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Executive Summary 
There are approximately 14,000 acres of old-growth forest in the Cedar River Municipal 

Watershed (CRMW), which is defined here as native, unharvested conifer forest greater than 190 

years of age. This report discusses an ecological classification of old-growth forest in the 

CRMW that incorporates structural attributes for the purpose of determining habitat value for 

old-growth dependent species.  Such a classification is a commitment of the Cedar River 

Watershed Habitat Conservation Plan (HCP) Watershed Landscape and Habitat Research and 

Monitoring Program. 

The objectives of this work conducted in 2012 were to (1) compile and review previous efforts of 

classifying old-growth in the CRMW; (2) to extend these efforts by incorporating information 

and classification tools that have been recently developed; and (3) based on this information, to 

provide an old-growth classification that fulfills the HCP objective.  

Previous Old-Growth Classification Efforts 

There were three previous efforts that indirectly or directly addressed classification of old growth 

in the CRMW.  The first was conducted by Lucinda Tear (2006), a consulting statistician, who 

used a multivariate statistical approach to analyze data from all of the Permanent Sampling Plots 

(PSPs), including those in old-growth forest.  The second was by Bill Richards (2007), an 

Ecosystems staff member of the SPU Watershed Services Division, who focused on assessing 

habitat suitability of old-growth areas for marbled murrelet and northern spotted-owl.  A third 

effort was that of Van Kane, then a graduate student at the College of the Environment at the 

University of Washington, who developed metrics of forest structure from LiDAR data to 

classify forests across the watershed, including old-growth areas.  Kane published three journal 

articles from this work (Kane et al. 2010a, 2010b, 2011). 

2012 Old-Growth Classification Effort 

The 2012 classification effort took two approaches:  The first was to use the PSP data to evaluate 

variation in two old-growth structural indices; the second was to map variation in old-growth 

structure by applying LiDAR-derived structural metrics developed by Kane across old-growth 

areas in the CRMW.   

Analysis of PSP Data Using Indices of Old-Growth Habitat Structure 

Two indices of old growth were applied to classifying PSPs: one developed by Acker et al. 

(1998) to describe the development of old-growth structural characteristics in Douglas-fir 

dominated forests and the second developed by Washington Department of Natural Resources 

(WDNR 2005) as a basis for identifying old-growth areas in western Washington conifer forests.  

Both indices are based on reference values for structural characteristics of west-side Oregon and 
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Washington Douglas-fir dominated old-growth forests published in Spies and Franklin (1991).  

The Acker (1998) index of old growth is based on four structural variables:  (1) standard 

deviation of tree DBH (diameter at breast height), (2) density of trees > 100 cm DBH, (3) mean 

tree DBH, and (4) density of all trees.  The WDNR index uses five structural variables to derive 

a score ranging from 0 to 100 to determine the degree to which stands have old-growth 

characteristics: density of trees > 100 cm, density of large standing dead trees, volume of down 

woody debris, tree size diversity, and stand age.  

The scores for the two indices were highly correlated and indicated that most CRMW old growth 

is generally less well-developed structurally than typical Douglas-fir old growth in the western 

Cascades, which is not surprising since most old-growth stands in the CRMW are in the silver fir 

zone at higher elevations than most Douglas-fir dominated forests.  However, there were some 

PSPs in old growth that had structural characteristics comparable to the structurally most 

developed reference stands reported in Spies and Franklin (1991).   

LiDAR Classification and Mapping of Old-Growth Habitat 

Characterization of old-growth forest using the PSP data and the two structural indices is useful 

for describing the variation in CRMW old growth, but it does not show how that variation is 

distributed across old-growth areas.  To produce such a map, a raster data set of 30-m pixels of 

LiDAR
1
 structural classes that Van Kane developed for the entire watershed was applied just to 

old-growth areas.  The LiDAR structural classes were based on LiDAR-derived variables for 

canopy complexity, height, and density.  The derivation of the classification by Kane was first 

replicated across the entire watershed and then replicated using just pixels from old-growth areas 

to validate its representation of structural variation in old growth alone. From the Kane 

classification, a set of simplified structural classes were identified that were specific to old-

growth forest and used to develop a map that emphasized old-growth structural variation. 

This map showed that there was no watershed-scale pattern of structural complexity in old 

growth.  Rather, different levels of structural complexity occur in mosaics in most old-growth 

patches, indicating that CRMW old-growth habitat is variable even at small scales.  Taking the 

watershed as a whole, 57% of old-growth habitat was in the high to highest complexity classes 

and 26% in the moderate complexity class.  Among old-growth patches there was variation in the 

proportion of different complexity classes.  The heterogeneity of old-growth structural 

complexity on a stand scale evident from LiDAR data suggests that Richards’ approach in 

mapping suitability of marbled murrelet and northern spotted owl habitat using polygon classes 

based on topography, aspect, and soils does not capture the variability in habitat quality that 

stems from smaller scale variation in structure.  The nine structural classes ranked based on 

complexity and on height were strongly correlated to both the ranked WDNR and Acker index  

                                                 
1
 LiDAR stands for “Light Detection and Radar” and is a remote sensing technology that measures distance from the 

sensor to the object (e.g., ground, forest canopy) by illuminating a target with a laser and analyzing the reflected 

light. 
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(Spearman’s rank correlation coefficient  = 0.556 and 0.569, respectively, with P < 0.001).  

However, the LiDAR classification did not appear to resolve areas of old-growth forest known to 

have exceptionally high complexity from other areas of high complexity.   

Relating Old Growth Indices and LiDAR Classification to Wildlife Habitat Value 

    Relating the WDNR and Acker  indices of old-growth structure to habitat suitability classes of 

PSPs identified by Richards showed no relationship to northern spotted owl habitat suitability 

but showed some correlation to marbled murrelet habitat suitability. With respect to the 

relationship between the three LiDAR structural variables and habitat suitability, there was no 

evident trend of canopy complexity versus suitability class for northern spotted owl, but there 

was evidence of such a trend for marbled murrelet.  There was a significant relationship between 

canopy height and both northern spotted owl and marbled murrelet habitat suitability class.  This 

very limited analysis suggests there may be some utility in using the distribution of Kane 

structural complexity classes as a way to differentiate habitat suitability for marbled murrelet, but 

not as much for northern spotted owl. Rather than applying the two old-growth indices and  the 

maps of LiDAR derived metrics to identifying habitat suitability for individual species, a more 

appropriate use is likely to be in differentiating habitat value more generally for old-growth 

dependent species. 
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Background and Objectives 
Completing an ecological classification of old-growth forest is a component of the Cedar River 

Watershed Habitat Conservation Plan (CRW HCP) Watershed Landscape and Habitat Research and 

Monitoring Program. As stated in the HCP, this classification is intended to incorporate structural 

attributes for the purpose of determining habitat value for old-growth dependent species:  

This new classification will not be based solely on chronological age, but will include 

structural attribute characteristics such as snag density, large woody debris density, and 

horizontal and vertical complexity.  The purpose of more specifically classifying old-growth 

forest is to determine the relative habitat value of the remaining late-successional and old-

growth forests in the watershed for both selected individual species and groups of species of 

concern, especially those threatened and endangered species dependent on old-growth 

ecosystems, such as marbled murrelets and spotted owls. (HCP, p. 4.5-33) 

