

Final Post Construction Monitoring Program

May 29, 2015

Table of Contents

1.	Background	.1
1.	.1 The Planning Team	2
1.	.2 The Data Quality Objectives Process	2
2.	The Problem Statement	. 4
3.	The Decision	. 4
3.	.1 Principal Study Questions	4
3.	.2 Alternative Actions Resulting from Resolution of Study Questions	5
3.	.3 Decision Statements	5
4.	Inputs to the Decision	. 6
4.	•	
4.		
4.		
5.	Boundaries of the Study	10
5.		
5.		
5.		
5.		
6.	Decision Rule	16
6.		
6.	·	
6.		
7.	Performance or Acceptance Criteria	18
8.	Plan to Obtain Data	19
8.	.1 Required Resources	.19
8.	•	
9.	Poferences	ეი
Э.	References	20

List of Tables

Table 1. Alternative Actions Resulting from Resolution of Study Questions	5
Table 2. Information to Resolve Decision Statements	6
Table 3. Designated use Data	8
Table 4. Action Levels	10
Table 5. Relevant surface water narrative criteria for receiving water bodies	12
Table 6. Surrogate CSO Outfalls	15
Table 7. Action Level for PCMP	17
Table 8. Decision Rules	18
Table 9. Post Construction Monitoring Implementation Schedule	19

List of Figures

Figure 1.	DNRP CSO outfalls and SPU controlled and uncontrolled CSO outfalls	3
Figure 2.	Draft PCMP Receiving Water Monitoring Locations Adjacent to SPU CSO Outfall	14

List of Appendices

Appendix A. Wet Weather Combined Sewer Overflow Events and Volumes (2010-2014) Appendix B. SPU PCMP Seattle Public Utilities
Protecting Seattle's Waterways

List of Abbreviations

1. Background

Seattle

⁽³⁾ Public

Utilities

The City of Seattle (City) is a Combined Sewer Overflow (CSO) permittee under the National Pollutant Discharge Elimination System (NPDES) Program, which is administered by the Department of Ecology (Ecology) in the State of Washington (Permit No. WA0031682, issued October 27, 2010; effective December 1, 2010; Modified September 13, 2012; expires November 30, 2015). The NPDES permit authorizes the City to discharge at 87 CSO outfalls. Figure 1 on the following pages shows the locations of the City's CSO outfalls.

The City of Seattle is currently in the process of implementing CSO controls in accordance with its NPDES permit, the federal Clean Water Act (including the CSO Control Policy), and Washington State Law (Revised Code of Washington and Washington Administrative Code). The two-fold goal of the City's CSO Reduction Program is to reduce all CSOs to an average of no more than one overflow per outfall per year by 2025 (the State of Washington performance standard for controlled CSOs) and to meet applicable sediment standards.

In accordance with Section S8C of the City's 2005-2010 combined sewer system NPDES permit, SPU was required to prepare a Post-Construction Compliance Monitoring Program (PCMP) as described below:

"The Permittee shall develop and submit a post-construction monitoring program that (a) measures the effectiveness of the CSO controls and (b) can be used to demonstrate attainment of water quality and sediment standards. The program shall include a plan that details the monitoring protocols to be followed, including CSO and ambient monitoring and, where appropriate, other monitoring protocols, such as biological assessments, whole effluent toxicity testing, and sediment sampling The Post-Construction Monitoring Program DRAFT and FINAL reports shall be submitted to the Department by June 30, 2009, and May 31, 2010, respectively."

In April 2010, SPU submitted a Final PCMP in accordance with the requirements of the 2005-2010 NPDES permit. SPU subsequently received Ecology's approval of the Final PCMP on June 3, 2010. On August 10, 2010, Ecology sent a follow-up letter to SPU clarifying its previous approval. Specifically, Ecology stated the following:

"During the drafting of the City's National Pollutant Discharge Elimination System (NPDES) permit, it has come to Ecology's attention that the sediment sampling and monitoring proposed in PCMP's Sections 3.2.3 and 3.3 is not adequate for characterization purposes with the State's sediment management standards (SMS). Specifically, the City plans to collect CSO "solids" in the collection system, to analyze these solids for various parameters and to perform sediment fate and transport modeling to assess compliance with the SMS is insufficient. For purposes of complying with the SMS, Ecology will require insitu monitoring of sediments." (Letter from Kevin Fitzpatrick, Department of Ecology, dated August 10, 2010)

In addition, during Ecology's review of a draft Quality Assurance Project Plan (QAPP) for post-construction monitoring at Outfall 62, Ecology provided further guidance on the requirement for receiving water quality monitoring. Specifically, Ecology provided comments to SPU's Draft QAPP for Basin 62, in which they stated that receiving water quality monitoring would not be required:

"WAC 173-201A-400(11) allows an average once per year exemption to the mixing zone numeric size criteria. If controlled to a once/year average, Ecology assumes the numeric WQ standards are met and there's no need to monitor receiving water. Permittee only needs to show the discharge meets the "average of one overflow event per site per year" requirement, the narrative standards [WAC 173-201A-260(2)], and sediment standards [WAC 173-204]." (Comments from Department of Ecology to Draft QAPP for Basin 62, dated August 27, 2012)

Based on Ecology's clarifications regarding the requirement for in-situ sediment sampling and the absence of a requirement for receiving water monitoring, SPU has revised its Post Construction Monitoring Program – Final

Report to reflect the aforementioned changes and to meet the consent decree requirement to include a sitespecific schedule This updated PCMP supersedes SPU's 2010 Post-Construction Monitoring Plan, since it incorporates regulatory guidance that has been provided since 2010 and (a)reflects Ecology's direction to sample at the highest overflow frequency and/or largest volume outfalls in each receiving water body and (b) the projects and implementation schedule in the City Council approved Plan to Protect Seattle's Waterways.

Consistent with Paragraph 20.d of the City's Consent Decree this PCMP serves two purposes: (1) measure effectiveness of CSO controls to meet the CSO frequency requirement, and (2) demonstrate attainment of narrative water quality criteria and sediment standards. The Washington Administrative Code (WAC) 173-201A and 173-204 provide the requirements that are the basis for evaluating attainment of water quality criteria and sediment standards.

Subsequent to Ecology's approval of the 2010 Final PCMP, two Quality Assurance Project Plans (QAPP) were developed: Sediment Sampling and Analysis Plan for CSO Outfalls 107, 147, and 152, FINAL REPORT (draft revised on April 5, 2013); and Quality Assurance Project Plan and Sediment Sampling and Analysis Plan for CSO Outfall 62, FINAL REPORT (draft revised on April 5, 2013 as part of the monitoring program implementation).

Compliance with the CSO performance standard, narrative water quality criteria and sediment standards have been used to define the study design.

1.1 The Planning Team

To facilitate the development of this PCMP, SPU assembled a multi-disciplinary planning team. The members of this team and their respective roles are as follows:

- Betty Meyer, Wastewater Regulatory Compliance Manager
- Ed Mirabella, Project Manager
- Jonathan Frodge, Technical Lead
- Pete Rude, Sediments Specialist

1.2 The Data Quality Objectives Process

This PCMP is submitted in a Data Quality Objectives (DQO) format. The DQO Process was used to develop the Post-Construction Monitoring Program required in the City of Seattle's CSO NPDES permit. The DQO process is a systematic planning process for generating environmental data that will be sufficient for their intended use. The DQO process includes seven (7) steps (USEPA 2006 and Ecology 2004):

- Step 1 State the Problem
- Step 2 Identify the Decision
- Step 3 Identify Inputs to the Decision
- Step 4 Define the Boundaries of the Study
- Step 5 Develop a Decision Rule
- Step 6 Specify Performance or Acceptance Criteria
- Step 7 Develop the Plan for Obtaining Data

The outline of this PCMP follows these seven steps.

Figure 1. DNRP CSO outfalls and SPU controlled and uncontrolled CSO outfalls

Seattle Public Utilities

Protecting Seattle's Waterways

2. The Problem Statement

As documented by both the Environmental Protection Agency (EPA) and the Department of Ecology (Ecology), CSOs collectively and individually can be a major source of pollution to the nation's and region's receiving water bodies. The potential impacts of individual or multiple CSOs can include impairment of the receiving water body, contamination of sediments, and inability to achieve designated uses. Specific impacts vary with composition and volume of effluent, frequency and timing of overflow events, location and design of outfalls, and type of receiving water.

Both EPA and Ecology have created guidance on the development and implementation of both short-term (i.e., Nine Minimum Controls) and longer-term, more capital-intensive programs (i.e., Long Term Control Plan or CSO Reduction Plan) to reduce CSOs with the goal of attaining water quality standards in receiving water bodies. The design of SPU's CSO Reduction Program relies on the assumption that controlling CSOs to no more than one overflow per outfall per year will achieve water quality standards, or what EPA defines as a "presumptive approach" to CSO control. "The CSO control goals are developed under the assumption that if the other sources were remediated by the appropriate responsible parties, then the CSO control goals would be stringent enough for water quality goals to be met." (Section 1.6.5, EPA Long Term Control Plan guidance) State regulations (WAC 173-201A-400(11)), provide an exemption from mixing zone size limits for CSO outfalls that are controlled to an average of no more than one overflow per year, providing the discharge would not have a reasonable potential to cause a loss of sensitive or important habitat, substantially interfere with the existing or characteristic uses of the water body, result in damage to the ecosystem, or adversely affect public health as determined by Ecology. Assuming these requirements are met, Ecology assumes the numeric water quality standards also are met and does not require receiving water sampling and analysis. Therefore, compliance with water quality standards requires demonstration that the controlled CSO discharge meets the "average of no more than one overflow event per outfall per year" requirement, the narrative water quality standards [WAC 173-201A-260(2)], and sediment standards [WAC 173-204].

3. The Decision

The PCMP is designed to answer specific study questions, with the objective of determining whether subsequent actions are necessary to meet the goals of the program. The following section defines the study questions, outlines the alternative actions that could result from resolution of the principal study question, and specifies decision statements (i.e., study objectives).

3.1 Principal Study Questions

This PCMP is designed to answer two study questions:

- 1. Are CSO controls (as designed and constructed per the presumptive approach) effective at reducing CSOs to an average of one overflow event per outfall per year?
- 2. Once CSO control per the presumptive approach is fully achieved, do CSOs cause or contribute to the non-attainment of narrative water quality criteria and sediment standards?

The answer to the first study question (effectiveness of CSO controls) relies on modeling and measurement of post-project frequency and volume of CSOs at each site to verify that the CSO discharges on average of less than one event per year.

The answer to the second study question is dependent on whether the post-project CSOs at each site meet the

narrative water quality criteria in WAC173-201A and/or cause or contribute to non-attainment of sediment standards, as described in WAC 173-204 (Sediment Standards). Non-attainment of narrative water quality and sediment standards is defined as the inability to meet the applicable numeric and criteria specified in the standards. Further detail on the numeric and narrative criteria will be provided in Section 3 (Inputs to the Decision).

This PCMP includes metrics to estimate the attainment or non-attainment of narrative water quality criteria and sediment standards after construction completion of the CSO control measures included in the Plan to Protect Seattle's Waterways, per WAC 173-201A and WAC 173-204. In particular, attention will be given to identifying metrics that achieve the following objectives:

- Measure attainment of numeric sediment standards and narrative water quality criteria, and;
- Evaluate whether CSOs cause or contribute to "adverse impacts that threaten characteristic uses of the receiving water".

