

1998/99

Residential Waste Stream

 Composition StudyFinal Report
prepared by
Cascadia Consulting Group, Inc. Sky Valley Associates
E. Ashley Steel
in cooperation with
Seattle Public Utilities Staff

February 2000

Table of Contents

1 Overview 1
1.1 Introduction 1
1.2 Sources of Disposed Waste 2
2 Summary of 1998/99 Sampling Results 3
2.1 Overall Residential Waste 3
2.2 Residential Waste by Subpopulation 4
3 Trends in Residential Disposal: 1988/89-1998/99 7
3.1 Trends in Waste Disposed Over the Last Ten Years 7
3.2 Changes in Disposed Tons 9
3.2.1 Changes in Disposed Tons, 1988/89 vs. 1998/99 9
3.2.2 Changes in Disposed Tons, 1994/95 vs. 1998/99 10
3.3 Changes in Composition Percentages 10
3.3.1 Changes in Composition, 1988/89 to 1998/99 11
3.3.2 Changes in Composition, 1994/95 vs. 1998/99 11
4 Composition Results: By Subpopulation 12
4.1 Overview 12
4.2 Comparisons Among Subpopulations 12
4.3 By Residence Type 14
4.3.1 Largest Components 14
4.3.2 Comparisons Between Single and Multi-family Residences 15
4.4 By Service Area 18
4.4.1 Largest Components 18
4.4.2 Comparisons Between North and South Service Areas 19
4.5 By Service Area and Generator Type 22
4.5.1 Largest Components 22
4.5.2 Comparisons Between Single-family North and Single-family South 23
4.6 By Season 26
4.6.1 Largest Components 27
4.7 By Demographics 32
4.7.1 Income 32
4.7.2 Household Size 36

Appendices

Appendix A: Waste Component Categories
Appendix B: Sampling Methodology
Appendix C: Comments on Monthly Sampling Events
Appendix D: Waste Composition Calculations
Appendix E: Year-to-year Comparison Calculations
Appendix F: Field forms
Appendix G: Database Description

Figures

Figure 2-1 Composition Summary: Overall Residential 3
Figure 3-1 Changes in Disposed Tons, 1988/89 to 1998/99 7
Figure 4-1 Composition Summary: by Residence Type 14
Figure 4-2 Composition Summary: by Service Area 18
Figure 4-3 Composition Summary: by Service Area and Generator Type 22
Figure 4-4 Composition Summary: by Season 26
Figure 4-5 Composition Summary: by Household Income 32
Figure 4-6 Composition Summary: by Household Size 36

Tables

Table 1-1 Samples per Study Period, by Substream 1
Table 2-1 Largest Waste Components, by Subpopulation 4
Table 2-2 Composition by Weight: Overall Residential 6
Table 3-1 Tonnage Disposed by Material Class for the 1988/99 and 1998/99 Study Periods 9
Table 3-2 Tonnage Disposed by Material Class for the 1994/95 and 1998/99 Study Periods 10
Table 3-3 Changes in Waste Composition, 1988/89 vs. 1998/99 11
Table 3-4 Changes in Waste Composition, 1994/95 vs. 1998/99 11
Table 4-1 Number, Sum and Average Size of Samples, and Average Net Load Weight, by Subpopulation 12
Table 4-2 Material Groupings used for Comparisons 13
Table 4-3 Largest Components by Residence Type 14
Table 4-4 Statistically Significant Differences, by Residence Type 15
Table 4-5 Composition by Weight: Single-family 16
Table 4-6 Composition by Weight: Multi-family 17
Table 4-7 Largest Components by Service Area 18
Table 4-8 Statistically Significant Differences, by Service Area 19
Table 4-9 Composition by Weight: North Service Area 20
Table 4-10 Composition by Weight: South Service Area 21
Table 4-11 Largest Components by Service Area and Residence Type 22
Table 4-12 Statistically Significant Differences Among Single-family Residences, by Service Area 23
Table 4-13 Composition by Weight: Single-family North 24
Table 4-14 Composition by Weight: Single-family South 25
Table 4-15 Largest Components by Season 27
Table 4-16 Composition by Weight: Spring 28
Table 4-17 Composition by Weight: Summer 29
Table 4-18 Composition by Weight: Fall 30
Table 4-19 Composition by Weight: Winter 31
Table 4-20 Largest Components by Income 33
Table 4-21 Composition by Weight: Low Income 34
Table 4-22 Composition by Weight: High Income 35
Table 4-23 Largest Components by Household Size 37
Table 4-24 Composition by Weight: Small Households 38
Table 4-25 Composition by Weight: Large Households 39

1 Overview

1.1 Introduction

Effective solid waste management begins with knowing what is in the waste stream - how much of which types of material is disposed by each generator type. This basic information is essential to all aspects of policy and program implementation. Thus, the City of Seattle Public Utilities (formerly Solid Waste Utility) first launched an ongoing waste composition study in 1988. The objectives of this study include:

- Obtaining information for characterizing the total waste stream
- Establishing a baseline for continued long-term measurement of system performance
- Obtaining specific information about various waste substreams to enable the City to estimate the recycling potential within each one
- Understanding the differences between substreams so that targeted recycling programs can be designed, implemented, and monitored
- Creating and maintaining a database for ongoing evaluation and analysis of waste composition data

This report summarizes the results of the waste samples taken during 1998/99 waste composition study. Table 1-1 below shows the number waste samples obtained since the start of this project.

Table 1-1 Samples per Study Period, by Substream

	Number of Samples			
Year	Commercial	Residential	Self-Haul	Overall
$1988-89$	121	212	217	550
1990	0	114	203	317
1992	251	0	197	448
$1994-95$	0	368	0	368
1996	348	0	199	547
$1998-99$	0	360	0	360
Study to date	$\mathbf{7 2 0}$	$\mathbf{1 , 0 5 4}$	$\mathbf{8 1 6}$	$\mathbf{2 , 5 9 0}$

This report provides composition estimates for Seattle's residential waste stream based on sampling conducted from May 1998 through April 1999. Cascadia Consulting Group served as the prime contractor for this research. Sky Valley Associates conducted the fieldwork, and E. Ashley Steel provided the statistical analysis.

This report is organized into four sections. Section 1 briefly summarizes the project and Section 2 provides an overview of the results obtained during the 1998/99 sampling period. In Section 3, findings from this year's study are compared to the results obtained four and ten years ago. Complete results of the residential waste sampling by generator type, service area, season, and demographics are presented in Section 4. Detailed appendices follow the main body of the report.

1.2 Sources of Disposed Waste

For any specific geographic area, the total waste stream is composed of various substreams. A "waste substream" is determined by the particular generation and collection characteristics which make it a unique portion of the total waste stream. The City of Seattle has three substreams: commercial, residential, and self-haul. In 1998/99, only the residential substream was studied. No self-haul or commercial loads were sampled.

For comparison purposes, the residential substream was divided into four sectors by residence type and service area: single-family north, single-family south, multi-family north, and multifamily south. In Seattle, these four sectors are defined as follows:

- Single-family north: Primarily detached single-family, duplex, triplex, and four-plex homes located north of Yesler Way. Waste is collected from trashcans by a citycontracted hauler.
- Single-family south: Primarily detached single-family, duplex, triplex, and four-plex homes located south of Yesler Way. Waste is collected from trashcans by a citycontracted hauler.
- Multi-family north: Primarily apartments and condominiums with five or more units located north of Yesler Way. Waste is collected from dumpsters by a city-contracted hauler.
- Multi-family south: Primarily apartments and condominiums with five or more units located south of Yesler Way. Waste is collected from dumpsters by a city-contracted hauler.

It should be noted that this study measures waste disposal, not generation. (Waste generation equals the sum of disposed and recycled amounts.) The samples were taken from loads destined for the landfill and do not include tonnage collected through recycling or yard waste composting programs.

For a full account of the project's methodology, please see Appendix B.

2 Summary of 1998/99 Sampling Results

2.1 Overall Residential Waste

The 1998/99 phase of Seattle's waste study focused on the residential substream. Samples were allocated to the north and south service areas, and to the single- and multi-family sectors. Thus, in order to accurately characterize the overall residential waste stream, composition estimates were calculated by performing a weighted average based on residence type and service area. Please see Appendix D for more detail regarding the weighted average calculations.

The composition results, by weight, are illustrated in Figure 2-1. ${ }^{1}$ Paper and organics categories accounted for more than half (58.6%) of the residential waste stream. The following four components accounted for 49.9% of the overall residential substream. The complete results are presented in Table 2-2.

- Food
- Mixed Low Grade Paper
- Animal by-products
- Compostable/Soiled Paper
26.7\%
10.5\%
6.5\%
6.2\%

Mean tonnage estimate 39,087

Mean tonnage estimate 15,402

Mean tonnage estimate 9,462
Mean tonnage estimate 9,026

Figure 2-1 Composition Summary: Overall Residential
(May 1998 - April 1999)

[^0]
2.2 Residential Waste by Subpopulation

Waste composition estimates were also calculated for various subpopulations of Seattle's residential waste stream including:

- Residence type: single-family and multi-family
- Service area: north and south
- Residence type combined with service area: single-family north and single-family south
- Season: spring, summer, fall, and winter
- Household income: low and high
- Household size: small and large

As with the overall estimates, weighted averages were used to calculate composition estimates by residence type, service area, and season. The largest components for each subpopulation (each accounting for more than 5\%) are shown in Table 2-1. Food, mixed low grade paper, and compostable/soiled paper are large components in all the subpopulations. Frequently, animal by-products (which includes animal wastes and kitty litter) were also a large component of the waste stream.

Table 2-1 Largest Waste Components, by Subpopulation (May 1998 - April 1999)

Subpopulation	Food	$\begin{array}{c}\text { Mixed Low } \\ \text { Grade Paper }\end{array}$	$\begin{array}{c}\text { Compostable/ } \\ \text { Soiled Paper }\end{array}$		$\begin{array}{c}\text { Animal by- } \\ \text { Products }\end{array}$	$\begin{array}{c}\text { Disposable } \\ \text { Diapers }\end{array}$	$\begin{array}{c}\text { Newspaper }\end{array}$
OCC/Kraft,							
unwaxed							

Largest\end{array}\right]\)

The following conclusions can be drawn from the waste composition estimates of the overall residential substream and for each subpopulation within:

- The broad waste categories of paper and organics typically accounted for about half of the waste stream.
- Food, low-grade paper, and compostable/soiled paper were always among the largest components. Animal by-products (which include animal wastes and kitty litter) were a large component of the waste stream in the overall residential substream and many of its subpopulations.
- The composition estimates of the largest components within each subpopulation were similar. The main differences appear to be the following ${ }^{2}$:
- single-family residences disposed more food than multi-family; multi-family residences disposed more mixed low grade paper,
- in the north more mixed low grade paper was disposed than in the south; the south disposed more food,
- low income residences disposed more food than high income residences, - and small households disposed more mixed low grade paper but less food than large households.

[^1]
Table 2-2 Composition by Weight: Overall Residential

(May 1998- April 1999)

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	42,965 29.3\%				Organics	42,914 29.3\%			
Newspaper	6,885	4.7\%	4.4\%	5.0\%	Pallets	39	0.0\%	0.0\%	0.1\%
OCC/Kraft, unwaxed	6,282	4.3\%	4.0\%	4.6\%	Crates/Boxes	35	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	180	0.1\%	0.0\%	0.3\%	Leaves and Grass	3,191	2.2\%	1.7\%	2.6\%
Office Paper	1,218	0.8\%	0.7\%	1.0\%	Prunings	562	0.4\%	0.3\%	0.5\%
Computer Paper	33	0.0\%	0.0\%	0.0\%	Food	39,087	26.7\%	26.0\%	27.3\%
Mixed Low Grade	15,402 10.5\% 10.1\% 10.9\%				Other Materials	25,946 17.7\%			
Phone Books	597	0.4\%	0.3\%	0.5\%	Textiles/Clothing	2,992	2.0\%	1.9\%	2.2\%
Milk/Lice Polycoats	945	0.6\%	0.6\%	0.7\%	Carpet/Upholstery	2,106	1.4\%	1.2\%	1.7\%
Frozen Food Polycoats	431	0.3\%	0.3\%	0.3\%	Leather	241	0.2\%	0.1\%	0.2\%
Compostable/Soiled	9,026	6.2\%	5.9\%	6.4\%	Disposable Diapers	5,872	4.0\%	3.7\%	4.3\%
Paper/Other Materials	1,812	1.2\%	1.1\%	1.3\%	Animal By-Products	9,462	6.5\%	5.9\%	7.0\%
Other Paper	154	0.1\%	0.1\%	0.1\%	Rubber Products	274	0.2\%	0.1\%	0.2\%
Plastic	14,889 10.2\%				Tires	263	0.2\%	0.1\%	0.3\%
PET Pop and Liquor	591	0.4\%	0.4\%	0.4\%	Ash	395	0.3\%	0.1\%	0.4\%
Other PET Bottles	235	0.2\%	0.1\%	0.2\%	Furniture	935	0.6\%	0.4\%	0.9\%
HDPEMilk and 山ice	365	0.2\%	0.2\%	0.3\%	Mattresses	165	0.1\%	0.0\%	0.3\%
Other HDPEBottles	571	0.4\%	0.4\%	0.4\%	Small Appliances	571	0.4\%	0.3\%	0.5\%
Other Plastic Bottles	246	0.2\%	0.2\%	0.2\%	A/V Equipment	640	0.4\%	0.2\%	0.6\%
lars and Tubs	741	0.5\%	0.5\%	0.5\%	Ceramics/Porcelain	335	0.2\%	0.2\%	0.3\%
Expanded Polystyrene	926	0.6\%	0.5\%	0.8\%	Non-distinct Fines	700	0.5\%	0.4\%	0.6\%
Other Rigid Packaging	1,420	1.0\%	0.9\%	1.0\%	Misc. Organics	534	0.4\%	0.2\%	0.5\%
Grocery/Bread Bags	2,075	1.4\%	1.4\%	1.5\%	Misc. Inorganics	460	0.3\%	0.2\%	0.4\%
Garbage Bags	1,861	1.3\%	1.2\%	1.4\%	CDL Wastes	6,867	4.7\%		
Other Film	3,578	2.4\%	2.3\%	2.6\%	Dimension Lumber	1,318	0.9\%	0.6\%	1.2\%
Plastic Products	1,244	0.8\%	0.8\%	0.9\%	Other Untreated Wood	437	0.3\%	0.2\%	0.4\%
Plastic/Other Materials	1,036	0.7\%	0.6\%	0.8\%	Treated Wood	958	0.7\%	0.5\%	0.8\%
Glass	5,926	4.0\%			Contaminated Wood	282	0.2\%	0.1\%	0.3\%
Clear Beverage	1,508	1.0\%	0.9\%	1.1\%	New Gypsum Scrap	6	0.0\%	0.0\%	0.0\%
Green Beverage	1,226	0.8\%	0.7\%	0.9\%	Demo Gypsum Scrap	620	0.4\%	0.2\%	0.6\%
Brown Beverage	1,261	0.9\%	0.7\%	1.0\%	Fiberglass Insulation	51	0.0\%	0.0\%	0.1\%
Container Glass	1,303	0.9\%	0.8\%	1.0\%	Rock/Concrete/Brick	948	0.6\%	0.2\%	1.1\%
Fuorescent Tubes	7	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	217	0.1\%	0.1\%	0.2\%
Other Glass	622	0.4\%	0.3\%	0.5\%	Other Construction Debris	451	0.3\%	0.2\%	0.4\%
Metal	6,461	4.4\%			Sand/Soil/Dirt	1,580	1.1\%	0.7\%	1.4\%
Aluminum Cans	724	0.5\%	0.5\%	0.5\%	Hazardous	692	0.5\%		
Alum. Foil/Containers	359	0.2\%	0.2\%	0.3\%	Latex Paints	67	0.0\%	0.0\%	0.1\%
Other Aluminum	53	0.0\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	12	0.0\%	0.0\%	0.0\%
Other Nonferrous	88	0.1\%	0.0\%	0.1\%	NonHazardous Adhesives/Glues	49	0.0\%	0.0\%	0.1\%
Tin Food Cans	1,890	1.3\%	1.2\%	1.4\%	Oil-based Paints/Solvents	5	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	269	0.2\%	0.2\%	0.2\%	Cleaners	6	0.0\%	0.0\%	0.0\%
Other Ferrous	1,697	1.2\%	0.8\%	1.6\%	Pesticides/Herbicides	1	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	1,349	0.9\%	0.7\%	1.1\%	Dry-Cell Batteries	153	0.1\%	0.1\%	0.2\%
Motor Oil Filters	31	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	1	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	41	0.0\%	0.0\%	0.1\%
					Asbestos	1	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	146,660				Other Hazardous Chemicals	178	0.1\%	0.0\%	0.3\%
Sample Count	360				Other NonHazardous Chemicals	177	0.1\%	0.1\%	0.2\%