There are approximately 14,000 acres of what is typically referred to as old-growth forest in the 

Cedar River Municipal Watershed (CRMW).  For purposes of the HCP and for this analysis, old 

growth is defined as native, unharvested conifer forest greater than 190 years of age.  Almost all old 

growth in the CRMW is in the higher elevation, more mountainous, upper watershed (i.e., upstream 

of Cedar Falls).  Since remaining old growth in the watershed has yet to be harvested, it represents a 

biased sample of the pre-settlement conifer forest of the watershed.  It is a biased sample due to its 

distribution at higher elevations and largely hillslope topographic position, excluding almost all of 

the most productive forests occupying lower elevations and valley bottoms (i.e., mostly lower 

watershed downstream of Cedar Falls, but also valley bottoms upstream of Cedar Falls).  Thus, the 

old-growth forest now present in the watershed is likely a smaller-statured remnant of what was left 

unharvested toward the end of the 20
th

 century.  Nonetheless, these remaining old-growth stands 

provide some of the highest value habitat in the watershed for a variety of old-growth dependent 

flora and fauna species and provide important reference conditions for restoration actions.  

Since the HCP was approved in April 2000, there have been previous efforts that directly or 

indirectly contributed to classifying old-growth forest in the CRMW, and the work documented 

here is a continuation of those efforts.  The objectives of this work conducted in 2012 were to (1) 

compile and review the previous efforts of classifying old-growth in the CRMW; (2) to extend these 

efforts by incorporating new information and classification tools that have been developed more 

recently; (3) based on this information, to provide an old-growth classification that fulfils the HCP 

objective stated above; and (4) develop materials that can be used to describe variation in CRMW 

old-forest, such as on the CRMW HCP website.    

Previous Efforts 
There have been three previous efforts that have addressed classification of old growth in the 

CRMW.  The first was conducted by Lucinda Tear (2006), a consulting statistician, who used a 
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multivariate statistical approach to analyze data from all of the Permanent Sampling Plots (PSPs)
 2
, 

including those in old-growth forest.  The second was by Bill Richards (2007), an Ecosystems staff 

member of the SPU Watershed Services Division, who focused on assessing habitat suitability of 

old-growth areas for marbled murrelet and spotted-owl.  A third effort was that of Van Kane 

(2010a, 2010b, 2011), then a graduate student at the College of the Environment at the University of 

Washington, who developed metrics of forest structure from LiDAR data to classify forests across 

the watershed, including old-growth areas.  

Analysis of PSP Data 
The analysis conducted by Lucinda Tear was directed at identifying patterns of vegetation and 

physical variables in the data from 113 PSP plots distributed across the watershed in both second 

growth and old-growth forest.  The analysis and report were never finalized, but it appears from the 

documentation available that she largely completed her analysis (Tear 2006).  As stated in her 

unfinished draft report:  

The objectives of this data analysis project were to compile and describe the currently available 

PSP data, to stratify the dataset for growth analysis, and to compare the strata with a regional 

classification system based on vegetation zones and plant associations. 

Tear’s effort was divided into three tasks: (1) review of data and classification systems, (2) PSP data 

exploration and plot stratification, and (3) comparing classification systems. The analysis included 

all age classes represented in the PSP data set, which was simplified as being either second- or old-

growth forest for the purpose of examining results of multivariate statistical analysis.   

In Task 1, Tear summarized useful information about the characteristics of PSPs, including old 

growth.  Old-growth PSPs range in elevation from 2,252 ft to 4,469 ft above sea level and primarily 

occured on midslopes (25 of 37 plots) as opposed to the lower or upper third of slopes, ridge tops, 

or flatter land forms (benches, planes, or valley bottoms).  The old-growth PSPs tend to be in lower 

quality sites with respect to soils, with 23 plots in site classes 4 and 5.   Nineteen of the old-growth 

PSPs are in the Abies amabilis (Pacific silver fir) forest zone (elev. 2,800 to 4,000 ft), 16 are in the 

Tsuga heterophylla (western hemlock) zone (< 2,800 ft), and three in the high elevation Tsuga 

mertensiana (mountain hemlock) zone (> 4,000 ft). 

The multivariate analysis in Task 2 derived a variety of ordinations, primarily using Principle 

Components Analysis (PCA) to examine gradients among various combinations of physical and 

biological variables.  Old-growth PSPs tended to be on steeper slopes and at higher elevations 

compared to second-growth forests, which is likely a result of the pattern of harvest history (i.e., 

forests on lower slopes were generally harvested before those on higher, steeper slopes).  In the 

ordinations of tree basal area (in which Tear used PCA and two other ordination techniques), the 

axis accounting for the most variation found that the old-growth PSPs represented a species-

                                                 
2
 A system of 115 upland habitat Permanent Sampling Plots were established throughout the CRMW from 2003 through 

2005, 37 of which were located in old-growth forest.  Locations of plots in both old-growth and second-growth forest 

were selected randomly from a set of evenly spaced grid points.     
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composition gradient from dominance by Douglas-fir to that of silver fir, with old-growth PSPs 

falling mostly in the middle to silver fir end of the gradient.   

The cluster analysis identified four groups, which varied by the number of old-growth (OG) PSPs in 

each: one dominated by western hemlock (7 OG PSPs), a second transitional between western 

hemlock and silver fir (12 OG PSPs), a third dominated by Douglas-fir (5 OG PSPs), and a fourth 

dominated by silver fir (14 OG PSPs).   

In general, the Lucinda Tear analysis does not directly contribute much to the classification of the 

old-growth PSPs with respect to ecological characteristics.  It primarily is useful in confirming the 

impression that old-growth relative to second-growth PSPs primarily represent  higher elevation 

forests having lower site index  that tend to have a higher abundance of western hemlock and silver 

fir.  However, the multivariate analysis indicates that there is considerable variation among the old-

growth PSP plots, suggesting that a classification based on structural features might also show a 

range of variation. 

Mapping of Habitat Suitability for Marbled Murrelet and Spotted Owl  
The classification conducted by Bill Richards (Richards 2007) was intended to classify old-growth 

areas primarily for the purpose of identifying potential habitat for marbled murrelet 

(Brachyramphus marmoratus) and northern spotted owl (Strix occidentalis caurina).  Richards 

utilized GIS data to identify polygons within old-growth areas according to criteria of site class, 

aspect, and elevation.  He then used data from the 37 PSP plots located in old-growth stands to 

classify each of these derived polygons.   

For northern spotted owl, Richards used a habitat classification of suitable nesting, foraging, and 

dispersal habitat, which was a simplified version of northern spotted owl habitat types used by the 

Washington Department of Natural Resources Forest Practice Rules (WAC 222-16-085).  Habitat 

suitability was based on tree size/density and snag size/density and resulted in classifying each PSP 

into one of the three northern spotted owl habitat types.  Since the 37 PSPs represented only 24 of 

the 50 polygon types (that were based on site class, aspect, and elevation), the PSP sample set was 

not sufficient to classify each of the polygon types, although unrepresented polygon types were only 

a small fraction of the total old-growth forest area.
3
  Richards took a conservative approach and 

classified each polygon according to the best PSP habitat found in each polygon, which provided a 

guide to focus future survey efforts.  This classification resulted in a map of northern spotted owl 

habitat suitability for old-growth polygons, which included 8,136 acres of nesting habitat (I type), 

5,349 acres as foraging habitat (II type), 0 acres as dispersal habitat (III type), and 660 acres as non-

suitable habitat (N type). 

