CONTENTS

SECTION 01. BACKGROUND & CONTEXT
- Proposal
- Neighborhood Aerial
- Nine Block Aerial
- Vicinity Map
- Neighboring Buildings
- 5th Avenue Views
- Virginia Street Views
- Zoning
- Zoning Street Maps
- Context Plan
- Survey

SECTION 02. RESPONSE TO EDG
- Priority Design Guidelines
- Verbatim Notes from EDG2
- Massing Progression in Response to Board Guidance
- Massing Concept in Context
- 5(B) Tower Proportion & Mass
- 5(C) Mechanical Penthouse
- 5(D) West Facade Massing
- 6(A) Northeast Street Corner
- 6(B) Fifth Avenue Frontage
- 6(C) Alley Program Visibility
- 6(D) Northwest Alley Corner
- 6(E) Street Landscaping
- 7(A) Elevation Composition & Material Articulation
- 7(B) Level 12 & Rooftop Reveals
- 7(C) West Facade Material
- 7(D) Light & Air in Alley

SECTION 03. DESIGN PLANS, ELEVATIONS, SECTIONS
- Overall Floor Plans
- Overall Sections
- Overall Elevations
- Enlarged Elevations

SECTION 04. DESIGN PERSPECTIVES

SECTION 05. LIGHTING & SIGNAGE
- Lighting Plans & Details
- Signage Locations & Details

SECTION 06. DEPARTURES
- Facade Setback Limits
- Overhead Weather Protection
5th and Virginia is a 500’ mixed-use high-rise comprised of approximately 425,000 SF of residential use (431 apartments), 108,000 SF of luxury hotel use (155 hotel rooms), 20,000 SF of retail, and 7 levels of below grade parking for 253 cars and 131 bicycles. The proposed development at the corner of 5th and Virginia is conceived as a contemporary, fresh, and vital addition to Downtown and will play a positive role in the ongoing evolution of the Belltown neighborhood as a lively and diverse urban community.

The boutique hotel, restaurant, retail space, destination rooftop bar, apartments, and associated amenities will add vibrancy, activity, and street life to the neighborhood. These uses and the proposed design will enhance the community in a manner consistent with the City of Seattle’s adopted Comprehensive Plan, the Downtown Neighborhood Plan, and the associated DOC-2 Zoning and Downtown and Belltown design guidelines which encourage a vibrant urban center comprised of mixed use high rise with activated street edges.

Significant consideration has been given to the design at all scales particularly to the relationship to context through massing, materials, details, and façade articulation which have been developed in thoughtfully response to priority design guidelines set by the Design Review Board.

The architectural character of the design is a fusion of Downtown and Belltown influences with engaging design elements and inviting ‘destination’ spaces expressed in the architecture. The tower is compact and articulates a meaningful response to context through its massing and cladding within a unified design concept in which each element is tailored appropriately and precisely.

It is notable that the total area and bulk of the proposed design is more than 20% smaller than the maximum development area and bulk allowed by zoning on this site. This unique aspect of the design (the significant ‘downsizing’ of the building) attests to the care and attention of the development and design team’s response to context, design guidelines, and the guidance of the Design Review Board.
SITE DESCRIPTION
The site is composed of three lots on the northern half of the block, bounded by 5th Avenue, Virginia Street, the alley, and neighbors to the south. The site has 108’ x 150’ of buildable area, with the exception of dimensional setbacks for alley widening, sidewalk widening, upper level development limits, and floor plate limits.

REGIONAL TOPOGRAPHY
The Belltown neighborhood stretches northwest of the central business district to the base of Queen Anne. As with many other neighborhoods in Seattle, its generally flat terrain was originally a steep hill, but it was taken down as part of a massive regrade from 1902 to 1911. Now, with the exception of steep grades adjacent to the harbor edge, Belltown has one of the flattest terrains of any Seattle neighborhood.

LOCAL TOPOGRAPHY
The site is located several blocks northeast of the topographic “peak” in the Belltown neighborhood. The grade changes approximately 10’ across the site.

DOWNTOWN OVERLAYS
The site is located within the DOC2 300/300-500 zone and is part of the Belltown Urban Center Village. 5th Avenue is a Class I, Minor Arterial Street, with street level uses required, property line facades required, and a 15’ sidewalk width requirement. Virginia Street is a Class II, Minor Arterial Street, with no street level uses required, no property facades required, and a 12’ sidewalk width requirement.
PROJECT SITE
The site is immediately adjacent to major bus stops, the Westlake transit station, and the South Lake Union Streetcar. The Monorail runs north-south along 5th Avenue, just east of the project site. Virginia Street is a SDOT defined walking route that links the Belltown area to the waterfront.

The site is within close proximity to many of Seattle’s landmarks. It is an eight minute walk to Pike Place Market and the harbor edge, and is a twenty minute walk to the Olympic Sculpture Park or the Space Needle.

The site is within close proximity to many public parks and open spaces. It is within a ten minute walk to Pier 62, Bell Street Park, Freeway Park, Denny Park, and Westlake Park. It is within a twenty minute walk to Belltown Cottage Park, the Olympic Sculpture Park, the Waterfront Park, and Myrtle Edwards Park.

PEDESTRIAN EXPERIENCE
The proposed development will improve the healthy pedestrian experience along 5th Avenue and Virginia Street by providing a building that engages pedestrians through transparent street frontage and by providing pedestrian orientated programming along both arterials.

The project will improve pedestrian safety by providing overhead weather protection, which currently does not exist, and by providing improved lighting. A 24/7 lobby with staff, a restaurant, and retail space will improve pedestrian safety by activating the street day and night.

NEIGHBORING BUILDINGS
The Avis Building is immediately adjacent to the south. The building is a six story parking garage. The building meets the street with multiple garage doors and a small administrative office for car rentals.

The Escala building, located directly across the alley, is a 352’ tall, 30 story, condominium high rise with parking for 490 cars below grade. The building meets the street with a single parking garage ramp, several retail spaces, and an entry lobby for building residents. There are two loading bays accessed from the alley.

The Griffin Building is located to the north, on the opposite side of Virginia Street. It is a four story office building with ground floor retail. The building meets the street with commercial retail space currently used by a bank.

The Westin building garage, a seven story parking structure, is located diagonally across the 5th Avenue and Virginia Street intersection. The building meets the 5th Avenue street with two retail spaces and a parking garage ramp. The Virginia Street facade is opaque.

The Westin Hotel is located to the east, on the other side of 5th Avenue. The Westin Hotel has two towers that extend from a larger podium. The 400’ tall, 41 story south tower was constructed in 1969 and the 450’ tall, 47 story north tower was constructed in 1982. The building meets 5th Avenue with a combination of glazed and opaque walls with hotel event space behind. The Virginia Street side of the hotel is opaque.
1. project site, buildings to be demolished

2. site of MUP #3018037

3. Griffin building, across Virginia from site

4. Avis garage, adjacent to southwest of site

5. Westin Hotel, across 5th Avenue from site

6. Westin Parking Garage, across 5th and Virginia from site

7. The Escala, across alley from site
VIRGINIA STREET VIEWS LOOKING EAST

Douglaston Development 5th and Virginia | Project 3019699 | Downtown DRB Recommendation Meeting | 06.28.2016
does not exceed the lot size of 12,29-46. Total common recreation area of the lot.

Fifty percent (5,066 SF) of the common residential floor area (202,640 SF) must be devoted to uses listed in SMC 23.49.009a, which include general sales & services, retail sales, major durables, eating and drinking establishments.

Retail uses and eating and drinking establishments make up for 78% of the 5th Avenue street frontage. Eating and drinking establishments are provided on the Virginia Street frontage even though they are not required by code.

SMC 23.49.010 GENERAL REQUIREMENTS FOR RESIDENTIAL: Five percent (10,132 SF) of the total gross residential floor area (202,640 SF) must be common recreation area, excluding floor area bonus per SMC 23.49.015. Fifty percent (5,066 SF) of the common recreation may be enclosed. Amount of common recreation shall not exceed the area of the lot.

The proposed development comprises 161,180 SF of FAR ‘chargeable’ area, an equivalent FAR of 10. This is 71.4% of the maximum FAR. Residential use is exempt from FAR. The total combined development including both residential and FAR chargeable areas is 580,280 SF which represents 79.5% of the total allowable developable area.

SMC 23.49.018 OVERHEAD WEATHER PROTECTION: Continuous overhead weather protection of a minimum dimension of 8’ in depth along street frontage between 10’ and 15’ of the sidewalk.

Continuous overhead weather protection is provided along the 5th Avenue street frontage at depths of 8’ above the sidewalk. The Virginia Street continuous overhead weather protection is provided to a depth of 6’ in accordance with SDOT required street tree clearances. The canopy at the bar entrance on Virginia Street is set slightly higher than the prescribed height for overhead weather protection and requires a departure. Graphic and written documentation of the proposed departure can be found in the departure section.

SMC 23.49.022 MINIMUM SIDEWALK WIDTH: 5th Avenue sidewalk width must be a minimum of 15’ wide and the Virginia Street sidewalk width must be a minimum of 12’ wide.