3 TRENDS IN RESIDENTIAL DISPOSAL: 1988/89-1998/99

The overall residential results for the 1998/99 study were compared to the 1988/89 and the 1994/95 findings ${ }^{3}$. Comparisons with the 1988/89 study identify trends that have developed since the start of the curbside recycling program ten years ago. Both of the previous studies followed the same basic methodology as the 1998/99 study. ${ }^{4}$

The year-to-year comparisons were made by examining the changes in the total amount of waste disposed and in composition percentages for each of the eight broad waste categories. Statistical t-tests were used to analyze differences in the composition percentages. Section 3.1 provides an overview of the changes in the last ten years and in the last four years. Section 3.2 and Section 3.3 provide the detailed results of the comparisons.

3.1 Trends in Waste Disposed Over the Last Ten Years

Figure 3-1 illustrates the changes in disposed tons over the last ten years for each of the eight broad waste categories. The total amount of waste disposed decreased dramatically from 179,968 tons in 1988/89 to 145,591 tons in 1994/95 It then remained steady from 1994/95 to 1998/99 (146,660 tons). Overall, the broad waste categories of paper, organics, and "other materials" (which included animal by-products, disposable diapers, furniture, carpet, etc.) showed the greatest changes.

Figure 3-1 Changes in Disposed Tons, 1988/89 to 1998/99

[^2]The following describes the changes in amount and composition percentages of each commodity over the last ten years (since 1988/89) and over the last four years (since 1994/95).

- Paper: The mean percentage of paper in the waste stream decreased over both the last ten years and the last four years. The total tonnage of paper decreased from an estimated 56,220 tons in 1988/89 to 50,350 tons in 1994/95 and 41,178 tons in 1998/99.
- Plastic. The mean percentage of plastics increased over both the last ten years and the last four years. The estimated tonnage of plastics in the waste stream, however, decreased slightly from 1988/89 (14,508 tons) to 1994/95 (13,941 tons) and then increased by 1998/99 (15,085 tons.)
- Glass. The mean percentage of glass decreased over the last ten years, with container glass showing the sharpest decline. The estimated amount of glass dropped during the last ten years from 11,537 tons to 6,055 tons. Over the last four years, the amount of glass in the waste stream remained steady.
- Metal. The mean percentage of metal in the waste stream remained steady over both the last ten years and the last four years. The total tonnage of metal decreased from 9,491 tons in 1988/89 to 6,819 tons in 1994/95 and 6,541 tons in 1998/99.
- Organics. Over the last ten years, the mean percentage of organics showed a noticeable decrease. The amount disposed also decreased from 60,145 tons in $1988 / 89$ to 44,573 tons in 1998/99. Since 1994/95, however, the estimated percentage of organics has increased, particularly in the amount of food wastes. In 1994/95, approximately 32,219 tons of food waste was disposed as compared to 44,573 tons in 1998/99.
- Other Materials. The mean percentage of other materials in the waste stream has increased over both the last ten years and the last four years. The increase since 1988/89 is difficult to measure because in that study period, animal-by-products, furniture, mattresses, small appliances, and A/V equipment were not sorted individually. The estimated total disposed amount in 1988/89 was 11,046 tons as compared to 25,302 tons in 1998/99.

The components in the "other materials" waste category in the 1994/95 and the 1998/99 studies, however, were more comparable. As with the composition percentages, the tonnage also increased (by approximately 6,033 tons). Most of this increase can be attributed to animal-by-products.

- CDL Wastes. The mean percentage of CDL wastes decreased over both the last ten years and the last four years. The estimated tonnage also decreased from 15,830 tons in 1988/89 to 11,277 in 1994/95 and then to 7,280 in 1998/99.
- Hazardous. The mean percentage of hazardous materials remained steady over both the last ten years and the last four years. The estimated amount of hazardous materials decreased however, from 1988/89 (1,192 tons) to 1994/95 (667 tons). It then remained steady to 1998/99 (646 tons).

3.2 Changes in Disposed Tons

3.2.1 Changes in Disposed Tons, 1988/89 vs. 1998/99

The overall amount of waste disposed in the residential substream has decreased over the last ten years (see Table 3-1.) CDL wastes, glass, and hazardous materials experienced the largest decreases, followed by metal, paper, and organics. The amount of "other materials" disposed in the waste stream increased dramatically, but at least part of this increase is due to the addition of various sorting categories such as furniture, small appliances, and AV equipment, which in the 1988/89 study were classified according to their dominant material type ${ }^{5}$.

Table 3-1 Tonnage Disposed by Material Class for the 1988/99 and 1998/99 Study Periods

	Estimated Disposed Tons			
	$\mathbf{1 9 8 8 / 8 9}$	$\mathbf{1 9 9 8 / 9 9}$	Difference	\% Change
CDL Wastes	15,830	7,280	$-8,551$	-54%
Glass	11,537	6,055	$-5,482$	-48%
Hazardous	1,192	646	-545	-46%
Metal	9,491	6,541	$-2,950$	-31%
Paper	56,220	41,178	$-15,042$	-27%
Organics	60,145	44,573	$-15,572$	-26%
Plastic	14,508	15,085	577	4%
Other Materials	11,046	25,302	14,256	129%
Total Residential	179,968	146,660	$-33,308$	-19%

[^3]
3.2.2 Changes in Disposed Tons, 1994/95 vs. 1998/99

The overall amount of residential waste disposed remained steady between the 1994/95 and 1998/99 study periods ${ }^{6}$. CDL waste and paper showed the most dramatic decreases, by 35\% and 18%, respectively. "Other materials" appeared to increase the most (32\%) followed by organics (20\%). Differences in tonnage between study periods for each of the broad material categories are presented in Table 3-2.

Table 3-2 Tonnage Disposed by Material Class for the 1994/95 and 1998/99 Study Periods

	Estimated Disposed Tons			
	$1994 / 95$	$\mathbf{1 9 9 8 / 9 9}$	Difference	\% Change
CDL Wastes	11,277	7,280	$-3,998$	-35%
Paper	50,350	41,178	$-9,173$	-18%
Metal	6,819	6,541	-278	-4%
Hazardous	666	646	-19	-3%
Glass	6,204	6,055	-149	-2%
Plastic	13,941	15,085	1,144	8%
Organics	37,113	44,573	7,460	20%
Other Materials	19,221	25,302	6,081	32%
Total Residential	145,591	146,660	1,069	1%

3.3 Changes in Composition Percentages

Composition estimates obtained in this study period were compared to the findings of the 1988/89 and 1994/95 studies using t-tests. A t-test is a standard statistical test used to assess whether the differences between two groups are significant. In this case, t-tests were used to determine if the percentage of each of the eight broad material categories disposed in 1998/99 differed from the percentage disposed in 1988/89 and 1994/95 ${ }^{7}$. The results of the t-tests can be used to indicate trends occurring in the waste stream over time. (Please see Appendix E for the calculation formulae.)

From the t-test, a p-value can be calculated. A p-value is a measure of the difference between the two groups. For the year-to-year comparisons, p-values below 0.0125 are considered to be statistically significant.

[^4]
3.3.1 Changes in Composition, 1988/89 to 1998/99

Comparisons made between the estimated composition percentages in 1988/89 and 1998/99 indicate that the proportion of paper, glass, organics, and CDL waste has decreased over the last ten years. The percentages of plastic and other materials appeared to have increased.

In Table 3-3, the arrows indicate increases or decreases in the percentage of the broad waste category disposed between study periods. The percentage highlighted in bold is the greater of the two. P-values highlighted with an "*" indicate significant differences.

Table 3-3 Changes in Waste Composition, 1988/89 vs. 1998/99

	Mean Ratio (Material Wt/Total Wt)		t-Statistic	p-Value (Cut-off for statistically valid difference $=0.0125$)
\downarrow Organics	33.42\%	30.39\%	2.7731	0.0057 *
\downarrow Paper	31.24\%	28.08\%	3.7744	0.0002 *
\downarrow CDL Wastes	8.80\%	4.96\%	5.3033	0.0000 *
\downarrow Glass	6.41\%	4.13\%	7.8050	0.0000 *
个 Other Materials	6.14\%	17.25\%	19.0123	0.0000 *
\uparrow Plastic	8.06\%	10.29\%	7.6070	0.0000 *
Metal	5.27\%	4.46\%	2.3289	0.0202
Hazardous	0.66\%	0.44\%	2.1545	0.0316
Number of Samples	212	360		

3.3.2 Changes in Composition, 1994/95 vs. 1998/99

Comparisons made between the 1994/95 and the 1998/99 studies indicate decreases in the proportions of paper and CDL wastes disposed (see Table 3-4.) The proportions of organics, other materials, and plastics increased ${ }^{8}$.

Table 3-4 Changes in Waste Composition, 1994/95 vs. 1998/99

	Mean Ratio (Material Wt/Total Wt)		t-Statistic	p-Value (Cut-off for statistically valid difference $=0.0125$)
\downarrow Paper	34.58\%	28.08\%	9.6978	0.0000 *
\downarrow CDL Wastes	7.75\%	4.96\%	4.7050	0.0000 *
\uparrow Organics	25.49\%	30.39\%	6.6875	0.0000 *
\uparrow Other Materials	13.20\%	17.25\%	7.0250	0.0000 *
\uparrow Plastic	9.58\%	10.29\%	3.0118	0.0027 *
Metal	4.68\%	4.46\%	0.6896	0.4907
Glass	4.26\%	4.13\%	0.5852	0.5586
Hazardous	0.46\%	0.44\%	0.1852	0.8531
Number of Samples	368	360		

[^5]
4 Composition Results: By Subpopulation

4.1 Overview

A total of 360 waste samples were sorted from May 1998 to April 1999. Descriptive data about each subpopulation's samples are summarized in Table 4-1.

Table 4-1 Number, Sum and Average Size of Samples, and Average Net Load Weight, by Subpopulation

Subpopulation	Number of Samples	(All weights in pounds)		
		Sum of Sample Weights	Average Sample Size	Average Vehicle Net Weight
Single-family	241	57,038	236.7	14,278
Multi-family	119	28,767	241.7	17,462
North	180	42,689	237.2	14,679
South	180	43,117	239.5	15,959
Single-family North	121	28,411	234.8	13,710
Single-family South	120	28,628	238.6	14,726
Spring	92	21,196	230.4	13,614
Summer	85	17,498	205.9	16,656
Fall	88	22,445	255.1	16,632
Winter	95	24,666	259.6	14,719
Low Income	56	13,502	241.1	14,572
High Income	59	13,768	233.4	13,638
Small Household	48	11,168	232.7	11,604
Large Household	73	17,675	242.1	16,023
Overall	360	85,805	238.3	15,405

4.2 Comparisons Among Subpopulations

Composition estimates by generator type and service area were compared using t-tests. The subpopulations compared included: single-family vs. multi-family, north vs. south, and singlefamily north vs. single-family south.

Eleven waste categories were used to detect the differences between the subpopulations: newspaper, OCC/kraft paper, curbside paper, curbside plastic, non-curbside plastic, aluminum, curbside glass, tin, yard debris, food, and household hazardous wastes. The materials included in each of the waste comparison categories are outlined in Table 4-2. The categories for the comparisons were chosen in order to:

- Measure the degree to which residents are removing recyclables from the disposed waste stream. (Comprehensive recycling programs, available to single and multifamily homes throughout the city, collect all the materials listed in Table 4-2, except those in the non-curbside plastic, household hazardous, and food categories.)
- Gauge the amount of other plastic products (that are not accepted in current recycling programs) present in the waste stream of different subpopulations.
- Examine the potential variations in the amount of household hazardous and food wastes disposed by different sectors.

For the comparisons between subpopulations, a p-value lower than 0.0091 indicates a significant difference. The results of these comparisons are provided in Sections 4.3.2, 4.4.2, and 4.5.2.

Table 4-2 Material Groupings used for Comparisons

Comparison Label	Sampling Component	Comparison Label	Sampling Component
Newspaper	Newspaper	Aluminum	Aluminum Cans
OCC/Kraft	OCC/Kraft unwaxed		Alum. Foil/Containers
	OCC/Kraft waxed	Curbside Glass	Clear Beverage
Curbside Paper	Office Paper		Green Beverage
	Computer Paper		Brown Beverage
	Mixed Low Grade		Container Glass
	Phone Books	Yard Debris	Leaves and Grass
Curbside Plastic	PET Pop \& Liquor		Prunings
	Other PET Bottles	Food	Food
	HDPE Milk \& لhice	Household Hazardous	Latex Paints
	Other HDPE Bottles		Hazardous Adhesives/Glues
Non-Curbside Plastic	Other Plastic Bottles		Oil-based Paints/Solvents
	Jars and Tubs		Cleaners
	Expanded Polystyrene		Pesticides/Herbicides
	Other Rigid Packaging		Dry-Cell Batteries
	Grocery/Bread Bags		Wet-Cell Batteries
	Garbage Bags		Gasoline/Kerosene
	Other Film		Motor Oil/Diesel Oil
	Plastic Products		Asbestos
	Plastic/Other Materials		Explosives
Tin	Tin Food Cans		Other Hazardous Chemicals

4.3 By Residence Type

A total of 241 samples were sorted from single-family residences and 119 samples were sorted from multi-family residences. Figure 4-1 summarizes the percentage of each of the broad waste categories disposed by both the single- and multi-family subpopulations. Paper and organics comprised the bulk of the waste stream of both the single- and the multi-family subpopulations (a combined total of 58.6% in each). Organics accounted for 32.6% of the waste in the singlefamily subpopulation, as compared to 24.5% in the multi-family subpopulation. Paper accounted for 34.1% of the multi-family waste stream as compared to 26.0% in the single-family waste stream.