                                                 
3
 Only five percent of old- growth (704 acres) was in polygon types not represented by PSPs, mostly because site class 

was unknown.  These polygons were assigned suitability based on similarity to represented polygon types with respect 

to known attributes. 
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Richards applied a similar approach to mapping marbled murrelet suitable habitat.  Based on the 

number of large limbs (> 8 inch diameter at trunk); tree size, density, and species; and distance from 

marine habitat, he defined three classes of marbled murrelet habitat suitability (high, medium, and 

low) and assigned each PSP to one of the three classes. He classified each old-growth polygon by 

the average marbled murrelet habitat suitability found in each polygon. He produced a map of old-

growth forest classified by marbled murrelet suitability class, and found 0, 5,134, and 9,012 acres, 

respectively for high, medium, and low marbled murrelet habitat suitability in CRMW old-growth 

areas.  

 

Characterization and Mapping of Forest Structure from LiDAR Data 
Van Kane’s dissertation research used LiDAR (Light Detection and Ranging) and PSP data from 

the CRMW to examine how remotely sensed LiDAR data could be used for characterizing forest 

structure on a landscape scale.  He published three papers on this work:   

 Kane et al. 2010a examined how field data (from PSPs) compared to LiDAR-based measures of 

stand structural complexity.  He evaluated six LiDAR-based metrics (mean height, standard 

deviation [SD] of height, canopy density, 95
th

 percentile canopy height, coefficient of variation 

of height, and rumple [ratio of canopy outer surface area to ground surface area]) and four field 

metrics (mean diameter at breast height [DBH], SD of DBH, tree density, and trees > 100 cm 

DBH density).  He found generally good correlation between field and LiDAR metrics and 

between PCA ordinations of those metrics.  He chose three variables that best characterized 

different aspects of forest structure: 95th percentile height as a height variable, rumple as a 

canopy structural complexity variable, and canopy density as a measure of canopy gaps and leaf 

area. 

 Using the three LiDAR variables above, Kane et al. (2010b) conducted a hierarchical clustering 

analysis and PCA ordination of all the PSPs to examine canopy structural complexity across 

forest ages and elevations.  He identified two precanopy closure classes, and six postcanopy 

closure classes.
4
  He further classified the six postcanopy closure classes into two that were low-

complexity and four that were high complexity.  While the most complex classes included 

primarily old-growth PSPs and the least complex primarily second-growth PSPs, the 

intermediate classes included mixtures of both old-growth and second-growth PSPs.  This 

indicates considerable overlap in the complexity of old-growth and second-growth forest in the 

CRMW, as described by LiDAR data.  He also found that complexity was not associated with 

elevation. 

 Kane et al. (2011) used LiDAR data to examine horizontal heterogeneity and patch structure of 

forest in the CRMW.  He classified 48 9-ha sites (300x300m) in both old growth and second 

growth for within-stand patch structure and three 64-ha sites within second-growth forest for 

                                                 
4
 Precanopy closure refers to young stands that have not yet entered the competitive exclusion stage of forest 

development following stand initiation. Postcanopy closure includes a wide range of age classes from relatively young, 

dense forest in competitive exclusion to structurally complex old-growth forest.  
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variance in patch structure at larger scales. He identified six classes of within-stand structure 

that corresponded to different developmental stages: stand establishment, competitive exclusion, 

maturation, high elevation structural complexity, and shifting patch mosaics (2 classes).  For the 

9-ha sites, rumple was the variable that most strongly differentiated structural classes, and 

canopy closure was the second strongest.  At larger scales he identified three patch mosaic 

stages of late-seral forest development.   

In addition to the published work that Van Kane did regarding the use of LiDAR-derived metrics to 

characterize forest structure, he used the same LiDAR-derived metrics to develop a “first-cut” 

classification of forest structural complexity across the watershed (Van Kane, personal 

communication).  Kane’s work essentially developed a methodology for classifying forest structure 

on a landscape scale.  In the 2012 efforts I conducted and describe below, I used the approach that 

Kane et al. (2010a, 2010b) developed and his “first-cut classification to classify old-growth areas by 

LiDAR structural characteristics. 

2012 Efforts 
After review of previous work on classifying old-growth habitat in the CRMW, I took two 

approaches to carry this work further.  The first was to use the PSP data in evaluating variation in 

two indices of old-growth structural characteristics; the second was to map variation in old-growth 

structure by applying Van Kane’s LiDAR-derived structural metrics across old-growth areas in the 

CRMW. 

Analysis of PSP Data Using Indices of Old-growth Habitat Structure 
The PSP data were used in all three previous approaches to characterizing old-growth habitat and 

were further explored here using two indices of old growth – one developed by Acker et al. (1998) 

to describe the development of old-growth structural characteristics in Douglas-fir dominated 

forests and the second developed by Washington Department of Natural Resources (WDNR 2005) 

as a basis for identifying old-growth areas in western Washington conifer forests.  The two indices 

are both based on reference values for structural characteristics of west side Oregon and 

Washington old-growth forests (n = 96 plots) published in Spies and Franklin (1991), which 

focused on how structural characteristics differed among young (< 80 yr), mature (80-195 yr), and 

old-growth (> 195 yr) Douglas-fir forests, and which characteristics best differentiated old-growth 

from younger forests. 

The indices essentially provide a way of quantifying “old-growthness”, and thus are useful for 

characterizing the variation in the structural characteristics in CRMW old growth.  While the 

indices are not specific with respect to habitat features needed by individual species, they do 

provide a measure of how a particular PSP compares to average old-growth structure across 

Douglas-fir-dominated forests of western Oregon and Washington.  



6 

 

Acker Old-growth Index 

The Acker (1998) index of old growth is based on four structural variables:  (1) SD of tree DBH 

(diameter at breast height), (2) density of large trees (> 100 cm DBH), (3) mean tree DBH, and (4) 

density of all trees (the same variables that Kane et al. [2010a] used in correlating LiDAR to field 

data).  The Acker index is essentially a measure of where a plot falls in structural characteristics 

between young forests regenerating after clearcutting and well-developed old-growth conditions.  It 

uses an algorithm to create a score, termed Iog, calculated as follows: 

Iog= 25Σ [(xi,obs – xi,young)/( xi,old – xi,young)] 

Where:    

xi,obs = observed (i.e., PSP) value of each of the four structural variables; 

xi,young = mean value of each of the four structural variables from the young stands in Spies 

and Franklin (1991); 

xi,old = mean value of each of the four structural variables from the old-growth stands in 

Spies and Franklin (1991). 

There is also a caveat that for variables 1 through 3, values are given the mean old-growth value if 

greater than the mean old-growth value and for variable 4 are given the mean old-growth value if 

less than the mean old-growth value.  This prevents the Iog from getting uncharacteristically large.  

