CHAPTER 6
 WALL CONSTRUCTION
 (including 2017 errata)

SECTION R601 GENERAL

R601.1 Application. The provisions of this chapter shall control the design and construction of walls and partitions for buildings.
R601.2 Requirements. Wall construction shall be capable of accommodating all loads imposed in accordance with Section R301 and of transmitting the resulting loads to the supporting structural elements.

R601.2.1 Compressible floor-covering materials. Compressible floor-covering materials that compress more than $1 / 32$ inch (0.8 mm) when subjected to 50 pounds (23 kg) applied over 1 inch square (645 mm) of material and are greater than $1 / 8$ inch (3.2 mm) in thickness in the uncompressed state shall not extend beneath walls, partitions or columns, which are fastened to the floor.

SECTION R602 WOOD WALL FRAMING

R602.1 General. Wood and wood-based products used for load-supporting purposes shall conform to the applicable provisions of this section.

R602.1.1 Sawn lumber. Sawn lumber shall be identified by a grade mark of an accredited lumber grading or inspection agency and have design values certified by an accreditation body that complies with DOC PS 20. In lieu of a grade mark, a certification of inspection issued by a lumber grading or inspection agency meeting the requirements of this section shall be accepted.
R602.1.2 End-jointed lumber. Approved end-jointed lumber identified by a grade mark conforming to Section R602.1 shall be permitted to be used interchangeably with solid-sawn members of the same species and grade. Endjointed lumber used in an assembly required elsewhere in this code to have a fire-resistance rating shall have the designation "Heat Resistant Adhesive" or "HRA" included in its grade mark.
R602.1.3 Structural glued-laminated timbers. Gluedlaminated timbers shall be manufactured and identified as required in ANSI/AITC A190.1 and ASTM D 3737.
R602.1.4 Structural log members. Structural log members shall comply with the provisions of ICC 400.
R602.1.5 Structural composite lumber. Structural capacities for structural composite lumber shall be established and monitored in accordance with ASTM D 5456.

R602.1.6 Cross-laminated timber. Cross-laminated timber shall be manufactured and identified as required by ANSI/APA PRG 320.

R602.1.7 Engineered wood rim board. Engineered wood rim boards shall conform to ANSI/APA PRR 410 or shall be evaluated in accordance with ASTM D 7672. Structural capacities shall be in accordance with either ANSI/APA PRR 410 or established in accordance with ASTM D 7672. Rim boards conforming to ANSI/APA PRR 410 shall be marked in accordance with that standard.

R602.1.8 Wood structural panels. Wood structural panel sheathing shall conform to DOC PS 1, DOC PS 2 or, when manufactured in Canada, CSA O437 or CSA O325. Panels shall be identified for grade, bond classification, and performance category by a grade mark or certificate of inspection issued by an approved agency.
R602.1.9 Particleboard. Particleboard shall conform to ANSI A208.1. Particleboard shall be identified by the grade mark or certificate of inspection issued by an approved agency.
R602.1.10 Fiberboard. Fiberboard shall conform to ASTM C 208. Fiberboard sheathing, where used structurally, shall be identified by an approved agency as conforming to ASTM C 208.
R602.2 Grade. Studs shall be a minimum No. 3, standard or stud grade lumber.

Exception: Bearing studs not supporting floors and nonbearing studs shall be permitted to be utility grade lumber, provided the studs are spaced in accordance with Table R602.3(5).
R602.3 Design and construction. Exterior walls of woodframe construction shall be designed and constructed in accordance with the provisions of this chapter and Figures R602.3(1) and R602.3(2), or in accordance with AWC NDS. Components of exterior walls shall be fastened in accordance with Tables R602.3(1) through R602.3(4). Wall sheathing shall be fastened directly to framing members and, where placed on the exterior side of an exterior wall, shall be capable of resisting the wind pressures listed in Table R301.2(2) adjusted for height and exposure using Table R301.2(3) and shall conform to the requirements of Table R602.3(3). Wall sheathing used only for exterior wall covering purposes shall comply with Section R703.

Studs shall be continuous from support at the sole plate to a support at the top plate to resist loads perpendicular to the wall. The support shall be a foundation or floor, ceiling or roof diaphragm or shall be designed in accordance with accepted engineering practice.

Exception: Jack studs, trimmer studs and cripple studs at openings in walls that comply with Tables R602.7(1) and R602.7(2).

TABLE R602.3(1) FASTENING SCHEDULE

ITEM	DESCRIPTION OF BUILDING ELEMENTS	NUMBER AND TYPE OF FASTENER ${ }^{\text {a b, }}$ c	SPACING AND LOCATION
Roof			
1	Blocking between ceiling joists or rafters to top plate	4-8d box ($2^{1} / 2^{\prime \prime} \times 0.113$)' or $3-8 \mathrm{~d}$ common $\left(2^{1} / 2^{\prime \prime} \times 0.131\right)$; or 3-10d box ($3^{\prime \prime} \times 0.128$); or $3-3 ' \times 0.131$ 'hails	Toe nail
2	Ceiling joists to top plate	4-8d box $\left(2^{1} / 2^{\prime \prime} \times 0.113\right)$; or $3-8 \mathrm{~d}$ common $\left(2^{1} 2^{\prime \prime} \times 0.131\right)$; or 3-10d box ($3^{\prime \prime} \times 0.128$); or 3-3'× 0.131 'hails	Per joist, toe nail
3	Ceiling joist not attached to parallel rafter, laps over partitions [see Sections R802.3.1, R802.3.2 and Table R802.5.1(9)]	4-10d box ($3^{\prime \prime} \times 0.128$); or $3-16$ d common $\left(3^{1} / 2^{\prime \prime} \times 0.162\right)$; or $4-3^{\prime \prime} \times 0.131$ 'hails	Face nail
4	Ceiling joist attached to parallel rafter (heel joint) [see Sections R802.3.1 and R802.3.2 and Table R802.5.1(9)]	Table R802.5.1(9)	Face nail
5	Collar tie to rafter, face nail or $1^{1} / 4^{\prime \prime} \times 20 \mathrm{ga}$. ridge strap to rafter	4-10d box ($3^{\prime \prime} \times 0.128$); or $3-10 \mathrm{~d}$ common ($3^{\prime \prime} \times 0.148$); or $4-3$ ' $\times 0.131$ 'hails	Face nail each rafter
6	Rafter or roof truss to plate	3-16d box nails ($3^{1} / 2^{\prime \prime} \times 0.135$); or $3-10 \mathrm{~d}$ common nails ($3^{\prime \prime} \times 0.148$); or 4-10d box ($3^{\prime \prime} \times 0.128$); or $4-3 \times 0.131$ 'hails	2 toe nails on one side and 1 toe nail on opposite side of each rafter or truss ${ }^{1}$
7	Roof rafters to ridge, valley or hip rafters or roof rafter to minimum $2^{\prime \prime}$ ridge beam	4-16d ($3^{1 / 2} 2^{\prime \prime} \times 0.135$); or 3 -10d common $\left(3^{1} / 2^{\prime \prime} \times 0.148\right)$; or 4-10d box ($3^{\prime \prime} \times 0.128$)'; or $4-3$ ' $\times 0.131$ 'hails	Toe nail
		$3-16 \mathrm{~d}$ box $3^{1} / 2^{\prime \prime} \times 0.135$); or $2-16$ d common ($3^{1} / 2^{\prime \prime} \times 0.162$); or 3-10d box ($3^{\prime \prime} \times 0.128$); or $3-3$ ' $\times 0.131$ 'hails	End nail
Wall			
8	Stud to stud (not at braced wall panels)	16d common (3 / $\left.2^{\prime \prime} \times 0.162\right)^{\prime}$	24 "o.c. face nail
		10d box ($3^{\prime \prime} \times 0.128$); or $3^{\prime \prime} \times 0.131$ 'hails	$16^{\prime \prime}$ o.c. face nail
9	Stud to stud and abutting studs at intersecting wall corners (at braced wall panels)	$\begin{aligned} & \text { 16d box }\left(3^{1} / 2^{\prime} \times 0.135\right) \text { '; or } \\ & 3^{\prime \prime} \times 0.131 \text { 'hails } \end{aligned}$	12 'o.c. face nail
		16d common ($\left.3^{1 / 2} 2^{\prime} \times 0.162\right)^{\prime}$	16 "o.c. face nail
10	Built-up header ($2^{\prime \prime}$ to $2^{\prime \prime}$ header with $1^{\prime \prime} 2^{\prime \prime}$ spacer)	16d common ($\left.3^{1 / 2} 2^{\prime \prime} \times 0.162\right)^{\prime}$	$16^{\prime \prime}$.c. each edge face nail
		16d box ($3^{\left.1 / 2^{\prime} \times 0.135\right)^{\prime}}$	$12^{\prime \prime}$ '.c. each edge face nail
11	Continuous header to stud	$\begin{aligned} & 5-8 \mathrm{~d} \text { box }\left(2^{1} / 2^{\prime \prime} \times 0.113\right) \text {; or } \\ & 4-8 \mathrm{~d} \text { common }\left(2^{1} 2^{\prime} \times 0.131\right)^{\prime} \text {; or } \\ & 4 \text {-10d box }\left(3^{\prime \prime} \times 0.128\right)^{\prime \prime} \end{aligned}$	Toe nail
12	Top plate to top plate	16d common ($\left.3^{1} / 2^{\prime} \times 0.162\right)^{\prime}$	16'o.c. face nail
		10d box ($3^{\prime \prime} \times 0.128$); or $3^{\prime \prime} \times 0.131$ 'hails	12 'o.c. face nail
13	Double top plate splice for SDCs A-D 2_{2} with seismic braced wall line spacing < 25ϕ	8 -16d common $\left(3^{1} / 2^{\prime \prime} \times 0.162\right)$; or $12-16 \mathrm{~d}$ box $\left(3^{1} / 2^{\prime \prime} \times 0.135\right)$; or 12-10d box ($3^{\prime \prime} \times 0.128$); or $12-3^{\prime \prime} \times 0.131^{\prime \prime h a i l s}$	Face nail on each side of end joint (minimum 24 'lap splice length each side of end joint)
	Double top plate splice $\operatorname{SDCs} \mathrm{D}_{0}, \mathrm{D}_{1}$, or D_{2}; and braced wall line spacing ≥ 25 ¢	$12-16 \mathrm{~d}\left(3^{1} / 2^{\prime \prime} \times 0.135\right)^{\prime}$	

TABLE R602.3(1)—continued
FASTENING SCHEDULE

ITEM	DESCRIPTION OF BUILDING ELEMENTS	NUMBER AND TYPE OF FASTENER ${ }^{\text {a, b, }}$ c	SPACING AND LOCATION
14	Bottom plate to joist, rim joist, band joist or blocking (not at braced wall panels)	16 d common ($31 / 2^{\prime \prime} \times 0.162^{\prime}$)	$16^{\prime \prime}$ o.c. face nail
		16 d box $\left(3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}\right)$; or $3^{\prime \prime} \times 0.131$ "nails	12 "o.c. face nail
15	Bottom plate to joist, rim joist, band joist or blocking (at braced wall panel)	$3-16 d$ box $\left(3^{1} / 2^{\prime \prime} \times 0.135^{\prime}\right)$; or $2-16$ d common $\left(3^{1} / 2^{\prime \prime} \times 0.162^{\prime}\right)$; or $4-3$ " $\times 0.131$ "nails	3 each $16^{\prime \prime}$ o.c. face nail 2 each $16^{\prime \prime}$ o.c. face nail 4 each 16 "o.c. face nail
16	Top or bottom plate to stud	4-8d box ($2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}$); or $3-16 d$ box $\left(3^{2} / 2^{\prime \prime} \times 0.135\right.$) ; or $4-8 \mathrm{~d}$ common $\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime \prime}\right)$; or $4-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or $4-3$ " $\times 0.131$ "nails	Toe nail
		$3-16 \mathrm{~d}$ box $\left(3^{1} / 2^{\prime \prime} \times 0.135^{\prime}\right)$; or $2-16$ d common $\left(3^{1} / 2^{\prime \prime} \times 0.162^{\prime}\right)$; or $3-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or $3-3$ " $\times 0.131$ "nails	End nail
17	Top plates, laps at corners and intersections	3-10d box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or $2-16$ d common $\left(3^{1} / 2^{\prime \prime} \times 0.162^{\prime \prime}\right)$; or $3-3$ " $\times 0.131$ "nails	Face nail
18	1 "brace to each stud and plate	$3-8 d$ box $\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$; or $2-8 d$ common $\left(21 / 2^{\prime \prime} \times 0.131^{\prime \prime}\right)$; or $2-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or 2 staples $1^{3} / 4^{\prime \prime}$	Face nail
19	$1 " \times 6$ "sheathing to each bearing	$3-8 d$ box $\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$; or $2-8 \mathrm{~d}$ common $\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime \prime}\right)$; or $2-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime}$); or 2 staples, $1^{\prime \prime}$ crown, 16 ga., $1^{3} / 4$ "long	Face nail
20	$1^{\prime \prime} \times 8$ " and wider sheathing to each bearing	$3-8 d$ box $\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$; or $3-8 \mathrm{~d}$ common $\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime}\right)$; or $3-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or 3 staples, $1^{\prime \prime}$ crown, 16 ga., $1^{3} / 4$ "long	Face nail
		Wider than $1^{\prime \prime} \times 8^{\prime \prime}$ 4-8d box ($2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}$); or $3-8 \mathrm{~d}$ common $\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime}\right)$; or $3-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or 4 staples, $1^{\prime \prime}$ crown, 16 ga., $1^{3} / 4$ "long	
Floor			
21	Joist to sill, top plate or girder	4-8d box ($2^{1 / 2} 2^{\prime \prime} \times 0.113^{\prime \prime}$); or $3-8 d$ common $\left(2 \frac{1}{2}{ }^{\prime \prime} \times 0.131^{\prime \prime}\right)$; or $3-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or $3-3$ " $\times 0.131$ "nails	Toe nail
		8 d box $\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$	4"o.c. toe nail
22	Rim joist, band joist or blocking to sill or top plate (roof applications also)	8 d common $\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime \prime}\right)$; or 10 d box (3 " $\times 0.128^{\prime \prime}$); or $3^{\prime \prime} \times 0.131$ "nails	6"o.c. toe nail
23	$1^{\prime \prime} \times 6^{\prime \prime}$ subfloor or less to each joist	$3-8 d$ box $\left(2^{1} / 2^{\prime \prime} \times 0.113^{\prime \prime}\right)$; or $2-8 d$ common $\left(2^{1} 2^{\prime \prime} \times 0.131^{\prime}\right)$; or $3-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime}$); or 2 staples, $1^{\prime \prime}$ crown, 16 ga., $1^{3} / 4$ "long	Face nail