Figure 4-1 Composition Summary: by Residence Type
(May 1998 - April 1999)

4.3.1 Largest Components

Food, mixed low grade paper, compostable/soiled paper, and animal by-products are among the largest waste components disposed in both the single-family and the multi-family waste streams (see Table 4-3). Newspaper and unwaxed OCC/kraft paper were among the largest components in the multi-family subpopulation, and disposable diapers were among the largest components disposed in the single-family subpopulation.

Table 4-3 Largest Components by Residence Type (May 1998 - April 1999)

	Single-family	Multi-family
Food	30.6%	21.0%
Mixed Low Grade Paper	9.4%	12.1%
Compostable/soiled Paper	6.8%	5.2%
Animal by-products	6.9%	5.8%
Newspaper		6.9%
OCC/Kraft, Unwaxed Paper		5.7%
Disposable Diapers	5.1%	
Sum of largest components	$\mathbf{5 8 . 8} \%$	$\mathbf{5 6 . 7 \%}$

The full composition results by residence type are presented in Table 4-5 and Table 4-6.

4.3.2 Comparisons Between Single and Multi-family Residences

The eleven waste category groups (as outlined in Table 4-2 above) were compared between single- and multi-family dwellings. The results are presented in Table 4-4. In the table, the composition percentage that is higher between the two residence types is highlighted in bold. P-values highlighted with an "*" indicate significant differences.

A greater percentage of curbside paper, newspaper, OCC/Kraft, curbside glass, yard debris, curbside plastic, and aluminum was disposed in the multi-family waste stream ${ }^{9}$. In the singlefamily waste stream, greater percentages of non-curbside plastic and food were disposed. Variations in the relative amount of tin and household hazardous materials were not statistically significant. (Please see Appendix E for the calculation formulae.)

Table 4-4 Statistically Significant Differences, by Residence Type (May 1998- April 1999)

	Mean Ratio (Material Wt/Total Wt) Single-family Multi-family		t-Statistic	p -Value (Cut-off for statistically valid difference $=0.0091$)
Food	31.09\%	21.40\%	10.8863	0.0000 *
Non-Curbside Plastic	9.66\%	7.96\%	4.4872	0.0000 *
Curbside Paper	9.98\%	13.75\%	8.0339	0.0000 *
Newspaper	3.10\%	6.55\%	10.4997	0.0000 *
OCC/Kraft	3.18\%	5.76\%	8.8735	0.0000 *
Curbside Glass	3.38\%	4.33\%	3.0210	0.0027 *
Yard Debris	2.04\%	3.54\%	2.7258	0.0067 *
Curbside Plastic	1.13\%	1.33\%	3.1282	0.0019 *
Aluminum	0.68\%	0.91\%	4.5023	0.0000 *
Tin	1.35\%	1.26\%	1.0268	0.3052
Household Hazardous	0.24\%	0.34\%	0.7957	0.4267
Number of Samples	241	119		

[^6]Table 4-5 Composition by Weight: Single-family (May 1998 - April 1999)
Calculated at a 90\% confidence interval

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	22,394 26.0\%				Organics	28,063 32.6\%			
Newspaper	2,743	3.2\%	2.9\%	3.5\%	Pallets	0	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	2,812	3.3\%	3.1\%	3.4\%	Crates/Boxes	19	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	18	0.0\%	0.0\%	0.0\%	Leaves and Grass	1,387	1.6\%	1.2\%	2.0\%
Office Paper	567	0.7\%	0.6\%	0.7\%	Prunings	306	0.4\%	0.3\%	0.5\%
Computer Paper	12	0.0\%	0.0\%	0.0\%	Food	26,351	30.6\%	29.7\%	31.4\%
Mixed Low Grade	8,085	9.4\%	9.0\%	9.8\%	Other Materials	16,037	18.6\%		
Phone Books	128	0.1\%	0.1\%	0.2\%	Textiles/Clothing	1,569	1.8\%	1.7\%	2.0\%
Milk/山ice Polycoats	601	0.7\%	0.7\%	0.7\%	Carpet/Upholstery	1,212	1.4\%	1.1\%	1.7\%
Frozen Food Polycoats	285	0.3\%	0.3\%	0.4\%	Leather	155	0.2\%	0.1\%	0.2\%
Compostable/Soiled	5,898	6.8\%	6.6\%	7.1\%	Disposable Diapers	4,390	5.1\%	4.7\%	5.5\%
Paper/Other Materials	1,163	1.3\%	1.2\%	1.5\%	Animal By-Products	5,944	6.9\%	6.3\%	7.5\%
Other Paper	83	0.1\%	0.1\%	0.1\%	Rubber Products	184	0.2\%	0.2\%	0.3\%
Plastic	9,337 10.8\%				Tires	165	0.2\%	0.0\%	0.4\%
PET Pop and Liquor	293	0.3\%		0.4\%	Ash	299	0.3\%	0.2\%	0.5\%
Other PET Bottles	125	0.1\%	0.1\%	0.2\%	Furniture	364	0.4\%	0.1\%	0.8\%
HDPE Milk and 山ice	180	0.2\%	0.2\%	0.2\%	M attresses	0	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	358	0.4\%	0.4\%	0.5\%	Small Appliances	233	0.3\%	0.2\%	0.4\%
Other Plastic Bottles	159	0.2\%	0.2\%	0.2\%	A/V Equipment	295	0.3\%	0.1\%	0.5\%
Jars and Tubs	476	0.6\%	0.5\%	0.6\%	Ceramics/Porcelain	188	0.2\%	0.2\%	0.3\%
Expanded Polystyrene	689	0.8\%	0.5\%	1.1\%	Non-distinct Fines	411	0.5\%	0.4\%	0.6\%
Other Rigid Packaging	958	1.1\%	1.0\%	1.2\%	Misc. Organics	311	0.4\%	0.3\%	0.5\%
Grocery/Bread Bags	1,286	1.5\%	1.4\%	1.6\%	Misc. Inorganics	319	0.4\%	0.3\%	0.5\%
Garbage Bags	1,074	1.2\%	1.2\%	1.3\%	CDL Wastes	3,415	4.0\%		
Other Film	2,336	2.7\%	2.6\%	2.8\%	Dimension Lumber	714	0.8\%	0.5\%	1.2\%
Plastic Products	743	0.9\%	0.8\%	1.0\%	Other Untreated Wood	189	0.2\%	0.1\%	0.3\%
Plastic/Other Materials	658	0.8\%	0.6\%	0.9\%	Treated Wood	451	0.5\%	0.4\%	0.7\%
Glass	3,071	3.6\%			Contaminated Wood	205	0.2\%	0.1\%	0.3\%
Clear Beverage	857	1.0\%	0.9\%	1.1\%	New Gypsum Scrap	3	0.0\%	0.0\%	0.0\%
Green Beverage	544	0.6\%	0.5\%	0.7\%	Demo Gypsum Scrap	231	0.3\%	0.2\%	0.4\%
Brown Beverage	514	0.6\%	0.5\%	0.7\%	Fiberglass Insulation	3	0.0\%	0.0\%	0.0\%
Container Glass	829	1.0\%	0.9\%	1.0\%	Rock/Concrete/Brick	677	0.8\%	0.0\%	1.6\%
Fluorescent Tubes	7	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	193	0.2\%	0.1\%	0.4\%
Other Glass	320	0.4\%	0.3\%	0.4\%	Other Construction Debris	269	0.3\%	0.1\%	0.5\%
Metal	3,535	4.1\%			Sand/Soil/Dirt	481	0.6\%	0.3\%	0.8\%
Aluminum Cans	310	0.4\%	0.3\%	0.4\%	Hazardous	353	0.4\%		
Alum. Foil/Containers	252	0.3\%	0.3\%	0.3\%	Latex Paints	46	0.1\%	0.0\%	0.1\%
Other Aluminum	31	0.0\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	5	0.0\%	0.0\%	0.0\%
Other Nonferrous	49	0.1\%	0.0\%	0.1\%	NonHazardous Adhesives/Gl	49	0.1\%	0.0\%	0.1\%
Tin Food Cans	1,122	1.3\%	1.2\%	1.4\%	Oil-based Paints/Solvents	3	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	169	0.2\%	0.2\%	0.2\%	Cleaners	5	0.0\%	0.0\%	0.0\%
Other Ferrous	796	0.9\%	0.6\%	1.2\%	Pesticides/Herbicides	1	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	791	0.9\%	0.6\%	1.2\%	Dry-Cell Batteries	66	0.1\%	0.1\%	0.1\%
Motor Oil Filters	17	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	1	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	41	0.0\%	0.0\%	0.1\%
					Asbestos	1	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	86,205				Other Hazardous Chemicals	31	0.0\%	0.0\%	0.1\%
Sample Count	241				Other NonHazardous Chemi	104	0.1\%	0.1\%	0.2\%

Table 4-6 Composition by Weight: Multi-family
(May 1998 - April 1999)
Calculated at a 90% confidence interval

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	20,587 34.1\%				Organics	14,836 24.5\%			
Newspaper	4,150	6.9\%	6.2\%	7.5\%	Pallets	39	0.1\%	0.0\%	0.2\%
OCC/Kraft, unwaxed	3,475	5.7\%	5.1\%	6.4\%	Crates/Boxes	16	0.0\%	0.0\%	0.1\%
OCC/Kraft, waxed	162	0.3\%	0.0\%	0.6\%	Leaves and Grass	1,807	3.0\%	2.0\%	4.0\%
Office Paper	652	1.1\%	0.8\%	1.4\%	Prunings	256	0.4\%	0.2\%	0.6\%
Computer Paper	21	0.0\%	0.0\%	0.1\%	Food	$\begin{array}{r} 12,717 \quad 21.0 \% \\ 9,905 \quad 16.4 \% \\ 1,424 \quad 2.4 \% \end{array}$		19.9\% 22.2\%	
Mixed Low Grade	7,323	12.1\%	11.4\%	12.9\%	Other Materials				
Phone Books	470	0.8\%	0.5\%	1.1\%	Textiles/Clothing			2.1\%	2.6\%
Milk/山ice Polycoats	343	0.6\%	0.5\%	0.7\%	Carpet/Upholstery	895	1.5\%	1.0\%	2.0\%
Frozen Food Polycoats	146	0.2\%	0.2\%	0.3\%	Leather	86	0.1\%	0.1\%	0.2\%
Compostable/Soiled	3,125	5.2\%	4.8\%	5.6\%	Disposable Diapers	1,477	2.4\%	2.0\%	2.8\%
Paper/Other Materials	649	1.1\%	0.9\%	1.2\%	Animal By-Products	3,516	5.8\%	4.8\%	6.8\%
Other Paper	71	0.1\%	0.1\%	0.2\%	Rubber Products	90	0.1\%	0.1\%	0.2\%
Plastic	5,549	9.2\%			Tires	98	0.2\%	0.0\%	0.3\%
PET Pop and Liquor	298	0.5\%	0.4\%	0.6\%	Ash	95	0.2\%	0.0\%	0.3\%
Other PET Bottles	109	0.2\%	0.1\%	0.2\%	Furniture	572	0.9\%	0.4\%	1.4\%
HDPE Milk and 山lice	185	0.3\%	0.3\%	0.3\%	Mattresses	166	0.3\%	0.0\%	0.7\%
Other HDPE Bottles	213	0.4\%	0.3\%	0.4\%	Small Appliances	339	0.6\%	0.4\%	0.8\%
Other Plastic Bottles	87	0.1\%	0.1\%	0.2\%	A/V Equipment	346	0.6\%	0.2\%	1.0\%
Jars and Tubs	265	0.4\%	0.4\%	0.5\%	Ceramics/Porcelain	148	0.2\%	0.1\%	0.4\%
Expanded Polystyrene	236	0.4\%	0.3\%	0.4\%	Non-distinct Fines	289	0.5\%	0.3\%	0.6\%
Other Rigid Packaging	461	0.8\%	0.7\%	0.8\%	Misc. Organics	223	0.4\%	0.1\%	0.6\%
Grocery/Bread Bags	789	1.3\%	1.2\%	1.4\%	Misc. Inorganics	141	0.2\%	0.1\%	0.3\%
Garbage Bags	786	1.3\%	1.1\%	1.5\%	CDL Wastes	3,456	5.7\%		
Other Film	1,240	2.1\%	1.8\%	2.3\%	Dimension Lumber	604	1.0\%	0.6\%	1.4\%
Plastic Products	502	0.8\%	0.7\%	1.0\%	Other Untreated Wood	248	0.4\%	0.2\%	0.6\%
Plastic/Other Materials	378	0.6\%	0.4\%	0.8\%	Treated Wood	508	0.8\%	0.5\%	1.1\%
Glass	2,857	4.7\%			Contaminated Wood	77	0.1\%	0.1\%	0.2\%
Clear Beverage	651	1.1\%	0.9\%	1.2\%	New Gypsum Scrap	3	0.0\%	0.0\%	0.0\%
Green Beverage	684	1.1\%	0.9\%	1.4\%	Demo Gypsum Scrap	389	0.6\%	0.2\%	1.1\%
Brown Beverage	748	1.2\%	0.8\%	1.6\%	Fiberglass Insulation	48	0.1\%	0.0\%	0.2\%
Container Glass	473	0.8\%	0.7\%	0.9\%	Rock/Concrete/Brick	270	0.4\%	0.1\%	0.8\%
Fluorescent Tubes	0	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	24	0.0\%	0.0\%	0.1\%
Other Glass	302	0.5\%	0.3\%	0.7\%	Other Construction Debris	182	0.3\%	0.1\%	0.5\%
Metal	2,927	4.8\%			Sand/Soil/Dirt	1,101	1.8\%	1.1\%	2.6\%
Aluminum Cans	415	0.7\%	0.6\%	0.8\%	Hazardous	339	0.6\%		
Alum. Foil/Containers	107	0.2\%	0.1\%	0.2\%	Latex Paints	21	0.0\%	0.0\%	0.1\%
Other Aluminum	23	0.0\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	7	0.0\%	0.0\%	0.0\%
Other Nonferrous	39	0.1\%	0.0\%	0.1\%	NonHazardous Adhesives/Gl	0	0.0\%	0.0\%	0.0\%
Tin Food Cans	769	1.3\%	1.1\%	1.4\%	Oil-based Paints/Solvents	3	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	101	0.2\%	0.1\%	0.2\%	Cleaners	1	0.0\%	0.0\%	0.0\%
Other Ferrous	902	1.5\%	0.6\%	2.4\%	Pesticides/Herbicides	0	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	558	0.9\%	0.6\%	1.3\%	Dry-Cell Batteries	87	0.1\%	0.0\%	0.3\%
Motor Oil Filters	14	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	0	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	0	0.0\%	0.0\%	0.0\%
					Asbestos	0	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	60,455				Other Hazardous Chemicals	148	0.2\%	0.0\%	0.6\%
Sample Count	119				Other NonHazardous Chemi	73	0.1\%	0.0\%	0.2\%

4.4 By Service Area

A total of 180 samples were sorted in both the north and south service areas. On a broad waste category level, paper and organics accounted for the highest percentage of waste in the north and south service areas. Combined, these two categories accounted for 58.5% of the waste in the north and 58.8% of the waste in the south. In the north, paper accounted for a greater percentage of the composition than organics; in the south, organics accounted for a greater percentage than paper. Very little differences existed between the other broad waste categories.

