

City of Seattle Department of Transportation TRANSIT MASTER PLAN

FINAL SUMMARY REPORT

ADOPTED 2012 AMENDED 2016

Table of Contents

Priority Strategies

Continue Implementation of Priority Bus Corridorsii

Develop Center City Transit to Support Downtown Growth and Vitalityii
Plan, Fund, and Build Priority High Capacity Transit Projectsiii
Enhance Walk-Bike-Ride Access where Needs are Greatestiii
Improve Transit Information and System Usabilityiv
Pursue Funding to Enhance Transit Svc & Facilitiesiv

Why a Master Plan for Seattle? 1-2
City of Seattle's Role in Transit Delivery1-4
Challenges for Transit In Seattle 1-6
How Transit Benefits Seattle1-12
Transit Investment Framework1-17

Chapter Two

Policies and Programs

A Transit Supportive Policy Framework2-	2
The Complete Transit System for Seattle	2
Transit Supportive Programs2-	4

Chapter Three

Corridors

A Long-Range Vision for Seattle's HCT Network 3-2
Transit Corridor Evaluation Process
Priority Investments in the FTN
High Capacity Transit Corridors
Seattle RapidRide Corridor Sheets
Priority Bus Corridors
Center City Transit Improvements

Chapter Four

Seattle Transit Service Priorities
The Frequent Transit Network
Seattle Local Transit Network4-23

Chapter Five

Places: Access And Connections

Transit-Oriented Neighborhood Design
Facility Design Guidelines5-10
Accessing Transit in Seattle5-21
Mobility Corridors5-22
Station and Stop Location Types5-28
Multimodal Transit Access Policies and Strategies5-36

Chapter Six

Funding & Performance MonitoringTransit Funding Framework6-2Capital Funding Needs and Options6-3Funding Transit Operations6-11Potential Local and Regional Funding Options for
Capital or Operations6-14Performance Monitoring6-18

Images are from Nelson\Nygaard except: Joshua Putnam (Priority Strategies), Oran Viriyincy (Chapter 4) and SDOT (Chapter 6)

Table of Figures

Figure 1-1	Seattle Population and Employment Growth	1-6
Figure 1-2	Projected Growth in Seattle Urban Centers and Villages, 2008-2030	1-7
Figure 1-3	King County Metro – Sales Tax Revenue Shortfall	1-8
Figure 1-4	Auto Ownership	. 1-10
Figure 1-5	Transit Reliance Index	1-11
Figure 1-6	Center City Commute Mode Share, % of Trips by Mode for Employees Starting Work between 6 am and 9 am, 2010	1-12
Figure 1-7	GhG Emissions per Passenger Mile	1-16
Figure 1-8	Why People Ride Metro Transit	1-16
Figure 1-9	Household Income Of Metro Transit Riders (Systemwide)	1-16
Figure 2-1	Relationship between Complete Transit System Elements and TMP Sections	2-3
Figure 2-2	Impact of Selected Employer-Based TDM Strategies	2-8
	Seattle Long-Range High Capacity Transit Vision	
	Accounts Used in Multiple Account Evaluation Process	
	Multiple Account Evaluation Process	
	Priority Transit Corridors for Capital Investments	
	RapidRide Bus Rapid Transit Network	
Figure 3-6	Seattle's Sound Transit Investment Priorities	.3-17
Figure 3-7	Existing and Proposed RapidRide Corridors	.3-21
Figure 3-8	RapidRide Criteria and Scoring Methodologies	3-22
Figure 3-9	Priority Bus Corridor Summary	3-60
Figure 3-10	Priority Bus Corridors	3-61
Figure 3-11	Center City Transit Capital Improvement Priorities	3-74
Figure 3-12	Center City Key Service Improvements	3-76
Figure 3-13	Seattle Streetcar System with Center City Connector	3-77
Figure 3-14	Streetcar System Operating Plan	3-78
	Frequent Transit Network	
	Transit Network Design Concepts	. 4-4
Figure 4-3	Major Origin-Destination Travel Pairs Between Seattle and Region (All Other Trips, 2008)	4-6
Figure 4-4	Service Targets for the Frequent Transit Network	- 4-7
Figure 4-5	Frequent Network Corridors Prioritized for City Service Subsidy	. 4-7
Figure 4-6	Effective Mapping Sample	4-12
Figure 4-7	Sample Route-Level Map	4-12
Figure 4-8	Examples of Frequent Service Network Branding	.4-13
Figure 4-9	1963 Electric Trolley Bus Network Prior to North Seattle Annexation	.4-17
Figure 4-10	2011 Electric Trolley Bus Network	4-18
Figure 4-11	Proposed Electric Trolley Bus network improvements	4-19

Figure 4-13 Features for Enhancing Bus Comfort, Capacity, and Accessibility	2
Figure 5-1 6D's of Transit-Oriented Neighborhood Design	2
Figure 5-2 Thomas/Harrison Mobility Hub5-16	5
Figure 5-3 Design Elements at Conceptual Priority Access Node	7
Figure 5-4 Transit Facility Typologies5-18	8
Figure 5-5 Key Proposed Intermodal Facilities5-20	þ
Figure 5-6 Frequent Transit Network and Multimodal Catchment Area	1
Figure 5-7 Access Hierarchy5-22	2
Figure 5-8 Mobility Corridor Sphere of Influence	3
Figure 5-9 Conceptual Mobility Corridor Example: Bike and Streetcar Integration5-2	5
Figure 5-10 Conceptual BRT Corridor Tradeoffs5-2	7
Figure 5-11 Appropriate Access Investments by Transit Access Location Type	Ь
Figure 5-12 Best Practices in Bicycle and Pedestrian Access to Transit	3

Figure 6-1	Major Local And Regional (Metro And Sound Transit) Funding Sources	6-3
Figure 6-2	Estimated Initial Investment Levels for RapidRide and Priority Bus Corridors	6-4
Figure 6-3	Estimated Annual Operating Cost for HCT Options	5-11
Figure 6-4	Relationship between TMP and King County Metro Performance Monitoring 6	-19

Image from Flickr user Joshua Putnam

PRIORITY STRATEGIES

The Seattle Transit Master Plan (TMP) recommends strategies, projects, and policies that will make Seattle a more affordable, cleaner, vital, equitable, and enjoyable place to live and do business. Among the many recommendations made in the TMP, the six major initiatives that arise as near-term priorities are outlined in this section.

The City of Seattle plays an important role in building capital improvements that allow buses to provide fast and reliable service, as well as provide safe access to transit stops and stations. Image from SDOT

Redesigning the 3rd Avenue Transit Spine would make this key downtown corridor more efficient for buses and a more comfortable, attractive place to walk and wait for the bus.

Image from Flickr user Oran Viriyincy

1. Continue Implementation of Bus Rapid Transit Network and Priority Bus Corridors

The Seattle Department of Transportation's (SDOT) Transit Program builds capital projects and implements programs to improve transit speed and reliability in Seattle's busiest bus corridors. SDOT projects also help make transit stops and stations easier and safer to access. The TMP recommends improvements in three existing RapidRide Bus Rapid Transit corridors, seven new Seattle RapidRide corridors, and eight priority bus corridors. To ensure continued implementation of transit priority projects, the City should:

- Renew, increase, and diversify funding so more priority bus corridor projects can be implemented quickly. This includes seeking Federal Transit Administration capital grant funding.
- **Continue strong partnerships with Metro** to enhance speed and reliability and focus service investments where the greatest number of passengers benefit.
- Engage partnerships with neighboring cities to ensure that transit quality improvements continue outside city limits.

2. Develop Center City Transit to Support Downtown Growth and Vitality

In the next 20 years, Center City jobs and population are expected to increase by 60 percent. Meanwhile, there is no room to widen streets or increase capacity for automobiles. Accommodating growth in the Center City will require spaceefficient, sustainable modes of transportation, particularly transit, walking, and cycling, to provide needed access and mobility. Priority TMP projects that will help support a growing economy and residential population include:

- Connect the existing South Lake Union and First Hill streetcar lines to create a highly visible and effective Center City circulation system. The City has received a Federal Transit Administration (FTA) grant to further study the best alignment for the "Center City Connector."
- Engage businesses and community members to redesign the Third Avenue Transit Mall, making it a safer, cleaner, more functional, and engaging civic space.
- Use a "transit first" approach that prioritizes throughput for transit, bicycles, and pedestrians on downtown streets where space is limited.
- Create strong bicycle and pedestrian connections between the Central Waterfront and key transit stops and stations on First Avenue, Third Avenue, and the Downtown Seattle Transit Tunnel.

Creating a transit station at or near Colman Dock would help ferry passengers make easy transit connections to destinations in the Center City and elsewhere in Seattle.

Image from Nelson\Nygaard

3. Plan, Fund, and Build Priority High Capacity Transit Projects

The Transit Master Plan identifies corridors where investment in higher capacity modes of transit—such as rapid streetcar, bus rapid transit, or light rail—are needed to support population and job growth while maintaining the quality and character of local neighborhoods. Key City priorities for development of the regional and surface (local) high capacity transit systems include:

- Madison Street Corridor Bus Rapid Transit. Advance locally preferred alternative through next phases of design and environmental clearances while working with the FTA and local partners to position the project for Small Starts grant funding.
- Center City Connector Streetcar. Complete final design and work with FTA toward a Small Starts Full Funding Grant Agreement; complete project construction for opening in 2018.
- **Ballard to Downtown Light Rail.** Establish this project as one of the City's priority light rail investments from the Sound Transit 3 funding measure. Work with Sound Transit to expedite implementation of this project.
- **Downtown Transit Tunnel.** Work with Sound Transit to study, design and build a new north-south transit tunnel under the east side of downtown.
- West Seattle to Downtown Light Rail. Work with Sound Transit to implement light rail between West Seattle and Downtown – one of the City's priority light rail investments.

Dexter Avenue is a major corridor for bicycle access to the Center City and an important transit corridor.

Image from SDOT

4. Enhance Walk-Bike-Ride Access where Needs are Greatest

Many of Seattle's low-income residents, seniors, and other vulnerable populations live in neighborhoods distant from the urban core; many of these areas were annexed by the City and had not been originally constructed with full sidewalks. Improving sidewalks, adding bicycle facilities, and providing safe crossing treatments near bus stops can help more Seattleites use transit with a sense of safety and security. The TMP recommends that the City:

- Increase coordination between the Transit, Bicycle, and Pedestrian Master Plans, including development of a "Mobility Corridor" approach that focuses on developing integrated mobility solutions in the city's most traveled corridors.
- Ensure the Capital Improvement Plan recognizes transit access as a priority pedestrian and bicycle project need. Updates of the Bicycle and Pedestrian Master Plans offer good opportunities to incorporate connectivity to transit stops and hubs as a criterion for prioritizing projects.
- **Develop Transit Community land use policies** that incorporate best practices for developing compact neighborhoods that promote walking, biking, and transit for more types of trips.

The TMP recommends that Seattle partner with transit providers to create a comprehensive system of maps and signs that provide consistent transit, pedestrian, and bicycle navigation.

Image from Flickr user Oran Viriyincy

5. Improve Transit Information and System Usability

Transit service offerings for Seattle residents are improving and changing every year. New light rail, bus rapid transit, and streetcar lines are being added to complement or replace historic bus services. These improvements mean more choices and more trips that involve multiple modes and/or service providers. To ensure that transit system legibility is keeping pace with new transit offerings, the City should:

- Lead the development of an inter-agency design working group to develop transit wayfinding and transit facility design standards.
- Use high-quality, tactile transit station design as the nucleus of great Transit Communities.
- Work with Metro and Sound Transit to open source data, allowing private innovators to create new applications and tools that enhance user information.
- Expand efforts to provide electronic schedule information at bus stops.

Local funding from Bridging the Gap has been used to enhance transit stops and bike/pedestrian facilities along key transit corridors, such as this boarding island and bike lane treatment along Dexter Avenue (prior to completion of the bus shelter).

Image from Nelson\Nygaard

6. Pursue Funding to Enhance Transit Service and Facilities

Transit agencies nationwide, including Sound Transit and King County Metro, are struggling to overcome declining tax revenues and uncertain state and federal funding support. In addition to organizing land uses to make transit more efficient, Seattle needs to grow funding to provide the level of service and capital investment required to support growth and provide high quality service that attracts people away from private auto use. To secure funding, the City should:

- Renew and seek new local funding sources to implement TMP capital and service priorities.
- Work with partners to lobby for new transit funding mechanisms such as tax increment financing, dedication of tolling revenues, and other locally- or regionally-based transit funding sources.
- Create partnerships and leverage private investment to help fund priority capital investments.
- Continue to aggressively seek federal and state grants, in coordination with other transit agencies, to maintain, improve, and expand Seattle's transit service and facilities.

SERVING SEATTLE'S UNDERREPRESENTED POPULATIONS

The TMP is a framework for a transportation system where mobility and access is provided equally and affordably to all residents. A central theme of the plan is that access to high-quality transportation is a basic right. All people, regardless of income or ability, need transportation services that include good mobility, equal access to opportunities, and affordable cost. People should not need to own a car to access services, jobs, and recreation. Even stakeholders with a primary interest in development of high-quality, high-frequency corridor transit service also noted the important social and human service aspects of transit that is delivered by providing good fixed-route coverage and paratransit service. Social equity considerations were fundamental in understanding Seattle's transit needs and developing TMP recommendations.

Image from SDOT

Image from Nelson\Nygaard

1 INTRODUCTION

The City of Seattle Transit Master Plan (TMP) is a 20-year plan that identifies the types of transit facilities, services, programs, and system features that will be required to meet Seattle's transit needs through 2030. Building from an extensive market analysis, review of future growth patterns, and evaluation of transit needs, the TMP identifies capital investment priorities needed to establish a network of top quality, frequent transit services that meets the travel needs of most Seattle residents and workers. The TMP evaluates and recommends preferred transit modes for high priority corridors and sets a framework for implementing corridor-based transit improvements in close coordination with other modal needs. The plan was developed with feedback from King County Metro and Sound Transit, the agencies that provide most transit service in the City of Seattle and whose partnership is critical to creating a seamless, fully integrated, and user-friendly Seattle transit system.

SEATTLE STREETCAR Opening Day 12-12-2007

South Lake Union Streetcar Image from SDOT

WHY A MASTER PLAN FOR SEATTLE?

MEETING CITY GOALS

The Seattle Transit Master Plan (TMP) is a 20-year plan designed to help meet Seattle's goals, including the development of a transit system that supports the mobility needs of Seattle residents and businesses and that serves as a backbone of sustainable urban growth. The TMP defines the critical role that transit plays in meeting city goals related to sustainability, equity, economic productivity, and livability. The plan recommends projects, strategies, and funding options to improve transit quality and delivery; as it is implemented, it will help to knit together the city's urban villages into an accessible network of great neighborhoods. Since all transit trips begin with walking or biking, the TMP considers important pedestrian and bicycle linkages to local and regional transit services and identifies ways to improve accessibility. The TMP recommends a heightened level of coordination for multimodal investments in Seattle under which pedestrian, bicycle, and transit investments are made simultaneously to optimize benefits in the City's most important mobility corridors.

FOCUS ON IMPLEMENTATION

The Seattle Transit Master Plan (TMP) updates and expands upon the 2005 Seattle Transit Plan. It identifies near-term and long-term strategies to improve the quality of transit options and increase transit mode share throughout the city. Serving as a blueprint for transit, the plan provides a vision for Seattle's transit network through 2030 and beyond and identifies tran¬sit capital, operational, and programmatic investments. The TMP establishes a strong policy framework for transit, in many cases confirming policy language already established in the SDOT 2005 Seattle Transit Plan, Move Seattle, the Comprehensive Plan, and other approved plans. Building upon the 2005 plan, the TMP details specific capital projects that will improve transit speed and reliability in high ridership bus corridors citywide and develop rapid streetcar and BRT lines in several of Seattle's most promising transit corridors.

To a degree, the City of Seattle's own success dictates the need for the Transit Master Plan. The Seattle Department of Transportation's (SDOT) transit program has delivered capital improvements in key city transit corridors using funds from Bridging the Gap (BTG), grants, partnerships with King County Metro, and through a local improvement district that funded the starter line of a proposed streetcar network. BTG is a nineyear local transportation levy for maintenance and multimodal transportation improvements passed in 2006. BTG funds street and traffic signal improvements that increase the speed and reliability of bus travel in corridors that carry the most transit trips and connect Seattle's urban villages. Design and construction of improvements is already underway or complete in corridors around the city, including: Rainier Avenue, West Seattle, Ballard-Uptown, Third Avenue, and Market/45th Streets. The South Lake Union Streetcar is a 1.3 mile modern streetcar line that connects the rapidly developing South Lake Union Urban Center to the downtown retail core and regional transit system. Since opening in December 2007, the South Lake Union line has seen double-digit ridership percentage growth in each year of operation. The City completed construction of the First Hill Streetcar in 2015, connecting First Hill to Capitol Hill and transit connections in the International District.

Building upon these projects, the TMP outlines a capital investment program to be funded through other future sources and leverages opportunities with other projects and investments. The TMP will ensure continued progress toward a top quality, Frequent Transit Network for Seattle residents.

KEY OUTCOMES

The TMP lays out an aggressive plan for transit capital and program improvements that can start immediately, but may take 20 years or more to realize in full. Further, the plan addresses a number of other important outcomes identified through the work of the Transit Master Plan Advisory Group (TMPAG), a group of stakeholders that worked closely with SDOT and the consultant team to develop the TMP. The following TMP outcomes were prioritized by the TMPAG:

- Identify the city's most important transit corridors that carry high ridership today and have the greatest potential to serve transit needs that will emerge as Seattle's population and job base grows.
- Make transit more competitive with the private auto by enhancing transit speed and reliability and increasing service frequency in priority bus transit corridors. These corridors represent the City's most immediate opportunity to provide meaningful improvements in service quality for passengers.
- Expand the Seattle rail system. This was a strong sentiment among stakeholders as well as members of the public that responded to the TMP survey. Residents were attracted to the reliability and ride quality of rail and emphasized that Seattle should speed the development of its rail system.
- Improve Center City circulation. Many stakeholders want Seattle to prioritize expansion of the Center City streetcar, improve wayfinding and real-time information at transit stops, make right-of-way modifications to improve bus speed and efficiency, and improve coordination of transfers.
- Leverage transit investments to support urban development, enhance placemaking, and achieve environmental goals.
- Elevate the integration of transit capital development with the expansion of walking and biking infrastructure. In particular, use TMP priority transit corridors to guide multimodal corridor investment (see Chapter 5: Mobility Corridors) where corridor access, placemaking, and linear mobility investments are made simultaneously, using a "transit project" as the means to holistically transform a corridor.
- Coordinate with Metro and Sound Transit to create a seamless, fully integrated, and user-friendly network of transit services.
- Develop design standards for transit stops and stations to make the user experience safe, comfortable, enjoyable, and convenient.
- Develop or enhance education and financial incentive programs that support transit use in Seattle.
- Identify transit funding options for implementing TMP priorities while helping support existing local transit services.

• Create performance measures to allow the City to monitor TMP implementation and changes in transit performance levels and quality.

CHANGING TRANSIT LANDSCAPE

In 2010, the King County Council formed the Regional Transit Task Force (RTTF) to develop a policy framework to guide service investments or, if necessary, service reductions. The RTTF identified short-term and long-term objectives for transit service investment and developed policy guidance for service implementation based on those objectives. Among the most important for Seattle was the elimination of a formula approach to expending new operating dollars in three King County geographic subareas.¹ The new policy no longer identifies specific formulas for adding, reducing and managing service, but rather emphasizes that service reduction and service expansion decisions be made based on the following priorities:

- Emphasize productivity due to its linkage to economic development, land use, financial sustainability, and environmental sustainability
- 2. Ensure social equity
- 3. Provide geographic value throughout the county

By approving a temporary \$20 vehicle license fee in August 2011 to supplement declining operating revenues, the King County Council prevented dramatic cuts to transit service in late 2011 and 2012 that would have been necessary to deal with operating fund shortfalls. This funding measure allowed Metro to avoid deep service cuts in 2012, but does not fully address longer-term financial challenges. In light of continued funding challenges, the City should consider expanding its role in funding service operations and capital development, the tradeoffs of which are discussed in Chapter 6 (Funding and Performance Measurement).

Approval of the \$20 vehicle license fee carried the condition that the Downtown Seattle Ride Free Area (RFA) be eliminated in 2012. Elimination of the RFA will require significant changes to downtown transit fare collection and creates opportunities for Metro and the City of Seattle to rethink how transit operates in downtown. Elimination of the RFA will require a number of mitigation measures to ensure that new fare payment and boarding policies do not create undo congestion and transit delay. Mitigations on surface streets and in the Downtown Seattle Transit Tunnel may include further restrictions on vehicular traffic, increases in bus zone capacity, and changes to bus bay assignments. Elimination of the RFA could provide an opportunity for King County Metro, in partnership with the City of Seattle and Sound Transit, to consider more significant restructuring of bus route operations in downtown Seattle and enhancements to passenger amenities, information, and fare payment technology.

¹ The 40/40/20 funding split refers to a King County policy that was developed by Metro Transit to balance transit operating funds between Seattle, which had a well developed transit system, and the remainder of the county, where transit services were more limited. Specifically, "40/40/20" referred to the percentage split of new transit operating funds between South King County (40%), East King County (40%), and Seattle/Shoreline (20%).

CITY OF SEATTLE'S ROLE IN TRANSIT DELIVERY

Many large U.S. cities are served by transit providers that operate under separate governance from the municipality. Seattle is unique, however, in the active role SDOT takes in planning, funding, and delivering transit for its residents, visitors, and employees. The City's role in transit delivery includes funding and building capital transit speed and reliability projects, maintaining a current transit plan, and providing policy representation on regional transit boards and committees. The City allocates time and resources to the following transit programs and activities:

Funding

Seattle generates capital funding for transit corridor improvements through the Bridging the Gap funding package. SDOT regularly pursues federal, state, and other grants and partnerships for transit capital improvements. SDOT has successfully partnered with King County Metro to secure federal funding for RapidRide corridor improvements and other transit projects. The City also subsidizes transit service on the Seattle Streetcar and a number of frequent services provided by Metro and currently provides partial funding for the downtown Seattle Ride Free Area (RFA).

Bridging the Gap funds multimodal improvements along important transit and bicycle/pedestrian corridors.

Image from Nelson\Nygaard

Planning and Policy

SDOT maintains an active transit plan and has planning, policy, and design staff to support policy coordination with Metro and Sound Transit as well as development of bus corridor improvements, station area planning, and the Seattle Streetcar program.

The Transit Master Plan is a five-year update to the 2005 Seattle Transit Plan.

Image from Nelson\Nygaard

Seattle Streetcar

SDOT owns and contracts with King County Metro to operate the South Lake Union streetcar, which provides frequent transit service between Westlake Plaza and South Lake Union. SDOT is also designing and building the First Hill Streetcar, which was approved by voters in 2008 as part of Sound Transit's ST2 package. The First Hill Streetcar connects the diverse and vibrant neighborhoods of Capitol Hill, First Hill, and the Chinatown/International District, while serving medical centers (Harborview, Swedish, and Virginia Mason) and universities (Seattle Central Community College and Seattle University).

In 2008, SDOT released the Seattle Streetcar Network Development Report, which proposed four new streetcar lines. Funded as part of the Sound Transit ST2 package, construction of the First Hill line was completed in 2015.

Image from Flickr user Dan Haneckow

Transit Priority Corridor Improvement Program

Bridging the Gap and a vehicle licensing fee provide funding for street, signal, bus stop facility, and ITS improvements that will increase bus speeds and improve passenger comfort in key corridors. SDOT is currently improving four corridors, including one current RapidRide line and two corridors that are proposed BRT network expansion corridors. All four are part of the backbone of the Metro system and are critical elements of the Seattle Frequent Transit Network. Routes that serve these corridors carry high numbers of transit trips, connect Seattle's most populous neighborhoods, and are key routes to support sustainable growth. These corridor projects include Aurora Avenue N, NW Market and 45th Streets, Rainier and Jackson Avenues, and a series of improvements to the 3rd Avenue Transit Mall between Denny and Jackson. Additionally, SDOT is making transit spot improvements on Lake City Way, 15th Avenue NW, and Western Avenue W.

SDOT's investments in key transit corridors are aimed at improving transit speed/reliability and pedestrian access conditions along the corridors and at major stations. In 2011, SDOT installed nine raised bus stop platforms with passenger amenities and buffered bike lanes on Dexter (above) in conjunction with street resurfacing funded by Bridging the Gap.

Image from Nelson\Nygaard

Station Area Planning and Permitting

SDOT and the Seattle Department of Planning and Development (DPD) are the lead departments in access and land use planning, development review, and permitting for light rail station areas on the existing Sound Transit Central Link line and planned University and North Link extensions. A key focus of DPD activities in recent years has been to update Neighborhood Plans in areas where stations have been built, including areas along Martin Luther King, Jr. Way S and on Beacon Hill, and areas where RapidRide lines are planned, such as along Aurora Avenue. Rezoning, however, has lagged somewhat in taking full advantage of the opportunity to leverage transit-oriented development in station neighborhoods.

Notice of proposed land use action for developing a 4-story mixeduse building on Rainier Avenue near the Mt. Baker Link station. No parking is proposed.

Image from Nelson\Nygaard

CHALLENGES FOR TRANSIT IN SEATTLE

In addition to immediate challenges related to transit funding, Seattle faces obstacles to achieve the TMP outcomes described in the previous section. Several of those challenges are summarized below:

• Difficult Choices About Use of Limited Street Space: Seattle is growing rapidly. The city is expected to add over 200,000 residents and as many jobs by 2030. Because of this growth, walking, biking, and riding transit are the ways Seattle can accommodate and move more people in the same amount of space. However, decisions about how to allocate limited street right-of-way require tradeoffs and inevitable conflict. Timing traffic signals to prioritize moving a bus filled with 60 passengers through an intersection rather than prioritizing 15 single-occupant vehicles is good policy, but in practice requires difficult discussions with drivers and freight haulers.

Stakeholders and members of the public who provided input to the TMP continually stressed the need for fast and reliable transit. Moving buses through congested business districts and transportation bottlenecks (such as at freeway ramp locations or at the outskirts of downtown) more quickly and reliably requires difficult changes to right-of-way allocation that could impact other street users. For example, removal of street parking for transit lanes in neighborhood business districts can dramatically improve transit reliability. Yet, business owners may see this as a threat to business access, despite the opportunity to bring many more pedestrians and transit riders to their storefronts.

The City must develop clear policies that optimize use of limited rights-of-way for mobility, helping people understand that private automobiles are not the priority mode for accessing or moving within dense urban neighborhoods. Projects that favor automobile travel over transit in the Center City or other urban neighborhoods challenge the City's ability to make walking, biking, and transit the best choices for travel in Seattle.

• Growing Funding for Transit Operations and Capital: After years of growth in transit operating revenues, an economic downturn has severely diminished Puget Sound transit agencies' ability to grow service, as illustrated in Figure 1-3. It is likely that transit funding will cycle up and down several times during the course of this plan; however, it is clear that the next five to ten years will present transportation funding challenges greater than

FIGURE 1-1 SEATTLE POPULATION AND EMPLOYMENT GROWTH

Source: Seattle Transit Communities, Seattle Planning Commission, 2010.

FIGURE 1-2 PROJECTED GROWTH IN SEATTLE URBAN CENTERS AND VILLAGES, 2008-2030

44% of population growth and 63% of job growth between 2008 and 2030 is expected to occur in the Center City and adjacent neighborhoods including Uptown, First Hill/Capitol Hill, and South Lake Union.

FIGURE 1-3 KING COUNTY METRO – SALES TAX REVENUE SHORTFALL

Source: King County Metro

those experienced in the last decade. At the local level, Bridging the Gap funds will expire at the end of 2015. Without an aggressive strategy to address the need for increased transit capital and operating funds, the City and its partner transit agencies will struggle to fully implement the TMP and shift more people to riding transit. Chapter 6 (Funding and Performance Monitoring) sets forth a strategy for the City of Seattle to take a more active role in funding transit operations and developing capital projects in priority transit corridors.

- Accommodating Growth Gracefully and Sustainably: The City of Seattle and its residents are committed to addressing climate change, reducing energy consumption, and improving public health, while continuing to expand the local economy. Transit plays a key role in moving more people in less space. It also brings communities together in new ways by organizing development more efficiently and creating new opportunities for people to travel around the city in a convenient, safe, social, and fun way. Implementing the TMP will help Seattle to grow in size, vitality, and accessibility. The TMP proposes that existing infrastructure be made more efficient, inviting, and accommodating. Moreover, the TMP calls for strategic infrastructure investments that are critical to support local economic development and manage growth in a sustainable manner. Plan implementation would be a dramatic environmental achievement, one that reduces the environmental footprint of the population even as its physical presence expands.
- Serving Seattle's Underrepresented Populations: The TMP is a framework for a transportation system where mobility and access is provided equally and affordably to all residents. A basic tenet of the plan is that transportation is a right. All people, regardless of income or ability, need transportation services that include good mobility, equal access to opportunities, and affordable cost. People should not need to own a car to have mobility and access to services, jobs, and recreation. Even stakeholders who

SEATTLE'S COMMITMENT TO SUSTAINABILITY

Seattle has demonstrated its commitment to sustainability by reducing carbon emissions, increasing energy efficiency, and improving recycling rates even as the City and economy have grown. The charts below provide examples of the City's commitment.

Citywide GhG Emissions by Sector

The City reduced its overall carbon emissions to 7% of 1990 levels as of 2008, meeting the City's 2012 goal (shown in the dark red bar). The City's goal for 2050 is to reduce emissions to 80% of 1990 levels. In addition, by 2005 Seattle City Light had purchased carbon offsets to match its greenhouse gas emissions, allowing it to meet a goal of net zero emissions.

Source: City of Seattle, Climate Protection Initiative Progress Report, 2009

City of Seattle Recycling Rate through 2010

Since 2003, Seattle's recycling rate has increased each year, working towards a recycling goal of 60% by 2012.

Source: City of Seattle, Recycling Rate Report, 2010

stressed the importance of high-quality, high-frequency corridor transit service also noted the important social human service aspects of transit that is delivered by providing good fixed-route coverage and paratransit service. Figures 1-4 and 1-5 illustrate two of the metrics used in assessing social equity as part of the TMP—an index of transit reliance and auto ownership rates in Seattle, shown at the Census block group level. Social equity considerations were fundamental in understanding Seattle's transit needs and developing TMP recommendations.

Developing a well-integrated, complete system in an environment with multiple non-City operators: Seattle residents generally have access to high quality transit in most urban neighborhoods and major travel corridors. Most local transit services are provided by diesel bus or electric trolley bus. However, recent ongoing construction of regional light rail transit by Sound Transit and the development of Seattle Streetcar lines in South Lake Union and on First Hill/Capitol Hill (nearing construction) demonstrate that the transit landscape in Seattle is changing. It is imperative that the City of Seattle take an assertive role in coordinating the design and development of intermodal facilities and station access projects. Chapter 5 (Places: Access and Connections) sets a policy framework and identifies priority projects to improve the intermodal experience for transit travelers in Seattle.

Downtown is the heart of the region that captures 60% of the state's economic energy.

In the next half century, Downtown is expected to expand dramatically to the east (First Hill), north (South Lake Union, Denny Triangle) and south (SODO). This expansion will double downtown employment and quadruple residential occupancy. Reliance on auto access to and through Downtown limits the person capacity of available right of way. Improved transit access to the Center City and Seattle's urban village neighborhoods is critical to support the City's economic growth.

TRANSIT AND CLIMATE CHANGE

The update to the Seattle Climate Action Plan currently under development identifies four types of impacts on GhG emissions from the recommended transit investments of the Transit Master Plan:

- Reduced vehicle miles traveled (VMT) from private vehicles. Improved bus and rail service reduce emissions by encouraging travelers to shift some trips from driving to transit.
- Increased and decreased energy consumption from transit vehicles. Service expansions require additional electricity for rail and trolley bus operations and new diesel fuel consumption for diesel bus operations. At the same time, the conversion of some diesel bus services to electric operations and service changes that make some routes more efficient reduce energy consumption.
- Increased emissions from construction. Building new transit facilities and vehicles uses materials that are energy-intensive to produce, resulting in significant up-front emissions.
- **Reduced VMT due to land use change.** Expanding high-capacity transit will change how Seattle uses land in the coming decades, with more homes and businesses able to locate in compact, walkable neighborhoods near high-frequency transit modes. The impact of land use changes could generally be expected to significantly increase the GhG reduction potential of transit expansion.

Viewed in isolation, transit-related GhG emission reductions justify only a fraction of the cost of high capacity transit (HCT) investment. The main reason to invest in HCT corridors in Seattle is that they provide benefits for mobility, transportation choice, and livable neighborhoods. The mobility benefits of these investments are necessary for the City to effectively pursue other transportation-sector strategies for GHG reduction—some of which are very efficient on a cost-per-ton basis—including land use and transportation demand management strategies.

FIGURE 1-4 AUTO OWNERSHIP

This map shows the parts of the city in which residents are more likely to be reliant on transit as their primary means of transportation. This includes individuals that rely on transit because they are physically unable to drive and those that do not own a private automobile.

Source: King County, ESRI, US Census 2008

FIGURE 1-5 TRANSIT RELIANCE INDEX

This map shows the overall ratio of population to private vehicles, providing an indicator of auto ownership. It reflects people who are unable to own an automobile, those who chose to live without a car, and multi-adult households that have just one car.

Source: King County, ESRI, US Census 2008

HOW TRANSIT BENEFITS SEATTLE

Seattleites use transit more frequently than residents of any other city in the Northwestern United States. Transit is particularly important for providing access to jobs and services in the Center City, but it also moves people between neighborhoods to attend school, shop, recreate, or simply explore the city. Seattle benefits from transit in ways that extend beyond basic mobility. This section summarizes some of the benefits Seattle residents and businesses receive from transit and illustrates the increasing need for and value of transit in a growing city.

Transit Supports Center City Growth and Prosperity

Transit Provides Safe, Convenient, and Reliable Access for Center City Jobs

Today, the Center City and directly adjacent neighborhoods have 230,000 jobs, expected to grow to 360,000 by 2030.¹ Transit provides safe, convenient, and reliable access for Center City employees from around the region. On a typical weekday, buses, trains, and ferries deliver 42% of Center City commuters starting work between 6 am and 9 am to their jobs. Without transit, Seattle's Center City economy would not be viable.

FIGURE 1-6 CENTER CITY COMMUTE MODE SHARE, % OF TRIPS BY MODE FOR EMPLOYEES STARTING WORK BETWEEN 6 AM AND 9 AM, 2010

Nearly 36% of Center City commuters rode the bus in 2010, the highest share of any mode. Only about 34% of commuters drove to work alone.

Source: Commute Seattle, Commuter Mode Split Survey Results, March 2011

Transit Provides Mobility for a Growing Number of Center City Residents

According to Puget Sound Regional Council (PSRC) projections, the Center City will grow to from 50,000 to approximately 80,000 residents by 2030. More transit capacity and more frequent service will be needed to provide mobility between Center City neighborhoods for new and existing residents and to ensure they have access to employment in Seattle and around the region.

Estimates show that by 2030, transit will need to carry an additional 8,000 people per hour into and within the Center City during the morning peak period (6 am to 9 am).² This is equivalent to approximately 150 additional buses per hour on downtown streets, and would require the equivalent of two new bus-only lanes.³ Alternatively, if this demand was met using rail vehicles, 20 two-car or 10 four-car rail vehicles would be required (assuming 160 passengers per car).⁴

Transit Makes Room for Historic and Productive Development

If this projected demand was met instead by building new roadway capacity instead of adding transit capacity, there would be demand for an estimated 5,000 additional vehicles during each hour of the morning rush hour traveling to or from the Center City.⁵ This does not include increases in traffic already assumed from growth. In perspective, seven or eight new lanes of arterial streets would be needed just to compensate for this increment of growth accommodated by transit.⁶

Given the assumption that all additional 2030 transit trips to the Center City would be made in private vehicles, new parking capacity would be required—approximately 15,000 additional parking spaces at a cost of \$240 million. These new parking spaces would require the equivalent of about eight 10-story parking garages covering an entire downtown Seattle block.⁷

Transit Makes Seattle a Better Place to Visit

Approximately nine million annual visitors spend \$5 billion in Seattle and King County, including nearly \$500 million on local transportation and gas. Tourism revenue supports jobs for more than 49,000 people in the region.⁸ Transit supports Seattle's tourism economy, helping make the city an attractive destination for regional, national, and international visitors.

Over half of these visitors arrive in Seattle by air, train, or means other than a private car. Many may prefer not to rent a car and want convenient access to major tourist destinations. International visitors —about 22% in 2009 —have high expectations that there will be quality public transportation to get around the city.

Out-of-state visitors who pay taxes in their destination state represent not only an economic benefit for Seattle, but also an unambiguous gain for the state.⁹ Visitors who remain in the Seattle area are more likely to spend money locally. Visitors stay an average of over five nights, spending over \$200 per day.¹⁰

There is limited ability to expand already congested arterial streets in downtown Seattle.

Source: Flickr user Oran Viriyincy

Endnotes for this section are provided following Chapter 6 of the TMP Summary Report.

Transit Supports Events at Seattle Center, Waterfront, and Stadiums

Transit supports Seattle's ability to host multiple large events in the Center City and the University District while allowing people to go about their daily lives. Seattle's many sporting and entertainment events enhance quality of life in Seattle and support business activity and jobs:

- Seattle Center attracts 12 million visitors per year, generating \$1.15 billion in business activity and \$387 million in labor income for King County.¹¹
- Waterfront attractions are a major draw for visitors. The Seattle Aquarium had over 835,000 visitors in 2009, including about 535,000 state residents and 300,000 out-of-state visitors.¹²
- Seattle's stadiums attract large numbers of people to sporting and other special events. Safeco Field seats over 47,000 people and CenturyLink Field and Husky Stadium both seat up to 72,000 people. A 2002 survey (predating Link service) found that 25% to 30% of those who attended events at the SODO stadiums used non-auto modes of transportation.¹³ In 2008, Sounder trains served an average of nearly 2,500 passengers for 26 sporting events. The Link Stadium Station has additional tracks to store trains for post-game departures.¹⁴

Transit reduces the need for long-term auto storage, making space for more productive economic uses. Parking garages do not add visual interest, contribute to an attractive walking environment, or increase pedestrian activity and "eyes on the street."

Attractions and events at Seattle Center are a draw for both Seattle residents and visitors.

Image from Flickr user Transcendental

Image from Flickr user Eric Kornblum

Link light rail service from SeaTac to downtown Seattle and Amtrak Cascades service to Union Station offer travelers convenient transit connections to the Center City.

Image from Flickr user Michael @ NW Lens

Link and Sounder trains provide train service to SODO special events from the Stadium and King Street Stations. Without transit, professional sporting events would create more significant traffic delays and require more parking.

Image from Flickr user Oran Viriyincy

King County Metro operates 14 electric trolley bus routes using 70 miles of two-way trolley wire and 159 vehicles. Image from Nelson/Nygaard

Transit supports sustainable, healthy, and equitable growth

Transit Encourages Compact Development

Numerous studies demonstrate that people living in compact communities where they can easily walk to basic services and recreation drive less than people living in more "sprawling" areas. Higher residential and employment densities and integrated land uses are associated with lower per capita miles driven.¹⁵ The 2010 U.S. Census shows that residents living in larger multifamily buildings increased far faster than any dwelling type and single family living is declining as a percent of all residents. Concurrent with this trend, and as the overall number of housing units increased by 30,000, total average daily vehicle trips declined in Seattle.

Compact Development has Environmental and Public Health Benefits

Compact development reduces carbon emissions, lowers particulate levels, decreases water pollution, and reduces overall land consumption. Studies show that people living in compact neighborhoods drive 40-50% less miles annually than suburban neighbors. A report by the Urban Land Institute explores the connection between driving and CO₂ emissions and conservatively assumes that a 100% reduction in miles driven is associated with a 90% reduction in CO₂ emissions.¹⁶

Transit and Clean Energy Make Seattle's Neighborhoods Cleaner and Quieter

A person riding transit in Seattle produces lower perpassenger emissions than a driver or passenger of a private vehicle. Electric transit vehicles have even lower per-passenger greenhouse gas (GhG) emissions than a diesel bus. Implementing TMP-recommended corridors and electrifying some of the city's existing diesel bus corridors would reduce GhG emissions by about 2,700 metric tons annually.¹⁷ Electrification of all diesel Metro bus routes within the city of Seattle would reduce GhG emissions by about 62,000 metric tons annually.¹⁸ Electric trolley bus service has the additional benefits of being quiet and providing fast acceleration on steep Seattle hills. SDOT should work to increase the number of electrified transit routes.

Transit Makes Seattle More Affordable

According to research by the Center for Neighborhood Technology (CNT), households in cities where jobs and services are readily accessible by transit are better able to respond to gas price increases.¹⁹ Access to transit helps reduce household transportation costs, saving families money and helping make Seattle a more affordable place to live. CNT's research shows that transportation costs can range from 15% of household income in compact, accessible neighborhoods to over 28% in locations with auto-oriented land patterns and limited access to public transit.

Transit Boosts Seattle's Economy and Creates Jobs

Reducing household spending on fossil fuels allows money to be spent in economic sectors that return a stronger benefit to the local economy. TMP transit corridor and service recommendations would reduce private vehicle gasoline consumption in Seattle by over a million gallons annually.²⁰ At \$3.50 a gallon, local residents could save millions of dollars annually by increasing spending power on local goods and services.

Operating transit services and investing in transit and street infrastructure projects create local jobs. A recent report by Smart Growth America analyzed stimulus-funded infrastructure projects and found that each dollar spent on public transportation created 31% more jobs and resulted in 70% more job hours than a dollar spent building roads. Investments in improving/maintaining existing streets generated 16% more jobs per dollar than building new roads.²¹

FIGURE 1-7 GHG EMISSIONS PER PASSENGER MILE

Sightline

Average emissions per passenger mile are lower for transit than for passenger vehicles (assuming one or two occupants). Electric-powered transit offers Seattle a low-emissions transportation option.

Source: Sightline Institute

Transit Provides Mobility for Everyone

Transit is not just for commuting; about 32% of regular riders use Metro for all of their transportation needs. About 40% of households in Metro's West Subarea (Seattle, Shoreline, and Lake Forest Park) have a regular Metro rider. Regular riders make an average of 25 trips per month, compared to two trips per month for infrequent riders.

Although transit is heavily used for commuting and school trips (about 70% of trips among regular riders), a large share of transit trips serve non-commute purposes at all times of the day.

FIGURE 1-8 WHY PEOPLE RIDE METRO TRANSIT

In the West Subarea, 58% of regular Metro riders use transit for commuting, while 29% use it for non-commute purposes.

Source: Metro, 2009 Rider/Non-Rider Survey

FIGURE 1-9 HOUSEHOLD INCOME OF METRO TRANSIT RIDERS (SYSTEMWIDE)

In many cities, transit use is associated with lower-income levels, however transit riders in Seattle are distributed across a wide range of income levels. Frequent riders are less affluent than infrequent riders (median income of about \$67,000 compared to about \$73,000).

Source: Metro, 2009 Rider/Non-Rider Survey

TRANSIT INVESTMENT FRAMEWORK

The Transit Master Plan Summary Report is organized around the five areas of transit investment and policy development shown in the graphic below.

Image from Nelson\Nygaard

2 POLICIES AND PROGRAMS

The Transit Master Plan (TMP) vision is for a Seattle served by a network of high quality, frequent transit routes that connect urban villages, urban centers, and manufacturing and industrial districts. The service network that supports this is delivered by appropriately scaled bus and rail modes, connecting residents and workers to the regional transit system via transportation centers that are well integrated with urban village life. All points of transit access, from a stop in a residential neighborhood to a light rail station, are accessible for people of all abilities. To support the TMP vision, Seattle should adopt and implement policies, programs, and investment priorities to make it easier and more desirable for people to take transit.

A TRANSIT SUPPORTIVE POLICY FRAMEWORK

VISION AND GOALS

The TMP vision is for Seattle to develop the Complete Transit System—a network of high-quality, frequent transit routes that connect urban villages, urban centers, and manufacturing and industrial districts. The service network that supports the vision is the Frequent Transit Network. The Frequent Transit Network is a network of top-quality services provided by bus and rail modes, connecting residents and workers to the regional transit system via transportation centers that are well integrated with urban village life. All points of transit access, from a stop in a residential neighborhood to a light rail station, will be accessible for people of all abilities. Bicycling also becomes a favored mode for accessing the Frequent Transit Network.

Further, to support the Complete Transit System, Seattle must adopt and implement policies, programs, and investment priorities that result in a high-quality transit system to make it easier and more desirable for people to take transit. "Quality" is defined as fast and reliable service that is safe, comfortable, and accessible for all users, providing the greatest degree of mobility and access possible with the appropriate technology.

Consistent with broader transportation system goals, the TMP will guide the City of Seattle in developing a Complete Transit System that:

- Makes riding transit easier and more desirable, bringing more people to transit for more types of trips
- Uses transit to create a transportation system responsive to the needs of people for whom transit is a necessity (e.g., youth, seniors, people with disabilities, low income populations, people without autos)
- Uses transit as a tool to meet Seattle's sustainability, growth management, and economic development goals
- Creates great places at locations in neighborhoods where modes connect to facilitate seamless integration of the pedestrian, bicycle, and transit networks
- Balances system implementation with fiscal, operational, and policy constraints

The TMP directs the Seattle Department of Transportation (SDOT) to make capital and service investments to help achieve this vision and goals. A strong set of policies will ensure that capital investments are optimized to create a more sustainable, economically resilient, and equitable city.

This chapter outlines the policy framework needed to deliver the TMP vision for a Complete Transit System in Seattle.

THE COMPLETE TRANSIT SYSTEM FOR SEATTLE

INVESTING IN THE COMPLETE TRANSIT SYSTEM

The TMP focuses on delivering fast, frequent, and reliable transit service between the city's urban villages and urban centers. However, the development of the Complete Transit System requires public and private investments and policies to enhance access to transit, improve customer information, create more consistent and usable stop amenities, enhance on-board passenger comfort, and ensure transit is safe and secure. To develop the **Complete Transit System**, Seattle must make investments and set policies at a variety of scales:

Local land use defines the market demand for transit. How land uses are oriented to the street, how much parking is provided, and the mix of uses within buildings all impact how effectively transit can serve residents, workers, and visitors in an area.

This public space in Portland is on a frequent streetcar line and at the center of a high-density, mixed use neighborhood.

A network of transit routes is needed to meet people's travel needs. No one transit route serves all the places people want to travel in a city. Effective urban transit requires a system of routes and places for connection that make transferring easy and convenient.

Light rail intersects the bus mall in downtown Denver providing easy, at-grade transfers to a frequent bus shuttle.

FIGURE 2-1 RELATIONSHIP BETWEEN COMPLETE TRANSIT SYSTEM ELEMENTS AND TMP SECTIONS

	Implementation strategies indicated in color-coded TMP sections.			
The Complete Transit System will:	Corridors	Service	Places	Funding and Monitoring
Put the Passenger First • Make transit easy to use • Create a safe environment for transit passengers • Make transit universally accessible • Make transit comfortable	Section			
 Make Transit a Convenient Choice for Travel Provide mobility to a wide range of destinations Facilitate fast and reliable operations Increase ridership by integrating other modes and making access safe and easy Invest in infrastructure where it can attract the most users 	3	Section	Section 5	
Use Transit to Build Healthy Communities Make transit facilities central to community gathering places Increase walking and bicycling to support increased physical activity and improve health outcomes Seamlessly integrate transit, urban development, and the public realm Provide access to daily needs and services on foot, by bicycle, or on transit Employ best practices in transit-oriented design 				
Improve Transit Service and Quality Through Partnerships • Optimize regional transit service investments • Work with neighboring jurisdictions where transit markets cross borders • Collaborate and share assets • Build political alliances	Section	Section		Section 6
Reduce Environmental Impacts of Personal Mobility • Use transit to meet environmental targets • Use energy responsibly • Consider lifecycle costs of transit infrastructure	3	4		

Streets and corridors are where most Seattle transit operates, along with other modes and transportation uses, such as parking. Making transit faster and more reliable often requires difficult tradeoffs in right-of-way allocation.

Places where people access, wait for, connect between, learn about, and experience transit routes must be great places. These places range from a bus stop in a residential neighborhood, to an arterial crossing in a commercial district where two major bus routes intersect, to a station where bus and rail transit modes connect and pedestrians and cyclists access the system.

Public space constructed as part of the Federal Courthouse in downtown Seattle provides seating and shade for transit passengers waiting for one of many routes that stop in front of the building.

All images from Nelson\Nygaard

TRANSIT SUPPORTIVE PROGRAMS

While capital and service improvements are a necessary focus of City transit investments and policy development, there is great opportunity to leverage the value of the existing system and services. Educating the public and providing incentives for residents and workers to change their travel patterns to transit and other environmentally friendly modes is an important part of the equation. The TMP recommends continued development and funding of programs that support transit use through improved pedestrian safety, better customer information and education, service enhancements, facility improvements, and strengthened policies—land use designations, zoning and development standards—that can be used during development review to achieve transit-supportive urban form and development patterns.

STRATEGY: INVEST IN PROGRAMS THAT BUILD TRANSIT RIDERSHIP

Many of the most cost effective ways to build transit ridership and create mode shift are not direct service or capital investments, but development of supportive programs. SDOT should identify resources to develop programs and policy initiatives that would improve transit use in the city. The TMP recommends that programmatic funds be identified and allocated to a suite of programs that improve access to transit service, improve customer knowledge, overcome major safety obstacles to transit access and use, improve transit supportive policies, and leverage Seattle's investments through partnerships with transit providers.

A combination of investment in programs that are already in place, development of new programs, and use of staff time to develop transit supportive policies is recommended. The strategies and programs listed in this chapter should be priorities for the City of Seattle.

Strategy PP1: Develop a Safe Routes to Transit (SR2T) Program

The goal of a SR2T program is to reduce physical barriers to transit use, making access to public transit easier and more convenient. The program should be designed to improve pedestrian, bicycle, and motor vehicle movement around high volume transit stops and stations. (The TMP provides facility design guidelines and multimodal transit access policies and strategies in Chapter 5). SR2T could also provide an opportunity for neighborhoods to submit projects for funding

SEATTLE MULTIMODAL TRANSPORTATION POLICY FRAMEWORK

The Seattle Department of Transportation (SDOT) is developing a multimodal transportation system that supports all Seattle residents' mobility needs. SDOT is striving to shift the focus of the transportation system from one that is auto-oriented toward a system of facilities, programs, and services that makes walking, biking, and taking transit easier and the preferred means of travel for most trips. Increasing travel choices is good for people—it generally saves money, time, and frustration and can increase physical activity. Getting more people walking, biking, and taking transit means fewer vehicle emissions and cleaner air. And with fewer people driving alone, it also means that transit and freight can get around more efficiently.