TABLE 602.3(1)
FASTENING SCHEDULE-continued

ITEM	DESCRIPTION OF BUILDING ELEMENTS	NUMBER AND TYPE OF FASTENER ${ }^{\text {a }}$,, c	SPACING	OCATION
Floor				
24	2 "subfloor to joist or girder	$\begin{aligned} & 3-16 \mathrm{~d} \text { box }\left(3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}\right) ; \text { or } \\ & 2-16 \mathrm{~d} \text { common }\left(3^{1} / 2^{\prime \prime} \times 0.162^{\prime \prime}\right) \end{aligned}$	Blind and face nail	
25	2"planks (plank \& beam-floor \& roof)	$\begin{array}{\|l} \hline 3-16 \mathrm{~d} \text { box }\left(3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}\right) ; \text { or } \\ 2-16 \mathrm{~d} \text { common }\left(3^{1} / 2^{\prime \prime} \times 0.162^{\prime \prime}\right) \end{array}$	At each bearing, face nail	
26	Band or rim joist to joist	$\begin{aligned} & 3-16 \mathrm{~d} \text { common }\left(3^{1} / 2^{\prime \prime} \times 0.162^{\prime \prime}\right) \\ & 4-10 \text { box }\left(3^{\prime \prime} \times 0.128^{\prime \prime}\right) \text {, or } \\ & 4-3^{\prime \prime} \times 0.131 \text { "nails; or } \\ & 4-3^{\prime \prime} \times 14 \text { ga. staples, }{ }^{7} / 16^{\prime \prime} \text { crown } \end{aligned}$	End nail	
27	Built-up girders and beams, 2-inch lumber layers	20d common (4" $\times 0.192^{\prime \prime}$); or	Nail each layer as follows: 32 "o.c. at top and bottom and staggered.	
		$\begin{aligned} & 10 \mathrm{~d} \text { box }\left(3 \text { " } \times 0.128^{\prime \prime}\right) \text {; or } \\ & 3 " \times 0.131 \text { "nails } \end{aligned}$	24 "o.c. face nail at top and bottom staggered on opposite sides	
		And: 2-20d common (4 " $\times 0.192^{\prime \prime}$); or $3-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or $3-3^{\prime \prime} \times 0.131^{\prime \prime}$ nails	Face nail at ends and at each splice	
28	Ledger strip supporting joists or rafters	4-16d box ($3^{1} / 2^{\prime \prime} \times 0.135^{\prime \prime}$); or $3-16 \mathrm{~d}$ common ($3^{1} / 2^{\prime \prime} \times 0.162^{\prime \prime}$); or $4-10 \mathrm{~d}$ box ($3^{\prime \prime} \times 0.128^{\prime \prime}$); or $4-3 " \times 0.131$ "nails	At each joist or rafter, face nail	
29	Bridging to joist	$2-10 \mathrm{~d}\left(3^{\prime \prime} \times 0.128^{\prime \prime}\right)$	Each end, toe nail	
	DESCRIPTION OF BUILDING ELEMENTS	NUMBER AND TYPE OF FASTENER ${ }^{a, b, c}$	SPACING OF FASTENERS	
ITEM			Edges (inches) $^{\text {h }}$	Intermediate supports ${ }^{\mathrm{c}, \mathrm{e}}$ (inches)
Wood structural panels, subfloor, roof and interior wall sheathing to framing and particleboard wall sheathing to framing [see Table R602.3(3) for wood structural panel exterior wall sheathing to wall framing]				
30	$3 / 8{ }^{\prime \prime}-1 / 2^{\prime \prime}$	6 d common ($2^{\prime \prime} \times 0.113^{\prime \prime}$) nail (subfloor, wall) ${ }^{\mathrm{i}}$ 8 d common $\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime \prime}\right)$ nail (roof)	6	$12^{\text {f }}$
31	${ }^{19} / 32^{\prime \prime}-1{ }^{\prime \prime}$	8d common nail ($2^{1 / 2} 2^{\prime \prime} \times 0.131^{\prime \prime}$)	6	$12^{\text {f }}$
32	$1 \frac{1}{8}{ }^{\prime \prime}-1 \frac{1}{4}{ }^{\prime \prime}$	10d common ($3^{\prime \prime} \times 0.148^{\prime \prime}$) nail; or $8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime} \times 0.131^{\prime \prime}\right)$ deformed nail	6	12
Other wall sheathing ${ }^{\text {g }}$				
33	$1 / 2$ "structural cellulosic fiberboard sheathing	$1^{1} / 2^{\prime \prime}$ galvanized roofing nail, $7 / 16^{\prime \prime}$ head diameter, or $1^{\prime \prime}$ crown staple 16 ga., $1^{1} / 4^{\prime \prime}$ long	3	6
34	$25 / 32$ "structural cellulosic fiberboard sheathing	$1^{3} / 4$ "galvanized roofing nail, ${ }^{7} / 16^{\prime \prime}$ head diameter, or 1 "crown staple $16 \mathrm{ga},. 1^{1} / 4^{\prime \prime}$ long	3	6
35	$1 / 2^{\prime \prime}$ gypsum sheathing ${ }^{\text {d }}$	$1 \frac{1}{2}$ " galvanized roofing nail; staple galvanized, $1^{1} / 2^{\prime \prime}$ long; $1^{1} / 4^{\prime \prime}$ screws, Type W or S	7	7
36	5/8"gypsum sheathing ${ }^{\text {d }}$	$13 / 4$ "galvanized roofing nail; staple galvanized, $1^{5} / 8^{\prime \prime}$ long; $1^{5} / 8^{\prime \prime}$ screws, Type W or S	7	7
Wood structural panels, combination subfloor underlayment to framing				
37	$3 / 4$ "and less	6 deformed ($2^{\prime \prime} \times 0.120$) ' nail; or 8 d common $\left(2^{1} 2^{\prime \prime} \times 0.131\right)^{\prime}$ nail	6	12
38	$7 / 8^{\prime \prime}-1{ }^{\prime \prime}$	8d common $\left(2^{1} / 2^{\prime} \times 0.131\right)^{\prime}$ nail; or 8 d deformed $\left(2^{1}{ }^{2}{ }^{\prime \prime} \times 0.120\right)$ ' nail	6	12
39	$1^{1 / 8^{\prime \prime}-1 / 4}{ }^{\prime \prime}$	10 d common ($3^{\prime \prime} \times 0.148^{\prime \prime}$) nail; or 8 d deformed $\left(2^{1} / 2^{\prime \prime} \times 0.120\right)$ ' nail	6	12

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s} ; 1 \mathrm{ksi}=6.895 \mathrm{MPa}$.
(continued)

TABLE R602.3(1)—continued

FASTENING SCHEDULE

a. Nails are smooth-common, box or deformed shanks except where otherwise stated. Nails used for framing and sheathing connections shall have minimum average bending yield strengths as shown: 80 ksi for shank diameter of 0.192 inch (20 d common nail), 90 ksi for shank diameters larger than 0.142 inch but not larger than 0.177 inch, and 100 ksi for shank diameters of 0.142 inch or less.
b. Staples are 16 gage wire and have a minimum $7 / 16^{7}$-inch on diameter crown width.
c. Nails shall be spaced at not more than 6 inches on center at all supports where spans are 48 inches or greater.
d. Four-foot by 8 -foot or 4 -foot by 9 -foot panels shall be applied vertically.
e. Spacing of fasteners not included in this table shall be based on Table R602.3(2).
f. Where the ultimate design wind speed is 130 mph or less, nails for attaching wood structural panel roof sheathing to gable end wall framing shall be spaced 6 inches on center. Where the ultimate design wind speed is greater than 130 mph , nails for attaching panel roof sheathing to intermediate supports shall be spaced 6 inches on center for minimum 48 -inch distance from ridges, eaves and gable end walls; and 4 inches on center to gable end wall framing.
g. Gypsum sheathing shall conform to ASTM C 1396 and shall be installed in accordance with GA 253. Fiberboard sheathing shall conform to ASTM C 208.
h. Spacing of fasteners on floor sheathing panel edges applies to panel edges supported by framing members and required blocking and at floor perimeters only. Spacing of fasteners on roof sheathing panel edges applies to panel edges supported by framing members and required blocking. Blocking of roof or floor sheathing panel edges perpendicular to the framing members need not be provided except as required by other provisions of this code. Floor perimeter shall be supported by framing members or solid blocking.
i. Where a rafter is fastened to an adjacent parallel ceiling joist in accordance with this schedule, provide two toe nails on one side of the rafter and toe nails from the ceiling joist to top plate in accordance with this schedule. The toe nail on the opposite side of the rafter shall not be required.

R602.3.1 Stud size, height and spacing. The size, height and spacing of studs shall be in accordance with Table R602.3.(5).

Exceptions:

1. Utility grade studs shall not be spaced more than 16 inches (406 mm) on center, shall not support more than a roof and ceiling, and shall not exceed 8 feet (2438 mm) in height for exterior walls and load-bearing walls or 10 feet (3048 mm) for interior nonload-bearing walls.
2. Where snow loads are less than or equal to 25 pounds per square foot $(1.2 \mathrm{kPa})$, and the ultimate design wind speed is less than or equal to 130 mph ($58.1 \mathrm{~m} / \mathrm{s}$), 2-inch by 6 -inch (38 mm by 14 mm) studs supporting a roof load with not more than 6 feet (1829 mm) of tributary length shall have a maximum height of 18 feet (5486 mm) where spaced at 16 inches (406 mm) on center, or 20 feet (6096 mm) where spaced at 12 inches (304.8 mm) on center. Studs shall be minimum No. 2 grade lumber.
R602.3.2 Top plate. Wood stud walls shall be capped with a double top plate installed to provide overlapping at corners and intersections with bearing partitions. End joints in top plates shall be offset not less than 24 inches (610 mm). Joints in plates need not occur over studs. Plates shall be not less than 2-inches (51 mm) nominal thickness and have a width not less than the width of the studs.

Exception: A single top plate used as an alternative to a double top plate shall comply with the following:

1. The single top plate shall be tied at corners, intersecting walls, and at in-line splices in straight wall lines in accordance with Table R602.3.2.
2. The rafters or joists shall be centered over the studs with a tolerance of not more than 1 inch (25 mm).
3. Omission of the top plate is permitted over headers where the headers are adequately tied to adjacent wall sections in accordance with Table R602.3.2.
R602.3.3 Bearing studs. Where joists, trusses or rafters are spaced more than 16 inches (406 mm) on center and
the bearing studs below are spaced 24 inches (610 mm) on center, such members shall bear within 5 inches (127 mm) of the studs beneath.

Exceptions:

1. The top plates are two 2 -inch by 6 -inch (38 mm by 140 mm) or two 3 -inch by 4 -inch (64 mm by 89 mm) members.
2. A third top plate is installed.
3. Solid blocking equal in size to the studs is installed to reinforce the double top plate.
R602.3.4 Bottom (sole) plate. Studs shall have full bearing on a nominal 2-by (51 mm) or larger plate or sill having a width not less than to the width of the studs.

TABLE R602.3(2)
ALTERNATE ATTACHMENTS TO TABLE R602.3(1)

NOMINAL MATERIAL THICKNESS (inches)	DESCRIPTION $\underset{\text { (inches) }}{\text { a, }}$ OF FASTENER AND LENGTH	SPACING ${ }^{\text {c }}$ OF FASTENERS	
		Edges	Intermediate supports (inches)
Wood structural panels subfloor, roof ${ }^{\text {g }}$ and wall sheathing to framing and particleboard wall sheathing to framing ${ }^{\text {f }}$			
Up to $1 / 2$	Staple $15 \mathrm{ga}. 1^{3} / 4$	4	8
	0.097-0.099 Nail $21 / 4$	3	6
	Staple $16 \mathrm{ga} .1^{3 / 4}$	3	6
$19 / 32$ and $5 / 8$	0.113 Nail 2	3	6
	Staple 15 and 16 ga. 2	4	8
	0.097-0.099 Nail $21 / 4$	4	8
$23 / 32$ and $3 / 4$	Staple 14 ga. 2	4	8
	Staple $15 \mathrm{ga}. 1^{3} / 4$	3	6
	0.097-0.099 Nail $21 / 4$	4	8
	Staple 16 ga. 2	4	8
1	Staple $14 \mathrm{ga} 21 /$.	4	8
	0.113 Nail $21 / 4$	3	6
	Staple $15 \mathrm{ga} .2{ }^{1} / 4$	4	8
	0.097-0.099 Nail $21 / 2$	4	8
NOMINAL MATERIAL THICKNESS (inches)	DESCRIPTION $^{\mathrm{a}, \mathrm{b}} \underset{\text { (inches) }}{\text { OF FASTENER AND LENGTH }}$	SPACING ${ }^{\text {c O }}$ (FASTENERS	
		Edges (inches)	$\begin{gathered} \left.\hline \begin{array}{c} \text { Body of paneld } \\ \text { (inches) } \end{array}\right] .{ }^{\text {d }} \end{gathered}$
Floor underlayment; plywood-hardboard-particleboard ${ }^{\text {f}}$-fiber-cement ${ }^{\text {h }}$			
Fiber-cement			
$1 / 4$	3d, corrosion-resistant, ring shank nails (finished flooring other than tile)	3	6
	Staple 18 ga., $7 / 8$ long, $1 / 4$ crown (finished flooring other than tile)	3	6
	$1 / 4$ long $\times .121$ shank $\times .375$ head diameter corrosion-resistant (galvanized or stainless steel) roofing nails (for tile finish)	8	8
	$1 / 4$ long, No. $8 \times .375$ head diameter, ribbed wafer-head screws (for tile finish)	8	8
Plywood			
$1 / 4$ and $5 / 16$	$1 / 4$ ring or screw shank nail-minimum $12^{1} / 2$ ga. ($0.099^{\prime \prime}$) shank diameter	3	6
	Staple 18 ga., ${ }^{7} / 8,{ }^{3} / 16$ crown width	2	5
11/32, $3 / 8,15 / 32$, and $1 / 2$	$1 / 4$ ring or screw shank nail-minimum $12^{1} / 2$ ga. ($0.099^{\prime \prime}$) shank diameter	6	$8^{\text {e }}$
$19 / 32,5 / 8,23 / 32$ and $3 / 4$	$1 / 2$ ring or screw shank nail-minimum $12^{1} / 2$ ga. ($0.099^{\prime \prime}$) shank diameter	6	8
	Staple $16 \mathrm{ga}. 1^{1 / 2}$	6	8
Hardboard ${ }^{\text {f }}$			
0.200	$11 / 2$ long ring-grooved underlayment nail	6	6
	4d cement-coated sinker nail	6	6
	Staple $18 \mathrm{ga}$. , $7 / 8$ long (plastic coated)	3	6
Particleboard			
$1 / 4$	4 d ring-grooved underlayment nail	3	6
	Staple 18 ga., $7 / 8$ long, ${ }^{3} 16$ crown	3	6
$3 / 8$	6 d ring-grooved underlayment nail	6	10
	Staple 16 ga., $1 /{ }_{8}$ long, ${ }^{3} / 8$ crown	3	6
$1 / 2,5 / 8$	6 d ring-grooved underlayment nail	6	10
	Staple 16 ga., $15 / 8$ long, $3 / 8$ crown	3	6

TABLE R602.3(2)

ALTERNATE ATTACHMENTS TO TABLE R602.3(1)—continued

For SI: 1 inch $=25.4 \mathrm{~mm}$.
a. Nail is a general description and shall be permitted to be T-head, modified round head or round head.
b. Staples shall have a minimum crown width of $7 / 16$-inch on diameter except as noted.
c. Nails or staples shall be spaced at not more than 6 inches on center at all supports where spans are 48 inches or greater. Nails or staples shall be spaced at not more than 12 inches on center at intermediate supports for floors.
d. Fasteners shall be placed in a grid pattern throughout the body of the panel.
e. For 5-ply panels, intermediate nails shall be spaced not more than 12 inches on center each way.
f. Hardboard underlayment shall conform to CPA/ANSI A135.4
g. Specified alternate attachments for roof sheathing shall be permitted where the ultimate design wind speed is less than 130 mph . Fasteners attaching wood structural panel roof sheathing to gable end wall framing shall be installed using the spacing listed for panel edges.
h. Fiber-cement underlayment shall conform to ASTM C 1288 or ISO 8336, Category C.

TABLE R602.3(3)
REQUIREMENTS FOR WOOD STRUCTURAL PANEL WALL SHEATHING USED TO RESIST WIND PRESSURES ${ }^{a, b, c}$

MINIMUM NAIL		MINIMUM WOOD STRUCTURAL PANEL SPAN RATING	MINIMUM NOMINAL PANEL THICKNESS (inches)	MAXIMUM WALL STUD SPACING (inches)	PANEL NAIL SPACING		ULTIMATE DESIGN WIND SPEED $\mathrm{V}_{\text {ult }}$ (mph)		
Size	Penetration				Edges (inches o.c.)	Field (inches o.c.)	Wind exposure category		
Size	(inches)						B	C	D
6d Common $\left(2.0^{\prime \prime} \times 0.113\right)^{\prime}$	1.5	24/0	$3 / 8$	16	6	12	140	115	110
8d Common$\left(2.5^{\prime \prime} \times 0.131\right)^{\prime}$	1.75	24/16	$7 / 16$	16	6	12	170	140	135
				24	6	12	140	115	110

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. Panel strength axis parallel or perpendicular to supports. Three-ply plywood sheathing with studs spaced more than 16 inches on center shall be applied with panel strength axis perpendicular to supports.
b. Table is based on wind pressures acting toward and away from building surfaces in accordance with Section R301.2. Lateral bracing requirements shall be in accordance with Section R602.10.
c. Wood structural panels with span ratings of Wall-16 or Wall-24 shall be permitted as an alternate to panels with a $24 / 0$ span rating. Plywood siding rated 16 o.c. or 24 o.c. shall be permitted as an alternate to panels with a $24 / 16$ span rating. Wall-16 and Plywood siding 16 o.c. shall be used with studs spaced not more than 16 inches on center.