Figure 4-2 Composition Summary: by Service Area (May 1998 - April 1999)

4.4.1 Largest Components

Food, mixed low grade paper, and soiled/compostable paper accounted for a large percentage of the waste stream in both the north and south service areas (see Table 4-7). In addition, the north service area had a high percentage of animal by-products and newspaper, while the south service area had a high proportion of disposable diapers. The full composition results for the north and south service areas are presented in Table 4-9 and Table 4-10.

Table 4-7 Largest Components by Service Area
(May 1998 - April 1999)

	North	South
Food	25.0%	30.1%
Mixed low grade paper	11.1%	9.3%
Soiled/Compostable paper	5.9%	6.6%
Animal by-products	7.4%	
Disposable diapers		5.6%
Newspaper	5.2%	
	$\mathbf{5 4 . 6 \%}$	$\mathbf{5 1 . 6 \%}$

4.4.2 Comparisons Between North and South Service Areas

Eleven waste category groups (listed in Table 4-2 above) were compared between the two service areas. As shown in Table 4-8, there was a greater percentage of curbside paper and OCC/Kraft in the waste stream of the north service area. In the south service area, there were greater percentages of food, curbside glass, tin, and aluminum than in the north service area ${ }^{10}$. Variations in the relative amount of non-curbside plastic, newspaper, yard debris, curbside plastic, and household hazardous materials were not statistically significant ${ }^{11}$. (Please see Appendix E for the calculation formulae.)

Table 4-8 Statistically Significant Differences, by Service Area (May 1998 - April 1999)

	Mean Ratio (Material Wt/Total Wt) North		South	t-Statistic
p-Value (Cut-off for statistically valid difference $=0.0091$				
Curbside Paper	$\mathbf{1 2 . 0 5 \%}$	10.44%	3.4358	0.0007^{*}
OCC/Kratt	$\mathbf{4 . 5 1 \%}$	3.58%	3.0920	0.0021^{*}
Food	26.06%	$\mathbf{2 9 . 6 1 \%}$	3.7458	0.0002^{*}
Curbside Glass	3.04%	$\mathbf{4 . 3 5 \%}$	4.4989	0.00000^{*}
Tin	1.18%	$\mathbf{1 . 4 6 \%}$	3.3816	0.0008^{*}
Aluminum	0.63%	$\mathbf{0 . 8 8 \%}$	5.3652	$0.0000 *$
Non-Curbside Plastic	9.21%	8.97%	0.6284	0.5301
Newspaper	4.69%	3.82%	2.4519	0.0147
Yard Debris	2.23%	2.86%	1.2107	0.2268
Curbside Plastic	1.14%	1.25%	1.7281	0.0848
Household Hazardous	0.30%	0.26%	0.3236	0.7464
Number of Samples	180	180		

[^7]
Table 4-9 Composition by Weight: North Service Area
 (May 1998 - April 1999)

Calculated with a 90\% confidence interval

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	30,952 31.0\%				Organics	27,469 27.5\%			
Newspaper	5,181	5.2\%	4.7\%	5.6\%	Pallets	39	0.0\%	0.0\%	0.1\%
OCC/Kraft, unwaxed	4,679	4.7\%	4.3\%	5.1\%	Crates/Boxes	17	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	176	0.2\%	0.0\%	0.4\%	Leaves and Grass	2,057	2.1\%	1.5\%	2.7\%
Office Paper	990	1.0\%	0.8\%	1.2\%	Prunings	387	0.4\%	0.3\%	0.5\%
Computer Paper	29	0.0\%	0.0\%	0.0\%	Food	24,969	25.0\%	24.1\%	25.9\%
Mixed Low Grade	11,065 11.1\% 10.5\% 11.6\%				Other Materials	17,914 17.9\%			
Phone Books	399	0.4\%	0.2\%	0.6\%	Textiles/Clothing	1,887	1.9\%	1.7\%	2.1\%
Milk/Lice Polycoats	729	0.7\%	0.7\%	0.8\%	Carpet/Upholstery	1,430	1.4\%	1.1\%	1.8\%
Frozen Food Polycoats	297	0.3\%	0.3\%	0.3\%	Leather	150	0.2\%	0.1\%	0.2\%
Compostable/Soiled	5,946	5.9\%	5.6\%	6.3\%	Disposable Diapers	3,264	3.3\%	2.9\%	3.6\%
Paper/Other Materials	1,333	1.3\%	1.2\%	1.5\%	Animal By-Products	7,407	7.4\%	6.7\%	8.2\%
Other Paper	129	0.1\%	0.1\%	0.2\%	Rubber Products	175	0.2\%	0.1\%	0.2\%
Plastic	10,085 10.1\%				Tires	113255	0.1\%	0.0\%	0.2\%
PET Pop and Liquor	397	0.4\%	0.4\%	0.4\%	Ash		0.3\%	0.1\%	0.4\%
Other PET Bottles	161	0.2\%	0.1\%	0.2\%	Misc. Organics	380	0.4\%	0.2\%	0.5\%
HDPE Milk and 山ice	230	0.2\%	0.2\%	0.3\%	Furniture	646	0.6\%	0.3\%	1.0\%
Other HDPE Bottles	392	0.4\%	0.3\%	0.4\%	Mattresses	166	0.2\%	0.0\%	0.4\%
Other Plastic Bottles	162	0.2\%	0.1\%	0.2\%	Small Appliances	379	0.4\%	0.3\%	0.5\%
Jars and Tubs	540	0.5\%	0.5\%	0.6\%	A/V Equipment	569	0.6\%	0.3\%	0.9\%
Expanded Polystyrene	612	0.6\%	0.4\%	0.8\%	Ceramics/Porcelain	257	0.3\%	0.2\%	0.4\%
Other Rigid Packaging	1,022	1.0\%	1.0\%	1.1\%	Non-distinct Fines	540	0.5\%	0.4\%	0.7\%
Grocery/Bread Bags	1,338	1.3\%	1.3\%	1.4\%	Misc. Inorganics	296	0.3\%	0.2\%	0.4\%
Garbage Bags	1,284	1.3\%	1.2\%	1.4\%	CDL Wastes	5,123	5.1\%		
Other Film	2,408	2.4\%	2.3\%	2.6\%	Dimension Lumber	1,057	1.1\%	0.7\%	1.4\%
Plastic Products	772	0.8\%	0.7\%	0.9\%	Other Untreated Wood	274	0.3\%	0.2\%	0.4\%
Plastic/Other Materials	767	0.8\%	0.6\%	1.0\%	Treated Wood	712	0.7\%	0.5\%	0.9\%
Glass	3,688	3.7\%			Contaminated Wood	160	0.2\%	0.1\%	0.2\%
Clear Beverage	790	0.8\%	0.7\%	0.9\%	New Gypsum Scrap	3	0.0\%	0.0\%	0.0\%
Green Beverage	825	0.8\%	0.7\%	1.0\%	Demo Gypsum Scrap	449	0.4\%	0.1\%	0.8\%
Brown Beverage	889	0.9\%	0.6\%	1.1\%	Fiberglass Insulation	32	0.0\%	0.0\%	0.1\%
Container Glass	759	0.8\%	0.7\%	0.8\%	Rock/Concrete/Brick	805	0.8\%	0.1\%	1.5\%
Fluorescent Tubes	3	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	151	0.2\%	0.0\%	0.3\%
Other Glass	422	0.4\%	0.3\%	0.5\%	Other Construction Debris	325	0.3\%	0.1\%	0.5\%
Metal	4,222	4.2\%			Sand/Soil/Dirt	1,156	1.2\%	0.7\%	1.6\%
Aluminum Cans	446	0.4\%	0.4\%	0.5\%	Hazardous	477	0.5\%		
Alum. Foil/Containers	227	0.2\%	0.2\%	0.3\%	Latex Paints	50	0.0\%	0.0\%	0.1\%
Other Aluminum	17	0.0\%	0.0\%	0.0\%	Hazardous Adhesives/Glues	10	0.0\%	0.0\%	0.0\%
Other Nonferrous	28	0.0\%	0.0\%	0.0\%	NonHazardous Adhesives/Gl	19	0.0\%	0.0\%	0.0\%
Tin Food Cans	1,198	1.2\%	1.1\%	1.3\%	Oil-based Paints/Solvents	3	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	174	0.2\%	0.1\%	0.2\%	Cleaners	1	0.0\%	0.0\%	0.0\%
Other Ferrous	1,154	1.2\%	0.6\%	1.7\%	Pesticides/Herbicides	1	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	972	1.0\%	0.7\%	1.3\%	Dry-Cell Batteries	117	0.1\%	0.0\%	0.2\%
Motor Oil Filters	8	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	0	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	5	0.0\%	0.0\%	0.0\%
					Asbestos	1	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	99,930				Other Hazardous Chemicals	154	0.2\%	0.0\%	0.4\%
Sample Count	180				Other NonHazardous Chemi	116	0.1\%	0.0\%	0.2\%

Table 4-10 Composition by Weight: South Service Area
(May 1998 - April 1999)
Calculated with a 90% confidence interval

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	12,042 25.8\%				Organics	15,414 33.0\%			
Newspaper	1,713	3.7\%	3.4\%	4.0\%	Pallets	0	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	1,610	3.4\%	3.2\%	3.7\%	Crates/Boxes	18	0.0\%	0.0\%	0.1\%
OCC/Kraft, waxed	5	0.0\%	0.0\%	0.0\%	Leaves and Grass	1,132	2.4\%	1.7\%	3.1\%
Office Paper	231	0.5\%	0.4\%	0.6\%	Prunings	175	0.4\%	0.2\%	0.5\%
Computer Paper	4	0.0\%	0.0\%	0.0\%	Food	14,088	30.1\%	29.1\%	31.2\%
Mixed Low Grade	4,348	9.3\%	8.9\%	9.7\%	Other Materials	8,036	17.2\%		
Phone Books	198	0.4\%	0.3\%	0.6\%	Textiles/Clothing	1,102	2.4\%	2.2\%	2.5\%
Milk/山ice Polycoats	217	0.5\%	0.4\%	0.5\%	Carpet/Upholstery	677	1.4\%	1.1\%	1.8\%
Frozen Food Polycoats	134	0.3\%	0.3\%	0.3\%	Leather	90	0.2\%	0.1\%	0.2\%
Compostable/Soiled	3,077	6.6\%	6.3\%	6.9\%	Disposable Diapers	2,594	5.6\%	5.1\%	6.0\%
Paper/Other Materials	481	1.0\%	1.0\%	1.1\%	Animal By-Products	2,073	4.4\%	3.9\%	5.0\%
Other Paper	25	0.1\%	0.0\%	0.1\%	Rubber Products	99	0.2\%	0.1\%	0.3\%
Plastic	4,802 10.3\%			0.4\%	Tires	150	0.3\%	0.0\%	0.6\%
PET Pop and Liquor	194	0.4\%			Ash	140	0.3\%	0.1\%	0.4\%
Other PET Bottles	74	0.2\%	0.1\%	0.2\%	Furniture	289	0.6\%	0.3\%	1.0\%
HDPE Milk and لuce	134	0.3\%	0.3\%	0.3\%	Mattresses	0	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	179	0.4\%	0.3\%	0.4\%	Small Appliances	192	0.4\%	0.3\%	0.5\%
Other Plastic Bottles	84	0.2\%	0.2\%	0.2\%	A/V Equipment	73	0.2\%	0.1\%	0.2\%
Jars and Tubs	202	0.4\%	0.4\%	0.5\%	Ceramics/Porcelain	79	0.2\%	0.1\%	0.2\%
Expanded Polystyrene	313	0.7\%	0.6\%	0.7\%	Non-distinct Fines	161	0.3\%	0.2\%	0.4\%
Other Rigid Packaging	399	0.9\%	0.8\%	0.9\%	Misc. Organics	155	0.3\%	0.3\%	0.4\%
Grocery/Bread Bags	736	1.6\%	1.5\%	1.7\%	Misc. Inorganics	164	0.4\%	0.2\%	0.5\%
Garbage Bags	577	1.2\%	1.2\%	1.3\%	CDL Wastes	1,752	3.7\%		
Other Film	1,169	2.5\%	2.3\%	2.7\%	Dimension Lumber	264	0.6\%	0.4\%	0.8\%
Plastic Products	471	1.0\%	0.9\%	1.2\%	Other Untreated Wood	162	0.3\%	0.2\%	0.5\%
Plastic/Other Materials	270	0.6\%	0.5\%	0.7\%	Treated Wood	247	0.5\%	0.4\%	0.7\%
Glass	2,232	4.8\%			Contaminated Wood	121	0.3\%	0.1\%	0.4\%
Clear Beverage	714	1.5\%	1.3\%	1.7\%	New Gypsum Scrap	3	0.0\%	0.0\%	0.0\%
Green Beverage	401	0.9\%	0.7\%	1.0\%	Demo Gypsum Scrap	172	0.4\%	0.2\%	0.5\%
Brown Beverage	372	0.8\%	0.7\%	0.9\%	Fiberglass Insulation	19	0.0\%	0.0\%	0.1\%
Container Glass	542	1.2\%	1.1\%	1.3\%	Rock/Concrete/Brick	146	0.3\%	0.1\%	0.5\%
Fuorescent Tubes	4	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	66	0.1\%	0.0\%	0.2\%
Other Glass	199	0.4\%	0.4\%	0.5\%	Other Construction Debris	127	0.3\%	0.1\%	0.4\%
Metal	2,236	4.8\%			Sand/Soil/Dirt	426	0.9\%	0.5\%	1.3\%
Aluminum Cans	277	0.6\%	0.5\%	0.6\%	Hazardous	215	0.5\%		
Alum. Foil/Containers	132	0.3\%	0.3\%	0.3\%	Latex Paints	17	0.0\%	0.0\%	0.1\%
Other Aluminum	36	0.1\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	2	0.0\%	0.0\%	0.0\%
Other Nonferrous	60	0.1\%	0.1\%	0.2\%	NonHazardous Adhesives/Gl	30	0.1\%	0.0\%	0.2\%
Tin Food Cans	691	1.5\%	1.4\%	1.6\%	Oil-based Paints/Solvents	3	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	95	0.2\%	0.2\%	0.2\%	Cleaners	5	0.0\%	0.0\%	0.0\%
Other Ferrous	543	1.2\%	0.6\%	1.7\%	Pesticides/Herbicides	0	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	378	0.8\%	0.6\%	1.0\%	Dry-Cell Batteries	36	0.1\%	0.1\%	0.1\%
Motor Oil Filters	23	0.0\%	0.0\%	0.1\%	Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	1	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	35	0.1\%	0.0\%	0.2\%
					Asbestos	0	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	46,729				Other Hazardous Chemicals	25	0.1\%	0.0\%	0.1\%
Sample Count	180				Other NonHazardous Chemi	61	0.1\%	0.1\%	0.2\%

4.5 By Service Area and Generator Type

Waste composition estimates were calculated for the single-family residences in both the north and the south. A total of 121 single-family samples were obtained in the north and a total of 120 samples were obtained in the south.