The Iog ranges from 0 to 100 for plots with mean characteristics equivalent to the young and old 

forests, respectively, evaluated by Spies and Franklin (1991).  The study plots analyzed by Acker et 

al (1998), which were distributed across National Forests in western Oregon and Washington and 

were 120 to 155 yrs since stand initiation, had Iog ranging from 43 to 67 with a mean of 54.   

Summary statistics for Iog calculated for all the old-growth PSPs in the CRMW (n = 37) are shown 

in Table 1 ( See Appendix A for values calculated for each PSP).  Although the minimum Iog value 

for CRMW PSPs was lower than the plots analyzed by Acker et al. (1998), the mean and maximum 

were higher.  Not all of the old-growth PSPs had age data, but the age range of those that have been 

dated was 223 to 308, except for one plot having an age of 699.  Since the PSP age range is 

substantially older than that of the Acker plots, it is not surprising that the CRMW plots had higher 

mean and maximum Iog values. Since a Iog of 100 represents mean conditions for western Oregon 

and Washington old-growth forest, the CRMW has some old growth with structure similar to 

average old-growth conditions in western Oregon and Washington dominated forests (seven PSPs 

with scores of 100), however, most old growth in the CRMW does not have structure as well 

developed as that of Douglas-fir dominated old growth.   

The wide range of Iog values for PSPs supports the impression that there is substantial variation in 

structural characteristics within CRMW old-growth forest, with some areas less “old-growth like” 

than others.  Although the Acker index was calibrated to data from Douglas-fir dominated forest, it 
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is nonetheless a consistent measure of forest structure regardless of dominant species.  For purposes 

of describing structural variation in CRMW PSPs, whatever the dominant species, the Acker index 

should provide a meaningful measure of forest structure that incorporates tree size, variation in tree 

size, and tree density.  Mean Iog for Douglas-fir (n=5), western hemlock (n=18), and Pacific silver 

fir (n=10) dominated PSPs was 81, 73, and 59, respectively.  The ranking of these values is 

generally consistent with what one would expect in these different types of stands.  There was a 

significant relationship between Iog  and elevation, but the correlation was relatively low (adjusted r
2
 

= 0.093) (Figure 1, Appendix A).  Of the seven PSPs with  Iog = 100, three were in the upper Rex 

River basin, with one each in the Seattle and Lindsay creek basins, and two in the slopes north and 

south of  Chester Morse Lake (Figure 3).  

WDNR Index 

The WDNR index uses five structural variables to derive a score ranging from 0 to 100 to determine 

the degree to which stands have old-growth characteristics. These variables are:  

1. Large trees (number of trees per ha > 100 cm), 

2. Large snags (number of standing dead trees per hectare > 50 cm DBH and > 15 m tall), 

3. Volume of down woody debris (cubic meters per hectare), 

4. Tree size diversity, and  

5. Stand age (years).  

The methods for developing scores for each variable generally entail scaling the score to the values 

for each variable in the Douglas-fir dominated old-growth forest reported by Spies and Franklin 

(1991) (i.e. the same old-growth reference conditions used by Acker [1998]), with the average score 

of all variables combined providing the old-growth habitat index.  Calculating tree size diversity is 

somewhat more involved than the other variables, as it scaled the density of different size classes 

and weighted the larger size classes more heavily. The WDNR index differs from the Acker (1998) 

index in that it includes a different set of variables, except for density of large trees, and thus 

captures a wider variety of old-growth structural features.  The method combines scores from the 

different variables into three different indices: 

 Standard Old Growth Habitat Index (OGHI), which is just the average of the five scores; 

 Modified OGHI, which excludes stand age making the index purely structural; and 

 Weighted OGHI, which is also based on only the four structural variables, with each 

variable weighted by a relativized Spearman’s rank correlation coefficient between each 

variable and stand age. 

For purposes of this analysis, I used the weighted index (WOGHI).   

The values for WOGHI for the 37 PSPs ranged from 38 to 89, indicating that there is a wide range 

of forest structural conditions in CRMW old growth, similar to what was found with the range of 

Acker Iog scores.  Despite the differences in methodology, the Acker and the WDNR WOGHI were 

very similar in result, although WOGHI values were less than the Acker Iog for almost all PSPs.  A 
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regression of the two scores had an r
2
 = 0.83 (Figure 2).  Comparing the scores for old-growth PSPs 

dominated by different species, Douglas-fir and western hemlock PSPs both had mean WOGHI  = 

51, which was considerably higher than that for Pacific silver fir dominated PSPs (mean WOGHI = 

35).  As with the Acker index, however, correlation of WOGHI to elevation was significant (P = 

0.022) but with relatively low correlation (adjusted r
2
 = 0.117) (Figure 1). 

The minimum, 25% quartile, median, and 75% quartile scores for CRMW old-growth PSPs were 

well below those found in 40 plots located in Douglas-fir dominated old-growth stands of the 

western Washington Cascade Range evaluated by Spies and Franklin (1991) and reported in WDNR 

(2005) (Table 1).  However, the maximum WOGHI score for PSPs was very similar to the WDNR 

maximum based on the Spies and Franklin data from the western Washington Cascades. Similar to 

the Acker  Iog, the CRMW WOGHI scores indicate that most CRMW old growth is generally less 

well-developed structurally than typical Douglas-fir old growth in the western Cascades, which is 

not surprising given that there is no remaining old growth in the CRMW that is located  in more 

productive lower elevation and valley bottom sites. However, three PSPs had OGHI > 80, which is 

comparable in structure to the most structurally complex old growth in Washington.  Two PSPs had 

exceptionally high OGHI (≥ 88), one was in the upper Rex River basin and the other in Fish Creek 

basin (Figure 4).  Four other PSPs with relatively high OGHI (≥ 76) were located in the upper Rex 

basin (2), Lindsay Creek basin (1), and Seattle Creek basin (1).   

Table 1.  Values for Iog  and WOGHI calculated for CRMW PSPs.  Also shown are values for Iog  and WOGHI 

reported  in Acker et al. (1998) and WDNR (2005) , respectively.   

 Index min 
25

% 

quartile 
mean median 

75% 

quartile 
max 

CRMW old-growth 

PSPs 
Iog 36 54 72 64 93 100 

Acker et al. (1998) 

plots 
Iog 43 --- 54 --- --- 67 

CRMW old-growth 

PSPs 
WOGHI 19 30 48 39 64 89 

WDNR (2005) plots
1
 WOGHI 38 62 --- 77 81 89 

1
 The WDNR plots are old growth plots in Washington from Spies and Franklin (1991). 
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Figure 1.  Relationship of Acker Iog and WOGHI values for CRMW PSPs to elevation. 

 

 

Figure 2.  Correlation of Acker Iog and the WOGHI for old-growth PSPs in the CRMW.  