TABLE R602.3(4)
ALLOWABLE SPANS FOR PARTICLEBOARD WALL SHEATHING ${ }^{a}$

THICKNESS (inch)	GRADE	STUD SPACING (inches)	
		When siding is nailed to studs	When siding is nailed to sheathing
$3 / 8$	M-1 Exterior glue	16	-
$1 / 2$	M-2 Exterior glue	16	16

For SI: 1 inch $=25.4 \mathrm{~mm}$.
a. Wall sheathing not exposed to the weather. If the panels are applied horizontally, the end joints of the panel shall be offset so that four panel corners will not meet. All panel edges must be supported. Leave a $1 / 16$-inch gap between panels and nail not less than $3 / 8$ inch from panel edges.

TABLE R602.3(5)
SIZE, HEIGHT AND SPACING OF WOOD STUDS ${ }^{\text {a }}$

STUD SIZE (inches)	BEARING WALLS					NONBEARING WALLS	
	Laterally unsupported stud height ${ }^{\text {a }}$ (feet)	Maximum spacing when supporting a roof-ceiling assembly or a habitable attic assembly, only (inches)	Maximum spacing when supporting one floor, plus a roofceiling assembly or a habitable attic assembly (inches)	Maximum spacing when supporting two floors, plus a roofceiling assembly or a habitable attic assembly (inches)	Maximum spacing when supporting one floor height ${ }^{\text {a }}$ (inches)	Laterally unsupported stud height ${ }^{\text {a }}$ (feet)	Maximum spacing (inches)
$2 \times 3{ }^{\text {b }}$	-	-	-	-	-	10	16
2×4	10	$24^{\text {c }}$	$16^{\text {c }}$	-	24	14	24
3×4	10	24	24	16	24	14	24
2×5	10	24	24	-	24	16	24
2×6	10	24	24	16	24	20	24

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Listed heights are distances between points of lateral support placed perpendicular to the plane of the wall. Bearing walls shall be sheathed on not less than one side or bridging shall be installed not greater than 4 feet apart measured vertically from either end of the stud. Increases in unsupported height are permitted where in compliance with Exception 2 of Section R602.3.1 or designed in accordance with accepted engineering practice.
b. Shall not be used in exterior walls.
c. A habitable attic assembly supported by 2×4 studs is limited to a roof span of 32 feet. Where the roof span exceeds 32 feet, the wall studs shall be increased to 2×6 or the studs shall be designed in accordance with accepted engineering practice.

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
 EXTERIOR WALLS WITH 1 IN. BY 4 IN. BRACES LET INTO STUDS AND PLATES AND EXTENDING FROM BOTTOM PLATE TO TOP PLATE, OR OTHER APPROVED METAL STRAP DEVICES INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S ACCORDANCE WITH THE MANU FACTURER
SPECIFICATIONS. SEE SECTION R602.10.

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
FIGURE R602.3(2)
FRAMING DETAILS

TABLE R602.3.2
SINGLE TOP-PLATE SPLICE CONNECTION DETAILS

CONDITION	TOP-PLATE SPLICE LOCATION			
	Corners and intersecting walls		Butt joints in straight walls	
	Splice plate size	Minimum nails each side of joint	Splice plate size	Minimum nails each side of joint
Structures in SDC A-C; and in SDC $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2} with braced wall line spacing less than 25 feet	$3^{2} 6^{\prime} 0.036^{2}$ galvanized steel plate or equivalent	(6) 8d box $\left(2^{1} / 2^{2}{ }^{\prime} 0.113^{2}\right) \text { nails }$	$3 \phi^{\prime} 12^{2} 0.036^{2}$ galvanized steel plate or equivalent	(12) 8 d box $\left(2^{1} / 2^{2}{ }^{\prime} 0.113^{2}\right) \text { nails }$
Structures in SDC $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}, with braced wall line spacing greater than or equal to 25 feet	$\begin{gathered} 3^{2} 8^{2} \text { by } 0.036^{2} \\ \text { galvanized steel plate } \\ \text { or equivalent } \end{gathered}$	(9) 8 d box $\left(2^{1} / 2^{\prime}{ }^{\prime} 0.113^{2}\right) \text { nails }$	$3 \phi^{\prime} 16^{\prime}{ }^{\prime} 0.036^{2}$ galvanized steel plate or equivalent	(18) 8 d box $\left(2^{1} / 2^{\prime} 0.113^{2}\right)$ nails

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$

R602.3.5 Braced wall panel uplift load path. Braced wall panels located at exterior walls that support roof rafters or trusses (including stories below top story) shall have the framing members connected in accordance with one of the following:

1. Fastening in accordance with Table R602.3(1) where:
1.1. The ultimate design wind speed does not exceed $115 \mathrm{mph}(51 \mathrm{~m} / \mathrm{s})$, the wind exposure category is B, the roof pitch is 5:12 or greater, and the roof span is 32 feet (9754 mm) or less.
1.2. The net uplift value at the top of a wall does not exceed $100 \mathrm{plf}(146 \mathrm{~N} / \mathrm{mm})$. The net uplift value shall be determined in accordance with Section R802.11 and shall be permitted to be reduced by 60 plf ($86 \mathrm{~N} / \mathrm{mm}$) for each full wall above.
2. Where the net uplift value at the top of a wall exceeds 100 plf ($146 \mathrm{~N} / \mathrm{mm}$), installing approved uplift framing connectors to provide a continuous load path from the top of the wall to the foundation or to a point where the uplift force is 100 plf (146 N / mm) or less. The net uplift value shall be as determined in Item 1.2.
3. Wall sheathing and fasteners designed to resist combined uplift and shear forces in accordance with accepted engineering practice.
R602.4 Interior load-bearing walls. Interior load-bearing walls shall be constructed, framed and fireblocked as specified for exterior walls.
R602.5 Interior nonbearing walls. Interior nonbearing walls shall be permitted to be constructed with 2 -inch by 3 inch (51 mm by 76 mm) studs spaced 24 inches (610 mm) on center or, where not part of a braced wall line, 2 -inch by 4 inch (51 mm by 102 mm) flat studs spaced at 16 inches (406 mm) on center. Interior nonbearing walls shall be capped with not less than a single top plate. Interior nonbearing walls shall be fireblocked in accordance with Section R602.8.
R602.6 Drilling and notching of studs. Drilling and notching of studs shall be in accordance with the following:
4. Notching. Any stud in an exterior wall or bearing partition shall be permitted to be cut or notched to a depth not exceeding 25 percent of its width. Studs in nonbear-
ing partitions shall be permitted to be notched to a depth not to exceed 40 percent of a single stud width.
5. Drilling. Any stud shall be permitted to be bored or drilled, provided that the diameter of the resulting hole is not more than 60 percent of the stud width, the edge of the hole is not more than $5 / 8$ inch $(16 \mathrm{~mm})$ to the edge of the stud, and the hole is not located in the same section as a cut or notch. Studs located in exterior walls or bearing partitions drilled over 40 percent and up to 60 percent shall be doubled with not more than two successive doubled studs bored. See Figures R602.6(1) and R602.6(2).

Exception: Use of approved stud shoes is permitted where they are installed in accordance with the manufacturer's recommendations.
R602.6.1 Drilling and notching of top plate. When piping or ductwork is placed in or partly in an exterior wall or interior load-bearing wall, necessitating cutting, drilling or notching of the top plate by more than 50 percent of its width, a galvanized metal tie not less than 0.054 inch thick $(1.37 \mathrm{~mm})(16 \mathrm{ga})$ and $1 \frac{1}{2}$ inches (38 mm) wide shall be fastened across and to the plate at each side of the opening with not less than eight 10 d (0.148 inch diameter) nails having a minimum length of $1 \frac{1}{2}$ inches (38 mm) at each side or equivalent. The metal tie must extend a minimum of 6 inches past the opening. See Figure R602.6.1.

Exception: When the entire side of the wall with the notch or cut is covered by wood structural panel sheathing.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
Note: Condition for exterior and bearing walls.
FIGURE R602.6(1)
NOTCHING AND BORED HOLE LIMITATIONS FOR EXTERIOR WALLS AND BEARING WALLS

For SI: 1 inch $=25.4 \mathrm{~mm}$.

NOTCHING AND BORED HOLE LIMITATIONS FOR INTERIOR NONBEARING WALLS

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R602.6.1
TOP PLATE FRAMING TO ACCOMMODATE PIPING

R602.7 Headers. For header spans, see Tables R602.7(1), R602.7(2) and R602.7(3).

R602.7.1 Single member headers. Single headers shall be framed with a single flat 2 -inch-nominal (51 mm) member or wall plate not less in width than the wall studs on the top and bottom of the header in accordance with Figures R602.7.1(1) and R602.7.1(2) and face nailed to the top and bottom of the header with 10 d box nails (3 inches $\times 0.128$ inches) spaced 12 inches on center.
R602.7.2 Rim board headers. Rim board header size, material and span shall be in accordance with Table R602.7(1). Rim board headers shall be constructed in accordance with Figure R602.7.2 and shall be supported at each end by full-height studs. The number of full-height studs at each end shall be not less than the number of studs displaced by half of the header span based on the maximum stud spacing in accordance with Table R602.3(5). Rim board headers supporting concentrated loads shall be designed in accordance with accepted engineering practice.
R602.7.3 Wood structural panel box headers. Wood structural panel box headers shall be constructed in accordance with Figure R602.7.3 and Table R602.7.3.
R602.7.4 Nonbearing walls. Load-bearing headers are not required in interior or exterior nonbearing walls. A single flat 2 -inch by 4 -inch (51 mm by 102 mm) member shall be permitted to be used as a header in interior or exterior nonbearing walls for openings up to 8 feet (2438 mm) in width if the vertical distance to the parallel nailing surface above is not more than 24 inches (610 mm). For such nonbearing headers, cripples or blocking are not required above the header.
[W](R602.7.5 Sumports for headers. Headers shall be stpported on each end with one or more jack studs or with approved framing anchors in aceordance with Table

R602.7(1) or R602.7(2). The full height stud adjacent to each end of the header shall be end nailed to each end of the header with four $16 d$ mails (3.5 inches $\times 0.135$ inches). The minimum number of full height studs at each end of a header shall be in aecordance with Table R602.7.5.))
((TABLE R602.7.5
AINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERHOR WALLS

HEADER SPAN (feet)	AAXIAMMM-STUD-SPACING-(inches) (per Tablo-R602.3(5)	
	$\mathbf{1 6}$	24
$\leq 3^{\prime}$	4	4
4^{\prime}	2	4
8^{\prime}	3	2
12^{\prime}	5	3
16^{\prime}	6	$4))$

TABLE R602.7(1)
GIRDER SPANS ${ }^{\text {a }}$ AND HEADER SPANS ${ }^{\text {a }}$ FOR EXTERIOR BEARING WALLS
(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir ${ }^{b}$ and required number of jack studs)

GIRDERS AND HEADERS SUPPORTING	SIZE	GROUND SNOW LOAD (psf) ${ }^{\text {e }}$																	
		30						50						70					
		Building width ${ }^{\text {c }}$ (feet)																	
		20		28		36		20		28		36		20		28		36	
		Span	$\mathrm{NJ}^{\text {d }}$	Span	N ${ }^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	$\mathrm{NJ}{ }^{\text {d }}$						
Roof and ceiling	$1-2 \times 8$	4-6	1	3-10	1	3-5	1	3-9	1	3-2	1	2-10	2	-	-	-	-	-	-
	$1-2 \times 10$	5-8	1	4-11	1	4-4	1	4-9	1	4-1	1	3-7	2	-	-	-	-	-	-
	$1-2 \times 12$	6-11	1	5-11	2	5-3	2	5-9	2	4-8	2	3-8	2	-	-	-	-	-	-
	$2-2 \times 4$	3-6	1	3-2	1	2-10	1	3-2	1	2-9	1	2-6	1	2-10	1	2-6	1	2-3	1
	$2-2 \times 6$	5-5	1	4-8	1	4-2	1	4-8	1	4-1	1	3-8	2	4-2	1	3-8	2	3-3	2
	$2-2 \times 8$	6-10	1	5-11	2	5-4	2	5-11	2	5-2	2	4-7	2	5-4	2	4-7	2	4-1	2
	$2-2 \times 10$	8-5	2	7-3	2	6-6	2	7-3	2	6-3	2	5-7	2	6-6	2	5-7	2	5-0	2
	$2-2 \times 12$	9-9	2	8-5	2	7-6	2	8-5	2	7-3	2	6-6	2	7-6	2	6-6	2	5-10	3
	$3-2 \times 8$	8-4	1	7-5	1	6-8	1	7-5	1	6-5	2	5-9	2	6-8	1	5-9	2	5-2	2
	$3-2 \times 10$	10-6	1	9-1	2	8-2	2	9-1	2	7-10	2	7-0	2	8-2	2	7-0	2	6-4	2
	$3-2 \times 12$	12-2	2	10-7	2	9-5	2	10-7	2	9-2	2	8-2	2	9-5	2	8-2	2	7-4	2
	$4-2 \times 8$	9-2	1	8-4	1	7-8	1	8-4	1	7-5	1	6-8	1	7-8	1	6-8	1	5-11	2
	$4-2 \times 10$	11-8	1	10-6	1	9-5	2	10-6	1	9-1	2	8-2	2	9-5	2	8-2	2	7-3	2
	$4-2 \times 12$	14-1	1	12-2	2	10-11	2	12-2	2	10-7	2	9-5	2	10-11	2	9-5	2	8-5	2
Roof, ceiling and one centerbearing floor	$1-2 \times 8$	3-11	1	3-5	1	3-0	1	3-7	1	3-0	2	2-8	2	-	-	-	-	-	-
	$1-2 \times 10$	5-0	2	4-4	2	3-10	2	4-6	2	3-11	2	3-4	2	-	-	-	-	-	-
	$1-2 \times 12$	5-10	2	4-9	2	4-2	2	5-5	2	4-2	2	3-4	2	-	-	-	-	-	-
	$2-2 \times 4$	3-1	1	2-9	1	2-5	1	2-9	1	2-5	1	2-2	1	2-7	1	2-3	1	2-0	1
	$2-2 \times 6$	4-6	1	4-0	1	3-7	2	4-1	1	3-7	2	3-3	2	3-9	2	3-3	2	2-11	2
	$2-2 \times 8$	5-9	2	5-0	2	4-6	2	5-2	2	4-6	2	4-1	2	4-9	2	4-2	2	3-9	2
	$2-2 \times 10$	7-0	2	6-2	2	5-6	2	6-4	2	5-6	2	5-0	2	5-9	2	5-1	2	4-7	3
	$2-2 \times 12$	8-1	2	7-1	2	6-5	2	7-4	2	6-5	2	5-9	3	6-8	2	5-10	3	5-3	3
	$3-2 \times 8$	7-2	1	6-3	2	5-8	2	6-5	2	5-8	2	5-1	2	5-11	2	5-2	2	4-8	2
	$3-2 \times 10$	8-9	2	7-8	2	6-11	2	7-11	2	6-11	2	6-3	2	7-3	2	6-4	2	5-8	2
	$3-2 \times 12$	10-2	2	8-11	2	8-0	2	9-2	2	8-0	2	7-3	2	8-5	2	7-4	2	6-7	2
	$4-2 \times 8$	8-1	1	7-3	1	6-7	1	7-5	1	6-6	1	5-11	2	6-10	1	6-0	2	5-5	2
	$4-2 \times 10$	10-1	1	8-10	2	8-0	2	9-1	2	8-0	2	7-2	2	8-4	2	7-4	2	6-7	2
	$4-2 \times 12$	11-9	2	10-3	2	9-3	2	10-7	2	9-3	2	8-4	2	9-8	2	8-6	2	7-7	2
Roof, ceiling and one clear span floor	$1-2 \times 8$	3-6	1	3-0	1	2-8	1	3-5	1	2-11	1	2-7	2	-	-	-	-	-	-
	$1-2 \times 10$	4-6	1	3-10	1	3-3	1	4-4	1	3-9	1	3-1	2	-	-	-	-	-	-
	$1-2 \times 12$	5-6	1	4-2	2	3-3	2	5-4	2	3-11	2	3-1	2	-	-	-	-	-	-
	$2-2 \times 4$	2-8	1	2-4	1	2-1	1	2-7	1	2-3	1	2-0	1	2-5	1	2-1	1	1-10	1
	$2-2 \times 6$	3-11	1	3-5	2	3-0	2	3-10	2	3-4	2	3-0	2	3-6	2	3-1	2	2-9	2
	$2-2 \times 8$	5-0	2	4-4	2	3-10	2	4-10	2	4-2	2	3-9	2	4-6	2	3-11	2	3-6	2
	$2-2 \times 10$	6-1	2	5-3	2	4-8	2	5-11	2	5-1	2	4-7	3	5-6	2	4-9	2	4-3	3
	$2-2 \times 12$	7-1	2	6-1	3	5-5	3	6-10	2	5-11	3	5-4	3	6-4	2	5-6	3	5-0	3
	$3-2 \times 8$	6-3	2	5-5	2	4-10	2	6-1	2	5-3	2	4-8	2	5-7	2	4-11	2	4-5	2
	$3-2 \times 10$	7-7	2	6-7	2	5-11	2	7-5	2	6-5	2	5-9	2	6-10	2	6-0	2	5-4	2
	$3-2 \times 12$	8-10	2	7-8	2	6-10	2	8-7	2	7-5	2	6-8	2	7-11	2	6-11	2	6-3	2
	$4-2 \times 8$	7-2	1	6-3	2	5-7	2	7-0	1	6-1	2	5-5	2	6-6	1	5-8	2	5-1	2
	$4-2 \times 10$	8-9	2	7-7	2	6-10	2	8-7	2	7-5	2	6-7	2	7-11	2	6-11	2	6-2	2
	$4-2 \times 12$	10-2	2	8-10	2	7-11	2	9-11	2	8-7	2	7-8	2	9-2	2	8-0	2	7-2	2