3.2 Alternative Actions Resulting from Resolution of Study Questions

Table 1 summarizes the alternative actions that could result from answering the two study questions:

Table 1. Alternative Actions Resulting from Resolution of Study Questions									
Study Question	Potential Answers	Resulting Actions							
Are CSO controls effective at controlling CSOs to	CSO outfall is controlled to an average of less than 1 per outfall per year	No action							
an average of 1 event per year?	CSO outfall still exceeds an average of 1 overflow event per outfall per year	Corrective action defined in LTCP (i.e., plan, design, and implement or construct additional programmatic or capital improvements to achieve an average of less than 1 overflow per outfall per year.)							
Are CSOs causing or contributing to non-	Water quality narrative criteria are met at point of compliance.	No action							
attainment of narrative water quality and sediment standards?	Water quality narrative criteria and sediment standards not met, in part or in whole; would not qualify for a mixing zone size limit exemption per WAC 173-201A-400 (4).	Multiple actions may be pursued, including but not limited to upstream source control and pollution prevention or programmatic improvements, additional engineering and construction improvements, or regulatory instruments (e.g., TMDL, UAA, etc.)							

3.3 Decision Statements

The decision statements (aka, project objectives) of the PCMP are as follows:

1. Determine whether or not implemented CSO controls are effective at limiting CSOs to no more than 1 overflow per outfall per year.

2. Determine whether or not CSOs are causing or contributing to non-attainment of narrative water quality criteria and sediment standards.

4. Inputs to the Decision

The PCMP identifies the information that is required to answer the two study questions. The following section describes the inputs to the decision, determines the sources of the information, identifies the information that is needed to establish the action level, and confirms that appropriate methods exist to provide the necessary data.

4.1 Information Required to Resolve the Decision Statement

The information necessary to answer the two study questions and resolve the two decision statements described in Section 2 are as follows:

- Combined Sewer Overflow
 - Monitoring for overflow frequency and volume
 - Basin hydraulic modeling
 - Solids composition
- Receiving Water
 - Narrative water quality criteria
 - Designated use data
- Sediment
 - Sediment fate and transport
 - Attainment of sediment criteria

Table 2 provides details on the information that is needed to resolve the study questions and decision statements.

Table 2. Information to Resolve Decision Statements								
CSO Decision Statement	Information Category	Potential Source(s) of Information	Potential Parameters					
CSO Control Effectiveness	Combined Sewer	monitoring	Quantity: volume, duration, and frequency					
Enectiveness	Overflow	modeling	Quantity: (flow) for volume, duration, and frequency					
Attainment of narrative water quality and sediment standards	Receiving Water	visual monitoring	Attainment of designated uses such as recreational uses, water supply uses, shellfish harvesting uses, aquatic life uses, and miscellaneous uses (boating, aesthetics, commerce and navigation, and wildlife habitat).					
	Sediment	sampling and analysis	In-Situ sediment monitoring ¹ - CSO solids characterization - In collection system – sediment accumulation, particle size distribution, chemical composition					
		analysis	Attainment of appropriate sediment quality standards					

¹Requirements for in-situ sediment sampling in the waterbody adjacent to the surrogate outfall or in-pipe sampling of the outfall will be specified in the project specific Quality Assurance Project Plans (QAPP).

4.2 Sources of Information

Both monitoring and modeling will be used to generate the information that is required to resolve the two decision statements. In addition, existing data and information will be utilized, wherever it is available.

4.2.1 Combined Sewer Overflow Monitoring and Modeling

To resolve both decision statements, CSO frequency and volume must be quantified both before and after construction of CSO control projects. This information is particularly critical for determining the effectiveness of the CSO control projects in achieving an average of one overflow per site per year target. The source of CSO quantity data is both flow monitoring and hydrologic/hydraulic modeling. SPU has performed flow monitoring of CSOs at its outfalls since 2001, and, therefore, pre-project CSO quantification will be available. SPU will conduct flow monitoring at the CSO outfalls following construction of the control projects, and, therefore, post-project CSO quantification will also be available. In some cases, hydrologic/hydraulic models will be used where monitoring data are unavailable or unreliable. Model output will also be used to generate longer-term (i.e., 20-year) overflow projections, both pre- and post-project. SPU has built and calibrated, or is in the process of building and calibrating, hydrologic/hydraulic models of its CSO basins. Historical data on CSO frequency and volume is provided in Appendix A.

Measurement of CSO frequency and volume is currently performed using area-velocity (AV) flow monitors. More specifically, SPU has standardized on the ADS manufactured equipment as its flow monitoring instrument for measuring CSO frequency and volume. The ADS flow monitors have three sensors (ultrasonic depth, pressure depth, and Doppler velocity). The ultrasonic depth sensor is the primary sensor for measuring depth in the pipeline, and in some cases, depth over a weir. The pressure sensor is a redundant depth sensor that records depths, primarily during surcharge conditions. The velocity sensor is used when direct measurement in the overflow pipe is the most accurate measurement of overflow volume. ADS flow monitoring equipment has been used as the primary instrument for CSO flow monitoring since 2007 has proven to be a reliable and accurate instrument for flow monitoring. The ADS flow monitoring equipment specifications, including the method detection limit (MDL) and limits of quantification (LOQ) will be included in the PCMP QAPP.

Modeling of CSO frequency and volume is currently performed using hydrologic/hydraulic models such as InfoWorks, EPA SWMM5 and Mike Urban (MOUSE). The models simulate both the basin hydrology and the hydraulics of the sewer system to estimate CSO frequency and volume over an extended period (i.e., 20 years). Inputs to the model include land-use, sewer characteristics (i.e., pipe size, pipe material and condition, pipe invert elevations and slopes, weir heights, structure configuration, storage size, pump station operational parameters, real-time controls, etc.), dry weather flow patterns, and rainfall. The models are calibrated with flow monitoring data, so that actual conditions are simulated as closely as possible. The specific models for evaluating the effectiveness of projects will be further described in each basin's QAPP.

4.2.2 Receiving Water Narrative Standards

Evaluation of data collected by others and ongoing studies in the Region plus visual observations CSO events will provide the information needed to address the second decision statement.

Narrative criteria in WAC 173-201A relate directly to designated uses of the water bodies. Designated uses for freshwater include aquatic life uses, recreational uses, water supply uses, and miscellaneous uses, including wildlife habitat, harvesting, commerce/navigation, boating, and aesthetics. Currently no approved water supply uses occur in waters where Seattle CSOs discharge. Designated uses for marine waters include aquatic life uses, shellfish harvesting, recreational uses, and miscellaneous uses.

Under state law, the designated use of water is to be protected from toxic substances (WAC 173-201A-240) and from degradation (WAC 173-201A-300). WAC 173-201A-300 states that, "existing and designated uses must be maintained and protected. No degradation may be allowed that would interfere with, or become injurious to, existing designated uses."

Evaluating the referenced data sources for the designated use of the receiving water, as indicated Table 3, will provide the information needed to answer the question of attainment or non-attainment of water quality criteria.

Table 3. De	Table 3. Designated use Data							
Designated	use	Data source						
Category	parameter							
Recreation	Fecal Coliform	King County swimming beach survey						
	Primary/secondary contact	Available survey data (King County)						
	Waterfowl counts	Available survey data						
Water supply	n/a	n/a						
Aesthetics	Foam, floatables,	Visual observation, citizen reports						
	turbidity	Visual observation						
	odor	Citizen reports						
Fish	Water quality and Toxics in water	CSO Supplemental Characterization Study (Washington Department of Public Health)						
	Toxics in tissue	Existing fish tissue studies, caged mussel surveys (Washington Department of Public Health)						
	Benthic invertebrate community	Existing literature						
Wildlife	Bird counts	Existing local studies						
habitat	Nearshore habitat	Existing local studies						
Shellfish	Toxics (metals, organics)	Caged mussel survey at CSO outfalls , existing literature (WDFW)						
	Population distribution	Seattle Aquarium beach rangers						

4.2.3 Sediment

SPU, in response to Special Condition 9 of its 2005-2010 combined sewer system NPDES permit, prepared a Sediment Survey Report (Herrera 2007). The report evaluated sediment quality data gathered within 250 and 775 feet of SPU's CSO outfalls. Although the reported data were not necessarily collected with the intent of evaluating CSOs as potential sources of impacts to sediment quality, the report reached the conclusion that no clear cause-and-effect relationship could be inferred relating discharges from CSO outfalls to effects on surface

sediment quality. This was based on the observations that sediment sample results near many outfalls did not exceed applicable sediment criteria, and, where results did indicate exceedances of applicable criteria, there were multiple historical and current sources of contaminants present that made linkage to any particular source or sources very difficult.

The area of influence in which discharge of CSO effluent from an outfall may affect sediment quality depends on many complex and site-specific processes and conditions such as:

- The CSO flow rate and the volume and timing of discharge
- The quality and concentration of solids in the CSO effluent
- The outfall configuration
- The hydrodynamics of the receiving water body
- Sediment transport processes within the receiving water body
- Chemical partitioning behavior between water, solid, and colloidal phases
- Biological processes

To further investigate the potential for CSO effluent to have an adverse impact on sediment quality, the following monitoring and evaluation activities are proposed:

- Collation and evaluation of existing CSO solids data generated by other parties
- Monitoring of solids collected from within selected SPU combined sewer overflow pipes or off-shore locations identified in project specific QAPPs.
- Review of other sediment monitoring efforts
- Where appropriate, simple predictive modeling of potential sediment impacts based on CSO solids inputs to the receiving water body.

King County and possibly other entities have begun to collect solids from their CSOs as part of ongoing sediment source control efforts. Solids that are present in the CSO effluent are collected via sediment traps or in-line solids grabs of material accumulated in lines. The City will identify, assemble, and evaluate environmental data generated for CSO solids by King County and other municipalities or regulated entities.

Samples of solids accumulating in City combined sewer overflow piping or off-shore locations will be collected and analyzed. Collected solids will undergo laboratory testing for Sediment Management Standards constituents, total organic carbon, and grain size. Testing results will be compared to applicable sediment screening criteria to better understand, in general, the potential for such solids to impact sediment quality in a receiving water body.

On February 22, 2013, Ecology adopted revisions to the Sediment Management Standards that included the addition of numeric chemical criteria for evaluation of freshwater sediment quality. The revised standards went into effect on September 1, 2013. Appropriate comparisons of marine or freshwater numeric criteria will be incorporated into the QAPPs.

4.3 Information Needed to Establish Action Levels

This part of the DQO process calls for a determination of the basis of the action level, a threshold value for determining which alternative action will be taken. Action levels are specified later in Step 5. However, the source of the information needed to establish the action level is specified in Table 4. Action levels for individual parameters are based on regulatory standards contained in the WAC 173-240 (CSOs), WAC 173-201A (Water Quality Standards) and WAC 173-204 (Sediment Standards).