The proposed development provides at least a 21’ sidewalk along the 5th Avenue frontage and at least a 12’ sidewalk along the Virginia Street frontage.

SMC 23.49.024 VIEW CORRIDOR REQUIREMENTS: No view corridor setback is required.

SMC 23.49.056.A MINIMUM FACADE HEIGHT: Class I Pedestrian Streets (5th Ave): 35 Feet

Class II Pedestrian Streets (Virginia St): 25 Feet

The 5th Avenue facade is 35’ high. The same datum wraps around the northeast corner and exceeds the 25’ minimum on Virginia Street.

SMC 23.49.056.B FACADE SETBACK LIMITS: 5th Avenue is a property line facade. For structures greater than 15’ in height, no setback limits apply up to 15’ above the sidewalk. Between 15’ and 35’ above the sidewalk, the facade shall be located within 2’ of the street lot line. Setbacks are permitted between 15’ and 35’ above the sidewalk under the criteria in 23.49.056.B.1.B.2.B.

The 5th Avenue facade is setback up to 6’ (typically 4’-5’) from the property line, per EDG#2 Recommendation item 6b. The Fifth Avenue facade setback requires a departure. Graphic and written documentation of the proposed departure can be found in the departure section.

SMC 23.49.056.C TRANSPARENCY: 60% of the street-facing facade between 2’ and 8’ above the sidewalk shall be transparent on Class I Streets (5th Ave). 30% of the street-facing facade between 2’ and 8’ above the sidewalk shall be transparent on Class II Streets (Virginia St).

The 5th Avenue facade is 93.7% transparent and the Virginia Street facade is 70.3% transparent within the area prescribed by code.

SMC 23.49.056.D BLANK FACADE LIMITS: Blank facades for Class I Streets (5th Ave) shall be no more than 15’ wide and the total width of all blank facade segments shall not exceed 40% of the street-facing facade. Blank facades for Class II Streets (Virginia St) shall be no more than 30’ wide and the total width of all blank facade segments shall not exceed 70% of the street-facing facade.

Blank portions of both facades are below the prescribed maximum blank facade limits.

SMC 23.53.058.A.2 MAXIMUM TOWER WIDTH: In DOC2 zones, the maximum facade width for portions of buildings above 85’ parallel to the avenues is 145’.

The portion of facade above 85’ in height is less than 145’ in length.

SMC 23.54.035 LOADING BERTHS: Provide quantity of loading spaces per Table A for 23.54.035 and 23.54.035A.

SMC 23.53.058.E.2.4 FACADE MODULATION: Requirements of 23.49.058.C - Facade Modulation and 23.49.058.D - Upper Level Width do not apply to portions of structures above the sidewalk if a story does not exceed 15,000 sf.

The proposed development does not contain floors in excess of 15,000 SF at 85’ above grade or higher.
CONTEXT PLAN

1 Westin Garage (Parking)
2 Westin Building (Hotel)
3 McGraw Square (Public Park)
4 Sheridan Building (Apartments)
5 Griffin Building (Office / Mixed Use)
6 Avis Building (Parking)
7 Parking Lot (Future Hotel / Retail)
8 Times Square Building (Office)
9 Hotel Andra (Hotel / Mixed Use)
10 Esca (Condominiums / Mixed Use)
11 Centennial Building (Retail)
12 Marshall Building (Office)
13 Security Market Building (Parking)
14 Securities Building (Office)

Pedestrian Entry
Vehicular Entry
SECTION 02.
RESPONSE TO EDG
The Design Review Board identified the following Downtown and Belltown Supplemental Design Guidelines as priority guidelines during Early Design Guidance and unanimously supported the preferred concept and massing of both EDG1 and EDG2 for the project while providing additional guidance which has informed the design response.

DOWNTOWN DESIGN GUIDELINES

A1.1 Response to Context
A1.2 Response to Planning Efforts
A2 Enhance the Skyline
A2.1 Desired Architectural Treatments
A2.2 Rooftop Mechanical Equipment

B1 Respond to neighborhood context
B1.1 Adjacent Features and Networks
B1.2 Land Uses
B2 Create Transition in Bulk and Scale
B2.3 Reduction of Bulk
B3 Reinforce the Positive Urban Form
B3.1 Building Orientation
B3.2 Features to Complement
B3.3 Pedestrian Amenities at Ground Level

C1 Promote Pedestrian Interaction
C3 Provide Active - Not Blank - Facades
C3.1 Desirable Facade Elements
C6 Develop the Alley Facade

D1 Provide Inviting & Usable Open Space
D1.1 Pedestrian Enhancements
D1.2 Open Space Features
D1.3 Residential Open Space
D2 Enhance the Building with Landscaping

E3 Minimize Presence of Service Areas
E3.1 Methods of Integrating Service Areas

BELLTOWN SUPPLEMENTAL GUIDELINES

A1.1 Views
A1.2 Street Grid
A1.3 Topography

B1.1 Compatible Design
B1.2 Historic Style
B1.3 Visual Interest
B1.4 Reinforce Neighborhood Qualities
B1.5 Respond to Nearby Design Features

C1.1 Retail Concentration
C1.2 Commercial Space Size
C1.3 Desired Public Realm Elements
C1.4 Building/Site Corners
C1.5 Pedestrian Interaction
C6.1 Address Alley Functions
C6.2 Pedestrian Environment

D1.1 Active Open Space
D1.2 Belltown Specific Landscape Character
D3 Provide Elements that Define the Place
D3.1 Art and Heritage
D3.2 Green Streets
D3.3 Street Furniture/Furnishings
D3.4 Street Edge

EDISON SUPPLEMENTAL GUIDELINES

C1.1 Retail Concentration
C1.2 Commercial Space Size
C1.3 Desired Public Realm Elements
C1.4 Building/Site Corners
C1.5 Pedestrian Interaction
C6.1 Address Alley Functions
C6.2 Pedestrian Environment

D1.1 Active Open Space
D1.2 Belltown Specific Landscape Character
D3 Provide Elements that Define the Place
D3.1 Art and Heritage
D3.2 Green Streets
D3.3 Street Furniture/Furnishings
D3.4 Street Edge

SPEAKMAN SUPPLEMENTAL GUIDELINES

C1.1 Retail Concentration
C1.2 Commercial Space Size
C1.3 Desired Public Realm Elements
C1.4 Building/Site Corners
C1.5 Pedestrian Interaction
C6.1 Address Alley Functions
C6.2 Pedestrian Environment

D1.1 Active Open Space
D1.2 Belltown Specific Landscape Character
D3 Provide Elements that Define the Place
D3.1 Art and Heritage
D3.2 Green Streets
D3.3 Street Furniture/Furnishings
D3.4 Street Edge

The Design Review Board identified the following Downtown and Belltown Supplemental Design Guidelines as priority guidelines during Early Design Guidance and unanimously supported the preferred concept and massing of both EDG1 and EDG2 for the project while providing additional guidance which has informed the design response.
5(B) TOWER PROPORTION & MASS
The Board supported the reshaped south and north tower plans from floor 4 up, as they resulted in a more slender and vertical proportion, as best depicted on pg 30. The Board noted this basically uniform massing extrusion is completely contingent upon the legible and successful resolution of the façade and material distinctions described under 5d and 7a below. (A1, B1, B3)
For response, see pages 24, 25

5(C) MECHANICAL PENTHOUSE
The Board strongly supported the stepped form at level 47, as it sets off the east portion as the proposed ‘lantern’ at a proper proportion (eg, the step can occur lower but not higher). The 2 layer glass enclosure of mechanical equipment is a critical compositional element on the skyline, as shown on pg 53, and should not become a generic louvered screen. See 7b for the Board recommended treatment for both the floor 12 reveal and the building top ‘lantern’. (A2.1 c; A2.2)
For response, see pages 26, 27

5(D) WEST FACADE MASSING
The Board continued to focus on the west façade and ‘saddlebag’ element, for both architectural and adjacency concerns. The Board agreed that the full height of this projecting element, whatever its final shape, should be expressed with a different and more solid character to clearly distinguish it from the east tower extrusion it abuts (also see comments under 7a). The Board agreed the west corner notches shown (pg 45 etc) should be increased, double notched and/or reshaped back to the recessed corner columns, to afford more light and air in the alley zone for both buildings. Additional stepping, angling and/or indentations to the middle of this wall between columns should also be considered. Lighter material colors should be employed here to amplify daylight. Since the Board recommends this element is fundamentally a different mass, its shape does not need to match the 90 degree corners of the east facade. [Staff note: the mid tower floor plans 13-32 shown on page 47 are larger areas than the corresponding plans shown on pg 68 at EDG#1, when the Board also recommended shaping of this west elevation: EDG#1, item 1d] (B3, C6.III)
For response, see pages 27, 28

6(A) NORTHEAST STREET CORNER
The Board supported the 3-level tall and transparent base as basically depicted on pg58/59/61, assuming canopies, entries and other scale elements are fully developed beyond the faint lines shown. The Board agreed the northeast street corner is a dynamic pedestrian location, and recommended the addition of doors and/or generous sliding windows on both street frontages to fully activate the corner. (C1.IV)
For response, see pages 30, 31