(continued)

TABLE R602.7(1)-continued
GIRDER SPANS ${ }^{\text {a }}$ AND HEADER SPANS ${ }^{a}$ FOR EXTERIOR BEARING WALLS
(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir ${ }^{6}$ and required number of jack studs)

$\begin{aligned} & \text { GIRDERS AND } \\ & \text { HEADERS } \\ & \text { SUPPORTING } \end{aligned}$	SIZE	GROUND SNOW LOAD (psf) ${ }^{\text {e }}$																	
		30						50						70					
		Building width ${ }^{\text {c }}$ (feet)																	
		20		28		36		20		28		36		20		28		36	
		Span	$\mathrm{NJ}^{\text {d }}$																
Roof, ceiling and two centerbearing floors	$2-2 \times 4$	2-7	1	2-3	1	2-0	1	2-6	1	2-2	1	1-11	1	2-4	1	2-0	1	1-9	1
	$2-2 \times 6$	3-9	2	3-3	2	2-11	2	3-8	2	3-2	2	2-10	2	3-5	2	3-0	2	2-8	2
	$2-2 \times 8$	4-9	2	4-2	2	3-9	2	4-7	2	4-0	2	3-8	2	4-4	2	3-9	2	3-5	2
	$2-2 \times 10$	5-9	2	5-1	2	4-7	3	5-8	2	4-11	2	4-5	3	5-3	2	4-7	3	4-2	3
	$2-2 \times 12$	6-8	2	5-10	3	5-3	3	6-6	2	5-9	3	5-2	3	6-1	3	5-4	3	4-10	3
	$3-2 \times 8$	5-11	2	5-2	2	4-8	2	5-9	2	5-1	2	4-7	2	5-5	2	4-9	2	4-3	2
	$3-2 \times 10$	7-3	2	6-4	2	5-8	2	7-1	2	6-2	2	5-7	2	6-7	2	5-9	2	5-3	2
	$3-2 \times 12$	8-5	2	7-4	2	6-7	2	8-2	2	7-2	2	6-5	3	7-8	2	6-9	2	6-1	3
	$4-2 \times 8$	6-10	1	6-0	2	5-5	2	6-8	1	5-10	2	5-3	2	6-3	2	5-6	2	4-11	2
	$4-2 \times 10$	8-4	2	7-4	2	6-7	2	8-2	2	7-2	2	6-5	2	7-7	2	6-8	2	6-0	2
	$4-2 \times 12$	9-8	2	8-6	2	7-8	2	9-5	2	8-3	2	7-5	2	8-10	2	7-9	2	7-0	2
Roof, ceiling, and two clearspan floors	$2-2 \times 4$	2-1	1	1-8	1	1-6	2	2-0	1	1-8	1	1-5	2	2-0	1	1-8	1	1-5	2
	$2-2 \times 6$	3-1	2	2-8	2	2-4	2	3-0	2	2-7	2	2-3	2	2-11	2	2-7	2	2-3	2
	$2-2 \times 8$	3-10	2	3-4	2	3-0	3	3-10	2	3-4	2	2-11	3	3-9	2	3-3	2	2-11	3
	$2-2 \times 10$	4-9	2	4-1	3	3-8	3	4-8	2	4-0	3	3-7	3	4-7	3	4-0	3	3-6	3
	$2-2 \times 12$	5-6	3	4-9	3	4-3	3	5-5	3	4-8	3	4-2	3	5-4	3	4-7	3	4-1	4
	$3-2 \times 8$	4-10	2	4-2	2	3-9	2	4-9	2	4-1	2	3-8	2	4-8	2	4-1	2	3-8	2
	$3-2 \times 10$	5-11	2	5-1	2	4-7	3	5-10	2	5-0	2	4-6	3	5-9	2	4-11	2	4-5	3
	$3-2 \times 12$	6-10	2	5-11	3	5-4	3	6-9	2	5-10	3	5-3	3	6-8	2	5-9	3	5-2	3
	$4-2 \times 8$	5-7	2	4-10	2	4-4	2	5-6	2	4-9	2	4-3	2	5-5	2	4-8	2	4-2	2
	$4-2 \times 10$	6-10	2	5-11	2	5-3	2	6-9	2	5-10	2	5-2	2	6-7	2	5-9	2	5-1	2
	$4-2 \times 12$	7-11	2	6-10	2	6-2	3	7-9	2	6-9	2	6-0	3	7-8	2	6-8	2	5-11	3

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Spans are given in feet and inches.
b. No. 1 or better grade lumber shall be used for southern pine. Other tabulated values assume \#2 grade lumber.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. $\mathrm{NJ}=$ Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.
e. Use 30 psf ground snow load for cases in which ground snow load is less than 30 psf and the roof live load is equal to or less than 20 psf .

TABLE R602.7(2)
GIRDER SPANS ${ }^{\text {a }}$ AND HEADER SPANS ${ }^{\text {a }}$ FOR INTERIOR BEARING WALLS
(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir ${ }^{\mathrm{b}}$ and required number of jack studs)

HEADERS AND GIRDERS SUPPORTING	SIZE	BUILDING Width ${ }^{\text {c }}$ (feet)					
		20		28		36	
		Span	$\mathrm{NJ}{ }^{\text {d }}$	Span	$\mathrm{NJ}^{\text {d }}$	Span	$\mathrm{NJ}{ }^{\text {d }}$
One floor only	$2-2 \times 4$	3-1	1	2-8	1	2-5	1
	$2-2 \times 6$	4-6	1	3-11	1	3-6	1
	$2-2 \times 8$	5-9	1	5-0	2	4-5	2
	$2-2 \times 10$	7-0	2	6-1	2	5-5	2
	$2-2 \times 12$	8-1	2	7-0	2	6-3	2
	$3-2 \times 8$	7-2	1	6-3	1	5-7	2
	$3-2 \times 10$	8-9	1	7-7	2	6-9	2
	$3-2 \times 12$	10-2	2	8-10	2	7-10	2
	$4-2 \times 8$	9-0	1	7-8	1	6-9	1
	$4-2 \times 10$	10-1	1	8-9	1	7-10	2
	$4-2 \times 12$	11-9	1	10-2	2	9-1	2
Two floors	$2-2 \times 4$	2-2	1	1-10	1	1-7	1
	$2-2 \times 6$	3-2	2	2-9	2	2-5	2
	$2-2 \times 8$	4-1	2	3-6	2	3-2	2
	$2-2 \times 10$	4-11	2	4-3	2	3-10	3
	$2-2 \times 12$	5-9	2	5-0	3	4-5	3
	$3-2 \times 8$	5-1	2	4-5	2	3-11	2
	$3-2 \times 10$	6-2	2	5-4	2	4-10	2
	$3-2 \times 12$	7-2	2	6-3	2	5-7	3
	$4-2 \times 8$	6-1	1	5-3	2	4-8	2
	$4-2 \times 10$	7-2	2	6-2	2	5-6	2
	$4-2 \times 12$	8-4	2	7-2	2	6-5	2

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Spans are given in feet and inches.

- b. No. 1 or better grade lumber shall be used for southern pine. Other tabulated values assume \#2 grade lumber.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. $\mathrm{NJ}=$ Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.

TABLE R602.7(3)
GIRDER AND HEADER SPANS ${ }^{\text {a }}$ FOR OPEN PORCHES
(Maximum span for Douglas fir-larch, hem-fir, southern pine and spruce-pine-firb)

SIZE	SUPPORTING ROOF						SUPPORTING FLOOR	
	GROUND SNOW LOAD (psf)							
	30		50		70			
	DEPTH OF PORCH ${ }^{\text {c }}$ (feet)							
	8	14	8	14	8	14	8	14
$2-2 \times 6$	7-6	5-8	6-2	4-8	5-4	4-0	6-4	4-9
$2-2 \times 8$	10-1	7-7	8-3	6-2	7-1	5-4	8-5	6-4
$2-2 \times 10$	12-4	9-4	10-1	7-7	8-9	6-7	10-4	7-9
$2-2 \times 12$	14-4	10-10	11-8	8-10	10-1	7-8	11-11	9-0

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Spans are given in feet and inches.
b. Tabulated values assume \#2 grade lumber, wet service and incising for refractory species. Use 30 psf ground snow load for cases in which ground snow load is less than 30 psf and the roof live load is equal to or less than 20 psf .
c. Porch depth is measured horizontally from building face to centerline of the header. For depths between those shown, spans are permitted to be interpolated.

FIGURE R602.7.1(1)
SINGLE MEMBER HEADER IN EXTERIOR BEARING WALL

FIGURE R602.7.1(2)
ALTERNATIVE SINGLE MEMBER HEADER WITHOUT CRIPPLE

For SI: $25.4 \mathrm{~mm}=1$ inch.
FIGURE R602.7.2
RIM BOARD HEADER CONSTRUCTION

HEADER CONSTRUCTION ${ }^{\text {b }}$	HEADER DEPTH (inches)	HOUSE DEPTH (feet)				
		24	26	28	30	32
Wood structural panel-one side	$\begin{gathered} \hline 9 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 4 \\ & 5 \end{aligned}$	4 5	$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$	3 3	3
Wood structural panel-both sides	$\begin{gathered} \hline 9 \\ 15 \end{gathered}$	$\begin{aligned} & \hline 7 \\ & 8 \end{aligned}$	5 8	$\begin{aligned} & \hline 5 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 7 \end{aligned}$	3 6

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Spans are based on single story with clear-span trussed roof or two story with floor and roof supported by interior-bearing walls.
b. See Figure R602.7.3 for construction details.

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
NOTES:
a. The top and bottom plates shall be continuous at header location.
b. Jack studs shall be used for spans over 4 feet.
c. Cripple spacing shall be the same as for studs.
d. Wood structural panel faces shall be single pieces of $15 / 32$-inch-thick Exposure 1 (exterior glue) or thicker, installed on the interior or exterior or both sides of the header.
e. Wood structural panel faces shall be nailed to framing and cripples with 8 d common or galvanized box nails spaced 3 inches on center, staggering alternate nails $1 / 2$ inch. Galvanized nails shall be hot-dipped or tumbled.

FIGURE R602.7.3
TYPICAL WOOD STRUCTURAL PANEL BOX HEADER CONSTRUCTION

R602.8 Fireblocking required. Fireblocking shall be provided in accordance with Section R302.11.
[W]R602.9 Foundation ((E))cripple walls. Foundation cripple walls shall be framed of studs not smaller than the studding above. When exceeding 4 feet (1219 mm) in height, such walls shall be framed of studs having the size required for an additional story.

Cripple walls supporting bearing walls or exterior walls or interior braced wall panels as required in Sections R403.1.2 and R602.10.9.1 with a stud height less than 14 inches (356 mm) shall be continuously sheathed on one side with wood structural panels fastened to both the top and bottom plates in accordance with Table R602.3(1), or the cripple walls shall be constructed of solid blocking.

All ((C)) cripple walls shall be supported on continuous | footings or foundations.

Exception: Footings supporting cripple walls used to support interior braced wall panels as required in Section R403.1.2 and R602.10.9.1 shall be continuous for the required length of the cripple wall and constructed beyond the cripple wall for a minimum distance of 4 inches and a
maximum distance of the footing thickness. The footings extension is not required at intersections with other footings.
R602.10 Wall bracing. Buildings shall be braced in accordance with this section or, when applicable, Section R602.12. Where a building, or portion thereof, does not comply with one or more of the bracing requirements in this section, those portions shall be designed and constructed in accordance with Section R301.1.

R602.10.1 Braced wall lines. For the purpose of determining the amount and location of bracing required in each story level of a building, braced wall lines shall be designated as straight lines in the building plan placed in accordance with this section.

R602.10.1.1 Length of a braced wall line. The length of a braced wall line shall be the distance between its ends. The end of a braced wall line shall be the intersection with a perpendicular braced wall line, an angled braced wall line as permitted in Section R602.10.1.4 or an exterior wall as shown in Figure R602.10.1.1.

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R602.10.1.1 BRACED WALL LINES

R602.10.1.2 Offsets along a braced wall line. Exterior walls parallel to a braced wall line shall be offset not more than 4 feet (1219 mm) from the designated braced wall line location as shown in Figure R602.10.1.1. Interior walls used as bracing shall be offset not more than 4 feet (1219 mm) from a braced wall line through the interior of the building as shown in Figure R602.10.1.1.

R602.10.1.3 Spacing of braced wall lines. The spacing between parallel braced wall lines shall be in accordance with Table R602.10.1.3. Intermediate braced wall lines through the interior of the building shall be permitted.

TABLE R602.10.1.3
BRACED WALL LINE SPACING

APPLICATION	CONDITION	BUILDING TYPE	BRACED WALL LINE SPACING CRITERIA	
	Wind bracing	Ultimate design wind speed 100 mph to $<140 \mathrm{mph}$	Detached, townhouse	60 feet

For SI: 1 foot $=304.8 \mathrm{~mm}, 1$ square foot $=0.0929 \mathrm{~m}^{2}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}$.

R602.10.1.4 Angled walls. Any portion of a wall along a braced wall line shall be permitted to angle out of plane for a maximum diagonal length of 8 feet (2438 $\mathrm{mm})$. Where the angled wall occurs at a corner, the length of the braced wall line shall be measured from
the projected corner as shown in Figure R602.10.1.4. Where the diagonal length is greater than 8 feet (2438 mm), it shall be considered a separate braced wall line and shall be braced in accordance with Section R602.10.1.

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R602.10.1.4 ANGLED WALLS

R602.10.2 Braced wall panels. Braced wall panels shall be full-height sections of wall that shall not have vertical or horizontal offsets. Braced wall panels shall be constructed and placed along a braced wall line in accordance with this section and the bracing methods specified in Section R602.10.4.

R602.10.2.1 Braced wall panel uplift load path. The bracing lengths in Table R602.10.3(1) apply only when
uplift loads are resisted in accordance with Section R602.3.5.

R602.10.2.2 Locations of braced wall panels. A braced wall panel shall begin within 10 feet (3810 mm) from each end of a braced wall line as determined in Section R602.10.1.1. The distance between adjacent
edges of braced wall panels along a braced wall line shall be not greater than 20 feet (6096 mm) as shown in Figure R602.10.2.2.

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R602.10.2.2

LOCATION OF BRACED WALL PANELS

R602.10.2.2.1 Location of braced wall panels in Seismic Design Categories D_{0}, D_{1} and D_{2}. Braced wall panels shall be located at each end of a braced wall line.

Exception: Braced wall panels constructed of Method WSP or BV-WSP and continuous sheathing methods as specified in Section R602.10.4 shall be permitted to begin not more than 10 feet (3048 mm) from each end of a braced wall line provided each end complies with one of the following:

1. A minimum 24 -inch-wide (610 mm) panel for Methods WSP, CS-WSP, CS-G and CS-PF is applied to each side of the building corner as shown in End Condition 4 of Figure R602.10.7.
2. The end of each braced wall panel closest to the end of the braced wall line shall have an $1,800 \mathrm{lb}(8 \mathrm{kN})$ hold-down device fastened to the stud at the edge of the braced wall panel closest to the corner and to the foundation or framing below as shown in End Condition 5 of Figure R602.10.7.