Important plans and documents that support and complement the TMP include:

- The Seattle Comprehensive Plan identifies an Urban Village Strategy to promote job and housing growth in concentrated centers that can be efficiently accessed and connected by a multimodal transportation system, including high quality, frequent transit. The Comprehensive Plan sets mode shift goals that promote a transition to non-single occupant vehicles. A major update to the Seattle Comprehensive Plan is underway. Elements of the Plan will be updated incrementally through 2015. TMP recommendations will be considered as one element in a framework for sustainable growth.
- The Transportation Strategic Plan (TSP) provides more detailed policy and investment direction for preservation, maintenance, and development of Seattle's multimodal transportation system. The TSP is currently

being updated with a shifting focus from an autooriented approach to one that makes walking, biking, and taking transit easier, safer, and more enjoyable.

- The Seattle Transit Plan was developed in 2005 to support the creation of transit connections between urban villages. This concept was referred to as the Urban Village Transit Network (UVTN). The plan focused heavily on service policy and performance measurement. The TMP will replace the Seattle Transit Plan, providing more detailed direction for capital investments over the next five years and through 2030. The UVTN remains an organizing concept of the TMP, but the term UVTN is dropped in favor of a more detailed approach to corridor development; the TMP uses the Frequent Transit Network as the organizing framework for transit service in Seattle.
- The Seattle Pedestrian Master Plan and Bicycle Master Plan were developed in 2009 and 2007, respectively, following completion of the 2005 Seattle Transit Plan. The TMP has been developed with close attention to project priorities and policies established in these companion modal plans. The TMP recommends an approach to transit projects that is complemented by coordinated pedestrian and bicycle access and parallel mobility investments. The Bicycle Master Plan is being updated in 2012 to reflect rapidly changing best practices in urban bikeway design.
- <u>Chapter 3 of the Transit Master Plan Briefing Book</u> describes Seattle's transit, transportation, and land use policy framework in greater detail.
CASE STUDIES AND BEST PRACTICES

Case studies and best practices related to these strategies and programs are described in Chapter 7 of the Transit Master Plan Briefing Book. Specifically, see:

- 7-14 to 7-16: Local Government Standards for Transit Agencies
- 7-17 to 7-20: City-Based Transportation Demand Management Strategies
- 7-26 to 7-27: Transit-Supportive Policies and Programs (Transit First Policy)

consideration each year. Funding for a SR2T program could leverage local match funds from neighborhood groups or private developers interested in improving transit access around station areas or in priority bus corridors. A SR2T program could be structured to complement development incentives in transit station areas or priority corridors. Activities could include the following:

- Secure bicycle storage at transit stations and stops
- Safety enhancements for pedestrian and bicycle access to transit hubs, stations, and stops
- Removal of pedestrian and bicycle barriers near transit stations
- System-wide transit enhancements to accommodate bicyclists or pedestrians
- Provide clear wayfinding to key transfer points and transit information (preferably real-time) to facilitate convenient transfers at these locations

Strategy PP2: Develop Transit Information and Wayfinding Standards

Challenging topography, multiple transit providers, and recently introduced rail transit modes have created significant variability in public information for accessing transit and navigating a complex network of services in Seattle. The TMP (see Chapter 5) identifies guidelines and design standards for enhancing public information and wayfinding. SDOT should build on the work of the TMP and develop a detailed set of standards to govern transit wayfinding in Seattle and to coordinate with other modal and neighborhood-specific wayfinding programs. This effort would:

- Develop design standards and specifications for wayfinding improvements including intermodal transfers, pedestrian access to transit, and bicycle access to transit. These improvements could include simplified maps and signs to help orient transit users and others toward facilities in specific areas (e.g., Center City, near a rail station, in an urban village commercial district)
- Develop an interagency working group and facilitate coordination between Sound Transit, Metro, and other transit operators regarding public information provided at

Maps at existing downtown wayfinding kiosks depict transit routes and stations. Downtown and transit wayfinding maps and directional signage could be integrated and expanded in scope to help passengers and pedestrians more easily navigate to transit facilities and other destinations.

Image from Flickr user Oran Viriyincy

intermodal hubs such as King Street Station, Downtown Seattle Transit Tunnel stations, and transfer points

- Ensure transit information is included in Center City and neighborhood wayfinding programs targeting pedestrians and cyclists
- Develop standards for providing real-time transit information and ORCA card readers at key stops and/or transfer points

NEW YORK CITY DOT SAFE ROUTES TO TRANSIT

The New York City Department of Transportation (NYCDOT) Safe Routes to Transit Program is comprised of three programs that work to improve access to transit facilities, with an emphasis on pedestrian access:

- Bus stops under the Els (elevated subway structures)
- Subway/sidewalk interface
- Sidewalks to buses

For additional information, see the TMP Briefing Book, page 7-46.

KING COUNTY METRO IN MOTION AND PORTLAND SMARTTRIPS

Residential and Commercial Trip Reduction Programs

King County Metro In Motion

King County Metro's recent Georgetown In Motion pro-

gram targeted 6,000 employees and 600 households over 16 weeks with transportation options materials, incentives, and on-the-ground outreach. For households, the program typically sees a 10% direct mail response rate and a 6% pledge rate.

Employees are more challenging to reach, particularly in areas consisting primarily of small employers. Georgetown In Motion utilized a multi-faceted approach consisting of email, direct mail, door-to-door employer visits, and distributing marketing materials in locations employees visit for lunch or coffee. Success of the program was enhanced by sponsor participation throughout the neighborhood, and the presence of 15 in-store-displays at locations such as coffee shops, restaurants, and the post office. The response from participants indicates that a diverse distribution of program materials is most effective in reaching employees. More people heard about the program from a friend or co-worker than any other source (except for direct mail to households), indicating that word of mouth is a key strength to the program.

How did you reduce drive alone trips or change how you travel?

Source: Southeast Seattle In Motion Report

Portland (OR) SmartTrips

In Portland, the City Bureau of Transportation conducts several types of SmartTrips programs to reduce drive-alone trips and encourage use of walking, biking, transit, carpooling, and car sharing:

• SmartTrips neighborhood programs focus on a particular sector of the city comprising about 20,000 households. The City provides residents with targeted information for each desired mode of transportation. The City organizes activities such as "Ten Toe Walks," "Senior Strolls," and bicycle rides and classes in the target area. Based on follow-up surveys, SmartTrips results in a 9% to 13% decrease in drive-alone car trips by all area residents with a corresponding increase in other modes. The program costs about \$10 per person in the target area, including staff time.

BUSINESS		
SMART TRiPS		
NORTH-NORTHEAST		
SMART TRIPS		

- SmartTrips Business, formerly SmartTrips Downtown, is an ongoing program available to all employers in the city. It provides information to employees, consults with employers on benefit and tax options, and will install a free bicycle rack in front of any business.
- **SmartTrips Welcome** is a relatively new initiative that targets new residents in particular neighborhoods, but is also available to all residents. It allows residents to request materials, which are delivered by bicycle.

The City of Portland organizes a series of Ten Toe Express walks focused around SmartTrips target neighborhoods.

Image from Mark McClure, portlandneighborhood.ning.com

Strategy PP3: Increase Support for Traveler Education Programs

Traveler education programs provide promotional information and resources to residents and employees to help them bicycle, walk, take transit, or carpool to their destination. Data on travel patterns presented in the Urban Mobility Plan Briefing Book (2008), page 3A-12, clearly illustrate that transit is a less attractive option for non-work trips in most Seattle neighborhoods. Therefore, promotional information and resources provided for non-work trips must be distinct from information provided for work trips. The sidebar on pages 2-6 and 2-7 highlight how programs in King County and the City of Portland have made this distinction.

Existing efforts to promote alternatives to single-occupant vehicle travel (SOV) in Seattle include:

- King County Metro In Motion focuses on two or three neighborhoods each year, providing free informational materials, targeted outreach, and organized activities to help residents discover their transportation options. The existing In Motion program has a residential focus, but Metro is piloting an employer program in the Georgetown neighborhood (see sidebar on page 2-6). The In Motion programs have been successful at shifting trips to non-single occupancy vehicle modes. However, research shows that program benefits decline each year following implementation, and the optimal cycle for a neighborhood to receive the program is every five years. Current funding is not sufficient to provide this level of outreach.
- Way to Go, Seattle! similarly provides incentives, tools, and centralized information to encourage residents and employees to drive less.
- **SDOT** has secured Regional Mobility Grant funding to conduct marketing and encouragement programs upon completion of improvements along NW Market/45th and Rainier Avenue to help increase transit ridership.

The TMP recommends that the City:

• Work with Metro to expand funding and reach of the In Motion program with a goal of reaching key neighborhoods every five years

UNIVERSAL TRANSIT PASSES

Universal transit passes are an effective means to reduce the number of car trips in an area; reductions in car mode share of 4%- 22% have been documented, with an average reduction of 11%. By removing barriers to using transit, including the need to search for cash for each trip, people become much more likely to take transit for both work and non-work trips.

Employers can provide monthly and annual transit passes as well as electronic vouchers in any amount on a regional ORCA card.

Image from Orcacard.com

• Work with Metro In Motion or Way to Go, Seattle! to increase outreach to employment centers with large clusters of small to mid-sized employers

Strategy PP4: Invest in Transportation Demand Management Programs that Increase Transit Use

The City of Seattle, King County, and Seattle businesses and institutions already support a strong suite of transportation demand management (TDM) programs. For example:

- The Downtown Transportation Alliance (a partnership between the Downtown Association, Metro, and the City of Seattle) supports Commute Seattle, an initiative that provides one-stop shopping for transportation resources in downtown Seattle
- The Duwamish Transportation Management Association (TMA) improves transportation options for employees in the Duwamish Business Community
- The City's Transportation Management Program requires developers to prepare a Transportation Management Plan (TMP) to reduce the potential traffic and parking impacts

Strategy	Details	Employee Vehicle Trip Reduction Impact
Parking Charges ¹	Previously Free Parking	20-30%
Information Alone ²	Information on Available SOV- Alternatives	1.4%
Services Alone ³	Ridematching, Shuttles, Guaranteed Ride Home	8.5%
Monetary Incentives Alone ⁴	Subsidies for carpool, vanpool, transit	8-18%
Services + Monetary Incentives ⁵	Example: Transit vouchers and Guaranteed Ride Home 24.5	
Cash Out ⁶	Cash benefit offered in lieu of accepting free parking	

FIGURE 2-2 IMPACT OF SELECTED EMPLOYER-BASED TDM STRATEGIES

I Based on research conducted by Washington State Department of Transportation.

2,3 Schreffler, Eric. "TDM Without the Tedium," Presentation to the Northern California Chapter of the Association for Commuter Transportation, March 20, 1996.

4 Washington State Department of Transportation.

5 Schreffler (1996).

6 Donald Shoup (1997), "Evaluating the Effects of California's Parking Cash-out Law: Eight Case Studies," Transport Policy, Vol. 4, No. 4, 1997, pp. 201-216. http://www.commuterchallenge.org (accessed November 2, 2007).

ECO PASS PROGRAM: CITIES OF DENVER & BOULDER

The greater Denver area Regional Transportation District provides both employee and residential annual Eco Passes at deeply discounted rates, good for all area transit services, on the condition that a pass is purchased for every employee or for every resident within a condo community, apartment building, or neighborhood association (i.e., there is universal enrollment). The cost per pass varies depending on size of the company or residential area and proximity to high quality transit service. The cost to the company or residential community per annual Eco Pass varies between \$7.50 and \$120, which is only 0.6% and 9%, respectively, of an Adult Express Pass purchased by an individual.

on surrounding neighborhoods and develop transit supportive provisions. There is no specific trigger for a TMP; rather, the TMPs are attached as conditions for approval of land use permits depending on the proposed use, the size of the project, and the level of congestion in the area.

Still, further investment in TDM remains among the most cost effective ways to support growth in transit ridership and encourage Seattle residents and workers to get out of their cars and try walking, biking, and transit. Figure 2-2 identifies the effectiveness of various employer-based TDM strategies. TDM programs that could be particularly effective in Seattle, and would add to the suite of programs already in place, include the following:

- Work with Commute Seattle and transit agency partners to improve transit pass programs for employees of smaller firms that are not required to provide employee transportation benefits. This could include an expanded universal transit pass program that would leverage the highly discounted rates afforded to larger organizations to provide free or discounted transit benefits to employees of these smaller employers. A relatively small amount of City funding would be required. This program could be implemented through Commute Seattle or by building specific TMAs.
- Develop programs that help employees realize the true cost of parking, thus making transit more price-competitive with driving. Parking cash out can be an effective employer-based strategy that allows an employer to charge employees for parking while giving employees a bonus or pay increase to offset the cost of parking. Employees may use this increase to pay for parking or may choose an alternative mode and "pocket" the difference. Other similar employer-based financial incentive programs include: allow employees to purchase individual days of parking on a pro-rated basis comparable to monthly rates; provide a few discounted days of parking each month for employees who usually commute using a non-SOV mode (under a similar program, City employees are able to park at the SeaPark garage twice per month at a discounted rate); offer lower parking rates to carpools and vanpools; and offering cash in lieu of free parking to provide a choice for employees.
- Create a residential transit pass program for neighborhoods and residential buildings to extend the benefits of discounted transit passes beyond major employers. Several U.S. transit agencies, including the Regional Transportation District serving Denver and Boulder, now

provide opportunities for residential neighborhoods or large, multi-unit residential buildings to purchase discounted bulk transit passes. Most programs of this type require that a pass be provided for every residential unit in the neighborhood or building.

• Expand TMAs to other urban centers such as the U-District, Northgate, and other areas with a high concentration of employment and demonstrated interest from the private sector.

Chapter 5 of the TMP (see Transit-Oriented Neighborhoods Strategy 6 on page 5-9) includes several complementary TDM policies. In addition, an in-depth discussion of TDM best practices, including program recommendations specific to Seattle's Center City, is provided in Chapter 7 of the Urban Mobility Plan Briefing Book (2008).

YOUTH ACCESS TO TRANSIT

Our youth are particularly reliant on transit to get around, and will become the transit riders and proponents of tomorrow – but only if they are served well by transit today. The City should work to expand access to ORCA cards for students through partnerships with schools, Metro, and Sound Transit. The City should also continue to encourage route designs that serve student needs and passenger information systems that meet the high expectations of today's tech-savvy teenagers.

Franklin High School students boarding a Metro bus Image from Oran Viriyincy

Strategy PP5: Explore a "Transit Streamline Program Agreement" with King County Metro

SDOT is positioned to make significant speed and reliability improvements in transit corridors where King County Metro operates transit services. These improvements have the potential to create operating and capital cost savings for Metro by delaying the need to add more buses to the fleet and could lead to operating savings due to reductions in running time variability and operating speed improvements. (See the Portland-TriMet Streamline Program sidebar on this page). For example, in a case where the net benefit of City capital investments results in a travel time savings equal to or greater than the route headway, operating cost savings from reducing the need for a vehicle and operator could be guaranteed for reinvestment back into the route or a route of the City's selection. Similarly, if City capital investments in bus layover facilities reduce recovery time (i.e., layover time) sufficient to allow reallocation of resources, these service hours would be reinvested locally. This program would require a clear memorandum of understanding between SDOT, Metro, and possibly other neighboring jurisdictions. Specifically, the program would address opportunities to:

- Reinvest travel time savings resulting from City capital transit corridor improvements in Seattle transit routes
- Reinvest travel recovery time savings resulting from City investments in bus layover facilities in the Center City
- Leverage Metro operating funds with a local match for service investment

Strategy PP6: Develop and Strengthen Transit Supportive Zoning Overlays

Transit-supportive overlay zoning should be expanded beyond light rail station areas (where Station Area Overlay zones are used) to transit-supported urban villages, urban centers, and commercial corridors. This expansion should be coordinated with Department of Planning and Development (DPD) work on a new Transit Communities land use and zoning strategy and regional efforts being led by Puget Sound Regional Council (PSRC) to develop model transit overlay ordinance language. A shift to a corridor-focused strategy for allocating future growth should also be addressed in the Comprehensive Plan update. Recommended elements of effective overlay zones could include expansion of policies that require or incentivize:

- Increased development capacity
- Zoning setbacks in redevelopment corridors where additional right of way may be needed to support transit, bicycle, or pedestrian facilities (e.g., Fifth Avenue near Seattle Center)
- Improved building frontages at transit stations or stops on High Capacity Transit or Priority Bus Corridors, including promoting the active use of building frontages for passenger shelter and providing ground floor windows
- Limitations on auto-oriented uses such as vehicle sales or repair

PORTLAND-TRIMET STREAMLINE PROGRAM

The City of Portland (OR) and TriMet, the regional transit agency, conducted a joint program of capital investments in transit priority treatments and service improvements, focused on TriMet's Frequent Service routes. Beyond the benefits for passengers—increased bus frequency, reduced travel times, increased schedule reliability, and improved branding and passenger information—the goal of the program was to demonstrate that the operational efficiency savings resulting from the improvements would cover the program capital costs. An initial study of the program,* prior to implementation of more aggressive thresholds for activating transit signal priority, found that:

- Round trip travel times on the streamlined routes declined by slightly less than a minute, while travel times on non-streamlined routes increased by over one minute for routes in the city and over two minutes for suburban routes.
- On-time performance of streamlined routes declined by less than half as much as non-frequent service routes.

Although there were no short-term cost savings, the study projected that TriMet could defer purchasing (and operating) additional buses to serve the streamlined routes by 8 years, resulting in longer-term operating and capital cost savings.

* http://www.nctr.usf.edu/jpt/pdf/JPT%209-3S%20Koonce.pdf

- Outdoor seating for restaurants and pedestrian-oriented accessory uses, such as flower, food, or drink stands
- Requirements that paved areas contain pedestrian amenities such as benches, drinking fountains, and other design elements (e.g., public art, planters, kiosks, overhead weather protection) and provide physical separation from driving lanes with landscaping or planters
- Review/enhancement of existing requirements for shortand long-term bicycle parking
- Consideration of adopting maximum parking limits (minimum parking requirements have already been reduced or eliminated)
- Restrictions on accessory parking and surface parking in front of buildings (commercial parking is already restricted)
- Limitations on driveways that cross sidewalks where pedestrians access transit

STRATEGY AREA: TRANSIT SUPPORTIVE POLICIES AND PROGRAMS

Strategy PP1: Develop a Safe Routes to Transit (SR2T) Program

- Policy PP1.1: Identify funding to create and sustain a safe routes to transit program that makes strategic investments to improve safe access to transit
- **Policy PP1.2:** Engage transit agency and neighborhood partners to build program support and identify investment priorities

Strategy PP2: Develop Transit Information and Wayfinding Standards

- **Policy PP2.1:** Develop design standards and specifications for wayfinding improvements including intermodal transfers, pedestrian access to transit, and bicycle access to transit
- **Policy PP2.2:** Develop an interagency working group and facilitate coordination between Sound Transit, Metro, and other transit operators regarding public information provided at intermodal hubs and key transfer points
- Policy PP2.3: Develop standards for coordination of pedestrian and bicycle wayfinding
- **Policy PP2.4:** Ensure transit information is included in Center City and neighborhood wayfinding programs targeting pedestrians and cyclists
- Policy PP2.5: Develop standards for providing real-time transit information and ORCA card readers at key stops and/or transfer points

Strategy PP3: Increase Support for Traveler Education Programs

- **Policy PP3.1:** Work with Metro to expand funding and reach of the In Motion program with a goal of reaching key neighborhoods every five years
- **Policy PP3.2:** Work with the Metro In Motion program and/or Way to Go, Seattle! to increase outreach to employment centers with large clusters of small to mid-sized employers

Strategy PP4: Invest in Transportation Demand Management Programs that Increase Transit Use

- **Policy PP4.1:** Work with Commute Seattle and transit agency partners to improve transit pass programs for employees of smaller firms
- **Policy PP4.2:** Develop programs that help employees realize the true cost of parking
- Policy PP4.3: Create a residential transit pass program for neighborhoods and residential buildings
- **Policy PP4.4:** Expand TMAs to other urban centers and areas with a high concentration of employment and demonstrated private sector interest

Strategy PP5: Explore a "Transit Streamline Program Agreement" with King County Metro

Strategy PP6: Develop and Strengthen Transit Supportive Zoning Overlays

- Policy PP6.1: Expand transit-supportive overlay zoning beyond light rail station areas
- Policy PP6.2: Coordinate with PSRC effort to develop model transit overlay ordinance language
- Policy PP 6.3: Coordinate expansion of transit-supportive overlay zoning with Comprehensive Plan update

Image from Nelson\Nygaard

3 CORRIDORS

Seattle has many important transit corridors that serve dense neighborhoods and job centers. In addition to these land use attributes, successful transit corridors have strong demand generators at their termini and operate over direct routes that allow high levels of speed and reliability. The Transit Master Plan (TMP) included an in-depth process to study travel for successful high- and medium-capacity transit service. The evaluation used measures grouped under five "accounts" including: Community, Economy, Environment and Human Health, Social Equity, and Efficiency. These measures were used to identify corridor capital investment priorities where SDOT will prioritize speed and reliability improvements. The TMP is consistent with King County Metro's 2011 Strategic Plan for Public Transportation, which calls for the agency to invest resources in corridors that have the highest potential to generate ridership, as well as to serve regional equity and environmental goals. The TMP also builds on King County Metro's RapidRide Bus Rapid Transit (BRT) program, recommending seven new BRT corridors for development under the RapidRide brand in Seattle. Other planned improvements are also reflected in this chapter, including those from various multimodal corridor studies and area plans, such as the Madison Corridor Bus Rapid Transit Study, the Route 44 Enhancements Study for NW Market and 45th Streets, the Roosevelt to Downtown High-Capacity Transit Study, and the Accessible Mt. Baker Plan.

A LONG-RANGE VISION FOR SEATTLE'S HIGH CAPACITY TRANSIT NETWORK

WHAT IS HIGH CAPACITY TRANSIT?

High capacity transit (HCT) refers to transit that delivers high levels of capacity, frequency, and design quality linked by effective transfer facilities. HCT consists of both rubber-tired (e.g., bus rapid transit or BRT) and rail modes (e.g., streetcar) and fills a need for service between Link light rail and local bus. A more detailed description of HCT for Seattle is provided on page 3-8.

WHY DOES SEATTLE NEED A LONG-RANGE VISION FOR HIGH CAPACITY TRANSIT?

The Transit Master Plan (TMP) articulates a long-range vision for a Seattle where most residents can walk or bike to highquality, high-capacity transit and where a network of routes moves residents, visitors, and workers swiftly between major neighborhoods. The TMP is structured to help City staff and elected officials implement the vision and measure progress toward its achievement. A clear, long-range vision provides a tool to:

- Build consensus for action and priorities among local stakeholders and partner agencies
- Guide investment of limited resources to achieve the greatest benefit
- Develop a phased implementation approach for Seattlefocused HCT corridors that support the system of urban centers and villages set forth in the City's Comprehensive Plan
- Meet key City economic, environmental, equity, and livability goals, such as a significant reduction in greenhouse gas (GhG) emissions

WHAT WOULD IT TAKE TO REALIZE THE VISION IN 40 YEARS?

Realizing the vision will require sustained action by the City to:

- Develop local funding sources to support both transit operations and significant transit corridor capital investments
- Provide initiative, staff capacity, and funding support for leading design and construction of rail and BRT projects in priority citywide corridors
- Coordinate with Sound Transit (ST) to prioritize study and construction of HCT in western Seattle neighborhoods in the ST long-range mass transit plan
- Work with King County Metro Transit to develop BRT services in corridors that don't merit rail investment or where demand is high and interim rubber-tired solutions are required
- Continue to funnel growth to key urban centers and urban villages served by the long-range HCT network

LONG-RANGE HCT VISION: TARGETED TO SERVICE QUALITY

The long-range HCT network illustrated in Figure 3-1 goes beyond the existing regional vision for Link light rail and the

Seattle Streetcar Network Concept for Center City neighborhoods. It defines a citywide network of BRT and rail corridors that will deliver transit service with high levels of capacity, frequency, design, and access quality linked by effective transfer facilities.

THE LONG-RANGE HCT VISION GUIDES

The Long-Range HCT Vision can help to guide Seattle's land use and transportation investments and policy decisions to ensure that they are supportive of the Transit Master Plan. The Vision guides the City to:

- **Coordinate with partner agencies:** The Vision communicates Seattle's priorities for transit corridor connections to regional transit agencies.
- Phase and prioritize investments: The Vision ensures that major transit capital investments in Seattle move the City toward a clear goal, even as investments are phased toward full system development.
- Focus all development around transit-oriented neighborhood principles (see Chapter 5): The Vision recognizes where growth is planned and guides transit investments to meet future needs.
- **Coordinate modal investments:** The Vision informs the City's other modal investments by implementing the Bicycle and Pedestrian Master Plans, coordinating with the City's Freight Master Plan priorities, and supporting seamless transfers where major transit facilities meet.

THE LONG-RANGE HCT VISION INSPIRES

The Vision is a means for Seattle to come together around building the transit system that will help the City attain its economic, environmental, equity, and human health goals. Moving Seattle toward its HCT Vision will do more than enhance mobility, it will deliver on other important City goals to be an economically vital, low-carbon city. Achievement of the HCT vision will inspire:

- A new mobility paradigm where walking, bicycling, and taking transit are the most convenient ways to travel for most trips in the city: Seamless connections to the regional transit system will make transit the best option for Seattleites accessing other Puget Sound communities and for workers and visitors traveling to Seattle.
- Most new development designed and constructed based on transit-oriented neighborhood principles: Pedestrianfriendly transit nodes are the focal point of neighborhood centers and community interaction.
- Low-carbon neighborhoods centered around transit nodes: Transit helps Seattle achieve emissions reduction goals and helps to shape development patterns that reduce the number and distance of driving trips.
- A healthy, active lifestyle for Seattle residents of all ages: Increased levels of walking, bicycling, and transit trips allow residents of all ages to incorporate physical activity into their daily routines.

FIGURE 3-1 SEATTLE LONG-RANGE HIGH CAPACITY TRANSIT VISION

TRANSIT CORRIDOR EVALUATION PROCESS

It will take decades to achieve Seattle's long-range vision for transit. The TMP is a 20-year plan, designed to deliver near-term priorities for transit system investment. The TMP employed an outcome-based evaluation process to determine where and how to invest limited transit funding.

HOW THE TMP DETERMINED CORRIDOR INVESTMENT PRIORITIES

The TMP used an outcome-based process called multiple account evaluation (MAE) to identify capital and transit service investments that support the TMP goals. Figure 3-2 shows the evaluation accounts used to prioritize corridor investments. The MAE process provided a powerful tool to engage stakeholders in developing a set of corridor investment priorities. It also helped the City to make investment decisions in line with economic, environment, health, and community development goals. The evaluation led to the prioritization of corridors that are poised for high-capacity transit investments or significant investments in rubber-tired transit improvements. The MAE process identified a clear set of priorities for City transit investment that serve as a foundation for TMP recommendations.

PUBLIC AND STAKEHOLDER PARTICIPATION

Three key groups were instrumental in developing the TMP and the corridor evaluation process:

- Transit Master Plan Advisory Group (TMPAG): The TMPAG included 25 members appointed by the Mayor and City Council. The group met monthly and provided detailed input at every phase of the corridor evaluation process.
- City/County/Regional Interagency Technical Advisory Team (ITAT): The ITAT included technical staff from SDOT and a number of other City departments, the Seattle Planning Commission, King County Metro Transit and Roadway Division, Sound Transit, Puget Sound Regional Council, and Public Health – Seattle and King County.
- City of Seattle Executive Steering Committee (ESC): The ESC was an executive leadership team that provided high-level direction to the TMP technical team.

Image from Nelson\Nygaard

The project team also briefed the Seattle City Council, the Office of the Mayor, the Seattle Planning Commission, the Pedestrian Advisory Board, the Bicycle Advisory Board, the Freight Advisory Board, Seattle Center, Puget Sound Regional Council, and several neighborhood groups.

The public participated in developing the plan by participating in focus groups, completing an online survey that received over 12,000 responses, and providing comments at various stages of the planning process.

In a series of workshops, the ITAT and TMPAG helped to determine desired outcomes for the TMP. The most important outcomes identified by these groups—and supported through the public focus groups and the survey—were used to develop an evaluation framework for developing investment priorities. Both groups provided detailed input that influenced the evaluation measures used to prioritize corridors for transit investment.

Following release of the draft TMP Summary Report in September 2011, SDOT held a series of five public open houses in Seattle to share information about the report and provide the public with an opportunity to engage with the project team and provide feedback. In addition, SDOT and several other City departments held a meeting attended by over 160 people from historically underrepresented communities. The Summary Report was revised based on public as well as stakeholder and agency feedback.

In fall of 2015, two HCT corridors and five priority bus corridors were re-examined as BRT corridors branded as RapidRide. SDOT elevated these seven corridors to BRT levels of service and design in response to rapid growth of Seattle's urban centers and villages, and growing demand for high quality transit services that both serve existing and choice transit markets. Key 2012 TMP corridor evaluation measures were used to evaluate the RapidRide corridors. The ESC was re-engaged and a series of King County Metro coordination meetings were facilitated to ensure BRT corridors (operated as the next generation of RapidRide services) met basic operating and capital assumptions.

CORRIDOR EVALUATION APPROACH AND STAGES

Corridors were evaluated against 16 criteria (a number of which had multiple sub-criteria) organized under the five evaluation accounts shown in Figure 3-2. The results were reviewed with the ITAT, TMPAG, and ESC at each stage, and their feedback was used to refine the analysis and methods.

Stage I: Screening For Demand Potential

The Stage I corridor evaluation analyzed transit corridors based on the Urban Village Transit Network (UVTN) to determine their potential to generate ridership. A detailed market analysis (see Chapter 2 of the TMP Briefing Book) also guided selection of initial corridor alternatives. Based on current and future land use and demographic characteristics, corridors least likely to deliver significant return on transit investments within the plan timeframe were screened out during this phase. The Stage I process narrowed the evaluation to a set of priority corridors.

Stage II: Multiple Account Evaluation

The Stage I corridors were evaluated against performance measures within each MAE account as illustrated in Figure 3-3. The measures were weighted for relative importance by ITAT, TMPAG, and ESC. The reviewers also assigned a weight to each account.

Stage III: High Capacity Corridor and Priority Bus Corridor Analyses

Based primarily on the Stage II evaluation, the corridors were prioritized into two tiers for more detailed analysis of potential transit investments:

- High Capacity Transit (HCT) Candidate Corridors: The top tier of corridors was evaluated for rail, bus rapid transit (BRT), and enhanced bus mode options and for more detailed alignment considerations. Operating plans and planning level capital cost estimates were developed for each of these corridors. Two original HCT corridors are now included in the RapidRide network.
- **Priority Bus Corridors:** The remaining corridors were evaluated for speed and reliability capital improvement opportunities and for service enhancements. In fall of 2015, five of the priority bus corridors were elevated to the RapidRide network.

Additional factors considered included the viability of the corridor for high-capacity transit (e.g., grade, availability of right-of-way) and potential overlap with current and planned Link light rail or other major transit investments.

FIGURE 3-3 MULTIPLE ACCOUNT EVALUATION PROCESS

PRIORITY INVESTMENTS IN THE FREQUENT TRANSIT NETWORK

WHAT IS THE FREQUENT TRANSIT NETWORK?

The Frequent Transit Network (FTN) is a vision for a network of transit corridors that connect the City's urban centers and villages with high-quality transit service within a short walk for most residents. This chapter identifies priorities for corridor capital investments, while Chapter 4 describes FTN service characteristics.

The FTN builds upon the city's Urban Village Transit Network (UVTN)—a service investment concept used in the 2005 Seattle Transit Plan. The UVTN provided a framework for measuring transit performance on important arterial corridors, but it gave limited direction for how the City should invest capital resources in operable, end-to-end transit corridors. The FTN replaces the UVTN by developing a program of coordinated transit corridor capital investments, with project-level detail on how to implement speed and reliability improvements. The TMP Briefing Book, page 4-16, provides a map of the UVTN, while pages 4-34 to 4-36 of the TMP Briefing Book illustrate UVTN performance measures.

Chapter 4 (Service) provides a detailed description of the service design principles, service levels, and performance characteristics of the Frequent Transit Network (FTN).

CONSISTENCY WITH KING COUNTY METRO'S TRANSIT VISION

Metro's long-range plan, to be completed in the summer of 2016, will present a shared vision for a future public transportation system that gets people where they want to go and helps the greater Seattle area thrive. The plan has been closely coordinated with Sound Transit and will describe an integrated network of transportation options in King County, the facilities and technology needed to support those services, and the financial requirements for building the system.

PRIORITY CORRIDOR CAPITAL INVESTMENTS: BUILDING THE FREQUENT TRANSIT NETWORK

Making capital investments in priority transit corridors that develop and enhance the FTN is a key focus of the TMP. Investments in the corridors identified through the TMP have the highest potential benefits to Seattle and its residents. Priority corridor investments in the FTN fall into two general categories summarized below and illustrated in Figure 3-4.

The following sections describe each category of corridors in detail.

- **High Capacity Transit Corridors:** These represent the top tier of citywide corridors that were evaluated for suitability for rapid streetcar and BRT modes.
- Priority Bus Corridors: The remaining citywide corridors were considered for transit priority and infrastructure improvements, assuming rubber-tired transit would continue to be the dominant mode. Those corridors that provide transit access through downtown include a focus on Center City circulation, broadly benefiting transit service operating in and through downtown, and serve critical connections between many of Seattle's densest neighborhoods.

In addition to these corridors investments, priority investments in the FTN include:

- Support Link light rail, which serves important regional connections but is not funded or developed by the City.
- Eliminate or reduce impacts of traffic bottlenecks where they impact transit operation (i.e., constrained arterials entering downtown, bridge entries, and freeway ramp locations).
- Coordinate with neighboring jurisdictions to ensure that transit speed and reliability improvements on Seattle streets are carried across city boundaries. This is particularly important in corridors where predominant travel demands are between northern, southern, or eastern Seattle neighborhoods and neighboring jurisdictions.

FIGURE 3-4 PRIORITY TRANSIT CORRIDORS FOR CAPITAL INVESTMENTS

HIGH CAPACITY TRANSIT CORRIDORS

Surface High Capacity Transit in Seattle

The Revised Code of Washington defines "high capacity transit" as follows:

"High capacity transportation system" means a system of public transportation services within an urbanized region operating principally on exclusive rights-of-way, and the supporting services and facilities necessary to implement such a system, including interim express services and high occupancy vehicle lanes, which taken as a whole, provides a substantially higher level of passenger capacity, speed, and service frequency than traditional public transportation systems operating principally in general purpose roadways.

This definition was developed to govern the actions of agencies like Sound Transit, charged with developing regional transit systems designed to carry passengers between large urban centers. In these cases, a focus on the separation of transit from general purpose vehicles is of critical importance. In a

DIFFERENTIATING LINK LIGHT RAIL FROM SEATTLE HCT

Much of the existing and planned Sound Transit Link light rail system has attributes of a rapid rail system (e.g., fully exclusive and grade-separated right of way and off-board fare payment), providing fast regional connections with limited stops. The segment of Central Link in Southeast Seattle that operates on MLK Jr Way is a notable exception since it operates in the street right-of-way and crosses intersections at grade, yet even here stop spacing is wide. The Link service design model compares to BART in the San Francisco Bay Area or SkyTrain in Vancouver, B.C. Light rail systems in places like Portland and San Diego share some similar features to Link, but operate on-street (both in mixed traffic and exclusive lanes) in the most urban areas of their service areas. The HCT or urban rail modes evaluated in the TMP would use a similar model, operating in existing street rights-of-way, with longer stop spacing, and a mix of priority treatments to gain advantage over traffic.

The San Diego Trolley (photo) and Portland MAX system operate on-street in the most urban parts of their service areas. Image from Nelson\Nygaard

dense urban city like Seattle, high capacity transit is needed in many corridors in addition to grade separated fixed-guideway service. Inevitably, these surface high-capacity lines will mix with general purpose traffic at times. However, there is much that can be done to provide high capacity transit features in an urban arterial street environment.

Seattle's surface HCT corridors use principles of HCT transit design to move high-volumes of passengers at competitive speeds, with high levels of reliability, and while delivering amenities and services expected when using a rail line.

For Seattle, surface HCT consists of both rail and rubber-tired transit modes that can provide residents with high-quality transit service, consistent with the design principles and FTN service levels (see Chapter 4). The HCT corridors identified in the TMP fill a key service need between Link light rail and local bus service. Seattle's surface HCT will be distinguished by the following factors:

- Provides locally-focused service for transit markets within the city of Seattle and surrounding areas. Link light rail focuses on regional connectivity and longer-distance trips; by design, it is more of an intercity commuter rail model of transit operation than an urban light rail service.
- Operates primarily on arterial streets using a combination of exclusive and shared right-of-way. Link light rail uses exclusive right-of-way with full or partial grade separation. The Center City Connector streetcar project will use dedicated transit lanes on 1st Avenue in downtown, but mix with traffic on other segments of the line.
- The Seattle HCT network aims to dedicate 50% of corridor right-of-way to transit in order to provide fast and reliable transit service and qualify BRT projects for FTA Small Starts funding.

SURFACE HIGH CAPACITY TRANSIT MODES

Seattle's surface HCT corridors have the potential to be served by multiple modes. However, steep topography or constrained rights-of-way limit the available mode options for some corridors. The TMP considers surface HCT modes, plus an enhanced bus service, for developing transit corridors in Seattle:

Rapid Streetcar uses standard modern streetcar vehicles or longer articulated or coupled street-running vehicles and is envisioned to operate like the European street tram systems described in the call out on pages 3-10 and 3-11. Rapid streetcar achieves faster operating speed and greater reliability through longer spacing between stops and more extensive use of exclusive right-of-way than is typical of U.S. streetcar lines that emphasize Center City circulation. Rapid streetcar stations would be on-street and would be designed to include high volume shelters, real-time passenger information, level boarding, off-board fare payment, and enhanced station amenities. Rapid streetcar would have higher capacity trains, greater priority over traffic, and operate at higher speeds compared with a local streetcar circulator, such as the initial implementation of the South Lake Union streetcar. Current SDOT plans for the Center City Connector and transit lane improvements on Westlake will begin to transition Seattle Streetcar from a primarily mixed-traffic system to one that has significant priority over general purpose traffic.

- Local Streetcar is the rail mode considered for extension of Seattle Streetcar north on Broadway and functions as an urban circulator. It has relatively short distances between stops and operates only in mixed or transit only lanes.
- Bus Rapid Transit is the mode considered for many of Seattle's HCT corridors. BRT combines a rubber-tired transit vehicle with the operating characteristics of rail, including longer stop spacing and use of exclusive right-of-way. BRT stations may include real-time passenger information, level boarding, off-board fare payment, and enhanced station amenities. BRT vehicles are often "branded" or stylized to distinguish them from buses providing local service, and they may have features such as multiple, wide doors on the left- or right-side of vehicles to increase boarding capacity. The initial deployment of King County Metro's RapidRide service falls into a

"light" category of BRT service with less extensive priority features, but it does include branded, stylized vehicles and some well-developed station features. The City aims to make investments in future RapidRide corridors with greater levels of priority than the initial RapidRide deployment. BRT may be implemented using diesel electric hybrid or electric trolley buses. The TMP aims to meet minimum standards for runningway priority and other enhanced transit features based on the City's RapidRide Expansion Toolkit. A summary of the RapidRide Toolkit is provided on pages 3-14 to 3-15.

• Enhanced Bus assumes a more basic level of improvements and priority features for existing transit service, with increased hours of operation and frequency comparable to BRT, but generally operating in mixed traffic. As with BRT, diesel or electric trolley buses could be used.

The TMP Briefing Book, Section 6, provides a more in-depth discussion of transit modes.

The T3 tram line is one of four tram lines in Paris that exemplify the Rapid Streetcar mode. Typical of European street trams, it uses articulated, higher-capacity trains and exclusive right-of-way. Although Paris historically had an extensive network of street trams, predating its Metro system, its modern tram lines have all been constructed since the 1990s.

Image from Wikimedia Commons user Pline

The South Lake Union Streetcar is an example of the local streetcar mode.

Image from Nelson\Nygaard

Los Angeles MTA operates the Orange and Silver line Full BRT and BRT "Light" services, branded as "Metro Liner." Orange Line vehicles utilize exclusive right-of-way and receive priority at intersections. These services are designed to look and operate like Metro Rail services; the Orange line has exclusive off-board fare payment and all-door boarding, which is also planned for the Silver Line. The Silver line primarily runs along a freeway rightof-way while the Orange line utilizes an old rail right-of-way, which has implications for access and land use integration (discussed in Chapter 5).

Image from Los Angeles Metro Transportation Library and Archive

Los Angeles MTA offers a 26-route network of Metro Rapid bus service, distinguished by red and silver low-floor vehicles (left). Metro Rapid service is characterized by longer stop spacing, transit priority features, and clearly branded enhanced stations. It is differentiated from Metro Local service, which uses similar vehicles (right), but Metro Local buses are painted orange and are not exclusively lowfloor vehicles.

Image from Los Angeles County MTA (left) and Flickr user LA Wad (right)

INTRODUCING THE RAPID STREETCAR MODE VIA EUROPEAN STREET TRAMS

Modern streetcar development in the United States is often characterized by low-speed urban circulators designed to make short connecting trips in dense urban districts. It is not surprising, then, that people's vision of "streetcars" is of a mode designed more like the South Lake union streetcar than the urban tram lines over which U.S. travelers to Europe marvel. The rapid streetcar mode considered in the TMP models the European street tram more than Portland Streetcar or the initial operating design for the South Lake Union Streetcar which have little priority over general purpose traffic.

Comparing Rapid Streetcar to Local Streetcar Circulators

"Rapid Streetcar" is a term coined to differentiate the highcapacity transit rail mode identified in the Seattle TMP from modern U.S. streetcar lines that typically serve downtown circulation, are low speed, and operate in mixed traffic with limited priority over general traffic. These lines consequently have short stop spacing and operate at relatively low average speeds.

Cities are attracted to the lower capital costs of building streetcar lines relative to light rail; lighter weight streetcar vehicles require less extensive street reinforcement and utility relocation. Although they operate at much lower speeds in urban environments, streetcar vehicles are capable of traveling at a comparable speed to light rail—44 miles per hour for vehicles manufactured by United Streetcar. Design features of Rapid Streetcar that differentiate it from local streetcar models include:

- Use of dedicated rights-of-way, where conditions allow
- Provision of high levels of traffic signal priority and other transit priority treatments to allow transit to bypass general purpose traffic in intersections and congested parts of the transit corridor where rail cars mix with traffic
- Use of larger or coupled vehicles to accommodate high passenger loads
- A higher level of station investment design and amenity development
- A higher level of investment in station access and wayfinding

These features produce a traveler experience that is more comparable to what Americans think of as urban light rail. The following European street tram examples are instructive as to the potential for Rapid Streetcar in Seattle.

European Street Trams as a Model for Seattle

Dozens of mid- and large-sized European cities have built new surface-running tram lines in the last decade; the mode has become popular due to its modest cost compared with subways and popularity with riders. These European trams provide context for the Rapid Streetcar mode identified for HCT corridors in the TMP. European trams that have longer spacing between stops and make use of exclusive right-ofway are able to attain higher average speeds than is typical of U.S. streetcar systems. Many lines carry large passenger volumes. Several examples of such tram lines or systems are described below.

Nice*

The Nice T1 tram line uses Alstom Citadis 302 5-section trains that are about 100 feet long and hold up to 56 seated and 144 standing passengers. (The Citadis trains include versions with up to seven sections that are about 130 feet long and hold 70 seated and 230 standing passengers). The nearly 5.5 mile line, which opened in 2007, replaced four bus lines and carries about 90,000 passengers per day. Trains run from 5 a.m. to 2 a.m. seven days per week. During peak service hours of 8 a.m. to 9 p.m., Nice T1 trams run every five minutes on weekdays, every six minutes on Saturdays, and every 10 minutes on Sundays.

As illustrated in the photo, trams in Nice are visibly branded and operate in dense urban neighborhoods, including traveling through busy pedestrian plazas and crossing at-grade intersections with high volumes of pedestrians and cyclists. A strength of the European Street Tram/Rapid Streetcar model is that it puts transit where people are and want to be, breaking down the challenge of directing people to grade-separated stations that can be challenging to reach.

Lyon⁺

The modern tramway network in Lyon consists of four lines, all built since 2001, and complements the city's four-line metro system. The simple fact that a network of four lines covering 31 miles of the city was built in a 10 year time frame is instructive. The ability to contextually integrate tram lines into the existing urban fabric allows for relatively rapid development. The nine-mile T₃ line, completed in 2006, initially used the 5-section Citadis train, although 7-section Citadis 402 trains have been ordered. The line runs at a maximum speed of 43 mph and averages 23 mph; some of the line operates in relatively low-density areas where higher speeds are attainable. An extension of the T4 line is planned. The Lyon tramway is designed to complement intercity and regional transit systems as well as the higher capacity Lyon Metro system. Following the completion of a four line metro system in the 1970s and 1980s, the city has transitioned to the development of a surface tramway system as the more cost effective way to serve mobility needs.

^{*} Wikipedia, http://fr.wikipedia.org/wiki/Lignes_d%27azur; http:// en.wikipedia.org/wiki/Tramway_de_Nice. Lignes d'Azur. http://www. lignesdazur.com/ftp/lignes_FR/tram%20horaires%20%2821%2004%20 10%29.pdf

⁺ Wikipedia, http://en.wikipedia.org/wiki/Lyon_tramway

Applicability of the European Model to the U.S.

European trams operate the type of high-quality service high frequency and high speed—that is proposed in the TMP. While U.S.-based streetcar manufacturers such as United Streetcar have not yet produced longer articulated or coupled vehicles, or expressed interest in doing so, they likely would be able to license designs from other manufacturers and produce the vehicles given sufficient demand. There are few existing U.S. examples of Rapid Streetcar lines, although portions of the Portland, San Diego, and San Francisco light rail systems operate in a similar fashion. Further, a number of cities are exploring streetcar development projects that cover longer distances and provide a much higher level of priority for streetcar vehicles.

TI tram in Nice's Place Girabaldi, where the tram runs without overhead wires, using batteries for a short section.

Image from Wikimedia Commons user Myrbella

A train on Lyon's T2 tram line. Image from Wikimedia Commons user Alain Caraco

A NEW GENERATION OF RAPIDRIDE BUS RAPID TRANSIT IN SEATTLE

Bus Rapid Transit (BRT) is an enhanced, rail-like transit service that employs strategies aimed at improving transit travel speed, reliability, passenger comfort, and transit identity over traditional fixed-route bus service, including dedicated runningways, intersection priority features, enhanced stations, specialized vehicles, frequent transit service, off-board fare collection systems, and distinctly stylized branding.

BRT systems throughout North America employ a broad spectrum of these strategies based on available resources, corridor constraints, and desired benefits.

BRT systems are commonly differentiated by the range of strategies employed, falling into one of three primary categories: Full BRT, BRT "Light" and Enhanced Bus. Full BRT employs many or all of the enhanced characteristics, most notably an exclusive runningway, while BRT "Light" is typically less capital intensive, applying only targeted strategies like branding, vehicle and station upgrades, and some intersection treatments. The City intends to build on King County Metro's bus rapid transit program.

BRT is often considered successful when the following conditions are in place:

- Transit supportive land use and high ridership demand: Like other HCT modes, dense and mixed-use development with a diversity of local and regional destinations support BRT activity. Typically, dense, walkable neighborhoods are the most transit supportive.
- Branding and marketing plan: Coordinated branding and visibility programs market BRT service and all of its physical elements (vehicles, stations, signage etc.) as specialized service, separate from other local fixed route bus service.
- Multimodal access: High quality access to BRT is provided for all modes of travel including seamless transit connections between BRT and other transit services, convenient and safe bicycle and pedestrian paths and amenities.
- **Competitive with automobile travel:** Investments in transit speed and reliability ensure that BRT vehicles can bypass congested roadways and intersections while also directly accessing desired destinations.

EmX in Eugene, OR operates along a dedicated center running transitway. Source: Lane Transit District

Cleveland HealthLine along the bustling Euclid corridor serves as a critical mobility option and economic development tool. Source: Nelson\Nygaard

ELEMENTS OF RAPIDRIDE BUS RAPID TRANSIT

В

D

F

A

TRANSIT SIGNAL PRIORITY

Intersection improvements including transit signal priority (TSP) allow buses to bypass congestion. TSP does so by giving buses earlier and/or longer green lights.

RAPIDRIDE BRANDING

Unique designs make buses and stations more visible, raising awareness of RapidRide and increasing customer expectations for higher levels of service.

C

ENHANCED STATIONS

RapidRide stations include raised platforms, off-board fare payment, real-time arrival information, larger shelters, and other passenger amenities.

ENHANCED FARE COLLECTION SYSTEMS

Off-board fare collection using ticket vending machines, card readers, and other tools at stations allow passengers to load without waiting in line to pay their fares.

E

SPECIALIZED VEHICLES Custom buses provide more capacity, more doors, and lower floors for easier loading and unloading, and unique designs.

DEDICATED RUNNING WAY Bus-only lanes separate transit from traffic and are clearly marked to increase visibility.

PRIORITIZING TRANSIT

Dedicated runningway investments are a primary feature that distinguish RapidRide from other enhanced bus services. RapidRide service can operate in two basic types of dedicated runningway environments, providing vehicles priority over general purpose traffic: (1) transit only lanes and (2) business access transit (BAT) lanes. BAT lanes can be designed as curb lanes (i.e., running against the curb) or offset lanes (allowing on-street parking stalls with dwelling occurring via bus bulbouts). Dedicated and clearly delineated transit lanes reduce conflicts between autos and buses and reduce transit delay for RapidRide and other transit services that use the RapidRide corridor. BAT lanes allow for business, loading zone, and parking garage access as well as right turn lane queuing.

Surface treatments and markings in the transit lane help to prevent general purpose traffic from entering the lane illegally, minimize illegal parking and loading, and distinguish the high level of service provided by RapidRide. Red paint markings for transit only lanes, dashed red lane markings along BAT lanes, and other special markings such as double white stripes and "Don't block the box" markings both distinguish and delineate the RapidRide runningway from general purpose travel lanes. Red lane treatments also give RapidRide and other bus services a greater level of visibility, acting as wayfinding for high-quality bus service and communicating speed and reliability benefits.