  

R² = 0.1189 

R² = 0.144 

0

10

20

30

40

50

60

70

80

90

100

0 1,000 2,000 3,000 4,000 5,000

In
d

e
x 

sc
o

re
 

Elevation (ft) 

Acker Iog

OGHI

y = 0.9399x - 20.268 
R² = 0.8288 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

W
D

N
R

 W
O

G
H

I 

Acker Iog 



10 

 

Figure 3.  Permanent sample plots (PSPs) in old-growth forest within the CRMW, with symbols scaled by Acker Iog value. Numbers by symbols identify PSP by 

key shown in Appendix A.  
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Figure 4.  Permanent sample plots (PSPs) in old-growth forest within the CRMW, with symbols scaled by WOGHI value.  Numbers by symbols identify PSP by 

key shown in Appendix A. 
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Application of LiDAR Characterization and Mapping 
Characterization of old-growth forest using the PSP data and the two structural indices is useful for 

describing the variation in CRMW old growth, but it does not show how that variation is distributed 

across all the remaining old-growth areas.   A map showing the variation in structure across all the old-

growth forest in the CRMW has several possible applications, such as showing the scale at which 

variation occurs and identifying where areas of high structurally complexity are located. To produce 

such a map, I applied the unpublished map that Kane developed of LiDAR structural classes across the 

entire watershed to old-growth areas.  I first validated how it was derived and how well it represented 

structural variation in old growth alone, then identified a set of simplified structural classes that were 

specific to old-growth forest for developing a map that emphasized old-growth structural variation.   

Kane’s Analysis of LiDAR Variables  

Kane identified nine structural classes using agglomerative hierarchical cluster analysis and PCA of a 

random selection of 10,000 30-m pixels across forested habitat in the watershed.  He then mapped 

these classes to all 30-m pixels of LiDAR data using the Random Forest algorithm (Van Kane, 

personal communication).  Random Forest  is a method for developing a classification tree from 

different variables (in this case, the three LiDAR variables of 95 percentile height, rumple, and canopy 

cover) that consists of many decision trees and outputs the class that is the mode of the classes 

developed for individual trees (Brieman 2001).  Although not published by Kane, a graphic of the 

cluster analysis and PCA ordination from a Powerpoint file he provided is shown in Figure 5. 

 

Figure 5.  PCA ordination (left) and cluster analysis (right) of 10,000 random pixels across the CRMW based on three 

LiDAR metrics: 95 percentile height, rumple, and canopy cover.  For clarity, only a small sample of the sampled pixels are 

shown in the PCA ordination.  The numbers in the PCA ordination correspond to the nine-classes identified by the cluster 

analysis and the vectors indicate strength and degree of correlation of the LiDAR variables with each PCA axis. (Source: 

Van Kane Powerpoint file CRMW structure classification 2012020.ppt) 

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Mode_(statistics)
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Applying Kane’s Analysis to Old Growth Forest Only 

Although Kane’s analysis included old-growth habitat, I thought it necessary to first evaluate how well 

the nine structural classes differentiated the variation of structural characteristics within just old-

growth forest.  To do this I first replicated the process that Kane followed for developing the nine 

structural classes by using data from the entire CRMW to ensure that my analysis would achieve the 

same result and then, second, conducted the same analysis with old-growth habitat only.   

Using GIS raster layers of the nine structural classes and the three LiDAR variables provided by Kane, 

I (with the help of SPU GIS analyst Mark Joselyn), derived a sample of 10,000 pixels from across the 

CRMW (excluding water bodies and the Cedar Falls headquarters area).  With the three LiDAR 

variables from this 10,000 pixel sample, I then conducted an agglomerative hierarchical cluster 

analysis using Euclidian distances and Ward’s linkage method (as did Kane) in the PC-ORD 

multivariate statistics package (McCune and Mefford 2006) and ran PCA on the sample (also with PC-

ORD).  The PCA ordination of this sample was very similar to the one Kane produced, both in the 

distribution of classes along the two axes and in the direction of the vectors showing correlation of 

each LiDAR variable to the axes (Figure 6).   

Using a random selection of 2,000 pixels from old-growth forest (there were about 12,000 pixels total 

for all CRMW old growth), I again conducted the hierarchical cluster analysis and PCA, grouping the 

samples in the PCA using the nine-classes as before. The results of this PCA ordination were very 

similar to both Kane’s PCA ordination and the one I did using a 10,000 sample of pixels across the 

CRMW, with respect to both the distribution of classes within the ordination and in the LiDAR 

variable vectors (Figure 7).   

The close correspondence between Kane’s analysis for the entire CRMW and my replication of those 

analyses using a sample from just old-growth forest indicates that the nine structural classes that Kane 

mapped using the Random Forest algorithm for the entire watershed should also reasonably represent 

structural variation in old growth considered alone.  However, the classification of old-growth forest 

using this approach might be refined by running the Random Forest algorithm on old-growth data only, 

which might better differentiate the range of structural complexity found across just the old-growth 

forest in the CRMW.  
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Figure 6.  PCA ordination of a random selection of pixels across the CRMW based on three LiDAR metrics: 95 percentile 

height, rumple, and canopy cover.  For clarity, only 900 of the 10,000 sample are shown here.  Class number shown in 

legend are the same as used in Kane’s PCA ordination shown in Figure 5. 

 

Figure 7.  PCA ordination of a random selection of 2000 pixels from old-growth forest in the CRMW based on three 

LiDAR metrics: 95 percentile height, rumple, and canopy cover.  Class number shown in legend are the same as used in 

Kane’s PCA ordination shown in Figure 5. 



15 

 

A Map of Old-Growth Structural Characteristics 

Having demonstrated that the map of the forest structural classification that Kane developed 

reasonably represents variation in CRMW old-growth structure, I next examined how variation in 

structural complexity is distributed in old-growth forest stands across the upper watershed and 

produced graphic displays of the classification to show that variation.  

To describe each of these classes, I derived median and quartile values for each of the three LiDAR 

variables for each of the nine structural classes across all old-growth pixels (Figures 8).  Comparing 

the median and quartile values among classes, I ranked rumple and canopy cover into four levels and 

95 percentile height into five levels for each structural class (Table 2).  These ranked levels of the 

different LiDAR variables were used to describe each of Kane’s classes in terms of the level of 

structural complexity (based on rumple), height (based on 95 percentile height), and canopy closure 

(based on canopy density).   

To display these classes on a map, the color symbology of the nine classes was simplified by lumping 

six of the nine classes into three classes, based first on rumple (complexity) and second on height and 

cover, resulting in six color symbols on the map.   Table 2 shows descriptions of each class and how 

they were lumped in the map symbology. Maps of the LiDAR-derived structural classes are shown in 

Figure 9 (with separate pages for the western, central, and eastern portion of the upper CRMW).   