R602.10.2.3 Minimum number of braced wall panels. Braced wall lines with a length of 16 feet $(4877 \mathrm{~mm})$ or less shall have not less than two braced wall panels of any length or one braced wall panel equal to 48 inches (1219 mm) or more. Braced wall lines greater than 16 feet $(4877 \mathrm{~mm})$ shall have not less than two braced wall panels.
R602.10.3 Required length of bracing. The required length of bracing along each braced wall line shall be determined as follows:

1. All buildings in Seismic Design Categories A and B shall use Table R602.10.3(1) and the applicable adjustment factors in Table R602.10.3(2).
2. Detached buildings in Seismic Design Category C shall use Table R602.10.3(1) and the applicable adjustment factors in Table R602.10.3(2).
3. Townhouses in Seismic Design Category C shall use the greater value determined from Table R602.10.3(1) or R602.10.3(3) and the applicable adjustment factors in Table R602.10.3(2) or R602.10.3(4), respectively.
4. All buildings in Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2} shall use the greater value determined from Table R602.10.3(1) or R602.10.3(3) and the appli-
cable adjustment factors in Table R602.10.3(2) or R602.10.3(4), respectively.
Only braced wall panels parallel to the braced wall line shall contribute toward the required length of bracing of that braced wall line. Braced wall panels along an angled wall meeting the minimum length requirements of Tables R602.10.5 and R602.10.5.2 shall be permitted to contribute its projected length toward the minimum required length of bracing for the braced wall line as shown in Figure R602.10.1.4. Any braced wall panel on an angled wall at the end of a braced wall line shall contribute its projected length for only one of the braced wall lines at the projected corner.

Exception: The length of wall bracing for dwellings in Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2} with stone or masonry veneer installed in accordance with Section R703.8 and exceeding the first-story height shall be in accordance with Section R602.10.6.5.
R602.10.4 Construction methods for braced wall panels. Intermittent and continuously sheathed braced wall panels shall be constructed in accordance with this section and the methods listed in Table R602.10.4.

R602.10.4.1 Mixing methods. Mixing of bracing methods shall be permitted as follows:

1. Mixing intermittent bracing and continuous sheathing methods from story to story shall be permitted.
2. Mixing intermittent bracing methods from braced wall line to braced wall line within a story shall be permitted. In regions within Seismic Design Categories A, B and C where the ultimate design wind speed is less than or equal to 130 $\mathrm{mph}(58 \mathrm{~m} / \mathrm{s})$, mixing of intermittent bracing and continuous sheathing methods from braced wall line to braced wall line within a story shall be permitted.
3. Mixing intermittent bracing methods along a braced wall line shall be permitted in Seismic Design Categories A and B, and detached dwellings in Seismic Design Category C, provided the length of required bracing in accordance with Table R602.10.3(1) or R602.10.3(3) is the highest value of all intermittent bracing methods used.
4. Mixing of continuous sheathing methods CSWSP, CS-G and CS-PF along a braced wall line shall be permitted. Intermittent methods ABW, PFH and PFG shall be permitted to be used along a braced wall line with continuous sheathed methods.
5. In Seismic Design Categories A and B, and for detached one- and two-family dwellings in Seismic Design Category C, mixing of intermittent bracing methods along the interior portion of a braced wall line with continuous sheathing methods CS-WSP, CS-G and CS-PF along the exterior portion of the same braced wall line shall be per-
mitted. The length of required bracing shall be the highest value of all intermittent bracing methods used in accordance with Table R602.10.3(1) or R602.10.3(3) as adjusted by Tables R602.10.3(2) and R602.10.3(4), respectively. The requirements of Section R602.10.7 shall apply to each end of the continuously sheathed portion of the braced wall line.
R602.10.4.2 Continuous sheathing methods. Continuous sheathing methods require structural panel sheathing to be used on all sheathable surfaces on one side of a braced wall line including areas above and below openings and gable end walls and shall meet the requirements of Section R602.10.7.
R602.10.4.3 Braced wall panel interior finish material. Braced wall panels shall have gypsum wall board installed on the side of the wall opposite the bracing material. Gypsum wall board shall be not less than $1 / 2$ inch (12.7 mm) in thickness and be fastened with nails or screws in accordance with Table R602.3(1) for exterior sheathing or Table R702.3.5 for interior gypsum wall board. Spacing of fasteners at panel edges for gypsum wall board opposite Method LIB bracing shall not exceed 8 inches (203 mm). Interior finish material shall not be glued in Seismic Design Categories D_{0}, D_{1} and D_{2}.

Exceptions:

1. Interior finish material is not required opposite wall panels that are braced in accordance with Methods GB, BV-WSP, ABW, PFH, PFG and CS-PF, unless otherwise required by Section R302.6.
2. An approved interior finish material with an in-plane shear resistance equivalent to gypsum board shall be permitted to be substituted, unless otherwise required by Section R302.6.
3. Except for Method LIB, gypsum wall board is permitted to be omitted provided the required length of bracing in Tables R602.10.3(1) and R602.10.3(3) is multiplied by the appropriate adjustment factor in Tables R602.10.3(2) and R602.10.3(4), respectively, unless otherwise required by Section R302.6.

TABLE R602.10.3(1)
BRACING REQUIREMENTS BASED ON WIND SPEED

(continued)

TABLE R602.10.3(1)-continued
BRACING REQUIREMENTS BASED ON WIND SPEED

EXPOSURE CATEGORY B 30-FOOT MEAN ROOF HEIGHT 10-FOOT WALL HEIGHT 2 BRACED WALL LINES			MINIMUM TOTAL LENGTH (FEET) OF BRACED WALL PANELS REQUIRED ALONG EACH BRACED WALL LINE ${ }^{\text {a }}$			
Ultimate Design Wind Speed (mph)	Story Location	Braced Wall Line Spacing (feet)	Method LIB ${ }^{\text {b }}$	Method GB	Methods DWB, WSP, SFB, PBS, PCP, HPS, BV-WSP, ABW, PFH, PFG, CS-SFB ${ }^{\text {c }}$	$\begin{aligned} & \text { Methods } \\ & \text { CS-WSP, CS-G, } \\ & \text { CS-PF } \end{aligned}$
≤ 120		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 4.0 \\ 7.0 \\ 10.5 \\ 13.5 \\ 16.5 \\ 19.5 \end{gathered}$	$\begin{gathered} \hline 4.0 \\ 7.0 \\ 10.5 \\ 13.5 \\ 16.5 \\ 19.5 \end{gathered}$	$\begin{gathered} \hline 2.5 \\ 4.0 \\ 6.0 \\ 8.0 \\ 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.5 \\ & 5.0 \\ & 6.5 \\ & 8.0 \\ & 9.5 \end{aligned}$
		$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 14.0 \\ 20.0 \\ 25.5 \\ 31.5 \\ 37.5 \end{gathered}$	$\begin{gathered} \hline 7.5 \\ 14.0 \\ 20.0 \\ 25.5 \\ 31.5 \\ 37.5 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 8.0 \\ 11.5 \\ 15.0 \\ 18.0 \\ 21.5 \end{gathered}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 9.5 \\ 12.5 \\ 15.5 \\ 18.5 \end{gathered}$
		$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 20.5 \\ & 29.0 \\ & 38.0 \\ & 47.0 \\ & 55.5 \end{aligned}$	$\begin{gathered} \hline 6.5 \\ 11.5 \\ 17.0 \\ 22.0 \\ 27.0 \\ 32.0 \end{gathered}$	$\begin{gathered} \hline 5.5 \\ 10.0 \\ 14.5 \\ 18.5 \\ 23.0 \\ 27.0 \end{gathered}$
≤ 130		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 8.5 \\ 12.0 \\ 15.5 \\ 19.5 \\ 23.0 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 8.5 \\ 12.0 \\ 15.5 \\ 19.5 \\ 23.0 \end{gathered}$	$\begin{gathered} 2.5 \\ 5.0 \\ 7.0 \\ 9.0 \\ 11.0 \\ 13.0 \end{gathered}$	$\begin{gathered} \hline 2.5 \\ 4.0 \\ 6.0 \\ 7.5 \\ 9.5 \\ 11.0 \end{gathered}$
		$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 16.0 \\ 23.0 \\ 30.0 \\ 37.0 \\ 44.0 \end{gathered}$	$\begin{gathered} \hline 8.5 \\ 16.0 \\ 23.0 \\ 30.0 \\ 37.0 \\ 44.0 \end{gathered}$	$\begin{gathered} \hline 5.0 \\ 9.5 \\ 13.5 \\ 17.5 \\ 21.5 \\ 25.0 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 8.0 \\ 11.5 \\ 15.0 \\ 18.0 \\ 21.5 \end{gathered}$
		$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \hline 13.0 \\ & 24.0 \\ & 34.5 \\ & 44.5 \\ & 55.0 \\ & 65.0 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 13.5 \\ 19.5 \\ 25.5 \\ 31.5 \\ 37.5 \end{gathered}$	$\begin{gathered} \hline 6.5 \\ 11.5 \\ 17.0 \\ 22.0 \\ 26.5 \\ 31.5 \end{gathered}$

(continued)

TABLE R602.10.3(1)—continued
BRACING REQUIREMENTS BASED ON WIND SPEED

- EXPOSURE CATEGORY B 30-FOOT MEAN ROOF HEIGHT 10-FOOT WALL HEIGHT 2 BRACED WALL LINES			MINIMUM TOTAL LENGTH (FEET) OF BRACED WALL PANELS REQUIRED ALONG EACH BRACED WALL LINE ${ }^{\text {a }}$			
Ultimate Design Wind Speed (mph)	Story Location	Braced Wall Line Spacing (feet)	Method LIB ${ }^{\text {b }}$	Method GB	Methods DWB, WSP, SFB, PBS, PCP, HPS, BV-WSP, ABW, PFH, PFG, CS-SFB ${ }^{\text {C }}$	Methods CS-WSP, CS-G, CS-PF
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{gathered} 5.5 \\ 10.0 \\ 14.0 \\ 18.0 \\ 22.5 \\ 26.5 \end{gathered}$	$\begin{gathered} \hline 5.5 \\ 10.0 \\ 14.0 \\ 18.0 \\ 22.5 \\ 26.5 \end{gathered}$	$\begin{gathered} 3.0 \\ 5.5 \\ 8.0 \\ 10.5 \\ 13.0 \\ 15.0 \end{gathered}$	$\begin{gathered} \hline 2.5 \\ 5.0 \\ 7.0 \\ 9.0 \\ 11.0 \\ 13.0 \end{gathered}$
< 140		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	10.0 18.5 27.0 35.0 43.0 51.0	$\begin{aligned} & 10.0 \\ & 18.5 \\ & 27.0 \\ & 35.0 \\ & 43.0 \\ & 51.0 \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 11.0 \\ 15.5 \\ 20.0 \\ 24.5 \\ 29.0 \end{gathered}$	$\begin{gathered} \hline 5.0 \\ 9.0 \\ 13.0 \\ 17.0 \\ 21.0 \\ 25.0 \end{gathered}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & 15.0 \\ & 27.5 \\ & 39.5 \\ & 51.5 \\ & 63.5 \\ & 75.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 16.0 \\ 23.0 \\ 29.5 \\ 36.5 \\ 43.0 \end{gathered}$	$\begin{gathered} \hline 7.5 \\ 13.5 \\ 19.5 \\ 25.0 \\ 31.0 \\ 36.5 \end{gathered}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. Linear interpolation shall be permitted.
b. Method LIB shall have gypsum board fastened to not less than one side with nails or screws in accordance with Table R602.3(1) for exterior sheathing or Table R702.3.5 for interior gypsum board. Spacing of fasteners at panel edges shall not exceed 8 inches.
c. Where a braced wall line has parallel braced wall lines on one or both sides of differing dimensions, the average dimension shall be permitted to be used for braced wall line spacing.

TABLE R602.10.3(2)
WIND ADJUSTMENT FACTORS TO THE REQUIRED LENGTH OF WALL BRACING

ITEM NUMBER	ADJUSTMENT BASED ON	STORY/SUPPORTING	CONDITION	ADJUSTMENT FACTOR ${ }^{\text {a, }}$ b [multiply length from Table R602.10.3(1) by this factor]	APPLICABLE METHODS
1	Exposure category	One-story structure	B	1.00	All methods
			C	1.20	
			D	1.50	
		Two-story structure	B	1.00	
			C	1.30	
			D	1.60	
		Three-story structure	B	1.00	
			C	1.40	
			D	1.70	
2	Roof eave-to-ridge height	Roof only	≤ 5 feet	0.70	
			10 feet	1.00	
			15 feet	1.30	
			20 feet	1.60	
		Roof +1 floor	≤ 5 feet	0.85	
			10 feet	1.00	
			15 feet	1.15	
			20 feet	1.30	
		Roof +2 floors	≤ 5 feet	0.90	
			10 feet	1.00	
			15 feet	1.10	
			20 feet	Not permitted	
3	Wall height adjustment	Any story	8 feet	0.90	
			9 feet	0.95	
			10 feet	1.00	
			11 feet	1.05	
			12 feet	1.10	
4	Number of braced wall lines (per plan direction) ${ }^{\text {c }}$	Any story	2	1.00	
			3	1.30	
			4	1.45	
			≥ 5	1.60	
5	Additional 800-pound hold-down device	Top story only	studs of each braced wall panel and to the foundation or framing below	0.80	DWB, WSP, SFB, PBS, PCP, HPS
6	Interior gypsum board finish (or equivalent)	Any story	Omitted from inside face of braced wall panels	1.40	DWB, WSP, SFB, PBS, PCP, HPS, CSWSP, CS-G, CS-SFB
7	Gypsum board fastening	Any story	4 inches o.c. at panel edges, including top and bottom plates, and all horizontal joints blocked	0.7	GB

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound $=4.48 \mathrm{~N}$.
a. Linear interpolation shall be permitted.
b. The total adjustment factor is the product of all applicable adjustment factors.
c. The adjustment factor is permitted to be 1.0 when determining bracing amounts for intermediate braced wall lines provided the bracing amounts on adjacent braced wall lines are based on a spacing and number that neglects the intermediate braced wall line.