Table 4. Action L	Table 4. Action Levels									
Category	Sub-Category	Parameters	Action Level Source							
Combined Sewer Overflow	Quantity	Frequency, duration, and volume	WAC 173-240 and NPDES Combined Sewer System Permit							
Sediment CSO Solids Characterization (in collection system)		Sediment accumulation, particle size distribution, chemical	No action level, for sediment fate and transport modeling use.							
	In-situ sediment	Recreational use	WAC 173-204 numeric criteria							
Sediment CSO Solids Receiving water (in collection system)		Shellfish harvesting use	No action level, for sediment fate and transport modeling use.							
	Designated uses	Aquatic life use	WAC 173-201A narrative criteria for parameters monitored							
Receiving water Designated us		Miscellaneous uses (boating, aesthetics, commerce, navigation, wildlife habitat)	WAC 173-201A narrative criteria for parameters monitored							
		Recreational use								

5. Boundaries of the Study

The PCMP has defined spatial and temporal boundaries which provide focus to the monitoring and modeling program to address the decision statements. The following section specifies the characteristics that define the population of interest, defines the spatial boundaries of the decision statements, defines the temporal boundaries of the problem, and identifies practical constraints on data collection.

5.1 Population of Interest

The first action of this step is to specify the characteristics that define the population of interest. The population of interest includes the water bodies that receive the combined sewer overflow. These water bodies are Lake Washington, Lake Union/Ship Canal, Duwamish River, Longfellow Creek, Elliott Bay, and Puget Sound. Table 5 shows the designated uses for each of these water bodies (according to WAC 173-201A). In addition, Table 5 refers to the relevant narrative surface water quality criteria for each water body.

Section 303(d) of the federal Clean Water Act requires Washington State to prepare a list of all surface waters in the state for which designated uses are impaired by pollutants. These surface waters fall short of state surface water quality standards. Several 303(d) listings occur in these water bodies that make up the population of interest. 303(d) category 5 impaired waters include Longfellow Creek for fecal coliform and dissolved oxygen; Lake Union/Ship Canal for lead, aldrin, and fecal coliform; Lake Washington for fecal coliform; Puget Sound (Central) for fecal coliform; and Elliott Bay for fecal coliform. This is a partial list based on water samples only. Additional 303d listings exist for fish tissue and sediment.

5.2 Spatial Boundary

SPU's Combined Sewer System NPDES Permit includes 87 outfalls permitted for CSO discharge, including one outfall that was sealed and removed from service in 2014 (Outfall 26). SPU proposes to control all SPU CSO outfalls to an average of one overflow per year or less. This PCMP is designed to collect information on CSO discharge and CSO impacts to receiving waters narrative criteria and sediment for all water bodies receiving CSO discharges.

The configuration of the combined sewer collection system in Seattle results in CSO outfalls discharging to marine, freshwater, lake and riverine systems. These include Lake Washington, Lake Union, the Ship Canal, Longfellow Creek, Duwamish River, Elliott Bay and Puget Sound. The differences in the detention times, salinity, biological communities, designated uses and the regulatory requirements require treating the water bodies as distinct strata from an information collection perspective. The currents and detention times of the respective receiving water will most strongly influence CSO discharge mixing, dilution, and water quality impacts.

Rather than collect information at all permitted outfalls, SPU plans to collect information at key surrogate CSO outfalls in each of the different receiving waters into which the CSOs discharge. This assumes that monitoring data collected at the selected outfalls will be sufficient and applicable to evaluate the attainment or non-attainment of narrative water quality criteria and sediment standards at all of the SPU outfalls after completion of the LTCP. This approach will allow SPU to estimate the influence of all of SPU's CSOs to potentially cause or contribute to the non-attainment of narrative water quality criteria and sediment standards.

Fourteen (14) surrogate CSO outfalls will be evaluated using the monitoring and modeling activities identified in this PCMP (Figure 2 and Table 6). The surrogate outfalls selected for monitoring currently contribute substantial overflow volumes and are assumed to be representative of the CSOs that discharge into these various major receiving water bodies. Appendix A includes more information on each of the proposed surrogate outfalls.

Selection of the specific CSO outfalls for inclusion in the PCMP was based on current CSO overflow volume, number of CSO events, contributing basin area size and land use, and receiving water. Initially, all SPU CSO outfalls were grouped by receiving water. Then, the number of overflow events and CSO volume per year (based on data from years 2010-2014) were compared within each receiving water strata. Only wet weather events were used in the selection process.

Because the surrogate outfall selection approach is not random, SPU will not be able to statistically describe the impact of all of the CSOs. However, the selected CSO outfalls are assumed to be representative of sites with potentially the greatest water quality impacts. While this design is not statistically rigorous, it is sufficient to allow for the evaluation of the potentially maximum impacts of the CSOs on the receiving water.

The spatial extent of monitoring in proximity of each individual outfall is currently not defined. It is assumed that any monitoring will be located in the immediate proximity of a particular outfall; how far the monitoring should occur from the actual opening of the outfall is not defined.

Tabl	Table 5. Relevant surface water narrative criteria for receiving water bodies																			
	Designated Uses	Aquatic Life Uses -					Recreational Uses		Water Supply Uses				Misc. Uses							
Аррі	icable narrative criteriaª	Char Spawning / Rearing	Core Summer Habitat	Spawning / Rearing	Rearing / Migration	Redband Trout	Warm Water Species	Shellfish Harvesting	Extraordinary Primary Contact	Primary Contact	Secondary Contact	Domestic Water	Industrial Water	Agricultural Water	Stock Water	Wildlife Habitat	Harvesting	Commerce/Navigation	Boating	Aesthetics
	Longfellow Creek				Х							Х	Х	Х	Х	Х	Х	Х	Х	х
	Lake Washington ^b	Х		Х	Х		Х					Х	Х	Х	Х	Х	Х	Х	Х	Х
	Lake Union / Ship Canal ^b				Х		Х					Х	Х	Х	Х	Х	Х	Х	Х	Х
	Duwamish River ^c			Х									Х	Х	Х	Х	Х	Х	Х	Х
tion	Elliott Bay ^d		Х		Х			Х		Х						Х	Х	Х	Х	Х
Location	Puget Sound ^e		Х		Х			Х		Х						Х	Х	Х	Х	Х

Notes:

^aSurface water criteria: WAC173-201A Table 602:

^b Lake Washington Ship Canal from Government Locks (river mile 1.0) to Lake Washington (river mile 8.6)

^c Duwamish R from mouth south of a line bearing 254° true from the NW corner of berth 3, terminal No. 37 to the Black R (river mile 11.0) (Duwamish R continues as the Green R above Black R).

^d Elliott Bay east of a line between Pier 91 and Duwamish Head.

e Puget Sound through Admiralty Inlet and South Puget Sound, south and west to longitude 122°52'30"W (Brisco Point) and longitude 122°51'W (northern tip of Hartstene Island).

5.3 Temporal Boundary

SPU is in the process of implementing a capital program to reduce its CSOs, described in detail in the Plan to Protect Seattle's Waterways. The flow monitoring requirements of the PCMP are currently being implemented, and will continue to be implemented during and following completion of the capital program. Modeling elements of the PCMP should be implemented following the construction activities of the capital program. Performing modeling prior to the construction of the capital program will not satisfy the requirements of the PCMP since the PCMP is focused on *post*-construction monitoring, or resolving whether CSOs are causing or contributing to non-attainment of narrative water quality criteria and sediment standards following implementation and construction of the capital program.

Attainment of flow control of CSO discharges to an average of no more than 1 event/year will constitute the presumption that the CSOs do not substantively contribute to the non-attainment of water quality criteria and the only water quality criteria that will be evaluated will be the narrative criteria in WAC173-201A. One year following Construction Completion of each CSO Control Measure, overflow frequency will be confirmed using one year of flow monitoring data and 19 years of long-term simulation modeling using a 20-year period of historical rainfall data. Achievement of control status will be documented in the City's Annual by March 31, the following year. However, if there is insufficient precipitation during the year following Construction Completion to demonstrate that a CSO Outfall has been controlled, then the deadline will be extended until there is sufficient precipitation to make the demonstration.

It is estimated that it will take approximately 3 years to complete in-pipe sediment sampling and analysis to demonstrate that numeric criteria in WAC 173-204 are attained. If there is insufficient rainfall during the 3 year post-construction monitoring period, then additional monitoring years will be required. In-situ sediment samples in the waterbody adjacent to the surrogate outfalls can be collected and characterized at any time during the year, during either dry weather or wet weather conditions. The in-situ sediment data can be collected at any time during the 3 year post-construction monitoring period.

The City's NPDES Waste Discharge Permit requires collection of sediments and submission of Sediment Data Reports for CSO 62, 107, 147 and 152 by November 30, 2015. For these basins, the PCMP requirements to demonstrate attainment of sediment standards will be fulfilled by the collection over a 1-year period and analysis of in-pipe samples collected under the approved Sediment Sampling and Analysis Plan for CSO Outfalls 62 (approved 4/16/13),107, 147, and 152 (approved 3/4/14), assuming that the analyses show compliance.

Seattle Public Utilities
Protecting Seattle's Waterways

Outfall Number	CSO Basin	Receiving Water	Receiving Water type	Frequency of Overflow (No. per year)	Overflow Volume (MG per year)	Discharge Depth (ft) ^{1,2}	Distance from Shore (ft)) ^{1,2}
169	Delridge	Longfellow Creek	freshwater stream	≥1 and <5	2.1	0.5	0
62	Magnolia	Elliott Bay	Marine	≥1 and <5	0.001	12	302
95	West Seattle	Puget Sound	Marine	≥1 and <5	0.04	8	110
68	Magnolia/Interbay	Elliott Bay	Marine	<1	1.0	4	0
71	University Street	Elliott Bay	Marine	≥1 and <5	0.5	2	0
152	Ballard	Salmon Bay	Freshwater lake	>5	37.5	10	60
147	Fremont	Lake Union	Freshwater lake	>5	12.9	5	10
174	Fremont	Ship Canal	Freshwater lake	>5	7.5	0.5	0
13	Windermere	Lake Washington	Freshwater lake	>5	5.1	27	500
18	North Union Bay	Lake Washington	Freshwater lake	≥1 and <5	6.7	At surface	5
44	Henderson	Lake Washington	Freshwater lake	>5	8.7	19	565
31	Leschi	Lake Washington	Freshwater lake	>5	0.3	12	82
99	Delridge	West Waterway of Duwamish RIver	River	≥1 and <5	1.8	0	0
107	East Waterway	East Waterway of Duwamish River	River	>5	1.2	5	0

¹Based on the depth at the time of the outfall inspection (Herrera Environmental Consultants; 2002-2005).

²Physical condition factors of each discharge is provided in the Outfall Evaluation Report: Summary Report and Condition Assessment and Criticality Analysis: Findings and Recommendations (Herrera Environmental Consultants, August 2006)

5.4 Practical Constraints on Data Collection

Any monitoring and modeling program has its own obstacles to data collection, such as the availability of sampling equipment or personnel or gaining permission to investigate a property. This PCMP has elements of monitoring within the collection system, within the receiving water, and of designated uses of the resource, each with its individual obstacles. Obstacles include the following:

- Health and Safety: Collection of in-situ sediment samples will likely be performed from either a boat or dock. Accesses to collection system monitoring sites have site access obstacles such as traffic control.
- Personnel Availability: Personnel response to storm events is difficult, especially monitoring a CSO event that, in a controlled scenario, occurs an average of no more than once per year.

Other obstacles to data collection will be described in further detail in the Quality Assurance Project Plan and the Sampling and Analysis Plan for this PCMP.

