YD
                                                                       19.392
              AX
  233
              AX
                  160.840
                            AY 48.762
                                         IZ
                                             8304.2
                                                      YC
                                                          8.845
                                                                  YD
                                                                      17.931
  234
                  148.115
                            AY 45.226
                                             6627.9
                                                          7.826
              AX
                                         IZ
                                                      YC
                                                                  YD
                                                                       16.630
  235
                  135.282
                            AY 42.129
                                             5216.6
                                                          6.832
                                                                  YD
                                                                       15.491
              AX
                                         IZ
                                                      YC
  236
              AX
                  122.822
                            AY 39.470
                                         IZ
                                             4019.8
                                                      YC
                                                          5.864
                                                                  YD
                                                                       14.514
  237
              AX
                  114.964
                            AY 37.250
                                         IZ
                                             3270.1
                                                      YC
                                                          5.186
                                                                  YD
                                                                       13.698
  238
              AX
                  111.527
                            AY 35.469
                                         IZ
                                             2832.0
                                                      YC
                                                          4.819
                                                                  YD
                                                                      13.043
  239
              AX
                  108.517
                            AY 34.127
                                         IZ
                                             2504.1
                                                      YC
                                                          4.517
                                                                  YD
                                                                       12.549
                                                                       12.217
  240
                            AY 33.223
                                             2314.8
                                                          4.337
              AX
                  106.813
                                         IZ
                                                      YC
                                                                  YD
  241
              AX
                  106.399
                            AY 32.757
                                         IZ
                                             2242.1
                                                      YC
                                                          4.276
                                                                  YD
                                                                       12.045
$
```

```
GROUP 'COLUMN_PH' AX 150.25 AY 85.0 IZ 3277. YC 8.5 YD 17.0
     $ 60% I gross
  GROUP 'COLUMN'
                   AX 150.25 AY 85.0 IZ 5462. YC 8.5 YD 17.0
     $ 100% I gross 17.0' x 17.75', 2.5' Walls
                   AX 100.0 AY 100.0 IZ 1E04
  GROUP 'PT LINK'
    $ Rigid link cgc to cgs cantilever PT
$
UNITS INCH
MEMBER PROPERTIES PRISMATIC