TABLE R602.10.3(3)
BRACING REQUIREMENTS BASED ON SEISMIC DESIGN CATEGORY

- SOIL CLASS D ${ }^{\text {b }}$ - WALL HEIGHT = 10 FEET - 10 PSF FLOOR DEAD LOAD - 15 PSF ROOF/CEILING DEAD LOAD - BRACED WALL LINE SPACING ≤ 25 FEET			MINIMUM TOTAL LENGTH (FEET) OF BRACED WALL PANELS REQUIRED ALONG EACH BRACED WALL LINE ${ }^{\text {a }}$				
Seismic Design Category	Story Location	Braced Wall Line Length (feet) ${ }^{\text {c }}$	Method LIB ${ }^{\text {d }}$	Method GB	$\begin{gathered} \text { Methods } \\ \text { DWB,SFB, PBS, } \\ \text { PCP, HPS, CS- } \\ \text { SFBB }^{2} \end{gathered}$	Method WSP	Methods CS-WSP, CS-G
$\begin{gathered} \mathrm{C} \\ \text { (townhouses only) } \end{gathered}$		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 2.5 \\ 5.0 \\ 7.5 \\ 10.0 \\ 12.5 \end{gathered}$	$\begin{gathered} \hline 2.5 \\ 5.0 \\ 7.5 \\ 10.0 \\ 12.5 \end{gathered}$	$\begin{gathered} \hline 2.5 \\ 5.0 \\ 7.5 \\ 10.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 1.6 \\ & 3.2 \\ & 4.8 \\ & 6.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.7 \\ & 4.1 \\ & 5.4 \\ & 6.8 \end{aligned}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 13.5 \\ 18.0 \\ 22.5 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 13.5 \\ 18.0 \\ 22.5 \end{gathered}$	$\begin{gathered} \hline 3.0 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \end{gathered}$	$\begin{gathered} \hline 2.6 \\ 5.1 \\ 7.7 \\ 10.2 \\ 12.8 \end{gathered}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \\ 30.0 \end{gathered}$	$\begin{gathered} \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \\ 30.0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 13.5 \\ 18.0 \\ 22.5 \end{gathered}$	$\begin{gathered} \hline 3.8 \\ 7.7 \\ 11.5 \\ 15.3 \\ 19.1 \end{gathered}$
D_{0}		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 2.8 \\ 5.5 \\ 8.3 \\ 11.0 \\ 13.8 \end{gathered}$	$\begin{gathered} \hline 2.8 \\ 5.5 \\ 8.3 \\ 11.0 \\ 13.8 \end{gathered}$	$\begin{aligned} & 1.8 \\ & 3.6 \\ & 5.4 \\ & 7.2 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.1 \\ & 4.6 \\ & 6.1 \\ & 7.7 \end{aligned}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 5.3 \\ 10.5 \\ 15.8 \\ 21.0 \\ 26.3 \end{gathered}$	$\begin{gathered} \hline 5.3 \\ 10.5 \\ 15.8 \\ 21.0 \\ 26.3 \end{gathered}$	$\begin{gathered} \hline 3.8 \\ 7.5 \\ 11.3 \\ 15.0 \\ 18.8 \end{gathered}$	$\begin{gathered} \hline 3.2 \\ 6.4 \\ 9.6 \\ 12.8 \\ 16.0 \end{gathered}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \end{aligned}$	$\begin{gathered} \hline 7.3 \\ 14.5 \\ 21.8 \\ 29.0 \\ 36.3 \end{gathered}$	$\begin{gathered} \hline 7.3 \\ 14.5 \\ 21.8 \\ 29.0 \\ 36.3 \end{gathered}$	$\begin{gathered} \hline 5.3 \\ 10.5 \\ 15.8 \\ 21.0 \\ 26.3 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 13.4 \\ 17.9 \\ 22.3 \end{gathered}$

(continued)

TABLE R602.10.3(3)-continued
BRACING REQUIREMENTS BASED ON SEISMIC DESIGN CATEGORY

\bullet SOIL CLASS $\mathrm{D}^{\text {b }}$ \bullet WALL HEIGHT = 10 FEET $:$ 10 PSF FLOOR DEAD LOAD \bullet 15 PSF ROOF/CELLING DEAD LOAD BRACED WALE LINE SPACING 525 FEET			MINIMUM TOTAL LENGTH (FEET) OF BRACED WALL PANELS REQUIRED ALONG EACH BRACED WALL LINE ${ }^{\text {a }}$				
Seismic Design Category	Story Location	Braced Wall Line Length (feet) ${ }^{\text {c }}$	Method LIB ${ }^{\text {d }}$	Method GB	Methods DWB, SFB, PSS, PCP, HPS, CS-SFB	Method WSP	Methods CS-WSP, CS-G
D_{1}		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \end{aligned}$	$\begin{gathered} \hline 3.0 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \end{gathered}$	$\begin{gathered} \hline 3.0 \\ 6.0 \\ 9.0 \\ 12.0 \\ 15.0 \end{gathered}$	$\begin{gathered} \hline 2.0 \\ 4.0 \\ 6.0 \\ 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.7 \\ & 3.4 \\ & 5.1 \\ & 6.8 \\ & 8.5 \end{aligned}$
		$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \\ 30.0 \end{gathered}$	$\begin{gathered} \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \\ 30.0 \end{gathered}$	$\begin{gathered} \hline 4.5 \\ 9.0 \\ 13.5 \\ 18.0 \\ 22.5 \end{gathered}$	$\begin{gathered} \hline 3.8 \\ 7.7 \\ 11.5 \\ 15.3 \\ 19.1 \end{gathered}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 17.0 \\ 25.5 \\ 34.0 \\ 42.5 \end{gathered}$	$\begin{gathered} \hline 8.5 \\ 17.0 \\ 25.5 \\ 34.0 \\ 42.5 \end{gathered}$	$\begin{gathered} \hline 6.0 \\ 12.0 \\ 18.0 \\ 24.0 \\ 30.0 \end{gathered}$	$\begin{gathered} \hline 5.1 \\ 10.2 \\ 15.3 \\ 20.4 \\ 25.5 \end{gathered}$
D_{2}		$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \end{aligned}$	$\begin{gathered} \hline 4.0 \\ 8.0 \\ 12.0 \\ 16.0 \\ 20.0 \end{gathered}$	$\begin{gathered} \hline 4.0 \\ 8.0 \\ 12.0 \\ 16.0 \\ 20.0 \end{gathered}$	$\begin{gathered} \hline 2.5 \\ 5.0 \\ 7.5 \\ 10.0 \\ 12.5 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 4.3 \\ 6.4 \\ 8.5 \\ 10.6 \end{gathered}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 15.0 \\ 22.5 \\ 30.0 \\ 37.5 \end{gathered}$	$\begin{gathered} \hline 7.5 \\ 15.0 \\ 22.5 \\ 30.0 \\ 37.5 \end{gathered}$	5.5 11.0 16.5 22.0 27.5	$\begin{gathered} \hline 4.7 \\ 9.4 \\ 14.0 \\ 18.7 \\ 23.4 \end{gathered}$
		$\begin{aligned} & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$
	Cripple wall below one- or two-story dwelling	$\begin{aligned} & \hline 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \text { NP } \end{aligned}$	$\begin{aligned} & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \text { NP } \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \\ & \mathrm{NP} \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 15.0 \\ 22.5 \\ 30.0 \\ 37.5 \end{gathered}$	$\begin{gathered} \hline 6.4 \\ 12.8 \\ 19.1 \\ 25.5 \\ 31.9 \end{gathered}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Linear interpolation shall be permitted.
b. Wall bracing lengths are based on a soil site class "D." Interpolation of bracing length between the $S_{d s}$ values associated with the seismic design categories shall be permitted when a site-specific $S_{d \mathrm{~s}}$ value is determined in accordance with Section 1613.3 of the International Building Code.
c. Where the braced wall line length is greater than 50 feet, braced wall lines shall be permitted to be divided into shorter segments having lengths of 50 feet or less, and the amount of bracing within each segment shall be in accordance with this table.
d. Method LIB shall have gypsum board fastened to not less than one side with nails or screws in accordance with Table R602.3(1) for exterior sheathing or Table R702.3.5 for interior gypsum board. Spacing of fasteners at panel edges shall not exceed 8 inches.
e. Method CS-SFB does not apply in Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}.

TABLE R602.10.3(4)
SEISMIC ADJUSTMENT FACTORS TO THE REQUIRED LENGTH OF WALL BRACING

$\begin{aligned} & \text { ITEM } \\ & \text { NUMBER } \end{aligned}$	ADJUSTMENT BASED ON:	STORY	CONDITION	ADJUSTMENT FACTOR [Multiply length from Table R602.10.3(3) by this factor]	APPLICABLE METHODS
1	Story height (Section 301.3)	Any story	≤ 10 feet >10 feet and ≤ 12 feet	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	All methods
2	Braced wall line spacing, townhouses in SDC C	Any story	$\begin{gathered} \leq 35 \text { feet } \\ >35 \text { feet and } \leq 50 \text { feet } \end{gathered}$	$\begin{gathered} \hline 1.0 \\ 1.43 \end{gathered}$	
3	$\begin{aligned} & \text { Braced wall line } \\ & \text { spacing, in } \\ & S D C ~_{D_{0}}, D_{1}, D_{2}{ }^{c} \end{aligned}$	Any story	>25 feet and ≤ 30 feet >30 feet and ≤ 35 feet	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$	
4	Wall dead load	Any story	$\begin{gathered} >8 \mathrm{psf} \text { and }<15 \mathrm{psf} \\ <8 \mathrm{psf} \end{gathered}$	$\begin{gathered} 1.0 \\ 0.85 \end{gathered}$	
5	Roof/ceiling dead load for wall supporting	1-, 2- or 3-story building	$\leq 15 \mathrm{psf}$	1.0	
		2 - or 3-story building	$>15 \mathrm{psf}$ and $\leq 25 \mathrm{psf}$	1.1	
		1-story building	$>15 \mathrm{psf}$ and $\leq 25 \mathrm{psf}$	1.2	
6	Walls with stone or masonry veneer, townhouses in SDC C ${ }^{\text {d, e }}$		1.0		All methods
			1.5		
			1.5		
7	Walls with stone or masonry veneer, detached one- and two-family dwellings in $\operatorname{SDC~}_{0}-\mathrm{D}_{2}^{\mathrm{d}, \mathrm{f}}$	Any story	See Table R602.10.6.5		BV-WSP
8	Interior gypsum board finish (or equivalent)	Any story	Omitted from inside face of braced wall panels	1.5	DWB, WSP, SFB, PBS, PCP, HPS, CS-WSP, CS-G, CS-SFB

For SI: 1 foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
a. Linear interpolation shall be permitted.
b. The total length of bracing required for a given wall line is the product of all applicable adjustment factors.
c. The length-to-width ratio for the floor/roof diaphragm shall not exceed 3:1. The top plate lap splice nailing shall be in accordance with Table R602.3(1), Item 13 .
d. Applies to stone or masonry veneer exceeding the first story height.
e. The adjustment factor for stone or masonry veneer shall be applied to all exterior braced wall lines and all braced wall lines on the interior of the building, backing or perpendicular to and laterally supported veneered walls.
f. See Section R602.10.6.5 for requirements where stone or masonry veneer does not exceed the first-story height.

METHODS, MATERIAL		MINIMUM THICKNESS	FIGURE	CONNECTION CRITERIA ${ }^{\text {a }}$		
		Fasteners		Spacing		
	LIB Let-in-bracing		1×4 wood or approved metal straps at 45° to 60° angles for maximum 16" stud spacing		Wood: 2-8d common nails or $3-8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime}\right.$ long x $0.113^{\prime \prime}$ dia. $)$ nails Metal strap: per manufacturer	Wood: per stud and top and bottom plates Metal: per manufacturer
	DWB Diagonal wood boards	$3 / 4$ "(1"nominal) for maximum 24" stud spacing		$\begin{gathered} 2-8 \mathrm{~d}\left(2^{1} / 2^{\prime \prime} \text { long } \times 0.113^{\prime \prime} \text { dia. }\right) \text { nails } \\ \text { or } \\ 2-1^{3} / 4^{\prime \prime} \text { long staples } \end{gathered}$	Per stud	
	WSP Wood		\square DT	Exterior sheathing per Table R602.3(3)	6"edges 12"field	
	structural panel (See Section R604)			Interior sheathing per Table R602.3(1) or R602.3(2)	Varies by fastener	
	BV-WSP ${ }^{\text {e }}$ Wood structural panels with stone or masonry veneer (See Section R602.10.6.5)	$7 / 16{ }^{\prime \prime}$	See Figure R602.10.6.5	8d common $\left(2^{1} 2^{\prime \prime} \times 0.131\right)$ nails	4"at panel edges 12 "at intermediate supports 4"at braced wall panel end posts	
	SFB Structural fiberboard sheathing	$1 / 2^{\prime \prime}$ or $25 / 32^{\prime \prime}$ for maximum 16" stud spacing		$1^{1} / 2^{\prime \prime}$ long $\times 0.12^{\prime \prime}$ dia. (for ${ }^{1} / 2^{\prime \prime}$ thick sheathing) $1^{3} / 4^{\prime \prime}$ long $\times 0.12^{\prime \prime}$ dia. (for ${ }^{25} / 32$ "thick sheathing) galvanized roofing nails or 8 d common ($2^{1 / 2} 2^{\prime \prime}$ long $\times 0.131$ "dia. $)$ nails	3"edges 6"field	
	GB Gypsum board	$1 / 2^{\prime \prime}$		Nails or screws per Table R602.3(1) for exterior locations Nails or screws per Table R702.3.5 for interior locations	For all braced wall panel locations: 7" edges (including top and bottom plates) 7 " field	
	PBS Particleboard sheathing (See Section R605)	$3 / 8$ "or $1 / 2^{\prime \prime}$ for maximum 16" stud spacing		For ${ }^{3} / 8^{\prime \prime}, 6 \mathrm{~d}$ common $\left(2^{\prime \prime}\right.$ long $\times 0.1133^{\prime \prime}$ dia. $)$ nails For $1 / 2^{\prime \prime}, 8 \mathrm{~d}$ common $\left(2^{1} / 2^{\prime \prime}\right.$ long $\times 0.131$ "dia. $)$ nails	3"edges 6"field	
	PCP Portland cement plaster	See Section R703.6 for maximum 16" stud spacing		$1^{1 / 2} 2^{\prime \prime}$ long, 11 gage, ${ }^{7} / 16^{\prime \prime}$ dia. head nails or $7 / 8$ "long, 16 gage staples	6"o.c. on all framing members	
	HPS Hardboard panel siding	${ }^{7} / 16^{\prime \prime}$ for maximum 16 "stud spacing		0.092 "dia., 0.225 "dia. head nails with length to accommodate $1 \frac{1}{2}$ " penetration into studs	4"edges 8"field	
	ABW Alternate braced wall	$3 / 8{ }^{\prime \prime}$		See Section R602.10.6.1	$\begin{gathered} \text { See } \\ \text { Section } \mathrm{R} 602.10 .6 .1 \end{gathered}$	

(continued)

TABLE R602.10.4-continued BRACING METHODS						
METHODS, MATERIAL		MINIMUM THICKNESS	FIGURE	CONNECTION CRITERIA ${ }^{\text {a }}$		
		Fasteners		Spacing		
	PFH Portal frame with hold-downs		$3 / 8{ }^{\prime \prime}$		See Section R602.10.6.2	See Section R602.10.6.2
	PFG Portal frame at garage	$7 / 16$ "		See Section R602.10.6.3	See Section R602.10.6.3	
sрочџəN ธи!чџеәчS snonu!̣шоว	CS-WSP Continuously sheathed wood structural panel	$3 / 8{ }^{\prime \prime}$		Exterior sheathing per Table R602.3(3) Interior sheathing per Table R602.3(1) or R602.3(2)	6"edges 12 "field Varies by fastener	
	$\text { CS-G }{ }^{\mathbf{b}, \mathbf{c}}$ Continuously sheathed wood structural panel adjacent to garage openings	$3 / 8{ }^{\prime \prime}$		See Method CS-WSP	See Method CS-WSP	
	CS-PF Continuously sheathed portal frame	$7 / 16$ "		See Section R602.10.6.4	See Section R602.10.6.4	
	$\begin{gathered} \text { CS-SFB }^{\mathbf{d}} \\ \text { Continuously sheathed } \\ \text { structural fiberboard } \end{gathered}$	$1 / 2$ " or ${ }^{25} / 32^{\prime \prime}$ for maximum 16" stud spacing		$1^{1} / 2^{\prime \prime}$ long $\times 0.12$ "dia. (for ${ }^{1} / 2^{\prime \prime}$ thick sheathing) $1^{3} / 4^{\prime \prime}$ long $\times 0.12$ "dia. (for ${ }^{25} / 32$ "thick sheathing) galvanized roofing nails or 8d common ($2^{\frac{1}{2}}{ }^{\prime \prime}$ "long $\times 0.131^{\prime \prime}$ dia.) nails	3"edges 6"field	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ degree $=0.0175 \mathrm{rad}$, 1 pound per square foot $=47.8 \mathrm{~N} / \mathrm{m}^{2}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. Adhesive attachment of wall sheathing, including Method GB, shall not be permitted in Seismic Design Categories C, D_{0}, D_{1} and D_{2}.
b. Applies to panels next to garage door opening where supporting gable end wall or roof load only. Shall only be used on one wall of the garage. In Seismic Design Categories D_{0}, D_{1} and D_{2}, roof covering dead load shall not exceed 3 psf .
c. Garage openings adjacent to a Method CS-G panel shall be provided with a header in accordance with Table R602.5(1). A full-height clear opening shall not be permitted adjacent to a Method CS-G panel.
d. Method CS-SFB does not apply in Seismic Design Categories D_{0}, D_{1} and D_{2}.
e. Method applies to detached one- and two-family dwellings in Seismic Design Categories D_{0} through D_{2} only.

R602.10.5 Minimum length of a braced wall panel. The minimum length of a braced wall panel shall comply with Table R602.10.5. For Methods CS-WSP and CS-SFB, the minimum panel length shall be based on the adjacent clear opening height in accordance with Table R602.10.5 and Figure R602.10.5. Where a panel has an opening on either side of differing heights, the taller opening height shall be used to determine the panel length.

R602.10.5.1 Contributing length. For purposes of computing the required length of bracing in Tables R602.10.3(1) and R602.10.3(3), the contributing length of each braced wall panel shall be as specified in Table R602.10.5.

R602.10.5.2 Partial credit. For Methods DWB, WSP, SFB, PBS, PCP and HPS in Seismic Design Categories A, B and C, panels between 36 inches and 48 inches
(914 mm and 1219 mm)) in length shall be considered a braced wall panel and shall be permitted to partially contribute toward the required length of bracing in Tables R602.10.3(1) and R602.10.3(3), and the contributing length shall be determined from Table R602.10.5.2.

