Solid Waste Facilities Master Plan
Technical Memorandum No. 6 - Modeling Cost Uncertainty

PREPARED FOR: Seattle Public Utilities
PREPARED BY: CH2M Hill
DATE: July 31, 2003

Introduction

This memorandum is one of a series of memoranda that document technical analysis conducted by the CH2M HILL consultant team in support of the Seattle Public Utility Solid Waste Facilities Master Plan. The consultant team includes Herrera Environmental Consultants, Ecodata, MainLine Management, Triangle Associates, and Environmental Planning Consultants. The memoranda that document the analysis are as follows:

1. Decision Process
2. Design Criteria and Conceptual Layouts
3. Peak Flows and Waste Stream Analysis
4. Rail Cost Modeling
5. Cost Modeling in Support of SPU’s System Cost Model
6. Modeling Cost Uncertainty

This memorandum includes a discussion of how risks and uncertainties were considered when understanding the cost of each option.

Influence Diagram

At Workshop 4, the CH2M HILL team presented a decision analysis approach to capture risk and uncertainty in the evaluation of system costs for each option. This discussion followed the approach shown in the attached document titled Approach to Capture Cost Risks (file: Approach to Cost Risks.ppt). The method uses decision trees to identify key uncertainties and the way that those uncertainties may influence costs.

CH2M Hill staff led the group through an exercise to develop an initial influence diagram. The influence diagram, shown in the second slide of the attached document Decision Tree Assumptions (file: Decision Trees.ppt), graphically indicates how uncertainties affect each other and affect cost. For example, the uncertainty (shown as a green bubble in slide 2) in
the rail contract price is influenced by whether or not an intermodal option is selected and also by whether King County participates in the rail contract.

An influence diagram is actually the top layer of a mathematical model used to calculate a probabilistic distribution of total costs. Underlying the influence diagram is a series of interconnected decision trees shown in subsequent slides. These trees depict the potential outcomes associated with each event or cost uncertainty. Slide 10 shows the sub-tree that depicts the influences, possible outcomes and corresponding probabilities for the rail contract price. The structure, values and probabilities of each series of decision trees was developed and refined by SPU and CH2M Hill project team members in a half-day workshop on May 6, 2003. Additional edits were made and subsequently reviewed by the full team.

Decision Trees and Risk Profiles

The influence diagram and underlying decision tree model was built using the Decision Programming Language (DPL) software product. In a “run” of the model, DPL identifies each possible combination of event / cost outcomes and sends the necessary cost assumption to the SPU's cost model (a series of linked Excel worksheets). The cost model then calculates the total cost based on the inputs received from DPL. Each permutation of events and the associated costs are captured by DPL and plotted on a risk profile as shown in the attached document Decision Analysis Results (file: Risk Profiles.ppt). Because there are over a dozen uncertainties for each option, the total number of discrete possible cost outcomes is in the thousands (exponential expansion of the decision trees). The DPL software constructs risk profiles by plotting all total cost outcomes, along with their corresponding probabilities, beginning with the lowest cost outcome. (X-axis = cost, Y-axis = cumulative probability). Subsequent points are plotted by moving along the X-axis to the cost of the next lowest cost outcome. Then moving up the cumulative probability axis by adding the next event's probability. Hence, the resulting curve is a “smooth” risk profile.

For each option, the risk profile illustrates several financial parameters of interest to SPU:

- The range of possible cost outcomes for each proposed option.
- The chance that a given level of cost will be exceeded, and by how much.
- The expected value, a measure of cost weighted by the range of possible outcomes and their respective probabilities, often used to represent cost adjusted for risk.

For each option, the 10th, 90th, expected value, and base estimate (result from the SPU cost model with baseline assumptions) is shown on the risk profile and summarized in the third slide. The 10th percentile is the cost level where you’d have a 10 percent chance of being at or below (similar for the 90th percentile). Therefore the difference between the 10th and 90th percentile is an indicator of realistic project cost risk. There is an 80% chance total option costs will fall between those two points.

For example, slide 6 shows the risk profile for Option 0. The vertical line at $640 million denotes the expected value. For reference, the Base estimate is shown ($626 million). Since costs are usually more likely to escalate than decline, the base estimate is often slightly
lower than the expected value. The 90th percentile can be found by locating the point where
the risk profile crosses the 90th percent line on the Y-axis (cumulative probability) - then
reading cost from the X-axis. So for option 0, there is a 90% chance total costs will be at or
below $742 million. Similarly, there is only a 10% chance costs will be at or below $553
million. The difference between the 10th and 90th is therefore $189 million ($742m - $553m).