6(B) FIFTH AVENUE FRONTAGE
The Board strongly supported the 3 ft setback shown (more encouraged) and the code requirement for 75% of the frontage along 5th to be authentically retail/commercial uses with direct street access. Therefore, the Board recommended the south retail be expanded north, the second bay from the corner also have doors to the sidewalk, and the lobby function be reduced to 25% or less street frontage. Retail that also opens into the lobby is acceptable, as long as sidewalk activating doors are provided. (C1)
For response, see pages 32, 33

6(C) ALLEY PROGRAM VISIBILITY
The Board agreed the loading dock dooropenings is much more visible to Virginia Street, as shown on pg 60, and recommended the door be shifted at least one truck bay south. If the trash room then occupies that location, its door should face into the loading bay or the trash door must be fully integrated into the elevation design; this visible corner deserves an architecturally sophisticated design like any other façade. (C6, C6.I, E3)
For response, see pages 34, 35

6(D) NORTHWEST ALLEY CORNER
The Board agreed the west half of the Virginia facade and the alley corner were far too blank as shown on pg 60, and regardless of proposed layering strategies, should show more transparency on the street and wrapping the corner, such as glass walls at the staff, security and corner stair shown on page 42. Shifted and perforated loading doors have potential, and more opaque layering techniques are acceptable on the southern part of the alley façade, beyond the part visible to Virginia. (C3, C6)
For response, see pages 36-39

6(E) STREET LANDSCAPING (PAGE 38)
The sidewalk paving and landscape design shown on page 35, appears to be downtown standard, other than one ‘googie style bike rack’ in deference to the monorail and Beltown Guidelines D3.III.f. The Board supported a more complete exploration of streetscape, tree planters, lighting, signage and design elements that define place and reference the Belltown Neighborhood, the art and heritage of this specific site, and a generally more robust response to several guidelines that stipulate more than the generic, minimalist streetscape shown. (D2.I, D3.I, D3.III)
For response, see pages 41, 42

7(A) ELEVATION COMPOSITION & MATERIAL ARTICULATION
The Board strongly endorsed the basic 3 part vertical articulation of the primary tower as diagrammed on pg 31, as a crucial context response and important to adding scale to the unaesthetic form. The Board agreed the cladding of floors 3-11 should be more solid and deep than shown on pg 58, be legibly distinct from the cladding above the floor 12 ‘reveal’, and reflect more compositional cues and proportions from nearby Beltown buildings. The floors above the “#4 blue line” on pg 31 should be the most transparent, but not a 100% glass box that reads as an office. The Board focused on precedent image #3 on page 55 to illustrate the degree of façade depth, composition and differentiation recommended for the base and upper portions of the east tower; the left side displays 50-60% solidity (recommended for subject base), and the right side about 10-20% solid (recommended for mid-tower). The Board also noted the less static, double story groupings and vertical proportions of that precedent. NOTE: This precedent image shows depth from typical face of cladding to face of glass of 12-16 inch minimum; this depth is the minimum required for the subject base. (B3.I)
For response, see pages 60-65

7(B) LEVEL 12 & ROOFTOP REVEALS
The Board supported the 14ft tall (more is encouraged) and recessed reveal on 3 sides of level 12, as well as its overhang and columns on the south, this provides critical relief to the form and should not be reduced from the stated 3 foot depth (more is encouraged to ensure legibility). The Board agreed the day and night legibility of this reveal is critical, and recommended the 2 layer approach described for the ‘luminous top’ mechanical screen of the building (pg 54/56) also be executed at this reveal. To ensure this legibility, special lighting details and large scale sections of all layers will be required. Expressing the reveal is not needed on the west ‘saddlebag’, given the other recommendations under 5d. (A2.1)
For response, see pages 58, 59

7(C) WEST FACADE MATERIAL
Consistent with the comments under 5d above, The Board agreed the entire west ‘saddlebag’ projection, should be a different cladding from the adjacent east tower portion, and that cladding should be as solid as the base (as described under 7a) or more. That cladding material should be lighter in color (but not reflective) to amplify light in the alley zone, and be high quality and attractive to regularly see from the close proximity of the adjacent building across the alley. (B1)
For response, see pages 66-79

7(D) LIGHT & AIR IN ALLEY
The Board regretted the applicants did not provide the specific, small scale façade design studies requested at EDG#1 (EDG#1 report pg 5), to address privacy and light concerns at the west adjacency. Whatever the final shape of the west wall (5d above), the Board strongly reiterated the guidance under EDG#1, item 2b, and further recommended the following to ensure reasonable privacy between the two buildings: First- the proposed hotel rooms and units at the west corners of the tower should have windows mostly if not entirely- oriented to the south or north. Second - the west wall depth should be substantially (24”-24” advised) to provide for granted canted windows and other techniques to ensure unit to unit privacy, especially between living rooms and at the central portions of floors 4-19, where corner re-orientation is not possible. Other techniques such as louvered privacy windows, one-way films, vertical slot windows, etc should also be considered. (B1.1)
For response, see pages 66-79

EARLY DESIGN GUIDANCE : VERBATIM NOTES FROM EDG2

page numbers from EDG2 notes (in black) reference EDG2 Package page numbers

Douglaslaston Development 5th and Virginia | Project 3019699 | Downtown DRB Recommendation Meeting | 06.28.2016 | 21
MASSING PROGRESSION IN RESPONSE TO BOARD GUIDANCE

Zoning massing

- 100% of maximum development potential
- 730,038 square feet of mixed-use area

EDG1 massing

- 89.2% of maximum development potential
- 651,175 square feet of mixed-use area

EDG2 massing

- 80.5% of maximum mixed use development
- 587,821 square feet of mixed-use area

Recommendation massing

- 79.5% of maximum mixed use development
- 580,280 square feet of mixed-use area

The Board recommended shifting eastward to be in plane.

The Board enthusiastically endorsed the elimination of above-grade parking.

- The Board supported the stepped ‘lantern’ as a compositional element on the skyline.

- The Board recommended the reshaped tower plans and form and recommended that the west mass be distinguished from the east.

- The Board recommended further study of plans and facades opposite occupied floors of Escala.

- Residential towers encouraged above commercial.

- Commercial uses encouraged - maximum FAR 14.

- 160’-190’ depending on use.

- 500’

- Midpoint of Escala alley property line

- Midpoint of Escala alley property line

- Midpoint of Escala alley property line
The west form is curvilinear, less colorful, and less transparent.

The two masses are clearly articulated with facade and material distinctions.

The east form is rectilinear, more colorful, and more transparent.

Setbacks, reveals, and open spaces have been increased.

Podium height is minimized, while street level transparency and setbacks are maximized.

Tower is slender, and responds to contextual cues, activates street, creates a unified design concept.
BOARD GUIDANCE:
The Board supported the reshaped south and north tower plans from floor 4 up, as they resulted in a more slender and vertical proportion, as best depicted on pg 30. The Board noted this basically uniform massing extrusion is completely contingent upon the legible and successful resolution of the façade and material distinctions described under 5d and 7a below. (A1, B1, B3)

The Board supported the 14th tall (more is encouraged) and recessed reveal on 3 sides of level 12, as well as its overhang and columns on the south; this provides critical relief to the form.

The Board supported the reshaped south and north tower plans from floor 4 up, as they resulted in a more slender and vertical proportion...the Board recommended further differentiation of the western mass.

The Board did not opine on the southern portion of the hotel mass, but this mass has been voluntarily reduced to open up additional opportunities for daylight and views.

“The Board strongly supported the 3 ft setback shown (more encouraged) and the code requirement for 75% of the frontage along 5th to be authentically retail/commercial uses with direct street access.”
DESIGN RESPONSE:
The tower proportion and massing have been modified to reflect EDG guidance as follows.

These combined revisions to massing and building form preserve and enhance the slender proportion and other design concepts supported by the board. The modifications in response to Board guidance are to enhance privacy, increase access to light and air, increase openness to views, and to strengthen the distinction and legibility of east and west mass and the buildings public spaces.

- Continued curved western mass at levels 12 and 47 to “interlock” two distinct forms.
- Curved the west façade.
- Introduced a deep reveal at level 46.
- Reshaped Level 47 to be part of the western mass.
- Reduced height of the eastern mass.
- Set back both corners of the western façade further from the alley property line.
- Reshaped corner notches on the western mass with additional curves.
- Reduced length between the northwest and southwest corners of western mass.
- Set back the entire south face of the hotel from the south property line.
- Increased the depth of the reveal at level 12 on three sides.
EDG2 NOTES:
The Board strongly supported the stepped form at level 47, as it sets off the east portion as the proposed ‘lantern’ at a proper proportion (eg, the step can occur lower but not higher). The 2 layer glass enclosure of mechanical equipment is a critical compositional element on the skyline, as shown on pg 53, and should not become a generic louvered screen. See 7b for the Board recommended treatment for both the floor 12 reveal and the building top ‘lantern’. (A2.1.c; A2.2)

DESIGN RESPONSE:
The mechanical penthouse treatment and “glass lantern” rooftop bar have been enhanced in response to Board guidance by significant measures, as follows:

1. Glass enclosure
2. Opaque enclosure
3. Mechanical equipment
4. Enclosed space, open to below
5. Exterior space, open to sky

Increased “lantern” space to the west to maximize effect.
Continued the sculptural volume of the curved mass on all sides to accentuate.
Set back further on three sides to maximize legibility.
Introduced frit pattern to enhance 'lantern' lighting effect.
EDG2 NOTES:
The Board continued to focus on the west façade and 'saddlebag' element, for both architectural and adjacency concerns. The Board agreed that the full height of this projecting element, whatever its final shape, should be expressed with a different and more solid character to clearly distinguish it from the east tower extrusion it abuts (also see comments under 7a).