Table 2.  Descriptions of nine structural classes of CRMW old-growth forest.  Color scheme is that used 

in maps of old-growth structural complexity (Figures 2 and 3)  

Kane class 

number  

Kane 

class 

ranking 

Ranking Category 

Rumple 
95 percentile 

height 
Canopy cover Color scheme 

8 1 highest tallest moderate darkest green 

5 2 high tallest high dark green 

6 3 high tall moderate dark green 

3 4 moderate tall high lighter green 

1 5 moderate moderate high lighter green 

7 6 moderate low low very light green  

4 7 low low high yellow-green  

2 8 low very low moderate yellow-green  

9 9 low very low very low light yellow 
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Figure 8.  Median (horizontal line), 25 percentile (lower error bar), and 75 percentile (upper error bar) values of three 

LiDAR variables for all pixels in CRMW old-growth forest in each of nine structural classes identified by Van Kane.  
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Figure 9a.  Map of habitat complexity classes developed by Kane for the upper CRMW, western portion.  Old-growth PSP symbols scaled by WOGHI value as in 

Figure 4.  Numbers by symbols identify PSP by key shown in Appendix A. 
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Figure 9b.  Map of habitat complexity classes developed by Kane for the upper CRMW, central portion.  Old-growth PSP symbols scaled by WOGHI value as in Figure 

4.  Numbers by symbols identify PSP by key shown in Appendix A. 
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Figure 9c.  Map of habitat complexity classes developed by Kane for the upper CRMW, eastern portion.  Old-growth PSP symbols scaled by WOGHI value as in Figure 

4.  Numbers by symbols identify PSP by key shown in Appendix A.
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It is clear from Figure 9 that old-growth stands with high structural complexity are well distributed 

across the upper watershed.  There does not appear to be any watershed-scale pattern of structural 

complexity, rather different levels of structural complexity occur in mosaics in most old-growth 

patches, indicating that old-growth habitat in the CRW is quite variable even at a relatively small scale.  

This small-scale variability undoubtedly is part of the horizontal heterogeneity in forest structure, 

which Kane et al (2011) described.  Taking the watershed as a whole, 57% of old-growth habitat is in 

the high to highest complexity classes and 38% in the moderate complexity class (Figure 10).  Not 

only is there variation in complexity across all old growth, there is also variation among patches in the 

proportion of different complexity classes.  For example, 34% of the upper Rex basin old-growth patch 

is in the highest complexity class, whereas only 12% of the North Fork  Cedar River – Meadow 

Mountain patch is in the highest complexity class, with 19% of all old-growth forest in that class.  

 

 
Figure 10.  Percentage of all old-growth forest and three representative patches of old-growth forest in each of the nine 

Kane complexity classes.  

 

Such small scale variability would not appear to be related closely to soil type, site index, elevation, or 

aspect, which tend to vary on larger scales; rather, it more likely reflects different intensity or time 

since stand-replacing disturbance, the pattern of disturbance during stand development, or a 
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complexity on a stand scale evident from LiDAR data suggests that Richards’ approach in mapping 
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suitability of marbled murrelet and northern spotted owl habitat using classes does not capture the 

variability in habitat quality that stems from smaller scale variation in structure.  Richards based the 

habitat suitability of sub-polygons within old-growth polygons on PSPs occurring in similar 

combinations of elevation, aspect, and site class, which do not appear to relate closely to variability in 

structural complexity evident from LiDAR data.  

Although there are areas within old-growth polygons mapped as low complexity, these are typically 

not forest habitat but rather are open areas of rock, meadow, or wetland shrub, which further add to the 

habitat heterogeneity of CRMW old growth.
5
  Interestingly, there are substantial areas of second-

growth forest that are mapped as the highest complexity structural class, which was pointed out in 

Kane et al. (2010b, 2010c) (e.g., forest along the Cedar River in the upper left of Figure 9a).  This 

suggests that older (> 90 years) second-growth forests on high productivity sites have developed some 

attributes of size and complexity comparable to existing old-growth forest in the upper CRMW.  This 

is not necessarily unexpected, as existing old-growth forest in the watershed tends to be at higher 

elevations with lower site index (Tear 2006).  With time, perhaps in less than a hundred years, the 

lower elevation second-growth forests would be expected to acquire structural complexity greater than 

most of the remaining CRMW old growth. 

The highest complexity class appears to group areas of an exceptionally high complexity old-growth 

forest with that of high, but not as high, complexity.  For example, the area in the upper Rex River 

basin around PSPs labeled 2, 3, and 4 (likely the oldest old-growth patch remaining in the watershed 

with trees dated to over 800 years old) is known to have exceptionally high complexity for the 

watershed, but is not classified by the LiDAR data separately from areas known to have very high, but 

less complex structure (e.g., old growth near Sutton Lake around PSP labeled 20 in Figure 7c, lower 

left).  However, as shown in Figure 10, the upper Rex River old-growth patch has a substantially 

higher amount of the most complex structural class, compared to all old growth and two other 

relatively large old-growth patches.  This suggests that the proportion of high complexity within a 

stand is also important to consider in evaluating forest structure.  It is possible that a classification of 

structure based on an analysis of just old-growth forest, leaving out all second growth, might better 

resolve these areas of exceptional complexity, as opposed to this classification developed by Kane 

based on all forest habitat in the CRMW.  And a classification that included horizontal heterogeneity in 

structure might further differentiate the most structurally complex forest in the watershed. This 

classification, thus, should be considered to be a conservative estimate of complexity in the most 

structurally complex forests in the CRMW. 

To evaluate how well the mapped structural classes correlated to structural complexity indices 

calculated for the old-growth PSPs, I recorded the map structural class at the location of each old-

growth PSP in the GIS and examined how they were correlated to the WOGHI and Acker Iog values for 

                                                 
5
 The old-growth habitat GIS layer used in Figure 9 (CRW.OLD_GROWTH_NO_OPEN) does not exclude small open 

areas, as does a more restrictive layer (CRW.OLD_GROWTH).  Because these small excluded non-forest areas are often 

inter-mixed and confusing to interpret at relatively large scales, such as in Figure 9, the layer with the small open areas 

included was used here for analysis and presentation.   
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each PSP
6
.   The rank of Kane’s nine structural classes based on complexity and on height (Figure 8, 

Table 2) is significantly correlated to both the ranked WOGHI (Spearman’s rank correlation 

coefficient (rs) = 0.556, P < 0.001) and Acker Iog  (rs = 0.569, P < 0.001).  However, there are certainly 

many PSPs that do not align well between rank of structural class and one or both of the two indices 

(Appendix A).  Since Kane found good correlation between LiDAR and field metrics (Kane et al. 

2010a), the latter of which were the same variables used in the Acker Iog  (Table 3), a strong 

correlation between Acker Iog  and the ranked structural classes (perhaps even higher than the rs = 

0.569 found here) is expected.   However, it is somewhat surprising that the correlations of structural 

class rank to WOGHI and the Acker are so similar, since the WOGHI is based on two similar but also 

two different metrics (down wood and snags), neither of which are captured directly by the LiDAR 

metrics. 

 

Table 3.  List of LiDAR and field metrics used by Kane (2010a) and field metrics used in calculating the Acker Iog and 

OGHI for CRMW PSPs.  

Kane LiDAR metrics Kane field metrics Acker Iog WOGHI 

rumple SD of DBH SD of tree DBH tree size diversity 

rumple, 

95 percentile height 

density of trees > 100 cm 

DBH  

density of trees > 100 cm 

DBH 

density of trees > 100 cm 

DBH  

95 percentile height mean DBH mean tree DBH  

canopy cover tree density tree density  

   large snags  

   volume of down woody 

debris  

 

Relating Old Growth Indices and LiDAR Classification to Wildlife Habitat Value 
The WDNR habitat index (WOGHI) and the Acker index of old-growth habitat (Iog ) are useful for 

characterizing the degree to which the forest structure in old-growth PSPs, as representative of old-

growth habitat in the CRMW, compares to that of reference stands of old-growth forest structure (i.e., 

96 plots of old-growth Douglas-fir dominated forest occurring in western Oregon and Washington, 

reported by Spies and Franklin [1991]).  LiDAR-derived structural attributes provide information to 

create a relatively high resolution map (30 m pixels) of variation in forest structure across the entire 

CRMW landscape.  There is still the question, however, as to how these two approaches to 

characterizing old-growth habitat capture relative habitat suitability for old-growth dependent species.   