REDEFINING THE PASSENGER EXPERIENCE

RapidRide station and vehicle amenities are designed to optimize the passenger experience. Seattle's RapidRide stations are distinguished by providing a full suite of station features a customer would expect at a light rail or rapid transit station – from comfortable seating to weather protection to real-time information, so that passengers know exactly when the next bus will arrive. Each RapidRide station offers a base level of passenger amenity including benches, glass canopy shelters, RapidRide standalone marker/pylon, technology pylon (with real time information and system maps), off-board fare collection, pedestrian LED lighting, trash and recycling bins, and bike parking.

RapidRide offers several other features that both enhance the passenger experience and provide travel time savings for transit. All-door boarding and off-board fare payment improve the customer experience by reducing wait times to board, better distributing on-board loads, and reducing dwell time. Ticket vending machines allow patrons without ORCA cards or e-fare options to purchase tickets before boarding. Platform level boarding is an important way to reduce boarding time and keep buses running on schedule; enhance the transit experience for people using wheelchairs, scooters or mobility devices; and increase system accessibility, safety, and comfort. Level-boarding also eliminates the need for ramp deployment for people with strollers, mobility devices, or other wheeled devices.

Dedicated red transit lanes are visible reminders of the speed, reliability, and level of priority that is expected of RapidRide corridors.

Source: SDOT

RapidRide stations provide the comfort and amenities that one would expect at a Link or streetcar station. Source: Nelson/Nygaard

SOUND TRANSIT HIGH CAPACITY SYSTEM DEVELOPMENT

In November 2016, Sound Transit (ST) plans to take an ST₃ ballot measure to the voters of Puget Sound. ST₃ would provide billions of dollars toward the next phase of expansion of the regional light rail, commuter rail, express bus, and high-capacity transit system. Projects to be included in the ST₃ measure are being shaped by ST's long-range planning process, which includes detailed studies for a number of corridors.

ST3 will provide investment in key transit corridors and core capacity requirements to keep transit moving through Seattle's Center City. Seattle expects 28% growth of its population by 2040 and more than a million new residents are expected throughout the region in the same period. Many of those residents will travel to Seattle to work, shop, and play.

The City of Seattle has coordinated with and provided input to Sound Transit regarding its preferences for ST3 investment in Seattle. The following is a brief description of key projects that are considered in ST's planning process and are top priorities for SDOT and City of Seattle leadership (also illustrated in Figure 3-6). Ballard to Downtown and West Seattle to Downtown light rail lines are the City of Seattle's top priority ST3 projects.

Ballard to Downtown Light Rail

The 2012 Seattle Transit Master Plan identified a corridor between Ballard and Downtown the highest demand transit corridor in Seattle. The TMP recommendation led to a partnership study co-managed by Sound Transit and SDOT, which evaluated many alignment and mode alternatives. The City's preferred alignment would start in Ballard at NW Market and 15 Avenue NW, cross the Ship Canal on a new multimodal bridge, pass west of Queen Anne Hill through Interbay with stops near Dravus, Newton and the Expedia campus, enter a tunnel west of Uptown, run east to make subway station stops near Mercer and 1st Avenue, Harrison and 7th Avenue, and Westlake and Denny to serve Uptown and South Lake Union. The line could either terminate at Westlake with subgrade pedestrian connections to the existing station and/or enter a new downtown Seattle transit tunnel and continue south through Downtown.

West Seattle to Downtown Light Rail

Another top priority light rail project is to connect West Seattle with Downtown. The City supports an initial line that travels between West Seattle and Downtown, connecting to the Alaska Junction or High Point, with the possibility for future phases to extend further south. This line would likely run on a combination of surface and elevated alignments.

Madison Bus Rapid Transit

The City believes the Madison Corridor BRT project is an important early investment project from ST3. This project, potentially operational by 2019, would provide important connections to the regional system with a small amount of ST funding relative to other Seattle/regional investments. During planning and design phases of ST's Central Link project (now operational) a decision was made to eliminate the First Hill station due to cost. At that time, a Madison BRT route was examined by ST as a possible mitigating solution to provide service to the First Hill and South Capitol Hill neighborhoods. These are among the densest residential neighborhoods in the City and are rich with jobs due to the location of two major medical centers and Seattle University. The City of Seattle plans to adopt a Locally Preferred Alternative for this project in December 2016 and proceed with preliminary design, engineering, and environmental clearances in 2016 and 2017.

A light rail line between Ballard and Downtown is the City of Seattle's top priority of ST3 investment. Image from Nelson\Nygaard

New Downtown Transit Tunnel

Sound Transit's examination of Ballard to Downtown and West Seattle light rail alignments has included options that run on surface streets. SDOT does not support surface street options due to highly constrained street capacity in the Center City, lower transit performance provided by surface running HCT, and the many competing demands for arterial street space. As such, the City of Seattle places investment in a new Downtown transit tunnel as a high priority ST3 investment. Early analysis suggests that a tunnel running east of the existing DSTT between 4th and 6th Avenues would be the optimal alignment. A new transit tunnel could be connected to the existing DSTT stations with subgrade pedestrian tunnels.

Ballard to University District Light Rail

Ballard and the University District are Seattle's two most rapidly growing Urban Village/Centers outside the Center City. SDOT's ability to add lane capacity dedicated to transit between the two Centers is challenged by very limited arterial street connections and narrow street rights-of-way. This corridor was studied by ST in their long-range plan development and is the next highest rail priority for the City of Seattle after the development of Ballard and West Seattle lines. The City of Seattle supports an initial line between Ballard and the U District Station with potential for a future extension toward Seattle Children's Hospital.

Infill Light Rail Stations

The City of Seattle's ST3 interests also include construction of two infill stations on currently operating or planned lines. These include Graham Street station on Central Link and 130th Street Station on Lynnwood Link.

A new Downtown Transit Tunnel aligned under 4th to 6th Avenues could provide subgrade pedestrian tunnel connections to existing Downtown Seattle Transit Tunnel stations, providing convenient connections between Central Link, Lynnwood Link, and a future Ballard to West Seattle light rail line. Image from The Transit Politic

SEATTLE RAPIDRIDE NETWORK EXPANSION

King County Metro implemented RapidRide service and capital improvements in three Seattle corridors between 2010 and 2014. All corridors have been successful in attracting new riders to the system, with increases in weekday ridership as high as 75% over the baseline service. The City of Seattle, recognizing challenges in providing transit service to keep up with rapid growth, has determined that seven additional corridors should be elevated to BRT level of capital and service investment. It is logical to build from the successful RapidRide brand and program of investment. Together, Seattle Department of Transportation (SDOT) and King County Metro Transit are coordinating to plan seven new RapidRide corridors.

WHAT ARE SDOT'S GOALS FOR NEW RAPIDRIDE CORRIDORS?

SDOT is leading the capital planning of the RapidRide network expansion with the aim to deliver convenient, high-quality mobility that includes such attributes as:

- Ten minute or better frequency during peak periods and 12 minute or better frequency during the midday, so passengers don't have to wait to travel
- Twenty to 24 hour service everyday of the week to meet the diverse travel needs of Seattle, when they need it
- On-time service, with tools to identify and address delays quickly and keep transit moving reliably even during congested periods of the day
- A high level of passenger experience with functional, quality facilities at stops and stations, such as better-than-standard shelters, real-time information, off-board fare payment, and improved access
- Ability to get most places in Seattle with one transfer between a RapidRide line, Seattle Streetcar, and/or Link light rail

WHY EXPAND RAPIDRIDE?

- Seattle has been one of the nation's **fastest growing cities** for the last 2 years.
- Population is increasing at approximately 18,000 people per year, 77% faster than surrounding King County.
- Seattle Center City and Urban Village job growth is strong, with major employers growing operations or moving to the area.
- Enhanced transit service and capacity is needed to match Seattle's population and economic growth as there is limited opportunity to expand traffic lanes.
- Transit mode share to downtown has topped 45% of all commuters. Transit ridership in Seattle is at an all time high and many bus routes are overcrowded.
- **Ridership gains of 44%**, as of 2014, indicate that RapidRide lines have proven popular with riders compared to previous bus service.
- RapidRide ridership increased an average of 8% during the first 5 months of 2015 compared to the same months in 2014, with an 18% increase on the E Line.

THE BENEFITS OF THE SEATTLE RAPIDRIDE NETWORK

- Provides 72% of Seattle residents with 10-minute or better all-day transit service within a 10-minute walk from their home by 2025
- Implements several coordinated corridors, in an efficient manner, by employing unified design and standardizing fleet, stations, and operations, in concert with FTA streamlined planning and environmental guidance
- Links diverse and low-income neighborhoods to downtown transit hubs, employment opportunities, and shopping districts
- Utilizes existing fleet resources in electric trolley bus corridors, implements dual door coaches in right-of-way

constrained corridors, and implements level boarding and **fully accessible** connections for persons of all abilities

- **Provides an integrated transit network** by connecting with the expanding light rail, streetcar, bus, and bike share systems
- Supports Sound Transit by connecting urban neighborhoods and job centers to light rail stations

HOUSEHOLDS WITH TRANSIT SERVICE WITHIN CLOSE WALKING DISTANCE*

THE RAPIDRIDE CORRIDORS

The ten corridors—three existing and seven proposed—that will shape Seattle's future RapidRide network are shown in Figure 3-7. Seattle's RapidRide corridors are:

- Central Area First Hill Downtown, via Madison (RapidRide Corridor 1)
- Burien TC Downtown via Delridge Way (RapidRide Corridor 2)
- Mount Baker Downtown via Rainier Avenue and Jackson Street (RapidRide Corridor 3)

- Rainier Valley U-District via 23rd Avenue and Rainier Avenue (RapidRide Corridor 4)
- Ballard U-District Laurelhurst via Market Street and 45th (RapidRide Corridor 5)
- Northgate Ballard Fremont South Lake Union Downtown, via Westlake Avenue (RapidRide Corridor 6)
- Northgate Roosevelt University District South Lake Union - Downtown, via Roosevelt Way/11th Avenue and Eastlake Avenue (RapidRide Corridor 7)

RAPIDRIDE NETWORK IMPLEMENTATION STRATEGIES

- **Strategy RR 0.1:** Develop strategy for forwarding corridor planning, design, engineering and environmental clearances in a time and cost efficient manner.
- Strategy RR 0.2: Conduct detailed evaluation of right-ofway design for each corridor segment as a next phase of study.
- Strategy RR o.3: Ensure major development projects in the corridor consider station area placement, nonmotorized connectivity, setback requirements, and street frontage design consistent with RapidRide station and running way needs.
- Strategy RR 0.4: Conduct outreach to corridor neighborhoods to discuss corridor design options and tradeoffs.
- Strategy RR 0.5: Develop street concept plans for RapidRide corridor segments likely to experience significant future development.
- Strategy RR o.6: Develop coordinated federal and local funding plans for the network and individual corridors and work with regional partners and FTA to obtain grant funds for project construction.
- Strategy RR 0.7: Coordinate vehicle specifications and use of existing fleet resources with King County Metro's bus procurement staff.
- SEATTLE'S RAPIDRIDE SCORECARD

Seattle's RapidRide Network corridors will meet minimum standards for service, design, and access, ensuring a fast, reliable, and high quality passenger experience. Each RapidRide corridor sheet (presented on pages 3-26 through 3-53) include RapidRide element scorecards based on a select set of criteria. Each RapidRide corridor is scored based on its ability to meet or surpass key service and design elements that will deliver speed, reliability and a high-quality experience for customers accessing, waiting for, and riding a RapidRide vehicle. Only • Strategy RR o.8: Develop a 5-year action plan for RapidRide corridors as part of future Transit Master Plan updates to achieve silver or better ITDP BRT Standard scores. Achieving the preferred standards from Seattle's RapidRide Toolkit will aid in achieving silver BRT status.

- Strategy RR o.g: Continue to coordinate closely with King County Metro (KCM) on design, engineering, operations, technology and project construction planning. Coordinate with Sound Transit on regional funding strategy for federal transit monies.
- Strategy RR 0.10: Evaluate and bundle multimodal improvements with the RapidRide corridor projects. Leverage planning, design, construction of several individual projects into a larger package for efficiency and minimization of construction impacts.
- **Strategy RR 0.11:** Develop a coordinated implementation and local funding plan for each RapidRide corridor.
- Strategy RR 0.12: Coordinate with KCM to develop service plans, fund and install OCS extensions (where necessary), and conduct public review process to implement new RapidRide corridors.

RapidRide elements that can be scored at a concept level are assessed (i.e., service, vehicle, and station design elements cannot be scored at this level of planning).

Implementation of these features is dependent on further analysis, design, and funding availability. Criteria and scoring methodologies are presented below.

FIGURE 3-8 RAPIDRIDE CRITERIA AND SCORING METHODOLOGIES

ELEMENT	CRITERION	TARGET	SCORING METRIC
The Elements	Dedicated Runningway	Mixed-traffic for no more than 50% of corridor acceptable with intersection enhancements to prioritize transit (e.g., bus bulbs, far-side stops or near-side stops with queue jump lanes, transit signal priority)	% of corridor with all-day dedicated runningway
	Bus Lane Alignment	RapidRide corridors limit transitions between median- and side- running alignments along corridor extent	Yes/No
	Intersection Treatments	Provide transit priority at congested intersections by providing queue jump lanes and/or signal priority treatments	% of signalized intersections with priority treatments
The Network	Intermodal Connections	Alignment provides connectivity to local and regional bus, planned Link light rail, and other modes of travel; the alignment is direct and easy for customers to understand	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus
	Stop Spacing	Maximum stop spacing is every 0.5 miles with no overlaid "local" service	Average stop spacing
The Stations	Full Rapid Ride Stations	Stations to be upgraded to a full featured RapidRide stations, offering a base level of passenger amenity	# of stations being upgraded to full featured stations
Move Seattle Walking and Biking ImprovementsSafe, intuitive, and proximate paths are provided between RapidRid stations and local bus stops, Link light rail stations, Colman Dock, regional express routes, and Pronto Bike Share stations		# of Move Seattle pedestrian/bicycle projects in corridor	

SURFACE HCT AND BICYCLE INTEGRATION

The design of surface HCT corridors on urban streets requires addressing trade-offs between transit, motor vehicles, and people riding bicycles. Context-sensitive, block-by-block design will be required to ensure that high volumes of bicyclists along parts of these corridors can be safely accommodated.

Best Practices for Integrating Bicycles with BRT and Streetcar

Best practices for integrating bicycles with BRT or streetcar include:

- Center running transitways allow for median stops that minimize bicycle as well as pedestrian conflicts
- **A "Copenhagen left" turn** (jughandle) can be used to help cyclists cross tracks and other traffic; a bicycle-only signal can be implemented in conjunction with this type of turn
- **Separated facilities** such as protected bike lanes (Montreal, Vancouver B.C., and Washington D.C.) or parallel bikeways (The Netherlands)
- Clearly delineated pedestrian and bicycle space, such as "channelized" travel paths for each mode to help prevent conflicts
- Warning signage to alert cyclists, pedestrians, and transit passengers to potentially dangerous situations

Best practices for integrating bicycles with RapidRide include:

• Floating bus stops that wrap around passenger waiting facilities eliminate conflicts with transit vehicles and help manage bicycle speeds through intersections

Best practices for integrating bicycles with streetcar include:

- A left-side track and platform alignment is optimal for reducing conflicts
 - If a right-side track alignment is used, provide adequate dedicated spaces for bicycles and place stations outside of the bicycle travel path
- Crossings designed so that cyclists cross tracks at an angle near 90 degrees to reduce risk of a tire catching in the track; use pavement markings to reinforce the intended crossing angle

Seattle First Hill Streetcar Bikeway Design

In Seattle, a two-way cycle track along Broadway (right) was constructed for the First Hill Streetcar, connecting First Hill, Capitol Hill, the International District, and Pioneer Square. The design includes bike boxes (shown in green) to facilitate safe turns.

Source: Association of Pedestrian and Bicycle Professionals, "Integrating Bicycles with Streetcars" (Webinar), April 20, 2011.

A cycle track is the bicycle facility for the First Hill Streetcar project.

Source: URS; Alta Planning

SEATTLE RAPIDRIDE CORRIDOR SHEETS

The following corridor sheets provide detailed descriptions of the seven new RapidRide corridors as well as metrics developed as part of the RapidRide corridor evaluation. Each corridor sheet provides a brief explanation of each metric. Each corridor sheet also presents critical considerations for implementation and multimodal coordination. Corridor details are illustrated for the following seven corridors:

- Central Area First Hill Downtown, via Madison (RapidRide Corridor 1)
- Burien TC Downtown via Delridge Way (RapidRide Corridor 2)
- Mount Baker Downtown via Rainier Avenue and Jackson Street (RapidRide Corridor 3)
- Rainier Valley U-District via 23rd Avenue and Rainier Avenue (RapidRide Corridor 4)
- Ballard U-District Laurelhurst via Market Street and 45th (RapidRide Corridor 5)
- Northgate Ballard Fremont South Lake Union Downtown, via Westlake Avenue (RapidRide Corridor 6)
- Northgate Roosevelt University District South Lake Union Downtown, via Roosevelt Way/11th Avenue and Eastlake Avenue (RapidRide Corridor 7)

RapidRide Corridor 1

Central Area - First Hill - Downtown, via Madison Street

Key Characteristics

Length: 2.88 miles

Major Stations: 1st Avenue (shared with Center City Connector streetcar), Madison/Spring at 3rd Avenue, Terry Avenue, Summit/Boylston (Broadway Streetcar connection), 12th Avenue, 22nd Avenue, MLK Jr. Way

Average Stop Spacing: 0.26 miles

Key Connections

- Downtown Seattle Transit Tunnel
- 3rd Avenue Transit Spine
- Seattle Streetcar at ist Avenue (planned) and Boylston/ Broadway
- RapidRide Corridor 4 at 23rd Avenue/Denny Way
- Colman Dock (via pedestrian connection)

Permitted Development:

Office Commercial: 1,600,122 sf Retail: 108,248 sf Residential: 1,162 units

Service Design

Alignment Alternatives: None (LPA determined) *Potential for Dual-Sided Vehicles:* Yes, recommended

RapidRide Scorecard				
CRITERION	SCORING METRIC	SCORE		
The Elements				
Dedicated Runningway (all-day)	% of corridor	62%		
Bus Lane Alignment (limited transitions)	Yes/No	Yes		
Intersection Treatments	% of signalized intersections have transit priority treatments	51%		
The Network				
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 1 RapidRide: 2 Streetcar: 2 Colman Dock: 1 Local/regional bus: 12		
Stop Spacing	Average stop spacing	0.26 miles		
The Stations				
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	18		
The Connections				
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	10		

RapidRide Corridor 1:

Major updates to corridor capital project elements compared to the 2012 Transit Master Plan

- This corridor was labeled HCT Corridor 6 in the 2012 Transit Master Plan
- SDOT has completed a Concept Design Study for this corridor, including the development of 10% design plans. Many of the 2012 TMP concepts are include in the Preferred Concept developed in 2015, including BAT lanes on downtown streets.
- Median transit only lanes included in the 2015 Preferred Concept were not included in the 2012 TMP.
- The 2015 Preferred Concept also extends the project's eastern terminus to Martin Luther King Jr. Boulevard rather than 23rd Avenue.

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 1 Central Area - First Hill - Downtown, via Madison Street

Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	17,000 (7,000 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Ridership was modeled using the Sound Transit ridership forecasting model.
Productivity	172 riders/hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
S RapidRide Initial Investment Level	\$98.0-\$120.0M (\$34.0-\$41.7M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the corridor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost- effective capital project elements and levels of investment appropriate to different right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identi- fied during detailed corridor planning and design process. Vehicles, major repaving, and sidewalk projects are included in cost range.
Cost/Rider	\$1.98	Value of investment over time, including cost of operation and annu- alized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 15 years for electric trolley bus.
S\$\$\$\$\$ O&M Cost	\$6.8M	Annual total cost to deliver service on the proposed line. Annual operating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study. Does not include cost reductions from repurposing of existing bus service hours.
Operating Cost/ New Ride	\$1.24	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
0000 0000 Travel Time Savings	40%	In-vehicle travel time savings (compared to current service) for a passenger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	514 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.
- Strategy RR 1.1: Coordinate with the Center City Connector team to ensure integrated right-of-way operations and superior passenger experience at the 1st Avenue RapidRide Station to be shared with Seattle Streetcar.
- Strategy RR 1.2: Enhance pedestrian access and connectivity between the Boylston Avenue RapidRide Station and Broadway First Hill Streetcar Station.
- Strategy RR 1.3: Use the Terry and 12th Avenue RapidRide Station Areas as an opportunity to enhance the public realm, including pedestrian safety and streetscape enhancements and the potential for roadway reconfiguration to improve non-motorized access.
- Strategy RR 1.4: Coordinate with the RapidRide Corridor 4 (23rd/Rainier) project to design stations that would provide a safe, comfortable, and proximate transfer between the two intersecting RapidRide routes at Madison Street & 23rd Avenue.
- Strategy RR 1.5: Conduct preliminary engineering (PE) and prepare National Environmental Policy Act (NEPA) clearances necessary to allow project to apply for federal funding in 2016.
- Strategy RR 1.6: Engage King County Metro to evaluate a route extension east to MLK Jr. Way.
- Strategy RR 1.7: Advance Spring Street transit only lanes and floating bus stops/passenger islands as an early implementation item.

- Strategy MMC 1.1: Capitalize on station area improvements to enhance pedestrian facilities conditions and facilities across the roadway.
- Strategy MMC 1.2: Use Madison BRT project to provide enhanced pedestrian and bicycle crossings and improve safety, particularly at Union Street, 19th Street, and 24th Street intersections.
- Strategy MMC 1.3: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.
- Strategy MMC 1.4: Replace sidewalks between 24th and 28th Avenues where current sidewalk conditions are very poor.
- Strategy MMC 1.5: Develop a street concept plan for the Madison Street corridor between MLK and 1st Avenue.
- Strategy MMC 1.6: Connect the 2nd & 4th Avenue protected bike lanes with a protected bicycle lane on the north side of Spring Street.
- Strategy MMC 1.7: Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 1.8: Ensure neighborhood greenway crossings provide safe access across the corridor and to RapidRide stations at 8th and Union Avenues.
- **Strategy MMC 1.9:** Identify stations for bike share expansion to enable seamless transfers between RapidRide and bike share.

RapidRide Corridor 2

Burien TC – South Lake Union via Delridge Way

Key Characteristics

Length: 10.16 miles

Major Stations: South Lake Union stations along Westlake Avenue, 3rd Avenue Transit Spine stations, Columbia Street and Alaskan Way, Genesee Street, Barton Street/26th Avenue, Delridge Way/Roxbury Street

Average Stop Spacing: 0.56 miles

Key Connections

- Aloha terminus (RapidRide Corridors 3 and 7 connections)
- Spokane Street Park & Ride
 SW Generate (Poute
- Downtown Seattle Transit Tunnel
- SW Genesee (Route 50/125 connection)
 Barton Street/26th
- 3rd Avenue Transit Spine
- Seattle Streetcar connections along Westlake Avenue
- Colman Dock
- Avenue (C Line connection) • SW Delridge/Roxbury (several local route connections)

Permitted Development

Office Commercial: 10,468,932 sf Retail: 1,434,795 sf Residential: 13,855 units

Service Design

Alignment Alternatives: Direct connection along Delridge Way SW between SW Barton and Roxbury Potential for Dual-Sided Vehicles: No

RapidRide Scorecard			
CRITERION	SCORING METRIC	SCORE	
The Elements			
Dedicated Runningway (all-day)	% of corridor	30%	
Bus Lane Alignment (limited transitions)	Yes/No	Yes	
Intersection Treatments	% of signalized intersections have transit priority treatments	44%	
The Network			
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 1 RapidRide: 7 Streetcar: 1 Colman Dock: 1 Local/regional bus: 10	
Stop Spacing	Average stop spacing	0.56 miles	
The Stations			
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	24	
The Connections			
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	7	

LEGEND HCT Corridors Future RapidRide Corridors Corridor Alignment Corridor 1: Madison Corridor 2: Delridge Alternative Alignment Corridor 3: Jackson/Rainier -O- ST Link Light Rail / Stations Corridor 4: 23rd/Rainier Existing RapidRide Routes Corridor 5: Market/45th --- Seattle Streetcar / Stations Corridor 6: Westlake - Ballard - Northgate Corridor 7: Roosevelt Potential Improvements Existing Daily Boardings at High Ridership Stops BB Bus Bulbs TSP Transit Signal Priority 100 - 200 🛑 Inbound Upgrade to Full Station 201 or more 🔵 Outbound 0 Floating Bus Stop **Existing Signals** * Queue Jump Lanes (both directions, unless noted) 🕸 SDOT Full Signal 🕸 WSDOT Signal Layover Location (requires study) 🚺 Half Signal 👔 Mid-Block Cross Walk Potential Right-of-way Treatments Pending Detailed Feasibility Analysis Transit Only Lane BAT Lane Peak BAT Lane Mixed Traffic 90 BROADW SEMECA No transit signal priority in Center City 6TH AVE/S 5 WESTLAKE LINK STATION (519) STLAKE A Contraflow transit only lane on Columbia between Alaskan Way 99

RapidRide Corridor 2:

Major updates to corridor capital project elements compared to the 2012 Transit Master Plan

- This corridor was labeled Priority Bus Corridor 2 in the 2012 Transit Master Plan
- Corridor is extended to South Lake Union including proposal to use new Westlake transit lanes
- Corridor alignment between Barton and Roxbury consistent with KCM Route 120 adjustment providing connection to
- RapidRide C Line at Westwood Village

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 2 Burien TC – South Lake Union via Delridge Way		
Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	14,600 (7,800 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Weekday riders (2035) estimated from Spring 2015 stop/route-level boardings assigned to each corridor. Net new weekday riders equal 2030 estimate of potential ridership minus current (2015) ridership estimate for the corridor.
Productivity	66 riders/hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
S RapidRide Initial Investment Level	\$38.0-\$47.0M (\$3.7-\$4.6M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the corri- dor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost-effective capital project elements and levels of investment appropriate to differ- ent right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identified during detailed corridor planning and design process. Does not include vehicle costs.
Cost/Rider	\$3.43	Value of investment over time, including cost of operation and annual- ized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 12 years for diesel hybrid bus.
\$\$\$\$\$ O&M Cost	\$14.4M	Annual total cost to deliver service on the proposed line. Annual oper- ating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study. Does not include cost reductions from repurposing of existing bus service hours.
Operating Cost/ New Ride	\$3.03	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
0000 0000 Travel Time Savings	14%	In-vehicle travel time savings (compared to current service) for a pas- senger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	1,964 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.

- Strategy RR 2.1: Work with WSDOT to address transit priority needs on state highway facilities, particularly a southbound transit only lane on SR-99 and a westbound transit only lane on the West Seattle Bridge.
- Strategy RR 2.2: Evaluate options with WSDOT for jointly improving freight/transit operations on state highway facilities.
- Strategy RR 2.3: Leverage recent King County Metro stop consolidation and transit investments along the Delridge corridor that were part of the 2012 Route 120 Transit Corridor Improvement project. Coordinate funding in the adopted State Transportation Package.
- Strategy RR 2.4: Coordinate with existing funding arrangements for corridor improvements.
- Strategy RR 2.5: Work with local stakeholders to evaluate transit speed and reliability tradeoffs between corridor on-street parking and Business Access and Transit (BAT) lanes.
- Strategy RR 2.6: Work with the Bicycle Advisory Board and other local stakeholders to evaluate separated bicycle facility options along Delridge Way SW between SW Oregon Street and SW Orchard Street.
- Strategy RR 2.7: Engage King County Metro to evaluate a route extension from City Center to South Lake Union via Westlake Avenue.
- Strategy RR 2.8: Investigate lane capacity issues on Westlake Avenue and layover options in South Lake Union that would allow for a route extension.
- Strategy RR 2.9: Evaluate feasibility of South Lake Union operations on Westlake, particularly transit lane capacity to accommodate Seattle Streetcar, Rapid Ride C-Line, RapidRide Corridor 6 (Northgate - Ballard - Fremont -South Lake Union – Downtown), and this line.

- Strategy MMC 2.1: Coordinate design of transit priority treatments with ongoing Bicycle Master Plan facility planning on Delridge Way SW between SW Oregon Street and SW Orchard Street and on 26th Avenue between SW Barton Street and SW Roxbury Street.
- Strategy MMC 2.2: Develop a street concept plan for the Delridge Way SW corridor between the West Seattle Bridge ramps and SW Roxbury Street.
- Strategy MMC 2.3: Ensure neighborhood greenway crossings provide safe access across the corridor and to proposed RapidRide stations.
- Strategy MMC 2.4: Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 2.5: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.
- Strategy MMC 2.6: Identify stations for bike share expansion to enable seamless transfers between RapidRide and bike share.

RapidRide Corridor 3

Mount Baker – South Lake Union via Rainier Avenue and Jackson Street

Key Characteristics

Length: 5.25 miles

Major Stations: South Lake Union stations on Fairview, 3rd Avenue Transit Spine stations, International District stations along Jackson Street, 23rd Avenue, Judkins Park, Mount Baker Transit Center

Average Stop Spacing: 0.26 miles

Key Connections

- Aloha terminus (RapidRide Corridors 2 and 7 connections)
- Downtown Seattle Transit Tunnel
- 3rd Avenue Transit Spine
- Seattle Streetcar connections along Jackson Street and at Westlake and 5th/7th
- King Street Station
- 23rd Avenue (RapidRide Corridor 4 connection)
- Rainier Freeway Station
- Mount Baker Link Station/Transit Center

Permitted Development:

Office Commercial: 9,459,932 sf Retail: 1,404,480 sf Residential: 15,248 units

Service Design

Alignment Alternatives: None Potential for Dual-Sided Vehicles: Yes

RapidRide Scorecard			
CRITERION	SCORING METRIC	SCORE	
The Elements			
Dedicated Runningway (all-day)	% of corridor	75%	
Bus Lane Alignment (limited transitions)	Yes/No	Yes	
Intersection Treatments	% of signalized intersections have transit priority treatments	40%	
The Network			
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 5 RapidRide: 8 Streetcar: 2 Local/regional bus: 8	
Stop Spacing	Average stop spacing	.38 miles	
The Stations			
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	18	
The Connections			
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	7	

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 3 Mount Baker – South Lake Union via Rainier Avenue and Jackson St

Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	17,900 (8,000 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Weekday riders (2035) estimated from Spring 2015 stop/route-level boardings assigned to each corridor. Net new weekday riders equal 2030 estimate of potential ridership minus current (2015) ridership estimate for the corridor.
Productivity	107 riders/ hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
S RapidRide Initial Investment Level	\$19.0-\$23.0M (\$3.6-\$4.4M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the corri- dor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost-effective capital project elements and levels of investment appropriate to differ- ent right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identified during detailed corridor planning and design process. Does not include vehicle costs.
Cost/Rider	\$2.10	Value of investment over time, including cost of operation and annual- ized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 15 years for electric trolley bus.
S\$\$\$\$\$ O&M Cost	\$11.1M	Annual total cost to deliver service on the proposed line. Annual oper- ating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study. Does not include cost reductions from repurposing of existing bus service hours.
Operating Cost/ New Ride	\$1.92	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
0000 0000 Travel Time Savings	33%	In-vehicle travel time savings (compared to current service) for a pas- senger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	1,073 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.

3-36 Chapter 3 — Corridors

Note: All costs are in 2015 dollars.

- Strategy RR 3.1: Investigate layover opportunities in northern South Lake Union consistent with use of Fairview, including identification of overhead wire needs.
- Strategy RR 3.2: Engage King County Metro to evaluate a route extension from South Lake Union to the University District via Eastlake Avenue.
- Strategy RR 3.3: Evaluate tradeoffs of converting First Hill Streetcar running way on Jackson Street to centerrunning transit-only lanes to allow for shared RapidRide/ streetcar operations and Japantown, Chinatown, and Little Saigon center-platform stations.
- Strategy RR 3.4: Leverage planned and recently constructed King County Metro transit investments along 23rd Avenue.
- Strategy RR 3.5: Evaluate feasibility of center-running transit-only lanes on Rainier Avenue including I-90 undercrossing opportunities and constraints.
- Strategy RR 3.6: Coordinate right-of-way and station designs with the RapidRide Corridor 4 project (Rainier Valley – U-District via 23rd Avenue and Rainier Ave).
- Strategy RR 3.7: Evaluate options for jointly improving freight/transit operations on the major truck street portion of Jackson Street between S Dearborn Street and MLK Jr. Way.
- Strategy RR 3.8: Engage King County Metro to evaluate a route restructuring for Route 7.
- Strategy RR 3.9: Coordinate station and level boarding opportunities at the Judkins Park East Link and RapidRide stations.

- Strategy MMC 3.1: Coordinate design of the southern route terminus routing and layover facility with the Accessible Mt. Baker study in order to 1) integrate the study's near-term recommended access and safety improvement projects and 2) ensure compatibility with the long-range integrated multimodal plan for the Mt. Baker Town Center.
- **Strategy MMC 3.2:** Work with Sound Transit to ensure safe, attractive, and convenient non-motorized connectivity between the Judkins Park East Link Station and RapidRide.
- Strategy MMC 3.3: Coordinate routing and station design with the Accessible Mt. Baker study in order to 1) integrate the study's near-term recommended access and safety improvement projects and 2) ensure compatibility with the long-range integrated multimodal plan for the Mt. Baker Town Center.
- Strategy MMC 3.4: Coordinate with Southeast Transportation Study to leverage mobility and safety improvement project recommendations along corridor.
- Strategy MMC 3.5: Develop a street concept plan for the Rainier Avenue corridor between Jackson Street and MLK, incorporating recommendations from the Accessible Mt. Baker study.
- Strategy MMC 3.6: Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 3.7: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.
- Strategy MMC 3.8: Work with WSDOT to implement urban interchange improvements at Rainier Avenue and I-90.

RapidRide . Corridor 4

Rainier Valley – U-District via 23rd Avenue and Rainier Avenue

Key Characteristics

Length: 10.97 miles

Major Stations: Rainier Beach Transit Center, Mount Baker Transit Center, Judkins Park, Rainier/23rd Avenue, Madison/23rd Avenue, Boyer/Washington Arboretum, Montlake Freeway Station, NE Pacific/UW Medical Center, **U-District Link Station**

Average Stop Spacing: 0.38 miles

Key Connections

- Rainier Beach Link Station/Transit Center
- Mount Baker Link Station/Transit Center
- 23rd Avenue (RapidRide Corridor 3 connection)
- Rainier Freeway Station/Judkins Park Link Station
 Madison Street (RapidRide Corridor 1 connection)
- Montlake Freeway Station
- Husky Stadium Link Station (via NE Pacific)
- U-District Link Station/45th Street (RapidRide Corridor 1 connection)

Permitted Development:

Office Commercial: 67,843 sf Retail: 235,194 sf Residential: 4,290 units

Service Design

Alignment Alternatives: None Potential for Dual-Sided Vehicles: Yes (short segment shared with RapidRide Corridor 3)

RapidRide Scorecard			
CRITERION	SCORING METRIC	SCORE	
The Elements			
Dedicated Runningway (all-day)	% of corridor	38%	
Bus Lane Alignment (limited transitions)	Yes/No	Yes	
Intersection Treatments	% of signalized intersections have transit priority treatments	86%	
The Network			
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 5 RapidRide: 3 Local/regional bus: 13	
Stop Spacing	Average stop spacing	0.38 miles	
The Stations			
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	53	
The Connections			
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	31	

RapidRide Corridor 4:

Major updates to corridor capital project elements compared to the 2012 Transit Master Plan

- This corridor was labeled Priority Bus Corridor 5 in the 2012 Transit Master Plan
- Segment between E. Thomas and N 45th Street: 2015 TMP recommends consideration of BAT lanes where feasible given ROW constraints and traffic operations.
- Segment of 23rd Avenue between S. Jackson and Rainier: 2015 TMP recommends consideration of BAT lanes.

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 4

Rainier Valley – U-District via 23rd Avenue and Rainier Avenue

Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	15,800 (5,400 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Weekday riders (2035) estimated from Spring 2015 stop/route-level boardings assigned to each corridor. Net new weekday riders equal 2030 estimate of potential ridership minus current (2015) ridership estimate for the corridor.
Productivity	58 riders/hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
S RapidRide Initial Investment Level	\$90.0-\$96.0M (\$8.7-\$8.8M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the corri- dor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost-effective capital project elements and levels of investment appropriate to differ- ent right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identified during detailed corridor planning and design process. Does not include vehicle costs.
Cost/Rider	\$4.33	Value of investment over time, including cost of operation and annual- ized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 15 years for electric trolley bus.
S\$\$\$\$\$ O&M Cost	\$19.1M	Annual total cost to deliver service on the proposed line. Annual oper- ating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study. Does not include cost reductions from repurposing of existing bus service hours.
Operating Cost/ New Ride	\$3.72	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
0000 0000 Travel Time Savings	24%	In-vehicle travel time savings (compared to current service) for a pas- senger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	1,577 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.

3-40 Chapter 3 — Corridors

- Strategy RR 4.1: Consider local funding options for Rainier Beach Transit Center Project inclusive of new roadway, layover space, station area amenities, and operator comfort station that will serve the southern terminus of the RapidRide route.
- Strategy RR 4.2: Provide a convenient pedestrian and bicycle connection to University of Washington (Husky Stadium) Link Station.
- Strategy RR 4.3: Work with King County Metro to address layover potential on 12th Avenue and viable turnaround options that provide a connection to the U-District Link Station.
- Strategy RR 4.4: Coordinate with Madison BRT Project (RapidRide Corridor 1) to design stations and pedestrian connections that would provide a safe, comfortable, and proximate transfer between the two intersecting RapidRide routes at Madison Street & 23rd Avenue.
- Strategy RR 4.5: Evaluate options for jointly improving freight/transit operations on the major truck street portion of Rainier Avenue between S Dearborn Street and MLK Jr. Way.
- Strategy RR 4.6: Engage King County Metro to evaluate a route restructuring for Route 48.

- Strategy MMC 4.1: Coordinate with 23rd Avenue Corridor Improvements Project on feasible bus priority treatments following modification of 23rd Avenue from a four-lane street to a three-lane street between S Jackson Street and E John Street.
- **Strategy MMC 4.2:** Work with Sound Transit to ensure safe, attractive, and convenient non-motorized connectivity between the Judkins Park East Link Station and RapidRide.
- Strategy MMC 4.3: Coordinate routing and station design with the Accessible Mt. Baker study in order to 1) integrate the study's near-term recommended access and safety improvement projects and 2) ensure compatibility with the long-range integrated multimodal plan for the Mt. Baker Town Center.
- Strategy MMC 4.4: Coordinate with Rainier Avenue Safety Improvements Project to integrate and optimize RapidRide operations and facility design with approved roadway safety improvements between S Alaska Street and S Kenny Street.
- Strategy MMC 4.5: Coordinate with Southeast Transportation Study to leverage mobility and safety improvement project recommendations along corridor.
- Strategy MMC 4.6: Develop a street concept plan for the streets north of the 23rd Avenue Corridor Improvements Project.
- Strategy MMC 4.7: Ensure 21st Avenue and Rainier north/ south neighborhood greenway crossings provide safe access across the corridor and to proposed RapidRide stations.
- **Strategy MMC 4.8:** Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 4.9: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.

RapidRide Corridor 5

Ballard – U-District – Laurelhurst via Market Street and 45th Street

Key Characteristics

Length: 6.27 miles

Major Stations: Market Street/24th Avenue, Market Street/15th Avenue, 45th Street/Walingford Avenue, 45th Street/Roosevelt Way, Brooklyn Avenue/U-District Link Station, Sand Point Way/40th Avenue

Average Stop Spacing: 0.39 miles

Key Connections

- Market Street/24th Avenue (RapidRide Corridor 6 connection)
- Market Street/15th Avenue (E Line connection)
- 46th Street/Aurora Avenue (D Line connection)
- I-5 at NE 45th Street Freeway Station
- 45th Street/Roosevelt Way (RapidRide Corridor 7 connection)
- Brooklyn Avenue (Connection to U-District Link Station and RapidRide Corridor 4)

Permitted Development:

Office Commercial: 823,258 sf Retail: 445,160 sf Residential: 3,703 units

Service Design

Alignment Alternatives: Potential routing through University of Washington via E Stevens Way Potential for Dual-Sided Vehicles: No

RapidRide Scorecard				
CRITERION	SCORING METRIC	SCORE		
The Elements				
Dedicated Runningway (all-day)	% of corridor	71%		
Bus Lane Alignment (limited transitions)	Yes/No	Yes		
Intersection Treatments	% of signalized intersections have transit priority treatments	84%		
The Network				
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 1 RapidRide: 5 Local/regional bus: 11		
Stop Spacing	Average stop spacing	0.39 miles		
The Stations				
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	31		
The Connections				
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	14		

LEGEND HCT Corridors

Corridor Alignment
 Alternative Alignment

- -O- ST Link Light Rail / Stations
- Existing RapidRide Routes
- Seattle Streetcar / Stations

Potential Improvements

- Bus Bulbs
- Transit Signal Priority
- O Upgrade to Full Station
- Floating Bus Stop
- Queue Jump Lanes (both directions unle
- (both directions, unless noted)Layover Location (requires study)
- Potential Right-of-way Treatments
- Pending Detailed Feasibility Analysis Transit Only Lane
- BAT Lane Peak BAT Lane
- Mixed Traffic

RapidRide Corridor 5: Major updates to corridor capital project elements compared to the 2012 Transit Master Plan

- This corridor was labeled Priority Bus Corridor 13 in the 2012 Transit Master Plan
- Segment of the corridor between 30th Avenue NW and 42nd Avenue NE: 2015 TMP recommends consideration of peak and all-day BAT lanes where feasible.
- Projects resulting from 2014-2015 SDOT NW Market/45th Street Project analysis and design are include in 2015 TMP. These improvements included transit speed and reliability enhancements and pedestrian improvements.

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 5 Ballard – U-District – Laurelhurst via Market Street and 45th St

Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	16,200 (6,900 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Weekday riders (2035) estimated from Spring 2015 stop/route-level boardings assigned to each corridor. Net new weekday riders equal 2030 estimate of potential ridership minus current (2015) ridership estimate for the corridor.
Productivity	81 riders/hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
SAR RapidRide Initial Investment Level	\$30.0-\$37.0M (\$4.8-\$5.9M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the cor- ridor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost- effective capital project elements and levels of investment appropriate to different right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identified during detailed corridor planning and design process. Vehicle costs not included.
Cost/Rider	\$2.80	Value of investment over time, including cost of operation and annual- ized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 15 years for electric trolley bus.
S\$\$\$\$\$ O&M Cost	\$13.6M	Annual total cost to deliver service on the proposed line. Annual oper- ating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study. Does not include cost reductions from repurposing of existing bus service hours.
Operating Cost/ New Ride	\$2.57	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
0000 0000 Travel Time Savings	19%	In-vehicle travel time savings (compared to current service) for a pas- senger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	1,122 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.

3-44 Chapter 3 — Corridors

- Strategy RR 5.1: Explore additional eastern route terminus routing and layover options in the vicinity of Sand Point Way.
- Strategy RR 5.2: Evaluate feasibility of Business Access and Transit (BAT) lanes east of I-5.
- Strategy RR 5.3: Integrate spot improvements west of I-5 as recommended by Route 44 Enhancements Study.
- Strategy RR 5.4: Build off success of SDOT spot improvements constructed as part of the NW Market/NE 45th Street Transit Priority Corridor Improvement Project and continue to implement public realm elements of the project.
- Strategy RR 5.5: Work with corridor business stakeholders to evaluate tradeoffs between transit speed and reliability and on-street parking needs.
- Strategy RR 5.6: As a primary east-west route, ensure seamless connections to north/south RapidRide routes and future U-District Link Station.
- Strategy RR 5.7: Evaluate sidewalk width in station areas for potential right-of-way needs for ADA-compliant station design.
- Strategy RR 5.8: Engage King County Metro to evaluate a route extension east to Sand Point Way/NE 50th Street.
- Strategy RR 5.9: Coordinate with King County Metro and the University of Washington to evaluate potential campus routing options.

- Strategy MMC 5.1: Coordinate with WSDOT on Market Street/I-5 crossing improvements and access control that will enhance transit and non-motorized trips.
- Strategy MMC 5.2: Coordinate with Sand Point Way Safety Corridor project to integrate and optimize RapidRide operations and facility design with approved roadway safety improvements between Montlake Boulevard NE and 50th Street NE.
- Strategy MMC 5.3: Develop a street concept plan for the Sand Point Way, 45th Street, 46th Street, and Market Street corridor, considering previous work on the NW Market/NE 45th Street Transit Priority Corridor Improvement and Sand Point Way Safety Corridor projects.
- Strategy MMC 5.4: Ensure 46th Street and 17th Avenue neighborhood greenway connections provide safe access across the corridor and to proposed RapidRide stations.
- Strategy MMC 5.5: Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 5.6: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.

RapidRide Corridor 6

Northgate - Ballard - Fremont - South Lake Union – Downtown, via Westlake Avenue

Key Characteristics

Length: 13.15 miles

Major Stations: Jackson, 3rd Avenue stations, Westlake Avenue stations, Fremont Avenue/34th Street, Market Street/15th Avenue, Market Street/24th Avenue, Holman Road/15th Avenue, Northgate Link Station/Transit Center

Average Stop Spacing: 0.41 miles

Key Connections

- Downtown Seattle Transit Tunnel
- 3rd Avenue Transit Spine
- Seattle Streetcar at Jackson Street and Westlake Avenue
- Leary Avenue/15th Avenue (D Line connection)
- Market Street/24th Avenue (RapidRide Corridor 5 connection)
- 105th Street/Aurora Avenue (E Line Connection)
- Northgate Link Station/Transit Center

Permitted Development:

Office Commercial: 9,558,738 sf Retail: 1,456,012 sf Residential: 16,997 units

Service Design

Alignment Alternatives: Potential new bridge connection across the Ship Canal, immediately to the west of the Ballard Bridge

Potential for Dual-Sided Vehicles: No

RapidRide Scorecard				
CRITERION	SCORING METRIC	SCORE		
The Elements				
Dedicated Runningway (all-day)	% of corridor	41%		
Bus Lane Alignment (limited transitions)	Yes/No	Yes		
Intersection Treatments	% of signalized intersections have transit priority treatments	55%		
The Network				
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 5 RapidRide: 9 Streetcar: 2 Local/regional bus: 11		
Stop Spacing	Average stop spacing	0.41 miles		
The Stations				
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	55		
The Connections				
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	26		

RapidRide Corridor 6: Major updates to corridor capital project elements compared to the 2012 Transit Master Plan

- This corridor was labeled HCT Corridor 11 (Ballard Fremont Downtown) and a portion of Priority Bus Corridor 10 (Holman Road) in the 2012 Transit Master Plan
- The 2012 TMP recommended Rapid Streetcar as the preferred mode for this corridor; the 2015 TMP recommends RapidRide for this corridor.
- This corridor introduces a new segment along 24th Avenue NW between NW Market Street and N 85th Street. No dedicated transit lanes are called for in this segment; floating bus islands are recommended for consideration.
- Segment of the corridor on Holman Road between 15th Avenue NW and Aurora Avenue N recommended for consideration of BAT lanes.
- Segment of College Way between Northgate Way and N 92nd Avenue recommended for consideration of BAT lanes pending further analysis of right-of-way constraints and bicycle facility priorities.
- For the segments of the corridor between Ballard and South Lake Union, recommendations for right-of-way reallocation to transit lanes are similar to the 2012 TMP despite the change in recommended mode from rapid streetcar to RapidRide.

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 6 Northgate - Ballard - Fremont - South Lake Union – Downtown, via Westlake Avenue

Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	24,400 (9,000 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Weekday riders (2035) estimated from Spring 2015 stop/route-level boardings assigned to each corridor. Net new weekday riders equal 2030 estimate of potential ridership minus current (2015) ridership estimate for the corridor.
Productivity	71 riders/hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
SAR RapidRide Initial Investment Level	\$31.0-\$38.0M (\$2.4-\$2.9M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the corri- dor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost-effective capital project elements and levels of investment appropriate to differ- ent right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identified during detailed corridor planning and design process. Vehicle costs no included.
Čost/Rider	\$3.25	Value of investment over time, including cost of operation and annual- ized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 12 years for diesel hybrid bus.
S\$\$\$\$\$ O&M Cost	\$24.2M	Annual total cost to deliver service on the proposed line. Annual oper- ating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study. Does not include cost reductions from repurposing of existing bus service hours.
Operating Cost/ New Ride	\$3.06	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
OOOOOOOOTravel TimeSavings	17%	In-vehicle travel time savings (compared to current service) for a pas- senger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	2,906 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.

3-48 Chapter 3 — Corridors

- Strategy RR 6.1: Evaluate South Lake Union operations on Westlake, particularly transit lane capacity to accommodate Seattle Streetcar, RapidRide C Line, proposed RapidRide Corridor 2 (current Route 120) and this route. This service should take priority over the Delridge extension to South Lake Union.
- Strategy RR 6.2: Study in detail options for crossing the Ship Canal, which could include various design and operational alternatives for use of the existing Fremont Bridge (likely first phase), rebuilding the existing Fremont Bridge to accommodate all modes, and the development of a new multimodal high-bridge to cross the Ship Canal (in the vicinity of 3rd Avenue W).
- Strategy RR 6.3: Evaluate options for jointly improving freight/transit operations on major truck streets corresponding to proposed RapidRide route alignment (Westlake Avenue N, N 36th Street, Leary Way NW, Holman Road NW, N 105th Street, and N Northgate Way).
- Strategy RR 6.4: Evaluate feasible routing options for crossing I-5 and optimal access to the Northgate Transit Center.
- Strategy RR 6.5: Consider phasing of transit priority treatments on a segment-by-segment approach based on right-of-way characteristics, traffic patterns, and ridership demand.
- Strategy RR 6.6: Evaluate feasibility of South Lake Union operations on Westlake, particularly transit lane capacity to accommodate Seattle Streetcar, Rapid Ride C-Line, RapidRide Corridor 2 (Burien TC South Lake Union, via Delridge Way), and this line.