The Board agreed the west corner notches shown (pg 45 etc) should be increased, double notched and/or reshaped back to the recessed corner columns, to afford more light and air in the alley zone for both buildings. Additional stepping, angling and/or indentations to the middle of this wall between columns should also be considered. Lighter material colors should be employed here to amplify daylight.

Since the Board recommends this element is fundamentally a different mass, its shape does not need to match the 90 degree corners of the east extrusion. (Staff NOTE: the mid tower floor plans 13-32 shown on page 47 are larger areas than the corresponding plans shown on pg 68 at EDG#1, when the Board also recommended shaping of this west elevation: EDG#1, item 1d) (B3, CG-III)
The western façade massing has been modified to reflect EDG guidance as follows:

1. Introduced a substantial curve for the full height of the tower above the podium.
2. Angled the glazing to follow the line of the curve.
3. Increased the setback of the west corner notches from the west property line.
4. Reduced the length of the western-most portion of the western façade.
5. North and south corners/ notches are reshaped in a non-rectilinear manner.
6. Distinguished the western façade with a different character – a restrained color palette.
7. Distinguished the western façade with a more solid (less transparent) composition.
8. Reduced the overall vision glass area of the western façade.
9. Introduced balconies at the north and south above Escala.
10. Resolved the ‘interlock’ between the east and west massing with deeper setbacks.
11. Set back the south face of the hotel to be in line with the tower above.
EDG2 NOTES:
The Board supported the 3-level tall and transparent base as basically depicted on pg 58/59/61, assuming canopies, entries and other scale elements are fully developed beyond the faint lines shown. The Board agreed the northeast street corner is a dynamic pedestrian location, and recommended the addition of doors and/or generous sliding windows on both street frontages to fully activate the corner. (C1.IV)

DESIGN RESPONSE:
The Northeast Street Corner has been enhanced by incorporating a large extent of operable glazed wall system 'Nanawall' along Fifth Avenue. The structural framing system for this element and canopy follow the bar/restaurant frontage around the corner to express the continuity of these spaces and accentuate the corner. It is not feasible or desirable to include ‘Nanawall’ on Virginia Street due to the incline of the street grade and the offset between sidewalk elevation and interior finish floor. A significant entry statement is made to the bar lobby that accesses the dedicated rooftop express elevator.

Restaurant and bar entry moved closer to corner, added operable glazing along 5th Avenue.
EDG2 NOTES:
The Board strongly supported the 3 ft setback shown (more encouraged) and the code requirement for 75% of the frontage along 5th to be authentically retail/commercial uses with direct street access. Therefore, the Board recommended the south retail be expanded north, the second bay from the corner also have doors to the sidewalk, and the lobby function be reduced to 25% or less street frontage. Retail that also opens into the lobby is acceptable, as long as sidewalk activating doors are provided. (C1)

DESIGN RESPONSE:
The Fifth Avenue Retail and Commercial frontage has been further setback, the lobby frontage reduced by the expansion of retail and restaurant/bar space to the north and south. Additional doors to the retail space from the sidewalk have been provided.

Entire 5th Avenue frontage set back further, lobby width reduced, additional retail doors added, operable glass wall added, scale elements, materials, and details developed.
61' (41%) retail frontage

32' (22%) lobby frontage

54' (37%) bar and restaurant frontage

5' typical setback

22' sidewalk width
EDG2 COMMENTS:
The Board agreed the loading dock door opening is much too visible to Virginia Street, as shown on pg 60, and recommended the door be shifted at least one truck bay south.

If the trash room then occupies that location, its door should face into the loading bay or the trash door must be fully integrated into the elevation design; this visible corner deserves an architecturally sophisticated design like any other façade.

(C6, C6.I, E3)

DESIGN RESPONSE:
The loading dock has been moved as far south as possible, a distance of 27’ (the equivalent of 2.7 truck bays) from the location at EDG2. The trash room has been minimized (while meeting Seattle requirements for access from the alley) and the access doors for services are incorporated into the architecture of the alley façade system, which is a layered system of perforated metal over varying conditions including glass, louvers, and blank wall, to create a unified and attractive alley facade. Additional glazing and transparency have been incorporated and turn the corner to the alley. Continuous shielded overhead downlighting along the alley frontage is provided for safety and security.

The podium height has been further lowered to reduce scale at the alley. The entire facade of the alley is set back 2’ to widen the alley to 20’ along this property line.
- Lowered height of podium.
- Relocated loading area further from Virginia sidewalk.
- Extended transparency around the corner.

Diagram notes:
- Between sidewalk and loading door: 40' 6".
- Ramp down to below grade parking.

Legend:
1. Commercial Trash
2. Residential Trash
3. Loading
4. Gas Meters
5. Parking garage ingress/egress
EDG2 COMMENTS:
The Board agreed the west half of the Virginia frontage and the alley corner were far too blank as shown on pg 60, and regardless of proposed layering strategies, should show more transparency at the street and wrapping the corner, such as glass walls at the staff, security and corner stair shown on page 42. Shifted and perforated loading doors have potential, and more opaque layering techniques are acceptable on the southern part of the alley façade, beyond the part visible to Virginia. (C3, C6)

DESIGN RESPONSE:
The northwest alley corner has been modified to maximize transparency into the security, staff, and south stair areas that front this portion of Virginia. Additional glazing has been introduced at the corner of the alley, which is visible from Virginia Street. The perforated panel ‘layer’ to the layered facade system has been raised to above the canopy line, and the perforated panels have been extended into the interior as a backlit layer to enhance the “inside/outside” reading of this space and create a highly transparent and interesting ‘lantern’ at the corner, while accommodating code required functions.
6(E) STREET LANDSCAPING

EDG2 NOTES:
The sidewalk paving and landscape design shown on page 35, appears to be downtown standard, other than one ‘googie style bike rack’ in deference to the monorail and Belltown Guideline D3.III.f. The Board supported a more complete exploration of streetscape, tree planters, lighting, signage and design elements that define place and reference the Belltown Neighborhood, the art and heritage of this specific site, and a generally more robust response to several guidelines that stipulate more than the generic, minimal streetscape shown. (D2.I, D3.I, D3.III)

DESIGN RESPONSE:
A purposeful and restrained design approach to the public realm has been proposed and is detailed to achieve an “uncluttered” and engaging connection to street level uses via widened sidewalks, specialty paving, plantings, street trees, bronze street name sidewalk inlays at the corner, lighting, signage, “googie” bicycle racks, and “googie” tree guards.

The proposed design reinforces indoor/outdoor uses without creating barriers and is consistent with DRB support of the ground level engagement of the building. The expanse of paving at the corner of 5th Ave and Virginia provides for a future outdoor sidewalk café outside the operable Nanawall type doors, while maintaining sufficient sidewalk space in this area to foster the greater pedestrian traffic on this part of the site. Street tree locations have been coordinated with SDDOT, King County Metro, Seattle Monorail Services, and other utilities requiring overhead clearances. Planter locations have been increased to the extent possible with King County Metro uses along Virginia, and a potential Valet Loading Zone along 5th Ave. Shorter planters are more appropriate in high pedestrian traffic areas, and all paving proposed is non-standard specialty scoring (SDDOT acceptable) with a unique concrete mix proposed at the entrances.
EDG2 COMMENTS:
The Board strongly endorsed the basic 3 part vertical articulation of the primary tower as diagrammed on pg 31, as a crucial context response and important to adding scale to the unchanging form. The Board agreed the cladding of floors 3-11 should be more solid and deep than shown on pg 58, be legibly distinct from the cladding above the floor 12 ‘reveal’, and reflect more compositional cues and proportions from nearby Belltown buildings. The floors above the “#4 blue line” on pg 31 should be the most transparent, but not a 100% glass box that reads as an office. The Board focused on precedent image #3 on page 56 to illustrate the degree of façade depth, composition and differentiation recommended for the base and upper portions of the east tower; the left side displays 50-60% solidity (recommended for subject base), and the right side about 10-20% solid (recommended for mid-tower). The Board also noted the less static, double story groupings and vertical proportions of that precedent. NOTE: This precedent image shows depth from typical face of cladding to face of glass of 12-16 inch minimum; this depth is the minimum required for the subject base. (B3.1)
DESIGN RESPONSE:
The three-part vertical articulation of the tower form has been maintained with additional setbacks at street level and development of the massing and cladding details. The material articulation of the tower and base have been developed in a manner consistent with the design intent as presented and supported at EDG2, and in accordance with the guidance of the Board albeit the Board did not mandate prescriptive dimensional directives regarding system depths or glazing percentages.