6. Decision Rule

The fifth DQO step involves specifying the action levels and the decision rules for the study. The following section will specify the statistical parameter of interest, the action levels for the study, and the develop decision rule statements for the PCMP.

6.1 Statistical Parameter that Characterizes the Population

The two study questions require different statistical parameters of interest. The answer to the first study question – measurement of the effectiveness of CSO controls – will require calculation of the mean (or average) number of overflows over a long-term (i.e., 20-year) duration. The second study question – measuring contribution to non-attainment of narrative water quality criteria and sediment standards - will be based qualitative attainment of the narrative criteria from WAC173-201A and quantitative attainment of the numeric sediment criteria from WAC 173-204

6.2 Action Level for the PCMP

The second action of DQO Process Step 2 (Identify the Decision) was to define the potential resulting actions that could result from resolution of the principal study questions (Table 1). Table 7 provides more detail on the action level for each parameter or indicator.

Category	Sub-Category	Parameters / Indicators	Action Level Source	Action Level			
Combined Sewer Overflow	Quantity	Frequency, duration, and volume	WAC 173-240 and NPDES CSO Permit	Greater than an average of 1 overflow per year			
Sediment	CSO Solids Characterization (in collection system)	Sediment accumulation, particle size distribution, chemical	No action level, for sediment fate and tr	ansport modeling use only			
	In-situ sediments	Recreational Use	WAC 173-204 numeric criteria	WAC 173-204 applicable numeric criteria f parameters modeled			
		Shellfish harvesting use					
Designated use	quality	Shellfish harvesting use	WAC 173-204 narrative criteria	Adversely affect characteristic designated			
		Aquatic life use	-	water uses for the water body (recreation water supply, shellfish harvesting, aquation			
		Water supply		life, and misc. uses)? Yes or No			
		Recreational use	-	Cause acute or chronic toxicity to the most sensitive biota of that water body (aquatic			
		Wildlife		life uses)? Yes or No			
		Miscellaneous uses (boating, aesthetics, commerce, navigation)		Adversely affect public health (recreational, water supply)? Yes or No			

6.3 **Decision Rules**

The second action of DQO Process Step 2 (Identify the Decision) was to define the potential resulting actions that could result from resolution of the principal study questions (Table 1). Combining the potential actions of Table 1 with the Action Levels of Table 7 yields decision rules. Decision rules incorporate the parameter of interest, the scale of decision making, the action level, and the actions that would result from the decision. Table 8 shows these decision rules for the PCMP.

Table 8. Decision Rules									
Study Question	lf	Then							
What is the effectiveness of CSO controls?	CSO frequency is within, or less than, action level specified in Table 7	No action							
	CSO frequency exceeds action level specified in Table 7	Corrective action (i.e., plan, design, and implement or construct additional programmatic or capital improvements to achieve an average of less than 1 overflow per site per year.)							
Are CSOs causing or contributing to	CSO, sediment, and designated use parameters and Indicators are within action levels specified in Table 7.	No Action							
non-attainment of narrative water quality and sediment standards?	One or more receiving water, sediment, or designated use parameters and indicators exceed action levels identified in Table 7	Multiple actions may be pursued, including but not limited to upstream source control and pollution prevention or programmatic improvements, additional engineering and construction improvements, or regulatory instruments (e.g., TMDL, UAA, etc.)							

The first decision rule – Is the CSO control effective at limiting CSOs to no more than an average of 1 overflow event per year? – will be evaluated based on the 20 year moving average CSO performance requirement. This decision is relatively straight-forward and is answered with data collected from flow monitoring and modeling.

As defined in the second problem statement, the second objective of this PCMP is demonstration that the control of CSOs results in attainment of sediment standards, as defined in WAC173-204, and attainment of narrative water quality criteria as defined in WAC173-201A.

7. Performance or Acceptance Criteria

The purpose of this PCMP is to demonstrate compliance with regulations. Therefore, the monitoring and modeling activities contained in the PCMP will include sufficient sample size to demonstrate compliance with regulations. The minimum sample size to establish statistical significance with regards to regulatory compliance is three samples. When decisions are not based on accepted assumptions it is assumed that no less than three monitoring samples will be necessary to fulfil the requirements of the PCMP.

8. Plan to Obtain Data

This DQO process step consists of selecting a resource-effective data collection design for defining assumptions and collecting data that will satisfy the study questions. The outputs of the previous DQO steps are consistent with the objectives of answering the study questions. Presumptive attainment of water quality criteria, existing data and information will be used to resolve the two decision statements. Information on combined sewer overflow quantity and quality, receiving water quality, sediments, and designated uses will be used to address the study question. The operational details and theoretical assumptions of the PCMP design will be documented in the QAPP(s) based on this PCMP. The most resource-effective data and information collection design that satisfies the objectives of this PCMP will be used. Required resources and a schedule for implementation are described in this section.

8.1 Required Resources

Cost estimates will be provided by SPU in basin-specific QAPPs.

8.2 Schedule for Implementation

Table 9. Post Construction Monitoring Implementation Schedule

Outfall Number	Construction Completion	Submit Quality Assurance Project Plan for approval	Achieve Controlled Status	Complete Implementation of Post Construction Monitoring Plan	Submit Final Post- Construction Monitoring Report
169	9/30/2025	9/30/2025	9/30/2026	9/30/2028	1/28/2029
62	N/A	3/30/2012	Controlled	11/30/2015	11/30/15 ¹
95	6/30/2013	3/31/2016	3/31/2016	3/31/2019	7/29/2019
68	N/A	6/30/2016	Controlled	6/30/2019	6/30/19 ¹
71	12/31/2020	12/31/2032	12/21/2022	12/31/3035	4/30/3036
152	12/31/2025	1/12/2014	12/31/2026	12/31/3035	4/30/3036
147	12/31/2025	1/12/2014	12/31/2026	12/31/3035	4/30/3036
174	12/31/2025	12/31/1932	12/31/2026	12/31/3035	4/30/3036
13	7/31/2015	8/30/2015	7/31/2016	8/30/2018	12/28/2018
18	9/30/2017	9/30/2017	9/30/2018	9/30/2020	1/28/2021
44	12/31/2018	12/31/2018	12/31/2019	12/31/2021	4/30/2022
31	9/30/2025	9/30/2025	9/30/2026	9/30/2028	1/28/2029
99	9/30/2021	12/31/1932	9/30/2022	12/31/3035	4/30/3036
107	9/30/1930	1/12/2014	9/30/2031	12/31/3035	4/30/3036

9. References

- United States of America and the State of Washington v. City of Seattle, WA. July 3, 2013. Consent Decree: Civil Action No. 2:13-cv-00678.
- Ecology 2004. Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies. Publication No. 04-03-030 Revision of Publication No. 01-03-003. http://www.ecy.wa.gov/pubs/0403030.pdf. July 2004.
- Ecology 2005. City of Seattle NPDES CSO permit. State of Washington Department of Ecology NPDES Waste Discharge Permit No. WA-003168-2, issuance date November 30, 2005. Effective 10/1/05 through 11/30/10.
- Ecology 2006. Water Quality Program Permit Writers Manual. Publication No. 92-109.
- King County. 2002. Major lakes program: continuous temperature sampling and analysis plan. http://your.kingcounty.gov/dnrp/library//2005/kcr2012.doc
- King County. 2002. Sampling and Analysis Plan: Ambient Streams and Rivers Routine Monitoring / Ambient Streams and Rivers Wet Weather Monitoring / SWAMP Streams and Rivers Trace Metals and Organics Monitoring (December 2002, Final Draft). http://green.kingcounty.gov/WLR/Waterres/StreamsData/saps/Streamsroutine.doc
- USEPA 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process EPA QA/G-4. United States Environmental Protection Agency, Office of Environmental Information Washington, DC 20460. EPA/240/B-06/001 http://www.epa.gov/quality/qs-docs/g4-final.pdf. February 2006.
- Final, Lake Washington/Cedar/Sammamish Watershed (WRIA 8)
- Chinook Salmon Conservation Plan. VOLUME I July 2005.
- http://www.govlink.org/watersheds/8/planning/chinook-plan/volumeII/01_Front_Materials.pdf
- Salmon Habitat Plan: Making our watershed Fit for a King. Green/Duwamish and Central Puget Sound Watershed Water Resource Inventory Area 9. August 2009

Utilities

Seattle

Public

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM WASTE DISCHARGE PERMIT No. WA0031682

State of Washington DEPARTMENT OF ECOLOGY Northwest Regional Office 3190 160th Avenue SE Bellevue, WA 98008-5452

In compliance with the provisions of The State of Washington Water Pollution Control Law Chapter 90.48 Revised Code of Washington and The Federal Water Pollution Control Act (The Clean Water Act) Title 33 United States Code, Section 1342 et seq.

City of Seattle, Seattle Public Utilities

700 Fifth Avenue, Suite 4900 P.O. Box 34018 Seattle, WA 98124-4018

Appendix A Wet Weather Combined Sewer Overflow Events and Volumes (2010-2014)

Appendix A Table 1. Wet weather Combined Sewer Overflow events and volumes in Longfellow Creek 2010 - 2014. Data collected in 2014 has higher reliability than previous years data.															
wtrbdy	CSO	wet#10	wetvol10	CSO	wet#11	wetvol11	CSO	wet#12	wetvol12	CSO	wet#13	wetvol13	CSO	wet#14	wetvol14
LFC	169	2	6,874,940	169	2	614,501	168	2	5,364,038	168	0	0	168	1	1,092,208
LFC	168	2	4,824,814	168	0	0	169	1	2,587,257	169	0	0	169	1	604,990
LFC	170	1	40,069	170	0	0	170	1	12,286	170	0	0	170	0	0

highest number of events			
 -	<u>Outfall</u>	Average Frequency	Average Volume(gal)
highest vol discharge	169	1.2	2,136,338
	168	1	2,256,212
controlled to 1 event	170	0.4	10,471
controlled to 0 events			
other uncontrolled			