- Strategy MMC 6.1: Coordinate design of priority bus treatments on 1st Avenue NE with protected bicycle lane proposed between NE 92nd Street to Northgate Way.
- Strategy MMC 6.2: Coordinate design options along Westlake Avenue with the Westlake Cycle Track project.
- Strategy MMC 6.3: Evaluate options for a new multimodal bridge crossing of the Ship Canal east of the Fremont Bridge. A new bridge would ensure transit reliability but could also provide needed crossing options for pedestrians and people on bicycles.
- Strategy MMC 6.4: Ensure compatibility between existing protected bicycle lane and transit-only lane on Nickerson Street (as part of a new high bridge crossing).
- Strategy MMC 6.5: Optimize transfer and pedestrian experience at the junction of RapidRide Corridors 5 and 6 in the Ballard Hub Urban Village area.
- Strategy MMC 6.6: Coordinate with the Move Ballard study to integrate the multimodal transportation plan recommendations and access improvements into effective route and station design options in the Ballard Hub Urban Village.
- Strategy MMC 6.7: Develop a street concept plan for all streets in RapidRide Corridor 6.
- Strategy MMC 6.8: Ensure 100th, 90th, and 83rd Street neighborhood greenway connections provide safe access across the corridor and to proposed RapidRide stations.
- Strategy MMC 6.9: Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 6.10: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.
- Strategy MMC 6.11: Pilot a transit and freight only lane on Leary Avenue between 15th Avenue and Fremont Avenue.

RapidRide Corridor 7

Northgate - Roosevelt - University District - South Lake Union - Downtown, via Roosevelt Way/11th Avenue and Eastlake Avenue

Key Characteristics

Length: 8.74 miles

Major Stations: Northgate Link Station, Roosevelt Way/11th Avenue and 45th Street, Lynn Street, Republican Street, Fairview Avenue stations, 3rd Avenue stations, Jackson Street

Average Stop Spacing: 0.38 miles

Key Connections

- Downtown Seattle Transit Tunnel
- 3rd Avenue Transit Spine
- Seattle Streetcar and RapidRide Corridor 2/3 at Aloha
 Street
- Roosevelt Way/11th Avenue and 45th Street (RapidRide Corridor 4/5 and U-District Link Station connections)
- Northgate Link Station

Permitted Development:

Office Commercial: 9,814,304 sf *Retail:* 1,529,741 sf *Residential:* 21,018 units

Service Design

Alignment Alternatives: Access to 3rd Avenue via Westlake and Lenora/Blanchard; Connection to U-District Link Station via Brooklyn Ave *Potential for Dual-Sided Vehicles:* Yes

RapidRide Scorecard				
CRITERION	SCORING METRIC	SCORE		
The Elements				
Dedicated Runningway (all-day)	% of corridor	49%		
Bus Lane Alignment (limited transitions)	Yes/No	Yes		
Intersection Treatments	% of signalized intersections have transit priority treatments	63%		
The Network				
Intermodal Connections	# of connections to Link, RapidRide, Ferry, streetcar, and local/regional bus	Link: 6 RapidRide: 9 Streetcar: 2 Local/regional bus: 11		
Stop Spacing	Average stop spacing	0.38 miles		
The Stations				
Full-Feature Stations	<i># of stations being upgraded to full featured stations</i>	42		
The Connections				
Move Seattle Walking and Biking Improvements	# of Move Seattle pedestrian/ bicycle projects in corridor	24		

RapidRide Corridor 7:

Major updates to corridor capital project elements compared to the 2012 Transit Master Plan

- This corridor was labeled HCT Corridor 8 in the 2012 Transit Master Plan
- 2012 Transit Master Plan recommended Rapid Streetcar for this corridor.
- For the segments of the corridor between the University District and South Lake Union, recommendations for right-of-way reallocation to transit lanes are similar to the 2012 TMP despite the change in recommended mode.
- The 2015 TMP recommends consideration of BAT lane treatments on Eastlake Avenue and Fairview Avenue south of the University Bridge. The 2012 TMP recommended streetcar operations shared with traffic.
- SDOT is completing a Concept Design study for this corridor in 2017 which will provide more refined recommendations for transit facility design and roadway cross sections.

Recommended RapidRide corridor improvements are conceptual in nature and will require future public outreach, technical analysis, and detailed design work.

RapidRide Corridor 7 Northgate - Roosevelt - University District - South Lake Union - Downtown

Metric	Score	Details
Ridership (Weekday riders [2035] and Net New Riders)	16,000 (9,200 net new riders)	Ridership potential in 2035 is based on service improvements and projected land use changes: Weekday riders (2035) estimated from Spring 2015 stop/route-level boardings assigned to each corridor. Net new weekday riders equal 2030 estimate of potential ridership minus current (2015) ridership estimate for the corridor.
Productivity	53 riders/hour	Efficiency with which provided transit capacity is utilized. Productivity equals weekday ridership divided by weekday revenue hours: A "revenue hour" includes time when a transit vehicle is available to carry passengers. It includes layover time, but excludes "deadhead" time such as when a bus travels to the start of a route. Weekday hours of revenue service calculated through development of corridor-specific operating plan.
SapidRide Initial Investment Level	\$28.0-\$34.0M (\$3.2-\$3.9M per mile)	Expected level of initial investment required to provide transit speed, reliability, passenger comfort, and access improvements in the cor- ridor. Based on initial planning level assessment conducted as part of the 2015 TMP update. Future analysis will identify the most cost- effective capital project elements and levels of investment appropriate to different right-of-way configurations and land use environments along the corridor. Higher level of investment may be possible based on potential additional local, regional, state and federal funding identified during detailed corridor planning and design process. Vehicle costs not included.
Cost/Rider	\$4.17	Value of investment over time, including cost of operation and annual- ized cost of capital investment, fleet replacement, and maintenance: Annualized operating and capital cost per rider equals annual operating cost plus annualized capital costs divided by annual boarding rides. Operating cost adjusted for inflation by 2.4% annually. Infrastructure life held constant. Assumed vehicle life is 15 years for electric trolley bus and 12 years for diesel hybrid bus.
S\$\$\$\$\$ O&M Cost	\$20.8M	Annual total cost to deliver service on the proposed line. Annual oper- ating cost based on the number of hours of revenue service, calculated through development of corridor-specific operating plan, multiplied by the 2015 operating cost for RapidRide. The 2015 operating costs are based on King County Metro operating cost factors and assumptions from the Madison Corridor BRT Study.
Operating Cost/ New Ride	\$4.00	Operating cost to deliver a new boarding ride considering potential cost savings: Calculated as planned weekday operating cost minus weekday operating cost savings, divided by the number of net new boarding rides projected for 2035. Analysis of cost savings is conceptual.
???????????????????????????????????	23%	In-vehicle travel time savings (compared to current service) for a pas- senger riding between two terminus stations: Projected 2035 corridor travel time with current road design - estimated travel times under each mode, alignment, and design.
GhG Savings	1,957 MT CO2e	Annual reduction in greenhouse gas emission equivalents from reduced vehicle miles traveled and net change in transit emissions: Emissions savings from reduced VMT based on an assumed rate of displaced light duty vehicle trips per new transit rider, average trip length by corridor, average fuel economy, and resulting fuel savings. Emissions savings from net change in transit emissions equals planned service minus existing service (based on conceptual operating plans). Emissions factors applied based on known emission assumptions for electric trolley bus and diesel hybrid bus.

- Strategy RR 7.1: Evaluate tradeoffs between Fairview and Westlake alignments through Center City and South Lake Union, considering needs for overhead trolley wire and capacity constraints on Westlake Transit lanes created by use of Seattle Streetcar and one existing (RapidRide C Line Extension) and RapidRide Corridors 2 and 6 (current Route 40 and Route 120).
- Strategy RR 7.2: Examine feasibility of converting center-running shared streetcar/general purpose lanes on Fairview Avenue to transit-only lanes to allow for shared RapidRide/streetcar operations between Valley Street and Yale Avenue N.
- Strategy RR 7.3: Collaborate with King County Metro and Sound Transit to create high-quality connections between the RapidRide route and U-District Link Station on Brooklyn Avenue.
- Strategy RR 7.4: Consider phasing of transit priority treatments on a segment-by-segment approach based on right-of-way characteristics, traffic patterns, and ridership demand.
- Strategy RR 7.5: Consider routing and operating plan alternatives that connect the U-District to Mt. Baker via downtown.
- Strategy RR 7.6: Evaluate sidewalk width in station areas along 5th Avenue NE for potential right-of-way needs for ADA-compliant station design.
- Strategy RR 7.7: Engage King County Metro to evaluate a Route 70 extension to Northgate Transit Center for Route 7.

- Strategy MMC 7.1: Coordinate design of transit priority treatments with ongoing Bicycle Master Plan facility planning on Roosevelt Way between NE 40th Street and NE 65th Street.
- Strategy MMC 7.2: Coordinate with Roosevelt Neighborhood Streetscape Concept Plan to leverage complete streets improvements on Roosevelt Way.
- Strategy MMC 7.3: Coordinate with University District Urban Design Framework to ensure that transit priority element design is compatible with plan recommended design concepts for several key streets and updated design guidelines.
- Strategy MMC 7.4: Coordinate design of priority bus treatments on 1st Avenue NE with protected bicycle lane proposed between NE 92nd Street to Northgate Way.
- **Strategy MMC 7.5:** Provide clear wayfinding to direct people walking and biking to RapidRide stations.
- Strategy MMC 7.6: Identify overlap and coordinate with Pedestrian Master Plan improvement projects along each corridor that have shared design elements with RapidRide such as enhanced intersection crossings, curb bulbs, and improved sidewalks.

Fully featured RapidRide stations include shelters, benches, tech pylons with real time information, off-board payment validation, system maps, and branded signage. Image from King County Metro

SEATTLE RAPIDRIDE IMPROVEMENTS

Between 2010 and 2014 King County Metro Transit rolled out six arterial BRT routes under the RapidRide brand. RapidRide is designed to provide a service backbone in heavily traveled transit corridors, creating transfer opportunities to conventional fixed-route Metro service, paratransit service, Link light rail, Sounder commuter rail, state and local ferries, and ST Express regional bus routes.

Three of the six RapidRide lines operate solely within the City of Seattle:

- **RapidRide C Line:** West Seattle to Downtown Seattle via West Seattle freeway.
 - Fully branded service started in September 2012.
 - Roadway elements include BAT lanes and bus bulbs.
- **RapidRide D Line:** Ballard to Uptown to Downtown Seattle along 15th Avenue NW.
 - Fully branded service started in September 2012.
 - Roadway elements include BAT lanes and bus bulbs.
- RapidRide E Line: Shoreline to Downtown Seattle via Aurora Avenue N.
 - Fully branded service started February 2014.
 - Roadway elements include BAT lanes and queue jump lanes.

Throughout the RapidRide system Metro has targeted $\frac{1}{2}$ mile stop spacing to improve operating speeds and balance access needs by providing a faster, more reliable service.

Passenger facility improvements vary along the lines with three levels of station/stop improvements. These range from fully featured stations for locations with 150 or more daily boardings to basic stop improvements that include RapidRide signage, schedule, and basic furniture for low volume locations. The RapidRide fleet consistent of New Flyer diesel electric hybrid vehicles with three boarding doors, low-floor design, three bike front loading racks, and branded livery.

RapidRide uses a "proof of payment" fare collection system, with random on-board fare inspection. There are 131 off-board ORCA readers; 122 on pylons or poles, and nine on downtown Seattle kiosks.

RapidRide lines C, D, and E use sixty foot articulated coaches with hybrid dieselelectric power. Image from King County Metro

Improvement to Existing RapidRide Lines

The City of Seattle has supported Metro's RapidRide by making speed and reliability investments in the C, D, and E Line corridors. In 2015, SDOT invested local operating funds raised through Prop 1 (STBD) in additional frequency on busy RapidRide corridors.

As SDOT works with King County Metro Transit to implement new RapidRide lines in Seattle, shorter-term investments in existing corridors are needed and can provide significant benefits to the 35,000 daily passengers traveling in the three corridors.

High priority improvements to existing Seattle RapidRide lines include:

RapidRide C Line Enhancements

RapidRide C Line service from West Seattle to downtown has been among the biggest successes for the program when measured by ridership increases. Between 2012 and 2014 ridership increased 75% to over 8,000 weekday riders. West Seattle is also growing rapidly with numerous residential and mixed-use projects recently completed, underway, or in the pipeline along the RapidRide corridor.

SDOT has evaluated opportunities to improve speed, reliability, and passenger amenities along this route. Key potential improvements include:

- Extend off-board fare payment to 24/7 along the entire corridor
- Install delineators to separate bus lanes from general purpose travel lanes
- Add additional LED "Do not enter" signs to keep traffic out of bus lanes
- Extend bus lane hours to include reverse peaks
- Install transit signal priority at additional intersections, where feasible
- Install additional tech pylons to provide real time customer information

RapidRide Express for C Line during Peak Periods

RapidRide service provides faster travel times than a typical local bus route due to wider station spacing and other speed and reliability improvements. For passengers traveling from major boarding areas to downtown, service speeds could still be higher. Since the C Line has few very high boarding locations, it is a good candidate for express service. This proposal would develop a RapidRide brand express service that serves only the Fauntleroy Ferry Terminal, Morgan Junction, and Alaska Junction before running express to one downtown stop and serving South Lake Union along Westlake Avenue.

In concept, such a service could include:

- 10 Peak Direction Trips
- 960 new seats (plus 250 comfortable standing positions) per peak
- Six new RapidRide coaches (requires coordination with KCM)

RapidRide tech pylons provide real time information, system maps, and off-board ticket validation.

All-Door/Off-Board Fare Payment

RapidRide has provided a test-bed for all-door boarding and off-board fare payment on bus services in Seattle. The combination of these two features can be very beneficial in reducing bus travel times and improving reliability. San Francisco's Muni implemented these features on bus services city-wide in 2012. A study completed two years post implementation showed the following results in San Francisco:

- 1.5 second (38%) reduction in dwell time per passenger boarding
- 2% average speed reduction on all bus routes
- Improved fare compliance

While not specific to RapidRide, SDOT is interested in implementing all-door boarding and off-board fare payment on its busiest corridors and eventually city-wide. A first phase of implementation could include the 3rd Avenue Transit Spine and the busy Pike/Pine Corridor. These improvements would require the addition of off-board ORCA readers and ticket vending machines to 15 unequipped stops on 3rd Avenue and on Pike Street (depending on ORCA reader availability).

All door boarding on Muni's 1BX Express line in San Francisco reduces dwell time at stops. Image from SFMTA

ACCESSIBLE MT. BAKER

The Accessible Mt. Baker project introduces an integrated multimodal approach to implementing safety improvements and developing a long-term plan to improve transit access in the Mt. Baker Station area. The guiding principles of the Plan are to:

- **Improve access** to neighborhood destinations consistent with the neighborhood plan
- Create a network of streets, paths, and open space
- Respect the existing character and assets
- Establish a neighborhood and regional destination
- Prioritize modes in the station area:
 1. Pedestrian and Bicycle: Safety and comfort
 2. Transit: Reliable and frequent
 3. Freight: Access and reliability
 4. Auto: Calm and predictable
- Ensure diverse voices and traditionally underrepresented communities are heard and considered

The Plan is realized by creating a new street network where the north segment of Rainier Avenue is aligned with the south segment of MLK Jr Way into a new north/south arterial and the north segment of MLK Jr Way is aligned with the south segment of Rainier Avenue. The existing five lane streets are narrowed to provide space for sidewalks, bike and transit facilities. This realignment provides for:

- Direct, spacious pedestrian crossings of Rainier/MLK
- Shorter crosswalks with more separation from cars
- ADA compliant sidewalks
- A new on-street bus transit center adjacent to the rail station
- A transit-only bypass through the reconnected Olmstead greenway
- A new bus loop using 27th Avenue around the west side of the rail station
- Public realm improvements (lighting & open space)
- A comprehensive protected bicycle network that compliments the Rainier N/S neighborhood greenway
- Intersection and signal improvements to improve traffic reliability
- Balancing peak traffic demands for freight and autos on the two new arterials

The new transit facilities at the Mt. Baker Station will serve the existing local bus lines, as well as RapidRide Corridor 3 and 4 (Rainier/Jackson and 23rd Avenue).

The Accessible Mt. Baker Plan proposes changes to the street network to improve safety and mobility for all users. RapidRide corridor recommendations proposed in the TMP are consistent with the Accessible Mt. Baker Plan. Image from SDOT

Investments in priority bus corridors provide faster travel speeds, a more comfortable wait, and easier connections to other transit lines. Image from Nelson\Nygaard

PRIORITY BUS CORRIDORS

Priority bus corridors are corridors where existing transit ridership is high and planned growth will continue to drive transit ridership demand. These corridors merit speed and reliability improvements, but were not prioritized for RapidRide level investment either because: (1) ridership and levels of planned growth do not merit that level of investment, (2) right-of-way characteristics are not conducive to RapidRide investments, or (3) the corridors operate largely in the Center City where trip lengths are relatively short and right-of-way dedication is already in place or planned (i.e. 3rd Avenue and Pine Street).

Value of Investments in Speed and Reliability

Priority bus corridors are a cornerstone of Seattle's transit system. Investing in speed and reliability improvements and dramatically improved passenger amenities and facilities in these corridors yields not only direct benefits for passengers and transit operators, but complements HCT investments. Benefits include:

- **Travel time savings for riders:** Implementing corridor improvements that mitigate the impact of congestion on buses and make them more reliable leads to transit that is more competitive with the automobile and provides a heightened passenger experience on- and off-vehicle.
- Reduced impacts of delay on transit operating and capital costs: Travel time savings can improve transit's bottom line if the time savings avoid the need to add runs and purchase additional vehicles to keep up with delay caused by increased traffic congestion.
- Improved access to local and regional HCT: The bus network facilitates access to high capacity service in Seattle and connections to regional destinations. Bus corridor improvements are also investments in future potential HCT corridors.

Service Investments in Priority Bus Corridors

The Frequent Transit Network (see Chapter 4) describes the service characteristics to support capital investments in Priority Bus Corridors. Developing a Frequent Transit Network aligned with capital investments in Priority Bus Corridors will maximize the impact of the capital investments in the corridors. Key service attributes of the FTN include:

- **Convenience:** Frequent transit service, operating every 15 minutes or better, 18-24 hours per day, allows passengers to take a bus without consulting a schedule and enables choices to increase transit use and/or reduce dependence on a car.
- **Branding:** Marketing the frequent transit network as a distinct service offering ensures that passengers connect high service quality with all service elements, including routes, vehicles, stops, and printed and electronic transit information.
- Legibility/Usability: A branded FTN provides a highquality core route system with wider coverage than rail and other high-capacity service.

Chapter 4 describes the service attributes of the FTN in more detail and also provides information about branding.

The TMP Briefing Book, pages 5-27 to 5-29, provides additional discussion and examples of branding elements, including frequent service networks in other cities.

INVESTMENT PHASING PRINCIPLES

Given limited resources for transit investments for the City and its partners, transit improvements will need to be implemented in phases. Principles for making investment phasing decisions include:

- Leverage Current Projects: Consider the ability for a corridor project to complement and/or enhance projects currently underway or planned by the City's partners, e.g., Link and RapidRide corridors.
- **Ridership Demand:** Invest where need is greatest. The corridor evaluation process provides detailed modeling of potential ridership and related benefits.
- Anticipated Growth: Invest in transit where the greatest growth is planned, allowing developers to make design and construction decisions based on the knowledge

that the neighborhood will have high-quality, permanent transit infrastructure.

- User Benefits: Investments that lead to significant travel time benefits will attract the most new riders.
- Grant Opportunities: Include partnership and grant funding opportunities as important inputs when developing project implementation schedules.

These priorities are implicit in the TMP recommendations and should serve as guidelines as the TMP is used to make decisions about project priority.

BUS IMPACTS ON PAVEMENT

The weight and repetitious patterns of transit vehicles can cause significant wear on asphalt and Portland cement pavement. This is particularly true where bus routes are consistently heavily loaded (exceeding 150% of loaded capacity) and/or on streets that have thin pavement layers. A study* conducted by the University of Washington and the City of Seattle determined that a fully loaded Metro Breda bus (now retired dual-mode buses used in the Downtown Seattle Transit Tunnel) exceeded legal axle loads and would exert four times as much damage on pavement as a similar bus that met legal axle loads. However, these impacts accounted for less than a quarter of pavement damage on a given street. SDOT should consider the following to minimize impacts of transit on street pavement conditions:

Image from SDOT

- Coordinate with transit providers to ensure that bus acquisition standards meet legal axle loads and/or minimize pavement impacts
- Work with Metro to provide frequent service that better distributes passenger loads across buses in high demand corridors, thereby reducing pavement impacts
- Develop thick and durable pavement designs for FTN and high volume bus corridors
- Use Portland Cement Concrete (PCC) paving materials (or other highly durable materials) on transit streets or at high volume transit stops/stations
- On asphalt streets, install PCC pads at bus pullouts or curb stops that have high bus volumes

* Chinn, Esther and De Bolt, Peter. Washington State Transportation Commission, Heavy Vehicles vs. Urban Pavements, 1993.

PRIORITY BUS CORRIDORS

Figure 3-9 lists the priority bus corridors along with planned RapidRide service. The corridors are illustrated in Figure 3-10.

FIGURE 3-9	PRIORITY BUS CORRIDOR S	UMMARY
------------	-------------------------	--------

Corridor	Description	Corridor Serves
PB1	Othello – U-District via Beacon Avenue and Broadway	University District Capitol Hill Central District Beacon Hill Rainier Beach
PB2	Lower Queen Anne – South Lake Union – Capitol Hill via Denny	Queen Anne Belltown South Lake Union Capitol Hill
PB3	Lake City – Northgate – U District	Lake City Northgate Roosevelt University District
PB4	Crown Hill - Greenlake - U District	Crown Hill/North Beach Greenlake University District
PB5	Phinney Ridge - Greenwood - Broadview	Broadview, Bitter Lake, and Greenwood Phinney Ridge and Fremont Queen Anne and Westlake South Lake Union Downtown
PB6	Pike/Pine	Center City
PB7	Jefferson/Yesler	Madrona, Central District Center City
PB8	Seattle Pacific University - Queen Anne - Seattle Center East/West	Queen Anne Center City

IMPLEMENTATION STRATEGIES

STRATEGY AREA: IMPLEMENTING PRIORITY BUS CORRIDOR

IMPROVEMENTS Strategy PBC 1: Develop a coordinated approach to corridor development that integrates other modal plans (see more detailed recommendation in Mobility Corridors section of Chapter 5).

- Strategy PBC 2: Set targets to design and implement two to three corridors every two years starting in 2015.
- Strategy PBC 3: Target Corridor 6, Corridor 7, and Center City Priority Corridors as high priority corridors for development (see Figure 3-14).
- Strategy PBC 4: Focus next investments on high demand corridors that do not require major system restructuring (Corridors 2, 13, 14, 15).
- Strategy PBC 5: Share responsibility with Metro to continue to refine plans to reduce inefficiencies and reinvest operating funds to: 1) meet FTN service targets; 2) develop restructuring plans around North Link, RapidRide, and other higher capacity services; 3) refine TMP system design proposals; and 4) simplify downtown operations.
- Strategy PBC 6: Coordinate development of Priority Bus Corridor improvements with the Seattle Freight Master Plan and priority freight corridors.
- Strategy PBC 7: Coordinate development of Priority Bus Corridor improvements with the Seattle Bicycle Master Plan, including long-term network development and five year investment priorities.

FIGURE 3-10 PRIORITY BUS CORRIDORS

BUILDING TRANSIT CORRIDORS - A TOOLBOX

This section provides an overview of a toolbox of corridor treatments and interventions that was developed to guide capital improvements in RapidRide and priority bus corridors. The toolbox was used in a planning-level assessment of improvement options for each of the priority bus corridors. Estimated travel time improvements were incorporated into revised ridership estimates.

	Treatment	Definition	Constraints	Effectiveness ¹	
	Roadway Treatment	S			
	Transit Signal Priority (TSP)	At traffic signals, buses communicate with the traffic signal system to provide a green signal indication to an approaching bus. Delay for buses may be reduced at intersections as a result.	Less effective when signals are operating at capacity.	Up to 10% reduction in signal delay.	
	Queue Jump Lanes	At signalized intersections, a bus is provided with a lane, adjacent to general-purpose traffic, and an advanced green signal indication to bypass congested areas. Buses "jump" the queue of waiting cars.	Lane must be as long as the typical queues. TSP makes these much more effective, particularly if there is no far-side receiving lane. May increase pedestrian crossing times.	5-25% reduction in travel times at a signal.	
	Dedicated Bus Lanes (Business Access and Transit or BAT Lanes)	A lane is reserved for exclusive use by buses. It may also be used for general-purpose traffic right-turn movements onto cross streets and for access to adjacent properties. This treatment would speed bus travel times.	Conflicts with right-turn and delivery vehicles. Strong opposition from businesses that may lose on-street parking.	5-25% reduction in travel times.	
	Dedicated Bus Median Lanes	A median lane is reserved for exclusive use by buses. This treat- ment speeds bus travel times.	Conflicts with left-turn vehicles. Signalization challenges.	5-25% reduction in travel times.	
	Contra-flow lanes	A contra-flow bus lane is a dedicated lane of an otherwise one way street reversed for buses and other mass transit. It is typically used to get around bottle-necks or access limited access facilities.	Loss of roadway capacity. Pedestrian safety considerations. Signalization challenges.	Varies based on access needs.	
	Transit Priority Streets	A street that is dedicated to transit or is designed primarily as a transit corridor. Leading examples include 3 rd Avenue in Seattle, the Portland (OR) Transit Mall, and Nicollet Mall or Marquette/2 rd in Minneapolis.	Loss of roadway capacity. Limited number of streets in geographically constrained areas.	Highly effective strategy for moving high volumes of buses in urban centers. Effectiveness peaks at 80-100 buses per hour per lane.	
	Limited or Time Prohibited General Purpose (GP) Turning Movements	GP turning movements are restricted at all times or during peak periods. May be implemented with queue jump or dedicated bus curb lanes.	Impacts on other roadways from diversion of GP traffic/turning movements.	Highly effective means to implement peak period queue jump lanes or transit only lanes.	
	Innovative Bus-Bike Treatments	Treatments to provide bicycles with safe routes along high-volume transit corridors, manage bicycle- transit vehicle interactions, and allow bicycles to share transit lanes. Examples include shared lane markings, colored pavement, and bicycle-only signals.	Highly contextual and must be considered within balance of person travel delay/benefit for specific street or corridor conditions.	Difficult to measure impacts on transit, but can reduce transit delay on busy bicycle corridors and improve bicycling experience.	
	Trolley Bus-Specific Treatments				
	Electrification	Convert a diesel bus corridor to electric trolley buses by adding wire in missing segments.	Most cost-effective where overhead wire already exists on part of a route.	Effective in increasing use of zero-emissions electric fleet.	
	Enhanced Trolley Wire Switching	Allows an electric trolley bus to turn onto an alternative stretch of wire.	N/A	Effective in increasing use of zero-emissions electric fleet.	
	Trolley Passing Wire	Allows an electric trolley bus to pass coaches at terminals or stops.	N/A	Effective in increasing use of zero-emissions electric fleet.	

Treatment	Definition	Constraints	Effectiveness ¹
Stop Treatments			
Curb Extensions/ Bus Bulbs/Boarding Platforms	Sidewalks are extended into the street so that buses would stop in the lane of traffic. This prevents buses from getting trapped by passing vehicles, unable to return to the flow of traffic. The delays from merging back into lane may be minimized as a result.	Only applicable where an on-street parking lane exists. Impacts to traffic flow must be taken into accounted.	Depends on traffic. Eight seconds per stop is the assumed. ²
Boarding Islands	A transit access point constructed in a lane that allows buses to use the faster moving left-lane of a roadway. It also removes side friction caused by right-turning vehicles, parking maneuvers, and delivery vehicles.	Pedestrian safety and ADA access requirements. Effects on overall traffic due to taking an additional lane.	Varies based on access needs. At 5 th & Jackson, it saves approximately one minute per run.
Level Boarding Platforms	A boarding platform that is level with the bus to enable easier and faster boarding, particularly for passengers with mobility impairments, using wheelchairs, or bringing a stroller on-board the bus.	Most applicable to RapidRide and rail systems where vehicle and platform design is standardized.	Varies depending on number of wheelchair and assisted boardings. Can provide significant time benefit.
Defined Platform Loading Locations	Defining the locations where doors will open allows passengers to wait in nearest proximity to their bus and can reduce dwell times.	May be most effective in a proof-of- payment system where passengers may board through any door.	Saves less than one second per boarding passenger.
Defined Bus Loading Positions	Defining the platform loading locations at a stop can reduce dwell times by allowing passengers to more quickly find/walk to their bus and ensure that a bus is cor- rectly positioned to be able to depart before a bus in front of it.	Most effective with "platooned" bus arrivals (e.g., buses timed to leave a common origin point at the same time).	Effectiveness decreases as the number of loading locations at a stop increases.
Bus Stop Consolidation	Reducing the number of stops on a route, particularly where spacing is less than a stop every three blocks, can result in travel time savings.	ADA and elderly/disabled access. Grades must be accounted for in this.	2-20% of overall run time (4% in recent Line 28 consolidation), up to 75% of dwell time.
Off-Board Fare Payment	Fare payment typically delays the loading and unloading of buses, as only one door may be used. Off-board fare payment may speed boarding and allow use of all doors.	Capital and O&M expense of off-board payment machines. Passenger safety at night.	Saves one second per boarding passenger.
Vehicle Treatments			
Low-Floor, Wide-Door Vehicles	Low-floor vehicles (including in conjunction with level boarding platforms) allow passengers to board more quickly without climbing steps, particularly for passengers with mobility challenges. Wheelchair lifts on low-floor vehicles operate more quickly and with fewer mechanical problems. Wide-door vehicles allow large volumes of passengers boarding at a stop to enter and exit vehicles more efficiently.	Wide-door vehicles are most effec- tive if implemented in conjunction with prepaid fare payment.	Varies depending on number of wheelchair and assisted boardings.
On-Vehicle Perimeter Seating	On heavily loaded routes, increases standing capacity, makes more efficient use of seating capacity, and allows passengers to exit the vehicle more quickly, reducing dwell times.	More appropriate for shorter- distance routes.	Varies with passenger loads.

Transit Toolbox Notes and Sources

1 The measures of effectiveness are derived from data found in the Transit Capacity Quality of Service Manual, unless a specific local measure is cited

2 King County Metro, Stop Spacing Program Description, 7/7/2011

BUS CORRIDOR PROJECT SUMMARY SHEETS

Potential improvements and recommendations are conceptual in nature. Implementation of priority bus corridors would require more detailed evaluation/analysis of current conditions, coordination between SDOT and partner agencies, and community involvement.

Corridor PB1: Othello – U-District via Beacon Ave, 12th Ave, and Broadway				
Corridor Overview – Length 10.4 miles	Multimodal Projects			
• North-South transit corridor extending from the U-District to Rainier Beach, serving Capitol Hill, the Central District, and Beacon Hill with good connections to Link light rail	• SDOT is making safety and multimodal improvements on 12th Avenue at the Howell Street and Olive Street intersections; these projects include pedestrian bulb-outs on all corners necking down the right of way			
Key Connections	 Further evaluation of bus operations on 12th Avenue vs. Broadway are needed 			
University Link station				
Capitol Hill Link station	Implementation Considerations			
 Jackson Street: connections to RapidRide Corridor 3 (Jackson/Rainier) and other bus routes 	 Evaluate turnaround and layover options at north and south ends of the corridor 			
Beacon Hill Link station	Creation of new transit street on 12th Avenue including			
Othello Link station	electrification, TSP, and bus bulbs			
Neighborhoods Served	• Electrification needed on NE 11th/Roosevelt N. of Campus Parkway			
University District	• Work with Sound Transit to ensure safe, attractive, and			
• Capitol Hill	convenient connections at the 4 Link stations served by this corridor			
Central District (West)				
• Downtown (East)	Corridor Performance Evaluation			
• Beacon Hill	Ridership Potential			
• Rainier Beach	• Up to 11,100 weekday riders/3,900 net new riders			
Primary Routes and Potential Restructuring	Productivity			
KCM Routes 36 and 49	• Up to 60 riders per hour			
Proposed Transit Improvements*	Capital Cost Estimate			
	• \$20M (\$1.9M/mile)			
TSP (requires fiber installation)	Travel Time Savings			
Electrification on 12th Avenue	• 15% over local bus			
• Bus Bulbs	Net GHG Reduction			
Station Upgrades	• 820 MT CO2e			

*In addition to planned corridor improvements
Corridor PB2: LowerQueen Anne – South Lake Union – Capitol Hill via Denny		
Corridor Overview – Length 5.0 miles	Implementation Considerations	
 East-West transit corridor through Capitol Hill and South Lake Union extending north into Queen Anne Key Connections 	• Design solutions to limit impact of I-5 ramps are needed	
	 Conduct corridor study to analyze transit priority options for Denny Way 	
D Line Connections to Interbay and Ballard	 Investigate electrification options on Denny Way and Elliott/15th Avenue 	
 North-south transfer opportunities along Denny Way 	• As primary east-west route, ensure seamless connections	
Capitol Hill Link station and PB1 Corridor	to north/south RapidRide routes and Capitol Hill Link	
• RapidRide Corridors 1 and 4 (23rd/Rainier and Madison,	Station	
respectively) at 23rd Avenue	Corridor Performance Evaluation	
Neighborhoods Served	Ridership Potential	
Queen Anne	• Up to 14,700 weekday riders/4,200 net new riders	
• Belltown	Productivity	
South Lake Union	Up to 80 riders per hour	
• Capitol Hill	Capital Cost Estimate	
Primary Routes and Potential Restructuring	• \$40M (\$7.7M/mile)	
KCM Routes 8, 43, RapidRide D	Travel Time Savings	
	• 22% over local bus	
Proposed Transit Improvements*	Net GHG Reduction	
 TSP (requires fiber installation) 	• 1,710 MT CO2e	
Electrification		
Multimodal Projects		
 Pedestrian enhancements are needed along and across Denny Way 		
• The Denny Way Streetscape Concept Plan provides guidance for pedestrian realm improvements along this busy corridor		

*In addition to planned corridor improvements

Corridor PB3: Lake City – Northgate – U District		
Corridor Overview – Length 7.7 miles	Implementation Considerations	
 North-south transit corridor from U District to Lake City, serving Roosevelt and Northgate (future) Link Stations via 	 Conduct further analysis of alignment options at Northgate Transit Center 	
Northgate Way and 5th Avenue; additional routing options north of Seattle City limits	 Conduct further analysis of alignment options along Lake City Way/80th Street/Roosevelt Way 	
Key Connections	Identify funding to complete improvements outside of	
 Northgate Transit Center (future Link station) 	Seattle city limits	
 Roosevelt Link Station (future) and Priority Bus Corridor 4 at NE 65th Street 	 Create high quality connections between the route and U-District Link Station on Brooklyn Avenue 	
University District (Link and bus)	 Evaluate sidewalk width in station areas along 5th Avenue NE for potential right-of-way needs for ADA-compliant 	
RapidRide Corridor 7 along 11th/Roosevelt	station design	
Neighborhoods Served	 Integrate route design/transit priority treatments with ongoing Bicycle Master Plan facility planning on Roosevel 	
• Lake City	Way between NE 40th Street and NE 65th Street	
Northgate	Corridor Performance Evaluation	
• Roosevelt	Ridership Potential	
University District	• Up to 4,600 weekday riders/1,300 net new riders	
Primary Routes and Potential Restructuring	Productivity	
• KCM Routes 41, 66X (future 63), 67	• Up to 40 riders per hour	
Drepered Trepett Imprevenents*	Capital Cost Estimate	
 Proposed Transit Improvements* TSP (fiber is only installed along Lake City Way) Bus bulbs Stop consolidation 	• \$5M (\$0.7M/mile)	
	Travel Time Savings	
	• 20% over local bus	
	Net GHG Reduction	
Multimodal Projects	• 200 MT CO2e	
 Lake City Way is identified as a Seattle Vision Zero corridor and will be a target for future pedestrian safety investments 		
• The Lake City Way Traffic Safety Project is a WSDOT and City of Seattle partnership planning and designing corridor safety improvements for all modes; early projects are at the intersections of 24th Avenue NE, NE 110th Street, and NE 14cth Street		

*In addition to planned corridor improvements

NE 145th Street

Corridor PB4: Crown Hill – Greenlake – U District		
Corridor Overview – Length 6.6 miles	Multimodal Projects	
• This corridor corresponds to the northern portion of KCM Route 48, providing both east-west and north-south connectivity through northwest and northeast Seattle	• NE Ravenna Boulevard/Cowen Place NE between E Green Lake Way N and NE 62nd Street will be rechannelized as a protected bike lane	
Key Connections	Implementation Considerations	
• RapidRide D	• Evaluate electrification cost/benefit north of 50th Street	
 RapidRide E Priority Bus Corridor 5 (Greenwood) 	 Evaluate turnaround and layover options at east and west ends of the corridor 	
University District (Link and bus)	 Conduct traffic analysis east of I-5 to determine key con- gested intersections and priority bus treatment options 	
Neighborhoods Served	Conduct study of routing options through Greenlake east	
Crown Hill / North Beach	of Aurora Avenue	
• Greenwood	 Coordinate with existing planned improvements south of 50th Street 	
• Green Lake	Comides Derfermenes Exclustion	
University District	Corridor Performance Evaluation	
Primary Routes and Potential Restructuring	Ridership Potential	
	• Up to 7,400 weekday riders/1,100 net new riders	
 KCM Routes 48 (Northern Portion); served by route 45 following March 2016 service changes 	Productivity	
	Up to 60 riders per hour	
Proposed Transit Improvements*	Capital Cost Estimate	
 TSP (fiber is not installed) 	• \$57M (\$8.6M/mile)	
• Bub Bulbs	Travel Time Savings	
Electrification	• 19% over local bus	
	Net GHG Reduction	
	• 1,150 MT CO2e	

*In addition to planned corridor improvements

Corridor PB5: Phinney Ridge – Greenwood – Bro	adview
Corridor Overview – Length 9.1 miles	Multimodal Projects
 North-South transit corridor connecting northwest Seattle to Eastlake, South Lake Union and downtown via Aurora, Fremont, Phinney, and Greenwood Avenues 	• The Greenwood Avenue Transit and Pedestrian project will improve sidewalk and crossing conditions between 90th and 105th Streets; the project will also include stop consolidation and new in-lane bus islands
Key Connections	
 Shoreline Community College and/or Aurora Village TC 	Implementation Considerations
RapidRide Corridor 6 at 105th Street	Investigate multiple termination options on north end
Priority Bus Corridor 4 at 85th Street	 Identify funding to complete improvements outside of Seattle city limits
RapidRide Corridor 5 at 45th StreetWestlake Hub	 Consider queue jump options to provide transit priority on Fremont Bridge
Neighborhoods Served • Broadview, Bitter Lake, and Greenwood	 Coordinate design of transit priority treatments with ongoing Bicycle Master Plan facility planning on Phinney Avenue N
Phinney Ridge and Fremont	Corridor Performance Evaluation
Queen Anne and Westlake	Ridership Potential
South Lake Union	• Up to 9,600 weekday riders/1,100 net new riders
Downtown	Productivity
Primary Routes and Potential Restructuring	• Up to 60 riders per hour
KCM Route 5	Capital Cost Estimate
Proposed Transit Improvements*	• \$9.3M (\$1.0M/mile)
Bus Bulbs or In-Lane Island Stops	Travel Time Savings
	• 18% over local bus
	Net GHG Reduction
	• 420 MT CO2e
 TSP (fiber installation required) Stop Consolidation 	

Station Upgrades

*In addition to planned corridor improvements

Corridor PB6: Pike/Pine (Center City)

Corridor Overview – Length 2.4 miles

• Primary east-west pedestrian and transit corridor linking downtown Seattle and the Westlake Transit Hub with Capitol Hill (as identified in City of Seattle Center City Access Strategy and Metro Transit Strategic Plan and Transit Blueprint)

Key Connections

- Westlake and Convention Place DSTT Stations
- Third Avenue Transit Spine
- First Hill Streetcar

Primary Routes and Potential Restructuring

- Key KCM Routes 10, 11, 14, 43, 49 (many others use segments of this corridor)
- Some of these routes turn between Pike/Pine and Third Avenue; these routes should be revised to operate common routings the length of Pike/Pine as far west as First Avenue

Completed Improvements

• Pike/Pine Transit Access Improvement Project (2009) included updated signal equipment with greater potential for transit signal priority, in-lane bus stops, and coordinated pedestrian improvements (bus stops have been consolidated and re-spaced for better service and operations)

Proposed Transit Improvements*

• Pine Street BAT Lane between 3rd Avenue and 9th Avenue

*In addition to planned corridor improvements

Multimodal Projects

- The Pike/Pine Renaissance Plan provides streetscape design considerations for the western end of this corridor
- SDOT is conducting a multimodal study for this corridor that will evaluate options for improving safety and mobility for all modes

Implementation Considerations

- Consider as early pilot corridor for off-board fare payment
- Continue to implement access and transit priority treatments to avoid transit delay at congested intersections or corridor segments
- Improve bus stop facilities with real-time schedule information, off-board fare payment equipment, and other amenities

Corridor Performance Evaluation

Ridership Potential

• Up to 7,000 weekday riders/1,100 net new riders

Productivity

• Up to 63 riders per hour

Capital Cost Estimate

- \$13.6 (\$5.7M/mile)
- **Travel Time Savings**
- 14% over current bus operations

Net GHG Reduction

• 69 MT CO2e

Corridor PB7: Jefferson/Yesler (Center City)

Corridor Overview – Length 2.9 miles

• East-west bus corridor that provides important direct service to Downtown and First Hill from Harborview Medical Center, Yesler Terrace, and dense residential neighborhoods

Key Connections

- Pioneer Square DSST Station
- Third Avenue Transit Spine
- First Hill Streetcar

Primary Routes and Potential Restructuring

- KCM Routes 3 and 4
- Reroute service from James Street to Yesler Way west of 9th Avenue (reflected in map)
- Consider extending downtown portion of routes to new Central Waterfront Transit Station (shared with Madison BRT), providing connections to Colman Dock

Planned/Completed Improvements*

- Some bus stops have been consolidated and passenger facilities upgraded
- The City of Seattle is investing heavily in improved midday service in the corridor

Multimodal Investments

- 3rd Avenue Transit Corridor Improvements will enhance the pedestrian environment at the intersection of this corridor with the 3rd Avenue Transit Spine
- Pioneer Square Active Streets Strategy recommends a number of improvements for enhancing pedestrian safety, security and vibrancy of street life on the western end of this corridor; some strategies have been implemented

Implementation Considerations

- Electrification of Yesler Way (2nd to 9th) and 9th (Yesler to Jefferson) to reduce turning movements off of Third Avenue and to avoid freeway-related congestion on James Street
- Enhance pedestrian access, particularly around medical center and at key intersections
- Provide in-lane bus stops
- Provide transit signal priority with new interconnected traffic controllers and vehicle detection where needed
- Add transit-only lanes or peak period parking restrictions in congested segments of the corridor, particularly where I-5 ramps create peak period traffic congestion
- Improve bus stop facilities with real-time schedule information, off-board fare payment equipment, and other amenities

Corridor Performance Evaluation

Ridership Potential

• Up to 6,400 weekday riders/1,300 net new riders

Productivity

• Up to 54 riders per hour

Capital Cost Estimate

• \$16.3 (\$5.7M/mile)

Travel Time Savings

• 14% over current bus operations

Net GHG Reduction

• 94 MT CO2e

*In addition to planned corridor improvements

Corridor PB8: Seattle Pacific University - Queen Anne - Seattle Center East/West

Corridor Overview – Length 4.9 miles

• Most direct bus corridor serving the main Seattle Center entrance on 5th Avenue N and dense, high ridership markets in Belltown, Denny Triangle, Uptown, and Queen Anne. Includes both Queen Anne avenue and 5th Avenue, Taylor pathways between Seattle Center/Uptown and Seattle Pacific University.

Key Connections

- Third Avenue Transit Spine
- Westlake DSTT station
- RapidRide D Line
- Corridor PB2: Queen Anne South Lake Union Capitol Hill via Denny

Primary Routes and Potential Restructuring

- KCM Routes 2, 3, 4, 13, and 16
- These routes should be consolidated to follow a single pathway to the south end of Downtown and serve the same downtown bus stops

Planned/Completed Improvements*

- Third Avenue Transit Spine has been designated transitonly during peak hours
- Some bus stops have been consolidated and passenger facilities upgraded
- City of Seattle investments help provide better weekday and evening frequency on Routes 3 and 4

Multimodal Improvements

- Mercer pedestrian and bicycle improvements implemented as part of the Mercer Corridor project enhance access to transit by foot and bicycle in this corridor
- 5th Avenue protected bike lane and pedestrian improvements along the corridor will improve pedestrian and bicycle access

Implementation Considerations

- Extend 3rd Avenue transit-only restrictions north to Denny Way
- Extend hours of 3rd Avenue transit-only restrictions
- Engage in comprehensive effort to improve the Third Avenue streetscape and pedestrian/bus rider experience
- Maintain a smooth 3rd Avenue street surface for a higherquality bus experience
- Continue to implement access and transit priority treatments to avoid transit delay at congested intersections or segments
- Improve bus stop facilities with real-time schedule information, off-board fare payment equipment, and other amenities

Corridor Performance Evaluation

Ridership Potential

- Up to 10,900 weekday riders/2,900 net new riders
- Productivity
- Up to 68 riders per hour
- **Capital Cost Estimate**
- \$28.0 (\$5.7M/mile)
- **Travel Time Savings**
- 14% over current bus operations

Net GHG Reduction

• 350 MT CO2e

*In addition to planned corridor improvements

Priority Bus Corridor Metrics and Methodology Notes

The following metrics were evaluated for each of the priority bus corridors.

- 2030 Weekday Ridership: Estimated from Fall 2009 stop/route-level boardings assigned to each corridor.
- Net New Riders:
 - 2030 estimate of potential ridership current (2009) ridership estimate for the corridor
- Productivity: Efficiency with which provided transit capacity is utilized.
 - Productivity = weekday ridership / weekday revenue hours
 - Weekday hours of revenue service calculated through development of corridor specific operating plan
- Capital Costs: Cost to implement transit priority improvements, based on typical costs, including allowances for engineering and contingency costs. Does not include vehicle costs.
 - Capital Cost per Mile = total capital costs / corridor miles
- Travel Time Improvement: Estimated endto-end time savings per identified capital or other efficiency improvement (including both potential and currently planned and funded improvements). Unit travel times savings was based on local SDOT or King County Metro experience. If local estimates were not available, industry-standard estimates were applied.
- Greenhouse Gas Reduction: Annual reduction in GhG equivalents from reduced VMT and net change in transit emissions (see HCT results for methodology details).

The conceptual operating plans developed to calculate these metrics assumed the following minimum headways over a service span of 5 a.m. to 1 a.m. (20 hours), which approximately correspond to RapidRide service levels. The operating plans were limited to the corridor as evaluated in the TMP and to service within Seattle.

Weekday	Weekend
10	15
15	15
30	30
	10 15

Additional detail on methodology is provided in Appendix B.

CENTER CITY TRANSIT IMPROVEMENTS

CENTER CITY CONDITIONS AND CHALLENGES

When SDOT developed the Center City Circulation Report in 2003, the Center City area was growing despite a recession. The city was faced with challenges of accommodating many more jobs and residents with the existing and constrained set of transportation facilities. More than a decade later, much of the growth predicted has occurred, but transit service in key growth areas has been limited. As an example, South Lake Union has experienced tremendous growth, but few improvements in regional transit connectivity. The Denny Triangle, Downtown Commercial Core, South Downtown, and South Lake Union are experiencing unprecedented growth and are targeted for continued high levels of employment growth. Significant residential growth is occurring and expected to continue in Belltown, Denny Triangle, First Hill, and South Lake Union. Further, with rapid increases in housing prices in Seattle, more workers are commuting from beyond city boundaries.

Fast, frequent, and reliable transit is the linchpin to managing Center City growth and a rising demand for regional access to the Center City. Investments needed to manage these growth pressures are framed by some key realities:

- Land Development: The Center City is expected to take on roughly 50% of the city's total population and job growth over the next 20 years. This is both a challenge and an opportunity for transit development, since the level of growth demands a shift away from auto-oriented mobility. This simple reality is driven by geographic constraint.
- **Geography:** Seattle's center resembles an hourglass where both people and goods funnel through heavilytrafficked north-south corridors into a narrow downtown

core bounded by Puget Sound, Lake Washington, and I-5. Buses, trucks, ferry passengers, automobiles, bicyclists, and pedestrians must cross and enter the Center City at limited bridge and ferry terminal access points. Steep hills limit transit mode and vehicle options in the east-west direction.

- Right-of-way constraints: Approximately 700 local and regional buses travel in the north-south direction through downtown during a single commute peak hour. Bus operations in the Downtown Seattle Transit Tunnel will be increasingly constrained and terminated by 2020 as tunnel capacity is given over to rail operations. Dedicating surface right-of-way to transit requires balancing the needs of all modes, including motor vehicles, freight, and bicycles.
- Transit service quality: Buses are overloaded on a number of transit corridors despite frequent peak service. Travel times on cross-town bus routes and connections from inner-city neighborhoods are among those most impacted by congestion. The improving economy and new service investments by the Seattle Transportation Benefit District (Prop 1) have also led to increased service levels on many bus routes connecting Center City neighborhoods and the rest of the city.
- Electric trolley bus network efficiency: The existing infrastructure investment in a quiet, low-emission transit mode is a significant asset; however, expanding the system will require adding wire and restructuring service (including changes to route interlining).
- Wayfinding: The Center City transit network consists of a wide variety of transit modes, providers, and facilities. Rail modes include Link and the Seattle Streetcar. Diesel and trolley buses are operated by Metro, Sound Transit, and service providers from surrounding counties. Light rail, streetcar, and bus modes are vertically separated between surface streets and the Downtown Seattle Transit Tunnel. Transit legibility is challenging and must be addressed at a system level to optimize service investments in the Center City.