The differentiation of the tower facade by program, by level, and by orientation has been developed parametrically to add detail, enhance modulation, emphasize distinction and express differentiation within a unified concept as follows:

UNIFYING ELEMENTS (UE):
1. All glass tower with a blend of vision glass and colored opaque glass.
2. Horizontal ‘belt’ zone at floor slabs provides horizontal register and scale.
3. Mullions provide “tracery” and detail with color contrast and shadow line.

DIFFERENTIATING ELEMENTS (DE):
1. Offsets between vision glazing locations by program and orientation.
2. Gradient of sill heights, increasing vision glass percentage bottom to top.
3. Reduction in vision glass based location and orientation.
4. Polychrome colored glass material on eastern mass.
5. Duochrome colored glass material on western mass.
6. Depth of reveals
7. Sculptural forms
8. Materials at base.
9. Depth at base.

MODULATING ELEMENTS (ME):
1. Secondary mullions
2. Operable windows
3. Color
4. Balconies
Completed in 1928, the Seattle Tower... represents a dramatic shift in the appearance of Seattle's skyline... by the 1920s, architects began to favor designs that attempted to emulate the speed, efficiency and power found within technology, perceived by many as humanity's hope for the future...

The building beautifully illustrates the increasing popularity of a simple, smooth, almost machine-like exterior.

The Seattle Tower is clad in 33 shades of brick designed to effect a gradient which lightens from the bottom to the top of the building. This is said to have been inspired by local rock formations.

- Wikipedia

A selection of spandrel panels at slab edges of the orthogonal mass are treated with a palette of five different colors.

The height of the glass spandrel panels decreases as the tower extends upwards.
The location of operable windows is modulated at the east residential portion of the tower.

The window sizes and locations respond to use, adjacent context, and height within the tower.

Major design elements (reveals, setbacks, podium, restaurant, balconies) respond to contextual datums of Escala and Monorail.
TOWER MATERIALS, COLOR, PATTERN
The proposed exterior material palette is inspired by our region, climate, culture, and technology and builds on these references to articulate a meaningful design statement for a high rise in Seattle in the 21st century.

Our region is surrounded by water in many forms – from rivers and lakes to glaciers and snowcapped mountains to the Puget Sound. Our maritime climate is characterized by frequent rain, clouds, and overcast days. Our culture is one of innovation and technological advancement.

The exterior palette is inspired by the colors of water as observed in Elliott Bay, the Nisqually Glacier, and the ice caves at Mount Rainier. The cool tones of a modulated range of blue glass spandrels harmonizes visually with natural light in Seattle which is at the cool end of the color spectrum with a color temperature of around 8000k typically.

The blue glass panels are modulated within a graduated horizontal band, a visual pattern inspired by a bit stream of information and a compositional technique borrowed from the Seattle tower.

The overall impression of the building in modulated cool blue tones is meant to be refreshing, crisp, quiet, and sophisticated. Additional textures, layers, and contrasting material tones are used at the base of the tower to provide visual interest and frame the street level uses.
Vision glass
Vision-matched spandrel glass
Colored spandrel glass
Operable window
COLOR OPTIONS

As presented at EDG2, computational design methods were used to develop the elevation composition and material articulation of the tower. The key parameters that were evaluated were color combinations, overall amounts of color, and degrees of transparency. During the study process, the design was evaluated based on its relationship to context, which informed the preferred coloration (zones where color was included or excluded) and the location and size of windows - which vary at each room type, by orientation, and height in the tower. Through this process, the overall glazing area was optimized.

COMPUTATIONAL DESIGN LOGIC

This page displays a diagram of the computational "logic" that was used to generate unique facade iterations for the purpose of studying various strategies for material articulation and display. The adjacent page shows a sampling of iterations that were thoroughly evaluated before reaching the proposed design solution.
7(A) ELEVATION COMPOSITION & MATERIAL ARTICULATION : COMPUTATIONAL DESIGN - COLOR STUDIES

- ROBINS EGG - 5 COLORS - RANDOM PATTERN - SOLARBAN z75 OPTIBLUE
- SUNSET - 5 COLORS - RANDOM PATTERN - SOLARBAN 60 OPTIGRAY
- MOJITO - 5 COLORS - RANDOM PATTERN - SOLARBAN 60

- SEAHAWKS - 3 COLORS - GRADIENT - SOLARBAN z75 OPTIBLUE
- CRANBERRY RIVER - 3 COLORS - RANDOM PATTERN - SOLARBAN 60 OPTIGRAY
- SOFT BLUES - 3 COLORS - RANDOM PATTERN - SOLARBAN z75 OPTIBLUE

- JUST BLUE - 5 COLORS - RANDOM PATTERN - SOLARBAN z75 OPTIBLUE
- SUNSET - 4 + 1 COLORS - RANDOM PATTERN - SOLARBAN 60 OPTIGRAY
- VISION AND VISION MATCHED SPANDREL ONLY - SOLARBAN z75 OPTIBLUE
OPTIMIZATION OF GLAZING

The glazing percentage of the design was carefully calibrated and tracked during the design process in order to respond to unique conditions of program and site. The glazing conditions at each level (window placement and overall glazing percentage) were composed to maximize daylight and views while also protecting privacy.
55% vision glass overall, substantially less when facing Escala, as detailed in this submittal in plan, section, elevation, and perspective.
5TH AVENUE - FACADE MODULATION
Diagrammatic perspective to show shadows and modulation, not photo-real.

Operable windows modulate between levels
Spandrel size decreases every four levels
Level 12 reveal separates hotel and residential masses
7(A) ELEVATION COMPOSITION & MATERIAL ARTICULATION: MODULATION AND ARTICULATION

VIRGINIA STREET - FACADE MODULATION
Diagrammatic perspective to show shadows and modulation, not photo-real

Operable windows modulate between levels
Spandrel size decreases every four levels

Level 12 reveal separates hotel and residential masses
7(A) ELEVATION COMPOSITION & MATERIAL ARTICULATION: MATERIALS LEGEND

<table>
<thead>
<tr>
<th>ID</th>
<th>Material</th>
<th>Location</th>
<th>Specification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL-01</td>
<td>Glass, vision</td>
<td>Tower</td>
<td>Vision Glass, all locations</td>
<td>PPG Solarban z75 (2) on Optiblue + Clear Glass IGU</td>
</tr>
<tr>
<td>GL-02</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, non vision vertical panels all locations</td>
<td>PPG 50% grey opacifier coat #4 surface of Solarban z75 IGU</td>
</tr>
<tr>
<td>GL-03</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, bypass zone, panels east mass</td>
<td>PPG 50% grey opacifier coat #4 surface of Solarban z75 IGU</td>
</tr>
<tr>
<td>GL-04</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, bypass zone, color 1, east mass</td>
<td>PPG clear monolithic plate glass w/ opaci-coat-300 on #2 surface, color #6 - 0025 "Harmony Blue"</td>
</tr>
<tr>
<td>GL-05</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, bypass zone, color 2, east mass</td>
<td>PPG clear monolithic plate glass w/ opaci-coat-300 on #2 surface, color #6 - 3270 "Loyal Blue"</td>
</tr>
<tr>
<td>GL-06</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, bypass zone, color 3, east mass</td>
<td>PPG clear monolithic plate glass w/ opaci-coat-300 on #2 surface, color #6 - 2294 "Georgian Bay"</td>
</tr>
<tr>
<td>GL-07</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, bypass zone, color 4, east mass</td>
<td>PPG clear monolithic plate glass w/ opaci-coat-300 on #2 surface, color #6 - 1232 "Secure Blue"</td>
</tr>
<tr>
<td>GL-08</td>
<td>Glass, opaque</td>
<td>Tower</td>
<td>Spandrel Glass, bypass zone, color 5, east mass</td>
<td>PPG clear monolithic plate glass w/ opaci-coat-300 on #2 surface, color #6 - 1231 "Resolute Blue"</td>
</tr>
<tr>
<td>GL-09</td>
<td>Glass, vision</td>
<td>Base</td>
<td>Vision glass, retail and restaurant</td>
<td>PPG Starfire clear glass IGU</td>
</tr>
<tr>
<td>GL-10</td>
<td>Glass, vision w/ frit</td>
<td>Tower</td>
<td>Vision glass at upper portion of rooftop bar "lantern"</td>
<td>PPG Solarban z75 (2) on Optiblue + Clear Glass IGU, frit on #2 surface</td>
</tr>
<tr>
<td>GL-11</td>
<td>Glass, canopy</td>
<td>Base</td>
<td>Canopy glass, all locations</td>
<td>Laminated low iron glazing with ceramic frit</td>
</tr>
<tr>
<td>M-01</td>
<td>Mullion</td>
<td>Tower</td>
<td>Mullions, tower</td>
<td>Window wall system profile with Valspar Dove Metallic finish</td>
</tr>
<tr>
<td>M-02</td>
<td>Mullion</td>
<td>Base</td>
<td>Mullions, base</td>
<td>Window wall system profile with Valspar Dove Metallic finish</td>
</tr>
<tr>
<td>MP-01</td>
<td>Perforated metal</td>
<td>Base</td>
<td>alley and portion of Virginia above glazed zone</td>
<td>3/16” thick plate metal with Valspar Dove Metallic finish</td>
</tr>
<tr>
<td>MP-02</td>
<td>Metal panel</td>
<td>Soffits</td>
<td>soffits at tower below levels 4 and 13</td>
<td>Metal Panel with Valspar Dove Metallic finish</td>
</tr>
<tr>
<td>P-01</td>
<td>Panel material</td>
<td>Base</td>
<td>panel elements along Fifth Avenue and Virgina</td>
<td>NeoLith strongfix ventilated façade system</td>
</tr>
</tbody>
</table>