As shown in Figure 4-3, paper and organics comprise the bulk of the waste stream for both the single-family residences in the north (58.0\%) and in the south (59.3\%).

Figure 4-3 Composition Summary: by Service Area and Generator Type
(May 1998 - April 1999)

4.5.1 Largest Components

Four components accounted for approximately half of the waste stream for both the singlefamily north and the single-family south subpopulations as shown in Table 4-11.

Table 4-11 Largest Components by Service Area and Residence Type
(May 1998 - April 1999)

	Single-family North	Single-family South
Food	28.7%	33.4%
Mixed Low Grade Paper	10.0%	8.4%
Compostable/soiled Paper	6.7%	7.1%
Animal by-products	8.3%	
Disposable Diapers		6.3%
Sum of largest components	53.7%	$\mathbf{5 5 . 2 \%}$

Table 4-13 and Table 4-14 present the detailed composition results for both the north and south single-family subpopulations.

4.5.2 Comparisons Between Single-family North and Single-family South

Eleven waste category groups (listed in Table 4-2 above) were compared between the singlefamily north and the single-family south subpopulations. As shown in Table 4-12, single-family residences in the north service area disposed significantly more curbside paper and OCC/kraft paper than did single-family residences in the south. South single-family residences, however, disposed more aluminum, curbside glass, food, and tin than residents in the north did. Variations on the amount of newspaper, curbside plastic, non-curbside plastic, yard debris, or household hazardous materials disposed by the two groups were not significant ${ }^{12}$. (Please see Appendix E for the calculation formulae.)

Table 4-12 Statistically Significant Differences Among Single-family Residences, by Service Area

	Mean Ratio (Material Wt/Total Wt)		t-Statistic	p-Value (Cut-off for statistically
	SFNorth	SFSouth		valid difference = 0.0091)
Curbside Paper	$\mathbf{1 0 . 9 7 \%}$	8.99%	3.9877	0.0001^{*}
OCC/Kraft	3.65%	2.70%	4.5124	0.0000^{*}
Food	28.74%	$\mathbf{3 3 . 4 3 \%}$	4.4796	0.0000 *
Curbside Glass	2.49%	$\mathbf{4 . 2 7 \%}$	5.9488	0.0000 *
Tin	1.13%	$\mathbf{1 . 5 8 \%}$	4.3409	0.0000 *
Aluminum	0.54%	$\mathbf{0 . 8 3 \%}$	5.5809	0.0000 *
Non-Curbside Plastic	9.93%	9.39%	1.1500	0.2513
Newspaper	3.48%	2.72%	2.3902	0.0176
Yard Debris	1.69%	2.40%	1.3607	0.1749
Curbside Plastic	1.05%	1.21%	2.1487	0.0327
Household Hazardous	0.19%	0.30%	1.1788	0.2396
Number of Samples	121	120		

(May 1998 - April 1999)

[^8]Table 4-13 Composition by Weight: Single-family North
(May 1998 - April 1999)
Calculated with a 90\% confidence interval

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	14,060 27.6\%				Organics	15,488 30.4\%			0.0\%
Newspaper	1,770	3.5\%	3.0\%	3.9\%	Pallets	0	0.0\%		
OCC/Kraft, unwaxed	1,844	3.6\%	3.4\%	3.9\%	Crates/Boxes	1	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	16	0.0\%	0.0\%	0.1\%	Leaves and Grass	658	1.3\%	0.9\%	1.7\%
Office Paper	404	0.8\%	0.7\%	0.9\%	Prunings	200	0.4\%	0.2\%	0.5\%
Computer Paper	8	0.0\%	0.0\%	0.0\%	Food	14,630	28.7\%	27.6\%	29.9\%
Mixed Low Grade	5,104	10.0\%	9.4\% 10.6\%		Other Materials	9,767 19.2\%			
Phone Books	66	0.1\%	0.1\%	0.2\%	Textiles/Clothing	863	1.7\%	1.5\%	1.9\%
Milk/山ice Polycoats	414	0.8\%	0.7\%	0.9\%	Carpet/Upholstery	696	1.4\%	1.0\%	1.7\%
Frozen Food Polycoats	176	0.3\%	0.3\%	0.4\%	Leather	81	0.2\%	0.1\%	0.2\%
Compostable/Soiled	3,401	6.7\%	6.3\%	7.0\%	Disposable Diapers	2,187	4.3\%	3.8\%	4.8\%
Paper/Other Materials	792	1.6\%	1.3\%	1.8\%	Animal By-Products	4,215	8.3\%	7.4\%	9.2\%
Other Paper	66	0.1\%	0.1\%	0.2\%	Rubber Products	118	0.2\%	0.2\%	0.3\%
Plastic	5,589 11.0\%		0.3%		Tires	$\begin{array}{r} 55 \\ 182 \end{array}$	0.1\%	0.0\%	0.3\%
PET Pop and Liquor	154	0.3\%		0.3\%	Ash		0.4\%	0.1\%	0.6\%
Other PET Bottles	69	0.1\%	0.1\%	0.2\%	Furniture	213	0.4\%	0.0\%	0.9\%
HDPE Milk and 山ice	92	0.2\%	0.2\%	0.2\%	Mattresses	0	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	218	0.4\%	0.4\%	0.5\%	Small Appliances	121	0.2\%	0.1\%	0.3\%
Other Plastic Bottles	95	0.2\%	0.2\%	0.2\%	A/V Equipment	251	0.5\%	0.2\%	0.8\%
Jars and Tubs	312	0.6\%	0.6\%	0.7\%	Ceramics/Porcelain	131	0.3\%	0.2\%	0.4\%
Expanded Polystyrene	425	0.8\%	0.4\%	1.3\%	Non-distinct Fines	292	0.6\%	0.4\%	0.8\%
Other Rigid Packaging	630	1.2\%	1.1\%	1.3\%	Misc. Organics	178	0.3\%	0.2\%	0.5\%
Grocery/Bread Bags	700	1.4\%	1.3\%	1.5\%	Misc. Inorganics	184	0.4\%	0.3\%	0.5\%
Garbage Bags	622	1.2\%	1.1\%	1.4\%	CDL Wastes	2,440	4.8\%		
Other Film	1,407	2.8\%	2.6\%	2.9\%	Dimension Lumber	566	1.1\%	0.6\%	1.6\%
Plastic Products	409	0.8\%	0.7\%	0.9\%	Other Untreated Wood	128	0.3\%	0.1\%	0.4\%
Plastic/Other Materials	454	0.9\%	0.7\%	1.1\%	Treated Wood	316	0.6\%	0.4\%	0.8\%
Glass	1,458	2.9\%			Contaminated Wood	145	0.3\%	0.1\% 0.4\%	
Clear Beverage	333	0.7\%	0.5\%	0.8\%	New Gypsum Scrap	0	0.0\%	0.0\%	$\begin{aligned} & 0.4 \% \\ & 0.0 \% \end{aligned}$
Green Beverage	280	0.6\%	0.4\%	0.7\%	Demo Gypsum Scrap	101	0.2\%	0.1\%	0.3\%
Brown Beverage	260	0.5\%	0.4\%	0.6\%	Fiberglass Insulation	1	0.0\%	0.0\%	0.0\%
Container Glass	395	0.8\%	0.7\%	0.9\%	Rock/Concrete/Brick	558	1.1\%	0.0\%	2.4\%
Fluorescent Tubes		0.0\%	0.0\%	0.0\%	Asphaltic Roofing	128	0.3\%	0.0\%	0.5\%
Other Glass	188	0.4\%	0.3\%	0.5\%	Other Construction Debris	175	0.3\%	0.1\%	0.6\%
Metal	1,928	3.8\%			Sand/Soil/Dirt	322	0.6\%	0.3\%	1.0\%
Aluminum Cans	134	0.3\%	0.2\%	0.3\%	Hazardous	167	0.3\%		
Alum. Foil/Containers	$\begin{array}{r} 141 \\ 8 \end{array}$	0.3\%	0.2\%	0.3\%	Latex Paints	32	0.1\%	0.0\%	0.1\%
Other Aluminum		0.0\%	0.0\%	0.0\%	Hazardous Adhesives/Glues	4	0.0\%	0.0\%	0.0\%
Other Nonferrous	8 21	0.0\%	0.0\%	0.1\%	NonHazardous Adhesives/Gl	18	0.0\%	0.0\%	0.1\%
Tin Food Cans	$\begin{array}{r} 21 \\ 573 \end{array}$	1.1\%	1.0\%	1.3\%	Oil-based Paints/Solvents	0	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	92	0.2\%	0.2\%	$0.2 \%$$0.9 \%$	Cleaners	1	0.0\%	0.0\%	0.0\%
Other Ferrous	409	0.8\%	0.7\%		Pesticides/Herbicides		0.0\%	0.0\%0.0%	0.0\%
Mixed Metals/Materials	$\begin{array}{r} 550 \\ 0 \end{array}$	$\begin{aligned} & 1.1 \% \\ & 0.0 \% \end{aligned}$	$\begin{aligned} & 0.6 \% \\ & 0.0 \% \end{aligned}$	$\begin{aligned} & 1.5 \% \\ & 0.0 \% \end{aligned}$	Dry-Cell Batteries	35	0.1\%		0.1\%
Motor Oil Filters					Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	0	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	5	0.0\%	0.0\%	0.0\%
					Asbestos	1	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	50,898					16	0.0\%	0.0\%	0.1\%
Sample Total	121				Other NonHazardous Chemi	54	0.1\%	0.1%	0.1\%

Table 4-14 Composition by Weight: Single-family South
(May 1998 - April 1999)
Calculated at the 90% confidence interval

	Tons	Mean	Low	High		Tons	Mean	Low	High
Paper	7,599 23.4\%				Organics	11,653 35.9\%			
Newspaper	883	2.7\%	2.4\%	3.0\%	Pallets	0	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	876	2.7\%	2.5\%	2.9\%	Crates/Boxes	17	0.1\%	0.0\%	0.1\%
OCC/Kraft, waxed	2	0.0\%	0.0\%	0.0\%	Leaves and Grass	684	2.1\%	1.3\%	2.9\%
Office Paper	144	0.4\%	0.4\%	0.5\%	Prunings	96	0.3\%	0.2\%	0.4\%
Computer Paper	3	0.0\%	0.0\%	0.0\%	Food	10,856 33.4\% 32.1\% 34.7\%			
Mixed Low Grade	2,716	8.4\%	7.9\%	8.9\%	Other Materials	5,743 17.7\%			
Phone Books	59	0.2\%	0.1\%	0.3\%	Textiles/Clothing	654	2.0\%	1.8\%	2.2\%
Milk/Lice Polycoats	168	0.5\%	0.5\%	0.6\%	Carpet/Upholstery	475	1.5\%	1.0\%	1.9\%
Frozen Food Polycoats	99	0.3\%	0.3\%	0.3\%	Leather	68	0.2\%	0.1\%	0.3\%
Compostable/Soiled	2,303	7.1\%	6.8\%	7.4\%	Disposable Diapers	2,058	6.3\%	5.8\%	6.9\%
Paper/Other Materials	332	1.0\%	0.9\%	1.1\%	Animal By-Products	1,534	4.7\%	4.0\%	5.5\%
Other Paper	14	0.0\%	0.0\%	0.1\%	Rubber Products	60	0.2\%	0.1\%	0.3\%
Plastic	3,441 10.6\%				Tires	105	0.3\%	0.0\%	0.7\%
PET Pop and Liquor	130	0.4\%		0.4\%	Ash	108	0.3\%	0.2\%	0.5\%
Other PET Bottles	52	0.2\%	0.1\%	0.2\%	Furniture	139	0.4\%	0.0\%	0.8\%
HDPE Milk and 山ice	82	0.3\%	0.2\%	0.3\%	Mattresses	0	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	128	0.4\%	0.4\%	0.4\%	Small Appliances	104	0.3\%	0.2\%	0.5\%
Other Plastic Bottles		0.2\%	0.2\%	0.2\%	A/V Equipment	34	0.1\%	0.1\%	0.1\%
Jars and Tubs	59 148	0.5\%	0.4\%	0.5\%	Ceramics/Porcelain	51	0.2\%	0.1\%	0.2\%
Expanded Polystyrene	241	0.7\%	0.7\%	0.8\%	Non-distinct Fines	105	0.3\%	0.2\%	0.4\%
Other Rigid Packaging	296	0.9\%	0.8\%	1.0\%	Misc. Organics	123	0.4\%	0.3\%	0.5\%
Grocery/Bread Bags	544	1.7\%	1.6\%	1.8\%	Misc. Inorganics	124	0.4\%	0.2\%	0.6\%
Garbage Bags	417	1.3\%	1.2\%	1.4\%	CDL Wastes	863	2.7\%		
Other Film	852	2.6\%	2.5\%	2.8\%	Dimension Lumber	125	0.4\%	0.3\%	0.5\%
Plastic Products	309	1.0\%	0.8\%	1.1\%	Other Untreated Wood	54	0.2\%	0.1\%	0.3\%
Plastic/Other Materials	182	0.6\%	0.4\%	0.7\%	Treated Wood	120	0.4\%	0.2\%	0.5\%
Glass	1,512	4.7\%			Contaminated Wood	53	0.2\%	0.0\%	0.3\%
Clear Beverage	496	1.5\%	1.3\%	1.8\%	New Gypsum Scrap	3	0.0\%	0.0\%	0.0\%
Green Beverage	246	0.8\%	0.6\%	0.9\%	Demo Gypsum Scrap	122	0.4\%	0.2\%	0.6\%
Brown Beverage	238	0.7\%	0.6\%	0.9\%	Fiberglass Insulation	2	0.0\%	0.0\%	0.0\%
Container Glass	407	1.3\%	1.1\%	1.4\%	Rock/Concrete/Brick	97	0.3\%	0.0\%	0.6\%
Fuorescent Tubes	4	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	58	0.2\%	0.0\%	0.3\%
Other Glass	121	0.4\%	0.3\%	0.4\%	Other Construction Debris	85	0.3\%	0.1\%	0.4\%
Metal	1,491	4.6\%			Sand/Soil/Dirt	143	0.4\%	0.2\%	0.7\%
Aluminum Cans	166	0.5\%	0.5\%	0.6\%	Hazardous	174	0.5\%		
Alum. Foil/Containers	103	0.3\%	0.3\%	0.4\%	Latex Paints	13	0.0\%	0.0\%	0.1\%
Other Aluminum	21	0.1\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	1	0.0\%	0.0\%	0.0\%
Other Nonferrous	26	0.1\%	0.0\%	0.1\%	NonHazardous Adhesives/Gl	29	0.1\%	0.0\%	0.2\%
Tin Food Cans	512	1.6\%	1.5\%	1.7\%	Oil-based Paints/Solvents	2	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	71	0.2\%	0.2\%	0.2\%	Cleaners	3	0.0\%	0.0\%	0.0\%
Other Ferrous	360	1.1\%	0.3\%	1.9\%	Pesticides/Herbicides	0	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	215	0.7\%	0.4\%	0.9\%	Dry-Cell Batteries	29	0.1\%	0.1\%	0.1\%
Motor Oil Filters	16	0.1\%	0.0\%	0.1\%	Wet-Cell Batteries	0	0.0\%	0.0\%	0.0\%
					Gasoline/Kerosene	1	0.0\%	0.0\%	0.0\%
					Motor Oil/Diesel Oil	35	0.1\%	0.0\%	0.2\%
					Asbestos	0	0.0\%	0.0\%	0.0\%
					Explosives	0	0.0\%	0.0\%	0.0\%
Total Tons	32,477				Other Hazardous Chemicals	14	0.0\%	0.0\%	0.1\%
Sample Total	120				Other NonHazardous Chemi	46	0.1\%	0.1\%	0.2\%

4.6 By Season

Waste composition results were examined for seasonal variations. Samples were classified into four seasons according to the month in which they were collected. The groupings and number of samples obtained in each were as follows:

- Spring: May 1998, March - April 1999
- Summer: June - August 1999
- Fall: September - November 1999
- Winter: December 1998 - February 1999

92 samples
85 samples
88 samples
95 samples

Although no tests for significance were performed on the composition results by season, the results appear to be quite similar across the seasons for both the broad waste categories and the largest components disposed. Figure 4-4 summarizes the results of the broad waste categories by season.