CENTER CITY KEY CAPITAL IMPROVEMENTS

Sound Transit is planning for its next major phase of regional high capacity transit system development. The ST3 Plan will go to regional voters in 2016 and, if approved, will fund major light rail extension projects in Seattle and around the region. Among the City's top priorities for ST investments are the Ballard to Downtown and West Seattle to Downtown light rail lines, which would serve Uptown/Lower Queen Anne, South Lake Union, Denny Triangle, and tie into all major Downtown Seattle Transit Tunnel stations with underground pedestrian tunnels. The new tunnel would also provide capacity for West Seattle light rail and possibly interim RapidRide service from South and West Seattle neighborhoods. A number of other important surface transit investments are needed to address more immediate transit demands. These include:

- 1. Seattle Streetcar: The Center City Connector project will link the South Lake Union and First Hill streetcar lines, creating a true Center City circulation network that has potential to carry 30,000 daily riders by 2035. This project plans to provide dedicated lanes for 85% of the alignment, elevating streetcar from a slow moving mode to a serious urban circulation tool.
- 2. Westlake Transit Lane Improvements: Reliability of the South Lake Union Streetcar has declined steadily as South Lake Union development has boomed. The streetcar shares Westlake Avenue with KCM Route 40 and soon RapidRide C Line service will also use this corridor. This project will provide transit lanes between Stewart and Valley. Customers along this corridor will have a bus or train arriving every three minutes during most of the day. Importantly, streetcar services will be far more reliable with limited exposure to traffic delays.
- 3. Madison Bus Rapid Transit: Madison BRT will be the first high capacity transit service to provide east-west service in downtown. Curb lanes are planned for Madison Street and Spring Street connecting to median running transit lanes east of 9th Avenue. The future RapidRide line will share a platform with Seattle Streetcar at its 1st Avenue terminus.
- 4. 3rd Avenue Transit Spine Enhancements: 3rd Avenue is the most heavily used transit facility in the State of Washington. It is challenging to balance transit throughput with the demands of a downtown street. This project will implement improvements to the pedestrian realm, passenger waiting areas and information, and other key enhancements that will make 3rd Avenue a better place walk, catch the bus, and to do business.
- 5. Electric Trolley Infrastructure: With a virtually emissions free electric utility, electric powered transit in Seattle is the best solution for reducing carbon emissions. The City supports continuing to electrify high-frequency bus corridors. Key electrification projects included in the TMP are Denny Way between Uptown and Olive Way. The new wire between 1st and 3rd Avenues would also have the benefit of allowing more efficient routing of trolley routes from Queen Anne to downtown via the 3rd Avenue Transit Spine. It is also a city priority to add wire on Yesler between 2nd Avenue and 9th Avenue E, and on 9th Avenue from Yesler to Jefferson to reduce turning movements off of 3rd Avenue and improve connections to Harborview Medical Center.

FIGURE 3-11 CENTER CITY TRANSIT CAPITAL IMPROVEMENT PRIORITIES

CENTER CITY AND SOUTH LAKE UNION SERVICE IMPROVEMENTS

TMP recommendations for Center City transit investments are based on analysis and principles that make downtown transit easy to understand and use for both infrequent and regular riders, including:

- Operate routes on the same street in both directions. If this is not possible, operate service in a limited set of linear corridors. Limit turning movements from linear corridors to make transit service more predictable.
- Avoid running couplet service more than one block apart.
- Operate common service types and destinations on the same streets and/or at common stops. For example, regional service on 2nd and 4th Avenues, service to common sectors of the City (e.g., NW Seattle) stop on the same block, etc.
- Develop a strong, high-capacity Center City circulation system that connects all major multimodal hubs (Westlake, Colman Dock, and King Street/International District) to limit the need for regional bus throughput and increase the usability of regional high capacity transit.
- Extend services through downtown to meet service needs to expanding regional job centers, particularly in South Lake Union.
- Create high-frequency, high-quality connections in the east-west direction, connecting the dense urban neighborhoods of Capitol Hill and First Hill to Downtown and key north-south regional transit services.

Figure 3-12 illustrates key surface transit service improvements in the Center City, including:

- New Seattle Streetcar service through Downtown connecting the First Hill and South Lake Union Streetcar lines and providing five-minute headways from South Lake Union to the International District.
- Extensions of existing RapidRide lines including: (1) C Line extension to South Lake Union and (2) D Line extension to South Downtown.
- Enhanced service on Madison as part of the Madison Corridor Bus Rapid Transit project. This line will offer sixminute headways for 12 or more hours daily on Madison and Spring Street (eastbound) through Downtown.
- Extension of two high frequency bus lines that are proposed RapidRide corridors to South Lake Union:
 (1) RapidRide Corridor 2 (Delridge; current KCM Route 120) via Westlake and (2) RapidRide Corridor 3 (Rainier/Jackson; current segment of KCM Route 7) via Fairview.
- Continued service improvements on identified Center City Priority Bus Corridors (see Figure 3-10: PBC map)
- New service operating east-west between Uptown and South Lake Union on Harrison Street to be implemented once the SR 99 Tunnel is operational and the grid is restored.

FIGURE 3-12 CENTER CITY KEY SERVICE IMPROVEMENTS

CENTER CITY CONNECTOR STREETCAR

Since the 2012 adoption of the Seattle TMP, the City of Seattle has taken significant steps toward implementation of a top plan priority – connecting the South Lake Union and First Hill streetcar lines through downtown. The Center City Connector Streetcar will link Seattle's streetcar investments into a single, connected system.

The 1.2-mile Center City Connector project will provide mobility through the core of downtown, serving major event and visitor destinations, employment centers, a growing residential population, and areas of significant development. The project will provide affordable and convenient transportation access to employment, services, and housing located within Seattle's Center City and last-mile connections from regional transit services. The project also provides a critical linkage to leverage the existing South Lake Union Streetcar (operating since 2007) and First Hill Streetcar (currently in startup), creating a 5-mile system serving the broader Center City. Figure 3-13 shows that the Center City Connector allows Seattle Streetcar to effectively link 10 key Center City neighborhoods. The project is expected to increase streetcar system ridership

FIGURE 3-13 SEATTLE STREETCAR SYSTEM WITH CENTER CITY CONNECTOR

by 14,400 daily trips and increase system ridership to nearly 22,000 daily trips in the year of opening.

The Center City Connector will run along Stewart Street and 1st Avenue, between the Westlake Intermodal Hub and Jackson Street in the Pioneer Square neighborhood. Over 85% of the new track will operate in an exclusive transit lane, including all of the 1st Avenue alignment. The project includes a new turn-around track in the South Lake Union neighborhood (Republican Street between Westlake Avenue and Terry Avenue), four new streetcar stations, modifications to the Westlake and Occidental Stations, and expansion of the Seattle Streetcar fleet with seven additional vehicles and three replacement vehicles that can operate in off-wire segments.¹ It also includes expansion of the existing streetcar operation and maintenance facilities to accommodate the larger vehicle fleet.

With the Center City Connector, Seattle will be able to operate the City's streetcar lines as a unified system, maximizing the utility of previous transit investments with this short connection. The full streetcar system will provide service from 5:00 a.m. to 1:00 a.m. Monday through Saturday, and 6:00 a.m. to

> 11:00 p.m. on Sundays and holidays. The Center City Connector, along with a portion of the system between the Thomas Street Station in South Lake Union and the 7th Avenue Station in the International District, will operate with 5-minute headways between 6:00 a.m. and 8:00 p.m. on weekdays, and 8:00 a.m. to 8:00 p.m. on Saturdays and Sundays (with 7.5-minute headways at other times). Figure 3-14 illustrates that with this project in place, Seattle Streetcar will provide 5-minute headway service between South Lake Union and the International District including connections to the City's three Intermodal Hubs.

1 Streetcar vehicles serving the First Hill Streetcar and portions of the proposed alignment utilize on-board energy storage systems (OESS) to operate through wireless segments with no external power supply. The elimination of overhead wires in portions of the corridor reduces conflicts with existing wires for trolley buses and minimizes visual and aesthetic impacts.

Seattle Transit Master Plan 3-77

FIGURE 3-14 STREETCAR SYSTEM OPERATING PLAN

STRATEGY AREA: IMPLEMENTING THE CENTER CITY CONNECTOR

- Strategy CC1.1: Submit Federal Transit Administration (FTA) Section 5309 Small Starts Template (application) to receive capital grant funding. [An application for \$75 Million was submitted in September 2015].
- Strategy CC1.2: Complete Final Design and Engineering to construct the Center City Connector Streetcar. [Final design is underway and expected to be complete in 2016].
- **Strategy CC1.3:** Secure FTA Small Starts Full Funding Grant Agreement with FTA.
- Strategy CC1.4: Finalize construction phasing and mitigation plan focused on minimizing construction impacts and aligning with other major downtown capital projects to limit the impacts of construction on circulation and access to downtown businesses.
- **Strategy CC1.5:** Begin vehicle procurement process, establishing oversight and project management protocols to ensure timely delivery of required fleet.
- Strategy CC1.6: Continue outreach to Center City neighborhoods and businesses to ensure they are well informed and prepared for construction activities.
- Strategy CC1.7: Construct the Center City Connector Streetcar during 2017 and 2018 for service opening in 2018.

1

-

THIRD AVENUE TRANSIT SPINE

Third Avenue is downtown Seattle's most heavily used transit corridor. More than 2,500 buses travel the corridor every weekday and about 47,500 people board at bus stops on the corridor each day. Thousands of visitors, workers, shoppers and area residents also use 3rd Avenue daily.

Throughout much of the day, passenger queues to board buses on 3rd Avenue in the vicinity of Pike and Pine Streets are overwhelming to through pedestrians. To maintain a vital business environment and function effectively for transit passengers, the 3rd Avenue Transit Spine requires significant investment. Streetscape studies have been undertaken to revitalize the corridor, but a more complete, transit-focused study is needed. A well-developed coordinated set of improvements would elevate 3rd Avenue as a centerpiece of Seattle's public space, an effective circulation corridor for downtown transit passengers, a hub for city and regional transit customers, and a great place to work, shop, and enjoy the city. SDOT and King County Metro Transit are working in partnership to plan and design improvements to the 3rd Avenue transit spine. The project will lead to investments in transit amenities, improved lighting, enhanced landscaping, and artistic elements that will enrich the user experience along the street.

The following steps would help simplify transit routing through downtown and would facilitate (though not ensure) the shift of bus volumes from the Downtown Transit Tunnel to 3rd Avenue. They would need to be accompanied by strong branding and clear customer information and signage.

- Eliminate turns where feasible (between Stewart and Yesler) to create a linear transit spine. This configuration would allow downtown passengers to board with certainty that buses would not turn off of 3rd Avenue.
- Eliminate conflicts with pedestrians at the city's highestvolume pedestrian intersections.
- Route all north-south running rapid, frequent, and local buses serving Seattle on the Transit Spine to the extent possible; regional services would use 2nd and 4th Avenues as a north-south transit corridor.

STRATEGY AREA: IMPROVING THIRD AVENUE TRANSIT SPINE

- Strategy CC2.1: Conduct an integrated streetscape and operations study for the 3rd Avenue Transit Spine (Denny to Jackson). Study outcomes would include a 3rd Avenue Transit Spine that operates more effectively as a linear circulator in downtown, serves key city transit routes, and is reconstructed as a centerpiece of Seattle's downtown pedestrian environment. [SDOT and King County Metro have developed plans for 3rd Avenue Improvements and are in design phases with intent to complete Final Design in 2016].
- Strategy CC2.2: Improve transit user experience by providing dynamic transit information, improve waiting areas, provide new shelters and protection from rain and wind, and improve design of pedestrian through zones and transit passenger waiting areas.
- **Strategy CC2.3**: Upgrade pedestrian amenities, improve street lighting, enhance public realm treatments, and add public art features to this important pedestrian and transit corridor.
- Strategy CC2.4: Develop funding sources to complete improvements along the entire corridor from Jackson to Denny.
- Strategy CC2.5: Further restrict auto traffic on the 3rd Avenue Transit Spine during midday times and north of Stewart as required by increasing bus volumes.
- Strategy CC2.6: Implement strategic electric trolley wire projects to improve trolley bus routing and reduce the number of and/or impacts of turning movements on the 3rd Avenue Transit Spine in downtown Seattle.

PLANNING FOR LONG-TERM TRANSIT MOBILITY IN THE CENTER CITY

The City of Seattle and local and regional transit and business partners are planning a major study of downtown mobility, including transit operations and capital. The Center City Mobility Plan will provide direction for optimizing downtown transit operations and identifying capital improvements needed to ensure world class transit mobility in a rapidly growing downtown. Sound Transit and King County Metro Transit are key partners. Leaders from these agencies and SDOT will work with business partners to define a future for a vibrant, sustainable Center City. Undoubtedly, transit investment will be the foundation for success.

This effort will build on current 3rd Avenue Transit Corridor Improvements project outcomes, planning and design for the Center City Connector project, and other public and private planning efforts including the Seattle Comprehensive Plan Update.

STRATEGY AREA: ESTABLISHING LONG-TERM TRANSIT INFRASTRUCTURE IN THE CENTER CITY

- Strategy CC3.1: Work with King County Metro Transit and Sound Transit to establish schedule and service plan concepts from moving bus routes from the Downtown Seattle Transit Tunnel to Center City surface streets as required by increased light rail service operating in the DSTT.
- Strategy CC3.2: Include new north-to-south transit tunnel as part of Sound Transit 3 funding and capital improvement package. The extent and pathway of the tunnel will require further study, but optimally would provide subway operations for Sound Transit light rail from Ballard between Uptown, the western edge of South Lake Union, and Downtown. The City of Seattle should advocate for options that optimize use of a new tunnel, including evaluation of dual mode operations that could carry RapidRide service from West Seattle (prior to future West Seattle rail service).
- Strategy CC3.3: Develop a long-term plan with short-term implementing actions for surface street transit operations in the Center City. The plan should consider projected land use conditions, market needs, and other competing roadway needs. The plan should take a long-view approach, recognizing significant transit infrastructure and changes to bus operations may be needed to provide transit mobility and circulation needed to support Seattle's rapidly growing Center City.
- Strategy CC3.4: Work with transit providers to implement off-board fare payment on 3rd Avenue and throughout the Center City.
- Strategy CC3.5: Work with Metro and Sound Transit to improve passenger wayfinding and information on all major transit streets in the Center City.
- Strategy CC3.6: Upgrade downtown traffic signal systems to increase transit throughput on 3rd Avenue and all key Center City transit streets.
- Strategy CC3.7: Study opportunities for extension of the Seattle Streetcar or a RapidRide line, possible the Madison Line, from Downtown to Lower Queen Anne through Belltown via 1st Avenue.

TRANSIT ACCESS TO SOUTH LAKE UNION AND UPTOWN

The South Lake Union and Uptown neighborhoods will undergo a massive transformation in the next decade as the neighborhoods grow to accommodate 12,000 new residents and 24,000 new jobs. Several major infrastructure projects the Alaskan Way Viaduct Replacement Project, the Mercer East Project, and the Mercer West Project— will change travel patterns in the area and provide a new pathway for transit in the east-west direction along Harrison Street.

Direct high-capacity transit service to these rapidly growing neighborhoods is limited. A Ballard to Downtown Seattle light rail line is a priority of the next major phase of Sound Transit construction, but it could be 10 to 15 years before such a project is operational. Seattle needs to provide more direct service to South Lake Union, provide reliable surface transit facilities to allow streetcars and buses to operate consistently and at competitive speeds, and work with transit agency partners to continually invest in more service.

The planned extension of West Seattle RapidRide (C Line) service to South Lake Union will be implemented in early 2016. The opening of the North Portal will also provide enhanced transit access to South Lake Union and Uptown from the North Aurora corridor. Three of the seven proposed RapidRide lines would pass through or terminate in South Lake Union. These projects are important short- to mid-term improvements, but with the scale of development in these neighborhoods, high-capacity transit improvements are needed and should be forwarded as regional priorities.

STRATEGY AREA: IMPROVING TRANSIT SERVICE TO SOUTH LAKE UNION AND UPTOWN

- Strategy CC4.1: Work with Sound Transit and regional partners to make Ballard to Downtown light rail a top priority for Sound Transit 3 investment.
- Strategy CC4.2: Develop transit lanes on Westlake between McGraw Square and Valley Street providing transit priority for local bus, RapidRide and Seattle Streetcar services. Transit operations in this corridor have become unreliable due to significant increases in general purpose traffic and pedestrian volumes in the area.
- Strategy CC4.3: Extend RapidRide C Line service from West Seattle into South Lake Union, using transit lane improvements on Westlake Avenue.
- Strategy CC4.4: Work with Metro, Sound Transit, and Community Transit to reroute regional bus services with high volumes of passengers bound for South Lake Union or north downtown through South Lake Union via Westlake and Fairview.
- Strategy CC4.5: Consider extending other transit services from south Seattle and the southern Metro region through downtown to South Lake Union. Proposed RapidRide routes serving the Rainier Corridor, Mt. Baker, and the Delridge corridor are strong candidates.
- Strategy CC4.6: Evaluate the viability of a South Lake Union/Uptown off-street transit center that could be constructed as part of an integrated development project and co-located with a future Sound Transit light rail station.
- Strategy CC4.7: Evaluate viability of transit lane improvements on Fairview to provide a priority transit pathway for Electric Trolley Bus routes serving the SLU market.
- Strategy CC4.8: Establish Harrison Street as an important east to west transit carrying street.
- **Strategy CC4.9:** Develop the future RapidRide Station on Aurora Avenue N (to be renamed 7th Avenue N) between Harrison and Thomas Streets as a hub for transit and improve pedestrian connections and street lighting between these locations and major employment centers.

ACCOMMODATING TRANSIT OPERATIONAL NEEDS IN THE CENTER CITY

Layover

Layover is the uncomely truth about bus operations. No matter the degree to which layover operations are made, more efficient, high-frequency services depend heavily on a ready supply of idle buses/operators to ensure reliable operations. Buses standing still are not all that attractive, nor are they human-scale, but they are a very necessary part of transit operations. The conundrum is how to accommodate bus layover in a way that meets urban design goals without locating them so far away from passenger activity areas that it increases operating costs or decreases reliability.

Layover locations should be at logical anchor points. For the Center City these anchor points will tend to be at the north and south fringes:

- North of downtown, in particular, special care must be given to ensure that the location of layover does not work to isolate South Lake Union from downtown, but instead to help transit integrate the two areas.
- In the south end of downtown, the best layover locations offer greater efficiency and connectivity by serving the King Street/International District multimodal hub rather than stopping just short of it in the northern parts of Pioneer Square.

Off-street layover can often be provided with creative design in mixed-use facilities. Potentially higher costs for developing such facilities are often worth the trade-off in terms of urban design benefits. Given the rate of property development in the Center City, the time is ripe for a careful analysis of such opportunities by SDOT, King County Metro, and Sound Transit.

On-street layover opportunities should be accommodated, but only where appropriate, such as through use of peak hour parking restrictions. The City should coordinate with Metro to identify and support low-impact opportunities for on-street layover. Usually this means no more than two buses at any one location. From an urban design perspective, a string of buses along a curb resembles a giant fence or barrier to the urban form and pedestrian environment and should be avoided.

Signal Systems

In the development of corridors for the Frequent Transit Network (discussed in depth in Chapter 4), extensive focus has been given to the implementation of aggressive transit signal priority. Along a corridor, this strategy is relatively straightforward. In the Center City, a number of factors make the addition of transit signal priority a far more complex undertaking, including:

- The presence of very high pedestrian volumes
- A grid of one way streets
- High peak hour turning volumes to access the freeway system
- The 3rd Avenue Transit Spine
- Regular major special events at the north and south edges of the Center City
- Uncertain traffic re-distribution patterns brought about by access points for SR 99

A signal system designed to offer transit priority in this environment needs to be adaptable to current traffic conditions, including high pedestrian volumes. Adaptive traffic control systems require extensive communication networks, centralized computing and communications resources, and staffing to watch the system. As a result, such a system to serve downtown will have a very high capital cost in the range of \$10 million.

To date, adaptive systems have been considered for downtown, but not acted upon based on the relatively high cost and the concern of creating a less friendly pedestrian environment. Even so, the current system operates on a fixed-time basis and it may be possible to optimize signal timing for certain times of the day without increasing pedestrian delay, e.g., in the early hours of the AM peak. The potential benefits that might be derived from applying an adaptive signal system are not fully known, but it merits further consideration as a potential tool to improve transit performance in the margins—if it appears the benefits can outweigh the costs and the potential to increase pedestrian delay.

A string of buses parked along a curb is like a giant fence and acts as a barrier to street fronting building uses. Image from Nelson\Nygaard

Signal system improvements that move buses more efficiently along the 3rd Avenue Transit Spine would benefit many passengers and could adjust to various traffic patterns at different times of day.

Image from Nelson\Nygaard

STRATEGY AREA: ACCOMMODATING TRANSIT OPERATIONS IN THE CENTER CITY

- **TOCC-1**: The City and Metro should jointly identify areas (not specific sites) where development of off-street layover facilities is needed, keeping in mind the balance between serving areas and operational efficiency.
- **TOCC-2:** The City should aggressively seek joint development opportunities to establish off-street layover.
- **TOCC-3**: The City and Metro should continue to work together to maintain an inventory of appropriate on-street layover locations.
- **TOCC-4**: The City should undertake a detailed study of implementing adaptive signal technology on the downtown signal system, including cost evaluation, benefits to transit, and potential to reduce pedestrian delay.

CONVENTIONAL VS. ADAPTIVE SIGNAL SYSTEMS

Conventional Signal Timing

- Actuated-Uncoordinated "Free" Signal Timing: Each intersection in a corridor responds to its own need with no regard to traffic operations at adjacent intersections. The traffic signal controller adjusts the amount of time served to each phase of the intersection based on the number of vehicles detected by detector loops or video detection at that intersection.
- Coordinated Signal Timing with Time-of-Day Plans: Signal timing along a corridor or within a network is coordinated between controllers based upon static signal timing plans. These plans are developed based on a sample of the average traffic volumes for particular times and days of the week. The time-of-day plans result in a common cycle length for a group of coordinated signals, offset starting points between adjacent signals, a sequence of phases, and an allocation of cycle time (splits) for each phase at each signal.

Adaptive Signal Timing

• Adaptive Signal Timing: Adaptive signal control systems continually refine the timings at every intersection within a corridor or network, cycle-bycycle, as traffic conditions change. Adaptive systems monitor traffic conditions using vehicle detectors for all approaches, and often for all movements, of the intersections within the corridor. These systems adjust the signal timing based on the real-time traffic flow in the corridor.

Image from Oran Viriyincy

4 SERVICE

Ensuring delivery of high-quality transit service is of paramount interest to the City of Seattle. Transit service in Seattle is largely funded and operated by King County Metro Transit and Sound Transit, but the City has established a role in funding transit service, mostly in the form of subsidizing additional runs on overcrowded bus routes. Given Metro's large service area and financial challenges, the City should prepare to play an increasingly active role in funding service over the next 20 years.

The City's primary transit service objective is to ensure mobility in Seattle. In times of economic recession, the City may need to focus on maintaining current service levels on high ridership routes. In better times, resources should be dedicated to expanding the Frequent Transit Network.

Achievement of TMP goals will require continued work between SDOT and its transit agency partners, exemplified by recent partnerships that have shaped the RapidRide program, operation of Seattle Streetcar, stop consolidation on Metro routes operating in Seattle, and simplification of downtown transit pathways.

SEATTLE TRANSIT SERVICE PRIORITIES

Transit service in Seattle is largely funded and operated by King County Metro Transit and Sound Transit. The Seattle Department of Transportation (SDOT) manages local streets and transportation facilities and is best positioned to improve transit service by making capital investments that speed buses, improve reliability, and improve access to transit stops and stations. However, ensuring delivery of high-quality service is a priority for the City of Seattle, and the City has established a role in funding transit service by subsidizing additional service on high ridership or overcrowded bus routes. Given Metro's large service area and financial challenges, the City should prepare to play an increasingly active role in funding service over the next 20 years.

- The City's primary transit service objective is to ensure mobility in Seattle. During periods when transit revenues are in decline, the City may need to focus on maintaining service on high ridership routes. In better economic times, resources should be dedicated to expanding the Frequent Transit Network (FTN).
- The second City objective is to develop and expand the FTN to provide high-quality, high-frequency service between urban villages and urban centers for at least 18 hours per day and to reinforce walking, biking, and riding transit as the preferred modes of travel for in-city trips.
- A third City service objective is to develop the local transit network to effectively feed and support the FTN and to take advantage of high capacity rail and bus services. Local service should not run in parallel to FTN routes for long distances, unless those services are part of route combinations that provide FTN service and/or there are topographical or other barriers that impact access.

Effective partnerships with Metro and Sound Transit must be in place at the staff and executive level to ensure these objectives are achieved. These partnerships will support successful inter-agency collaboration, exemplified by recent efforts that have shaped the RapidRide program, operation of Seattle Streetcar, stop consolidation on Metro routes operating in Seattle, and simplification of downtown transit pathways.

THE FREQUENT TRANSIT NETWORK

What is the Frequent Transit Network?

The Frequent Transit Network (FTN) guides service priorities in Seattle and gives direction for where capital investment would provide the greatest community benefit. The FTN should offer frequent, reliable service on designated corridors connecting urban villages and urban centers throughout the day, every day. Figure 4-1 illustrates the FTN that is in place today, with additional elements envisioned by 2030. The FTN will be developed with both bus and rail technologies. Whether an FTN corridor is to be served by bus or rail, the network should be developed to provide a consistently high standard of capacity, reliability, frequency, and customer service amenities. Seattle must continue to work with King County Metro to deliver the FTN vision and realize its value by fostering supportive land use development and high-quality pedestrian access.

The FTN represents the service element of the Complete Transit System and provides a guide for the City in:

- Mobility Corridor Development: Guides where the City should make coordinated transit, access, and land use investments (as described in the Mobility Corridors section of Chapter 5 on page 5-22). These corridors are the primary connections—and carry the most travelers between key destinations and neighborhoods in Seattle.
- Intersection and Signal Management: Guides how signals and rights-of-way are managed in FTN corridors. Since these corridors carry the highest volume of transit riders and have the greatest potential to capture more non-auto users, signal management at intersections should favor transit vehicles; on-street parking uses should be reduced in the interest of moving full, highcapacity buses through congested commercial districts; and integrated solutions should be sought to allow transit and bicycles to safely coexist.
- Service Investment: Guides where the City should invest limited operating funds. FTN corridors were developed through an extensive evaluation of travel patterns, for all trip types, within and to and from the City of Seattle. This work is summarized in <u>the Transit Master</u> <u>Plan Briefing Book, Chapter 2</u>. Arguably, the urban village connections made by the FTN are the most important travel connections for all modes.

Service Design Principles for the Frequent Transit Network

The following service principles were used to guide transit investment priorities for the Transit Master Plan (TMP):

- **Demand Driven:** Invest in transit where overall travel market demand is high
- **Direct:** Provide direct connections between urban villages and centers
- **Connected:** Develop a frequent service grid and create high-quality places for people where lines intersect
- Simple: Design for transparency and ease of use

In conjunction with the corridor evaluation process (see discussion in Chapter 3), these principles were used to design the network of corridors recommended for capital investment, service investment, and restructuring.

Appendix C provides background on development of the FTN map and the classification of the FTN corridors.

FIGURE 4-1 FREQUENT TRANSIT NETWORK

The diagrams in Figure 4-2 illustrate three basic concepts in transit network design: a point-to-point, a grid, and a radial (aka "hub-and-spoke") model.

While a point-to-point model may provide the most direct connections between the most destinations, in a radial or grid model, fewer lines are required. Fewer vehicles and operators are needed, allowing providers to deliver more frequent service on some or all routes and overall trips that are shorter, even factoring in transfers.

While in practice, most transit systems combine different models, the radial pattern predominates in Seattle. Radial bus and rail routes are overlaid with a number of point-to-point type services. Long radial routes have the best frequency and highest ridership but not always because people want to travel to the Center City. Crosstown routes, such as Metro's Route 48 (see sidebar), also have very strong ridership. The TMP proposes service restructuring that moves Seattle transit toward a more grid-oriented design. This is best illustrated by the proposed FTN investments that link services between the Rainier Valley and the University District and between Beacon Hill, Capitol Hill, and the University District. Rather than traveling to downtown, routes would be modified to cross multiple FTN lines that offer convenient transfers to downtown (Link light rail, Madison BRT, and east-west priority bus routes). While some downtown-bound passengers would need to connect (transfer) to Link, others would have direct connections that did not previously exist (e.g., Rainier Valley to Central District and Beacon Hill to First Hill/Capitol Hill).

Certain sectors of the City are better suited to a FTN grid than others. In the north, a grid is achievable and many important elements are planned or in place. In the south, challenges are much greater due to topography; physical barriers such as I-5, Boeing Field, and the railroads; and disconnected land use patterns. An important decision for developing a better grid pattern in south Seattle involves the routing of West Seattle RapidRide and Delridge bus services through SODO. The TMP

recommends that strong consideration be given to routing these services to not use an SR 99 approach, but rather to use a pathway on 4th Avenue (some segments of 1st may need to be used as well to allow bi-directional access to Spokane). Although speed and reliability challenges need to be resolved, a focus of Chapter 3 (Corridors), this routing decision allows for the development of a high-quality connection between 4th Avenue, the E-3 Busway, and SODO stations. It recognizes the diverse demand patterns of residents; most trips (of all types, not just transit trips) made by southeast and southwest residents do not go downtown, but rather are oriented to other south Seattle neighborhoods and to Burien, Tukwila, Renton, and other southern neighboring cities (see Figure 4-3).

Performance Characteristics of the Frequent Transit Network

To meet City goals to increase transit mode share, the Frequent Transit Network must be:

- Fast and Reliable: Operate transit on arterial streets/ transit priority streets where it will be most rapid and reliable; make improvements that speed transit and make transit travel more competitive with automobile travel.
- Frequent: Connect urban centers and urban villages with 15 minute or better, all day service.

In addition to implementing the capital projects specified for FTN corridors (see Chapter 3), a top priority for the City of Seattle is to work with Metro and other regional transit providers to deliver the following level of service on all FTN corridors:

- **Frequent All Day:** 15 minute or better service frequency all day
- Long Hours: 18- to 24-hour service span (6 a.m. to midnight, or later)
- Every Day: 7 day per week service

Source: Nelson\Nygaard

KING COUNTY METRO ROUTE 48

King County Metro's Route 48 is an example of a successful crosstown bus route. Route 48 effectively operates as two crosstown routes (48N and 48S) that seamlessly interline in the U-District, running from Mount Baker to Loyal Heights via the U-District. In March 2016 the 48N will become a new KCM Route 45. The route will still run between Loyal Heights and the U-District with a terminus at Husky Stadium Station.

As the highest ridership route in the county, Route 48 illustrates that demand for non-CBD services can be strong when service is direct and operates at high frequency. The fact that Route 48 allows riders to travel through the U-District without transferring is likely a limited part of its success. The route could operate as successfully and more reliably as two separate lines or as longer east-west and northsouth crosstown services.

The TMP recommends a Frequent Transit Network priority corridor that connects the southern segment of Route 48 between the U-District and Mount Baker with the southern segment of Route 7 between Mount Baker and the Rainier Valley light rail station. It recommends a second FTN priority corridor serving the northern portion of Route 48 and, further, recommends that both portions of the route be converted to electric trolley. As noted above, KCM's Link Connections restructuring (March 2016) will implement this service configuration.

FIGURE 4-3 MAJOR ORIGIN-DESTINATION TRAVEL PAIRS BETWEEN SEATTLE AND REGION (ALL OTHER TRIPS, 2008)

An examination of non-work travel shows that West Seattle and South Seattle residents travel frequently to and from destinations in Burien, Sea-Tac, Renton, and Tukwila. Data Source: City of Seattle

Several FTN corridors already have headways that are better than every 15 minutes. Others will merit or require this level of service to meet projected ridership demands. Figure 4-4 illustrates target service levels over the course of the day for FTN (Frequent and Very Frequent) and Local services.

FIGURE 4-4 SERVICE TARGETS FOR THE FREQUENT TRANSIT NETWORK

Achieving Frequent or Very Frequent Service levels on the FTN is a key objective for Seattle, but will require incremental improvements and increased funding.

Source: Nelson\Nygaard

The TMP modeled future ridership demand to determine which routes are most likely to require additional service to meet increased demands. These corridors present opportunities for Seattle to fund additional service during peak hours or throughout the day. Figure 4-5 provides guidance as to where service subsidies might be in greatest need due to high passenger loads, particularly following speed and reliability improvements recommended in Chapter 3. (Note, however, that all TMP corridors are priority corridors.)

FIGURE 4-5 FREQUENT NETWORK CORRIDORS PRIORITIZED FOR CITY SERVICE SUBSIDY

Priority Based on Estimated Passenger Loading	Corridor
Highest Priority for	5 Rainier Valley – U-District (Rainier/23 rd)
Investment	10 Northgate – Ballard – Downtown (15 th Ave)
	7 Capitol Hill – South Lake Union – Queen Anne (Denny)
	Center City Priority Bus Corridors (Jackson, Pike/Pine, Queen Anne to Seattle Pacific University, and Yesler/9 th /Jefferson)
	9 Aurora Village – Downtown (Aurora)
	3 Othello – U-District (Beacon/Broadway)
	4 Mount Baker – Downtown (Rainier/Jackson)
	15 Greenwood - Downtown
	13 Ballard – U-District (Market/45 th)
	2 Burien TC/Delridge – Downtown
	14 Crown Hill – Greenlake – U-District
	1 West Seattle – Downtown (Fauntleroy)
	12 Lake City – Northgate – U-District

Note: Based on planning-level analysis, actual conditions will vary. Priority is relative to RapidRide service levels.

Services that Comprise the Frequent Transit Network

The FTN is mode neutral. Key modes that deliver FTN service are:

Image from Nelson\Nygaard

Light Rail (Rapid Transit): Rapid transit is defined by services that operate completely or largely in their own rights-of-way, separated from interaction with other modes of transportation. Link light rail is the only transit service in Seattle that fits this category. However, Seattle's long range vision for transit identifies a number of corridors that are candidates for future rapid transit.

Image from Nelson\Nygaard

Priority Corridor Bus (Diesel and Electric Trolley

Bus): Bus service operating on major arterial roadways is the foundation of Seattle transit service, carrying a majority of daily transit trips in Seattle.

Image from Wikimedia Commons user Ludek

Rapid Streetcar: This is a high-capacity urban rail mode that uses streetcar vehicles, which are lighter than light rail vehicles, operating in existing street rights-of-way. Priority over vehicular traffic is provided wherever possible, and traffic operations and stop spacing are designed and managed to achieve a high level of speed and reliability. There is no rapid streetcar service currently in Seattle. However, the TMP recommends two such lines: Loyal Heights – Ballard – Fremont – South Lake Union – International District and Roosevelt – U District – South Lake Union –International District. Rapid Streetcar is a promising mode for building out other proposed corridors in the Seattle long-range HCT vision, particularly where passenger demand is consistently higher than what a frequent bus can handle.

Image from Nelson\Nygaard

Local Streetcar: The South Lake Union Streetcar and First Hill Streetcar (future) target short circulation trips in the Center City and adjacent neighborhoods. Although local streetcars provide frequent service, they have very different characteristics than the other modes—they are not designed with speed in mind and therefore do not operate in transitonly lanes or with priority over traffic.

Image from Nelson\Nygaard

Bus Rapid Transit: BRT is a high-capacity rubber-tired mode designed with features similar to light rail, ranging from distinctly branded buses and stops to exclusive rights-of-way. Boston's Silver Line (shown above) is an example of "full" BRT, with more aggressive priority treatments and station-like stops. King County Metro's RapidRide could be said to fall into a "light" category, where buses primarily operate in mixed traffic and transit priority is focused on points of congestion.

BRT typically uses diesel-powered vehicles, however electric trolley buses could also be used. The TMP recommends one such line, on Madison from Capitol Hill to Colman Dock. It would be limited to 40-foot buses due to the topography of the corridor.

CRITERIA FOR EXPANSION OF THE FREQUENT TRANSIT NETWORK

As Seattle land use patterns change over time, the City should continue to work with Metro to ensure that any further investment in the FTN service meets the following criteria:

- **Demand** ridership and land use patterns suggest demand for all day (at least 18 hours) service with headways of 15 minutes or better between 6 a.m. and 9 p.m., or later
- **Permanence** dense and diverse land use patterns guarantee strong ridership support over time
- **Connections** direction linkages between urban villages and urban centers
- Linkages intersections with other FTN routes
- **Simplicity** direct route design that supports network transparency

These criteria are supported by the King County Metro Transit Strategic Plan for Public Transportation and Service Guidelines. Metro's Strategic Plan calls for Metro to "Manage the transit system through service guidelines and performance measures." Metro's objectives for developing an all-day network of top-quality service align with the FTN objectives. The Strategic Plan indicates Metro will design its services to meet the following objectives:

- Support regional growth plans
- Respond to existing ridership demand
- Provide productive and efficient service
- Ensure social equity
- Provide geographic value through a network of connections and services throughout King County communities

Under each objective, thresholds are established to guide adjustment of service levels. For more information see http://metro.kingcounty.gov/planning.

Branding the Frequent Transit Network

The FTN concept is the basis for leveraging broad publicpublic and public-private partnerships needed to improve and better market a diverse network of high-frequency services. It provides an opportunity to create a recognizable subset of services that communicates quality, comfort and convenience. Branding the FTN is most importantly an opportunity to communicate that the City's highest quality transit route network is a permanent, integrated part of city infrastructure.

Seattle's transit network is saturated with brands, including those used by multiple transit agencies, those used for

Transit branding can apply to many elements of a transit route or system, but is most effective when applied to all:

Vehicles are effectively used to brand the Hop, Skip, and Jump family of service in Boulder, Colorado.

Image from Nelson\Nygaard

Public information signs in Portland include wayfinding to major transit services.

specific modes (e.g., Link, Seattle Streetcar), and those used for service families (e.g., RapidRide). Link, Seattle Streetcar, and RapidRide brands are all suggestive of a minimum level of service (frequency), but what about the rest of the Metro bus system that provides comparable service levels? Seattle residents, workers, and visitors would benefit most from a unifying service quality brand that crosses multiple providers and service families.

Branding elements in this prototype stop and shelter installed by STM in Montreal clearly identify the transit agency, differentiate service types through use of color, and incorporate transit maps on the stop pole.

Image from STM

Transit signage on the Portland (OR) Transit Mall is prominent and distinct from other types of signage and clearly identifies the agency and service types and routes at the stop.

Image from Nelson\Nygaard

Image from Flickr user NedRichards

Transit branding can also be applied very pointedly or broadly to elements of a city's transit system:

SINGLE ROUTE: Cleveland's Health Line BRT is an example of single service with a unique set of features, route design, branding, and public information.

Image from Nelson\Nygaard

SERVICE FAMILY: RapidRide, King County Metro's enhanced corridor bus service, is an example of a brand that will be applied to a subset of bus service.

Image from Nelson\Nygaard

NETWORK: Portland's Frequent Network is a brand that is applied to all services, rail or bus, to connote a minimum level of service quality. Image from Nelson\Nygaard

Consider an on-line transit trip planner. When a customer enters an origin and destination in the system, they almost always choose to sort their results (if the trip planner doesn't already do so for them) by shortest travel time. System branding can help communicate which services are most likely to be fast, frequent, and reliable. Key principles and steps for using branding to improve ridership on the Seattle transit system include:

- Emphasizing clear information and branding of connections over vehicle or service types, including:
 - An easy to use map of the FTN emphasizing connections between major nodes (Figure 4-6 provides an example from Spokane). TriMet in Portland also effectively maps its Frequent Network (see Figure 4-8.)
 - Providing route level maps that simply communicate direct connections between key destinations and major transfer points. King County Metro's map of the RapidRide A-Line in Figure 4-7 employs this technique.
- Marketing a network of services and creating a brand that is used in all public information, including:
 - Vehicles (can be a very subtle brand that overlays existing provider or service brands)
 - Facilities (e.g., stations, stops, and other amenities)
 - Signage
 - Schedules and on-line transit information
 - Advertising and public information

Metropolitan areas with a single agency that oversees regional transit operations, such as Minneapolis, Portland, and Montreal, have greater incentive to develop a strong network brand. Since these agencies are paying for all services, they work hard to avoid duplicative services and market the value of a strong network (see sidebar, page 4-13).

FIGURE 4-6 EFFECTIVE MAPPING SAMPLE

Source: Spokane Transit

FIGURE 4-7 SAMPLE ROUTE-LEVEL MAP

Image from Oran Viriyincy

SERVICE BRANDING

Transit branding can be employed to help communicate aspects of service quality (e.g., speed, reliability, frequency, and span of service) on an individual route or a network of routes. In some cases, a brand communicates all of these aspects. For high-capacity transit services that are commonly known to operate at high frequency all day, branding is often tied to speed or some other aspect of service. For example, the Link brand connotes the broader function of the light rail system—to connect major urban centers around the Puget Sound region. Branding of bus services in urban areas, where many routes service multiple functions and geographies and operate with varying levels of service, is most effective when tailored to communicate the key service-quality attributes. In the case of Seattle's core network of bus routes, which include most of the electric trolley system, "frequency" is the most important aspect of the network to communicate. Customers are more sensitive to wait time than on-board travel time. This is particularly true for short trips. Therefore, Seattle and King County Metro should focus branding efforts on "frequency."

TriMet in Portand, Metro Transit in Minneapolis, and STM in Montreal have built very strong brands around a frequent service network. Translink in Vancouver, BC uses a Frequent Transit Network as a guiding developmental component of their citywide transportation plan, although their service brands do not use frequency as a primary theme. In each of these cases, the "frequent" brand also connotes a core set of services where the greatest investment is made to improve reliability, comfort, passenger amenities, and travel time (or at least priority over congestion).

The examples offered in Figure 4-8 are integrated elements of each agency's marketing plan, but none are a dominant brand for a particular type of service.

FIGURE 4-8 EXAMPLES OF FREQUENT SERVICE NETWORK BRANDING

Metro Transit (Minneapolis) – High Frequency Service

STM (Montreal) – Reseau 10 Minutes Max

Source: CAT Bus

ELECTRIC TROLLEY BUS BRANDING ELEMENTS

Certain attributes of Seattle's electric trolley bus system could provide attractive branding elements, such as zero-emissions operations. On the other hand, Metro should avoid the use of "green" operations as a dominant brand because it does not apply to the entire system of frequent bus service within Seattle. The following examples show how other agencies have incorporated "green" branding on their bus fleets. An approach for Metro and the City of Seattle may involve a much more subtle sub-brand that stresses zero-emissions and/or low noise attributes, but does not involve full bus wraps or significantly different paint schemes.

The Pittsburgh Port Authority is branding its new diesel-electric hybrid buses as "Clean Green," with green paint and a leaf design.

Image from Flickr user Herrvebah

Branded electric bus in Minneapolis. Image from Flickr user fihrdad fog

A compressed natural gas (CNG) electric hybrid in San Diego. Image from Flickr user SoCalMetro (used with permission)

Hybrid-electric bus in Columbus, Ohio. Image from Flickr user gsbrown99

STRATEGY AREA: IMPLEMENTING THE FREQUENT TRANSIT NETWORK

- **FTN 1:** Partner with Metro and other regional transit providers to deliver the following level of service on all Frequent Transit Network corridors:
 - 15 minute or better service frequency all day (between 6 a.m. and 9 p.m., or later)
 - 18- to 24-hour service span (6 a.m. to midnight, or later)
 - 7 day per week frequent service
- **FTN 2:** Develop local funding sources to support additional service subsidy (see also Chapter 6 Funding).
- FTN 3: Target any City transit operating funds/subsidies to meet or surpass minimum service levels on routes that comprise the Frequent Transit Network, particularly where Frequent Transit Network corridors regularly exceed loading standards.
- **FTN 4:** Work with Metro to develop performance agreements that ensure service hours gained through City capital investments will be reinvested in routes serving the Frequent Transit Network in Seattle.
- **FTN 5:** Work with Metro to develop a transit system restructuring study, or studies, for all Seattle bus routes (and possibly key services extending beyond Seattle).
- **FTN 6:** Use a Multiple Account Evaluation (MAE) approach (see Chapter 3) to reassess priorities for expansion of the Frequent Transit Network every 5 years.
- **FTN 7:** Work with Metro to develop a late-night service program on top of performing Frequent Transit Network routes. (Secondary to establishment of minimum service levels FTN 1).
- **FTN 8:** Manage operations of arterial transit streets to provide priority to transit vehicles carrying high passenger volumes.
- FTN 9: Set policies that encourage all land uses with high transit trip generation to locate within ½ mile of a Frequent Transit Network route.
- **FTN 10:** Provide input to Metro on specifications for the new Electric Trolley Bus fleet and consider funding vehicle features that support Frequent Transit Network design and service levels and enhance ride quality and passenger comfort.
- FTN 11: Coordinate FTN service level standards and operations with relevant land use codes.

SEATTLE ELECTRIC TROLLEY BUS SYSTEM

Overview

Public transit is an emblematic element of every great city. New York has its subway, Toronto its streetcar system, and Vancouver its SkyTrain metro system. All these systems combine function, quality, and brand appeal to deliver a compelling service that is widely used by residents and visitors alike. No one element of Seattle's transit system delivers greater mobility, access to important local destinations and transit friendly neighborhoods, or holds more potential to elevate the quality and appeal of transit than the electric trolley bus system operated by King County Metro. If there were personal ads for transit, the electric trolley bus would have an attractive line in the Seattle papers.

"Always there but quiet, hill climber, environmentally friendly, seeks hilly Seattle neighborhood for diligent service."

Seattle's electric trolley bus (ETB) system is an important tool to deliver City goals related to mobility, environmental protection, and quality of life.

To meet City and County targets for climate change, growth, and reduction of vehicle miles traveled, Seattle's transit network must be capable of absorbing far more ridership than it currently accommodates. This will require transit to carry many more people in Seattle and serve a broader range of trip types for residents and visitors. The City and King County Metro must continue to partner to ensure Seattle can gracefully support planned growth with safe, comfortable, clean, and effective mobility for all its residents. Maintenance, enhancement, and expansion of the electric trolley bus system can help to meet this goal.

An Abbreviated History

As part of a broad effort to modernize Seattle's transportation system in 1939, a special commission proposed the replacement of a number of streetcar, cable car, and bus routes with a 110 mile electric trolley bus system. With swift action to launch the system, 235 trolley buses were operating by the following year. Two to three decades later, the 110 mile system was still in place, but faced competition with modern diesel buses, which could be operated cheaply given the low cost of fuel.¹

When North Seattle was annexed in the 1950s, 40,000 new residents were promised transit service. Seattle Transit, the city's then-private transit company, was in dire financial straits and could not bear the costs required to extend trolley wire infrastructure to the new northern city limits. Instead, many of the overhead power lines were dismantled and trolleys were replaced with diesel buses. Figure 4-9 illustrates the extent of the electric trolley bus system in 1963, prior to the annexation of North Seattle.

By 1970, the system had diminished to 32 route miles.

When Metro (then the Municipality of Metropolitan Seattle) inherited the trolley bus system in 1973, it successfully retained federal grant funds to restore aging infrastructure and replace the vehicle fleet.

Figure 4-10 illustrates the extent of the King County Metro electric trolley bus system as it operates in 2011.

Today, King County operates 14 different ETB routes on 70 miles of streets. The 159 vehicle ETB fleet includes both standard forty-foot and articulated coaches. Electric bus routes carry approximately 23% of Metro riders countywide while consuming approximately 15% of service hours.

1 King County Trolley Bus Evaluation Report. May 2011. King County Metro.

Earlier (left) and current generation (right) electric trolley buses. By 2015, Metro will have replaced its entire ETB fleet with modern vehicles. This investment in vehicles itself will improve customer experience on many Seattle bus routes. Images from Flickr user Oran Viriyincy

Proposed by a special commission in 1939 as part of an effort to modernize Seattle's transportation system, a 235 trolley bus system was launched and operating IIO miles of two-way service by the following year.

Source: King County Metro

FIGURE 4-10 2011 ELECTRIC TROLLEY BUS NETWORK

Today King County operates 14 different ETB routes on 70 miles of two-way trolley wire. The 159 vehicle ETB fleet includes both standard forty-foot and articulated coaches.

Source: SDOT

FIGURE 4-11 PROPOSED ELECTRIC TROLLEY BUS NETWORK IMPROVEMENTS

This map illustrates a number of potential electric trolley system projects included in the TMP. Projects range from short wire additions that would allow existing routes to be restructured to full electrification of existing Metro diesel routes. Some may be reasonable shortterm priorities, while others are dependent on other corridor planning and development decisions. Potential longer-term electrifications include several frequent, non-freeway routes not shown on the map. Source: SDOT

Seattle Transit Master Plan 4-19

WHY IS THE ELECTRIC TROLLEY BUS IMPORTANT TO SEATTLE?

Arguably, an electric trolley bus is just another vehicle type used to deliver urban transit service. A vehicle itself does not make or break the value or quality of service provided by a transit route or system. However, a number of factors distinguish and emphasize the value of electric trolleys in Seattle.

- **Hilly terrain:** Seattle's unique topography includes a number of ridges and land forms that drop quickly to the water bodies that surround the City. The electric trolleys provide rapid acceleration and quiet operation on steep grades that cannot be matched by diesel or diesel electric hybrid vehicles.
- **Great neighborhoods:** Seattle is famous for its livable neighborhoods; quiet operations provided by electric trolleys allow high levels of transit service in dense mixed-use neighborhoods without the downside of noise and emissions created by diesel coach operations. Electric buses are the quietest mode of motorized street-level public transit.
- **Rapid urban growth:** Seattle is projected to grow rapidly over the next 20 years, with most of the population and job growth projected to occur in the Center City areas and other urban centers where current electric trolley service is most extensive.
- Strong environmental values: The City and County are national leaders in environmental protection and have set aggressive goals for reducing greenhouse gas emissions. Seattle's power company, City Light, provides GhG-neutral electricity, allowing electric transit in Seattle to provide clear emission reduction compared with diesel operations. Regardless of power source, electric buses are approximately 1.9-2.4 times as energy efficient as diesel buses.¹
- Ease of navigation: Transparency and ease of navigation has always been an argument in favor of rail transit. Fixed rail tracks running in the street right-of-way are easy to recognize and signal to passengers that there will be a train coming soon. Overhead wires used to power ETBs provide a similar benefit. Since trolleys run in neighborhoods that host many of the City's visitor attractions, this benefit, combined with high-quality information, can help to draw visitors and infrequent riders to transit.
- Additional funding: Despite higher operating and capital costs compared to diesel or diesel electric bus options (discussed below), the availability of FTA fixed guideway funding for the electric trolley system helps King County Metro provide more service per increment of locally generated funding. A recent analysis by King County shows that on an annual life cycle cost basis, which includes both operating and capital cost elements, using trolley buses to operate the existing network is \$3.7 million cheaper each year.²

Electric Trolley Bus Fleet Replacement

A recent decision by King County Metro to replace its entire electric trolley fleet with modern coaches by 2014 sets the stage for Seattle and King County to elevate the function and perception of the ETB system. Matching the fleet improvements with operational enhancements, access improvements, and better passenger facilities will leverage greater value from investments in new vehicles.

Specifications for these vehicles will be developed by King County Metro by early 2012. It is important that new vehicles include the following features:

- Modern BRT rail-like vehicle appearance.
- Low floors and extra doors (3-4 doors vs. 2-3 doors, depending on vehicle length) for faster boarding. This could be particularly valuable as Metro and other providers migrate toward off-board fare payment. (Many ETB routes will be top candidates for implementing full or partial off-board fare payment).
- Off-wire capability to allow rerouting around street closures.
- ORCA "smart card" readers at all doors to allow all-door boarding for pass holders.
- Passive restraint wheelchair system.