Materials specifications indicate aesthetic and performance characteristics of the proposed design and are not intended to be proprietary specifications and do not preclude alternate products with equivalent aesthetic and performance characteristics.
7(A) ELEVATION COMPOSITION & MATERIAL ARTICULATION: SHADOW LINE, GRADIENT OF SPANDREL DEPTH

Wall Assembly Details, illustrating variable sill height and depth of shadow line

Key to colored spandrel panel sizing
EDG2 COMMENTS:
The Board supported the 14ft tall (more is encouraged) and recessed reveal on 3 sides of level 12, as well as its overhang and columns on the south; this provides critical relief to the form and should not be reduced from the stated 3 foot depth (more is encouraged to ensure legibility). The Board agreed the day and night legibility of this reveal is critical, and recommended the 2 layer approach described for the “luminous top” mechanical screen of the building (pg 54/56) also be executed at this reveal. To ensure this legibility, special lighting details and large scale sections of all layers will be required. Expressing the reveal is not needed on the west “saddlebag”, given the recommendations under 5d. (A2.1)

DESIGN RESPONSE:
The level 12 reveal depth has been increased dramatically in dimension to ensure legibility, while retaining the tall height alignment along 5th Avenue. The lighting details and material treatment of the “luminous top” have been developed to include fritted treatment of the glass to enhance the glowing effect of light on this surface, as well as the specification of luminaires for this purpose.

The 2-layer day/night approach is maintained at Level 12, with interior partitions generally held back from the exterior wall and interior ceilings illuminated consistently around the perimeter of the western mass. Small point light fixtures are arranged at the underside of the exterior soffit to provide definition of the eastern mass above, at this mid-level reveal.
KEY TO BUILDING REVEALS

LEVEL 47
6’ TO 19’ DEPTH

LEVEL 46
21’ TO 25’ DEPTH

LEVEL 12
3’ TO 17’ DEPTH
EDG2 COMMENTS:
Consistent with the comments under 5d above, The Board agreed the entire west 'saddlebag' projection, should be a different cladding from the adjacent east tower portion, and that cladding should be as solid as the base (as described under 7a) or more. That cladding material should be lighter in color (but not reflective) to amplify light in the alley zone, and be high quality and attractive to regularly see from the close proximity of the adjacent building across the alley. (B1)

DESIGN RESPONSE:
The entire west façade projection has been reduced in length, curved across its reduced extents, and is designed with a cladding that is different than and more solid (less transparent) than the east mass. The western mass as a ‘duotone’ glass window wall comprised of vision glass and color matched spandrel glass which is lighter than and more regular than the typical ‘polychrome’ pattern of colored glass on the eastern mass.

The west façade wall is predominantly and markedly less transparent where it is opposite the Escala (as compared to the other facades of the proposed design, or to The Escala). The material qualities of glass and color matched spandrel glass along the curved western façade will produce changing and ephemeral effects of light and are deemed the most appropriate ‘solid’ material in this context in lieu of a less refractive solid material.

The glass and spandrel specified on the west façade are selected to maximize visual uniformity and unity, minimize the immediately discernible pattern of vision and non-vision glass, and thus best exploit the optical phenomenon of the curve. All combined, these articulations create a gently receding, faceted surface upon which the canted window planes change with different environmental conditions, viewing positions, and degrees and conditions of natural light.

The differences that have been designed into the west façade are summarized as follows:

1. Curvilinear vs. rectilinear at the east.
2. Significantly shorter in length than the east (and shorter than west face at EDG1 and EDG2).
3. Aligned vertical mullions vs. modulated offset mullions at the east.
4. Aligned operable vs. modulated offset mullions at the east.
5. Substantially less vision glass than the east and less than EDG1 and EDG2.
6. Duotone color palette vs. polychrome color palette at the east.
7. Balconies above adjacency zone
8. No reveal at level 12
TRANSPARENCY COMPARISON/ALLEY FACADES

As a point of comparison, it should be noted that the amount of transparency proposed on the western alley facing façade of 5th and Virginia is dramatically less than the eastern alley facing transparency of the Escala.

Specifically, the east alley façade of the Escala has 1.8 times (60%/33%) the percentage of transparency of the west facing western hotel rooms of the proposed design and 1.3 times (60%/46%) the percentage of transparency as the west facing western apartment units below the Escala roofline.

The glazing reductions between EDG2 and the proposed design are substantial and result in transparencies that are unusually low for hotel and residential uses. Further reductions of vision glass area would unfairly deprive the residents and guests of Fifth and Virginia of light and view or would not be permissible by building code.

Facade segments at distances that exceed 60° of separation (comparable to a downtown street right of way) are excluded from both buildings, although the average glazing percentage of the proposed development is 55% in the aggregate with the exceptions noted on this page at the west facing façade of the western mass.

*Escala glazing values from Phase 4 Permit submittal sheet G2.05, DPD# 6083915
Aesthetic Description
Solarban® z75 and Solarban® z50 solar control, low-e glasses provide a steel blue-gray appearance with high levels of visible light transmittance. While the two glasses have a similar appearance, the coatings for each are tuned to provide different levels of solar control performance, enabling architects to specify the optimal choice for local climate and building code demands. Their cool, neutral aesthetic is designed to complement surrounding building materials, including other high-performance glazings.

Performance Characteristics
Neutral, cool-gray Solarban® z75 and Solarban® z50 glasses excel at controlling glare while offering superior daylighting and solar control properties to support sustainable design. The result is a pair of products that complement a wide range of design scenarios with visible light transmittance (VLT) and solar heat gain coefficients (SHGC) that are as good as or better than competing architectural glasses with the same aesthetic.

In a standard 1-inch insulating glass unit (IGU) with clear glass, Solarban® z75 glass has a SHGC of 0.24 and VLT of 48 percent, which permit the selection of a light to solar gain (LSG) ratio of 2.00. These exceptional solar control characteristics make Solarban® z75 glass an excellent choice for warmer climate zones with high air-conditioning demands.

In the same configuration, Solarban® z50 glass registers a SHGC of 0.32 and VLT of 51 percent, producing an LSG ratio of 1.59. Consequently, Solarban® z50 glass may be better suited to climate zones that are more equally balanced between heating and cooling seasons.

With interior reflectance levels below 12 percent, Solarban® z75 and Solarban® z50 glasses provide building occupants with clear, natural outdoor views. Similarly, because of their neutral color, Solarban® z75 and Solarban® z50 glasses harmonize well with other clear and color-neutral solar control, low-e glasses such as Solarban® 67 and Solarban® R100 glasses.

SHGC Comparison

<table>
<thead>
<tr>
<th>Glass Type</th>
<th>SHGC 0.20</th>
<th>SHGC 0.25</th>
<th>SHGC 0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarban® z75</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Solarban® z50</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
</tbody>
</table>

VLT Comparison

<table>
<thead>
<tr>
<th>Glass Type</th>
<th>VLT 0%</th>
<th>VLT 20%</th>
<th>VLT 40%</th>
<th>VLT 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarban® z75</td>
<td>60%</td>
<td>48%</td>
<td>36%</td>
<td>24%</td>
</tr>
<tr>
<td>Solarban® z50</td>
<td>51%</td>
<td>39%</td>
<td>31%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Neutral, cool-gray Solarban® architectural glasses with the same aesthetic.

Similarly, because of their neutral color, Solarban® glasses complement a wide range of design scenarios with visible daylighting and solar control properties to support sustainable design. The result is a pair of products that complement a wide range of design scenarios with visible light transmittance (VLT) and solar heat gain coefficients (SHGC) that are as good as or better than competing architectural glasses with the same aesthetic.

In a standard 1-inch insulating glass unit (IGU) with clear glass, Solarban® z75 glass has a SHGC of 0.24 and VLT of 48 percent, which permit the selection of a light to solar gain (LSG) ratio of 2.00. These exceptional solar control characteristics make Solarban® z75 glass an excellent choice for warmer climate zones with high air-conditioning demands.

In the same configuration, Solarban® z50 glass registers a SHGC of 0.32 and VLT of 51 percent, producing an LSG ratio of 1.59. Consequently, Solarban® z50 glass may be better suited to climate zones that are more equally balanced between heating and cooling seasons.