Waterbodies

LC

Longfellow Creek

			Combined Sewer					-	š /				ě.	,	· · · ·
wtrbdy	CSO	wet#10	wetvol10	CSO	wet#11	wetvol11	CSO	wet#12	wetvo		wet#13	wetvol13	CSO	wet#14	wetvol14
SB	152	63	40,356,610	152	48	40,634,362	152	5	52,382,2	276 152	44	13,192,217	147	49	12,316,618
LU	147	63	23,213,300	147	40	9,748,238	147	4	14,636,0	73 147	27	4,800,690	152	11	41,104,401
SB	150 / 151	29	2,848,612		25	2,497,818		3	4,871,4		I 14	1,737,206		34	3,543,723
SC	174	13	9,846,389	174	10	5,877,361	174	1	10,262,1		7	2,775,594	174	20	8,763,659
PB	140	8	755,672	138	3	124,027	60	(5 727,9	10 140	5	147,407	140	13	341,627
SB	60	4	466,164	60	2	174,145	140		437,3	31 138	2	119,989	138	3	264,644
PB	139	2	399,306	148	2	6,883	138	:	649,2	89 129	2	64,910	60	2	86,372
PB	138	1	1,098,144	140	2	3,107	139	:	2 320,4	03 132	2	3,986	139	2	47,515
SC	148	1	19,092	139	1	2,638	59	:	95,4	05 175	2	3,062	59	0	0
SB	59	0	0	132	1	2,559	130	()	0 60	1	47,234	120	0	0
LU	120	0	0	59	1	915	120	()	0 139	1	47,561	121	0	0
LU	121	0	0	120	0	0	121	()	0 59	1	11,666	124	0	0
LU	124	0	0	121	0	0	124	()	0 121	0	0	127	0	0
LU	127	0	0	124	0	0	127	()	0 120	0	0	129	0	0
LU	129	0	0	127	0	0	129	()	0 124	0	0	130	0	0
SB	130	0	0	129	0	0	131	()	0 127	0	0	131	0	0
LU	131	0	0	130	0	0	132	()	0 130	0	0	132	0	0
LU	132	0	0	131	0	0	134)	0 131	0	0	134	0	0
LU	134	0	0	134	0	0	135)	0 134	0	0	135	0	0
LU	135	0	0	135	0	0	136	()	0 135	0	0	136	0	0
LU	136	0	0	136	0	0	141)	0 136	0	0	141	0	0
PB	141	0	0	141	0	0	144)	0 141	0	0	144	0	0
LU	144	0	0	144	0	0	145)	0 144	0	0	145	0	0
LU	145	0	0	145	0	0	146)	0 145	0	0	146	0	0
LU	146	0	0	146	0	0	148)	0 146	0	0	148	0	0
LU	175	0	0	175	0	0	175)	0 148	0	0	175	0	0

Appendix A Table 2 Wet weather Combined Sewer Overflow events and volumes in Salman R	Rya Laka Union, Portago Ray and Shin Canal 2010 2014	Data collected in 2014 has higher reliability than providus year
Appendix A Table 2. Wet weather Combined Sewer Overflow events and volumes in Salmon B	Sya, Lake Onion, Fonaye Bay and Ship Canal 2010 - 2014.	. Data collected in 2014 has higher reliability than previous year

highest vol discharg

highest number of events

	152
highest vol discharge	147
	150/151
other uncontrolled	174
	140
controlled to 1 event	60

45

45

27

13

6

3

Outfall Average Frequency Average Volume (gal) 37,533,973 12,942,984 3,099,761 7,505,029 337,029 300,365

125 Sealed and removed from service May 2005

172 Sealed and removed from service 1986

Moved outfall 20 to L Wash-Union Bay tab 20

controlled to 0 events

Waterbodies

SB	Salmon Bay
LU	Lake Union
PB	Portage Bay
SC	Ship Canal

wtrbdy	CSO	wet#1 v	vetvol10	cso	wet#11	wetvol11	cso	wet#12	wetvol12	CS)	wet#13	wetvol13	cso	wet#14	wetvol14
LW	44	16	9,887,390	44	17	7,331,324	44	22	12,327,310	44	11	2,873,135	44	25	11,257,313
LW	46	12	4,197,631	31	11	356,655	45	14	889,798	47	10	2,377,107	41	22	2,745,644
LW	31	11	957,983	45	11	159,235	43	14	2,693,671	171	10	970,469	45	21	520,482
LW	45	10	1,322,252	43	7	1,136,935	171	13	2,199,443	41	8	400,178	13	15	12,376,374
UB	43	9	2,825,223	47	7	1,044,960	41	13	1,747,947	45	7		47	15	2,475,920
LW	47	8	10,900,742	171	6	828,364	47	12	10,000,932	29	7	107,553	171	15	1,544,026
LW	18	5	17,174,989	41	5	557,594	29	11	299,426	43	6	517,740	43	14	1,541,559
UB	13	5	6,526,814	18	4	1,772,295	40	10	3,602,239	22	3	,	40	11	2,502,735
LW	171	5	3,344,191	13	4	1,397,291	13	7	4,471,990		2	1,635,247	29	7	134,427
LW	40	5	3,207,479	40	4	814,849	49	5	1,984,105	49	2	1,056,726	28	7	3,781
LW	41	5	1,623,574	32	4	368,002	22	4	23,146		2	, -	49	6	2,452,672
LW	49	4	4,552,799	46	4	88,604	42	3	453,768	40	2	,	42	6	489,133
LW	15	4	1,409,738	15	4	22,529	30	3	360,739	20	2	, -	18	5	3,350,103
LW	32	3	1,111,491	20	3	189,159	32	3	237,856		2	/	20	5	562,408
UB	20	3	1,943,677	29	3	24,029	20	2	762,481	15	2	-,		5	152,897
LW	36	2	256,969	49	2	634,667	15	2	188,231	36	3	- ,	46	4	51,982
LW	29	2	42,839	42	2	82,769	46	2	27,595	28	3	, -	22	3	16,765
LW	28	2	324	28	2	1,204	165	2	54,470		1	184,519		2	149,342
LW	25	1	2,402,363	36	1	16,852	36	2	40,092		1	125,525		2	111,411
LW	24	1	2,181,178	22	1	6,285	31	2	8,170	25	1	97,238	34	2	79,864
LW	38	1	2,144,838	35	1	1,815	28	2	3,931	32	1	88,300		2	66,045
UB	22	1	1,193,468	30	1	13	18	1	9,541,486	165	1	4,387	38	2	55,731
LW	42	1	1,377,285	12	0	0	25	1	1,214,977		1	902		2	26,931
LW	34	1	833,946	14	0	0	24	1	1,179,613	35	1	802	165	2	8,970
LW	165	1	118,552	16	0	0	38	1	433,405	12	1	590	12	2	2,612
LW	12	1	223,010	19	0	0	34	1	229,082	46	1	281	35	2	851
LW	14	0	0	24	0	0	12	1	58,966	14	0	-		0	0
UB	16	0	0	25	0	0	35 33	1	5,893	16	0		16	0	0
UB	19	0 0	0	26	0	-		1	360	26	0	-	19	0	0
LW	26		0	27		0	14 16	0	0		-	-	24		0
LW LW	27 30	0	-	33 34	0	0	10	0	0		0	-	25 26	0	0
LW	30 35	0 0	0	34 38	0	0	26	0	-		0	-	26 27	0	0
LW	35	0	0	38 48	0	0	20 27	0	0		0	-	33	0	0
LW	33 48	0	0	40 161	0	0	48	0	0		0	-	33 48	0	0
LW	48	0	0	165	0	0	40 161	0	0		0	-		0	0
	101	0	0	103	0	0	101	0	0	101	0	0	101	0	0

Appendix A Table 3. Wet weather Combined Sewer Overflow events and volumes in Lake Washington and Union Bay 2010 - 2014. Data collected in 2014 has higher reliability than previous years data.

	highest vol discharge	<u>Outfall</u>	Average Frequency	Average Volume (gal)
		44	18.2	8,735,294
	highest number of events	45	12.6	627,077
		41	10.6	1,414,987
	other uncontrolled	47	10.4	5,359,932
		43	10	1,743,026
	controlled to 1 event	171	9.8	1,777,299
		13	6.6	5,132,340
	controlled to 0 events	40	6.4	2,171,159
		29	6	121,655
Waterbodies		31	5.8	295,141
LW	Lake Washington	18	3.4	6,694,824
UB	Union Bay	46	4.6	873,219
	-	28	3.2	2,800

wtrbdy	CSO	wet#10	wetvol10	CSO	wet#11	wetvol11	CSO	wet#12	wetvol12	CSO	wet#13	wetvol13	CSO	wet#14	wetvol14
PS-C	95	3	179,782	62	3	239	95	1	4,276	62	2	4,428	62	2	1,584
PS-C	88	1	342,740	95	1	744	62	1	237	95	1	803	95	0	0
EB	61	1	50,026	94	0	0	90	0	0	90	0	0	88	0	0
PS-C	94	0	0	57	0	0	94	0	0	94	0	0	90	0	0
PS-C	57	0	0	61	0	0	57	0	0	57	0	0	94	0	0
EB	62	0	0	64	0	0	61	0	0	61	0	0	57	0	0
EB	64	0	0	83	0	0	64	0	0	64	0	0	61	0	0
PS-C	83	0	0	85	0	0	83	0	0	83	0	0	64	0	0
PS-C	85	0	0	88	0	0	85	0	0	85	0	0	83	0	0
PS-C	90	0	0	90	0	0	88	0	0	88	0	0	85	0	0
PS-C	91	0	0	91	0	0	91	0	0	91	0	0	91	0	0

Appendix A Table 4. Wet weather Combined Sewer Overflow events and volumes in Elliott Bay and Puget Sound Central 2010 - 2014. Data collected in 2014 has higher reliability than previous years data.

highest number of events			
highest vol discharge	Outfall 62		ency Average Volume (gal) 1,298
	95		37,121
other uncontrolled	88	0.2	68,548
controlled to 1 event			
controlled to 0 events			

- Sealed and removed from service 2003 63 56
 - Sealed and removed from service Sept 13, 20⁻ Moved Outfall 60 to SB-LU-PB-SC Tab Moved Outfall 59 to SB-LU-PB-SC Tab

Waterbodies

PS-C **Puget Sound-Central**

Elliott Bay EB

Appendix A Table 5. Wet weather Combined Sewer Overflow events and volumes in the East Waterway of the Duwamish River, the Duwamish River and the West Waterway of the Duwamish River 2010 - 2014. Data collected in 2014 has higher reliability than previous years data.

wtrbdy	CSO	wet#10	wetvol10	CSO	wet#11	wetvol11	CSO	wet#12	wetvol12	CSO	wet#13	wetvol13	CSO	wet#14	wetvol14
EW	107	12	4,167,734	107	5	767,499	99	5	2,494,862	107	3	232,587	99	6	3,827,730
DR	111	3	7,724,604	99	3	715,775	107	4	352,041	111	3	11,507	107	6	288,804
WW	99	2	1,620,161	111	2	723	111	1	314,968	99	1	405,700	111	3	146,654
			highest numbe	er of events		Outfall 116	Removed								
			highest vol dis	charge		Outfall	Average Fr	requency	Average Volume	e (gal)					
						107	6		1,161,733						
			other uncontro	lled		99	3.4		1,812,846						
]	controlled to 1	event		111	2.4		1,639,691						
			controlled to 0	events											

Waterbodies

EW	East Waterway of the Duwamish River
DR	Duwamish River
WW	West Waterway of the Duwamish River

wtrbdy	CSO	wet#03	wetvol03	CSO	wet#04	wetvol04	CSO	wet#05	wetvol05	CSO	wet#06	wetvol06	CSO	wet#07	wetvol07
EB	71	7	1,352,572	71	3	129,452	71	5	600,682	71	4	369,332	69	3	439,013
EB	68	1	1,840,469	69	2	57,940	69	2	277,093	69	3	439,013	68	2	188,263
EB	69	1	214,775	70	0	0	68	1	2,801,197	68	1	253,698	71	2	81,675
EB	70	0	0	72	0	0	70	0	0	70	1	65,550	70	0	0
EB	72	0	0	68	0	0	72	0	0	72	1	14,783	72	0	0
EB	78	0	0	78	0	0	78	0	0	78	0	0	78	0	0
EB	80	0	0	80	0	0	80	0	0	80	0	0	80	0	0

Appendix A Table 6. Wet weather Combined Sewer Overflow events and volumes in Elliott Bay 2010 - 2014. Data collected in 2014 has higher reliability than previous years data.