If these features are not included in the Metro-funded specifications, the City of Seattle should consider providing supplemental funding to ensure this significant investment in passenger vehicles aligns with City priorities for service quality and access. Figure 4-12 shows features of ETB used in other cities.

¹ Metro Trolley Expansion Program FEIS; also The Trolleybus in Edmonton: A Step Toward Better Public Transit and a Cleaner Environment, Kevin Brown, 2001

² King County Trolley Bus Evaluation Report. May 2011. King County Metro.

FIGURE 4-12 POSSIBLE VEHICLE ENHANCEMENTS

EMTU low-floor trolleybus in São Paulo provides three door boarding.

Image from Wikimedia Commons user Ailton Florencio

Rail Style Vehicle

Three Door Boarding

Irisbus Cristalis trolleybus in Lyon, France. Image from Wikimedia Commons user Momox de Morteau

Battery Operations

A Translink electric trolley bus in Vancouver, B.C. This is a 40' New Flyer vehicle with battery auxiliary power allowing off-wire operations.

Image from Wikimedia Commons user Bobanny

Open Interior Layout for Greater Capacity

Photo of interior configuration of Irisbus Cristalis 60 foot articulated electric trolley bus. Image from Wikimedia Commons user tompagenet

Wellington NZ carbon fiber poles reduce "jumping" wires or dewirements. This vehicle is produced by Designline Vehicles. Image from Wikimedia Commons user tompagenet

Advanced Pole Technology

BUS FEATURES

These photos highlight important features for enhancing the comfort, capacity, and accessibility of buses. These features are relevant to both ETB expansion and buses generally. They include:

- Low-floor vehicles for level boarding and streamlined wheelchair access
- · Automated stop announcements, both visual and audible
- Seats that fold up to accommodate wheelchairs
- Perimeter seating and a wider aisle
- Seats that fold up to accommodate standing room passengers, as well as plentiful bars and grips to hold onto
- · Boarding at multiple, wide door, with fare payment readers available at all doors
- Interior maps illustrating the route, stops, and travel times

FIGURE 4-13 FEATURES FOR ENHANCING BUS COMFORT, CAPACITY, AND ACCESSIBILITY

Accessible wheelchair boarding from multiple doors on a bus in Rome.

Image from Nelson\Nygaard

Perimeter seating on an articulated bus. Image from Flickr user Dennis Tsang

Requiring off-board ticket purchases and/or providing on-board electronic card readers speeds boarding times.

Flickr user Monica Arellano-Ongpin

Rail-like route strip maps, exemplified by this concept for Metro Route 48, would make it easier for new riders and visitors to use the bus system.

Image from Oran Viriyincy (via Flickr)

STRATEGY AREA: ENHANCING THE ELECTRIC TROLLEY BUS SYSTEM

- **ETB1:** Work with Metro to ensure that the 2014-15 vehicle procurement includes the state-of-the-art features referenced in Figures 4-12 and 4-13.
- ETB2: Pursue grant funding opportunities and develop partnerships with Metro and others to continue expanding the system until and unless new zero-emissions technology becomes widely available, reliable, and affordable.
- **ETB3:** Ensure that SDOT and other City processes for permitting electric transit infrastructure helps facilitate trolley system development.
- ETB4: Collaborate with Metro to consider an electric trolley sub-brand that stresses the zero-emissions and/or low noise attributes of ETB service.

SEATTLE LOCAL TRANSIT NETWORK

Local Transit Network

King County Metro provides a network of fixed-route bus services to lower-density areas of Seattle that are not directly served by the FTN. Referred to as the Local Transit Network (LTN) in this plan, this includes routes that provide access to the FTN, express service from neighborhoods to downtown, and neighborhood circulation. The LTN is also supplemented by demand responsive public transportation services and private and institutionally operated shuttles that provide services targeted at specific populations.

The LTN is not a key focus of this plan, since the City's limited transit resources will be focused on the development of the FTN. However, the City should support Metro actions to:

- Maintain a basic or "lifeline" level of LTN service to within ½ mile of most Seattle residents. This level of service is defined by a minimum of 60 minute frequencies for 15 hours per day. If a route cannot support this level of service, then redeployment and/or provision of alternative service concepts should be considered.
- Restructure LTN services as new FTN services come on line (e.g., the opening of the University Link and North Link will provide an opportunity to eliminate duplicative downtown-bound services and redeploy services to better feed Sound Transit light rail stations or FTN corridor stations).
- The extent of LTN service will change over time, becoming a smaller share of the City's overall system as:
 - New rapid transit lines are implemented and replace express routes (less LTN service, more FTN service).
 - The FTN expands.
 - New local service or private shuttles are added to support new rapid transit lines.
 - Demand grows for local services feeding rail stations or transportation centers, allowing them to be upgraded to FTN service.
 - Service consolidation occurs to improve service efficiency and effectiveness.

Coverage rather than speed is the goal for the LTN. Stop spacing as close as 600 feet can be acceptable in some cases, but transit access improvements are, like the FTN, critical to maximizing its usefulness. The City should consider the elevated need for access to LTN stops in prioritizing pedestrian and bicycle investments.

Local Transit Network Priorities

The City should focus efforts to improve the LTN—through funding or policy—on areas with the highest ridership and those areas that do not have convenient walking access to the FTN. The TMP recommends that the City focus on LTN improvements in two areas: (1) partnering with Metro on strategic restructurings that allow service hours to be redeployed within the LTN and (2) enhancing service in areas with limited FTN access.

- **Restructuring Opportunities:** The following are areas where the City should work with Metro to continue to refine or restructure the LTN in conjunction with completed or upcoming FTN service improvements:
 - Southeast Seattle: Many LTN routes in this area have been restructured to provide connections with Link light rail stations between Mt. Baker and Rainier Valley. However, challenging topography and wide light rail stop spacing make it challenging for many residents to access light rail.
 - University District/North Seattle: Sound Transit University Link (Husky Stadium) and North Link (Roosevelt, Northgate) extensions will open in 2016 and 2021, respectively. Both will provide opportunities to redeploy LTN service to feed this high-capacity link to the Center City. Opening of the Northgate station, in particular, will provide opportunity to discontinue downtown-bound, peak-only express bus service. Service redeployment in this section could be allocated to improve LTN service in neighborhoods, such as Pinehurst, that don't have convenient walk access to the current or planned FTN.
 - NE Seattle: The planned opening of RapidRide lines D (Northgate – Ballard – Downtown) and E (Aurora Village – Downtown) will present an opportunity to consider service restructuring in NE Seattle. In particular, this is an opportunity to consider enhancing services that intercept FTN corridors on Aurora Ave, Lake City Way, and 15th Ave NE and eliminating expensive express bus services to downtown.
- Priority Areas for LTN Investment: The following are areas of the city where FTN services are more than a ½ mile walk and, therefore, LTN routes should be considered for increased service levels through reallocation from lower-productivity LTN routes. LTN routes must also have the following characteristics to be considered for added service: (1) be well utilized and (2) be designed to provide access to the FTN and/or multimodal hubs.
 - West Seattle: north of Alaska Junction and along 35th Ave SW
 - Georgetown/South Park
 - Magnolia
 - NE Seattle: east of 25th Ave NE and north of NE 45th Street
 - North Seattle: east-west services in the vicinity of N 125th Street and N 145th Street

The TMP Briefing Book, pages 4-9 and 4-10, illustrates the bus network in Seattle.

STRATEGY AREA: IMPLEMENTING THE LOCAL TRANSIT NETWORK

- LTN 1: Encourage Metro and other regional transit providers to deliver at minimum the following level of service on well-utilized Local Transit Network corridors that connect effectively to the Frequent Transit Network:
 - 60 minutes frequency or better
 - 15 hour service span or longer
 - 7 day per week service

Where supported by demand, increased frequency should be provided at peak hours.

- LTN 2: Develop local funding sources to support additional service subsidy (see also Chapter 6 - Funding) or directly pay for local neighborhood service. City funds should be directed to the most cost effective means of delivering LTN service, which could include buying Metro service or funding other delivery mechanisms for neighborhood shuttle services.
- LTN 3: Focus any City resources available for LTN investment on routes with the highest ridership and/or those areas that lack convenient walking access to the FTN.
- LTN 4: Work with Metro to restructure LTN services to more effectively connect with FTN services, allowing simultaneous service changes.
- LTN 5: Work with Metro and other human service transportation providers to reduce spatial or temporal

gaps in the transportation system for people with special mobility needs.

- LTN 6: Multimodal hubs, major transit stations, and priority access nodes should be designed to provide high-quality bus intermodal connections to minimize the penalty associated with connecting from a local route to an FTN service.
- LTN 7: Work with major institutions and employers to facilitate use of employer-funded, high-occupancy shuttles to provide access to major transit hubs or rail stations.
- LTN 8: Maintain oversight of the accessible taxi program; ensure the fleet has an adequate number of accessible taxis, that procedures are in place to prioritize use by persons with disabilities, and that there is good customer service.
- LTN 9: Work with providers to ensure that public, institutional, and private transportation services deliver convenient connections between the FTN and residences and facilities that serve seniors and persons with disabilities.
- LTN 10: Collaborate closely with King County Metro to test new transportation approaches, such as neighborhood circulators or shopping shuttles that may better serve older adults and persons with disabilities in a more cost-effective manner than public paratransit or full-sized buses, allowing reallocation of unproductive, expensive services.

ADA Paratransit, Social and Human Service Transportation

King County Metro Transit offers a variety of services for people with special transportation needs. These include Metro's Access Transportation service, which responds to the federal Americans with Disabilities Act (ADA) requirements and its Community Transportation Program described in more detail in the TMP Briefing Book, page 4-3, and summarized in the sidebar on page 4-27. Dozens of other non-profit and privately funded organizations provide transportation services to Seattle residents with special transportation needs. The City plays a key role in managing its street system so that cars, vans, and shuttle buses used by these providers can move efficiently and reliably through the City.

During 2009, a total of 1.15 million ADA paratransit trips were provided at an average cost of \$38 per trip (compared to a fixed route boarding cost per trip of \$3.90). About 30% of

Access vehicle on 24th Avenue E Image from Nelson\Nygaard

Left: In 2006, Sound Transit received a federal grant to implement Talking Signs, a wireless communication system that provides audible landmark identification and wayfinding assistance. Right: A tactile sign facilitates wayfinding within a TriMet MAX station.

Left: Image from Flickr user Sound Transit, used with permission.

Right: Image from Nelson\Nygaard

paratransit passengers are able to use fixed-route transit for at least some of their trips; however, they are often prevented from using the bus because of barriers that keep them from accessing the nearest bus stop or station. It is in the best interest of both customers and public agencies that provide paratransit to encourage and facilitate the use of fixed-route services by all riders who are capable of boarding standard buses.

Despite the range of transportation options already available to citizens of Seattle, existing public transit and/or paratransit services cannot meet all mobility needs. What are the most significant needs or gaps that, if addressed, could improve mobility for all users, particularly older adults and persons with disabilities? Some of these are outlined below:

- Lack of Knowledge and Information: There is a need to improve how people access route and schedule information. Customers and social service agency staff need to understand the range of services offered, as well as their limitations or eligibility factors, if any. It is important that information be available electronically (online), in print, and by telephone. All materials should also be available in accessible formats.
- Spatial or Geographic Gaps: Key origins and destinations utilized by persons with disabilities or seniors are not located on the FTN or have challenging physical conditions for travelers to reach a bus stop. In addition to Metro operated Community Transportation Program services, programs such as Safe Routes to Transit can help overcome these challenges.
- **Temporal Gaps:** Transit service hours may not be adequate; there may be lengthy waits to schedule service, or a long time on the vehicle, especially if the trip requires multiple transfers.
- Facility Siting: Facilities that support special needs populations are not always located where there is existing public transportation. Land use policies that encourage such facilities to locate near high quality transit access are critical.
- Lack of Safe and Accessible Pedestrian Access to Transit: Amenities may be missing that prevent or hinder people from traveling to and from transit stops and their destinations, such as missing or damaged sidewalks, lack of curb cuts, lack of signalized intersections, or not enough time for people who move more slowly to cross streets.

The City of Seattle should consider the following strategies and partnership opportunities to enhance travel options and quality for people with special transportation needs:

• Make enhancements to fixed-route public transportation operations and planning such as additional bus operator training, incorporating travel needs of older people in route planning, stop placement and facility design, and

coordination with other agencies and transportation providers.

- Improve access to information by fully integrating the needs of older adults, persons with disabilities, and non-English speaking people in planning and design of transit facilities, offering fully accessible public information options, and employing state of the art technology that aids disabled residents in navigating streets and accessing transit facilities.
- Provide enhancements to public transportation vehicles such as low-floor buses, kneeling buses, wider doors, improved interior circulation, additional stanchions and grab bars, ergonomic seating designed for older riders, and accessibility features either required or encouraged by ADA, such as ramps, larger letters on head signs, and stop announcements.
- Provide programs to help older people take advantage of existing services, such as information and assistance programs to connect older people with appropriate services and outreach and training programs.
- Expand supplementary services including flexible route and community transportation services, ADA complementary paratransit, non-ADA demand-responsive services, taxi subsidy programs, and volunteer driver programs.
- Apply universal design strategies at transit facilities, bus stops, and on streets and sidewalks in the immediate vicinity of transit facilities and stops.
- Support information programs that help policy makers recognize the range of benefits to make transportation improvements such as: keeping people healthy, improving affordability of transportation, maintaining independence, improving public health, and reducing costs to public agencies responsible for implementing ADA paratransit.

These actions are critically important, but they are not the only actions needed. Other important actions include assuring supportive services to caregivers who provide transportation, encouraging further development of unsubsidized private transportation services, increasing the availability of accessible taxicabs, and coordinating with non-emergency medical transportation provided under Medicaid and Medicare.

Private Shuttles and Transportation

Seattle has many private companies and institutions that provide shuttle or bus service in the city or to and from the city to major employment sites. These providers carry a small number of daily passengers compared with public transportation, but fill important niches or special services. In many cases, comparable trips are available on the public transit system, but employers want a faster, more private, or exclusive service for their employees or students. The City's role in supporting such services should be limited to ensuring vehicles have access to customers at the curb or at major transit nodes.

- Allow shuttles to access curb space for pick up and drop off.
- Encourage facility designs at rail stations and transportation centers that include pick-up/drop-off space for private shuttles.
- Consider establishing a fee for use of curb space by private shuttle operators that charge a fee for use of their vehicles.

Operating shuttle services is a cost to hospitals and universities that may support their core missions. In the long run, development of high-quality, high-capacity public transit will provide the greatest benefit to Seattle's major companies and institutions.

Shuttles utilize passenger loading zones designated by the City to board and off-board passengers. Image from Nelson/Nygaard

KING COUNTY COMMUNITY TRANSPORTATION PROGRAM

King County's Community Transportation Program provides services to people with special transportation needs. The program includes a range of transportation and education programs that go beyond regular bus service and complementary paratransit service required by the federal Americans with Disabilities Act (ADA). The program works to provide services that are more flexible and responsive to the needs of persons with disabilities. The Community Transportation Program services include:

- Enhanced Access Transportation Service: provides expanded level of service for ADA paratransit customers, including a larger service area, door-to-door service (vs. curb-to-curb), and additional reservation options.
- **Taxi Scrip Program:** low-income King County residents age 18 to 64 who have a disability or are age 65 and over can buy up to six books of taxi scrip each month from Metro at a 50 percent discount.
- **Transit Instruction Program:** provides free training services to teach persons with disabilities and seniors how to ride regular public transit.

- **The Hyde Shuttle:** provides a free van service for seniors 55 or older and people with disabilities living in Central or Southeast Seattle.
- **Community Access Transportation (CAT):** program to find innovative uses of retired Access and vanpool vehicles that includes:
 - Advantage Vans: Social and human service agencies agree to provide a minimum number of rides to Access users each month. In exchange, Metro provides an operating grant (with a minimum ride threshold) emergency response, vehicle maintenance and repairs, driver training, and technical assistance to participating agencies.
 - CAT Vanworks: Metro pays the monthly cost of a standard Vanpool agreement on behalf of local agencies that have a number of clients who are eligible for Metro's ADA Paratransit Program (Access Transportation) and are traveling to work sites.

Image from Nelson\Nygaard

5 PLACES: ACCESS AND CONNECTIONS

Creating urban village neighborhoods that are compact, walkable, and accessible to the region by transit is a key goal of the Seattle Comprehensive Plan and the Puget Sound Regional Council's Vision 2040 Plan. Transit-oriented neighborhoods have proven to be more economically and environmentally sustainable and resilient, to produce less automobile travel, and are a core strategy for reducing greenhouse gases. By design, transit-oriented neighborhoods encourage people to walk and bicycle for local trips. The high-frequency, all-day service and seamless connections provided on the Frequent Transit Network encourage transit mobility for longer trips. The basic principles of transit-oriented neighborhood design are captured in the "6D" principles that are the focus of the this section. These principles guide detailed policies and strategies related to (1) intermodal facility design and (2) station and stop access by foot and bicycle.

TMP recommendations for both policy areas are summarized in this chapter.

TRANSIT-ORIENTED NEIGHBORHOOD DESIGN

The key principles for designing transit-oriented neighborhoods in Seattle are referred to as the "6Ds" and are widely accepted by cities and transit providers in North America.¹ These principles are the organizing element for achieving the City's goal of creating transit-oriented urban village neighborhoods that are compact, walkable, and accessible to the region by transit. Such neighborhoods have proven to be more economically and environmentally sustainable and resilient, and encourage people to walk and bicycle for local trips by design.

The following 6Ds of transit-oriented neighborhood design are most effective when applied in concert, as illustrated in Figure 5-1, although various principles apply differently at varying scales of geography. For example, density and diversity must be considered at the neighborhood scale, while

1 The six "D" factors are frequently written about and presented by experts in the Transit-Oriented Development field, including Reid Ewing who has frequently lectured on "Successful Transit-Oriented Developments and the 6Ds".

design principles can apply to a specific station, stop, or site.

- **Destinations:** Align major destinations along a reasonably direct corridor so that they can be efficiently served by frequent transit.
- **Distance:** Provide an interconnected system of pedestrian routes so that people can walk to transit service quickly and conveniently from the places they live, work, shop, and play.
- **Density:** Concentrate higher densities as close to frequent transit stops and stations as possible to minimize walking distances to more destinations for more people.
- **Diversity:** Provide a rich mix of pedestrian-friendly uses to facilitate street-level activity throughout the day and night, increase affordability, and enliven the public realm.
- **Design:** Design high-quality, pedestrian-friendly spaces that invite walking and bicycling.
- **Demand Management:** Provide attractive transportation alternatives to driving.

An update of the Seattle Comprehensive Plan was underway at the time this plan was published. Comprehensive Plan revisions will define the official land use framework for development of transitoriented neighborhoods.

FIGURE 5-1 6D'S OF TRANSIT-ORIENTED NEIGHBORHOOD DESIGN

The circle illustration of the D factors emphasizes that they are interrelated and are most effective when applied in coordination and at each applicable scale for each factor.

Source: Nelson\Nygaard

Image from Nelson\Nygaard

<u>Strategy 1</u> Destination Accessibility: Coordinate land uses and the transit network

People choose to travel by transit more often when transit provides fast and direct access to their destinations. A destination could be work, home, school, a shopping or entertainment center, a civic institution, or anywhere else someone might wish to travel. The key to maximizing transit access to the city's key destinations is to ensure that most development occurs along the Frequent Transit Network (creating transit "corridors") and especially in urban villages and at arterial crossings where high frequency transit lines intersect (creating "priority access nodes").

Policy ToN1.1: Locate transit intensive land uses in urban villages and along priority transit corridors so they can be efficiently served by frequent transit.

- Locate major destinations as anchors at both ends of transit corridors and at priority access nodes.
- Avoid pressure for transit to make time-consuming route diversions from main arterial corridors by selecting locations for land uses that generate high travel demand that are within walking distance of Frequent Transit Network (FTN) stations or stops.
- Avoid long gaps between destinations by discouraging "leap frog" development or development far from established developed areas.
- Avoid locating major destinations in cul-de-sacs: select locations that can be accessed from multiple directions.

Policy ToN1.2: Direct most development within urban villages, urban centers, and along the FTN.

- Use zoning and public investment to encourage development along FTN corridors. Strategies for directing development toward transit corridors may include:
 - Building community centers, schools, courthouses, and other civic buildings along transit corridors.
 - Investing in the public realm to help catalyze development along transit corridors. For examples of transit-supportive public realm investments, see the 'Best Practices for Station and Stop Access' section on page 5-32.
 - Identifying partners for "location efficient" programs (such as mortgages) that account for reduced transportation expenditures in locations accessible to jobs and services.

Policy ToN1.3: Design transit nodes, stations, and corridors to maximize their value to neighborhoods.

- Develop standards to define how far a transit corridor extends from the rail or bus line itself.
- Consider the walking network and topography when designing standards for a quarter-mile walkshed from a transit corridor.
- Avoid unnecessary setbacks at major destinations.

Seattle has many areas where the local street grid is disconnected by water, freeways, and other man made barriers. Making most efficient use of the limited connective corridors means moving more people on transit. Image from SDOT

<u>Strategy 2</u> Distance: Create a transit-supportive urban structure & street network

A key to making transit, bicycling, and walking more attractive is minimizing distance between destinations by providing direct connections at the neighborhood scale. The relationship between street design and modal network planning defines the quality of the traveler experience and the viability of alternative options that influence where people choose to live, whether they own a car, and how they travel for different types of trips. These policies and strategies directly support the multimodal transit access policies at the end of this chapter (see page 5-36).

Policy ToN2.1: Provide a fine-grained pedestrian and bicycle network that connects to transit.

- Create dense networks of streets, stairways, and paths so that pedestrians and cyclists have multiple direct paths of travel.
- Minimize walking and cycling distances to transit by creating complete sidewalk networks and encouraging bicycle

and pedestrian "cut-throughs" or alleys where roadways do not exist.

- Encourage mid-block connections through superblock developments, and where warranted, ensure safe mid-block street crossings.
- Design station areas so that vehicular traffic is dispersed along multiple streets rather than concentrated on a few wide, and typically congested, roadways.

Policy ToN2.2: Orient transit facilities towards the street.

- Locate transit facilities in accessible locations.
- Ensure that transit stops and station entrances are clearly visible from the street and pedestrian and bicycle access is direct and convenient (see the Transit Facility Guidelines on page 5-10 for more information).

A number of other City of Seattle plans and documents provide detailed policy guidance related to the strategies discussed in this chapter. These documents include:

- Land Use Code
- Design Guidelines, such as the <u>Downtown and Citywide Design Guidelines</u>, and the <u>Seattle Right-of-Way Improvements</u> <u>Manual (ROWIM)</u>
- Seattle Transit Communities (November 2010)
- Seattle <u>Bicycle Master Plan</u> and <u>Pedestrian Master Plan</u>

The South Lake Union area is growing rapidly and, if upzone proposals are approved, will be set to accommodate much more job and residential growth over the next 20 years.

Image from Nelson\Nygaard

<u>Strategy 3</u> Density: Concentrate and intensify activities near transit

A sufficient density of residents, jobs, and services helps to establish a market for transit service, and increased density increases ridership, supporting higher frequency of service. While the form of development will vary from neighborhood to neighborhood, having as much development as possible concentrated near frequent transit stops and stations will shorten walking distances to more places for more people.

However, density on its own is not enough. To maximize the usefulness of density for supporting transit, Seattle must pair density with each of the remaining "D" principles highlighted in this section. Combined with density, these strategies not only help to support transit; they also support the development of walkable, low-carbon neighborhoods.

Policy ToN3.1: Use zoning to focus the highest densities closest to transit corridors and nodes.

- Concentrate the highest density of homes, jobs, and services around the immediate station or stop area (less than 1/4 mile) to create shorter walking distances and allow for multiple trip purposes to be served easily on foot and by transit.
- Scale down or "taper" densities farther from the station area (1/2 mile to 1 mile) to match the character of surrounding neighborhoods.
- Plan for densities that match the type and frequency of transit provided.
- Consider establishing target residential densities for transit nodes and corridors.
- Consider establishing thresholds for commercial, retail, and employment densities.

Policy ToN3.2: Use land near transit nodes and corridors as efficiently as possible.

- Make roadways near transit nodes and corridors only as wide as necessary to meet vehicle and transit circulation needs and provide bicycle access.
- Promote strategies to reduce off-street surface parking and other low-density land uses near transit nodes and corridors.
- Encourage housing development that uses space efficiently near transit nodes and corridors, balancing the goals of maximizing the number of housing units and providing a range of unit sizes and types appropriate for both families and smaller households.

Policy ToN3.3: Plan for density that responds to the character of existing development.

- Plan for buildings of a similar scale and character to existing structures to ensure successful integration of land use intensification.
- Prioritize increased density near existing activity centers, such as schools, shopping centers, job centers, or medical facilities.
- Encourage appropriate transitions between the immediate station and the surrounding neighborhoods through transitional tapering of building heights and use of landscaping and context-appropriate building design.

Policy ToN3.4: Identify opportunity sites for increased densities on the FTN.

• Identify corridors and stations that are priorities for densification.

- Work with owners of vacant and likely redevelopment parcels in station areas and priority transit corridors to encourage infill development.
- Encourage partnerships with transit agencies to catalyze TOD projects through property acquisition and/or redevelopment.
- Ensure public agencies do not hold property where redevelopment is feasible.
- Explore the potential of converting existing surface parking lots into future redevelopment sites.
- Focus development at the best-connected transit nodes.
- Encourage development opportunity at modal interchanges and station areas.
- Encourage the location of major destinations at the intersection of transit lines.

The building façade on the Olive 8 building (at Olive and 8th) in downtown Seattle is well designed to provide shelter for waiting transit passengers outside the pedestrian zone and away from main building entrances.

Image from Nelson\Nygaard

Providing pedestrian pathways and stairways as part of superblock developments creates permeability, adds visual interest, puts more eyes on the street, and aids access to transit.

Image from Nelson\Nygaard

<u>Strategy 4</u> Diversity: Encourage a mix of uses

A rich diversity of land uses and high quality places that attract pedestrians are part of any transit-friendly neighborhood. It is equally important that public space and privately-managed space is developed to create diverse uses.

Policy ToN4.1: Mix residential, employment, recreation, and commercial uses in station areas and along the FTN.

- Promote a fine-grained mix of uses with highly active ground-floor uses.
- Encourage a balance of housing and services with a mix of types, tenures, and price points.
- Collaborate with Seattle Parks and Recreation to integrate park and open space development with the FTN.

Policy ToN4.2: Mix employment and residential development within nodes and corridors to spread travel demand throughout the day.

- Provide a mix of residential and commercial land uses along transit corridors and in neighborhoods.
- Combine a variety of everyday uses into high activity employment centers.

Intermodal connection points are excellent foci for public art and public space projects. Image from Seattle DOT

<u>Strategy 5</u> Design: Create great places for people

Policy ToN5.1: Provide gathering spaces that encourage pedestrians to linger, such as plazas, squares, and parks.

- Include elements such as benches, low walls, and landscaping in large public open spaces to help create human-scale public spaces and improve personal security.
- Encourage uses that activate public spaces around transit facilities, such as food carts, vendors, sidewalk cafes, and plaza spaces with seating.
- Integrate public art into transit neighborhoods to bring a sense of liveliness to public spaces, encourage dialogue, and express the unique culture of Seattle's neighborhoods.
- Provide a range of seating types based on the type of public space and the likely users. Seating types should include long-term seating such as chairs with backs and arms as well as informal elements such as benches, steps, fountains, and planter boxes that invite people to enjoy the public realm.

Policy ToN5.2: Improve the relationship between the public and private realms along FTN corridors.

• Develop a building typology that Includes, but is not limited to, building design elements such as entries and building orientation, street-level interest including streetlevel windows and transparency, pedestrian-oriented uses, and facade modulation.

Policy ToN5.3: Use design review to encourage off-street parking facilities that minimize the impact of parking on the pedestrian realm.

- Develop design standards for off-street parking along the FTN to ensure parking facilities reflect the human-scaled nature of transit corridors. Design review should be attentive to the following objectives:
 - Locate off-street parking away from the street in the rear of the building or below grade.
 - Screen surface parking lots along the street with landscaping or architectural elements to reduce their visual impact.
 - Wrap multi-level parking garages in active retail or commercial uses to screen parking from the street and increase street-level activity.
 - Minimize driveway access to off-street parking facilities by focusing access via alleys or side streets.
 - Establish maximum curb cut widths for driveways and parking facility entrances and provide sidewalk-level curb cuts to ensure a continuous level walking plane.
 - Design surface parking lots to include dedicated provisions for pedestrian circulation, including internal walkways and pedestrian priority paving treatments.
 - Encourage development of gridded street and block pattern when existing large parking lots are redeveloped to help enhance pedestrian access and enable streetscape treatments.
- Provide secure bicycle parking in all new structured parking facilities.

Policy ToN5.4: Design on-street parking to complement the pedestrian realm.

- Use on-street parking to buffer pedestrians from traffic, creating a more pleasant walking environment.
- Reduce sidewalk clutter by providing multi-space parking meters in new/replacement installations, and develop a "pay by cell phone" payment system.
- Provide an additional 2 feet of width for on-street parking adjacent to bike lanes in order to mitigate car door conflicts with cyclists and create a 2.5 foot wide buffer between the bike lane and vehicle travel lane, where ROW is sufficient.
- Provide bicycle parking to reduce demand for vehicle access.

ENHANCING TRANSIT THROUGH BIKE-SHARING

Bike-sharing is a form of public transportation consisting of public bicycle rental stations located throughout a downtown, city, or region. Bike-sharing is intended to facilitate short, urban trips, make active transportation options more readily available, and enhance urban vitality. Bike share systems naturally supplement all types of transit service. Bike-sharing offers a last-mile connection to and from transit. With bike share stations located within walking distance of most key destinations, residents, employees, and visitors can achieve a car-free existence within Seattle when coupled with high-quality transit options. Successful systems have been deployed in Minneapolis, Denver, New York City, and Washington D.C., among many other U.S. cities. Cities like Los Angeles and Portland are moving closer to implementation.

King County Metro is currently conducting a feasibility study and developing a business plan for a regional bike share system centered in Seattle. Initial deployment is slated to occur in South Lake Union, the University District, Center City, Capitol Hill, and Sand Point area, offering direct connections to various transit options along the Frequent Transit Network.

See Figure 5-11 to see the stop/station location types that could support a bike share station and other end of trip amenities.

Nice Ride in Minneapolis Image from Nelson\Nygaard

Low-cost neighborhood greenways (bicycle boulevards) connecting to transit or running in parallel to major transit arterials provide cyclists safe routes to transit and reduce bicycle and transit conflicts by creating separated facilities.

Image from Nelson\Nygaard

<u>Strategy 6</u> Demand Management: Provide incentives and disincentives

Success in shifting more trips in Seattle to walking, biking, and transit will require development of high-quality alternatives and educational programs to ensure customers have access to the information needed to change their travel habits. Transportation demand management (TDM) includes positive measures, such as end of trip facilities, educational programs (see page 2-8 in Chapter 2 for examples), and the development of additional modal alternatives (e.g., bike sharing). These measures will need to be coupled with disincentives to private vehicle use.

Policy ToN6.1: Manage parking demand effectively and maximize utilization of parking supply along transit corridors.

- Use restricted parking zones (RPZs) to manage spillover parking at transit stations and major destinations.
- Use demand-based on-street parking pricing to free up space for short-stay visitors in business and retail districts.
- Expand parking wayfinding and real-time parking information (such as e-Park, the City's electronic parking guidance system) to reduce the amount of circling for parking in the Center City and other dense neighborhoods.
- Partner with private parking operators to market the availability of short-term off-street parking opportunities through the expansion of e-Park.
- Prioritize parking at rail stations and multimodal hubs for high-occupancy vehicle (HOV) access, taxis, and drop-off activity.

- Prioritize parking for HOVs in areas where autos are the primary form of transportation.
- Locate drop-off zones as close to transit facility entrances as possible.
- Develop district-wide shared parking facilities, create brokerages that minimize the need for excessive parking structures, and encourage park once policies and programs in mixed-use districts.

Policy ToN6.2: Reduce auto-dependency by providing transit supportive services and programs.

- Promote car-sharing to reduce the need for auto ownership in Seattle neighborhoods.
- Promote bike-sharing to improve transit access and extend the range of transit trips.

Policy ToN6.3: Use transit priority measures to increase transit speed and reliability.

- Employ transit priority measures, such as dedicated lanes, queue jumps, signal priority, level boarding, and others included in the TMP toolbox to improve transit reliability.
- Ensure that transit performance (e.g., delay and throughput) is a criterion in evaluating the performance of streets and intersections.

Policy ToN6.4: Consider measures to calm traffic in areas where significant amounts of traffic might be diverted onto residential neighborhood streets due to transit priority treatments.

- Integrate vertical and horizontal deflection treatments like speed humps, chicanes, and choke points to manage vehicle speeds on auto cut-through routes.
- Limit or eliminate neighborhood cut-through traffic by introducing traffic diversion treatments like half-closures and diverter median islands where community consensus exists and is supported by traffic engineering judgment. These measures could be coordinated with the design of neighborhood greenways that cross a priority transit corridor.

Wayfinding directs passengers to the Downtown Seattle Transit Tunnel.

Image from Nelson\Nygaard

FACILITY DESIGN GUIDELINES

IMPORTANCE OF FACILITY DESIGN?

The influence of transit facilities does not stop at a station platform. Systematically integrating facility design guidelines is a critical exercise for improving the quality of transit access and building transit-oriented neighborhoods. Transit facilities represent the public's interface with transit service in Seattle; incorporating elements of thoughtful design to improve the transit experience sends the message that transit is a priority. Likewise, transit facilities are loci of intermodal connections, thus facility design plays a critical role in ensuring transfers are seamless and effortless.

Placemaking should be integrated into every design choice to ensure the transit experience is synonymous with navigating through great places. Seattle's network of transit facilities should create a safe, comfortable, inviting, and interesting space at each trip end. Transit facilities and their surrounding environs should be thought of as urban living rooms that fully integrate land use and urban design, encouraging people to stay.

Design guidelines provide the values and strategic vision for multimodal investment in transit environments. As Seattle's transit network develops and matures, transit facilities must represent the needs of all transit users. Whether it is a transfer to another mode or route, or a last-mile connection on foot or by bicycle, transit facilities must ensure these movements are clear, tactile, secure, and protected from the weather. The following sections highlight the key elements of transit facility design.

Tunnel identification signage could be improved to better direct casual users and visitors to the tunnel. Image from Nelson\Nygaard

WAYFINDING AND PASSENGER INFORMATION

An effective transit system ensures that all stages of tripmaking are effortless and deliberate. Wayfinding is a powerful tool to integrate convenience and system understanding into the transit experience. In general, transit wayfinding signs should:

- Be prioritized where passengers make multimodal connections
- Be integrated with wayfinding to key destinations
- Provide consistency in design and tone
- Be easily understood by and deliver information to visitors, new transit passengers, the everyday commuter, and those just passing by

Signage types range from stop and station identification, destination, amenity, and access routing signage. Integrating intermodal connections such as feeder routes and bike share stations into wayfinding will make last-mile connections seamless and legible.

Visual and audible announcements and passenger information are critical to enhancing comfort and convenience for all users, but are particularly important for users with sight or hearing impairments. Real-time passenger information should be integrated into station and stop design, acting as a supplement to static wayfinding and customer information.

Clearly defined queueing and pedestrian waiting areas improve pedestrian flow, user comfort, and boarding efficiency.

Image from Nelson\Nygaard

LEGIBLE SPACES: FACILITY IDENTITY AND FUNCTION

Great transit facilities create spaces that are deliberate and easy to navigate. Subtle design decisions can help transit facilities blend into the urban context of their location and promote the identity of Seattle's diverse neighborhoods, cultural centers, and historic background.

Transit facilities should be designed to limit visual clutter and barriers to pedestrian movement, and preserve permeability. These spaces should also maintain sightlines and allow direct and efficient lines of movement. This can be accomplished through architectural techniques such as the use of transparent features and opening up spaces using daylight as an intuitive wayfinding feature. Passenger waiting areas, including street furniture and transit equipment such as ticket vending machines and shelter support beams, should be designed to limit conflicts with pedestrian flows and optimize passenger waiting capacity.

Recent stop improvements along the 3rd Avenue Transit Mall increased stop capacity for passenger queuing and waiting. Image from Seattle DOT

SPATIAL CAPACITY

Transit facility design must carefully balance the needs of unobstructed pedestrian flow and the comfort of waiting passengers. This is especially important along Seattle transit corridors that have limited pedestrian rights-of-way. Bottlenecks and circuitous pedestrian routing should be avoided through thoughtful design and placement of street furniture and transit amenities, like benches, shelters, and ticket vending machines. A potential solution for alleviating impacts of passenger queuing volumes on pedestrian flow is to reclaim street space for transit use. Design interventions include bus bulb outs and extended passenger plazas.

Electronic lift for mobility devices. Image from Nelson\Nygaard

UNIVERSAL ACCESSIBILITY

Providing transit services that are universally accessible expands personal mobility, independence, and transportation affordability. Discrimination by design must be actively avoided as transit facilities are built or reconstructed. Several considerations should be made as transit facilities are designed, including:

- Minimal level changes in multi-floor facilities and direct access to elevators and escalators, where applicable
- Direct ramp access and blended curb/sidewalk transitions at the street interface
- Deliberate tactility at conflict zones or abrupt edges
- Level boarding
- Obstacle-free connections to dial-a-ride, taxis, pickup and drop-off points, and park-and-ride lots

Information should also be provided in audio, visual, and tactile formats and consider cultural and language differences as well as accommodate those with restricted mobility and visual ability.

Public art reinforces a sense of ownership and pride. Image from Flickr user orcmid

SAFETY AND SECURITY

Transit facilities should be open, well-lit, and constantly monitored to ensure the transit experience is comfortable at all hours of the day. Incorporating crime prevention through environmental design principles (CPTED), sometimes also referred to as defensible design, into transit facility design increases both real and perceived safety. These principles include: ensuring spaces are visible to others and well lit, delineating public and private space, managing access portals, and ensuring facilities are regularly maintained and cleaned.

Natural surveillance through transparent design and active streetscapes maximizes visibility and deters the threat of crime. Lighting plays a central role in maintaining pleasant transit environments. Natural lighting and illumination factor into passenger safety, transparency, monitoring, and facility legibility. Lighting should be consistently distributed throughout transit spaces and the exterior public realm so that navigating spaces is enjoyable and stress-free. Public art should be used to create a sense of pride and a community asset.

Facility design should allow transit police ease of access and open views of station property. Where natural surveillance is infeasible, the use of CCTV (closed circuit TV surveillance) should be considered to reinforce the intolerance of criminal activity at transit stations.

Station and stop amenities, such as benches, shelters, leaning bars, and pedestrian-scale lighting improve the passenger experience. Source: Nelson\Nygaard

PASSENGER COMFORT

A comfortable transit environment in Seattle requires protection from the elements and targeted investment in passenger amenities. Weather protection can be achieved through free-standing shelters, awnings, and overhangs integrated into adjacent building design, and even landscaping and natural canopies. Passive and active cooling and heating systems increase passenger comfort. Nighttime illumination should be evenly distributed under transit shelters to maximize visibility and passenger comfort levels.

The quality of the transit experience is greatly influenced by the level of amenities at waiting areas. Minimum amenities at stops and stations should include comfortable seating and leaning areas, shelters, information kiosks, wayfinding, real-time passenger displays (where appropriate), clocks, trash receptacles, and bike parking. Enhanced amenities at high capacity transit stations should include landscape and streetscape design, retail, restrooms, bike share stations and secure bike parking, and pedestrian-scaled lighting.

FACILITY DESIGN GUIDELINES

LEGIBILITY

- **Policy FD1.1:** Maximize ease of navigation by providing direct travel paths, strengthening pedestrian sightlines, and limiting visual and physical barriers to movement.
- **Policy FD1.2:** Integrate passive lighting design to improve visibility and reinforce that each facility is a transparent space.
- **Policy FD1.3:** Integrate Seattle's history, diverse cultures, and neighborhood identity in the design of all transit facilities. Transit facilities must seamlessly mold into the urban context of their location.
- **Policy FD1.4:** Actively pursue the design of shared spaces that fully integrate an open transit environment into the urban fabric and create great transit neighborhoods.

WAYFINDING AND PASSENGER INFORMATION

- **Policy FD2.1:** Ensure that wayfinding is predictable in design and information dissemination.
- **Policy FD2.2:** Develop consistent sign design aesthetics using distinct sign types, color schemes, fonts, and symbology.
- **Policy FD2.3:** Facilitate multimodal connections by directing passengers between modes.
- **Policy FD2.4:** Expand the scope of transit wayfinding to guide passengers and pedestrians toward station portals, major destinations, bicycle routes, major attractors, and other multimodal connections. Integrated wayfinding should emphasize making intermodal connections simple and quick.
- Policy FD2.5: Coordinate with public transit service providers to develop universal transit wayfinding sign guidelines.
- **Policy FD2.6:** Avoid visual conflicts with advertising, commercial, and other informational sign types.

SPATIAL CAPACITY

- **Policy FD3.1:** Ensure sidewalks accommodate enough space for a variety of pedestrian activities, such as sitting/leaning, standing/queuing, and walking.
- **Policy FD3.2:** Encourage building façade designs that allow waiting passengers to step out of the active zone while providing something to lean or sit on and offering protection against the elements.
- **Policy FD3.3:** Consider expanding existing passenger facilities where transit facilities have limited passenger

waiting capacity, high boardings, and/or significant pinch points that limit passenger movement.

• **Policy FD3.4:** Eliminate passenger/pedestrian bottlenecks by locating passenger amenities outside of passenger queuing areas and pedestrian walkways. See section 4.11 of the Seattle Right-of-Way Improvements Manual (ROWIM) for details.

UNIVERSAL ACCESSIBILITY

- **Policy FD4.1:** Reduce the incidences of barriers and vertical obstructions.
- **Policy FD4.2:** Limit construction of multi-level transit facilities. If unavoidable, provide elevators, ramps with well designed railings, and/or escalators to facilitate fast and efficient movement of persons with disabilities.
- **Policy FD4.3:** Ensure all transit facilities incorporate adequate curb ramp, facility ramp, and tactile surface design, as detailed in the forthcoming Public Right-of-Way Accessibility Guidelines (PROWAG section R308), published by the United States Access Board.
- **Policy FD4.4:** Provide information in a variety of media types to cater to the needs of the visual, hearing, developmental, and mobility-impaired.

SAFETY AND SECURITY

- **Policy FD5.1:** Integrate crime prevention through environmental design (CPTED) principles into all transit facility design processes. These principles include: ensuring spaces are visible to others and well lit, delineating public and private space, managing access portals, and ensuring facilities are regularly maintained and cleaned.
- **Policy FD5.2:** Collaborate with law enforcement and emergency response agencies to ensure facilities are effectively monitored. Monitoring should be increased with increased boarding activity.
- **Policy FD5.3:** Use technology such as CCTV to continually monitor transit facilities.
- **Policy FD5.4:** Introduce public art installations, soothing music, and other amenities to signal to transit users that transit facilities are community assets and gathering places.
- **Policy FD5.5:** Ensure transit facilities are well-lit with pedestrian-scaled LED lighting during early morning and evening service.

PASSENGER COMFORT

- **Policy FD6.1:** Balance the provision of station and stop amenities without jeopardizing optimal pedestrian flow and the comfort of waiting passengers.
 - **Policy FD6.2:** Provide continuous protection from inclement weather conditions by providing shelters, awnings, overhangs, and canopies.
 - **Policy FD6.3:** Offer a variety of seating and leaning amenities located within passenger waiting areas and outside of pedestrian walkways.
- **Policy FD6.4:** Design transit facilities to be pleasant gathering places using verdant landscaping features, public art installations, and cultural/historical influenced design.
- **Policy FD6.5:** Activate transit spaces by introducing auxiliary uses into the design of transit facilities, such as parks and green space, food service (e.g., food carts), or context-appropriate retail establishment.

Mt. Baker light rail station and transit center is an example of an important intermodal connection point that has many challenges for pedestrians accessing transit, passengers transferring between modes, and transit operators that require more space for vehicle layover. The TMP recommends a comprehensive station access and station area design study be conducted.

Image from Nelson\Nygaard

MAKING TRANSIT CONNECTIONS IN SEATTLE

Exchange points, or intermodal connections, are the interface between transit services and the public realm; therefore, ensuring connections are seamless is a key requirement to encourage new ridership. Intermodal exchanges must provide safe, comfortable, and efficient transfers between transportation modes. Based on the facility design policies described earlier in this chapter, passengers should feel comfortable navigating between modes at a transfer facility. The level of integrated facility design depends on the type of transfer facilities.

TYPES OF TRANSFER FACILITIES AND KEY DESIGN ELEMENTS

Seattle has a number of different types of places where passengers transfer; each requires special design features to ensure intermodal connections are seamless. They include:

- Multimodal Hubs: Regional intermodal transfer centers that are designed to accommodate substantial passenger volumes, facilitate effortless transfer between modes (including Frequent and High Capacity Transit), and are the city's most significant intermodal connection points. These facilities are often the termini of several transit lines. Multimodal hubs are primarily located in the Center City and areas with transit-supportive land use, and are prime locations for transit-oriented development. Multimodal hubs typically contain the following design elements:
 - Fully enclosed stations or waiting areas, including real-time information displays, pedestrian-scale lighting, transparent shelters, and ORCA readers
 - On- and/or off-street bus layover space
 - Taxi and pick-up/drop-off zones
 - Restricted access for non-transit modes

Heffron Transportation

FIGURE 5-2 THOMAS/HARRISON MOBILITY HUB

A1

A₂

A3

A4

As

- Enhanced pedestrian and bicycle access features within a 1/2-mile radius of the facility for walking and up to three miles for biking
- **Transportation Centers:** Central locations, primarily centered in hub urban villages, where a variety of transportation linkages convene. Transportation centers often concentrate several transit lines with high rates of transfers. These facilities are also supplemented by bike facilities, car-sharing and taxi bay facilities, destination amenities for bicyclists making regional trips, and highquality passenger amenities. Figure 5-2 illustrates such a facility along Aurora between Thomas and Harrison.
- High Capacity Transit Stations: Standalone rail and bus station facilities designed to facilitate intermodal connections between light rail, rapid streetcar, BRT, and Center City streetcar boarding and alightings. The nature and level of passenger amenities at each station varies.
- **Priority Access Nodes:** Crossing points of two or more FTN corridors, many of which are located outside urban villages or urban centers. Many of these locations are currently relatively auto-oriented arterial street crossings and represent opportunities to improve access and connections between transit, pedestrians, and bicycle users. The most vital design considerations for this type of facility include (numbers correspond to Figure 5-3):

- Strong visual connections between modes and transit facilities supplemented by wayfinding and real-time transit information
- 2 High visibility intersection improvements that ensure safe and prioritized pedestrian and bicycle crossings
- 3 Active street environments oriented toward the street
- Enhanced shelters with level boarding and high passenger amenities
- 5 Bike-transit facility integration, including high visibility bicycle treatments
- 6 Repurposing underutilized street space for design features, such as curb extensions and buffer zones
- 7 Universal design, including tactile/textured design
- Visible, covered bike parking, secure bike parking (where appropriate), and bike share station (where appropriate)
- 9 Investment in placemaking features, street furniture, and green infrastructure

Specific transit facility typology recommendations are summarized in Figure 5-4 and illustrated in Figure 5-5.

FIGURE 5-3 DESIGN ELEMENTS AT CONCEPTUAL PRIORITY ACCESS NODE

This conceptual view of a priority access node illustrates what an intersection of priority transit corridors might look like. Design elements at priority transit corridors, annotated in the text above, signal to all street users that this is a major transit facility.
Source: Nelson/Nygaard

PRIORITIES FOR TRANSFER AND INTERMODAL FACILITY DEVELOPMENT

When developing new transfer facilities or improving existing intermodal connections, the City should utilize the Facility Design Guidelines developed earlier in this Chapter. This will ensure connections are made as efficiently and effortlessly as possible. Key priorities to ensure connections are made include:

- Managing traffic flow to prioritize pedestrian, bicycle, and transit movement in the vicinity of intermodal transit facilities
- Ensuring transit facilities are designed to accommodate existing and future passenger and transit vehicle volumes

- Enhancing pedestrian and bicycle connections between transit modes through crossing facilities, priority signals, pedestrian lighting, Universal Design features, and appropriate bicycle parking types for each facility
- Providing clear wayfinding and widely available transit information (preferably real-time) to reinforce intermodal connections

Facility Type	Existing or Proposed Future (Relates to Figure 5-5)	Facility Location	20-Year Plan Improvements
Multimodal Hub	Existing	King Street Station/International District	Improve pedestrian connections between King Street and International District Station, to 4th Avenue bus stations, and to CenturyLink Field North Lot development.
		Colman Dock Ferry Terminal	New Madison Street Bus Terminal East of Alaskan Way (or on Western); Improved Pedestrian Crossings of Alaskan Way and overpass to First Avenue. These elements are to be planned and integrated as part of the Central Waterfront design process.
		Westlake	Continue to implement Westlake Hub access, circulation, informa- tion, and placemaking improvements. http://www.seattle.gov/ transportation/westlakehub.htm
		45th and Brooklyn / University District	Station access study recommended to finalize intermodal design, terminal bus routings, and integration of future surface rail.
		Northgate	Station access and intermodal study recommended; increase terminal capacity to allow for proposed Priority Bus Corridor restructuring; develop pedestrian and bicycle connection to west side of Interstate-5.
	Future	Mount Baker	Station access and intermodal study recommended as high priority; increase trolley bus terminal capacity to allow for proposed bus corridor restructurings; improve wayfinding.
Transportation Center	Existing	Ballard (Market & 15th)	Develop design plan that includes fully-featured stations, improved pedestrian and bicycle access, and development of public space to humanize this largely auto-oriented intersection.
		Husky Stadium	This facility is designed and curb space is highly limited.
		West Seattle Transit Center	Move Alaska Junction Station and transfer function to California to eliminate RapidRide diversion (SW Edmunds/44th Avenue SW/ SW Alaska).
		Mount Baker	Upgrade to Multimodal Hub (see recommendations above).
	Future	SODO Link Station/Lander Street	Develop east-west linear transfer facility that prioritizes pedestrian movements between 4th Avenue, the E-3 Busway Station, and the Lander Street light rail station. Assumes approach to downtown from West Seattle uses 4th Avenue S. at least north of Lander.
		South Lake Union	Develop full urban BRT station for RapidRide and other services using Aurora between Thomas and Harrison; include features described for Primary Access Node; develop linear connections to Westlake/ Streetcar with pedestrian improvements and wayfinding.
		Westwood	Establish as clear terminus point for RapidRide C and establish co-located Delridge service connection point.