As a first step to answering that question, I examined how the two indices and the three LiDAR 

variables used in developing the map of habitat structural complexity (Figure 9) were related to habitat 

suitability for northern spotted owl and marbled murrelet as found by Richards (2007).  As shown in 

Figure 11, the mean values for WOGHI and Iog of all PSPs among each of the northern spotted owl 

suitability classes are not significantly different (Kruskal-Wallis non-parametric test due to unequal 

sample sizes).  For the marbled murrelet suitability classes, only the difference between the Medium 

and Low classes was tested (two-sample t-test), as there were only two plots in the High suitability 

class.  The Medium and Low classes were found to be significantly different for both WOGHI and Iog, 

                                                 
6
 Because Kane’s structural classes are fixed ranks, a standard parametric correlation isn’t appropriate.  Consequently, I 

also ranked WOGHI and Acker Iog values and used the non-parametric Spearman’s rank correlation coefficient.   



23 

 

with the mean of the two PSPs in the High class (which were not included in the t-test) being 

substantially higher than that of the Medium and Low classes.  

With respect to the LiDAR variables, only the 95 percentile height variable showed significant 

differences among northern spotted owl suitability classes (Kruskal-Wallis non-parametric test due to 

unequal sample sizes)(Figure 12).  For marbled murrelet (again just examining Medium versus Low 

suitability classes), there were significant differences for both 95 percentile height and canopy density.  

Though not included in the t-test, the mean rumple value of the two High PSPs was considerably 

higher than the Medium and Low classes, as was found with the old-growth index values of the two 

High PSPs for marbled murrelet habitat.  Although the mean rumple value in these two High suitability 

PSPs was higher, it is interesting that rumple does not otherwise differentiate among habitat suitability 

types for either species.  One would expect rumple to be more strongly related to the old-growth 

indices, as structural complexity is typically associated with characteristics determining both northern 

spotted owl and marbled murrelet habitat suitability (e.g., density of large trees).  Compared to rumple, 

the stronger relationship of 95 percentile height to habitat suitability found in this analysis may be a 

consequence of it being an indicator that is more directly related of tree size (e.g., mean DBH).  

To examine the relationship of the Kane structural complexity classification map to northern spotted 

owl and marbled murrelet habitat suitability, I counted the number of PSPs in two different complexity 

groups – high and highest complexity combined and moderate complexity.  There were no old growth 

PSPs that occurred in low complexity pixels.  If there were a strong relationship between structural 

complexity classes and habitat suitability, one would expect that the percent of PSPs in the high-

highest group would decrease as habitat suitability decreased (and conversely the percent of the 

moderate complexity group would increase).  As shown in Figure 13, there was no evident trend of 

complexity versus suitability class for northern spotted owl, however there was evidence of such a 

trend for marbled murrelet.  This very limited analysis suggests there may be some utility in using the 

distribution of Kane structural complexity classes as a way to differentiate habitat suitability for 

marbled murrelet, but not for northern spotted owl.  

In summary, it appears that the two old-growth indices do not distinguish different suitability classes 

for northern spotted owl, but may have utility in differentiating classes of marbled murrelet suitability, 

although the low number of PSPs in the High marbled murrelet class limits our ability to draw any 

definitive conclusions.  The 95 percentile height variable seems to be the most promising LiDAR-

derived variable as an indicator of both northern spotted owl and marbled murrelet habitat suitability.  

The LiDAR-based structural classification map of old-growth habitat appears to be applicable to 

marbled murrelet, but not northern spotted owl, habitat suitability.  

Rather than applying the two old-growth indices and  the maps of LiDAR derived metrics to 

identifying habitat suitability for individual species, a more appropriate use is likely to be in 

differentiating habitat value more generally for old-growth dependent species.  Since the WOGHI and 

Acker Iog  integrate several metrics that have been found to best differentiate the degree to which a 

sampled forest resembles the structure of well-developed western Oregon and Washington Douglas-fir 

forests, they should be good indicators of  habitat features important to a wide variety of old-growth 
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dependent species.  Kane (2010a) showed that the LiDAR-derived metrics were highly correlated with 

the same variables used in the old-growth indices, which suggests that these should also be good, albeit 

less direct, indicators of general habitat value for old-growth dependent species.  There appears to be 

some association of overall stand complexity to marbled murrelet, though not northern spotted owl, 

habitat suitability (Figure 13), but this analysis indicates that 95 percentile height is perhaps the most 

useful single LiDAR metric for describing general old-growth habitat value on a landscape scale. 

Although tree height is only one component of old-growth structure important to wildlife, it’s likely to 

be correlated with a number of other important habitat characteristics and can be accurately quantified 

by LiDAR.  The use of 95 percentile height as an indicator of habitat value, however, is not likely to be 

as useful in second-growth forest, where trees can reach considerable height before the stand 

differentiates and develops the complexity associated with late-seral or old-growth conditions.  
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Figure 11.  Mean value (± 95% CI) of WOGHI and Acker Iog from old-growth PSPs for different habitat suitability classes 

of northern spotted owl (upper graph) and marbled murrelet (lower graph).  Means are of all PSPs classified into a given 

northern spotted owl or marbled murrelet suitability class (see Appendix A).  Number of PSPs in each northern spotted owl 

class are: I (nesting): n = 13; II (foraging): n = 9; III (dispersal): n = 7; N (not suitable): n = 8.  Number of PSPs in each 

marbled murrelet class are:  high: n =2; medium: n = 18; low: n =17.  Different letters above bars with P values indicate 

significant differences between classes. 
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Figure 12.  Mean value (± 95% CI) of rumple (x20), 95 percentile height (m), and canopy density (%) from old-growth 

PSPs for different habitat suitability classes (high, medium, low) of northern spotted owl (upper graph) and marbled 

murrelet (lower graph).  Means are of all PSPs classified into a given northern spotted owl or marbled murrelet suitability 

class (see Appendix A). Number of PSPs in each northern spotted owl class are: I (nesting): n = 11; II (foraging): n = 9; III 

(dispersal): n = 7; N (not suitable): n = 7. Number of PSPs in each class are: high: n =2; medium: n = 18; low: n =17.  

Different letters above bars with P values indicate significant differences between classes. 
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Figure 13.  Percent of PSPs within a given suitability class for northern spotted owl (upper graph) and marbled murrelet 

(lower graph) that were either in the high-highest or moderate structural complexity classes defined by Kane (Figure 9). 

Number of PSPs in each northern spotted owl class are: I (nesting): n = 11; II (foraging): n = 9; III (dispersal): n = 7; N (not 

suitable): n = 7. Number of PSPs in each class are: high: n =2; medium: n = 18; low: n =17.   