With interior reflectance levels below 12 percent, Solarban® z75 and Solarban® z50 glasses provide building occupants with clear, natural outdoor views. Similarly, because of their neutral color, Solarban® z75 and Solarban® z50 glasses harmonize well with other clear and color-neutral solar control, low-e glasses such as Solarban® 67 and Solarban® R100 glasses.
The degree of transparency for glass is a function of the glass properties (color, VLT, reflectance) and the viewers angle to the glass - the more oblique the viewing angle, the less transparent the glass appears. The specified glass and curved facade work in tandem to amplify this effect.
SPECIFIED GLASS/PRIVACY EVALUATION

The proposed glass vision was placed in a test box with T-Rex and photographed at various angles in daylight conditions to evaluate and demonstrate the effects of the angle of view and the transparency of the proposed glass as seen from the exterior. Photographs at orientations true to the proposed installed condition and angles of view from Esca. One can see the degree of privacy provided, even at close proximity (much closer than real world installation) T-Rex virtually disappears.

How To View & Evaluate Glass Samples

Coated glass is normally selected based on reflected color, as this is typically seen in outdoor/natural lighting conditions. To see the reflected color of glass, it is best to view samples with a black background. Position the sample so that someone can look at an image that is reflected from the glass surface. This is the true reflected color of the sample.

Example: Place a piece of black paper, or other low-gloss black material, on a desktop or other flat surface. Position the glass sample on the paper with the exterior side up, so that you can see the image of the overhead lights being reflected from the glass surface. To view the transmitted color, it is best to view samples using a white background. Evaluating glass samples with a white background will not give a true indication of the exterior appearance of the sample. This instead projects the transmitted color and is not what you will see once the glass is installed in the building.

Guardian recommends that samples be viewed in outdoor/natural lighting conditions, preferably in a slightly overcast condition, for the most accurate rendering of transmitted and reflected color. Also, architects are encouraged to consider angle of observation, interior lighting conditions and potential effects of glare when choosing glazing products.

When evaluating samples outdoors, we recommend viewing them during various times of the day and under varying lighting conditions, e.g., cloudy versus sunny conditions. This will provide a truer indication of what the glass will look like, as well as give you the opportunity to see how varying light conditions impact your design intent. After removing the glass from the sample box, place it in a vertical or slightly angled position. Viewing the glass with a black background in the distance is preferred to replicate lighting once installed in the structure. Then look through the glass to provide the best indication of the appearance of installed glass.

Recommended method for evaluating glass, by industry experts.

Proposed glass installed on a curved facade (actual photo)
EMPIRICAL OBSERVATIONS
Date: June 13, 2016
Time: 12:40 pm - 1:00 pm
Conditions: Partly Sunny
Location: Westlake Plaza
EDG2 NOTES:
Whatever the final shape of the west wall (5d above), the Board strongly reiterated the guidance under EDG1.4 item 2b, and further recommended the following to ensure reasonable privacy between the two buildings. First the proposed hotel rooms and units at the west corners of the tower should have windows mostly - if not entirely - oriented to the south or north. Second - the west wall depth should be substantial (14-24' advised) to provide for canted windows and other techniques to ensure unit to unit privacy, especially between living rooms and at the central portions of floors 4-19, where corner re-orientation is not possible. Other techniques such as lowered privacy windows, one-way films, vertical slot windows, etc should also be considered. (B.1.1)

RELATIONSHIP AT ALLEY
The relationship to the residences at the Escala has been carefully considered in the design of the proposed development. Every unique floor condition has been taken into account in a detailed analysis to optimize access to light and air while maximizing privacy for occupants of both buildings. Particular attention has been taken in placement of hotel and residential living room windows of the proposed development to minimize alignment with living areas at the Escala in addition to massing and material treatments to designed to respond to context.

ESCALA UNITS ON ALLEY:
The Escala is comprised of 270 residential units. A total of 100 (37%) of the Escala units face the east alley frontage to some degree. The 100 Escala units with some degree of alley exposure have varying amounts of shared alley frontage with the proposed development - for example, the southernmost Escala unit ‘overlaps’ the proposed development for a mere 11 inches at a blank wall in the Escala bedroom, while the northernmost Escala unit has substantial exposure other than the alley. In fact, of the alley facing units at Escala, 56 units (56% of the alley facing units, or 20% of the total units in Escala) have multiple frontages with significant non-alley exposures to Virginia Street and/or to the southeast.

There are 44 centrally-located alley facing units (44% of the alley facing units, or 16% of the total units in Escala) that are centrally located with predominantly alley frontage. At levels 19-30 these central units are ‘double wide’, and extend beyond the profile of the western mass of the 5th and Virginia Tower. All of these units are separated from the proposed development by a minimum of 30’, ranging up to 60’, affording zones of unlimited views and substantial access to daylight and air.

The remaining 16 central alley facing units at floors 3-18 (16% of the total alley facing units, or 6% of the total units in Escala) are separated from the proposed development by a minimum of 30’, ranging up to 34-9’, and have ample access to light and air as demonstrated in the submittal.

Of these 16 central alley facing units, 9 of them (on Escala floors 3-11) are adjacent to the hotel portion of the proposed development (with periodic occupancy and limited windows) and only 7 of 270 units (2.5% of the total units in Escala) are centrally located on the alley adjacent to the residential portion of the proposed development.

DESIGN RESPONSE
The design has been substantially modified in response to DRB guidance to address adjacency concerns. Numerous significant changes have been made as follows:

1. Vision glazing at corner units has been oriented mostly north or south, per Board guidance.
2. West facing windows have been canted via the introduction of a curve across the west façade.
3. The northwest and southwest corners of the west façade of the western mass have been set back further east to be 9’ and 15’-9’ from the alley property line.
4. The length of the western-most façade of the western mass has been reduced from 111’ to 105’.
5. A high performance glass with appropriate shading coefficient, visible light transmittance, and other performance characteristics selected to maximize privacy has been specified.
6. Privacy shades will be provided at all west facing windows.
7. Interior layouts have been modified with special care taken to locate living spaces and window locations to minimize overlaps with living spaces in the neighboring building.
8. The amount of vision glass at the west façade of the western mass has been significantly decreased between EDG2 and is below the goal of 50% vision glass overall, as stated in the EDG2 submittal.

4. The length of the western-most façade of the western mass has been reduced from 111’ to 105’.

5. A high performance glass with appropriate shading coefficient, visible light transmittance, and other performance characteristics selected to maximize privacy has been specified.

6. Privacy shades will be provided at all west facing windows.

7. Interior layouts have been modified with special care taken to locate living spaces and window locations to minimize overlaps with living spaces in the neighboring building.

8. The amount of vision glass at the west façade of the western mass has been significantly decreased between EDG2 and is below the goal of 50% vision glass overall, as stated in the EDG2 submittal.

9. The west facing residential apartment’s vision glazing has been reduced to as low as 46%, a degree of transparency which is substantially less than at EDG2 and is below the goal of 50% vision glass overall, as stated in the EDG2 submittal.

Escala Floor Plan, Levels 3-18 - plans and adjacency relationship shown to scale
ADJACENCY SUMMARY:

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.16'</td>
<td>89.33'</td>
<td>41.06'</td>
<td></td>
</tr>
</tbody>
</table>

- Unbuilt above level 3 podium
- EDG2 tower footprint

See following page for adjacency section.
Perspective from Escala Balcony, Level 18, Facing North
The floor levels are designed to minimize alignments between the proposed development and the Escala.
Zones of overlap between Escala living room vision glass and hotel room vision glass are identified. The amount of overlap between areas of hotel vision glass and Escala living spaces has been greatly reduced from EDG1 and EDG2 and hotel room planning and layout has been modified to address adjacency concerns.
Zones of overlap between Escala living room vision glass and apartment living room (or studio) vision glass are identified. The amount of overlap between areas of proposed development living room (or studio) vision glass and Escala living spaces has been greatly reduced from EDG1 and EDG2 and apartment room planning and layout has been modified to address adjacency concerns.
Zones of overlap between Escala living room vision glass and apartment living room (or studio) vision glass are identified. The amount of overlap between areas of proposed development living room (or studio) vision glass and Escala living spaces has been greatly reduced from EDG1 and EDG2 and apartment room planning and layout has been modified to address adjacency concerns.
Zones of overlap between Escala living room vision glass and apartment living room (or studio) vision glass are identified. The amount of overlap between areas of proposed development living room (or studio) vision glass and Escala living spaces has been greatly reduced from EDG1 and EDG2 and apartment room planning and layout has been modified to address adjacency concerns.
ORIENTATION AND MASSING:
The proposed development is located to solar north of the alley and the adjacent Escala. The alley is oriented northwest/northeast at approximately 45 degrees from solar north/south. The sun path is shown in plan and three dimensions to illustrate this relationship and reflect the fact that the proposed development siting, orientation, and massing are designed to maximize opportunities for light and air in the alley for the Escala tower and for the proposed development.

The existing surrounding urban environment in the DOC2 downtown core is dense and tall, meaning that early morning low angle direct sunlight to the northeastern alley face of Escala is impacted by existing development, not the proposed development.

When the sun has risen above the existing adjacent development it is at an azimuth and altitude that provides daylight to the alley along a vector that does not intersect the proposed tower due to the proposed development’s massing, orientation, and position relative to the sun and to the Escala.
Escala is positioned to “solar south” of proposed development with alley to north.