FIGURE 5-4 TRANSIT FACILITY TYPOLOGIES

Facility Type	Existing or Proposed Future (Relates to Figure 5-5)	Facility Location	20-Year Plan Improvements
Light Rail Station	Existing	Rainier Beach, Othello, Columbia City, Mount Baker, Beacon Hill, SODO, Stadium, International District, Pioneer Square, University, Westlake	Comprehensive light rail station access and wayfinding program to improve visibility of rail station entrances, improve intermodal connections, and increase legibility of pedestrian and bicycle approaches to stations. Promote redevelopment of undeveloped properties in station areas (public and private holdings) to improve pedestrian facilities, walking experience, and placemaking. In the case of Rainier Beach, ensure adequate facilities and pedestrian accommodation for end-of-line operation for Rainier Avenue Corridor FTN service. See other summary recommendations under Multimodal Hub or Transportation Center.
	Future	Capitol Hill, Husky Stadium, Brooklyn Roosevelt, Northgate, North Seattle (TBD); I-90	City should play an active role in facilitating intermodal design at Capitol Hill, University District, Roosevelt, and Northgate Stations.
Rapid Streetcar / BRT Station	Future 🔶	Multiple locations (see Figure 5-5)	Develop to include: High capacity shelters at all stations, level boarding platforms, transit information for all routes serving area, real-time passenger information, off-board fare payment (where route appropriate), stop and area lighting, passenger/disabled waiting beacon (for late night boardings), seating, curb bulbs where appropriate, fully improved intersections including curb ramps, crossing markings, pedestrian signals (sufficient pedestrian crossing time), bicycle parking (covered if possible), pedestrian access improvements within ½-mile radius of station.
Center City Streetcar Station	Existing		Consolidate stations on Westlake when Rapid Streetcar is con- structed (see Figure 5-5).
	Future _O	Multiple locations (see Figure 5-5)	Develop to include: Shelters, level boarding platforms, transit information for all routes serving area, real-time passenger informa- tion, off-board fare payment (where route appropriate), seating, curb bulbs where appropriate, fully improved intersections including curb ramps, crossing markings, pedestrian signals (sufficient pedestrian crossing time), bicycle parking (covered if possible), pedestrian access improvements within ½-mile radius of stations.
Priority Access Node	Future	Aurora & 85th Street, Aurora and 105th, Greenwood and 105th Street, Greenwood and NW Market, 15th Ave NW and 85th Street; 15th Ave NW and Leary, 3rd Ave NW and Leary, 15th Ave NW and Dravus, 1st Ave/Queen Anne and Mercer, Aurora and Denny, Madison and Broadway, Madison and 12th, Madison and 23rd, Jefferson and 12th, Jefferson and 23rd, Jackson and 12th	Develop to include: High capacity shelters at all stations, standard- height curb boarding platforms, transit information for all routes serving area, real-time passenger information, off-board fare pay- ment (where route appropriate), stop and area lighting, passenger/ disabled waiting beacon (for late night boardings), seating, curb bulbs where appropriate, fully improved intersections including curb ramps, crossing markings, pedestrian signals (sufficient pedestrian crossing time), bicycle parking (covered if possible). Develop a plan and improvements for ½-mile radius pedestrian access and for intersecting and parallel bicycle facility improvements (pedestrian and bike improvements coordinated through master plans). See Figure 5-3 for Sample Priority Access Node Design Features.

FIGURE 5-5 KEY PROPOSED INTERMODAL FACILITIES

ACCESSING TRANSIT IN SEATTLE

WHY IS ACCESS TO TRANSIT IMPORTANT?

The world's great transit cities ensure access to transit is a central and integrated element of the transportation system and city form. Depending on the trip type and transit mode being accessed, transit customers should be afforded a variety of attractive modal access options ranging from walking, bicycling, urban and neighborhood circulators, and, to a lesser extent, automobiles.

The quality of the overall transit experience and ridership levels greatly depends on whether accessing a transit line is comfortable, direct, and fast. That being said, developing attractive options that support transit use will not only improve the transit experience, but they will also extend the reach of the transit network.

Perhaps, the most critical reason for enhancing connections to transit is that it encourages transit use for a variety of trip types. Providing world-class access to modes that support both inter-neighborhood and regional trips is a critical step in reinforcing the notion that transit is seamless.

FIGURE 5-6 FREQUENT TRANSIT NETWORK AND MULTIMODAL CATCHMENT AREA

The priority Frequent Transit Network corridors detailed for improvement in this plan have an extensive reach. Assuming a 10-minute walk shed (people are willing to walk farther for highquality transit), 68% of Seattle residents and 86% of employees are within walking distance of a corridor. Extending access to a 10-minute bicycle radius increases access to 95% of residents and 96% of workers. Note: a 10-minute walk and bike shed roughly equates to a ¹/₂-mile walk or 1.6 mile bike ride.

Source: Nelson\Nygaard

ACCESS HIERARCHY

Because almost every transit trip is preceded and followed by a walking or bicycling trip, emphasis should be placed on improving conditions for non-motorized access. The quality of bicycle and pedestrian access to transit is largely dependent on factors controlled by the City of Seattle. The City should develop access principles that prioritize transit access investments as the TMP's recommended priority transit corridors are implemented.

Figure 5-7 illustrates that access modes, such as walking, bicycling, high capacity transit, and feeder/shuttle routes provide the most spatially and cost efficient means to get people to transit. The multimodal access hierarchy provides overarching guidance when making design decisions in transit corridor or station plans. City investments in transit corridors should be based on the general access priorities represented in this graphic. When balancing station area and stop access improvements as well as difficult right-of-way trade-offs, there should be a strong policy reason to deviate from the design principles implied by the hierarchy.

MOBILITY CORRIDORS

The TMP's 15 priority corridors represent the most vital transit and general travel corridors for intra-city trips and were developed based on a detailed market analysis of all trip-making in Seattle to and from neighboring cities. Coordinated transit capital improvements to be made in each corridor provide a strategic opportunity to implement a multimodal investment approach. Given each corridor has many bicycle and pedestrian infrastructure needs, there is the opportunity to implement a more fully integrated set of capital improvements that optimize efficiency and return on investments from various capital programs. The TMP recommends the adoption of a Mobility Corridor strategy that would integrate recommendations from the City's separate Pedestrian, Bicycle, Transit, and future Freight Master Plans into coordinated, multimodal investments in the city's most critical travel corridors (or specific geographic subareas), where budgets allow.

This approach will build upon the City's Complete Streets policy (2007), which directs SDOT to "design, operate, and maintain Seattle's streets to promote safe and convenient access and travel for all users—pedestrians, bicyclists, transit riders, and people of all abilities, as well as freight and motor vehicle drivers." A *Mobility Corridor* approach represents a change in how Complete Streets are implemented by integrating projects from the City's modal plans within broadly defined travel corridors and holistically considering tradeoffs between individual projects and modes.

WHAT IS A MOBILITY CORRIDOR?

As illustrated in Figure 5-8, a *Mobility Corridor*'s sphere of influence consists of:

- The priority FTN corridor's mainline
- All current and unrealized transit access portals
- Any adjacent parallel streets or private redevelopment parcels that could provide alternative routing for bicycle travel
- Intersecting street connections that require focused investment in pedestrian and bicycle facilities

FIGURE 5-8 MOBILITY CORRIDOR SPHERE OF INFLUENCE

The Mobility Corridor concept encompasses the priority transit corridor main line, any intersecting transit exchanges (or priority access nodes), and parallel streets that could be used as an alternative route for bicyclists and pedestrians. This graphic represents a conceptual view of a balanced approach to corridor development.

Source: Nelson\Nygaard

WHY IS A MOBILITY CORRIDOR APPROACH NEEDED?

Network connectivity and compact development forms surrounding Center City Link light rail and Sounder commuter rail stations generally support and encourage pedestrian, bicycle, and transit travel. However, transit access along many of the proposed FTN corridors and at light rail station areas in southeast and north Seattle (future) is not mature; higher levels of investment in bicycle and pedestrian infrastructure and directional wayfinding are needed. Finer-grained planning for, and investment in, multimodal access infrastructure must occur to better connect people to high quality transit service.

Seattle's current Bicycle and Pedestrian Master Plans guide 20-year investments in bicycle and pedestrian network development. Many of the corridor and spot improvements proposed in these plans are critical to create safe, convenient access to the existing and proposed transit network. A Mobility Corridor approach would enhance access concurrently with transit speed and reliability improvements.

HOW WOULD A MOBILITY CORRIDOR APPROACH WORK?

A *Mobility Corridor* approach would better coordinate TMP priority corridor development with the Bicycle and Pedestrian Master Plan recommendations as well as the needs of single-occupant vehicles, high-occupancy vehicles, taxis, and freight.

As mobility corridors are identified and further developed, the City is encouraged to conduct fully integrated corridor studies that help balance corridor priorities and trade-offs.

Realistically, funding availability may dictate when improvements are made and for what mode. Lack of funds for multimodal solutions (e.g., sidewalks along a transit project) should not, however, prevent implementation of a project that is worthy on its own merits.

The Mobility Corridor designation could help policymakers, planners, and urban designers ensure that priority transit corridor improvements are inclusive of multimodal priorities and consider level of service or quality of service thresholds for alternative transportation modes. A Mobility Corridor pilot project could help demonstrate the effectiveness of an integrated multimodal corridor project and help to build public support for increased funding and balanced right-of-way allocation priorities.

WHAT ARE THE LIKELY BENEFITS AND OUTCOMES?

The City could expect the following benefits and outcomes should a holistic *Mobility Corridor* approach be fully developed and adopted:

- Clearly establish urban centers and urban villages on the FTN as vital, convenient, and sustainable places to live in Seattle
- Improve the transportation efficiency and throughput of both people and goods, while also improving priority transit corridor access
- Present an opportunity to be substantially more effective in shifting SOV mode share than with a transit-only project

Coordinated planning, joint design, and construction of pedestrian, bicycle, and transit projects will:

- Reduce construction disruptions and costs (one project vs. multiple)
- Create efficiencies in planning, design, and implementation
- Reduce future design complexities of integrating other modal improvements
- Allow for more effective resolution of difficult right-ofway tradeoffs and the inclusion of parallel roadways/ routes for consideration in creating key active transportation connections

To realize these benefits, the City should develop a coordinated investment plan that synchronizes recommended investments from the four modal plans (transit, pedestrian, bicycle, and freight). Annual review of five-year updates to other modal plans should consider the *Mobility Corridor* investment framework.
FIGURE 5-9 CONCEPTUAL MOBILITY CORRIDOR EXAMPLE: BIKE AND STREETCAR INTEGRATION

This conceptual graphic illustrates design elements that could be considered in the development of a rapid streetcar corridor. The TMP recommends that SDOT approach bus and HCT corridor transit projects in coordination with pedestrian and bicycle improvement programs. A coordinated set of multimodal projects implemented simultaneously have much greater and immediately noticeable benefit to users than a piecemeal approach to corridor improvements.

Source: Nelson\Nygaard

MOBILITY CORRIDOR DESIGN AND PERFORMANCE

MODAL INTEGRATION

- **Policy MC1.1:** Development of *Mobility Corridors* should integrate principles of context sensitive Complete Street design that are unique to conditions found in each corridor.
- **Policy MC1.2:** Transit vehicles should be given priority (in design and operation) over other modes of personal motor vehicle traffic in primary transit corridors and in any corridor where FTN service levels are provided.
- **Policy MC1.3:** Mobility should be measured in terms of "aggregate person delay" rather than vehicular level of service, which does not distinguish between single-occupant vehicles, a full bus, and a wave of cyclists.
- **Policy MC1.4:** *Mobility Corridor* carrying capacity should be measured in terms of person throughput rather than vehicle throughput.
- **Policy MC1.5:** Locating layover facilities on intersecting streets should be prioritized in *Mobility Corridors* with limited right-of-way. The City should consider incentives to accommodate capacity for transit layovers in new development where appropriate.

TRANSIT

- **Policy MC2.1:** Ensure transit priority lane treatments take precedence over general purpose travel lanes and auto storage on priority transit corridors.
- **Policy MC2.2:** Implement Transit Signal Priority (TSP) along transit corridors to provide transit vehicles with precedence at signalized intersections, while considering cross-street pedestrian and traffic demand.
- **Policy MC2.3:** Design linear transit facilities that minimize conflicts and pinch points with other roadway users and facilitate in-lane stops.
- **Policy MC2.4:** Corridors with limited right-of-way should not accommodate layover zones along the linear transit facilities.

PEDESTRIAN

• **Policy MC3.1:** Pedestrians should be afforded the highest priority in corridor space allocation to maintain an attractive public realm that connects to transit facilities.

Mobility Corridor design should reflect the fact that even if a transit facility is located within a reasonable walking distance of a person's origin and destination, the walking environment will influence their choice to use transit.

• **Policy MC3.2:** Expand the pedestrian realm and use public space projects to increase pedestrian and waiting passenger capacity at stops and stations.

CYCLISTS

- **Policy MC4.1:** Provide high-quality bike facilities along parallel priority transit corridors and on strategic streets that link into the *Mobility Corridor*.
- **Policy MC4.2:** If the right-of-way is too constrained to provide a bike facility along the transit mainline, consider developing high-quality bike facilities, like neighborhood greenways, along parallel streets. Facility selection/design should consider whether alternative routes allow cyclists to conveniently and directly access services and destinations located on the mainline street.
- **Policy MC4.3:** Bike-share stations (or the capacity to develop them) should be integrated into the design of transit stops and stations in areas targeted for bike-share implementation. If sidewalk capacity is constrained, consider parking removal to accommodate a bike-share station on the street.

AUTOS, FREIGHT, TAXI

- **Policy MC5.1:** Repurpose on-street parking spaces, where necessary, for expanded sidewalks and pedestrian spaces, bicycle facilities and on-street bicycle parking corrals, and dedicated transit lanes.
- **Policy MC5.2:** Any decisions to remove on-street parking supply for use by transit should consider the net change in local business access, measured in terms of person capacity and change in pedestrian volumes, and role of on-street parking in calming traffic and buffering pedestrians from traffic.
- **Policy MC5.3:** Where a limited pedestrian buffer exists, consider using recessed on-street parking as a pedestrian buffer between the sidewalk and moving traffic.
- **Policy MC5.4:** Space-constrained corridors designated as Major Truck Streets should allow freight to use transit lanes.
- **Policy MC5.5:** To the extent that they would not interfere with transit reliability and travel time, taxis should be allowed access to transit lanes (except on Major Truck Streets).
- **Policy MC5.6:** In neighborhood commercial corridors with transit-only curb lanes and no on-street parking, it might be necessary to provide "cutout" loading bays and allow delivery vehicles to merge into transit lanes in order to access the loading bays. Provision of taxi parking bays should also be considered near major destinations, transportation centers, and multimodal hubs.

Constrained priority transit corridors, such as this conceptual BRT corridor, require difficult decisions given trade-offs related to pedestrian space, bike facility development, preserving general purpose travel lanes, and parking supply.

Source: Nelson\Nygaard

STATION AND STOP LOCATION TYPES

Seattle's network of transit stops, stations, and major intermodal transfer facilities (which are described on pages 5-16 to 5-19 earlier in this chapter) is characterized within a station/stop location typology that represents where these transit facilities are typically located. Representative station and stop location types are illustrated on this page and page 5-29. Figure 5-11 provides a matrix that indicates each location's function and provides guidance for the types of access features and amenities that should be provided.

These location types describe street classifications where station and stop types are typically located, nodes where several priority transit corridors intersect, and/or nodes where local and regional intermodal connections can be made (including Multimodal Hubs, Transportation Centers, and a variety of high capacity transit stations). Urban transit stops should, under most circumstances, have an in-lane configuration to reduce delay for transit vehicles and passengers.

RESIDENTIAL STREET

Residential streets are loci of basic local bus service stops. Increased investment in stops along residential streets should be based on boarding activity. 32nd Avenue NW is an example of a residential street that carries transit service.

Image from Nelson\Nygaard

TRANSIT ARTERIAL (TRANSIT WAY)

Transit arterials are regional and local service thoroughfares that pass through a variety of land use and traffic environments. Transit arterials accommodate both streetcar stations and/or local and regional bus stops. Arterial conditions and boarding activity varies greatly. Depending on the orientation of adjacent buildings, these stop locations may provide awnings that are integrated into the design of adjoining building frontage.

Image from Nelson\Nygaard

Image from Nelson\Nygaard

TRANSIT ARTERIAL (NEIGHBORHOOD COMMERCIAL CENTER)

Transit stations and stops located in Neighborhood Commercial Centers are oriented toward retail and commercial office access and accommodate both streetcar stations and local bus stops. Passenger amenities and pedestrian design should be elevated in this location type, including bus bulbouts, more prominent crosswalk markings, and expanded stop capacity due to wider sidewalks.

Image from Nelson\Nygaard

Image from Nelson\Nygaard

PRIORITY ACCESS NODE

A priority access node is a crossing point of FTN lines that occurs outside an urban village or urban center where a full transportation center is merited. Stop and station design allows for level boardings and provides sleek enhanced shelters with greater emphasis on real-time transit information. Access to priority access nodes is enhanced through high-quality bike connections and pedestrian infrastructure.

RAIL STATION

Rail stations—including Link light rail, BRT, or rapid streetcar—provide local intermodal connections. Due to high levels of passenger activity, rail stations merit very high investment in passenger amenities and placemaking. Stations should be equipped with enhanced transit shelters, real-time passenger displays, information, and payment technology. People can make bike-share connections or even connect to a local bus service from rail station locations.

Image from Nelson\Nygaard

CENTER CITY PRIMARY TRANSIT STREET/ TRANSIT MALL

Given the high pedestrian volumes and demand for transit, the 3rd Avenue Transit Mall merits a high level of investment in passenger facilities and information. Given the relatively narrow width of this street, important transit passenger amenities and connections are provided on intersecting streets and are integrated into the Downtown Seattle Transit Tunnel Stations and Multimodal Hubs. Connections to bike-share stations and other multimodal facilities should be provided and supported by high-quality wayfinding.

Image from Flickr user Oran Viriyincy

MULTIMODAL HUB

Multimodal hubs are the centerpiece for regional intermodal connections. Regional rail and express bus service terminate at these locations or provide connections to rubber-tired circulators and other local connecting services. Multimodal hubs offer the highest levels of investment in passenger amenities, pedestrian infrastructure, and bicycle access and storage.

FIGURE 5-11 APPROPRIATE ACCESS INVESTMENTS BY TRANSIT ACCESS LOCATION TYPE

	Station/Stop Location Type			Station/Stop Access Needs			
Transit Access Location Type	Access Orientation	Pedestrian Volumes	Pedestrian Access Facilities	Shelter Design and Level of Investment	Pedestrian Wayfinding and Passenger Information		
Residential Street	Human	Low	Full sidewalk coverage, intersection crossings	Basic shelter with benches	 Neighborhood wayfinding and stop ID signs Route map Schedule 		
Transit Arterial (Transit Way)	Human	Low - Med	\$	 Basic shelter with benches or shelters integrated into building design 	 Neighborhood and access routing wayfinding and stop ID signs Route map Schedule System information and map 		
	Auto	Low - Med					
Neighborhood Commercial Center	Human	Med - High	Expanded sidewalks, inter-block connectiv- ity, intersection and mid-block crossings	 Basic shelter with benches or shelters integrated into building design Bus bulb outs 	 Destination and access routing wayfinding and stop ID signs Route map Schedule System information and map 		
	Auto	Med					
Priority Access Node	Human	High	\$\$	 Moderate to high investment Enhanced shelter with level-boarding platform design, benches, LED lighting, real-time passenger displays Bus bulb outs 	 Destination and access routing wayfinding and station/stop ID signs Multimodal connections including rail, bus, and bike-share Route map Schedule System information and map Real-time transit information 		
Ē	Auto	High					
Center City Primary Transit Street / Transit Mall	Human	High		 Moderate to high investment Enhanced shelter with level-boarding platform design, benches, LED lighting, real-time passenger displays Bus bulb outs 	 Destination and access routing wayfinding and stop ID signs Multimodal connections including rail, bus, and bike-share Route/schedule/system information kiosks Real-time transit information 		
	Auto	Med - High		 Moderate to high investment Enhanced shelter with benches, lighting, real-time passenger displays Bus bulb outs 			
HCT Station	Human	Med - High	Expanded sidewalks, high-visibility crossings, pedestrian priority signals, grade-separated treatments	 High investment Enhanced shelter with level-boarding platform design, benches, LED lighting, real-time passenger displays Curb extensions 	 Destination and access routing wayfinding and station ID signs Multimodal connections including rail, bus, bike-share, carshare Route/schedule/system information kiosks Real-time transit information 		
ľ	Auto	Low - Med					
Multimodal Hub	Human	High - Very High					

Note: In the Access Orientation column, Human connotes street environments designed for safe, comfortable, low-speed movement by all modal users, buildings generally oriented to the street, and where pedestrian/bicycle crossings and facilities are generally complete. Auto connotes a street environment designed primarily for higher-speed auto conveyance and access, where buildings are generally set back from the street and designed for access from surface parking lots, and where pedestrian/bicycle crossings and facilities may be lacking or incomplete. In addition, Bicycle access needs greatly depend on contextual considerations such as traffic conditions, land use environment, topography, availability of right-of-way, among many others. Actual facility choice should ensure integration with the surrounding traffic environment and with the broader mobility corridor function.

Station/Stop Access Needs					
Transit Access Location Type	Bicycle Access Needs	Bicycle Storage Needs	Local Circulator or Last- Mile Shuttle Needs	Kiss-n-Ride or Auto Drop-Off Needs	Example
Residential Street	 Neighborhood greenways Bike lanes Sharrows 	None/Low Short-term: Inverted-U racks	None	None	32nd Avenue NW
Transit Arterial (Transit Way)		 Low - Med Short-term: Inverted-U rack/curb extension integration 	Neighborhood circulators and bike-share stations (only where transit arterials link into major activity centers like Urban Villages)		Madison Street
	 Neighborhood greenways (parallel and intersecting) Bike lanes Sharrows 				Rainier Avenue
Neighborhood Commercial Center		Med - High Short-term: Inverted-U rack/curb extension integration and covered oasis at high volume stops/stations			Queen Anne
					University District (25th Avenue)
Priority Access Node	Sharrows Bike lanes Neighborhood greenways Protected bike lanes/ side paths		Urban/neighborhood circulators and bike share stations		Madison /Broadway
					Aurora Avenue N/N 45th Street
Center City Primary Transit Street / Transit Mall	 Sharrows Bike lanes Protected bike lanes 				3rd Avenue, Olive
				Taxi and drop-off bays on intersecting streets	
HCT Station	Sharrows Bike lanes	Very High Short-term: Inverted-U			Mt. Baker Station, Othello, etc.
Multimodal Hub	 Protected bike lanes Shared-use paths Bicycle priority signals Grade-separated crossings Accessible elevators and/or escalators, and stairway wheel troughs 	 rack/curb extension integration and covered oasis at high volume stops/stations Long-term: Bike lockers, remote key access bike storage, and/or bike station 	Urban Circulators and bike share stations	Taxi and drop-off bays on public streets	King Street Station, Westlake

Jamison Square in Portland provides a vibrant living room for locals, visitors, and people waiting to catch the streetcar which stops on either side of the square.

Image from Nelson\Nygaard

BEST PRACTICES FOR STATION AND STOP ACCESS

The pedestrian and bicycle environment is the foundation for good access to public transit. Improving its quality can attract new riders, increase ridership among existing passengers, and improve the overall travel experience. Investments in priority FTN corridors should embody principles of complete street design without compromising a street's ability to maintain a high level of transit performance.

Great transit streets feature:

- Active sidewalks: Wide sidewalks with engaging street furniture that connect to pedestrian-oriented land uses
- **Parallel and connecting bicycle facilities:** Low stress, comfortable bike facilities that feed directly into priority transit corridors
- **Transit imprint/permanence:** Reinforcing the idea that high-quality transit options are available on a particular street through visual cues, like rail tracks and other physical elements of linear transit facilities, as well as station, stop, and kiosk branding

- Visible crossings: Pedestrians should feel comfortable crossing the street to access stations/stops and land uses that line a transit street
- **Managed speeds:** Features such as signal progressions, raised medians, and pedestrian refuges limit speeding
- Clear linkages to destinations: Wayfinding and clear sightlines direct pedestrians to transit streets, stations, and stops
- Universal design applications: Measures that ensure travel along transit streets is effortless for people of all ages and abilities
- Verdant landscaping and stormwater design: Using green features to soften hardscapes and provide an incentive for people to stay in a location

Transit streets will only be effective in attracting ridership if access to transit is easy and comfortable. Figure 5-12 provides a toolbox of best practices in bicycle and pedestrian access to transit. Treatments and facilities represent street design elements that could be used to implement *Mobility Corridors*, multimodal transit access, and transit-oriented neighborhood design policies.

FIGURE 5-12 BEST PRACTICES IN BICYCLE AND PEDESTRIAN ACCESS TO TRANSIT

Feature

Elements

Pedestrian Access

Active Sidewalks and Frontage

An active transit environment includes:

- Buildings and streetscapes that activate the environment, such as sidewalk cafes and parks
- Transparent building facades with windows at street level
- · Removal of imposing blank walls

Attract people on foot through: • Engaging pedestrian access routes

• Land uses that attract pedestrians include pubs, grocery stores, and parks

Minneapolis Nicollet Mall Image from Nelson\Nygaard

Visual Interest and Route Diversity

An activated alley connection in Pasadena, CA

Image from City of Pasadena

Distinctive Sidewalk Treatments

• Provide unique sidewalk surfaces that act as placemaking elements and add interest to the walking environment

• Diversity in land use and shop types, architecture styles, landscape designs, and people

 Direct foot traffic to ground floor entrances and extend the pedestrian realm from the sidewalk to the building

Pearl District in Portland, OR

Image from Nelson\Nygaard

Enhanced Crossings

Intersection improved through NYC Safe Routes to Transit program Image from NYC DOT Provide a variety of crossing treatments at intersections and at mid-block locations to improve perceived safety and motorist yield compliance. Effective countermeasures and crossing improvements at transit stations include:

- Priority signal phases for pedestrians
- Protected crossings, like raised median refuges
- High visibility crosswalk markings
- Tactile/textured crosswalk design

Feature

Placemaking and Street Furniture

Portland Transit Mall

Image from Nelson\Nygaard

Pedestrian Wayfinding

Distinctive pedestrian wayfinding and branding in Minneapolis, MN

Image from Nelson\Nygaard

Bicycle Access

Direct, Low Stress Bike Facilities

A neighborhood greenway parallel to a frequent service bus line corridor in Portland, OR

Image from Nelson\Nygaard

Bike/Transit Integration

Cycle track/bus stop facility in Vancouver BC Image from Flickr user Paul Krueger

The intent of placemaking is to create places where you want to stay with clear connections to transit. This can be accomplished by:

Elements

- · Providing a sense of order to the pedestrian realm
- Clearly delineating pedestrian and furniture zones
- Integrating street furniture, including benches, landscaping, planters, trees, and public art, among other features
- Creating usable places for people to rest, to reflect, to have a sense of refuge, to meet and greet, and to see and be seen

Transit streetscapes should be inherently easy to navigate on foot. Pedestrian wayfinding in transit corridors should orient pedestrians toward transit, neighborhood context, and other destinations through: • Street signs

- Maps
- · Unique treatments, such as historical displays and public art

A variety of parallel and connecting bicycle facilities should be offered to appeal to cyclists of all skill levels. These include:

- Neighborhood Greenways
- Cycle tracks
- · Separated off-street bike paths and multi-use trails
- · Colored and buffered bike lanes

- The transit-bicycle interface is being improved using:
- Colored pavement markings at key junctures, such as intersections and turn zones where cars need to cross a bike lane
- Bike boxes, which allow bicyclists to wait ahead of vehicular traffic and increase awareness of bicyclists' presence along a corridor, have been implemented extensively in Portland, Oregon
- Integrating bike facilities, including conventional bike lanes, cycle tracks, and sidepaths into rail corridor design
- Supporting cycle track development with bicycle signalization
- Bike facility development alongside rail tracks must be carefully designed to mitigate the potential for wheel-in-track accidents; bike lanes are commonly striped to direct bicyclists' wheel path perpendicular to a rail track crossing

Feature

On-board Amenities

An on-board rack on a Community Transit bus

Image from Flickr user Oran Viriyincy

Destination Amenities

A key access Bike & Ride facility in Portland, OR Image from TriMet

Bicycle Wayfinding

Wayfinding signs are an important strategy for linking bike facilities to transit. Wayfinding is moving beyond orientation toward destinations and districts by integrating transit hubs and other intermodal transit facilities into the broader wayfinding system.

Bicycle wayfinding in Chicago, IL Image from Flickr user Joel Mann

Bicycle Station Access to Transit

Wheel troughs (bicycle runnels) installed on rail station stairways in Malmo, Sweden

Image from Nelson\Nygaard

Bicycle access is increasingly being integrated into transit facility and stairway design. Bicycle enhancements at stations include wheel troughs or ramps. Seattle's topography requires stairs to be used for cyclists to access various transit facilities. Many stairways in the Center City need to be retrofitted for bicycles to facilitate east-west connections to the 3rd Avenue Transit Mall.

Elements

- On-board accommodations for bicyclists are becoming better integrated into vehicle design. The following are leading examples of opportunities to better accommodate bicycle commuters:
- Bus vehicles can be equipped with up to three front-loading racks
- BRT and light rail vehicles can accommodate bike hangers and a variety of other on-board bicycle rack applications
- Full commuter rail cars are being dedicated to bicycle access (as is the case with Massachusetts Bay Transportation Authority's commuter rail Bike Coach)

Developing facilities that allow people to store bikes out of the weather and to shower and change at workplaces can help overcome this barrier. A good way to encourage commuting in rainy areas is to provide spaces where cyclists have access to facilities at the end of their commute where they can dry off, store clothes, and shower. Ideally, such facilities will provide secure bike parking and be protected from the weather. Using regulations or incentive programs, cities can play a part in encouraging or mandating the inclusion of these resources in all new office buildings.

Other innovative trip end amenities include::

- · Secure key access bike parking
- Full service bike stations
- Bike-share stations oriented toward short last-mile connections
- . TDM districts that encourage bicycling by providing changing rooms, showers, and lockers

MULTIMODAL TRANSIT ACCESS POLICIES AND STRATEGIES

The previous sections set the framework for enhancing transit access throughout Seattle's transit system—most notably along the TMP's priority FTN corridors. The *Mobility Corridor* framework will integrate bicycle and pedestrian facilities and spot improvements into each corridor's initial planning and design phase, which will vastly improve transit access. The following short list of strategy areas and policies links into the *Mobility Corridor* concept by guiding network and facility design decisions throughout the full extent of each vital travel corridor.

Strategy 1

Enhance pedestrian connections within station areas and along priority transit corridors

Ridership is shown to increase where sidewalk networks are complete and pedestrians are afforded with high visibility crossings. When a strong pedestrian network is in place, people are typically willing to walk a half-mile, or roughly 10 minutes, to access transit.

- Policy TA1.1: Develop an interagency working group to facilitate coordination between Sound Transit, Metro, and other transit operators to develop design standards for transit facilities and access to transit.
 - Facilitate creation of the interagency working group.
 - Develop consistent design standards for facilities, wayfinding, branding, and bicycle and pedestrian access.

Policy TA1.2: Build out the sidewalk network within each *Mobility Corridor's* sphere of influence.

- Identify gaps in sidewalk connectivity, informed by the Pedestrian Master Plan, to reprioritize programmed sidewalk development and maintenance.
- Develop a program to focus investment in sidewalk maintenance and reconstruction where pedestrian facilities have degraded.

Policy TA1.3: Expand pedestrian sidewalk capacity along corridors with high existing or anticipated pedestrian demand.

- Use treatments like curb extensions, bus bulb outs, or even road diets to expand the width of pedestrian facilities.
- Develop a transit placemaking program that converts underutilized parking spaces into urban living room spaces or parklets fully furnished with benches, tables, landscaped planters, and barriers. This could be modeled after San Francisco's popular Pavement to Parks Program.

Policy TA1.4: Install high visibility crosswalk treatments to ensure safe and comfortable crossings within *Mobility Corridors*.

- Focus higher levels of investment in crossing facilities at multimodal hubs, rail stations, and priority access nodes.
- Identify locations where existing crossings do not influence optimal stop and yield compliance by motorists.

- Policy TA1.5: Reduce travel distances for pedestrians connecting into transit facilities.
 - Strategically locate bus stops to minimize walking distances between intermodal connections.
 - Develop mid-block crossings with curb extensions, where appropriate.

Policy TA1.6: Prioritize pedestrian movements at intersections using priority signal treatments.

- Install leading pedestrian intervals and pedestrianonly scramble phases at locations with high pedestrian volumes and high auto turn volumes. Pedestrian scramble phases force a red phase for motorized traffic at each intersection leg while pedestrians at each crossing may advance in any direction—including diagonally.
- Extend pedestrian phases to provide enough crossing time for pedestrians of all ages and abilities.

Policy TA1.7: Integrate the highest level of Universal Design principles into all pedestrian design decisions to improve access for the visually, acoustically, and mobility-impaired.

- Design curb ramps to facilitate, not hinder, wheelchair movement.
- Carefully select tactile pavement treatments to ensure persons with disabilities are not burdened by vertical friction.
- Utilize blended transitions where possible.
- Make sidewalks safer and more comfortable for all walkway users by limiting driveway cuts, leveling grades, and reducing cross-slopes at driveway interfaces.

Policy TA1.8: Create usable places for a variety of activities, including rest, refuge, social exchanges, and viewing the urban environment.

- Invite foot traffic by installing pedestrian furnishings, such as seating, weather protection, water fountains, trash receptacles, street trees, and other landscaping and stormwater design elements.
- To the greatest extent possible, locate pedestrian furnishings in the sidewalk's furniture zone to reduce sidewalk clutter and facilitate a barrier-free walking environment.

Pedestrian facilities, such as high visibility crossings, innovative lighting features, curb extensions, and pedestrian short cuts can enhance access to transit.

Source: Nelson\Nygaard

Policy TA1.9: Provide clearly visible and consistent wayfinding signage between transit facilities and all pedestrian access approaches.

- Wayfinding signage should identify key destinations and districts or neighborhoods of interest.
- Wayfinding signage should direct pedestrians between intermodal connections.

Good bicycle wayfinding directs cyclists to major intermodal transfer locations.

Image from Nelson\Nygaard

Seattle BikePort provides a convenient resource for bike/transit commuters arriving via the King Street/International District Station.

Image from Nelson\Nygaard

<u>Strategy 2</u> Develop high-quality primary and supplemental bicycle facilities that link into and along transit corridors and station areas

Networks of low stress and highly visible bicycle facilities, such as separated bicycle paths, neighborhood greenways, cycle tracks, and buffered bike lanes are a critical component for bike/transit integration. Such investment in the bicycle environment will vastly extend transit's reach. The bicycle catchment area for transit access is far more extensive than walking or even some connecting transit service networks. Bicyclists are typically willing to travel between 3 and 4 miles to transit—roughly a 20-minute ride when accounting for intersection delay.

Policy TA2.1: Integrate high-quality, low-stress bike facilities into linear *Mobility Corridor* design.

- Develop cycle tracks, buffered bike lanes, and conventional bike lanes alongside linear transit facilities, as determined feasible by SDOT.
- If a priority transit facility cannot safely accommodate a dedicated or other on-street bicycle facility, a parallel bike facility, such as a neighborhood greenway, should be developed as an alternative transit access route.
- Integrate bicycle facilities into station and stop design to limit conflicts with transit vehicles and boarding and alighting passengers.

Policy TA2.2: Develop high-quality, low-stress bike connections that parallel and/or intersect priority transit corridors.

• The City should develop low-stress neighborhood greenways that intersect priority transit corridors at major destinations or adjacent to priority access nodes.

Policy TA2.3:	Install bike-share stations at all multimodal
	hubs, rail stations, priority access nodes, and
	major neighborhood transit destinations to
	facilitate the last-mile connection to employ-
	ment sites, retail centers, and residences.

• Develop bike-share stations at existing and proposed light rail and streetcar stations, respective of demand, as well as at major frequent bus stops.

Policy TA2.4: Supplement each priority transit corridor with supporting bicycle infrastructure and end-of-trip facilities at priority access nodes.

- Establish bicycle parking guidelines for station and stop locations based on boarding activity, transit passenger facility usage, and the local land use environment.
- Provide well-lit, secure long-term bicycle parking, such as bike lockers, key access parking rooms, and full service bike stations at multimodal hubs and rail stations.
- Work with regional transportation agencies to investigate integration of ORCA cards for accessing a BikeLink locker.
- Install covered, well-lit, and highly visible short-term bicycle parking at stations and bus stops.
- Shower, changing, and locker facilities should be located at or near major multimodal hubs.
- Integrate bicycle access into the design of elevated stations, such as bicycle accessible elevators and/or escalators, and wheel troughs on stairways.

Many transit providers are replacing single-bicycle lockers, such as these, with card-accessed lockers that are transparent and less likely to be abused. (Page 7-55 of the TMP Briefing Book provides a description of such facilities).

Image from Nelson\Nygaard

Where there is no sightline connection between modes, clear wayfinding is critical.

Image from Nelson\Nygaard

Policy TA2.5: Provide clearly visible and consistent wayfinding signage between transit facilities and all bicycle access approaches.

- Wayfinding signage should identify key bike facilities, destinations, and districts or neighborhoods of interest.
- Wayfinding signage should carry cyclists between transit alighting areas and bicycle parking facilities.
- Policy TA2.6: Integrate bicycles on transit vehicles using exterior front-loading racks and on-board bike hangers.
 - Encourage Sound Transit and King County Metro to invest in front-loading bike racks that hold up to three bicycles on all bus vehicles.
 - Encourage Sound Transit and King County Metro to redesign Sounder, Link, and RapidRide vehicles to increase on-board bicycle carrying capacity.

Strategy 3

Facilitate connections to high-quality and frequent transit service through local bus routes and highly visible transit information and branding

Feeder and shuttle service provides an attractive last-mile option for those that live beyond a comfortable walking distance. Although feeder service significantly increases transit's catchment area, it must be reasonably competitive with auto travel times in order to be successful. Connections between transit modes must be seamless; this is a key function of transit facilities in Seattle. Transit information, wayfinding, and branding will make intermodal connections user-friendly and legible, while offering a more appealing transit experience.

Policy TA3.1: Ensure that transfers are efficient and seamless.

- Develop east-west linear connection hubs in SODO at Lander Street and in South Lake Union at Aurora between Harrison and Thomas to facilitate transfer movements. Closely locate major transfer pair stops to facilitate and further reinforce the ease of making transfers.
- Clearly market the benefits of priority transit corridors as efficient transit options for Center City and interneighborhood circulation to and from multimodal hubs.
- Lay out intermodal transit facilities in such a way that allows alighting passengers to quickly orient themselves toward intermodal connections.

Policy TA3.2: Provide a wealth of transit information to reinforce system legibility and user comprehension for new and existing customers.

- Install real-time information displays along the Center City Transit Mall and at rail stations and multimodal hubs.
- Facilitate coordination by the interagency working group (see TA1.1) to provide consistent wayfinding and public information at intermodal hubs and key transfer points to ensure legible and effortless connections.

Image from SDOT

6 FUNDING & PERFORMANCE MONITORING

As this plan is being written, every sector of transportation is faced with significant funding challenges. Declining gas tax revenues are leading to diminished funds for roadway capital improvements, operations, and maintenance. These declines also affect federal transit funding. Operating revenues, which are a local responsibility for urban transit agencies in Washington State, are also down significantly due to declining sales tax receipts during the current economic downtown. It is hard to predict the future of transit funding, but one thing is certain—there are real and significant challenges ahead, not only to expand service, but also to maintain current service levels and quality. Achieving the 20-year plan for transit set forth in the TMP will be challenging in this funding context. Success will require new local funding sources, stronger partnerships with public transportation providers, and increased involvement of private sector partners to fund and expand Seattle's transit service offerings.

The TMP transit investment framework will support the ability of the City and its partners to develop a high-quality network of frequent transit services that connect its urban centers and villages and meet the mobility needs of its workers and residents.

Image from Nelson\Nygaard

TRANSIT FUNDING FRAMEWORK

Implementing the Seattle Transit Master Plan will require a significant and sustained effort by local, regional, and state agencies to identify, secure, and efficiently utilize new sources of funding. The long-term contribution of new facilities and services in fulfilling community goals will depend upon stable funding and diligent monitoring. The City plays a key role in evaluating transit in Seattle, including: (a) project and program implementation, (b) service performance, and (c) adaptive management of plan implementation and service delivery.

Regional, state, and federal funding sources for transit (including funding for both capital and operations) are, and appear likely to continue to be, increasingly scarce and competitive. Transit agencies, including King County Metro Transit, are shifting policies that govern how they allocate service to models based on performance, typically measured by ridership and productivity. Capital funding programs, such as the Federal New Starts and Small Starts programs (discussed in further detail in this chapter) require project sponsors, including cities and transit agencies, to demonstrate that new rail and bus projects will meet criteria for cost-effectiveness. Moreover, federal agencies, including the U.S. Department of Transportation (DOT), U.S. Environmental Protection Agency (EPA), and U.S. Housing and Urban Development (HUD), now partner to ensure that grant programs meet coordinated mobility, housing, and environmental goals.

Early successes from the TMP are critical to ensure future projects and services garner needed funding. When transit

customers, voters, employers, and elected officials see meaningful improvements to the system, they are more apt to lend support for future funding measures. To this end, early and aggressive implementation of TMP Priority Strategies increases the viability of other TMP projects and strategies being implemented.

Metro and Sound Transit funds are directed by regional policy to support a variety of transit capital and operating needs. These policies support the City's transit investment needs, but the amount of funding available and allocated by policy may be insufficient for Seattle to accommodate growth projected in the Comprehensive Plan. Flexibility to respond to current funding available from Metro and Sound Transit is a key building block of the TMP investment framework (see Chapter 1, page 1-17). As these sources wax and wane, it is necessary for the City to reprioritize where it directs local funds. For example, in a challenging economy, the City may choose to direct more funds to maintain current service levels on high ridership routes. When Metro sales tax receipts are strong, the limited funds the City of Seattle has available for transit may be better spent on capital projects.

The TMP embraces the concept of opportunity. Over the life of this plan, new opportunities will arise which were not previously anticipated. The multiple account evaluation approach taken by the TMP (see Chapter 3) should be used to guide the City as it explores new opportunities for implementation.

Since there will never be sufficient funds to meet all of Seattle's transit needs, there must be a priority hierarchy established to guide funding allocations in a way that ensures

FIGURE 6-1 MAJOR LOCAL AND REGIONAL (METRO AND SOUND TRANSIT) FUNDING SOURCES

----- Denotes Transit Now matching funding via partnership program

continued progress toward City goals. Inevitably, these decisions will need to be made in the context of challenging trade-offs. The investment framework establishes criteria to ensure that competing goals are balanced.

The investment framework must be a dynamic allocation process that continually re-evaluates each investment decision and establishes a priority for that decision in the coming year or two years. The TMP is updated every five years, allowing the City to reassess how capital and operating investments support the opportunities and challenges of the day.

CAPITAL FUNDING NEEDS AND OPTIONS

Certain TMP projects, including the proposed streetcar, rapid streetcar, and bus rapid transit (BRT) lines, require high levels of up-front capital investment. Capital costs are expenses associated with the design and construction of a new transit line, development of supportive facilities such as stations or maintenance facilities, and purchase of vehicles.

The Transportation Levy to Move Seattle Levy passed by Seattle voters in November 2016 will provide funding for transit capital improvements in the seven BRT corridors identified in Chapter 3. In each corridor, it is expected that other local, regional, and federal funds will be needed to leverage local funding provided by the Transportation Levy to Move Seattle.

STRATEGY AREA: IMPLEMENTING AN INVESTMENT FRAMEWORK

- **IF -1:** Local investments should be viewed in the context of the regional transit (Metro and Sound Transit) funding picture, including Metro and Sound Transit investments in service and capital.
- **IF -2:** Limited City transit funds should be used to leverage other regional, state, or federal funds whenever possible.
- **IF -3:** Decisions to fund transit must be viewed in light of future obligations, not just the current period.
- **IF -4:** The multiple account evaluation approach should be used to maintain balance between City goals.
- **IF-5:** The City should carefully track the returns on its investments in transit operations and capital projects.
- **IF -6:** The City should maintain flexibility to respond to future opportunities.
- **IF -7:** The investment/funding process must be reevaluated on a periodic basis, ideally a one- or two-year interval.
- **IF -8:** City funding for transit should be prioritized toward developing long-term capital projects and service subsidies that improve transit speed, reliability, and capacity in FTN corridors.

CAPITAL COST TO IMPLEMENT HIGH CAPACITY TRANSIT (HCT) AND BUS PRIORITY CORRIDORS

The total estimated initial investment to implement the Frequent Transit Network (FTN) improvements included in this plan is approximately \$523-584 million (2015 dollars). This includes a total of roughly \$334-395 million for capital improvements to implement recommended HCT corridors (RapidRide corridors) and \$190 million for the capital improvements needed to implement speed, reliability, electrification, and access improvements in Priority Bus Corridors. In addition to trolley wires and substations where electrification is proposed, these bus capital improvements include priority treatments, such as bus stop and crosswalk bulb-outs, offboard pay stations, and enhanced traffic signal systems that facilitate transit priority and/or queue jumps. Estimated capital costs to implement HCT or bus priority improvements in each corridor are detailed in Figure 6-2.

FIGURE 6-2 ESTIMATED INITIAL INVESTMENT LEVELS FOR RAPIDRIDE AND PRIORITY BUS CORRIDORS

Corridor	Corridor Description	Preferred Mode	Millions of Dollars (2015)	Millions of Dollars per Mile (2015)		
RapidRide	RapidRide Corridors					
Rapid Ride Corridor 1	Central Area - First Hill - Downtown, via Madison St	BRT	\$98.0M-\$120M	\$34.0M-\$41.7M		
Rapid Ride Corridor 2	Burien TC – Downtown via Delridge Way	BRT	\$38.0M-\$47.0M	\$3.7M-\$4.6M		
Rapid Ride Corridor 3	Mount Baker – Downtown via Rainier Ave and Jackson St	BRT	\$19.0M-\$23.0M	\$3.6M-\$4.4M		
Rapid Ride Corridor 4	Rainier Valley – U-District via 23rd Ave and Rainier Ave	BRT	\$90.0M-\$96.0M	\$8.2M-\$8.8M		
Rapid Ride Corridor 5	Ballard – U-District – Laurelhurst via Market St and 45th St	BRT	\$30.0M-\$37.0M	\$4.8M-\$5.9M		
Rapid Ride Corridor 6	Northgate - Ballard - Fremont - South Lake Union – Downtown, via Westlake Ave	BRT	\$31.0M-\$38.0M	\$2.4M-\$2.9M		
Rapid Ride Corridor 7	Northgate - Roosevelt - University District - South Lake Union - Downtown, via Roosevelt Way/11th Ave and Eastlake Ave	BRT	\$28.0M-\$340M	\$3.2M-\$3.9M		
Priority Bus Corridors						
PB1	Othello – U-District via Beacon Ave and Broadway	Bus	\$20.0M	\$1.9M		
PB2	Lower Queen Anne- South Lake Union - Capitol Hill via Denny	Bus	\$40.0M	\$7.7M		
PB3	Lake City – Northgate – U District	Bus	\$5.0M	\$0.7M		
PB4	Crown Hill - Greenlake - U District	Bus	\$57.0M	\$8.6M		
PB5	Phinney Ridge – Greenwood – Broadview	Bus	\$9.3M	\$1.0M		
PB6	Pike/Pine	Bus	\$13.6M	\$5.7M		
PB7	Jefferson/Yesler	Bus	\$16.3M	\$5.7M		
PB8	Seattle Center East	Bus	\$28.0M	\$5.7M		

CAPITAL FUNDING OPTIONS

Funding to implement the capital improvements recommended in this plan will come from a variety of sources:

- Local taxes and fees, including property, sales, parking, and business and occupation taxes; vehicle license fees; and private funds through partnerships
- Regional sources, including Sound Transit
- **State** sources, including Washington State Department of Transportation (WSDOT) programs and other state appropriations
- **Federal** sources through the Puget Sound Regional Council (PSRC) and nationwide discretionary sources

FEDERAL FUNDING OPTIONS

Most federal funding for transit capital improvements comes through congressional appropriations to the Surface Transportation Act (STA). The City of Seattle is recognized by the Federal Transit Administration as a transit operator (i.e., currently operates the Monorail and South Lake Union Streetcar) and is eligible to directly receive federal grant funds for transit projects.

Federal Transit Administration (FTA) Capital Grants

Federal Transit Administration grants are a primary funding source for transit capital investments. Potential funding sources for TMP investments include:¹

- FTA Section 5307 Urbanized Area Grant Program: Formula funding based on population density and provision of transit services
- FTA Section 5309 Bus, Bus Facility, and New/ Small Starts Program: Competitive grant program for large projects and vehicle procurements
- **FTA Section 5339 Planning, Engineering:** Funding available to assist in the planning and engineering process of selecting an appropriate modal application for a particular corridor²

In October 2011, the FTA awarded a \$900,000 grant to the City of Seattle under the 5339 program to conduct an alternatives analysis to examine the benefits, costs, and impacts of implementing an urban circulator connecting the Lower Queen Anne, Uptown, and South Lake Union neighborhoods with King Street Station and the International District Multimodal Hub. Figure 3-16 of the TMP provides a map that illustrates

FUNDING OPPORTUNITY DIFFERS BY MODE

The mix of potential funding sources for HCT and bus priority investments differs by mode as each has features and benefits that are attractive to different funding constituencies.

STREETCAR AND RAPID STREETCAR

Streetcar projects typically rely on a wide range of funding sources with strong variation even within different projects and phases in the same city. "Rapid streetcars" with aggressive right-of-way treatments will be stronger candidates for federal Small Starts funds than local circulators. However, the FTA has adjusted its evaluation process to make Small Starts more accessible to urban circulator projects, which would include Seattle Streetcar extensions in the Center City. Relying on local funding can avoid competition with other projects seeking federal funds or restrictions on their use. Key local sources of capital funds include local improvement districts (LIDs) and parking revenue bonds.

Relative to the other modes, streetcar and rapid streetcar have high potential to attract both private and public sector funding. The evolution of the Portland Streetcar provides an example of innova-

tive local funding for streetcar development. Portland relied on local funding sources in the three phases of its Westside Streetcar system (city parking bonds [28%], tax increment financing [21%], and a LID [19%]) and only applied for New Starts funding for the Eastside Streetcar loop scheduled to open in 2012.