Figure 4-4 Composition Summary: by Season
(May 1998 - April 1999)

Spring

Fall

Cascadia Consulting Group, Inc.

Summer

Winter

Waste Stream Composition Study: 1998/99 Final Report

4.6.1 Largest Components

Food, mixed low grade paper, compostable/soiled paper, and animal by-products accounted for about half the waste stream each season, as illustrated in Table 4-15. The combined percentages of these four components ranged from 48.1% to 51.5%. In the spring, a high percentage of newspaper was also disposed (5.3\%).

Table 4-15 Largest Components by Season (May 1998 - April 1999)

	Spring	Summer	Fall	Winter
Food	24.3%	26.2%	29.6%	26.2%
Mixed Low Grade Paper	10.2%	11.2%	10.5%	10.4%
Compostable/soiled Paper	6.5%	5.8%	5.8%	6.4%
Animal by-products	7.1%	5.6%	5.6%	7.5%
Newspaper	5.3%			
Sum of largest components	$\mathbf{5 3 . 4} \%$	$\mathbf{4 8 . 8 \%}$	$\mathbf{5 1 . 5 \%}$	$\mathbf{5 0 . 5 \%}$

The tables presenting the detailed composition results for each season are presented in Table 4-16 through Table 4-19.

Table 4-16 Composition by Weight: Spring (May 1998 - April 1999)

Calculated with a 90\% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	30.7\%			Organics	27.0\%		
Newspaper	5.3\%	4.6\%	6.0\%	Pallets	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	4.3\%	3.5\%	5.1\%	Crates/Boxes	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	0.3\%	0.0\%	0.9\%	Leaves and Grass	2.2\%	1.5\%	2.9\%
Office Paper	0.8\%	0.6\%	1.0\%	Prunings	0.5\%	0.3\%	0.7\%
Computer Paper	0.0\%	0.0\%	0.1\%	Food	24.3\%	22.9\%	25.7\%
Mixed Low Grade	10.2\%	9.5\%	10.9\%	Other Materials	17.9\%		
Phone Books	0.8\%	0.5\%	1.1\%	Textiles/Clothing	2.0\%	1.7\%	2.2\%
Milk/山ice Polycoats	0.6\%	0.5\%	0.7\%	Carpet/Upholstery	0.8\%	0.6\%	1.0\%
Frozen Food Polycoats	0.3\%	0.2\%	0.3\%	Leather	0.1\%	0.1\%	0.2\%
Compostable/Soiled	6.5\%	6.0\%	7.0\%	Disposable Diapers	3.6\%	3.1\%	4.2\%
Paper/Other Materials	1.4\%	1.2\%	1.6\%	Animal By-Products	7.1\%	6.0\%	8.2\%
Other Paper	0.2\%	0.1\%	0.2\%	Rubber Products	0.7\%	0.2\%	1.2\%
Plastic	9.2\%			Tires	0.2\%	0.0\%	0.5\%
PET Pop and Liquor	0.3\%	0.2\%	0.3\%	Ash	0.2\%	0.1\%	0.3\%
Other PET Bottles	0.3\%	0.3\%	0.4\%	Furniture	0.3\%	0.2\%	0.4\%
HDPE Milk and luice	0.2\%	0.2\%	0.3\%	Mattresses	0.9\%	0.1\%	1.7\%
Other HDPE Bottles	0.5\%	0.4\%	0.5\%	Small Appliances	0.0\%	0.0\%	0.0\%
Other Plastic Bottles	0.1\%	0.1\%	0.2\%	A/V Equipment	0.3\%	0.2\%	0.5\%
Jars and Tubs	0.5\%	0.5\%	0.6\%	Ceramics/Porcelain	0.4\%	0.0\%	0.7\%
Expanded Polystyrene	0.4\%	0.4\%	0.5\%	Non-distinct Fines	0.3\%	0.2\%	0.4\%
Other Rigid Packaging	0.9\%	0.8\%	1.0\%	Misc. Organics	0.7\%	0.4\%	0.9\%
Grocery/Bread Bags	1.2\%	1.1\%	1.3\%	Misc. Inorganics	0.4\%	0.2\%	0.6\%
Garbage Bags	1.4\%	1.2\%	1.6\%	CDL Wastes	6.0\%		
Other Film	2.1\%	1.9\%	2.3\%	Dimension Lumber	1.2\%	0.6\%	1.7\%
Plastic Products	0.9\%	0.7\%	1.1\%	Other Untreated Wood	0.1\%	0.0\%	0.1\%
Plastic/Other Materials	0.3\%	0.2\%	0.5\%	Treated Wood	0.6\%	0.4\%	0.9\%
Glass	4.2\%			Contaminated Wood	0.3\%	0.1\%	0.4\%
Clear Beverage	1.2\%	1.0\%	1.5\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.9\%	0.7\%	1.1\%	Demo Gypsum Scrap	0.6\%	0.1\%	1.2\%
Brown Beverage	0.7\%	0.6\%	0.9\%	Fiberglass Insulation	0.1\%	0.0\%	0.2\%
Container Glass	0.9\%	0.7\%	1.0\%	Rock/Concrete/Brick	0.6\%	0.1\%	1.1\%
Fluorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.2\%	0.1\%	0.3\%
Other Glass	0.5\%	0.3\%	0.7\%	Other Construction Debris	0.4\%	0.2\%	0.7\%
Metal	4.6\%			Sand/Soil/Dirt	1.9\%	1.1\%	2.6\%
Aluminum Cans	0.4\%	0.4\%	0.5\%	Hazardous	0.3\%		
Alum. Foil/Containers	0.3\%	0.2\%	0.3\%	Latex Paints	0.0\%	0.0\%	0.0\%
Other Aluminum	0.0\%	0.0\%	0.0\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.1\%	0.0\%	0.1\%	NonHazardous Adhesives/Glue:	0.0\%	0.0\%	0.1\%
Tin Food Cans	1.1\%	1.0\%	1.2\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.2\%	0.2\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	1.3\%	0.5\%	2.0\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	1.3\%	0.7\%	1.8\%	Dry-Cell Batteries	0.1\%	0.1\%	0.1\%
Motor Oil Filters	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.0\%	0.0\%	0.0\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.0\%	0.0\%	0.1\%
Sample Count	92			Other NonHazardous Chemical	0.1\%	0.0\%	0.1\%

Table 4-17 Composition by Weight: Summer
(May 1998 - April 1999)
Calculated with a 90\% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	29.3\%			Organics	29.3\%		
Newspaper	4.2\%	3.6\%	4.8\%	Pallets	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	4.6\%	4.0\%	5.1\%	Crates/Boxes	0.1\%	0.0\%	0.2\%
OCC/Kratt, waxed	0.1\%	0.0\%	0.2\%	Leaves and Grass	2.9\%	2.0\%	3.9\%
Office Paper	0.7\%	0.5\%	0.8\%	Prunings	0.1\%	0.0\%	0.2\%
Computer Paper	0.0\%	0.0\%	0.0\%	Food	26.2\%	24.7\%	27.7\%
Mixed Low Grade	11.2\%	10.2\%	12.2\%	Other Materials	17.5\%		
Phone Books	0.5\%	0.2\%	0.9\%	Textiles/Clothing	2.2\%	1.8\%	2.6\%
Milk/luice Polycoats	0.6\%	0.4\%	0.8\%	Carpet/Upholstery	2.5\%	1.6\%	3.4\%
Frozen Food Polycoats	0.3\%	0.3\%	0.4\%	Leather	0.1\%	0.1\%	0.2\%
Compostable/Soiled	5.8\%	5.3\%	6.3\%	Disposable Diapers	3.3\%	2.6\%	4.0\%
Paper/Other Materials	1.2\%	1.1\%	1.4\%	Animal By-Products	5.6\%	4.6\%	6.6\%
Other Paper	0.1\%	0.0\%	0.1\%	Rubber Products	0.2\%	0.1\%	0.3\%
Plastic	10.7\%			Tires	0.0\%	0.0\%	0.1\%
PET Pop and Liquor	0.5\%	0.4\%	0.5\%	Ash	0.4\%	0.1\%	0.7\%
Other PET Bottles	0.1\%	0.1\%	0.1\%	Furniture	0.7\%	0.2\%	1.2\%
HDPEMilk and لlice	0.3\%	0.2\%	0.3\%	Mattresses	0.0\%	0.0\%	0.0\%
Other HDPEBottles	0.4\%	0.3\%	0.4\%	Small Appliances	0.3\%	0.1\%	0.4\%
Other Plastic Bottles	0.2\%	0.2\%	0.2\%	A/V Equipment	0.5\%	0.2\%	0.9\%
dars and Tubs	0.5\%	0.4\%	0.6\%	Ceramics/Porcelain	0.3\%	0.1\%	0.6\%
Expanded Polystyrene	1.1\%	0.2\%	2.0\%	Non-distinct Fines	0.5\%	0.3\%	0.7\%
Other Rigid Packaging	1.0\%	0.9\%	1.1\%	Misc. Organics	0.3\%	0.2\%	0.4\%
Grocery/Bread Bags	1.7\%	1.5\%	1.9\%	Misc. Inorganics	0.5\%	0.4\%	0.7\%
Garbage Bags	1.3\%	1.1\%	1.6\%	CDL Wastes	4.8\%		
Other Film	2.4\%	2.2\%	2.6\%	Dimension Lumber	1.5\%	0.6\%	2.4\%
Plastic Products	0.9\%	0.8\%	1.1\%	Other Untreated Wood	0.3\%	0.1\%	0.5\%
Plastic/Other Materials	0.4\%	0.3\%	0.6\%	Treated Wood	0.9\%	0.4\%	1.3\%
Glass	4.0\%			Contaminated Wood	0.3\%	0.1\%	0.5\%
Clear Beverage	1.1\%	0.8\%	1.3\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.8\%	0.6\%	1.0\%	Demo Gypsum Scrap	0.7\%	0.0\%	1.3\%
Brown Beverage	1.1\%	0.4\%	1.7\%	Fiberglass Insulation	0.0\%	0.0\%	0.0\%
Container Glass	0.8\%	0.6\%	0.9\%	Rock/Concrete/Brick	0.5\%	0.1\%	0.9\%
Fuorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.1\%	0.0\%	0.2\%
Other Glass	0.2\%	0.2\%	0.3\%	Other Construction Debris	0.2\%	0.0\%	0.3\%
Metal	4.0\%			Sand/Soi//Dirt	0.3\%	0.1\%	0.6\%
Aluminum Cans	0.6\%	0.5\%	0.6\%	Hazardous	0.3\%		
Alum. Foil/Containers	0.2\%	0.1\%	0.2\%	Latex Paints	0.1\%	0.0\%	0.1\%
Other Aluminum	0.0\%	0.0\%	0.0\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.0\%	0.0\%	0.1\%	NonHazardous Adhesives/Glue.	0.0\%	0.0\%	0.0\%
Tin Food Cans	1.2\%	1.0\%	1.3\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.2\%	0.1\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	0.8\%	0.6\%	1.0\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	1.1\%	0.5\%	1.7\%	Dry-Cell Batteries	0.1\%	0.1\%	0.1\%
Motor Oil Filters	0.0\%	0.0\%	0.1\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.0\%	0.0\%	0.0\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.1\%	0.0\%	0.1\%
Sample Count	85			Other NonHazardous Chemical	0.1\%	0.0\%	0.1\%