highest number of events	Outfall	Average freque	ncy Average Volume (ga
	71	4.2	506,743
highest vol discharge	69	2.2	285,567
	68	3 1	1,016,725
other uncontrolled			
controlled to 1 event			
controlled to 0 events			

VVa

Elliott Bay EB

Appendix B SPU PCMP

CSO NPDES Permitted Outfalls Physical Characteristics

											Infrastructure in Proximity to SPU CSO Outfall Receiving Water - Physical Characteristics								
				1	1			CSO In	formation		1	1	SPUCS						racteristics
CSO Basin	Waterbody type (marine/lake/r iver/stream/e stuary	Receiving Water	NPDES Outfall #	Frequency of Overflow (avg per yr)*?	20-year Avg Overflow frequency (events per yr)a?	5-year Avg Overflow Volume (MG/year)	Currently monitored for water quality in ongoing CSO Characterizati on Study? ^c	2001 Reduction Plan Amendment Study Areas ^e	Projects listed in in NPDES permit under 'CSO permit compliance schedule' ^d	Projects Proposed in May 29, 2015 Integrated Plan	Diameter of CSO Outfall (in) ^e	Material of CSO Outfall [®]	Proximity to King County CSO(s) ft ⁴	Proximity to SPU Stormwater Outfall(s) ftf	Discharges into an area with limited circulation & flushing?	into an area tidally	CSO outfall invert depth (feet) ^e	CSO outfall distance from Shoreline (ft) ^e	Slope and sediment character (physical) at outfall site
Windermere Windermere	fw lake fw lake	Lake Washington Lake Washington	12	<1	10.1	0.060	N	Y (N. Lake Wa/Windermere) Y (N. Lake Wa/Windermere)	storage, windermere		30	concrete wood stave		Y 270	N	N .	20	152 500	
	fw lake		13		0.3	5.130 0.000	T	Y (N. Lake Wa/Windermere) Y (N. Lake Wa/Windermere)	storage, windermere		10	cast iron		14	N	IN .	21	36	
	fw lake			>=1 and <5	1.8	0.000			storage, windermere		30	wood stave		270	N	N	22	278	
Windermere	fw lake		16	<1	0.1	0.000		r (N. Lake Wa/Wildernere)	storage, windernere		10	concrete	3700	1	N			33	
Windermere	fw lake		18	>=1 and <5	4.3		Y			sewer system improvement,	60	concrete	1	1	Y	N	at surface	5	
						6.695				north union bay							(partially	-	
Windermere	fw lake		19	<1	0.2	0.000	N				48	concrete		770	Y	N	0.5	to Union Bay via	
Montlake/Madison Park	fw lake	Union Bay	20	>=1 and <5	1.6	0.733	N			sewer system Improvement and/or storage, montlake	21	concrete	1030	990	Y	N :	2	10	
Montlake/Madison Park	fw lake	Union Bay	22	>=1 and <5	1.2	0.733	N			anuror storage, montiake	24	cast iron	5300	520	v	N	4	0	
Leschi	fw lake		24	>=1 and <5	1.0	0.709	N				20	cast iron		510	N	N I	8	240	
Leschi	fw lake		25	<1	0.8	0.743	N				20	cast iron	5900	560	N	N	28	415	
Leschi	fw lake		26 ⁹	N/A	N/A	N/A	N				8	cast iron	1700	70	N	N	26	204	
Leschi	fw lake		27	<1	0.0	0.000	N		İ	İ	24	cast iron	1	1	N	N		286	
Leschi	fw lake		28	>=1 and <5	3.1	0.003	Y		İ	sewer system Improvement	16	cast iron		660	N	N	37	225	
Leschi	fw lake		29		3.1	0.122					15		3000	400	N	N	26	264	
Leschi	fw lake	Lake Washington	30	>=1 and <5	1.0	0.123					48	corrugated aluminum	3300	1	N	N	9	122	
Leschi	fw lake	Lake Washington	31	>5	12.8	0.295	Y			sewer system Improvement and/or storage, leschi	8	Replaced Cast Iron outfall with HDPE and added flap gate Feb./2015	5500	210	N	N	12	82	
Leschi	fw lake	Lake Washington	32	>5	5.3	0.383	N			sewer system Improvement and/or storage, leschi	12	cast iron	7600	800	N	N :	29	167	
Leschi	fw lake		33	<1	0.3	0.000	N				20	cast iron		450	N	N	30	70	
Leschi	fw lake		34	>=1 and <5	1.1	0.229	N				16	cast iron		450	N	Ν	30	72	
Leschi	fw lake		35	>=1 and <5	1.0	0.002					15	cast iron		440	N	N	24	220	
Leschi	fw lake	Lake Washington	36	>=1 and <5	2.2	0.070	N			sewer system Improvement and/or storage, leschi	21	corrugated metal		1500	N	N	10	65	
Genesse	fw lake	Lake Washington	37 ⁹	N/A	N/A	N/A	N				12	corrugated metal		20	N	N	6	32	
Genesse	fw lake	Lake Washington	38	<1	0.8	0.530	N				72; 36	concrete (72); reduces to cast iron (36)	1	225	N	N :	37	396 (daylights 50' from shore)	
Genesse	fw lake	Lake Washington	39 ⁹	N/A	N/A	N/A	N	Y (S. Lake Wa / S. Genesee)			16	cast iron	120	120	N	N	27	297	
	fw lake			>5	6.0	2.170	N		storage (genesee); BMPs		24; 12	concrete		150	N	N	8	50	
	fw lake		41	>5	8.9	1.410	Y	Y (S. Lake Wa / S. Genesee)			15; 14	amco iron (15in); PVC (14in)		580	N	N	8	81	
					1.2	0.510			storage (genesee); BMPs		12			50	Y	N		165	
Genesse	fw lake		43	>5	7.8	1.740			storage (genesee)		21	RCP		460	Y	N		70	
Henderson	fw lake		44	>5	16.2	8.740			storage (henderson); BMPs		24	wood stave		370	Ŷ	N		565	
Henderson Henderson	fw lake		45 46	>5	14.6 7.4	0.630		Y (S. Lake Wa / S. Henderson)			30	concrete		210	N	N	3.5	74	
Henderson	fw lake fw lake		46 47	>5 >5	16.2	5.360		Y (S. Lake Wa / S. Henderson) Y (S. Lake Wa / S. Henderson)			12 84	concrete		210	N	N	9	34	
Henderson	fw lake		47 48	25 10	0.0	0.000		Y (S. Lake Wa / S. Henderson) Y (S. Lake Wa / S. Henderson)	storage (henderson); BMPs		24	ductile iron		1350	1	IN I	0	38	
Henderson	fw lake		40 49	>=1 and <5	2.7	2.140		Y (S. Lake Wa / S. Henderson) Y (S. Lake Wa / S. Henderson)	storage (benderson): PMPs		24	PVC		200	N	IN I		0.5	
Ballard	marine		56 ⁹	N/A	N/A	N/A	N	T(3. Lake wa / 3. Henderson)	atorage (renderson), own s		8	cast iron	11000	350	N	Y		0.5	
Ballard	marine	Puget Sound-Central	57	<1	0.0	0.000	N				8	cast iron	10000	1	N	Y	above water at time of inspection	1	
Ballard	marine		59	<1	0.4	0.020					36	cast iron		760	Y	Y	20	108	
Ballard	marine	Salmon Bay	60	>=1 and <5	2.8	0.300	N			sewer system improvement	20	cast iron	6200	1600	Y	Y	20	217	
Magnolia	marine	Elliott Bay	61	<1	0.1	0.000	N	Y (Puget Sound/Magnolia)		and/or storage, magnolia	12	ductile iron	6700	370	N	Y	14	351	
Magnolia	marine				0.9	0.000		Y (Puget Sound/Magnolia)			30	concrete		450	N	Y		302	
Magnolia	marine				N/A	N/A		Y (Puget Sound/Magnolia)			12	cast iron	6400	1	N	Y		1205	
Magnolia	marine		64	<1	0.0	0.000		Y (Puget Sound/Magnolia)			12	cast iron		260	N	Y		275	
Magnolia/Interbay	marine	Elliott Bay	68	<1	0.8	1.030	N	- /	İ	İ	96		5000	1	Y	Y i	4	0	
Vine Street	marine		69		1.8	0.240	N		İ	storage, central waterfront	24	cast iron		790	Y	Y	12	12	
King Street	marine		70	<1	0.5	0.010					24	concrete	2600	1	Y	Y	21	5	
University Street	marine		71	>=1 and <5	2.4	0.510			storage (central waterfront)		60	RCP		210	Y	Y :	2	0	
University Street	marine		72	<1	0.4	0.000					24	cast iron		750	Y	Y	23	157	
West Seattle	marine	Elliott Bay	78	<1	0.2	0.000					42	concrete		660	N	Y		128	
West Seattle			80	<1	0.0	0.000					18			420	N	Y		15	
West Seattle	marine		83	<1	0.0	0.000					16; 20	vitrified clay (16in); cast iron (20 in)		414	N	Y	11	322	
West Seattle	marine	Puget Sound-Central	85	<1	0.0	0.000					6	concrete		950	N	Y	0	0	
West Seattle	marine	- ager e e e e e e e e e e e e e e e e e e	88	<1	0.3	0.070					18	steel		670	N	Y I	0	1	
West Seattle	marine		90		0.1	0.000					24	cast iron	-	220	N	Y :		593	
West Seattle	marine	- ager e e e e e e e e e e e e e e e e e e	91	<1	0.0	0.000					24	ductile iron		660	N	Y		233	
West Seattle	marine		94	<1	0.1	0.000					24; 16	ductile iron		144	N	Y i		570	
West Seattle	marine	Puget Sound-Central	95	>=1 and <5	2.4	0.040	N				10	ductile iron	1300	1200	N	Y	8	110	