Sensitivity Analysis

A sensitivity analysis was performed to identify which uncertainties drive costs, and to
understand the impact of the team’s estimations of probabilities and outcomes. The relative
effects of uncertainties were compared by adjusting each uncertainty across its possible
range of outcomes while keeping all others constant at their most likely values. The
resulting variance in the total costs is shown by the horizontally bar on the tornado
diagrams in slides 7, 9, 11 and 13 of the Decision Analysis Results document. Uncertainties
are listed from top to bottom in decreasing effect on total costs. The horizontal bars therefor
become narrower towards the bottom of the diagram and resemble the shape of a tornado.

Slide 7 shows the tornado diagram for Option 0. The second horizontal bar from the top
shows that when the residential recycling rate is varied from a low possible outcome (the
city only gets one quarter to goal) to a high possible outcome (city meets goal), total cost
varies from $563 million to $669 million. Thus the relative impact of this uncertainty is $106
million ($669m - $563m). A summary of the impact of the three most influential
uncertainties is shown on the fourth slide.

Findings

The Decision Analysis Results document provides a summary of conclusions drawn from
the decision analysis. Slide 3 summarizes the primary findings based on model runs for
Options 0, 5, 8, and 11.

• Non-intermodal options (0 and 8) have the greatest cost uncertainty (high spread
 between their 10th and 90th percentiles). [See slide 4].

• Growth in the city’s waste stream and recycling rate has the greatest impact on total
costs. [See slide 5].

• Intermodal options are much less sensitive to variations in city waste and recycling
growth rates. [See slide 5].

• Construction cost uncertainty is lowest with Options 0 and 8 [See slide 5].

• In all options, the expected value of costs is 5-7 percent greater than our baseline cost
estimates. This means that there is more upside risk than downside opportunity in the
estimates.
SPU SW Facilities Masterplan

Approach to Capture Cost Risk

Step 1: Identify Cost Drivers and Risks

Influence Diagrams illustrate conditional relationships between decisions, uncertainties, & outcomes.

Tools Used
- Whiteboard
- DPL software

Team Interaction
- Frame on teleconference
- Refine in workshop

KEY
- Uncertainty
- Cost Outcomes
- Decision
Step 2: Potential Cost Outcomes and Probabilities Tool: Decision Tree

For each possible outcome of a decision, Decision Trees show:
- **The Pathway** - How did this happen?
- **The Probability** - How likely is this?
- **The Cost** - How much will this outcome cost?

Tools Used
- DPL software

Interaction
- Workshop and/or questionnaires to define branch outcomes and estimate probabilities and costs

The influence diagram is actually the top layer of a mathematical model. The underlying model is a series of interconnected decision trees. In our simplified example *only possible one tree is shown* (above).

Calculating the Decision Tree [Example Tree]

The influence diagram is actually the top layer of a mathematical model. The underlying model is a series of interconnected decision trees. In our simplified example *only possible one tree is shown* (see below).

Costs (NVP):
- No Additional Facilities = $0M
- Facility Expansion = $10M
- New Facilities Needed = $30M

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prob</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Additional Facilities</td>
<td>100%</td>
<td>$0 M</td>
</tr>
<tr>
<td>Facility Expansion</td>
<td>20%</td>
<td>$10 M</td>
</tr>
<tr>
<td>New Facilities Needed</td>
<td>80%</td>
<td>$30 M</td>
</tr>
</tbody>
</table>

Prob of Outcome = 0.7 * 1.0 = 0.7
Cost of Outcome = $0

Prob of Outcome = 0.3 * 0.2 = 0.06
Cost of Outcome = $10M

Prob of Outcome = 0.3 * 0.8 = 0.24
Cost of Outcome = $30M
Using DPL Software, complex trees with thousands of costs outcomes can be modeled. The result is a “smoother” profile shown below.

Step 3 Rank Uncertainties Driving Costs; Tool - Tornado Diagram

Tornado Diagrams help focus analysis and data needs.