Table 4-18 Composition by Weight: Fall
(May 1998 - April 1999)
Calculated with a 90\% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	27.5\%			Organics	32.0\%		
Newspaper	4.6\%	3.9\%	5.3\%	Pallets	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	4.0\%	3.7\%	4.2\%	Crates/Boxes	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	0.1\%	0.0\%	0.1\%	Leaves and Grass	2.3\%	1.2\%	3.3\%
Office Paper	0.6\%	0.4\%	0.8\%	Prunings	0.1\%	0.1\%	0.2\%
Computer Paper	0.0\%	0.0\%	0.0\%	Food	29.6\%	28.3\%	30.8\%
Mixed Low Grade	10.5\%	9.7\%	11.2\%	Other Materials	17.9\%		
Phone Books	0.1\%	0.0\%	0.2\%	Textiles/Clothing	2.1\%	1.8\%	2.4\%
Milk/Hice Polycoats	0.6\%	0.5\%	0.7\%	Carpet/Upholstery	1.7\%	1.3\%	2.2\%
Frozen Food Polycoats	0.3\%	0.2\%	0.3\%	Leather	0.1\%	0.0\%	0.2\%
Compostable/Soiled	5.8\%	5.5\%	6.2\%	Disposable Diapers	4.5\%	4.0\%	5.1\%
Paper/Other Materials	0.9\%	0.7\%	1.1\%	Animal By-Products	5.6\%	4.7\%	6.5\%
Other Paper	0.1\%	0.0\%	0.1\%	Rubber Products	0.2\%	0.1\%	0.2\%
Plastic	9.6\%			Tires	0.0\%	0.0\%	0.0\%
PET Pop and Liquor	0.4\%	0.4\%	0.5\%	Ash	0.4\%	0.1\%	0.7\%
Other PET Bottles	0.1\%	0.1\%	0.1\%	Furniture	0.5\%	0.0\%	0.9\%
HDPEMilk and لuice	0.3\%	0.2\%	0.3\%	Mattresses	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	0.4\%	0.3\%	0.5\%	Small Appliances	0.6\%	0.4\%	0.9\%
Other Plastic Bottles	0.1\%	0.1\%	0.2\%	A/V Equipment	0.6\%	0.0\%	1.2\%
Jars and Tubs	0.4\%	0.3\%	0.4\%	Ceramics/Porcelain	0.1\%	0.0\%	0.2\%
Expanded Polystyrene	0.5\%	0.4\%	0.5\%	Non-distinct Fines	0.7\%	0.5\%	0.9\%
Other Rigid Packaging	0.8\%	0.7\%	0.9\%	Misc. Organics	0.6\%	0.3\%	1.0\%
Grocery/Bread Bags	1.2\%	1.1\%	1.3\%	Misc. Inorganics	0.1\%	0.1\%	0.2\%
Garbage Bags	1.1\%	1.0\%	1.2\%	CDL Wastes	3.8\%		
Other Film	2.7\%	2.5\%	2.9\%	Dimension Lumber	0.5\%	0.2\%	0.8\%
Plastic Products	0.7\%	0.6\%	0.8\%	Other Untreated Wood	0.5\%	0.2\%	0.7\%
Plastic/Other Materials	0.8\%	0.5\%	1.2\%	Treated Wood	0.8\%	0.4\%	1.1\%
Glass	3.8\%			Contaminated Wood	0.2\%	0.1\%	0.3\%
Clear Beverage	0.9\%	0.7\%	1.1\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.7\%	0.5\%	0.9\%	Demo Gypsum Scrap	0.1\%	0.0\%	0.3\%
Brown Beverage	1.0\%	0.7\%	1.3\%	Fiberglass Insulation	0.0\%	0.0\%	0.1\%
Container Glass	0.9\%	0.8\%	1.0\%	Rock/Concrete/Brick	0.2\%	0.1\%	0.3\%
Fuorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.3\%	0.0\%	0.6\%
Other Glass	0.3\%	0.2\%	0.4\%	Other Construction Debris	0.3\%	0.0\%	0.5\%
Metal	4.7\%			Sand/Soil/Dirt	1.0\%	0.1\%	1.8\%
Aluminum Cans	0.5\%	0.4\%	0.6\%	Hazardous	0.6\%		
Alum. Foil/Containers	0.2\%	0.2\%	0.2\%	Latex Paints	0.0\%	0.0\%	0.1\%
Other Aluminum	0.1\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.1\%	0.0\%	0.2\%	NonHazardous Adhesives/Glue:	0.1\%	0.0\%	0.2\%
Tin Food Cans	1.2\%	1.1\%	1.4\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.2\%	0.2\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	1.5\%	0.3\%	2.7\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	0.8\%	0.4\%	1.3\%	Dry-Cell Batteries	0.2\%	0.0\%	0.3\%
Motor Oil Filters	0.0\%	0.0\%	0.1\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.1\%	0.0\%	0.2\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.0\%	0.0\%	0.0\%
Sample Count	88			Other NonHazardous Chemical	0.2\%	0.0\%	0.4\%

Table 4-19 Composition by Weight: Winter
(May 1998 - April 1999)
Calculated with a 90% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	29.8\%			Organics	28.5\%		
Newspaper	4.6\%	4.1\%	5.1\%	Pallets	0.1\%	0.0\%	0.3\%
OCC/Kraft, unwaxed	4.4\%	3.8\%	5.0\%	Crates/Boxes	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	0.0\%	0.0\%	0.0\%	Leaves and Grass	1.5\%	0.6\%	2.4\%
Office Paper	1.2\%	0.8\%	1.5\%	Prunings	0.7\%	0.5\%	1.0\%
Computer Paper	0.0\%	0.0\%	0.1\%	Food	26.2\%	25.0\%	27.4\%
Mixed Low Grade	10.4\%	9.6\%	11.1\%	Other Materials	17.6\%		
Phone Books	0.2\%	0.1\%	0.3\%	Textiles/Clothing	1.9\%	1.7\%	2.2\%
Milk/山ice Polycoats	0.7\%	0.7\%	0.8\%	Carpet/Upholstery	1.0\%	0.5\%	1.4\%
Frozen Food Polycoats	0.3\%	0.2\%	0.3\%	Leather	0.3\%	0.2\%	0.4\%
Compostable/Soiled	6.4\%	6.0\%	6.8\%	Disposable Diapers	4.2\%	3.7\%	4.7\%
Paper/Other Materials	1.4\%	1.2\%	1.6\%	Animal By-Products	7.5\%	6.1\%	8.9\%
Other Paper	0.1\%	0.0\%	0.1\%	Rubber Products	0.2\%	0.1\%	0.3\%
Plastic	11.2\%			Tires	0.0\%	0.0\%	0.0\%
PET Pop and Liquor	0.4\%	0.3\%	0.5\%	Ash	0.1\%	0.0\%	0.1\%
Other PET Bottles	0.1\%	0.1\%	0.1\%	Furniture	0.5\%	0.0\%	1.1\%
HDPEMilk and 山ice	0.3\%	0.2\%	0.3\%	Mattresses	0.5\%	0.0\%	1.2\%
Other HDPEBottles	0.3\%	0.2\%	0.3\%	Small Appliances	0.3\%	0.2\%	0.5\%
Other Plastic Bottles	0.2\%	0.2\%	0.2\%	A/V Equipment	0.2\%	0.1\%	0.3\%
Jars and Tubs	0.6\%	0.6\%	0.7\%	Ceramics/Porcelain	0.2\%	0.1\%	0.4\%
Expanded Polystyrene	0.7\%	0.6\%	0.7\%	Non-distinct Fines	0.1\%	0.0\%	0.2\%
Other Rigid Packaging	1.2\%	1.1\%	1.3\%	Misc. Organics	0.2\%	0.1\%	0.2\%
Grocery/Bread Bags	1.6\%	1.5\%	1.7\%	Misc. Inorganics	0.3\%	0.2\%	0.4\%
Garbage Bags	1.2\%	1.1\%	1.4\%	CDL Wastes	4.0\%		
Other Film	2.6\%	2.3\%	2.8\%	Dimension Lumber	0.6\%	0.3\%	0.9\%
Plastic Products	0.9\%	0.8\%	1.1\%	Other Untreated Wood	0.3\%	0.1\%	0.5\%
Plastic/Other Materials	1.1\%	0.8\%	1.3\%	Treated Wood	0.4\%	0.2\%	0.5\%
Glass	4.1\%			Contaminated Wood	0.0\%	0.0\%	0.1\%
Clear Beverage	0.9\%	0.7\%	1.1\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.9\%	0.6\%	1.1\%	Demo Gypsum Scrap	0.3\%	0.1\%	0.5\%
Brown Beverage	0.7\%	0.5\%	0.9\%	Fiberglass Insulation	0.0\%	0.0\%	0.0\%
Container Glass	1.0\%	0.9\%	1.1\%	Rock/Concrete/Brick	1.2\%	0.0\%	2.7\%
Fuorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.0\%	0.0\%	0.0\%
Other Glass	0.6\%	0.4\%	0.8\%	Other Construction Debris	0.3\%	0.0\%	0.5\%
Metal	4.2\%			Sand/Soil/Dirt	0.9\%	0.5\%	1.4\%
Aluminum Cans	0.5\%	0.4\%	0.6\%	Hazardous	0.7\%		
Alum. Foil/Containers	0.3\%	0.3\%	0.4\%	Latex Paints	0.1\%	0.0\%	0.2\%
Other Aluminum	0.0\%	0.0\%	0.0\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.1\%	0.0\%	0.1\%	NonHazardous Adhesives/Glue:	0.0\%	0.0\%	0.0\%
Tin Food Cans	1.6\%	1.4\%	1.8\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.2\%	0.1\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	0.9\%	0.6\%	1.3\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	0.5\%	0.4\%	0.7\%	Dry-Cell Batteries	0.1\%	0.1\%	0.1\%
Motor Oil Filters	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.0\%	0.0\%	0.0\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.4\%	0.0\%	1.0\%
Sample Count	95			Other NonHazardous Chemical	0.1\%	0.0\%	0.1\%

4.7 By Demographics

The single-family samples were grouped according to household income and size using Census tract information corresponding to the collection routes. The median income and the average household size was calculated for each route by first determining the proportion of each census block group area incorporated in the route. Then, the median household income and the average household size of each block group within the routes were identified, and a weighted average based on the population of each block group was used to calculate the median income and average household size for each route.

4.7.1 Income

The broad material categories for the low and high income households are shown below in Figure 4-5. The income levels were determined by first identifying the median household income for each route, then dividing the routes into quartiles. The low income group represents samples obtained from routes in the lowest quartile and the high income group represents samples obtained from routes in the uppermost quartile. A total of 56 samples were obtained from the low income routes and 59 samples were obtained from the high income routes.

The waste composition of both the low and the high income groups consisted mostly of paper and organics. Combined, these two categories accounted for 59.0% of the waste among the low income routes and 57.1% of the waste among the high income groups. Although no tests for significance were performed between the two subpopulations, a higher percentage of organics appears to be disposed among the low income routes while more CDL waste and paper were disposed among the high income routes.

Figure 4-5 Composition Summary: by Household Income (May 1998- April 1999)

Low Income

High Income

4.7.1.1 Largest Components

Table 4-20 below shows the largest components for both the low and high income groupings. Food, mixed low grade paper, composatable/soiled paper, and animal by-products accounted for about half of the waste stream for both the low (58.5\%) and the high (52.3%) income groups. The waste stream of the low income subpopulation also included a large percentage of disposable diapers.

Table 4-20 Largest Components by Income (May 1998 - April 1999)

	Low	High
Food	32.8%	27.6%
Mixed Low Grade Paper	8.1%	9.7%
Compostable/soiled Paper	6.7%	6.6%
Animal by-products	5.1%	8.4%
Disposable Diapers	5.8%	
Sum of largest components	$\mathbf{5 8 . 5 \%}$	$\mathbf{5 2 . 3} \%$

Table 4-21 and Table 4-22 present the detailed composition results for the low and high income subpopulations.

Table 4-21 Composition by Weight: Low Income
(May 1998 - April 1999)
Calculated with a 90% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	24.3\%			Organics	34.7\%		
Newspaper	3.3\%	2.8\%	3.9\%	Pallets	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	3.0\%	2.6\%	3.3\%	Crates/Boxes	0.1\%	0.0\%	0.3\%
OCC/Kraft, waxed	0.0\%	0.0\%	0.0\%	Leaves and Grass	1.5\%	0.9\%	2.1\%
Office Paper	0.6\%	0.5\%	0.7\%	Prunings	0.2\%	0.1\%	0.4\%
Computer Paper	0.0\%	0.0\%	0.0\%	Food	32.8\%	30.7\%	35.0\%
Mixed Low Grade	8.1\%	7.4\%	8.8\%	Other Materials	17.4\%		
Phone Books	0.2\%	0.0\%	0.4\%	Textiles/Clothing	1.9\%	1.6\%	2.2\%
Milk/Lice Polycoats	0.6\%	0.5\%	0.7\%	Carpet/Upholstery	1.1\%	0.6\%	1.5\%
Frozen Food Polycoats	0.3\%	0.3\%	0.4\%	Leather	0.2\%	0.1\%	0.3\%
Compostable/Soiled	6.7\%	6.2\%	7.1\%	Disposable Diapers	5.8\%	4.9\%	6.6\%
Paper/Other Materials	1.3\%	1.1\%	1.5\%	Animal By-Products	5.1\%	3.9\%	6.2\%
Other Paper	0.1\%	0.0\%	0.1\%	Rubber Products	0.3\%	0.1\%	0.5\%
Plastic	10.8\%			Tires	0.2\%	0.0\%	0.6\%
PET Pop and Liquor	0.4\%	0.4\%	0.5\%	Ash	0.2\%	0.0\%	0.4\%
Other PET Bottles	0.2\%	0.1\%	0.2\%	Furniture	0.9\%	0.0\%	2.0\%
HDPE Milk and luice	0.3\%	0.2\%	0.3\%	Mattresses	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	0.4\%	0.3\%	0.4\%	Small Appliances	0.4\%	0.2\%	0.6\%
Other Plastic Bottles	0.2\%	0.1\%	0.2\%	A/V Equipment	0.1\%	0.0\%	0.2\%
Jars and Tubs	0.5\%	0.4\%	0.6\%	Ceramics/Porcelain	0.1\%	0.1\%	0.2\%
Expanded Polystyrene	0.8\%	0.7\%	0.9\%	Non-distinct Fines	0.5\%	0.2\%	0.8\%
Other Rigid Packaging	1.0\%	0.9\%	1.1\%	Misc. Organics	0.4\%	0.3\%	0.6\%
Grocery/Bread Bags	1.7\%	1.5\%	1.9\%	Misc. Inorganics	0.3\%	0.1\%	0.4\%
Garbage Bags	1.3\%	1.1\%	1.4\%	CDL Wastes	2.9\%		
Other Film	2.5\%	2.3\%	2.7\%	Dimension Lumber	0.6\%	0.3\%	0.8\%
Plastic Products	0.9\%	0.7\%	1.1\%	Other Untreated Wood	0.1\%	0.0\%	0.2\%
Plastic/Other Materials	0.8\%	0.4\%	1.2\%	Treated Wood	0.3\%	0.1\%	0.6\%
Glass	4.1\%			Contaminated Wood	0.2\%	0.0\%	0.5\%
Clear Beverage	1.3\%	0.9\%	1.7\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.7\%	0.5\%	0.8\%	Demo Gypsum Scrap	0.2\%	0.1\%	0.4\%
Brown Beverage	0.7\%	0.5\%	0.8\%	Fiberglass Insulation	0.0\%	0.0\%	0.0\%
Container Glass	1.0\%	0.8\%	1.2\%	Rock/Concrete/Brick	0.3\%	0.0\%	0.6\%
Fuorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.3\%	0.0\%	0.6\%
Other Glass	0.4\%	0.3\%	0.6\%	Other Construction Debris	0.4\%	0.0\%	0.9\%
Metal	5.4\%			Sand/Soil/Dirt	0.4\%	0.1\%	0.7\%
Aluminum Cans	0.4\%	0.4\%	0.5\%	Hazardous	0.5\%		
Alum. Foil/Containers	0.4\%	0.3\%	0.4\%	Latex Paints	0.0\%	0.0\%	0.1\%
Other Aluminum	0.0\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.1\%	0.0\%	0.2\%	NonHazardous Adhesives/Glues	0.2\%	0.0\%	0.5\%
Tin Food Cans	1.5\%	1.3\%	1.6\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.1\%	0.1\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	1.6\%	0.0\%	3.1\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	1.2\%	0.6\%	1.8\%	Dry-Cell Batteries	0.1\%	0.1\%	0.1\%
Motor Oil Filters	0.0\%	0.0\%	0.1\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.0\%	0.0\%	0.1\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.1\%	0.0\%	0.1\%
Sample Count	56			Other NonHazardous Chemicals	0.1\%	0.0\%	0.1\%

Table 4-22 Composition by Weight: High Income
 (May 1998 - April 1999)

Calculated with a 90\% confidence interval

4.7.2 Household Size

Figure 4-6 summarizes the broad waste categories for small (<2.13 people) and large (>2.56 people) households. The groupings were determined by first identifying the average household size for each route, then by dividing the routes into quartiles. The grouping of small households represents samples obtained from the routes in the lowest quartile and the grouping of large households represents samples obtained in the uppermost quartile. A total of 48 samples were obtained from the small household routes and 73 samples were obtained from the large household routes.