                                                    $ 6 12x0.6" Diam
 GROUP 'PT2'
              ΑX
                  20.382 AY 1E-5 IZ 1E-5
                  19.945 AY 1E-5 IZ 1E-5
                                                    $ 16 1 1/4"
 GROUP 'PT3'
              AX
                                                                 Bar
                  15.624 AY 1E-5 IZ 1E-5
 GROUP 'PT4'
                                                    $ 6 12x0.6" Diam
              AX
 GROUP 'PT5'
              AX
                   9.973 AY 1E-5 IZ 1E-5
                                                    $ 8 1 1/4"
                                                                Bar
  307 308 AX 11.628
                     $
                         4 tendons 19x0.5" diam
          23.256 $
                      8 tendons 19x0.5" diam
  309
      AX
  310
          34.884
                    12 tendons 19x0.5" diam
      AX
                  $
          52.326 $ 18 tendons 19x0.5" diam
  311
      AX
  312
                  $ 24 tendons 19x0.5" diam
      ΑX
          69.768
  313
      AX 87.210
                  $ 30 tendons 19x0.5" diam
  314 AX 98.838 $ 34 tendons 19x0.5" diam
  315
      AX 116.280 $ 40 tendons 19x0.5" diam
  316
      AX 133.722 $ 46 te36ons 19x0.5" diam
  317 AX 151.164 $ 52 tendons 19x0.5" diam
     AX 168.606 $ 58 tendons 19x0.5" diam
  318
  319
      AX 186.048 $ 64 tendons 19x0.5" diam
  320
     AX 203.490 $ 70 tendons 19x0.5" diam
  321
      AX 215.118 $
                     74 tendons 19x0.5" diam
  322
      AX 232.560
                  $
                    80 tendons 19x0.5" diam
  323
      AX 250.002
                  $
                     86 tendons 19x0.5" diam
  324 TO 328 AX 273.258 $ 94 tendons 19x0.5" diam
  $
  329
      AX 255.816
                  $
                    88 tendons 19x0.5" diam
  330
      AX 238.374 $
                    82 tendons 19x0.5" diam
  331
      AX 220.932 $ 76 tendons 19x0.5" diam
  332
      AX 209.304
                  $
                     72 tendons 19x0.5" diam
  333
      AX 191.862 $ 66 tendons 19x0.5" diam
  334
      AX 174.420 $ 60 tendons 19x0.5" diam
      AX 156.978 $ 54 tendons 19x0.5" diam
  335
  336
      AX 139.528 $ 48 tendons 19x0.5" diam
      AX 122.094 $ 42 tendons 19x0.5" diam
  337
  338
      AX 104.652 $ 36 tendons 19x0.5" diam
  339
          93.024 $ 32 tendons 19x0.5" diam
      AX
          75.582 $ 26 tendons 19x0.5" diam
  340
      AX
  341
      AX
          58.140 $ 20 tendons 19x0.5" diam
  342
      AX
          40.698
                  $ 14 tendons 19x0.5" diam
  343
      AX
          29.070
                  $ 10 tendons 19x0.5" diam
  344
     AX
         17.442 $ 6 tendons 19x0.5" diam
UNITS FEET
CONSTANTS
$ 5000 psi concrete
    580000
 Ε
             GROUP LIST 'CONST'
                                 'PIER'
                                         'VAR'
    217000
             GROUP LIST 'CONST'
                                'PIER'
                                         'VAR'
```

```
GROUP LIST 'CONST' 'PIER'
 DEN 0.160
 CTE 5.5E-06 GROUP LIST 'CONST' 'PIER'
                                         'VAR'
$ 4000 psi concrete
 E 508000
             GROUP LIST 'COLUMN_PH' 'COLUMN'
 G 215000
             GROUP LIST 'COLUMN PH' 'COLUMN'
 DEN 0.160 GROUP LIST 'COLUMN_PH' 'COLUMN'
  CTE 5.5E-06 GROUP LIST 'COLUMN PH' 'COLUMN'
$ 0.5" Diam Lo-lax strand
 E 3888000 GROUP LIST 'PT1' 'PT2' 'PT4'
 DEN 0.335
              GROUP LIST 'PT1' 'PT2' 'PT4'
    $ Density difference between steel & concrete
 CTE 6.5E-06 GROUP LIST 'PT1' 'PT2' 'PT4'
 E 4176000 GROUP LIST 'PT3'
                                'PT5' $ 1 1/4" Diam D&W bars
 DEN 0.335
              GROUP LIST 'PT3' 'PT5'
    $ Density difference between steel & concrete
  CTE 6.5E-06 GROUP LIST 'PT3' 'PT5'
$ Rigid link cgc to cgs cantilever PT
 E 4E07 GROUP 'PT_LINK'
 DEN 1E-06 GROUP 'PT_LINK'
 G 4E07 GROUP 'PT_LINK'
 CTE 1E-09 GROUP 'PT_LINK'
$
$
SELF WEIGHT LOAD 'DC1' 'Member weight' DIR -Y FACTOR 1.00 ALL MEMBERS
LOAD 'DC2' 'Blisters, diaphragm, footing, seal, & OB dead load'
 JOINT LOADS
   1 FOR Y -216.3
                      $ End diaphragm 5.5' thick
  261 FOR Y -8204.0 $ Footing, seal & overburden
MEMBER LOADS
   225 226 FOR Y GLO UNIF W -41.0 LA 0.0 LB 8.5
                                                 $ Thickened top
slab and webs
   225 FOR Y GLO UNIF W -85.0 LA 3.5 LB 8.5
      $ Diaphragm + pier strut
    226 FOR Y GLO UNIF W -85.0 LA 3.5 LB 8.5