TABLE R602.10.5
MINIMUM LENGTH OF BRACED WALL PANELS

METHOD(See Table R602.10.4)		MINIMUM LENGTH ${ }^{\text {a }}$ (inches)					CONTRIBUTING LENGTH (inches)
		Wall Height					
		8 feet	9 feet	10 feet	11 feet	12 feet	
DWB, WSP, SFB, PBS, PCP, HPS, BV-WSP		48	48	48	53	58	Actual ${ }^{\text {b }}$
GB		48	48	48	53	58	$\begin{gathered} \text { Double sided }=\text { Actual } \\ \text { Single sided }=0.5 \times \text { Actual } \end{gathered}$
LIB		55	62	69	NP	NP	Actual ${ }^{\text {b }}$
ABW	```SDC A, B and C, ultimate design wind speed < 140 mph```	28	32	34	38	42	48
	$\begin{gathered} \hline{\text { SDC } D_{0}, D_{1} \text { and } D_{2}, \text { ultimate }}_{\text {design }}^{\text {wind speed }<140 \mathrm{mph}} \\ \hline \end{gathered}$	32	32	34	NP	NP	
PFH	Supporting roof only	16	16	16	$18^{\text {c }}$	$20^{\text {c }}$	48
	Supporting one story and roof	24	24	24	$27^{\text {c }}$	$29^{\text {c }}$	48
PFG		24	27	30	$33^{\text {d }}$	$36^{\text {d }}$	$1.5 \times$ Actual $^{\text {b }}$
CS-G		24	27	30	33	36	Actual $^{\text {b }}$
CS-PF	SDC A, B and C	16	18	20	$22^{\text {e }}$	$24^{\text {e }}$	$1.5 \times$ Actual $^{\text {b }}$
	$\mathrm{SDC} \mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}	16	18	20	$22^{\text {e }}$	$24^{\text {e }}$	Actual ${ }^{\text {b }}$
CS-WSP, CS-SFB	Adjacent clear opening height (inches)						
	≤ 64	24	27	30	33	36	Actual ${ }^{\text {b }}$
	68	26	27	30	33	36	
	72	27	27	30	33	36	
	76	30	29	30	33	36	
	80	32	30	30	33	36	
	84	35	32	32	33	36	
	88	38	35	33	33	36	
	92	43	37	35	35	36	
	96	48	41	38	36	36	
	100	-	44	40	38	38	
	104	-	49	43	40	39	
	108	-	54	46	43	41	
	112	-	-	50	45	43	
	116	-	-	55	48	45	
	120	-	-	60	52	48	
	124	-	-	-	56	51	
	128	-	-	-	61	54	
	132	-	-	-	66	58	
	136	-	-	-	-	62	
	140	-	-	-	-	66	
	144	-	-	-	-	72	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
NP = Not Permitted.
a. Linear interpolation shall be permitted.
b. Use the actual length where it is greater than or equal to the minimum length.
c. Maximum header height for PFH is 10 feet in accordance with Figure R602.10.6.2, but wall height shall be permitted to be increased to 12 feet with pony wall.
d. Maximum opening height for PFG is 10 feet in accordance with Figure R602.10.6.3, but wall height shall be permitted to be increased to 12 feet with pony wall.
e. Maximum opening height for CS-PF is 10 feet in accordance with Figure R602.10.6.4, but wall height shall be permitted to be increased to 12 feet with pony wall.

FIGURE R602.10.5
BRACED WALL PANELS WITH CONTINUOUS SHEATHING

TABLE R602.10.5.2
PARTIAL CREDIT FOR BRACED WALL PANELS LESS THAN 48 INCHES IN ACTUAL LENGTH

| ACTUAL LENGTH OF BRACED WALL PANEL
 (inches) | CONTRIBUTING LENGTH OF BRACED WALL PANEL |
| :---: | :---: | :---: |
| | |

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
N/A = Not Applicable.
a. Linear interpolation shall be permitted.

R602.10.6 Construction of Methods ABW, PFH, PFG, CS-PF and BV-WSP. Methods ABW, PFH, PFG, CS-PF and BV-WSP shall be constructed as specified in Sections R602.10.6.1 through R602.10.6.5.

R602.10.6.1 Method ABW: Alternate braced wall panels. Method ABW braced wall panels shall be constructed in accordance with Figure R602.10.6.1. The hold-down force shall be in accordance with Table R602.10.6.1.
R602.10.6.2 Method PFH: Portal frame with holddowns. Method PFH braced wall panels shall be constructed in accordance with Figure R602.10.6.2.

R602.10.6.3 Method PFG: Portal frame at garage door openings in Seismic Design Categories A, B and C. Where supporting a roof or one story and a roof, a Method PFG braced wall panel constructed in accordance with Figure R602.10.6.3 shall be permitted on either side of garage door openings.
R602.10.6.4 Method CS-PF: Continuously sheathed portal frame. Continuously sheathed portal frame braced wall panels shall be constructed in accordance with Figure R602.10.6.4 and Table R602.10.6.4. The number of continuously sheathed portal frame panels in a single braced wall line shall not exceed four.

TABLE R602.10.6.1
MINIMUM HOLD-DOWN FORCES FOR METHOD ABW BRACED WALL PANELS

SEISMIC DESIGN CATEGORY AND WIND SPEED	SUPPORTING/STORY	HOLD-DOWN FORCE (pounds)				
		Height of Braced Wall Panel				
		8 feet	9 feet	10 feet	11 feet	12 feet
SDC A, B and C Ultimate design wind speed < 140 mph	One story	1,800	1,800	1,800	2,000	2,200
	First of two stories	3,000	3,000	3,000	3,300	3,600
$\mathrm{SDC}_{0}, \mathrm{D}_{1}$ and D_{2} Ultimate design wind speed <140 mph	One story	1,800	1,800	1,800	NP	NP
	First of two stories	3,000	3,000	3,000	NP	NP

[^0]NP = Not Permitted.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R602.10.6.1
METHOD ABW—ALTERNATE BRACED WALL PANEL

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.

METHOD PFH—PORTAL FRAME WITH HOLD-DOWNS

FIGURE R602.10.6.3
METHOD PFG—PORTAL FRAME AT GARAGE DOOR OPENINGS IN SEISMIC DESIGN CATEGORIES A, B AND C

TABLE R602.10.6.4
TENSION STRAP CAPACITY FOR RESISTING WIND PRESSURES
PERPENDICULAR TO METHODS PFH, PFG AND CS-PF BRACED WALL PANELS

MINIMUM WALL STUD FRAMING NOMINAL SIZE AND GRADE	MAXIMUM PONY WALL HEIGHT (feet)	$\underset{\substack{\text { MAXIMUM } \\ \text { TOTAL WALL } \\ \text { (feet) }}}{\text { TAHT }}$	MAXIMUM OPENING WIDTH (feet)	TENSION STRAP CAPACITY REQUIRED (pounds) ${ }^{\text {a, }}$ b					
				Ultimate Design Wind Speed $\mathrm{V}_{\text {ult }}(\mathrm{mph})$					
				110	115	130	110	115	130
				Exposure B			Exposure C		
2×4 No. 2 Grade	0	10	18	1,000	1,000	1,000	1,000	1,000	1,050
	1	10	9	1,000	1,000	1,000	1,000	1,000	1,750
			16	1,000	1,025	2,050	2,075	2,500	3,950
			18	1,000	1,275	2,375	2,400	2,850	DR
	2	10	9	1,000	1,000	1,475	1,500	1,875	3,125
			16	1,775	2,175	3,525	3,550	4,125	DR
			18	2,075	2,500	3,950	3,975	DR	DR
	2	12	9	1,150	1,500	2,650	2,675	3,175	DR
			16	2,875	3,375	DR	DR	DR	DR
			18	3,425	3,975	DR	DR	DR	DR
	4	12	9	2,275	2,750	DR	DR	DR	DR
			12	3,225	3,775	DR	DR	DR	DR
2×6 Stud Grade	2	12	9	1,000	1,000	1,700	1,700	2,025	3,050
			16	1,825	2,150	3,225	3,225	3,675	DR
			18	2,200	2,550	3,725	3,750	DR	DR
	4	12	9	1,450	1,750	2,700	2,725	3,125	DR
			16	2,050	2,400	DR	DR	DR	DR
			18	3,350	3,800	DR	DR	DR	DR

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. $\mathrm{DR}=$ Design Required.
b. Straps shall be installed in accordance with manufacturer's recommendations.

R602.10.6.5 Wall bracing for dwellings with stone and masonry veneer in Seismic Design Categories $\mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}$ and $\mathbf{D}_{\mathbf{2}}$. Where stone and masonry veneer are installed in accordance with Section R703.8, wall bracing on exterior braced wall lines and braced wall lines on the interior of the building, backing or perpendicular to and laterally supporting veneered walls shall comply with this section.

Where dwellings in Seismic Design Categories D_{0}, D_{1} and D_{2} have stone or masonry veneer installed in accordance with Section R703.8, and the veneer does not exceed the first-story height, wall bracing shall be in accordance with Section R602.10.3.

Where detached one- or two-family dwellings in Seismic Design Categories D_{0}, D_{1} and D_{2} have stone or masonry veneer installed in accordance with Section R703.8, and the veneer exceeds the first-story height, wall bracing at exterior braced wall lines and braced wall lines on the interior of the building shall be constructed using Method BV-WSP in accordance with this section and Figure R602.10.6.5. Cripple walls shall not be permitted, and required interior braced wall lines shall be supported on continuous foundations.

Townhouses in Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2} with stone or masonry veneer exceeding the first-story height shall be designed in accordance with accepted engineering practice.

R602.10.6.5.1 Length of bracing. The length of bracing along each braced wall line shall be the greater of that required by the ultimate design wind speed and braced wall line spacing in accordance with Table R602.10.3(1) as adjusted by the factors in Table R602.10.3(2) or the seismic design category and braced wall line length in accordance with Table R602.10.6.5. Angled walls shall be permitted to be counted in accordance with Section R602.10.1.4, and braced wall panel location shall be in accordance with Section R602.10.2.2. Spacing between braced wall lines shall be in accordance with Table R602.10.1.3. The seismic adjustment factors in Table R602.10.3(4) shall not be applied to the length of bracing determined using Table R602.10.6.5, except that the bracing amount increase for braced wall line spacing greater than 25 feet (7620 mm) in accordance with Table R602.10.1.3 shall be required. The minimum total length of bracing in a braced wall line, after all adjustments have been taken, shall not be less than 48 inches (1219 mm) total.

TABLE R602.10.6.5
METHOD BV-WSP WALL BRACING REQUIREMENTS

CAISMIC DESIGNCATEGORY	STORY	BRACED WALL LINE LENGTH (FEET)					SINGLE-STORY HOLD-DOWN FORCE (pounds) ${ }^{\text {a }}$	CUMULATIVE HOLD-DOWN FORCE (pounds) ${ }^{\text {b }}$
		10	20	30	40	50		
		Minimum Total Length (feet) of Braced Wall Panels Required Along each Braced Wall Line						
D_{0}	¢ $\hat{\theta} \mathrm{\theta}$	4.0	7.0	10.5	14.0	17.5	N/A	-
		4.0	7.0	10.5	14.0	17.5	1900	-
		4.5	9.0	13.5	18.0	22.5	3500	5400
		6.0	12.0	18.0	24.0	30.0	3500	8900
D_{1}		4.5	9.0	13.5	18.0	22.5	2100	-
	\wedge ¢ \because	4.5	9.0	13.5	18.0	22.5	3700	5800
		6.0	12.0	18.0	24.0	30.0	3700	9500
D_{2}		5.5	11.0	16.5	22.0	27.5	2300	-
	侕	5.5	11.0	16.5	22.0	27.5	3900	6200
	\wedge Q	NP	NP	NP	NP	NP	N/A	N/A

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.479 \mathrm{kPa}, 1$ pound-force $=4.448 \mathrm{~N}$.
NP = Not Permitted.
N/A = Not Applicable.
a. Hold-down force is minimum allowable stress design load for connector providing uplift tie from wall framing at end of braced wall panel at the noted story to wall framing at end of braced wall panel at the story below, or to foundation or foundation wall. Use single-story hold-down force where edges of braced wall panels do not align; a continuous load path to the foundation shall be maintained.
b. Where hold-down connectors from stories above align with stories below, use cumulative hold-down force to size middle- and bottom-story hold-down connectors.

(a) Braced wall panels stacked (aligned story to story). Use cumulative hold-down force.

Note: Hold downs should be strap ties, tension ties, or other approved hold-down devices and shall be installed in accordance with the manufacturer's instructions.

FIGURE R602.10.6.5
METHOD BV-WSP-WALL BRACING FOR DWELLINGS WITH STONE AND MASONRY VENEER IN SEISMIC DESIGN CATEGORIES $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound $=4.45 \mathrm{~N}$.
FIGURE R602.10.7
END CONDITIONS FOR BRACED WALL LINES WITH CONTINUOUS SHEATHING

R602.10.7 Ends of braced wall lines with continuous sheathing. Each end of a braced wall line with continuous sheathing shall have one of the conditions shown in Figure R602.10.7.

R602.10.8 Braced wall panel connections. Braced wall panels shall be connected to floor framing or foundations as follows:

1. Where joists are perpendicular to a braced wall panel above or below, a rim joist, band joist or blocking shall be provided along the entire length of the braced wall panel in accordance with Figure R602.10.8(1). Fastening of top and bottom wall blocking and wall plates shall be in accordance with
plates to framing, rim joist, band joist and/or blocking shall be in accordance with Table R602.3(1).
2. Where joists are parallel to a braced wall panel above or below, a rim joist, end joist or other parallel framing member shall be provided directly above and below the braced wall panel in accordance with Figure R602.10.8(2). Where a parallel framing member cannot be located directly above and below the panel, full-depth blocking at 16 -inch (406 mm) spacing shall be provided between the parallel framing members to each side of the braced wall panel in accordance with Figure R602.10.8(2). Fastening of

Table R602.3(1) and Figure R602.10.8(2).
3. Connections of braced wall panels to concrete or masonry shall be in accordance with Section R403.1.6.
R602.10.8.1 Braced wall panel connections for Seismic Design Categories $\mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}$ and $\mathbf{D}_{\mathbf{2}}$. Braced wall panels shall be fastened to required foundations in accordance with Section R602.11.1, and top plate lap splices shall be face-nailed with not less than eight 16d nails on each side of the splice.
R602.10.8.2 Connections to roof framing. Top plates of exterior braced wall panels shall be attached to rafters or roof trusses above in accordance with Table R602.3(1) and this section. Where required by this section, blocking between rafters or roof trusses shall be attached to top plates of braced wall panels and to rafters and roof trusses in accordance with Table R602.3(1). A continuous band, rim or header joist or roof truss parallel to the braced wall panels shall be permitted to replace the blocking required by this section. Blocking shall not be required over openings in continuously sheathed braced wall lines. In addition to the requirements of this section, lateral support shall be provided for rafters and ceiling joists in accordance with Section R802.8 and for trusses in accordance with Section R802.10.3. Roof ventilation shall be provided in accordance with Section R806.1.

1. For Seismic Design Categories A, B and C where the distance from the top of the braced wall panel to the top of the rafters or roof trusses above is $9^{1} / 4$ inches (235 mm) or less, blocking between rafters or roof trusses shall not be required. Where the distance from the top of the braced wall panel to the top of the rafters or roof trusses above is between $9^{1} / 4$ inches (235 mm) and $15^{1} / 4$ inches (387 mm), blocking between rafters or roof trusses shall be provided above the braced wall panel in accordance with Figure R602.10.8.2(1).