* Tornado Diagrams can dramatically change initial assessment of critical issues, and save information collection costs.
Cost Drivers and Uncertainties Affecting NPV of Options

The Influence Diagram below illustrates conditional relationships between decisions, uncertainties, & outcomes.
Uncertainty Branch - Waste Stream Growth Rate

![Diagram showing probability distribution for Growth in Waste Stream]

Note: Values broken out by waste stream types on subsequent slides

Uncertainty Branch - Commercial Waste Growth Rate

![Diagram showing outcome distribution for Growth in City Waste Stream]

Note: Branch Probabilities on previous slides
Uncertainty Branch - Residential Waste Growth Rate

Note: Branch Probabilities on previous slides

Uncertainty Branch - Self Haul Net YW Growth Rate

Note: Branch Probabilities on previous slides
Uncertainty Branch - Res/ Com Rec. Rate

Probability

One quarter to goal \(.3 \)
Halfway to goal \(.5 \)
Reach Goal \(.2 \)

Note: Values broken out on subsequent slides

Uncertainty Branch - Commercial Recycling Rate

Outcome (%)

Res/ Com Recycling Rate

One quarter to goal \(.435 \)
Halfway to goal \(.5 \)
Reach Goal \(.63 \)

Note: Branch Probabilities on previous slides
Uncertainty Branch - Residential Recycling Rate

Note: Branch Probabilities on previous slides

Uncertainty Branch - Rail Price

<table>
<thead>
<tr>
<th>Scenario/Probability</th>
<th>Outcome ($/ton.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Merchandise Train</td>
<td>16.80</td>
</tr>
<tr>
<td>P = 20%</td>
<td></td>
</tr>
<tr>
<td>S2 - SPU waste w/others</td>
<td>14.70</td>
</tr>
<tr>
<td>P = 80%</td>
<td></td>
</tr>
<tr>
<td>S3 - SPU Waste w/KC</td>
<td>13.40</td>
</tr>
<tr>
<td>P = 70%</td>
<td></td>
</tr>
<tr>
<td>S4 SPU/KC + shared loading</td>
<td>12.90</td>
</tr>
<tr>
<td>P = 30%</td>
<td></td>
</tr>
<tr>
<td>Intermodal</td>
<td>N/A</td>
</tr>
<tr>
<td>Without King County (Rail)</td>
<td>16.80</td>
</tr>
<tr>
<td>P = 60%</td>
<td></td>
</tr>
<tr>
<td>With King County (Rail)</td>
<td>14.70</td>
</tr>
<tr>
<td>P = 40%</td>
<td></td>
</tr>
<tr>
<td>No Intermodal</td>
<td></td>
</tr>
</tbody>
</table>
Uncertainty Branch - Disposal Savings with Intermodal

<table>
<thead>
<tr>
<th>Scenario/Probability</th>
<th>Outcome ($/savings/ton.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without King County</td>
<td></td>
</tr>
<tr>
<td>P = 50%</td>
<td></td>
</tr>
<tr>
<td>Yes: P = 40%</td>
<td>-1</td>
</tr>
<tr>
<td>No: P = 60%</td>
<td>0</td>
</tr>
<tr>
<td>With King County</td>
<td></td>
</tr>
<tr>
<td>P = 50%</td>
<td></td>
</tr>
<tr>
<td>Yes: P = 40%</td>
<td>-2</td>
</tr>
<tr>
<td>No: P = 60%</td>
<td>0</td>
</tr>
</tbody>
</table>

Uncertainty Branch - Disposal Savings w/o Intermodal

<table>
<thead>
<tr>
<th>Scenario/Probability</th>
<th>Outcome ($/ton.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without King County</td>
<td></td>
</tr>
<tr>
<td>P = 50%</td>
<td></td>
</tr>
<tr>
<td>Low: P = 20%</td>
<td>-1</td>
</tr>
<tr>
<td>Medium: P = 50%</td>
<td>-2</td>
</tr>
<tr>
<td>High: P = 30%</td>
<td>-3</td>
</tr>
<tr>
<td>With King County</td>
<td></td>
</tr>
<tr>
<td>P = 50%</td>
<td></td>
</tr>
<tr>
<td>Low: P = 20%</td>
<td>-2</td>
</tr>
<tr>
<td>Medium: P = 50%</td>
<td>-3</td>
</tr>
<tr>
<td>High: P = 30%</td>
<td>-4</td>
</tr>
</tbody>
</table>
Uncertainty Branch - Recycling Revenues

<table>
<thead>
<tr>
<th>Probability</th>
<th>Outcome (factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.2</td>
</tr>
<tr>
<td>Medium</td>
<td>0.6</td>
</tr>
<tr>
<td>High</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: Numbers on left represent branch probability. Numbers on right represent value (factor: $1 = 100\%$ of base estimate).