      $ Diaphragm + pier strut
    225 FOR Y GLO UNIF W -25.6 LA 0.0 LB 2.5
      $ Diaphragm between piers
   226 FOR Y GLO UNIF W -25.6 LA 6.0 LB 8.5
       $ Diaphragm between piers
    201 FOR Y GLO CONC P -39.3 L 8.25 $ Bottom EQ blister
    211 213 FOR Y GLO CONC P -26.5 L 2.76 $ Bottom blister
    238 240 FOR Y GLO CONC P -21.3 L 2.76 $ Bottom blister
   244 FOR Y GLO CONC P -6.3 L 4.00 $ Top closure blister
$
$
LOAD 'HS20T' 'HS20 Truck (1/2)at Joint 38'
 MEMBER LOADS
    236 FOR Y CONC P -4.0 L 11.0
    237 FOR Y CONC P -16.0 L 8.5
   238 FOR Y CONC P -16.0 L 8.0
LOAD 'UFX' '1000 kip horizontal load at top Pier 16'
```

```
JOINT 26 LOAD FOR X 1000
STORE RESPONSE SPECTRA ACCELERATION LOGARITHMIC VS PERIOD LOGARITHMIC
'WSBEO'
 DAMPING PERCENT 5.0 FACTOR 32.2
  0.32\ 0.001\ 0.32\ 0.03\ 0.70\ 0.12\ 0.70\ 0.53\ 0.14\ 2.70\ 0.01\ 10.0
END OF RESPONSE SPECTRUM
$
STORE RESPONSE SPECTRA ACCELERATION LOGARITHMIC VS PERIOD LOGARITHMIC
'E02009D'
 DAMPING PERCENT 5.0 FACTOR 32.2
  0.482 0.001 1.122 0.105 1.122 0.527 0.591 1.00 0.0591 10.0
END OF RESPONSE SPECTRUM
RESPONSE SPECTURM LOAD 'EQX500' 'Response spectrum translation X
direction'
    SUPPORT ACCELERATION
    TRANSLATION X 1.0 FILE 'WSBEQ'
END OF RESPONSE SPECTRUM LOAD
 DELETIONS
 INERTIA OF JOINTS LUMPED
   INERTIA OF JOINTS ALL
   MEMBER ADDED INERTIA ALL
 ADDITIONS
 INERTIA FROM LOADS 'DC1' 'DC2' 'DW1' 'DW2' ALL DOF
DAMPING PERCENTS 5.0000 15
EIGENVALUE PARAMETERS
 SOLVE USING GTLANCZOS
 NUMBER OF MODES 15
 PRINT MAXIMUM
 INITIAL STRESS LOADING OFF
END EIGENVALUE PARAMETERS
$
DYNAMIC ANALYSIS EIGENVALUES
LIST DYNAMIC MASS SUMMARY JOINTS EXISTING
LIST DYNAMIC PARTICIPATION FACTORS
LOAD LIST 'EOX500'
PERFORM RESPONSE SPECTRUM ANALYSIS
FORM STATIC LOAD 'XEQ' 'Longitudinal eq 15 modes' FROM RMS OF LOAD
'EQX500' FACTOR 1.0
LOAD LIST 'XEQ' 'HS20T' 'UFX'
STIFFNESS ANALYSIS
LIST DISP JOINTS 1 26 261 38 45
UNITS FEET
OUTPUT DEC 1
LIST SECTION FORCES MEMBER 237 238
```

A. 4. Principal Results

The principal results for the section where the cracking was observed are summarized in the following output spread sheet file. These are global forces and moments and do not include stresses from local effects such as tensions from positive moment post-tensioning as discussed in 2.9 above. Axial forces for cantilever post-tensioning in member 238 are shown as this is more realistic as far as stresses in the bottom slab at this location is concerned (see discussion in 2.10 above). Section properties based on dimensions at this location are shown.

Load	Factor	Nx	Vy	Mz			
Loau	racioi	[kips]	[kips]	[k-ft]			
On Cantilever	Structure						
DC	1.00	-837.9	-1,836.3	-90,481			
							for Mbr
CANT_PT	1.00	-24,889.0	606.1	114,654	Nx =	-21504.2	238
CNSTRCT	1.00	-25,726.9	-1,230.2	24,172			
On Symmetric							
DC1	1.00	-1,344.7	-1,907.1	1,303			
DC2	1.00	-33.1	-47.7	69			
DW1	1.00	-57.4	-87.5	-148			
DW2	1.00	-89.7	-136.7	-231			
BOUY	1.00	0.6	0.0	-3			
							for Mbr
CANT_PT	1.00	-23,906.6	554.9	-12,090	Nx =	-20170.5	238
CREEP	1.00	1,929.9	-44.0	2,824			
SPAN15PT	1.00	-239.3	9.3	1,362			
SPAN16PT	1.00	304.8	-9.7	18,322			
HS20T	1.00	-38.2	-14.5	615			
HS20U	1.00	-171.9	-65.1	544			
SHRINK	1.00	666.6	-18.3	2,389			
DIFFTC	1.00	-83.9	3.3	8,874			
DIFFTNA	1.00	-86.3	2.4	-178			
DC	1.00	-1,377.3	-1,954.8	1,369			
DW	1.00	-147.2	-224.2	-379			
PT_ALL	1.00	-23,841.1	554.5	7,594			
PERM	1.00	-25,365.0	-1,624.6	8,581			
DELTA_T	1.00	-170.2	5.7	8,695			
On Asymmetrical Structure							
HS20T	1.00	13.2	1.1	1,679			
UFX	1.00	140.5	151.2	16,690			
XEQ	1.00	2,968.6	2,294.3	208,793	A =	16,445	in^2

Resultant Loads at t = infinity						
CNSTRCT	0.20	-4,468.4	-246.0	4,834		
PERM	0.80	-20,292.0	-1,299.7	6,864		
SHRINK	1.00	666.6	-18.3	2,389		
CREEP	1.00	1,929.9	-44.0	2,824		
Σ1		-22,163.9	-1,608.0	16,911		
DELTA_T	1.00	-170.2	5.7	8,695		
Σ2		-22334.1	-1602.3	25,606		
HS20T	2.00	-50.1	-26.8	4,588		
Σ3		-22,213.9	-1,634.8	21,499		
EQX	0.15	445.3	344.1	31,319		
Σ4	-	-21,718.6	-1,263.9	48,230		

yt =	61.286	in
yb =	101.397	in
Iz =	65,986,289	in^4

Stresses [ksi]			
fct	fcb		
-1.536	0.214		
-1.644	0.375		
-1.590	0.297		
-1.858	0.812		

Notes:

- 1. Axial PT force taken as that existing in member 238 (on CL side of joint 38)
- 2. Signs are beam sign convention. Tension +
- 3. Segment weight is 22,34 kips at Jt 37 and 22.10 Kips at Jt 37
- 4. DW1 is 0.8 klf and DW2 is 1.25 klf
- 5. HS20T is 16.0k at 8.5 ft from Jt 37
- 6. Factor on EQX is based on observed displacement in 2001 EQ vs displacement in design EQ (500 yr MRI)