Conclusions  
This and previous work by Richards (2007) and Kane (2010a, 2010b, 2011, unpublished) provide a 

basis to differentiate old-growth structural variability using both field data (i.e., PSPs) and LiDAR-

derived data.  PSP data are useful for characterizing the range of variability in structural complexity of 

old growth, but have limited direct value in producing spatially-explicit maps of habitat suitability.  

Using either single or combining multiple LiDAR-derived variables that have been shown to be 
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correlated to field data of important old-growth structural characteristics, high resolution (i.e., 30 m 

pixel) maps of habitat structure were produced in this analysis that show considerable variation in 

habitat structure across old-growth forest in the CRMW, with that variation correlated to habitat 

suitability for at least one important wildlife species, marbled murrelet.  However, use of the LiDAR-

derived maps of habitat structure is limited when applied to individual species, unless the LiDAR 

variables used are fairly direct measures of structural attributes important in determining habitat 

suitability for a given species, such as 95 percentile tree height.  The LiDAR-derived map of forest 

structure produced here from the data and classification provided by Van Kane are more appropriately 

used for characterizing old-growth forest habitat on a general basis with respect to suitability for a 

variety of old-growth dependent species.  

I would conclude that we have only partially fulfilled the purpose of an old-growth forest classification 

as stated in the HCP ( “…to determine the relative habitat value of the remaining late-successional and 

old-growth forests in the watershed for both selected individual species and groups of species of 

concern…”).  This and previous efforts have been successful at determining “relative” habitat value for 

old-growth dependent species and to some degree for marbled murrelet.  However, it is evident from 

this analysis that the goal of classifying old-growth habitat on a landscape scale with respect to habitat 

suitability for a variety of individual wildlife species is not likely to be achieved with high accuracy, 

given the current information and technology available.  
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Appendix A – Attributes of Permanent Sampling Plots occurring in old-growth forest in the CRMW 
 

PSP 
Number 

Map 
plot 

number 
Iog 

DNR 
Weighted 

OGHI 

Kane 
class 

number 

Kane 
class 

ranking 
Rumple 

95p 
ht 

Canopy 
density 

Dominant 
species 

Elev 
(ft) 

Northern 
spotted 

owl 
suitability 

class 

Marbled 
murrelet 

suitability 
class 

Basin 

2109054192 1 96 68 8 1 3.1 85.3 85.3 WH 3,826 I H Boulder 

2109142128 2 100 77 8 1 3.9 64.7 64.7 RC 2,976 I H Rex 

2109142222 3 100 88 8 1 3.7 81.0 81.0 WH 2,940 II L Rex 

2109154010 4 100 81 8 1 3.5 83.1 83.1 WH 3,008 II M Rex 

2109162102 5 100 79 8 1 3.0 88.4 88.4 SF 3,590 II L Lindsay 

2109224032 6 97 72 8 1 3.2 82.9 82.9 MH 3,874 III M Rex 

2110034038 7 54 32 6 3 ----- ----- ----- SF 3,901 I L Bear 

2110044092 8 52 30 1 5 1.3 100.0 100.0 WH 2,643 I M 
Upper 
Cedar 

2110061128 9 79 59 5 2 1.8 97.1 97.1 WH 3,101 I M 
Upper 
Cedar 

2110062252 10 76 51 5 2 2.9 81.3 81.3 WH 3,182 I M Findley 

2110073028 11 36 26 1 5 2.4 97.1 97.1 SF 4,278 II L Pine 
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PSP 
Number 

Map 
plot 

number 
Iog 

DNR 
Weighted 

OGHI 

Kane 
class 

number 

Kane 
class 

ranking 
Rumple 

95p 
ht 

Canopy 
density 

Dominant 
species 

Elev 
(ft) 

Northern 
spotted 

owl 
suitability 

class 

Marbled 
murrelet 

suitability 
class 

Basin 

2110073128 12 48 24 1 5 3.1 61.1 61.1 SF 4,199 III L Pine 

2110083128 13 100 76 8 1 4.7 90.1 90.1 DF 3,130 I M Seattle 

2110102128 14 84 56 3 4 1.4 93.6 93.6 WH 2,542 I M 
N Fork 
Cedar 

2110121126 15 55 35 3 4 ----- ----- ----- WH 2,727 I M 
N Fork 
Cedar 

2110121230 16 48 22 5 2 3.4 94.4 94.4 DF 3,338 III M 
N Fork 
Cedar 

2110134034 17 43 25 6 3 2.4 86.0 86.0 SF 4,320 III L 
N Fork 
Cedar 

2110141094 18 54 31 5 2 1.9 98.7 98.7 WH 3,326 I M 
N Fork 
Cedar 

2110163128 19 93 63 5 2 2.7 93.1 93.1 WH 3,216 N M Goat 

2110164128 20 60 37 5 2 3.3 70.1 70.1 WH 3,501 II L Goat 

2110213128 21 50 25 8 1 2.3 64.2 64.2 SF 4,469 III L Goat 

2110224026 22 76 39 8 1 4.0 66.4 66.4 WH 2,918 N L 
S Fork 
Cedar 

2111053224 23 63 30 5 2 2.3 92.7 92.7 SF 3,859 N L 
N Fork 
Cedar 

2111064128 24 58 33 6 3 3.3 80.0 80.0 DF 3,636 II M 
N Fork 
Cedar 
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PSP 
Number 

Map 
plot 

number 
Iog 

DNR 
Weighted 

OGHI 

Kane 
class 

number 

Kane 
class 

ranking 
Rumple 

95p 
ht 

Canopy 
density 

Dominant 
species 

Elev 
(ft) 

Northern 
spotted 

owl 
suitability 

class 

Marbled 
murrelet 

suitability 
class 

Basin 

2111183128 25 82 50 6 3 2.3 85.4 85.4 SF 4,465 I L 
N Fork 
Cedar 

2208134128 26 55 34 1 5 1.5 96.4 96.4 WH 2,290 II L 
Chester 
Morse 

2208141124 27 100 61 8 1 3.6 96.7 96.7 DF 2,617 N M 
Chester 
Morse 

2208161128 28 81 89 5 2 3.0 100.0 100.0 WH 3,000 III M Fish 

2208261128 29 88 53 5 2 2.9 100.0 100.0 WH 3,544 I M 
M Fork 
Taylor 

2208264128 30 79 56 3 4 2.3 95.7 95.7 RC 3,011 N L 
M Fork 
Taylor 

2209143098 31 51 19 1 5 2.3 61.1 61.1 MH 4,376 II L McClellen 

2209164128 32 100 65 3 4 1.4 100.0 100.0 DF 2,706 N M 
Chester 
Morse 

2209243060 33 57 23 1 5 2.0 91.2 91.2 WH 3,430 III M 
Upper 
Cedar 

2209361128 34 55 37 8 1 3.4 84.9 84.9 WH 2,252 N M 
Upper 
Cedar 

2210341128 35 53 35 3 4 2.6 91.7 91.7 WH 3,679 II L Bear 

2210344128 36 58 27 5 2 2.0 95.0 95.0 SF 3,856 I L Bear 

2210363128 37 64 28 5 2 2.6 78.9 78.9 SF 3,916 N L 
N Fork 
Cedar 

 