Uncertainty Branch - Labor Efficiency Factor

<table>
<thead>
<tr>
<th>Probability</th>
<th>Outcome (factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0.7</td>
</tr>
<tr>
<td>High</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Note: Numbers on left represent branch probability. Numbers on right represent value (efficiency factor).
Uncertainty Branch: Option 0
Construction Costs

Note: Assign probabilities and factors (factor = 1 = 100% of base estimate) for each facility for each option.

Prob. Factor
Low = 5% 0.7
Med = 90% 1.0
High = 5% 1.5

SRDS & NRDS

Note: Assign probabilities and factors (factor = 1 = 100% of base estimate) for each facility for each option.

Uncertainty Branch: Option 8
Construction Costs

Prob. Factor
Low = 10% 0.7
Med = 80% 1.0
High = 10% 1.5

SRDS & NRDS
Uncertainty Branch: Options 9-11
Construction Costs

SRDS, NRDS & IM

Prob. Factor
Low = 10% 0.7
Med = 80% 1.0
High = 10% 1.5

Note: Assign probabilities and factors (factor = 1 = 100% of base estimate) for each facility for each option.
Decision Analysis Results

SPU Solid Waste
Facilities Masterplan

July 27, 2003
Dan Pitzler and Jeff Haight - CH2M HILL

Cost Drivers and Uncertainties Affecting NPV of Options

The Influence Diagram below illustrates conditional relationships between decisions, uncertainties, & outcomes.
Conclusions

• Non-intermodal options (0 and 8) have the greatest cost uncertainty (high spread between their 10th and 90th percentiles).
• Growth in the city’s waste stream and recycling rate changes have the greatest impact on total costs.
• Intermodal options are much less sensitive to variations in city waste and recycling growth rates.
• Construction cost uncertainty is lowest with Options 0 and 8.
• In all options, the expected value of costs is 5-7 percent greater than our baseline cost estimates. This means that there is more upside risk than downside opportunity in the estimates.

<table>
<thead>
<tr>
<th>Cost Uncertainty Summary ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Option 0</td>
</tr>
<tr>
<td>Option 5</td>
</tr>
<tr>
<td>Option 8</td>
</tr>
<tr>
<td>Option 11</td>
</tr>
</tbody>
</table>
Impact of Key Uncertainties ($M)

Values shown reflect the impact on total cost when an uncertainty is varied across its range of outcomes. All other uncertainties are held constant at their base states.

<table>
<thead>
<tr>
<th>Waste Stream Growth</th>
<th>Recycling Rate</th>
<th>Construction Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 0</td>
<td>189</td>
<td>106</td>
</tr>
<tr>
<td>Option 5</td>
<td>129</td>
<td>73</td>
</tr>
<tr>
<td>Option 8</td>
<td>192</td>
<td>106</td>
</tr>
<tr>
<td>Option 11</td>
<td>135</td>
<td>73</td>
</tr>
</tbody>
</table>

COST RISK PROFILE
Probabilistic Range of Option 0 Cost

- Expected Value = $640M
- 90th Percentile = $742M
- 10th Percentile = $553M
- Base Case = $626M
A “Base Case” Tornado Diagram evaluates the impact of each uncertainty by varying it from its best to worst state, while fixing all other uncertainties to their base (most likely) state. The width of the bar shows the impact on total option cost.

COST RISK PROFILE

Probabilistic Range of Option 5 Cost

Expected Value = $810M

90th Percentile = $893M

10th Percentile = $744M

Base Case = $796M
A “Base Case” Tornado Diagram evaluates the impact of each uncertainty by varying it from its best to worst state, while fixing all other uncertainties to their base (most likely) state. The width of the bar shows the impact on total option cost.

COST RISK PROFILE

Probabilistic Range of Option 8 Cost

- **Expected Value** = $665M
- **90th Percentile** = $769M
- **10th Percentile** = $574M
- **Base Case** = $649M
A “Base Case” Tornado Diagram evaluates the impact of each uncertainty by varying it from its best to worst state, while fixing all other uncertainties to their base (most likely) state. The width of the bar shows the impact on total option cost.
A “Base Case” Tornado Diagram evaluates the impact of each uncertainty by varying it from its best to worst state, while fixing all other uncertainties to their base (most likely) state. The width of the bar shows the impact on total option cost.