- Low/mid angle sunlight is fully accessible to alley facing units at Escala due to tower shaping, separation, and orientation.
- Low angle sunlight is blocked by existing downtown context, no impact from proposed development.
7(D) LIGHT AND AIR IN ALLEY

SITE SHADOWS, NO DEVELOPMENT

VERNAL SOLSTICE SUMMER SOLSTICE AUTUMNAL SOLSTICE WINTER SOLSTICE

8 AM

12 PM

5 PM
SITE SHADOWS, WITH DEVELOPMENT

VERNAL SOLSTICE SUMMER SOLSTICE AUTUMNAL SOLSTICE WINTER SOLSTICE
SECTION 03.
DESIGN PLANS,
ELEVATIONS,
SECTIONS
PLAN, LEVEL 01, FIFTH AVENUE ENTRY LEVEL

- 1: Hotel Bar and Restaurant
- 2: Hotel Front Desk
- 3: Residential Front Desk
- 4: Package Room
- 5: Retail
- 6: Retail Kitchen
- 7: Hotel Elevators
- 8: Residential Elevators
- 9: Fire Command Center
- 10: Mail room
- 11: Ramp Down to Parking Garage

Pedestrian Entry
Open to Below

Douglas Development 5th and Virginia | Project 3019699 | Downtown DRB Recommendation Meeting | 06.28.2016

PERKINS+WILL
1 King Bed Hotel Room
2 Queen / Queen Hotel Room
3 Suite Hotel Room
1. Fitness Room
2. Yoga Room
3. Pool
4. Hot Tub
5. Meeting Room
6. Spa
7. 6' Glass Privacy Wall

PLAN, LEVEL 12, SHARED AMENITIES
1. One Bedroom Unit
2. Open One Bedroom Unit
3. Studio
4. Two Bedroom Unit

Escala unit type changes at Escale level 19
1. One Bedroom Unit
2. Open One Bedroom Unit
3. Two Bedroom Unit
4. Three Bedroom Unit
PLAN, LEVEL 45, RESIDENTIAL PENTHOUSES

1. One Bedroom Unit
2. Two Bedroom Unit
3. Three Bedroom Unit
1. Lounge
2. Game Area
3. Meeting Room
4. Bar Seating
5. Foosball
6. Golf Simulator
7. Demo Kitchen
8. Catering Kitchen
9. Outdoor Terrace
10. Meditation Hammock Park
11. Cardio
12. 6' Glass Privacy Wall
PLAN, LEVEL 47, ROOFTOP BAR AND TERRACE

1. Outdoor Terrace
2. Bar and Restaurant
3. Line of soffit above
1. Screened mechanical equipment
2. Open to below
3. Two-layer mechanical enclosure
see page 100 and 106 for enlarged elevations.
see page 105 and 107 for enlarged elevations
ELEVATION, EAST (5TH AVENUE) /

1. Retail entry
2. Lobby entry
3. Restaurant entry
4. Operable Nanawall
5. Curtain wall vision glazing
6. Rainscreen panels
7. Continuous weather protection
8. Perforated metal screen
9. Vision glass
10. Vision-matched spandrel glass
11. Colored spandrel glass
12. Mechanical louver
13. London Planetree
14. Bowhall Red Maple
15. Landscape Planter

see following page for enlarged section details and lobby and restaurant.
PARTIAL SECTION, ENTRY LOBBY /

Wall Section A, Entry Lobby

see previous spread for legend
Wall Section B, Restaurant

see previous spread for legend
ELEVATION, NORTH (VIRGINIA STREET)

1. Restaurant entry
2. Back of house access
3. Curtain wall vision glazing
4. Rainscreen panels
5. Perforated metal with glazing behind
6. Mechanical louver
7. Continuous weather protection
8. Vision glass
9. Vision-matched spandrel glass
10. Colored spandrel glass
11. Dog walk with landscaping
12. London Planetree
13. Landscape Planter
1. Back of house access
2. Residential trash
3. Loading dock
4. Parking garage entry
5. Perforated metal with glazing behind
6. Perforated metal with wall behind
7. Perforated metal with louver behind
8. Architectural concrete
9. Mechanical louver
10. Weather protection
11. Vision glass
12. Dog walk with landscaping
ELEVATION DETAIL, EAST TOWER

1. Vision glass
2. Vision-matched spandrel glass
3. Colored spandrel glass
4. Operable window
ELEVATION DETAIL, WEST TOWER

1 Vision glass
2 Vision-matched spandrel glass
3 Colored spandrel glass
SECTION 04.
DESIGN PERSPECTIVES
VIEWS IN URBAN CONTEXT
VIEWS IN URBAN CONTEXT /
SECTION 05.
LIGHTING & SIGNAGE
LIGHTING PLAN, LEVEL 01

1. Channel Lighting
2. Recessed Downlight Can
3. Backlit Perforated Metal Panels
'Lumenpulse LumenFacade' Channel Lighting
'Hevi Lite' Surface Cylinder Downlight
'Ecosense' Grazer behind Perforated Metal Panels
"ACDC Lighting" Micro Exterior Recessed Downlights

"A Light" Mullion Mounted Indirect

"Kurt Versen" Recessed Downlight
LIGHTING PLAN, LEVEL 46

1. Micro Downlights
2. Mullion Mounted Strip
3. Recessed Downlight Can
LIGHTING DETAILS, LEVEL 46

'ACDC Lighting' Micro Exterior Recessed Downlights

'A Light' Mullion Mounted Indirect

'Kurt Versen' Recessed Downlight
SIGNAGE, POTENTIAL LOCATIONS ON FIFTH AVENUE /
SIGNAGE, INSPIRATIONS AND BELTOWN PRECEDENTS
SIGNAGE, POTENTIAL LOCATIONS ON VIRGINIA

1. Metal Lettering
2. Neon Graphic
3. Discreet Plaque
SECTION 06. DEPARTURES
SMC 23.49.056.B

FACADE SETBACK LIMITS:

1. Setback limits for property line facades. The following setback limits apply to all streets designated on Map 1H as requiring property line facades, except as specified in subsection 23.49.056.B.1.d.

b. Structures greater than 15 feet in height are governed by the following criteria:

1) No setback limits apply up to an elevation of 15 feet above sidewalk grade.

2) Between the elevations of 15 and 35 feet above sidewalk grade, the facade shall be located within 2 feet of the street lot line, except that:

a) Any exterior public open space that satisfies the Downtown Amenity Standards, whether it receives a bonus or not, and any outdoor common recreation area required for residential uses, is not considered part of the setback.

b) Setbacks between the elevations of 15 and 35 feet above sidewalk grade at the street lot line are permitted according to the following standards, as depicted in Exhibit B for 23.49.056:

i. The maximum setback is 10 feet.

ii. The total area of a facade that is set back more than 2 feet from the street lot line shall not exceed 40 percent of the total facade area between the elevations of 15 and 35 feet.

iii. No setback deeper than 2 feet shall be wider than 20 feet, measured parallel to the street lot line.

iv. The facade of the structure shall return to within 2 feet of the street lot line between each setback area for a minimum of 10 feet. Balcony railings and other non-structural features or walls are not considered the facade of the structure.

Per direction from the Board and Early Design Guidance Meeting Notes, dated November 3, 2015:

6B: “The Board strongly supported the 3 ft setback shown (more encouraged)…”

The departure would provide for between 4'-2" to 6'-10" of additional building setback and sidewalk width for a total dimension of between 21'-8" to 24'-4" between building and curb and thus would provide approximately 728 SF of sidewalk area to enhance opportunities for outdoor restaurant and retail.
Dimensional Clarifications

- DEPARTURE 01 / 4' 2"
- 22' 10"
- 22' 10"
- 4' 10"
- 4' 10"
- 24' 4"
- 6' 10"
- 21' 8"
- 9' 4"
- 133' 10"
- 46' 4"
- 15' 35'
- 2' setback per SMC
<table>
<thead>
<tr>
<th>Code Citation & Requirement</th>
<th>Proposed Departure</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC 23.49.018.D OVERHEAD WEATHER PROTECTION D. The lower edge of the overhead weather protection must be a minimum of ten (10) feet and a maximum of fifteen (15) feet above the sidewalk.</td>
<td>Request departure to allow a portion of the Virginia Street continuous overhead weather protection to be higher above the sidewalk than the dimensions set forth by code. One (1) segment of continuous overhead weather protection, measuring approximately 22’ in length, would be approximately 17’ 8” above the sidewalk at the west side and 18’ 11” above grade at the east side. As proposed, the continuous overhead weather protection would be 2’ 8” to 3’ 11” above the height prescribed by code.</td>
<td>The unique conditions of the program and site suggest this slight departure. A double height bar and restaurant space with mid-level mezzanine is provided in this area, and the Virginia Street entry to the express rooftop bar elevator is here. By elevating the canopy to the proposed height, these interior uses are made more visible to activate and engage at the street level. Additionally, the higher canopy creates increased visibility and signifies entry more clearly from the corner of 5th and Virginia and from the uphill approach along Virginia from the west.</td>
</tr>
</tbody>
</table>
Dimensional Clarifications

- Double height space
- Continuous overhead weather protection
- Restaurant floor slab, beyond
- Area of enlarged detail
- Double height space

DEPARTURE 02 /