BUS RAPID TRANSIT

Bus Rapid Transit projects typically rely on a greater level of federal funding than streetcar or other local bus facility projects. The split between federal, state and local dollars varies between projects, but federal funds typically make up more than half of capital costs. BRT lines in Pittsburgh, Las Vegas, Kansas City, Eugene, and Cleveland have all been implemented with approximately 80% of capital funding coming from federal sources. Many BRT projects utilize FTA 5309 Bus, Bus Facility, and New/Small Starts funding—Small Starts was created specifically to fund less capital-intensive projects ,such as BRT. Although most BRT projects have been implemented almost exclusively with state and local funds:

- **Orange Line in Los Angeles** was largely funded through a countywide sales tax, although some vehicle and station capital costs funded through New Starts.
- Silver Line in Boston (Phase 1 Washington Street) was built entirely with state and local funds.

¹ On-going attention must be given to these funding sources to ensure the additional transit investments made by Seattle are recognized in the locally adopted funding allocation. If, for example, the City makes a speed and reliability investment in a corridor that results in a 25% gain in passenger-miles travelled, the marginal addition of Federal funds must be value-captured in ensuing years and re-invested to further TMP goals. This does not necessarily mean the money needs to pass directly to Seattle.

² The City presently has a pending application for the Center City Connector Corridor, but the TMP identified three other corridors (two potential rail, one potential BRT) that could also be applicable to this funding source.

possible alignment options; streetcar and bus modes will both be analyzed.

There are a number of other federal sources that can be utilized for transit capital. These funds, mostly channeled through Puget Sound Regional Council in support of identified regional transportation priorities include: Federal Highway Administration flexible funding, Surface Transportation Program funds, Congestion Mitigation and Air Quality funds, Job Access Reverse Commute program funds, and FTA Section 5317 New Freedom funds. New Freedom funds targets projects and programs that overcome existing barriers facing Americans with disabilities seeking integration into the work force and full participation in society.

New Starts/Small Starts/Very Small Starts

The Federal Transit Administration's New Starts program is the federal government's primary financial resource for supporting locally planned, implemented, and operated major transit capital investments. The New Starts program funds fixed guideway transit projects including: commuter rail, light rail, heavy rail, bus rapid transit, streetcars, and ferries. New Starts projects have three phases: (1) evaluation of alternatives leading to the selection of a locally preferred alternative, (2) preliminary engineering during which design and environmental issues are addressed, and (3) final engineering during which final construction plans are developed. The process can be lengthy, taking seven to well over 10 years from initiation of an alternatives analysis (AA) to execution of a full funding agreement. Projects must have a total capital cost over \$250 million and local match requirements are 20% of that total cost; in recent years the FTA has been pushing recipients to pay closer to a 50% local match.

The Small Starts Program was established in the last federal transportation spending bill—the Safe, Accountable, Flexible, Efficient, Transportation Equity Act–A Legacy of Users (SAFETEA-LU)—for projects with smaller capital budgets. The intent of the program was to speed implementation of simpler, less capital-intensive projects. To qualify for Small Starts projects, requests must be less than \$75 million in federal funding and have a total project cost under \$250 million. The project must be a fixed guideway for at least 50% of the project length in the peak period, and/or be a corridor-based bus project with the following minimum elements:

- Substantial Transit Stations
- Signal Priority/Pre-emption (for Bus/LRT)
- Low Floor/Level Boarding Vehicles
- Special Branding of Service
- Frequent Service 10 min peak/15 min off peak
- Service offered at least 14 hours per day

The New Starts and Small Starts/Very Small Starts programs should be viewed as opportunities for funding TMP HCT corridors including all BRT Network corridors. In September 2015, SDOT submitted a Small Starts request to FTA for the Center City Connector Streetcar project. If approved, funds would be allocated in the President's next budget. SDOT intends to submit a similar request for Small Starts funds for the Madison Corridor BRT project in 2016 (Corridor BRT1).

Other Federal Capital Grants (e.g., U.S. DOT, FTA, DOE)

Federal grant programs may be available periodically to fund transit projects. The U.S. DOT/FTA TIGGER (Transit Investments for Greenhouse Gas and Energy Reduction) grant program, which expires in 2012, funded transit projects that reduce energy use. In 2011, King County Metro and the City of Seattle applied for a \$7 million TIGGER grant to close a gap in overhead trolley wire on 23rd Ave between Jackson and Madison Streets. The grant application directly supports TMP-identified projects in that corridor. The City has received other recent FTA grants, including a major grant to rehabilitate King Street Station in 2010.

Housing and Urban Development Funds

While not a traditional source of support for transportation projects, funds from the U.S. Department of Housing and Urban Development (HUD) have been used to support planning and design work on transit projects. Grants require a local match.

LOCAL FUNDING OPTIONS

Many recent capital projects in the United States have relied largely, if not solely, on local funding for construction and operations. In a number of cities around the country, avoiding complex requirements associated with federally funded construction projects has allowed for more cost effective and rapid construction and implementation of service.

The following are some of the potential local sources of funding for constructing transit projects called for in this plan. Some sources also have potential to raise operating funds.

Vehicle License Fees (VLF)

As a transportation benefit district, Seattle is authorized to impose up to a \$100 total annual vehicle license fee with voter approval, an additional \$20 beyond the current \$80 VLF (see the Transit Benefit District sidebar on page 6-8). In November 2014, voters approved a measure (Prop 1) to fund expanded Metro bus service and a 0.1% increase in sales tax supported by a \$60 vehicle license fee through the Seattle Transportation Benefit District. As such, only \$20 of additional authority remains.

Proceeds of Surplus Property

While infrequent, the proceeds from selling surplus SDOT property could be directed to project development, environmental analysis and documentation, project design, and right-of-way acquisition. Using these sources to get HCT

TRANSPORTATION LEVY TO MOVE SEATTLE

The Transportation Levy to Move Seattle, passed by voters in November 2015, is a nine year, \$930 million transportation levy paid for through a property tax. In addition to the \$930 million generated over the life of the levy, the City of Seattle estimates these funds can be used to leverage additional federal, state, and private transportation investments.

The levy provides funding for street operations and maintenance as well as investments in the multimodal transportation system. Key areas of investment identified in the levy legislation include:

- Vision Zero investments in safe routes for pedestrians, bicyclists and motorists
- Neighborhood transportation projects
- Transit corridor investments to improve speed and reliability
- Bridges and other key structures
- Congestion relief including roadway investments and technology
- Improvements to better access regional light rail
- Bicycle system improvements
- Pedestrian improvements
- Freight system improvements

Transportation Levy to Move Seattle funding will replace a previous \$365 million, nine year funding measure called Bridging the Gap that expired at the end of 2015.

projects to "shovel ready" status greatly enhances the City's ability to leverage federal funding sources.

Local Improvement Districts (LIDs)

A local improvement district is a geographic area in which real property is taxed to defray all or part of the costs of a public improvement. The distinctive feature of a special assessment is that its costs are apportioned according to the estimated benefit that will accrue to each property. In Washington, LIDs are governed by Chapter 35.43 of the Revised Code of Washington (RCW). It is within the local jurisdiction's discretion to determine the benefits and benefit area of a project financed by a local improvement district.

The basic principle of a LID is that it creates an assessment charge for those property owners who receive special benefits from an improvement beyond the general benefits received by all residents of the community.

For example, the expansion of the Seattle streetcar network is anticipated to lead to positive changes in property values along the new lines. Increased property valuation is expected from the enhancement of the local transportation network, connections with regional transit systems, improved neighborhood

Pedestrian safety projects improve transit access, such as the crossing illustrated in these before and after photos along Beacon Avenue.

Images from SDOT

A local improvement district (LID) could be a key capital funding source for expanding the Seattle streetcar network. Image from Nelson\Nygaard

Filling two gaps in trolley wire on 23rd Avenue (1.5 miles) would enable an electrified crosstown priority bus corridor between Rainier Beach and the University District. The photo shows existing wire on Rainier Avenue that would be utilized for this route (corridor 5). Chapter 3 provides a more detailed description of this and other TMP corridors.

Image from Nelson\Nygaard

economics and livability, and increased property exposure and demand. These expected increases in property value can garner private sector support for the formation of a LID.

Value capture through tax increment financing, a tool used commonly to fund rail capital in other cities, is not legal in Washington State.

LIDs should be a primary consideration for developing financing programs for the HCT projects in the TMP.

General Obligation Bonds

Bonds are a primary source of funds for constructing capital improvement projects. Voter-approved bonds are sold to fund street and other transportation projects. Transportation projects can be grouped in "bond packages" which go before the public for voter approval, or are issued separately. General obligation bonds can be supported through the city's property tax base or through the transit district's tax base. Bonds can be backed with incremental increases in universally applied city taxes, such as those on sales and property.

Bonding is a tool typically used for high-cost capital projects, such as rail lines. In the context of the TMP, it may be most appropriate to support HCT projects.

Other Local Sources of Capital Funding

Other local options for funding capital improvements not currently being utilized by the City of Seattle include:

- **Chapter 35.95.040 RCW:** Authorizes cities to levy an excise tax (further defined in Chapter 82.04 RCW) with a cap of an equivalent of \$1 per month per household. In Seattle, this could generate up to \$3 million per year.
- Chapter 35.95A RCW: Authorizes cities to establish an authority to construct and operate fixed guideway systems that are not "light rail." From the RCW, this "means a transportation system that utilizes train cars running on a guideway, together with the necessary passenger stations, terminals, parking facilities, related facilities or other properties, and facilities necessary and appropriate for passenger and vehicular access to and from peoplemoving systems, not including fixed guideway light rail

SEATTLE TRANSPORTATION BENEFIT DISTRICT: VEHICLE LICENSE FEES

Transportation benefit districts were created through a 2005 Washington State Legislature statute as a way for local agencies and governments to fund transportation-related improvements. The legislation authorizes the use of various taxes and fees to fund transportation improvements within the district. It allows funding for operation of facilities and programs, including public transportation.

Funding sources that may be used without voter approval include an up to a \$20 annual vehicle license fee (VLF) and a transportation impact fee on commercial and industrial buildings. Subject to voter approval, the following additional revenue sources are available:

- Property taxes (one-year excess levy or an excess levy for capital purposes)
- Sales and use tax (up to 0.2%)
- Annual VLF of up to an additional \$80 (\$100 total) per vehicle registered in the district
- Vehicle tolls

The legislation also authorizes a district to form a local improvement district (LID) to help fund a specific transportation improvement. The district can impose a special assessment within the LID and issue bonds to help fund the improvement.

In 2010, the Seattle City Council authorized the creation of a transportation benefit district in the city of Seattle. The passage of Proposition for the STBD in November 2014 authorized a 0.1 percent sales tax increase and a \$60 annual VLF per registered vehicle. The new funding mechanism is expected to raise \$45 million per year to address overcrowding and reliability issues with Metro service and to add frequency to meet demand for more transit. Service improvements are slated for 85 percent of all Seattle's bus routes.*

* Source: http:// www.seattle.gov/stbd/

LEVERAGING DEVELOPMENT RIGHTS

Various cities, including Seattle, have used transit facility development to leverage private investment. In some cases, this investment has stimulated redevelopment along the corridor, increasing transit ridership and fare revenues as well as expanding the tax base. In other cases, development rights associated with specific properties, including transportation maintenance facilities, expressly served as the mechanism to fund transit projects. For example:

- In Portland, 10 years after the south portion of its Transit Mall was completed in 1978, every dollar of original capital cost was responsible for \$30-\$50 of public and private nearby redevelopment. (1) In 2004, Bechtel Corporation constructed the Red Line light rail service to the Portland International Airport in exchange for development rights on a large land area near the airport, now the Cascade Station retail development.
- In Washington, D.C., a 2011 study by the Washington Metro Area Transportation Authority (WMATA) showed that \$235 billion in property value is located within 800 meters of Metrorail stations in the Washington D.C. metro area. This land accounts for only 4% of regional land area, but 28% of the region's property tax revenue. The WMATA estimates that proximity to Metrorail stations increases property values between 7% and 9%. (2)
- In Vancouver, B.C., a recent analysis found that vacancy of office space with direct access (within 0.5 km) to Rapid Transit Stations is less than half the rate for the rest of the office space market. (3)
- In Seattle, the maintenance base for the South Lake Union streetcar is on a 32,000 square foot site with 9,000 square feet of usable space in the maintenance facility building, including 2,000 square feet of space located on a second level. An analysis conducted for the City of Seattle analyzed development potential for both commercial and residential development and concluded that selling residential development rights would have the highest yield, between \$2.7 to \$3.4 million. (4) The city plans to sell air rights and surplus property at the facility once the real estate market recovers.

Sources:(1) http://trimet.org/about/history/portlandmall.htm. (2) WMATA, "Transit Ridership Trends and Markets," 2009. (3) Jones, Lang, LaSalle (2011). Rapid Transit Office Index, /On-Point/ Canadian Research. p. 1. (4) South Lake Union Capital Financing and Operating and Maintenance Plan, April 2005.

The South Lake Union streetcar maintenance base is shown above, outlined in red.

Source: Google Maps

systems." Funding for these "fixed guideway" systems is authorized with a 2.5% motor vehicle excise tax, a vehicle license fee up to \$100 per vehicle and a property tax levy up to \$1 per thousand of assessed value. This refers to the now dormant monorail authority. Establishing the authority and its taxing authority requires a public vote. This must be investigated further, but it is possible that a rapid streetcar has enough uniquely distinguishing features that could allow it to be defined as something other than a light rail system.

Joint Development and Sale of Land or Development Rights

Joint development (in conjunction with transit facilities), land sales, or sale of development rights above transit maintenance bases are often used as part of capital funding packages. Encouraging development along a transit line helps increase ridership and fare revenue, and lease or sale proceeds can be used to develop a revenue stream for transit operations.

This source can lead to significant financing leverage, but is highly situational and requires detailed exploration at the project level.

STRATEGY AREA: FUNDING CAPITAL INVESTMENTS

- CI-1: Focus investments where they maximize efficiency.
- CI-2: Establish or expand staff responsibilities for development of new transit funding opportunities.
- **CI-3:** Leverage opportunities to enhance transit capital investments through closely coordinated capital projects and funding development opportunities with Metro and Sound Transit. Ensure transit capital development program staffing is sufficient to take full advantage of available capital funds.
- **CI-4:** Actively pursue opportunities for use of non-dedicated city funds, such as proceeds of surplus property sales, to advance corridor development, environmental, design, and right of way acquisition for HCT corridor projects to bring them to construction ready status.
- **CI-5:** Work closely with Metro to capture and reinvest in the FTN operating cost savings that accrue as a result of capital projects funded by the City.
- **CI-6:** Link transit capital investments directly to the land use goals they are intended to support. This will be crucial to make City projects competitive at the Federal level.
- **CI-7:** Foster a cooperative relationship with all granting and regional transit agencies to better coordinate capital funding requests, particularly for transit electrification projects, at the state and federal level.
- **CI-8:** Support expanded funding mechanisms for the City, such as new funding authority for Transportation Benefit Districts.
- CI-9: Develop an ongoing and stable source of revenue to support transit capital and operations in the city of Seattle.

FUNDING TRANSIT OPERATIONS

Transit operations include on-going expenses, such as operator and administrative labor, fuel/energy costs, and basic vehicle maintenance. In contrast to capital funding, transit operations in urban areas receives limited federal support and is largely financed through local sources. In Seattle, the primary local financing mechanism for transit operations is a local option sales tax, which comprises 62% of King County Metro Transit's operating revenues. In response to recent declines in revenue, Metro and other transit agencies have instituted service reductions and fare increases. Seattle voters have also passed several recent initiatives to fund specific capital projects and service improvements through increases in dedicated transit sales taxes. Declines in sales tax receipts have extended implementation timelines and/or decreased the scope of planned transit service enhancements.

COST TO OPERATE NEW TRANSIT SERVICE IN PRIORITY CORRIDORS

The primary benefit of HCT services proposed in the TMP is a significantly lower operating cost per passenger and per passenger mile. Nevertheless, operating the HCT corridors will require new resources, particularly where the alignments do not provide an opportunity to replace existing bus service.

Figure 6-3 shows the projected annual cost of operating the preferred mode for new and improved transit service in each corridor recommended for HCT service. Operating costs range from about \$7 million to \$24 million annually for each

corridor. The projected total cost to operate new HCT service in all seven corridors is roughly \$110 million per year. Note that these cost estimates do not include cost savings from changes to existing routes, which may represent up to 33% of the total annual operating cost for all HCT corridors. The ability to reinvest current bus operating dollars varies significantly from corridor to corridor.

FIGURE 6-3 ESTIMATED ANNUAL OPERATING COST FOR HCT OPTIONS

HCT Corridor	Corridor Description	Mode	Annual Operating Cost (2015)*
RapidRide Corridor 1	Central Area - First Hill - Downtown, via Madison St	BRT	\$6.7M
RapidRide Corridor 2	Burien TC – Downtown via Delridge Way	BRT	\$14.4M
RapidRide Corridor 3	Mount Baker – Downtown via Rainier Ave and Jackson St	BRT	\$11.1M
RapidRide Corridor 4	Rainier Valley - U-District via 23rd Ave and Rainier Ave	BRT	\$19.1M
RapidRide Corridor 5	Ballard – U-District – Laurelhurst via Market St and 45th St		\$13.6M
RapidRide Corridor 6	Northgate - Ballard - Fremont - South Lake Union – Downtown, via Westlake Ave		\$24.2M
RapidRide Corridor 7	Northgate - Roosevelt - University District - South Lake Union - Downtown, via Roosevelt Way/11th Ave and Eastlake Ave	BRT	\$20.8M

* Annual Cost shown does not include projected operating cost savings for changes to existing routes, which could cover substantial portions of corridor operating costs.

SOUND TRANSIT FUNDING

Although Sound Transit operates express bus, commuter rail, and light rail service around the Puget Sound region, the hub of the current and planned Link light rail system is downtown Seattle. Sound Transit's tri-county transit system was established with voter approval of the "Sound Move" ten-year regional transit package in 1996. The "Sound Move" ballot measure authorized a 0.4% sales tax and 0.3% motor vehicle excise tax levied within the Sound Transit District to fund the initial bus, commuter rail, and light rail transit projects.* Sound Transit 2 (ST2) was approved by voters in 2008. It includes a sales tax increase (0.5%) on purchases made within the Sound Transit District and was projected at the time to raise approximately \$18 billion in local funds from 2008 to 2023.

Sound Transit's 2015 Adopted Budget is supported by roughly \$1.26 billion in revenues collected within the Sound Transit District: a 0.9% retail sales and use tax (about 51% of total revenue), a 0.3% motor vehicle excise tax (about 6% of revenue), a 0.8% rental car tax (about 0.2% of revenue), farebox revenues (about 5% of revenue), interest earnings (about 1% of revenue), and miscellaneous revenue (about 37% of revenue). Remaining revenues come from federal grants and bond proceeds.

* http://www.soundtransit.org/Documents/pdf/about/ Chronology.pdf

The TMP proposes using 2nd and 4th Avenues downtown for regional buses, including those operated by Sound Transit, and streamlined regional bus access to I-5 from north of downtown.

Image from Nelson\Nygaard

KING COUNTY METRO TRANSIT OPERATING FUNDING

King County Metro Transit operates bus service to, from, and within the City of Seattle. The agency's 2013-2014 operating budget of \$833.1 million is funded by the following sources: approximately 52.5% comes from a share of the retail sales tax collected in the service area (about \$437.5 million) and 18.0% comes from ridership revenue (about \$149.9 million); remaining revenues are collected from other operations revenue (2.2%), property tax revenues originally dedicated to King County ferry services (2.8%), and other funds.

RapidRide is funded by sales taxes under the voter-approved TransitNow program.

Image from Nelson\Nygaard

Sponsorship of streetcar stops and vehicles is a modest, but viable, source for future streetcar and HCT system expansion.

Image from Nelson\Nygaard

OPERATIONS FUNDING OPTIONS

FEDERAL FUNDING FOR OPERATIONS

Federal transit funding directed to urban areas is primarily for capital projects. However, several federal funding programs have potential application for funding elements of transit operations commonly considered operations, such as vehicle preventative maintenance.

FTA 5307: Seattle receives money from these programs for maintenance of the Monorail and Streetcar, which the FTA considers to be operations. These funds are allocated by the Puget Sound Regional Council (PSRC) using a formula based on the percentage of transit trips served. A small share (less than 10%) of Seattle Streetcar operating revenues are derived from federal grants for preventive maintenance.

Congestion Mitigation and Air Quality (CMAQ) Program:

Funds under this program are limited to three years of operating support.

LOCAL AND REGIONAL FUNDING OPTIONS

Regional Transit Agency Contributions

To the extent a new transit service overlays or replaces existing or planned future services, some portion of the operating cost can be transferred from the bus service that it replaces. Seattle already receives regional support to operate the South Lake Union Streetcar. In 2010, King County Metro assumed responsibility for 75% of streetcar operating costs.¹

Operating Endowment

One-time revenues (such as from land sales) or regular revenue streams (such as from the sale of naming rights or leases) can be used to create a fund that contributes to transit operating costs. Seattle established a South Lake Union Streetcar Operating Fund, to consist of both public and private

1 Seattle 2010 Proposed Budget; Draft Memorandum of Understanding, South Lake Union Streetcar Financing, http://www.cityofseattle.net/transportation/ docs/slu18FINAL%20Financing%20Appendix%20C.pdf.

STRATEGY AREA: FUNDING OPERATION OF SERVICES

- **OS-1:** Operating supplements should be used to bring parts of the FTN up to frequency and span of service targets established in Chapter 4. This may mean supplementing operations on routes where Metro Service Guidelines suggest a lower level of service or where Metro has insufficient funding to address all gaps between service standards and actual service levels.
- **OS-2:**Operating supplements may need to be used to protect FTN service standards and/or to ensure continued availability of local network service to Seattle residents if Metro is forced to reduce service due to financial distress.
- **OS-3:**The City should consider the most cost-effective use of operating supplements, including evaluating use of alternative service methods and providers.
- **OS-4:** The City should coordinate with Metro to establish a policy for providing alternative mobility services where standard fixed route operations are not productive.
- **OS-5:** The City should establish a cap on subsidy for alternative services. A suggested guideline is that the amount of funds used to support alternative strategies is no more than 5% of the City's total investment in transit in any given year.
- **OS-6:** The City should do early outreach with the private sector and public agency partners to develop sustainable operating finance plans for streetcar and rapid streetcar system expansion.
- **oS-7:** The City should consider changes to its sign code to allow opportunity for private funding for transit and bike share through station sponsorships.

sources. The city loaned initial operating funds, which will be repaid from sponsorship revenue over time.

Naming Rights/Sponsorships

A number of streetcar and bus circulators have expanded upon traditional transit advertising revenues by allowing sponsorship of different elements of the system. While advertising is a traditional funding source for regional transit agencies, they have not made as extensive use of sponsorships and more innovative private funding opportunities as city-owned streetcar or circulator systems. Seattle's South Lake Union Streetcar sponsor names are featured at stops and on individual streetcars. Sponsorship revenues were about \$500,000 annually in 2008 and 2009.

Bus bulbs are a capital improvement that can help meet multiple TMP performance measures: they improve speed/reliability by allowing buses to stop in the travel lane to board passengers and provide additional right-of-way to construct shelters and allow passengers to wait outside of the sidewalk zone.

Image from Nelson\Nygaard

POTENTIAL LOCAL AND REGIONAL FUNDING OPTIONS FOR CAPITAL OR OPERATIONS

New and innovative sources will be needed to realize TMP goals and deliver all the projects and improvements included in the Plan. This section describes potential new funding sources that include: local funds generated within the Seattle Transportation Benefit District (governed by the Seattle City Council), transit impact fees, and regional funding options requiring legislative authorization and voter approval.

LOCAL FUNDING OPTIONS

GENERAL FUND REVENUE

The City may opt to dedicate a share of City general fund resources to fund transit service or capital improvements. Because capital improvements are typically easier to finance through state and federal grants and/or regional funding packages, the City may choose to dedicate any available general fund revenues to transit operations.

PARKING METER REVENUE

Parking meter revenue is a source of local revenue to consider using to support capital improvements in the TMP, and/or operation of expanded service in TMP priority corridors. Other cities , such as San Francisco and Portland, have found it easier to build support for extending metering to new hours and/or new areas, and transitioning to demand-based parking pricing if a portion of meter revenues are dedicated to access and mobility improvements in the same neighborhood or business district in which they are collected.

TOLLING LOCAL STREETS AND ROADWAYS WITHIN THE TRANSPORTATION BENEFIT DISTRICT

The Seattle City Council, acting as the Board of Directors of the Seattle Transportation Benefit District, has state authority to seek voter approval to levy tolls on any non-state highway in the City to support transit and other transportation improvements in the City (for more on this package see "Seattle Transportation Benefit District" on page 6-8).

REGIONAL FUNDING OPTIONS

Sound Transit is proceeding with implementation of Link Light Rail, Sounder Commuter Rail extensions, and ST Express Bus facilities and service expansion as authorized by regional voter approval of ST2 in 2008. However, there are many high priority transit projects in the regional transportation plan (Transportation 2040) that do not, as yet, have full funding from federal, state, regional or local sources. To expedite completion of the highest priority regional access and mobility projects, the Washington State Legislature passed ESSB 5987, which authorizes Sound Transit to levy new taxes and other funding mechanisms to fund regional transit projects. Sound Transit is developing a \$15 billion ballot measure package called Sound Transit 3 (ST3) likely to be considered by voters in November 2016. The Sound Transit Board is considering ST3 candidate project studies as it develops a draft plan to release for public review and comment in spring 2016. To fund these projects, Sound Transit has the authority to employ three different tax mechanisms: a property tax (25 cent per \$1,000 dollars of assessed value of property), a 0.5% sales tax increase, and an annual motor vehicle excise tax (MVET) of 0.8% of the vehicle value.

Other potential sources of revenue for a regional transportation funding package include:

- Tolls (corridor tolls, congestion pricing, or cordon tolls)
- Off-street parking fees
- Vehicle miles traveled fees or tolls
- Local option sales tax on gas
- Development fees based on the number of new vehicle trips generated by new projects

As new funding sources, or by way of expansion of existing regional authority, these sources could fund and/or finance construction and operation of FTN services.

TOLLING STATE HIGHWAYS

Market-based road pricing can contribute to transit operating cost and has two primary benefits for transit operations:

- 1. Pricing revenues can be used to fund increased levels of transit service.
- 2. Alleviating congestion reduces transit travel times and operating cost, increasing the buying power of existing operating revenues.

These benefits have been demonstrated internationally (e.g., London) but have not yet been applied on a wide scale in the U.S. The Seattle Variable Tolling Study identified variable tolling as a potential transit revenue source.¹

There are currently four tolled facilities in Washington State (SR 520 Bridge, I-405 HOT Lane, SR 16 Tacoma Narrows Bridge, and the SR 167 HOT Lane), but in none of these cases are toll revenues dedicated to fund transit service.

Toll revenues have been used to fund transit operations in other states, including New York and California, where state law requires nearly 60% of toll revenue in the I-15 corridor in San Diego County to be used for transit service in the same corridor.

Strengthening affordable regional transit in conjunction with toll projects helps reduce impacts of tolling on low-income travelers.²

OFF-STREET PARKING FEES

In addition to the commercial parking tax, the City may seek legislative authority to levy a graduated, per-space fee on private off-street parking spaces associated with commercial and mixed-use development with revenues dedicated to funding transit and other multimodal transportation improvements. To ease the burden of the new fee and encourage priced parking, the fee might be structured to permit a full or partial exemption for any employer and/or property owner who charges market rates for parking, or otherwise passes on the full cost of owning, maintaining, and operating parking facilities to users.³

LOCAL-OPTION SALES TAX ON GAS

Fuel taxes are an important source of revenue for transit in many states. Gas taxes have multiple benefits of (1) raising a substantial amount of revenue, (2) encouraging transit ridership by raising the out-of-pocket cost of each additional mile driven, and (3) rewarding drivers that reduce pollutant emissions by driving less and using more fuel-efficient vehicles. The Washington state Constitution restricts the use of gas tax revenue to the construction and maintenance of roads, so a straight gas tax is not a viable funding option for the TMP. The sale of gas is also exempted from local sales and use taxes in Washington State. However, the City and other interested partners may advocate for the legislature to remove this exemption to permit local governments and/or regional agencies to levy a sales tax on gas (if it is not done statewide) at current rates. If this is done, the local, regional, or state taxing authority may dedicate a share of sales taxes collected on gas to transit capital improvements and transit operations. From a driver's perspective, application of the sales tax to gasoline would be comparable to increasing the gas tax or other components of the variable cost of fuel.

¹ http://www.cityofseattle.net/transportation/docs/FINAL%20Tolling%20 Study%20report%20revised%206.25.10.pdf

² http://apps.leg.wa.gov/rcw/default.aspx?cite=47.56.820

³ Any fee should be assessed to property-owners and/or employers on a graduated basis that is inversely proportional to the amount they charge for parking, or the amount they currently offer to commuters as a cash alternative to parking ("parking cashout"). Such a fee would be graduated so that property owners would be exempted if (a) they or their tenants charge a per-space user fee for parking, or (b) they unbundle parking from the lease of commercial space and all tenants certify that they pass the full-cost of parking on to their employees, or offer all of their employees the option of taking cash in-lieu of a parking subsidy.

VEHICLE MILES TRAVELED (VMT) OR CARBON TAX

Both of these tax sources are under careful study at the state and federal levels as future funding sources for transportation projects and programs including transit. In both cases, there is attention being given to the potential for local jurisdictions to also utilize new revenue to fund local transportation projects or services. At the federal level, it seems less likely a fee based only on how many miles are driven will be implemented, although VMT may be a part of the taxing formula. Appearing more likely is a tax that is based on use of carbon. The debate on how to rescue the Federal Highway Trust Fund and how much to expend on transit and non-motorized transportation could take years to resolve. The City should continue to monitor federal, state, and regional actions relative to these new funding sources.

IMPACT FEES

Transit Impact Fees

The City may establish a transit impact fee to capture the cost of providing transit facilities and service to meet the need for access and mobility generated by new development. Levying such a fee would require completing a study establishing an essential nexus between the fee and the public costs of accommodating the additional transit trips generated by the development or the impacts of those trips on transit operations. This may require modifications to State Environmental Policy Act (SEPA) or Growth Management Act (GMA) rules.

Multimodal Transportation Impact Mitigation Fees

As a complement or alternative to transit impact fees, the City may work with other local government partners to secure legislative authorization to enact a multimodal transportation impact mitigation fee based on the number of automobile trips generated by new development (this would require a change to State Environmental Policy Act (SEPA) rules for the definition and mitigation of environmental impacts of development projects. To levy a fee on auto trip generation, the City would have to complete a study establishing an essential nexus between the proposed use of fee revenue and the environmental impact of auto trips generated (demonstrating how investments in transportation demand management, transit, and other multimodal transportation projects and programs would reduce vehicle trips, effectively mitigating the projected impact of the new project).

SAN FRANCISCO TRANSIT IMPACT FEE & PROPOSED AUTO TRIPS GENERATED (ATG) FEE

San Francisco's Transit Impact Development Fee (TIDF) assesses a fee on all non-residential development in the city, recognizing transit's role and added value in serving development. The fee is two-tiered currently \$9.07 or \$11.34 per square foot (indexed for inflation), based on the level of transit demand attributable to each of the six land use categories defined in the ordinance. The TIDF generates a modest amount of revenue to fund transit service improvements—slightly over \$2 million collected in 2008 and nearly \$120 million in fees and earned interest between 1981 and 2008.

The San Francisco County Transportation Authority recently studied the option to implement a similar impact mitigation fee on ATG by new development, payment of which would permit development projects to fully mitigate the air quality impacts of their project (avoiding the need for further environmental analysis), while providing the County with funding to implement a package of multimodal transportation investments, including transit projects designed to reduce vehicle trips.

Source: Auto Trip Generation Study: Final Report, San Francisco County Transportation Authority, October, 2008

STRATEGY AREA: DEVELOPMENT OF NEW FUNDING SOURCES

- **NFS-1:** Work at the state level to develop new sources of funding for King County Metro. There may be opportunities within new legislation to leverage City funds as part of Metro's total investment package.
- **NFS-2:** Advocate to ensure new state revenue sources are not constrained to roadway development, operations, and maintenance.
- **NFS-3:** Look for opportunities to run pilot tolling programs as a way to continue development of tolling as a new revenue source.
- NFS-4: Push for changes in State law to allow a share of revenue from upcoming toll collection on SR 99, SR 520, and possible future toll collection on I-5 and I-90 to be used to fund transit operations.
- **NFS-5:** Look for opportunities to create public-private partnerships to support the development of the HCT corridors.
- NFS-6: Consider dedicating a share of meter revenues collected within each of the frequent transit corridors identified in the TMP to transit capital improvements and/or operations within the same corridor.
- NFS-7: Evaluate the revenue potential of Transit Impact Fees and Multimodal Transportation Impact Mitigation Fees on new development and conduct a nexus study to determine if warranted.
- **NFS-8:** Collaborate with other local and regional agency stakeholders to seek legislative approval to permit local governments and/or regional agencies to levy a sales tax on gas with eligibility to spend revenue on transit projects and services.
- **NFS-9:** Collaborate with other local and regional agency stakeholders to seek legislative approval to permit local governments and/or regional agencies to levy a sales tax on gas with eligibility to spend revenue on transit projects and services.

Revenue from toll collection is a potential new funding source for transit operations, but would require changes in state law. Image from WSDOT

A share of parking meter revenues collected within a frequent transit corridor could be used to fund capital improvements and/or operations within the same corridor.

Image from SDOT

PERFORMANCE MONITORING

The Seattle Transit Plan (2005) was developed in support of the Urban Village strategy adopted in the Seattle Comprehensive Plan. The priority network of transit routes developed in the Seattle Transit Plan has been revised, improved, and replaced by the Frequent Transit Network in the Transit Master Plan. Part of the previous plan was the Urban Village Transit Network monitoring program, a complex monitoring and evaluation methodology designed to track progress and to identify gaps in the network. This work was an important foundational effort for the City, but, in practice, the monitoring program has been cumbersome and fallen behind due to challenges collecting and evaluating data on a regular basis. Further, the complexity of the scoring mechanism has been such that public interest and transparency is low. Given resource constraints, the monitoring report has not been a high priority for SDOT in recent years. This suggests the usefulness of the tool has run its course and that it is time to re-evaluate how the City monitors and measures transit

system effectiveness, progress toward investments identified in the TMP, and weaknesses or gaps that require City or partner agency action.

The newly adopted King County Metro Strategic Plan has established a network evaluation and operating performance standards system, which will be employed on a regular basis. The operating performance evaluation is based on a set of corridors, which correspond with the FTN corridors in the TMP. Metro performance standards relate to ridership, on-time performance, headway management, and productivity. A route-level report is published every quarter with about a one quarter lag. In terms of network design and effectiveness, measures, such as percentage of population within reach of high frequency service, percentage of vulnerable populations within reach of high frequency service, and percentage of jobs within reach of high frequency service have been established. In addition, standards for "service families" that establish the span of service by time period and the frequency required in that time period have been adopted, as have evaluation tools that identify gaps between standards and actual service levels.

STRATEGY AREA: PERFORMANCE MONITORING MEASURES

- **PM-1:** City monitoring of performance on the FTN should take advantage of Metro's performance monitoring and evaluation system to track performance and progress of the FTN and avoid overlapping or duplicative monitoring efforts. The Metro performance monitoring data should be supported with additional TMP monitoring as described below. A table showing how the measures interact is included in Figure 6-4.
- **PM-2:** Measure progress in improving access between neighborhoods through transit access and travel time improvements, and in units of time saved for each transit person trip. This would be measured by travel and access times for transit trips between urban centers and villages, compiled annually. Access time is the amount of time required to reach and wait for a transit vehicle; wait time is reduced by improvements to frequency. The total time would be divided by corridor ridership.
- **PM-3:** Measure progress on transit mode split by FTN corridor. This would be stated as the ratio of transit ridership to vehicle average daily trip (ADT) at two or more locations on each corridor in the FTN and compared over time.
- **PM-4:** Ensure transit and bicycle modal investments are working together to increase the share of both modes. This would be measured by comparing bicycle volumes to transit ridership counts at strategic locations on each corridor in the FTN This would require

installation of permanent bicycle counting systems at several locations throughout the city.

- **PM-5:** Measure capital investment per transit person trip and establish a historical trace of investment efficiency. For each FTN corridor, divide corridor capital investment (Metro, Sound Transit, plus Seattle) by corridor ridership, compiled annually.
- **PM-6:** Measure the effectiveness of City of Seattle transit operating investments. For each corridor in the FTN divide Seattle's operating investment by corridor ridership, compiled annually, and compared over time.

PM-7: Measure TMP Implementation Progress:

- Three Priority Bus Corridors implemented every two years
- Ballard to Downtown or West Seattle to Downtown corridor implemented as an ST₃ funded light rail project
- City Center Connector implemented by 2018
- Madison BRT implemented by 2019
- All other BRT Network corridors implemented by 2025

The Metro network evaluation report will be published every two years.

The strength of this measurement tool should be used to evaluate the performance of the Seattle FTN. However, as robust as this monitoring and evaluation tool is, it does not directly address Seattle's mobility goals. It is suggested, that, as with transit investment, the monitoring of Seattle's transit network take on a more supplemental approach rather than a global evaluation that would duplicate Metro's performance monitoring system. What is missing from Metro's evaluation are measures of connectivity and effectiveness with regard to improving transit mode competitiveness and quality of connections with other modes.

Seattle's monitoring and evaluation should focus on measures directly designed to assess progress on Seattle's goals that are not measured by Metro. The recommended monitoring system suggests that measures be established that clearly evaluate effectiveness in terms of the number of transit trips benefitted. Ideally, the monitoring system would yield information that indicates which investment was more effective in terms of supporting additional transit ridership. Further, the monitoring system recommends measures which track progress of implementing the FTN.

FIGURE 6-4 RELATIONSHIP BETWEEN TMP AND KING COUNTY METRO PERFORMANCE MONITORING

TMP Performance Monitoring Need	King County Metro Performance Monitoring System	Seattle TMP Performance Monitoring
 Put the Passenger First Make transit easy to use Create a safe environment for transit passengers Make transit universally accessible Make transit comfortable Transit responsive to the needs of people for whom transit is a necessity (e.g., transit-dependent individuals, youth, seniors, people with disabilities, low income populations) 	 Metro Measures produced at Seattle level. All public transportation ridership in King County (rail, bus, paratransit, rideshare) Population within ¼-mile walk access to a transit stop or 2-mile drive to a park-and-ride % low income population within ¼- mile walk access to transit % minority population within ¼-mile walk access to transit Transit mode share by market 	• TMP Implementation Progress Note that many of the elements are incorporated through the integrated design standards for the FTN. Measuring implementation progress will also measure progress in this policy area.
 Make Transit a Convenient Choice for Travel Provide mobility to a wide range of destinations Facilitate fast and reliable operations Increase ridership by integrating other modes and making access safe and easy Invest in infrastructure where it can attract the most users 	 % population at 15 dwelling units per acre within ¼-mile walk access of frequent service On-time performance or headway maintenance by time of day Load factor Service hours and service hour change per route Ridership and ridership change per Route Boardings per revenue hour Passenger miles per revenue mile 	 Travel and access times for transit trips between urban centers and villages
 Use Transit to Build Healthy Communities Make transit facilities central to community gathering places Increase walking and bicycling to support increased physical activity and improve health outcomes Seamlessly integrate transit, urban development, and the public realm Provide access to daily needs and services on foot, by bicycle, or on transit Employ best practices in transit-oriented design 	 Centers ridership Transit rides per capita Peak mode share at Commute Trip Reduction sites 	 Ratio of transit ridership to Vehicle ADT Bicycle volume compared to transit ridership
Improve Transit Service and Quality Through Partnerships • Optimize regional transit service investments • Work with neighboring jurisdictions where transit markets cross borders • Collaborate and share assets • Build political alliances	 Cost per boarding Asset condition assessment indicators 	 Total capital investment per transit person trip in FTN Seattle's operating investment by FTN corridor divided by ridership TMP Implementation Progress
Reduce Environmental Impacts of Personal Mobility • Use transit to meet environmental targets • Use energy responsibly • Consider lifecycle costs of transit infrastructure	 Public transportation energy use per passenger mile Per capita vehicle miles traveled Transit mode share 	Implementation of TMP priorities for Electric Trolley Bus system expansion

ENDNOTES

Chapter 1

1. Including Lower Queen Anne, South Lake Union, Belltown, Denny Triangle, Commercial Core, First Hill, Pioneer Square/International District, and Stadium District.

2. Based on an analysis of Seattle Travel Demand Model data.

Hypothetical Additional Transit Demand	2008	2030		
New Passengers During Morning Peak (6:00 – 9:00 am) and Equivalent New Buses				
AM Peak transit trips to/within Center City	55,575	79,314		
Hourly transit trips to/within Center City	18,525	26,438		
Additional transit trips per hour	-	7,913		
Demand can be met by:				
Additional buses per hour	-	150		
OR Additional light rail trains per hour (two car trains)		20		
OR Additional light rail trains per hour (four car trains)		10		

3. Based on analysis of Seattle Travel Demand Model data and additional calculations. Additional buses per hour calculation is a rough estimate based on an estimated load of 40 passengers per bus and assuming 25% of new capacity needs are accommodated on existing services.

4. A maximum load factor of 2.0 during peak periods is assumed for rail; this is the assumption used in Appendix L (Operating Plan Summary) of the North Link Final Environmental Impact Statement. A seated capacity of 74 was assumed, thus there would be a maximum load of 148 passengers per vehicle. Assuming that 25% of new capacity needs can be accommodated on existing services, 5,935 new person trips per hour would need to be met using new service. Dividing 5,935 by 148 passengers per vehicle yields 40.1 vehicles. With two-car trains, 20 additional rail trips per hour would be required (5935/296=20.05). If four-car trains are used, 10 additional trips per hour would be required (5935/592=10.03).

5. Without additional transit service to meet the demand, there would be an increased number of people driving. If every AM peak transit trip to and within the Center City were replaced by a driving trip, there would be approximately 4,946 additional vehicles per hour. This assumes an average vehicle occupancy of 1.6 passengers per vehicle (based on PSRC Transportation 2040 Final Environmental Impact Statement, 2010). Assuming a vehicle flow rate of 1,900 vehicles per lane per hour, 2.6 additional highway lanes would be necessary to accommodate the increased number of vehicles, or 5.2 total lanes (2.6 in each direction). In reality, all of the traffic would not be on a single road, but would instead be spread out across many streets.

6. The table below lists the steps in this calculation.

Hypothetical Additional Vehicle Space Demand	2030	Source / Explanation
Additional AM Peak transit trips to/within Center City (2008-2030)	23,739	2008 Seattle Travel Demand Model
Additional hourly transit trips to/within Center City	7,913	AM Peak trips divided by 3
Additional hourly autos if additional transit riders drove instead	4,946	Assumes 1.6 persons per vehicle
Additional arterial street lanes to accommodate new cars (per direction)	7.1	Assumes capacity of 700 vehicles per lane per hour

7. There would be 23,739 additional transit trips to and within the Center City during the AM peak (6:00 AM to 9:00 AM). If served by private vehicles, there would need to be parking spaces for an additional 14,837 vehicles, assuming that each vehicle would need its own space and an average vehicle occupancy of 1.6 persons. With an average cost of \$16,158 per space for a parking structure in Seattle, the construction cost of building parking spaces for those vehicles would be \$239,734,226. Additional parking spaces would also require land. Assuming 325 square feet per space in a parking structure, there would need to be the equivalent of 7.72 ten-story parking garages taking up entire downtown Seattle blocks.

Hypothetical Additional Parking Demand	2030	Source / Explanation
Additional AM Peak transit trips to/within Center City (2008-2030)	23,739	2008 Seattle Travel Demand Model
Additional cars in AM Peak if additional transit riders drove instead	14,837	Assumes 1.6 persons per vehicle
Cost for parking spaces in structure	\$239,734,226	Assumes parking structure cost of \$16,158 per space
Area required for parking spaces (sq. ft)	4,821,984	Assumes 325 sq. ft. per space
Area required for 10 story parking garages (sq. ft.)	482,198	Parking area divided by 10
Land area of downtown Seattle block (sq ft)	62,500	Assumes block length of 250 feet
Number of city blocks needed for parking garages	7.72	Parking garage area divided by land area of downtown block

8. Visit Seattle, Visitor Impact To Seattle/King County, 2009. http://www.visitseattle.org/About-Us/Facts-And-Figures.aspx and http://www.visitseattle.org/getattachment/About-Us/Facts-And-Figures/visitor_expend.pdf;

9. http://www.experiencewa.com/industry/Research/Documents/R_WACountyImpactStudy_91-2009.pdf

10. Visit Seattle, op. cit.

11. http://www.seattlecenter.com/

12. Seattle Aquarium, Quick Facts, http://www.seattleaquarium.org/page.aspx?pid=816

13. Federal Highway Administration, Seahawks Stadium Case Study, http://ops.fhwa.dot.gov/publications/mitig_traf_cong/seahawks_case.htm

14. The Seattle Times, "Sports fans to find relief at Stadium light-rail stop," 7/11/2009. http://seattletimes.nwsource.com/html/localnews/2009284443_ststadiumo1m.html

15. Eran Leck, "The Impact of Urban Form on Travel Behavior: A Meta-Analysis," Berkeley Planning Journal 19 (2006), 37-58

16. Reid Ewing et al., Growing Cooler: The Evidence on Urban Development and Climate Change (Washington D.C.: ULI, 2007)

17. Based on TMP analysis (see Chapter 3 for results; additional detail on methodology is provided in Appendix B). Includes only transit-related emissions, not due to reductions in personal vehicle use.

18. Based on about 27 million diesel bus miles traveled within the city of Seattle, from the City of Seattle 2008 Greenhouse Gas Inventory.

19. Center for Neighborhood Technology, "\$4 per Gallon Gas – Are We Ready?", http://www.cnt.org/repository/Published.Planetizen-\$4perGallonGas.pdf

20. Transit Master Plan analysis

21. Smart Growth America, "Recent Lessons from the Stimulus: Transportation Funding and Job Creation," February 2011. http://www.smartgrowthamerica.org/ documents/lessons-from-the-stimulus.pdf

Image from WSDOT

THANKS & ACKNOWLEDGEMENTS

The Transit Master Plan is the result of the hard work of a dedicated group of individuals who donated their time and resources to the effort. The Transit Master Plan Advisory Group met once per month or more during the year-long effort. Every member of the group made invaluable contributions to the content of the Plan. An Interagency Technical Advisory Committee also met regularly to guide plan development and provide coordination with other City and regional planning and transit development efforts.

Acknowledgements

Mayor Ed Murray

Office of the Mayor

Andrew Glass Hastings

Seattle City Council

Tom Rasmussen, Chair Transportation Committee Jean Godden, Transportation Committee Mike O'Brien, Transportation Committee Nick Licata Tim Burgess Bruce Harrell Kshama Sawant John Okamoto Sally Bagshaw Sally Clark (former Councilmember) Richard Conlin (former Councilmember)

The Seattle Transit Master Plan is a City of Seattle document. It has been prepared by the Seattle Department of Transportation in coordination with multiple city agencies and other community and regional organizations.

Transit Master Plan Advisory Group

The City of Seattle would especially like to thank the individuals who participated on the Transit Master Plan Advisory Group for their assistance in the development of this plan: Craig Benjamin, Rachel Ben- Shmuel, Tom Bishop, Jamie Cheney, Jen Cole, John Coney, Martin Duke, Phil Fujii, Justina Guyott, Alex Jonlin, Josh Kavanagh, Karen Kimber, Mark Landreneau, Doug MacDonald, Paulo Nunes-Ueno, Charles Redmond, Jesus Rodriguez, Carla Saulter, Lucas Smith, Blake Trask, Jack Whisner, Clark Williams-Derry, Barbara Wright, Cindy Zwart

Additional thanks goes to all of the people of Seattle who participated in surveys, roundtables, meetings, and provided their comments during plan development.

Seattle Department of Transportation Staff

Scott Kubly, Director Tracy Krawczyk, Policy and Planning Division Director Bill Bryant, Transit and Mobility Division Deputy Director Kevin O'Neill, Planning Manager Michael James, Project Manager Tony Mazzella, Policy and Planning Division Lead Chisaki Muraki-Valdovinos, Associate Transportation Planner Maria Koengeter, Strategic Advisor Alison Townsend, Strategic Advisor Reiner Blanco, P.E., Transit Project Delivery

© City/County/Regional Interagency Technical Advisory Team

SDOT Divisions

Adiam Emery - SDOT Signal Operations; Norene Pen - SDOT Signal Operations ; Mike Estey - SDOT Parking Management; Roy Francis - SDOT Urban Forestry; Ben Hansen - SDOT Street Maintenance; Jemae Hoffman -SDOT Director's Office; Sam Woods - SDOT Pedestrian/Bicycle Program; Mary Rutherford - SDOT Street Use; Cynthia Robinson - SDOT Arterial Traffic Operations; Kristen Simpson - SDOT Center City Framework Plan; Mike Ward - SDOT Capital Projects & Roadway Structures

2012 Project Team Members: Ethan Melone, Jennifer Wieland, Allison Schwartz

City Departments

Veronica Sherman-King - Department of Neighborhoods; Pamela Banks - Department of Neighborhoods; Mark Jaeger - Seattle Public Utilities; Russ Byrd - Seattle Fire Department; Lt. Clay Monson - Seattle Police Department; David Graves - Seattle Parks & Recreation; Ryan Curren - Seattle Office of Housing; Margaret Casey - Seattle Human Services Department; Phil West - Seattle City Light; Lyle Bicknell - Department of Planning & Development; Karen Selander - Office of Economic Development; Tracy Morgenstern - Office of Sustainability & Environment; Brenda Anibarro - Office of Civil Rights

Agency Staff

Lisa Shafer - King County Metro Transit Service Planning; Irin Limargo - King County Metro Transit Service Development; Jay Vavra - King County Metro Transit Route Facilities; Owen Kehoe - King County Metro Transit Service Development; Kate Lichtenstein - Sound Transit; Kadie Bell - Public Health – Seattle & King County; Mary Pat Lawlor - Puget Sound Regional Council

Partner Agency Staff

Ashley Arai, Karen Rosenzweig, John Bez, Lisa Shafer, Irin Limargo, Jay Vavra, King County Metro Transit; Kate Lichtenstein - Sound Transit; Kadie Bell - Public Health – Seattle & King County; Mary Pat Lawlor - Puget Sound Regional Council

© Consultant Team

Nelson\Nygaard Consulting Associates, Inc. Tom Brennan, Project Manager Evan Corey, Deputy Project Manager