				CSO Information													Receiving W	ater - Physical Ch	aracteristics
	Waterbody type (marine/lake/r iver/stream/e		NPDES	Frequency of Overflow (avg	20-year Avg Overflow frequency (events per	5-year Avg Overflow Volume	CSO Characterizati	2001 Reduction Plan	Projects listed in in NPDES permit under 'CSO permit	Projects Proposed in May	Diameter of CSO Outfall		Proximity to King County	SPU Stormwater	with limited circulation		CSO outfall invert depth	CSO outfall distance from	Slope and sediment characte
CSO Basin elridge	stuary river	Receiving Water W Waterway of	Outfall # 99	per yr)*? >=1 and <5	yr)a? 1.9	(MG/year) 1.810	on Study? ^c Y	Amendment Study Areas ^d	compliance schedule rd	29, 2015 Integrated Plan sewer system improvement	(in) ^e 96	Material of CSO Outfall ^e concrete	CSO(s) ft ^f	Outfall(s) ftf 1200	& flushing? Y	influenced? Y	(feet)*	Shoreline (ft) ^e	(physical) at outfall site
		Duwamish River								and/or storage , Delridge									
Jwamish	river	East Waterway of Duwamish River	107	>5	5.1	1.160	N			sewer system improvement and/or storage, east waterway	54	RCP	1300	280	Y	Y i	5	0	
uwamish	river	Duwamish River	111	>=1 and <5	2.0	1.640	Y	Y (Duwamish R / Diagonal)	storage (duwarnish)	sewer system improvement and/or storage, duwamish	144	concrete	1	830	Y	Υ)	0	
Jwamish	river	Duwamish River		N/A	N/A	N/A	N				30	vitrified clay	750	1200	Y	Y I)	0	
ike Union	fw lake	Lake Union / Ship Canal	120	<1	0.0	0.000	N				8			330	Y	N)	16	
ake Union	fw lake	Lake Union / Ship Canal	121	<1	0.1	0.000					8	cast iron	2100	1200	Y	N	1	24	
ake Union	fw lake	Lake Union / Ship Canal	124	<1	0.0	0.000					10	cast iron	1700	200	Y	N	6	16	
ake Union	fw lake	Lake Union / Ship Canal	127		0.4	0.000					8		2200	47	Y	N	10	18	
adison Valley/Lake	fw lake	Lake Union / Ship Canal	129	<1	0.2	0.010	N				8	concrete	2900	400	Y	N)	3	
adison Valley/Lake	fw lake	Lake Union / Ship Canal	130	<1	0.0	0.000	N				21	RCP	3400	500	Y	N	29	157	
adison Valley/Lake	fw lake	Lake Union / Ship Canal	131	<1	0.1	0.000	N				8	cast iron	4250	3500	Y		17	104	
	fw lake	Lake Union / Ship Canal			0.4	0.000					30	corrugated aluminum		900	Y	N	3.5	1.5	
ake Union	fw lake	Lake Union / Ship Canal	134	<1	0.0	0.000	N				8	ductile iron	4400	14	Y	N	2	2	
ontlake	fw lake	Lake Union / Ship Canal	135	<1	0.1	0.000					10	steel	2600	720	Y	N).5	5	
	fw lake	Lake Union / Ship Canal	136	<1	0.0	0.000					8	cast iron	1500	1300	v	N)	0	
lontlake	fw lake	Portage Bay	138	>=1 and <5	1.7	0.450				sewer system improvement and/or storage, portage bay	16	wood stave	1350	1350	Y	N	3	148	
lontlake	fw lake	Portage Bay	139	>=1 and <5	1.3	0.160				sewer system improvement and/or storage, montlake	42	HDPE	2200	1100	Y	N ·	1	50	
ontlake	fw lake	Portage Bay	140	>=1 and <5	4.4	0.340	N			sewer system improvement and/or storage_montlake	18	cast iron	850	1100	Y	N	3	22	
ontlake	fw lake	Portage Bay	141	<1	0.1	0.000	N			and/or storage, montiake	18	RCP	1200	318	v	N	20	324	
ake Union	fw lake	Lake Union	144	<1	0.1	0.000					18	concrete		250	v	N	2.	96	
ake Union	fw lake	Lake Union	145	<1	0.0	0.000					26	corrugated metal	5200	400	v	N	, ,	189	
ake Union	fw lake	Lake Union		<1	0.0	0.000					8	cast iron	5100	500	v	N	1	1	
remont	fw lake	Lake Union			38.9	12.940			weir modification, monitoring	storage wallingford	20	concrete	4100	920	v	N		10	
remont	fw lake	Ship Canal	148		0.2	0.010			weir modification, monitoring	atorage, waiingioru	50	cast iron	1400	950	T V	N NI	,	10	
allard	fw lake	Salmon Bay			46.1	37.530			storage, monitoring, modeling	stars as hellord	48	wood stave	2900	950 550	I V	N	10	60	
	fw lake	Lake Washington	161	-		0.000			storage, monitoring, modeling	storage, ballaru	40	corrugated metal	17200	550	1	IN .	10	47	
findermere			161	<1 >=1 and <5	0.0	0.000					42	corrugated metal RCP	4300	1 460	N	N	>	47	
enesse elridge	fw lake fw stream	Lake Washington Longfellow Creek	165	>=1 and <5 >=1 and <5	2.5	2.260		Y (S. Lake Wa / S. Genesee) Y (Longfellow Cr / Delridge)	storage (genesee)	sewer system improvement and/or storage, delridge	36	concrete	13700	200	Y	N).5	43 0	
elridge	fw stream	Longfellow Creek	169	>=1 and <5	2.4	2.140	Y	Y (Longfellow Cr / Delridge)		sewer system improvement and/or storage, delridge	42	corrugated metal	1400	1	Y	N	0.5	0	
elridge	fw stream	Longfellow Creek	170	<1	0.6	0.010					48	concrete	1500	1300	Y	N).5	0	
enderson	fw lake	Lake Washington	171	>5	7.6	1.780	N	Y (S. Lake Wa / S. Henderson)	storage (henderson); BMPs		36	concrete	1200	1200	Y	N	8	0	
remont	fw lake	Ship Canal	174	>5	9.5	7.510	Y		partial separation, monitoring	storage, fremont	12	steel	525	340	Y	N I).5	0	
adison Valley/Lake	fw lake	Lake Union / Ship Canal	175	<1	0.4	0.000	N				52	corrugated metal	3000	280	Y	N	12	59	
allard	fw lake	Salmon Bay	150/151	>5	18.4	3.100	Y		storage, monitoring, modeling (ballard)	storage, ballard	outlets)	wood stave (two pipes). Replaced outfall 150 with HDPE December 2014.	5200	1160	Y	N	3; 12	60; 175	

				CSO Informat	tion					Possiving Water - Use	s, Sensitive Areas, Impairmen		rmation - Water I/or Sediments			
				COO Intornia	lion					Receiving water - Use					Column and	or Sediments
											30	3d listings (2008) ^h				In proximity to
	Waterbody type (marine/lake/r			Frequency of Overflow	Avg Vol of	Distance to	Distance to Closest Boat	Distance to Closest						Outfall in proximity to a Superfund or other site (MOTCA	In proximity to sediment	King County lake or puget sound water quality
CSO Basin	iver/stream/e stuary	Receiving Water	NPDES Outfall #	(avg per yr) ^a ?	Overflow (MG	closest beach (ft) ^f	Ramp or Marina (ft)f	Waterfront Park (ft) ^f	Discharges into a sensitive habitat?	303d listings	listing number	medium	parameter(s)	or planned PRP	monitoring station?	monitoring station?
Windermere	fw lake	Lake Washington	12	yr) ? <1	per yr) ^b ? 0.1	3,600		973	Y (ESA Chinook Critical Habitat)	3030 listings	listing number	medium	parameter(s)	cleanup site)?	station?	station?
Windermere	fw lake					450		450	Y (ESA Chinook Critical Habitat)							
Windermere	fw lake		14			1,900	7,350	1,900	Y (ESA Chinook Critical Habitat)							<u> </u>
Windermere Windermere	fw lake fw lake		15 16			310 6,250	9,411 1,500	0 2,300	Y (ESA Chinook Critical Habitat) Y (ESA Chinook Critical Habitat)	2	11960	water	ammonia-N			<u> </u>
Windermere	fw lake		18			7.550	1,500	2,300	Y (ESA Chinook Critical Habitat)	2 no data	11900	water	animonia-iv			<u> </u>
Windermere	fw lake	Union Bay	19		0.0	11,200	3,430	0	Y (ESA Chinook Critical Habitat)	4C	4676	habitat	invasive spp			
Montlake/Madison Park	fw lake		20			9,070	2,275	0	Y (ESA Chinook Critical Habitat)	5		water	total phosphorus, Pb, fecal coliform, aldrin			
Montlake/Madison Park			22	>=1 and <5	0.3	3,900		700	Y (ESA Chinook Critical Habitat)	2	11960	water	ammonia-N			<u> </u>
Leschi Leschi	fw lake fw lake	Lake Washington Lake Washington	24 25	>=1 and <5	0.7	1,491 1,522	2,206	1,500 1,450	Y (ESA Chinook Critical Habitat) Y (ESA Chinook Critical Habitat)							<u> </u>
Leschi	fw lake	Lake Washington	26 ⁹	N/A	0.7 N/A	900	6,300	900	Y (ESA Chinook Critical Habitat)	1	12317	water	PCB			<u> </u>
Leschi	fw lake	Lake Washington	27			2,375	8,070	0	Y (ESA Chinook Critical Habitat)	1	12317	water	PCB			
Leschi	fw lake		28		0.0	1,950	8,472	0	Y (ESA Chinook Critical Habitat)	1	12317	water	PCB			
Leschi	fw lake		29	>=1 and <5		717	671	0	Y (ESA Chinook Critical Habitat)	1	12207	water	fecal coliform			<u> </u>
Leschi Leschi	fw lake fw lake	Lake Washington Lake Washington	30 31			1,100 3,180	250	0	Y (ESA Chinook Critical Habitat) Y (ESA Chinook Critical Habitat)	1	12207	water water	fecal coliform fecal coliform			t
Leschi	fw lake	Lake Washington	31	-		3,180	2,000	1,670	Y (ESA Chinook Critical Habitat) Y (ESA Chinook Critical Habitat)	-	-2201					t
Leschi	fw lake		33	-		4,200	1,700	1,300	Y (ESA Chinook Critical Habitat)		1		1			
Leschi	fw lake	Lake Washington	34	>=1 and <5	0.2	8,000	1,650	1,270	Y (ESA Chinook Critical Habitat)							
Leschi	fw lake		35			4,700		460	Y (ESA Chinook Critical Habitat)	5	12188	water	fecal coliform			L
Leschi Genesse	fw lake fw lake	Lake Washington Lake Washington	36 37 ⁹	>=1 and <5 N/A		370 3,700	2,700 1,200	0	Y (ESA Chinook Critical Habitat) Y (ESA Chinook Critical Habitat)	5	12188 500006 (s), 12314 (w)	water sediment / water	fecal coliform sediment bioassay, PCB (w)			L
Genesse	fw lake	Lake Washington	379	<1	0.5	5,200	400	0	Y (ESA Chinook Critical Habitat)	2	12314 (W)	water	PCB			<u> </u>
Genesse	fw lake	Lake Washington	39 ⁹	N/A	N/A	5,200	400	0	Y (ESA Chinook Critical Habitat)	2	12314	water	PCB			
Genesse	fw lake		40	>5	2.2	7,000	1,650	0	Y (ESA Chinook Critical Habitat)	2	12314	water	PCB			
Genesse	fw lake		41			7,100	2,000	0	Y (ESA Chinook Critical Habitat)	2	12314	water	PCB			
Genessee	fw lake		42			4,500	0	0	Y (ESA Chinook Critical Habitat)	-						
Genesse Henderson	fw lake fw lake		43 44	-		3,600 12,100	1,000 2,100	0	Y (ESA Chinook Critical Habitat) Y (ESA Chinook Critical Habitat)	5	12184	water	fecal coliform			<u> </u>
Henderson	fw lake			-		4,400	2,100	0	Y (ESA Chinook Critical Habitat)	5	12205	water	fecal coliform			<u> </u>
Henderson	fw lake					350	3,100	0	Y (ESA Chinook Critical Habitat)	5	12205	water	fecal coliform			
Henderson	fw lake		47	-		3,500	0	0	Y (ESA Chinook Critical Habitat)	5	12204	water	fecal coliform			
Henderson	fw lake	Lake Washington	48			5,600	2,400	1,600	Y (ESA Chinook Critical Habitat)	5	51593, 52705	tissue	2,3,7,8-TCDD, PCB			<u> </u>
Henderson Ballard	fw lake marine	Lake Washington Puget Sound-Central	49 56 ⁹			6,900 2,400	3,600	2,800	Y (ESA Chinook Critical Habitat) Y (ESA Orca Critical Habitat; Chinook	5	51593, 52705 42491	tissue water	2,3,7,8-TCDD, PCB fecal coliform			<u> </u>
Ballard	marine	Puget Sound-Central	50"	<1	0.0	3,400	0	1,700	Y (ESA Orca Critical Habitat; Chinook	5	42491	water	fecal coliform			<u> </u>
Ballard	marine	Salmon Bay	59	<1	0.0	7,700	2,500	600	Y (ESA Chinook Critical Habitat)	5	42491	water	fecal coliform			
Ballard	marine	Salmon Bay	60	>=1 and <5		8,700	3,300	1,200	Y (ESA Chinook Critical Habitat)	5	42491	water	fecal coliform			
Magnolia	marine	Elliott Bay	61	<1		6,700	6,200	0	Y (ESA Orca Critical Habitat; Chinook	1	512066-73-81-83-84-93	sediment	multiple metals, 4-methylphenol,			<u> </u>
Magnolia Magnolia	marine	Elliott Bay Elliott Bay	62			8,000 8,550	5,800 6,100	0	Y (ESA Orca Critical Habitat; Chinook Y (ESA Orca Critical Habitat; Chinook	1	512066-73-81-83-84-93 512066-73-81-83-84-93	sediment sediment	multiple metals, 4-methylphenol, multiple metals, 4-methylphenol,			L
Magnolia	marine	Elliott Bay	63 ⁹ 64			8,550	300	0	Y (ESA Orca Critical Habitat; Chinook Y (ESA Orca Critical Habitat; Chinook	2	512066-73-81-83-84-93 512133-41-69	sediement	2,4,dimethylphenol, hexachlorobutadiene, N-			<u> </u>
Magnolia/Interbay	marine	Elliott Bay	68	<1	1.0	15,000	0	0	Y (ESA Orca Critical Habitat; Chinook	2	45583	water	fecal coliform			<u> </u>
Vine Street	marine	Elliott Bay	69		0.2	15,000	8,400	1,900	Y (ESA Orca Critical Habitat; Chinook	2	15801	water	endosulfan			
King Street	marine	Elliott Bay Elliott Bay	70		0.0	15,000	,	230	Y (ESA Orca Critical Habitat; Chinook Y (ESA Orca Critical Habitat; Chinook	5	505989 505989	sediment / water	sediment bioassay/ wtr fecal coliform			<u> </u>
University Street University Street	marine	Elliott Bay Elliott Bay	71	>=1 and <5 <1	0.5	11,000		2,000 2,400	Y (ESA Orca Critical Habitat; Chinook Y (ESA Orca Critical Habitat; Chinook	5	505989 505989	sediment / water sediment / water	sediment bioassay/ wtr fecal coliform sediment bioassay/ wtr fecal coliform			<u> </u>
West Seattle	marine	Elliott Bay	72		0.0	10,000	11,000	0	Y (ESA Orca Critical Habitat; Chinook Y (ESA Orca Critical Habitat; Chinook	5	45102	water	fecal coliform			<u> </u>
West Seattle	marine	Elliott Bay	80			600	130	0	Y (ESA Orca Critical Habitat; Chinook	5	45557	water	fecal coliform			
West Seattle	marine	Puget Sound-Central	83	<1		200	4,100	0	Y (ESA Orca Critical Habitat; Chinook	5	45557	water	fecal coliform			
West Seattle	marine	Puget Sound-Central	85		0.0	0	1,400	1,100	Y (ESA Orca Critical Habitat; Chinook	5, 1	15805, 42482	water	fecal coliform, DO			L
West Seattle West Seattle	marine	Puget Sound-Central Puget Sound-Central	88 90	-1	0.1	0 300		2,300	Y (ESA Orca Critical Habitat; Chinook	1 2(e) 5(w)	21695 50844-50-57-83-85(s).	habitat sediment / water	fish hab			<u> </u>
West Seattle West Seattle	marine					300 100	100	200	Y (ESA Orca Critical Habitat; Chinook Y (ESA Orca Critical Habitat; Chinook	2(s), 5(w)	50844-50-57-83-85(s), 6654	sediment / water water	Hg, 2,4-D, dibenzo[a,h]anthracene, fecal coliform			<u> </u>
West Seattle	marine		94			900		900	Y (ESA Orca Critical Habitat; Chinook	5	6654	water	fecal coliform			<u> </u>
West Seattle	marine	Puget Sound-Central	95		0.0	170	1,900	1,900	Y (ESA Orca Critical Habitat; Chinook	5	6654	water	fecal coliform			
Delridge	fw stream	W Waterway of Duwamish River	99	>=1 and <5	1.8	5,200	2,700	5,700	Y (Spawning and documented presence of salmonids, incl. coho- WDFW online data)	5	7491	water	fecal coliform			
Duwamish	river	East Waterway of Duwamish River	107	>5	1.2	11,000	1,800	5,700	Y (ESA Chinook Nearshore Marine Critical Habitat; other salmonids documented presence)	2	50701(+)	sediment	organics (multiple)	superfund		
Duwamish	river	Duwamish River	111	>=1 and <5	1.6	10,000	2,000	600	Y (ESA Chinook Nearshore Marine Critical Habitat; other salmonids documented presence)	5	507660, 48944, 8650	sediment / water	sediment bioassay, DO, bis(2- ethylhexyl)pthalate	superfund		
Duwamish	river	Duwamish River	116 ⁹	N/A	N/A	15,000	4,600	4,600	Y (ESA Chinook Nearshore Marine Critical Habitat; other salmonids documented presence)	5	superfund			superfund		