Paper and organics accounted for the majority of waste for both household size groupings (58.7% for the small households and 61.4% for the large households.) Although no statistical tests were performed between the large and small household size subpopulations, smaller households appeared to dispose more paper and less organics than larger households did.

Figure 4-6 Composition Summary: by Household Size (May 1998 - April 1999)

Small Households

Large Households

4.7.2.1 Largest components

As shown in Table 4-23, food was the largest component disposed by both the small and large households, followed by mixed low grade paper and compostable/soiled paper. For both the small and large households, it is estimated that four components accounted for slightly more than half of their respective waste streams.

Table 4-23 Largest Components by Household Size
(May 1998 - April 1999)

	Small	Large
Food	28.3%	35.8%
Mixed Low Grade Paper	10.4%	8.5%
Compostable/soiled Paper	6.7%	7.2%
Animal by-products	8.2%	
Disposable Diapers		6.2%
Sum of largest components	$\mathbf{5 3 . 6} \%$	$\mathbf{5 7 . 7} \%$

Table 4-24 and Table 4-25 present the detailed composition results for the small and large households.

Table 4-24 Composition by Weight: Small Households
(May 1998 - April 1999)
Calculated with a 90% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	27.9\%			Organics	30.8\%		
Newspaper	3.7\%	3.0\%	4.4\%	Pallets	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	3.3\%	2.9\%	3.7\%	Crates/Boxes	0.0\%	0.0\%	0.0\%
OCC/Kraft, waxed	0.0\%	0.0\%	0.0\%	Leaves and Grass	2.0\%	1.2\%	2.8\%
Office Paper	0.6\%	0.5\%	0.8\%	Prunings	0.4\%	0.1\%	0.7\%
Computer Paper	0.1\%	0.0\%	0.1\%	Food	28.3\%	26.9\%	29.8\%
Mixed Low Grade	10.4\%	9.4\%	11.3\%	Other Materials	18.2\%		
Phone Books	0.2\%	0.0\%	0.4\%	Textiles/Clothing	1.7\%	1.3\%	2.0\%
Milk/山ice Polycoats	0.8\%	0.7\%	0.9\%	Carpet/Upholstery	1.3\%	0.8\%	1.7\%
Frozen Food Polycoats	0.3\%	0.3\%	0.4\%	Leather	0.1\%	0.0\%	0.2\%
Compostable/Soiled	6.7\%	6.2\%	7.2\%	Disposable Diapers	3.7\%	3.2\%	4.2\%
Paper/Other Materials	1.6\%	1.3\%	2.0\%	Animal By-Products	8.2\%	7.0\%	9.4\%
Other Paper	0.2\%	0.1\%	0.3\%	Rubber Products	0.2\%	0.1\%	0.3\%
Plastic	11.0\%			Tires	0.3\%	0.0\%	0.7\%
PET Pop and Liquor	0.3\%	0.3\%	0.4\%	Ash	0.1\%	0.0\%	0.1\%
Other PET Bottles	0.2\%	0.2\%	0.2\%	Furniture	0.8\%	0.0\%	2.0\%
HDPE Milk and 山ice	0.2\%	0.2\%	0.2\%	Mattresses	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	0.4\%	0.3\%	0.5\%	Small Appliances	0.3\%	0.1\%	0.5\%
Other Plastic Bottles	0.2\%	0.1\%	0.2\%	A/V Equipment	0.3\%	0.0\%	0.7\%
Jars and Tubs	0.6\%	0.5\%	0.7\%	Ceramics/Porcelain	0.3\%	0.1\%	0.4\%
Expanded Polystyrene	0.6\%	0.5\%	0.7\%	Non-distinct Fines	0.5\%	0.3\%	0.8\%
Other Rigid Packaging	1.1\%	1.0\%	1.2\%	Misc. Organics	0.2\%	0.1\%	0.2\%
Grocery/Bread Bags	1.5\%	1.3\%	1.6\%	Misc. Inorganics	0.4\%	0.2\%	0.6\%
Garbage Bags	1.4\%	1.2\%	1.7\%	CDL Wastes	3.6\%		
Other Film	2.7\%	2.4\%	2.9\%	Dimension Lumber	1.0\%	0.4\%	1.6\%
Plastic Products	0.8\%	0.7\%	0.9\%	Other Untreated Wood	0.2\%	0.0\%	0.3\%
Plastic/Other Materials	1.0\%	0.5\%	1.6\%	Treated Wood	0.6\%	0.2\%	0.9\%
Glass	3.8\%			Contaminated Wood	0.1\%	0.0\%	0.3\%
Clear Beverage	0.9\%	0.7\%	1.1\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.8\%	0.6\%	1.0\%	Demo Gypsum Scrap	0.2\%	0.0\%	0.3\%
Brown Beverage	0.8\%	0.6\%	1.0\%	Fiberglass Insulation	0.0\%	0.0\%	0.0\%
Container Glass	0.9\%	0.7\%	1.1\%	Rock/Concrete/Brick	0.1\%	0.0\%	0.1\%
Fluorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.1\%	0.0\%	0.3\%
Other Glass	0.5\%	0.3\%	0.6\%	Other Construction Debris	0.7\%	0.1\%	1.2\%
Metal	4.3\%			Sand/Soil/Dirt	0.7\%	0.2\%	1.1\%
Aluminum Cans	0.4\%	0.3\%	0.4\%	Hazardous	0.3\%		
Alum. Foil/Containers	0.2\%	0.2\%	0.3\%	Latex Paints	0.0\%	0.0\%	0.1\%
Other Aluminum	0.0\%	0.0\%	0.0\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.0\%	0.0\%	0.1\%	NonHazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Tin Food Cans	1.3\%	1.2\%	1.5\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.2\%	0.1\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	0.9\%	0.7\%	1.1\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	1.2\%	0.6\%	1.9\%	Dry-Cell Batteries	0.1\%	0.0\%	0.1\%
Motor Oil Filters	0.0\%	0.0\%	0.0\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.0\%	0.0\%	0.0\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.0\%	0.0\%	0.0\%
Sample Count	48			Other NonHazardous Chemicals	0.1\%	0.0\%	0.2\%

Table 4-25 Composition by Weight: Large Households

(May 1998 - April 1999)

Calculated with a 90\% confidence interval

	Mean	Low	High		Mean	Low	High
Paper	23.4\%			Organics	38.0\%		
Newspaper	2.8\%	2.4\%	3.1\%	Pallets	0.0\%	0.0\%	0.0\%
OCC/Kraft, unwaxed	2.5\%	2.3\%	2.7\%	Crates/Boxes	0.1\%	0.0\%	0.2\%
OCC/Kraft, waxed	0.0\%	0.0\%	0.0\%	Leaves and Grass	1.9\%	0.8\%	3.0\%
Office Paper	0.5\%	0.4\%	0.6\%	Prunings	0.2\%	0.1\%	0.4\%
Computer Paper	0.0\%	0.0\%	0.0\%	Food	35.8\%	34.2\%	37.4\%
Mixed Low Grade	8.5\%	7.8\%	9.2\%	Other Materials	16.0\%		
Phone Books	0.1\%	0.0\%	0.2\%	Textiles/Clothing	1.9\%	1.7\%	2.2\%
Milk/Lice Polycoats	0.5\%	0.5\%	0.6\%	Carpet/Upholstery	1.4\%	0.9\%	2.0\%
Frozen Food Polycoats	0.3\%	0.2\%	0.3\%	Leather	0.2\%	0.1\%	0.3\%
Compostable/Soiled	7.2\%	6.7\%	7.6\%	Disposable Diapers	6.2\%	5.5\%	7.0\%
Paper/Other Materials	1.1\%	0.9\%	1.2\%	Animal By-Products	3.8\%	3.0\%	4.6\%
Other Paper	0.0\%	0.0\%	0.1\%	Rubber Products	0.1\%	0.0\%	0.1\%
Plastic	10.9\%			Tires	0.0\%	0.0\%	0.0\%
PET Pop and Liquor	0.4\%	0.4\%	0.5\%	Ash	0.4\%	0.1\%	0.6\%
Other PET Bottles	0.2\%	0.1\%	0.2\%	Furniture	0.4\%	0.1\%	0.7\%
HDPE Milk and 山ice	0.3\%	0.2\%	0.3\%	M attresses	0.0\%	0.0\%	0.0\%
Other HDPE Bottles	0.4\%	0.3\%	0.4\%	Small Appliances	0.3\%	0.2\%	0.5\%
Other Plastic Bottles	0.2\%	0.1\%	0.2\%	A/V Equipment	0.1\%	0.1\%	0.2\%
Jars and Tubs	0.5\%	0.4\%	0.5\%	Ceramics/Porcelain	0.2\%	0.1\%	0.2\%
Expanded Polystyrene	0.8\%	0.8\%	0.9\%	Non-distinct Fines	0.3\%	0.1\%	0.4\%
Other Rigid Packaging	0.9\%	0.8\%	1.0\%	Misc. Organics	0.4\%	0.3\%	0.5\%
Grocery/Bread Bags	1.9\%	1.7\%	2.0\%	Misc. Inorganics	0.3\%	0.2\%	0.4\%
Garbage Bags	1.3\%	1.2\%	1.4\%	CDL Wastes	2.5\%		
Other Film	2.6\%	2.4\%	2.8\%	Dimension Lumber	0.3\%	0.1\%	0.4\%
Plastic Products	0.9\%	0.7\%	1.2\%	Other Untreated Wood	0.3\%	0.1\%	0.5\%
Plastic/Other Materials	0.6\%	0.4\%	0.8\%	Treated Wood	0.4\%	0.1\%	0.6\%
Glass	4.5\%			Contaminated Wood	0.2\%	0.0\%	0.3\%
Clear Beverage	1.6\%	1.2\%	1.9\%	New Gypsum Scrap	0.0\%	0.0\%	0.0\%
Green Beverage	0.7\%	0.6\%	0.9\%	Demo Gypsum Scrap	0.6\%	0.2\%	0.9\%
Brown Beverage	0.7\%	0.5\%	0.8\%	Fiberglass Insulation	0.0\%	0.0\%	0.0\%
Container Glass	1.1\%	1.0\%	1.3\%	Rock/Concrete/Brick	0.3\%	0.0\%	0.7\%
Fluorescent Tubes	0.0\%	0.0\%	0.0\%	Asphaltic Roofing	0.2\%	0.0\%	0.4\%
Other Glass	0.4\%	0.3\%	0.4\%	Other Construction Debris	0.2\%	0.0\%	0.4\%
Metal	4.1\%			Sand/Soil/Dirt	0.1\%	0.0\%	0.2\%
Aluminum Cans	0.5\%	0.5\%	0.6\%	Hazardous	0.6\%		
Alum. Foil/Containers	0.3\%	0.3\%	0.4\%	Latex Paints	0.0\%	0.0\%	0.1\%
Other Aluminum	0.0\%	0.0\%	0.1\%	Hazardous Adhesives/Glues	0.0\%	0.0\%	0.0\%
Other Nonferrous	0.1\%	0.0\%	0.2\%	NonHazardous Adhesives/Glues	0.1\%	0.0\%	0.4\%
Tin Food Cans	1.5\%	1.4\%	1.7\%	Oil-based Paints/Solvents	0.0\%	0.0\%	0.0\%
Empty Aerosol Cans	0.2\%	0.1\%	0.2\%	Cleaners	0.0\%	0.0\%	0.0\%
Other Ferrous	0.5\%	0.3\%	0.7\%	Pesticides/Herbicides	0.0\%	0.0\%	0.0\%
Mixed Metals/Materials	0.8\%	0.5\%	1.2\%	Dry-Cell Batteries	0.1\%	0.1\%	0.1\%
Motor Oil Filters	0.0\%	0.0\%	0.1\%	Wet-Cell Batteries	0.0\%	0.0\%	0.0\%
				Gasoline/Kerosene	0.0\%	0.0\%	0.0\%
				Motor Oil/Diesel Oil	0.2\%	0.0\%	0.4\%
				Asbestos	0.0\%	0.0\%	0.0\%
				Explosives	0.0\%	0.0\%	0.0\%
				Other Hazardous Chemicals	0.1\%	0.0\%	0.1\%
Sample Count	73			Other NonHazardous Chemicals	0.1\%	0.0\%	0.2\%

[^0]: ${ }^{1}$ All waste composition estimates were derived using a 90% confidence level. This means that there is a 90% certainty that the actual composition is within the calculated range.

[^1]: ${ }^{2}$ No statistical tests were performed to identify differences between subpopulations in the estimated percentage of each component disposed. Therefore, the comparisons mentioned in this paragraph may not be statistically significant.

[^2]: ${ }^{3}$ The composition percentages used to analyze the differences in disposed tonnage and to perform statistical tests were calculated using unweighted averages for each of the three study periods.
 ${ }^{4}$ See Appendix B for more detail regarding the methodology.

[^3]: ${ }^{5}$ The change in sorting categories may have also affected the estimated proportions of plastic, metal, and glass causing them to be slightly higher in the 1988/89 study. The exact amount of this difference cannot be calculated.

[^4]: ${ }^{6}$ In March 1997, the Seattle Housing Authority began collecting residential waste that was previously collected by City of Seattle's contracted haulers. This difference caused a decrease in the amount of waste collected in the south service area.
 ${ }^{7}$ In order to control for population changes and other factors that may influence the total amount of waste disposed from year to year, statistical tests were applied to the waste proportions, not the actual tonnage. For example, say that paper accounts for 30% of the residential substream's disposed waste each year, and that the substream disposed of 1,000 tons of waste in one year and 2,000 tons of waste in the next. While the amount of paper increased from 300 to 600 tons, the percentage remained the same. Therefore, the statistical tests would indicate that there had been no change.

[^5]: ${ }^{8}$ In Table 3-4, the arrows indicate increases or decreases in the percentage of the broad waste category disposed between study periods. The percentage highlighted in bold is the greater of the two. P -values highlighted with an "*" indicate significant differences.

[^6]: ${ }^{9}$ These figures measure disposed waste only, and do not include tonnage collected through recycling programs. Also, comparisons between single- and multi-family waste proportions were calculated using unweighted composition percentages.

[^7]: ${ }^{10}$ These figures measure disposed waste only, and do not include tonnage collected through recycling programs. Also, comparisons between north and south waste proportions were calculated using unweighted composition percentages.
 ${ }^{11}$ In Table 4-8, the composition percentage that is higher between the two service areas is highlighted in bold. P-values highlighted with an "*" indicate significant differences.

[^8]: ${ }^{12}$ In Table 4-12, the higher composition percentage between the single-family north and south subpopulations is highlighted in bold. P -values highlighted with an "*" indicate significant differences.