				CSO Informa	ation					Receiving Water - Uses	s, Sensitive Areas, Impairmer	its				ormation - Water d/or Sediments
											30	3d listings (2008) ^h		-		
	Waterbody type (marine/lake/r iver/stream/e		NPDES	Frequency of Overflow (avg per	Avg Vol of Overflow (MG	Distance to closest	Distance to Closest Boat Ramp or	Waterfront						Outfall in proximity to a Superfund or other site (MOTCA or planned PRP	In proximity to	In proximity King County I or puget sou water qualit monitoring
CSO Basin	stuary	Receiving Water	Outfall #	yr) ^a ?	per yr) ^b ?	beach (ft) ^f	Marina (ft)f		Discharges into a sensitive habitat?	303d listings	listing number	medium	parameter(s)	cleanup site)?	station?	station?
.ake Union	fw lake	Lake Union	120	<1	0.0	na	0	1,700	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
ake Union	fw lake	Lake Union	121	<1	0.0	na	0	2,400	Y (ESA Chinook Critical Habitat)	2(sediment) 5 (water)	500017(s), 52866, 8066,	sediment / water	sediment bioassay, total phosphorus, Pb, fecal			
ake Union	fw lake	Lake Union	124	<1	0.0	na	0	0	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
ake Union	fw lake	Lake Union	127	<1	0.0	na	650	0	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
/ladison Valley/Lake	fw lake	Lake Union	129	<1	0.0	na	0	1,000	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
ladison Valley/Lake	fw lake	Lake Union	130	<1	0.0	na	1,000	175	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
ladison Valley/Lake	fw lake	Lake Union	131	<1	0.0	na	0	400	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			1
Madison Valley/Lake	fw lake	Lake Union	132	<1	0.0	na	0	0	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
ake Union	fw lake	Lake Union	134	<1	0.0	na	0	350	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin	1	1	1
Montlake	fw lake	Lake Union	135	<1	0.0	na	0	250	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
Montlake	fw lake	Lake Union	136	<1	0.0	na	0	1,200	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			
Montlake	fw lake	Portage Bay	138	>=1 and <5	0.5	na	0	1.000	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			1
Montlake	fw lake	Portage Bay	139	>=1 and <5	0.2	na	700	0	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			-
Iontlake	fw lake	Portage Bay	140	>=1 and <5	0.3		2,000	250	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			-
Montlake	fw lake	Portage Bay	141	<1	0.0	na	70	300	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus. Pb. fecal coliform, aldrin			-
ake Union	fw lake	Lake Union	144	<1	0.0	na	0	700	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus, Pb, fecal coliform, aldrin			-
ake Union	fw lake	Lake Union	145	<1	0.0	na	0	0	Y (ESA Chinook Critical Habitat)	2(sediment) 5 (water)	500017(s), 52866, 8066,	sediment / water	sediment bioassay, total phosphorus, Pb, fecal			-
Lake Union	fw lake	Lake Union	146	<1	0.0	na	0	880	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	sediment / water	sediment bioassay, total phosphorus, Pb, fecal			
Eremont	fw lake	Lake Union	147	55	12.9	na	0	1,600	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	sediment / water	sediment bioassay, total phosphorus, Pb, fecal			
Fremont	fw lake	Ship Canal	147	-5	0.0	na	300	1,800	Y (ESA Chinook Critical Habitat)	1	52843	water	total phosphorus			-
Ballard	fw lake	Salmon Bay	152	>5	37.5	na	0	1,000	Y (ESA Chinook Critical Habitat)	1	52843	water	total phosphorus			-
Windermere	fw lake	Lake Washington	161	-0	0.0	1.300	260	1,400	Y (ESA Chinook Critical Habitat)	5	12191	water	fecal coliform			-
Genesse	fw lake	Lake Washington	165	>=1 and <5		2.800	900	0	Y (ESA Chinook Critical Habitat)	5	12184	water	fecal coliform			-
Delridge	fw stream	Longfellow Creek	165	>=1 and <5		2,000 na	na	na	Y (Spawning and documented presence of	5	7491	water	fecal coliform			-
Deiridge	tw stream	Longrellow Creek	108	>=1 and <5	2.3	na	na	na	salmonids, incl. coho- WDFW online data)	5	7491	water	recai coliform			
Delridge	fw stream	Longfellow Creek	169	>=1 and <5	2.1	na	na	na	Y (Spawning and documented presence of salmonids, incl. coho- WDFW online data)	5	7491	water	fecal coliform			
Delridge	fw stream	Longfellow Creek	170	<1	0.0	na	na	na	Y (Spawning and documented presence of salmonids, incl. coho- WDFW online data)	5	7491	water	fecal coliform			
Henderson	fw lake	Lake Washington	171	>5	1.8	3.700	0	0	Y (ESA Chinook Critical Habitat)	5	12204	water	fecal coliform	1	1	1
remont	fw lake	Ship Canal	174	>5	7.5		500	- 75	Y (ESA Chinook Critical Habitat)	1	52843	water	total phosphorus	1	1	1
Aadison Valley/Lake	fw lake	Lake Union	175	<1	0.0	na	0	2.200	Y (ESA Chinook Critical Habitat)	5	52866, 8066, 12172, 11918	water	total phosphorus. Pb. fecal coliform, aldrin	1	1	1
Ballard	fw lake	Salmon Bay	150/151	>5	31	na	0	2.600	Y (ESA Chinook Critical Habitat)	1	52843	water	total phosphorus			-
OTES:		,		-			-	-,	. (,							4
^a Average annual overflow	v volume (2010-2 er active.	5 through 2014, from annu 2014, from annual reports) vqawa2008/viewer.htm	al reports)													