Exception: Where the outside edge of truss vertical web members aligns with the outside face of the wall studs below, wood structural panel sheathing extending above the top plate as shown in Figure R602.10.8.2(3) shall be permitted to be fastened to each truss web with three8 d nails ($2 \frac{1}{2}$ inches ${ }^{\prime} 0.131$ inch $)$ and blocking between the trusses shall not be required.
2. For Seismic Design Categories D_{0}, D_{1} and D_{2}, where the distance from the top of the braced wall panel to the top of the rafters or roof trusses is $15^{1} \frac{1}{4}$ inches (387 mm) or less, blocking between rafters or roof trusses shall be provided above the braced wall panel in accordance with Figure R602.10.8.2(1).
3. Where the distance from the top of the braced wall panel to the top of rafters or roof trusses exceeds $15 \frac{1}{4}$ inches (387 mm), the top plates of the braced wall panel shall be connected to perpendicular rafters or roof trusses above in accordance with one or more of the following methods:
3.1. Soffit blocking panels constructed in accordance with Figure R602.10.8.2(2).
3.2. Vertical blocking panels constructed in accordance with Figure R602.10.8.2(3).
3.3. Blocking panels provided by the roof truss manufacturer and designed in accordance with Section R802.
3.4. Blocking, blocking panels or other methods of lateral load transfer designed in accordance with the AWC WFCM or accepted engineering practice.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R602.10.8(1)
BRACED WALL PANEL CONNECTION WHEN PERPENDICULAR TO FLOOR/CEILING FRAMING

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R602.10.8(2)
BRACED WALL PANEL CONNECTION WHEN PARALLEL TO FLOOR/CEILING FRAMING

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R602.10.8.2(1)
BRACED WALL PANEL CONNECTION TO PERPENDICULAR RAFTERS

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Methods of bracing shall be as described in Section R602.10.4.

FIGURE R602.10.8.2(2)
BRACED WALL PANEL CONNECTION OPTION TO PERPENDICULAR RAFTERS OR ROOF TRUSSES

(A) SECTION

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$
a. Methods of bracing shall be as described in Section R602.10.4.

FIGURE R602.10.8.2(3)
BRACED WALL PANEL CONNECTION OPTION TO PERPENDICULAR RAFTERS OR ROOF TRUSSES

R602.10.9 Braced wall panel support. Braced wall panel support shall be provided as follows:

1. Cantilevered floor joists complying with Section R502.3.3 shall be permitted to support braced wall panels.
2. Raised floor system post or pier foundations supporting braced wall panels shall be designed in accordance with accepted engineering practice.
3. Masonry stem walls with a length of 48 inches (1219 mm) or less supporting braced wall panels
shall be reinforced in accordance with Figure R602.10.9. Masonry stem walls with a length greater than 48 inches (1219 mm) supporting braced wall panels shall be constructed in accordance with Section R403.1 Methods ABW and PFH shall not be permitted to attach to masonry stem walls.
4. Concrete stem walls with a length of 48 inches $(1219 \mathrm{~mm})$ or less, greater than 12 inches (305 mm) tall and less than 6 inches (152 mm) thick shall have reinforcement sized and located in accordance with Figure R602.10.9.

R602.10.9.1 Braced wall panel support for Seismic Design Categories $\mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}$ and $\mathbf{D}_{\mathbf{2}}$. In Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}, braced wall panel footings shall be as specified in Section R403.1.2.

SHORT STEM WALL REINFORCEMENT

OPTIONAL STEM WALL REINFORCEMENT

TALL STEM WALL REINFORCEMENT

TYPICAL STEM WALL SECTION

NOTE: GROUT BOND BEAMS AND ALL CELLS THAT CONTAIN REBAR, THREADED RODS AND ANCHOR BOLTS.
For SI: 1 inch $=25.4 \mathrm{~mm}$.

R602.10.10 Panel joints. Vertical joints of panel sheathing shall occur over, and be fastened to, common studs. Horizontal joints in braced wall panels shall occur over, and be fastened to, common blocking of a minimum $1 \frac{1}{2}$ inch (38 mm) thickness.

Exceptions:

1. Vertical joints of panel sheathing shall be permitted to occur over double studs, where adjoining panel edges are attached to separate studs with the required panel edge fastening schedule, and the adjacent studs are attached together with two rows of 10 d box nails [3 inches by 0.128 inch (76.2 mm by 3.25 mm)] at 10 inches o.c. (254 mm).
2. Blocking at horizontal joints shall not be required in wall segments that are not counted as braced wall panels.
3. Where the bracing length provided is not less than twice the minimum length required by Tables R602.10.3(1) and R602.10.3(3), blocking at horizontal joints shall not be required in braced wall panels constructed using Methods WSP, SFB, GB, PBS or HPS.
4. Where Method GB panels are installed horizontally, blocking of horizontal joints is not required.
[W]R602.10.11 Cripple wall bracing. Cripple walls shall be constructed in accordance with Section R602.9 and braced in accordance with this section. Cripple walls supporting bearing walls or exterior walls or interior braced wall panels as required in Section R403.1.2 shall be braced with the length and method of bracing used for the wall above in accordance with Tables R602.10.3(1) and R602.10.3(3), and the applicable adjustment factors in Table R602.10.3(2) or R602.10.3(4), respectively, except that the length of the cripple wall bracing shall be multiplied by a factor of 1.15 . Where gypsum wallboard is not used on the inside of the cripple wall bracing, the length adjustments for the elimination of the gypsum wallboard, or equivalent, shall be applied as directed in Tables R602.10.3(2) and R602.10.3(4) to the length of cripple wall bracing required. This adjustment shall be taken in addition to the 1.15 increase.

R602.10.11.1 Cripple wall bracing for Seismic Design Categories D_{0} and D_{1} and townhouses in Seismic Design Category C. In addition to the requirements in Section R602.10.11, the distance between adjacent edges of braced wall panels for cripple walls along a braced wall line shall be 14 feet (4267 mm) maximum.

Where braced wall lines at interior walls are not supported on a continuous foundation below, the adjacent parallel cripple walls, where provided, shall be braced with Method WSP or Method CS-WSP in accordance with Section R602.10.4. The length of bracing required in accordance with Table R602.10.3(3) for the cripple walls shall be multiplied by 1.5 . Where the cripple walls do not have sufficient length to provide the required bracing, the spacing of panel edge fasteners shall be reduced to 4 inches (102 mm) on center and
the required bracing length adjusted by 0.7 . If the required length can still not be provided, the cripple wall shall be designed in accordance with accepted engineering practice.
R602.10.11.2 Cripple wall bracing for Seismic Design Category $\mathbf{D}_{\mathbf{2}}$. In Seismic Design Category D_{2}, cripple walls shall be braced in accordance with Tables R602.10.3(3) and R602.10.3(4).
R602.10.11.3 Redesignation of cripple walls. Where all cripple wall segments along a braced wall line do not exceed 48 inches (1219 mm) in height, the cripple walls shall be permitted to be redesignated as a firststory wall for purposes of determining wall bracing requirements. Where any cripple wall segment in a braced wall line exceeds 48 inches (1219 mm) in height, the entire cripple wall shall be counted as an additional story. If the cripple walls are redesignated, the stories above the redesignated story shall be counted as the second and third stories, respectively.
R602.11 Wall anchorage. Braced wall line sills shall be anchored to concrete or masonry foundations in accordance with Sections R403.1.6 and R602.11.1.

R602.11.1 Wall anchorage for all buildings in Seismic Design Categories D_{0}, D_{1} and D_{2} and townhouses in Seismic Design Category C. Plate washers, not less than 0.229 inch by 3 inches by 3 inches (5.8 mm by 76 mm by 76 mm) in size, shall be provided between the foundation sill plate and the nut except where approved anchor straps are used. The hole in the plate washer is permitted to be diagonally slotted with a width of up to $3 / 16$ inch (5 mm) larger than the bolt diameter and a slot length not to exceed $13 / 4$ inches (44 mm), provided a standard cut washer is placed between the plate washer and the nut.
R602.11.2 Stepped foundations in Seismic Design Categories $\mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}$ and $\mathbf{D}_{\mathbf{2}}$. In all buildings located in Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ or D_{2}, where the height of a required braced wall line that extends from foundation to floor above varies more than 4 feet (1219 mm), the braced wall line shall be constructed in accordance with the following:

1. Where the lowest floor framing rests directly on a sill bolted to a foundation not less than 8 feet (2440 mm) in length along a line of bracing, the line shall be considered as braced. The double plate of the cripple stud wall beyond the segment of footing that extends to the lowest framed floor shall be spliced by extending the upper top plate not less than 4 feet $(1219 \mathrm{~mm})$ along the foundation. Anchor bolts shall be located not more than 1 foot and 3 feet (305 and 914 mm) from the step in the foundation. See Figure R602.11.2.
2. Where cripple walls occur between the top of the foundation and the lowest floor framing, the bracing requirements of Sections R602.10.11, R602.10.11.1 and R602.10.11.2 shall apply.
3. Where only the bottom of the foundation is stepped and the lowest floor framing rests directly on a sill bolted to the foundations, the requirements of Sections R403.1.6 and R602.11.1 shall apply.

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
Note: Where footing Section "A" is less than 8 feet long in a 25 -foot-long wall, install bracing at cripple stud wall.

FIGURE R602.11.2

STEPPED FOUNDATION CONSTRUCTION

R602.12 Simplified wall bracing. Buildings meeting all of the conditions listed below shall be permitted to be braced in accordance with this section as an alternate to the requirements of Section R602.10. The entire building shall be braced in accordance with this section; the use of other bracing provisions of Section R602.10, except as specified herein, shall not be permitted.

1. There shall be not more than three stories above the top of a concrete or masonry foundation or basement wall. Permanent wood foundations shall not be permitted.
2. Floors shall not cantilever more than 24 inches (607 mm) beyond the foundation or bearing wall below.
3. Wall height shall not be greater than 10 feet (3048 mm).
4. The building shall have a roof eave-to-ridge height of 15 feet (4572 mm) or less.
5. Exterior walls shall have gypsum board with a minimum thickness of $1 / 2$ inch (12.7 mm) installed on the interior side fastened in accordance with Table R702.3.5.
6. The structure shall be located where the ultimate design wind speed is less than or equal to $130 \mathrm{mph}(58 \mathrm{~m} / \mathrm{s})$, and the exposure category is B or C .
7. The structure shall be located in Seismic Design Category A, B or C for detached one- and two-family dwellings or Seismic Design Category A or B for townhouses.
8. Cripple walls shall not be permitted in three-story buildings.
R602.12.1 Circumscribed rectangle. The bracing required for each building shall be determined by circumscribing a rectangle around the entire building on each floor as shown in Figure R602.12.1. The rectangle shall surround all enclosed offsets and projections such as sunrooms and attached garages. Open structures, such as carports and decks, shall be permitted to be excluded. The rectangle shall not have a side greater than 60 feet (18 288 mm), and the ratio between the long side and short side shall be not greater than 3:1.
R602.12.2 Sheathing materials. The following sheathing materials installed on the exterior side of exterior walls shall be used to construct a bracing unit as defined in Section R602.12.3. Mixing materials is prohibited.
9. Wood structural panels with a minimum thickness of $3 / 8$ inch (9.5 mm) fastened in accordance with Table R602.3(3).
10. Structural fiberboard sheathing with a minimum thickness of $1 / 2$ inch (12.7 mm) fastened in accordance with Table R602.3(1).
R602.12.3 Bracing unit. A bracing unit shall be a fullheight sheathed segment of the exterior wall without openings or vertical or horizontal offsets and a minimum length as specified herein. Interior walls shall not contribute
toward the amount of required bracing. Mixing of Items 1 and 2 is prohibited on the same story.
11. Where all framed portions of all exterior walls are sheathed in accordance with Section R602.12.2, including wall areas between bracing units, above and below openings and on gable end walls, the
minimum length of a bracing unit shall be 3 feet (914 mm).
12. Where the exterior walls are braced with sheathing panels in accordance with Section R602.12.2 and areas between bracing units are covered with other materials, the minimum length of a bracing unit shall be 4 feet (1219 mm).

FIRST FLOOR PLAN

SECOND FLOOR PLAN

FIGURE R602.12.1
RECTANGLE CIRCUMSCRIBING AN ENCLOSED BUILDING
R602.12.3.1 Multiple bracing units. Segments of wall compliant with Section R602.12.3 and longer than the minimum bracing unit length shall be considered as multiple bracing units. The number of bracing units shall be determined by dividing the wall segment length by the minimum bracing unit length. Full-height sheathed segments of wall narrower than the minimum bracing unit length shall not contribute toward a bracing unit except as specified in Section R602.12.6.
R602.12.4 Number of bracing units. Each side of the circumscribed rectangle, as shown in Figure R602.12.1, shall have, at a minimum, the number of bracing units in accordance with Table R602.12.4 placed on the parallel exterior walls facing the side of the rectangle. Bracing units shall then be placed using the distribution requirements specified in Section R602.12.5.
R602.12.5 Distribution of bracing units. The placement of bracing units on exterior walls shall meet all of the following requirements as shown in Figure R602.12.5.

1. A bracing unit shall begin not more than 12 feet (3658 mm) from any wall corner.
2. The distance between adjacent edges of bracing units shall be not greater than 20 feet (6096 mm).
3. Segments of wall greater than 8 feet $(2438 \mathrm{~mm})$ in length shall have not less than one bracing unit.

TABLE R602.12.4
MINIMUM NUMBER OF BRACING UNITS ON EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE

ULTimate DESIGN WIND SPEED (mph)	STORY LEVEL	EAVE-TO-RIDGE HEIGHT (feet)	MINIMUM NUMBER OF BRACING UNITS ON EACH LONG SIDE ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{d}}$						MINIMUM NUMBER OF BRACING UNITS ON EACH SHORT SIDE ${ }^{\text {a, }, \mathrm{b}, \mathrm{d}}$					
			Length of short side (feet) ${ }^{\text {c }}$						Length of long side (feet) ${ }^{\text {c }}$					
			10	20	30	40	50	60	10	20	30	40	50	60
115		10	1	2	2	2	3	3	1	2	2	2	3	3
	$\theta 0$		2	3	3	4	5	6	2	3	3	4	5	6
	θ		2	3	4	6	7	8	2	3	4	6	7	8
		15	1	2	3	3	4	4	1	2	3	3	4	4
	θ		2	3	4	5	6	7	2	3	4	5	6	7
	θ		2	4	5	6	7	9	2	4	5	6	7	9
130		10	1	2	2	3	3	4	1	2	2	3	3	4
	θ		2	3	4	5	6	7	2	3	4	5	6	7
	θ		2	4	5	7	8	10	2	4	5	7	8	10
		15	2	3	3	4	4	6	2	3	3	4	4	6
	θ		3	4	6	7	8	10	3	4	6	7	8	10
	θ		3	6	7	10	11	13	3	6	7	10	11	13

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Interpolation shall not be permitted.
b. Cripple walls or wood-framed basement walls in a walk-out condition shall be designated as the first story and the stories above shall be redesignated as the second and third stories, respectively, and shall be prohibited in a three-story structure.
c. Actual lengths of the sides of the circumscribed rectangle shall be rounded to the next highest unit of 10 when using this table.
d. For Exposure Category C, multiply bracing units by a factor of 1.20 for a one-story building, 1.30 for a two-story building and 1.40 for a three-story building.

BRACING WITH AREAS BETWEEN
BRACING UNITS WITH ALL FRAMED COVERED WITH OTHER MATERIALS PORTIONS OF WALL SHEATHED

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R602.12.5
BRACING UNIT DISTRIBUTION

R602.12.6 Narrow panels. The bracing methods referenced in Section R602.10 and specified in Sections R602.12.6.1 through R602.12.6.3 shall be permitted when using simplified wall bracing.

R602.12.6.1 Method CS-G. Braced wall panels constructed as Method CS-G in accordance with Tables R602.10.4 and R602.10.5 shall be permitted for onestory garages where all framed portions of all exterior walls are sheathed with wood structural panels. Each CS-G panel shall be equivalent to 0.5 of a bracing unit. Segments of wall that include a Method CS-G panel shall meet the requirements of Section R602.10.4.2.
R602.12.6.2 Method CS-PF. Braced wall panels constructed as Method CS-PF in accordance with Section R602.10.6.4 shall be permitted where all framed portions of all exterior walls are sheathed with wood structural panels. Each CS-PF panel shall equal 0.75 bracing units. Not more than four CS-PF panels shall be permitted on all segments of walls parallel to each side of the circumscribed rectangle. Segments of wall that include a Method CS-PF panel shall meet the requirements of Section R602.10.4.2.
R602.12.6.3 Methods ABW, PFH and PFG. Braced wall panels constructed as Method ABW, PFH and PFG shall be permitted where bracing units are constructed using wood structural panels applied either continuously or intermittently. Each ABW and PFH panel shall equal one bracing unit and each PFG panel shall be equal to 0.75 bracing unit.
R602.12.7 Lateral support. For bracing units located along the eaves, the vertical distance from the outside edge of the top wall plate to the roof sheathing above shall not exceed 9.25 inches (235 mm) at the location of a bracing unit unless lateral support is provided in accordance with Section R602.10.8.2.
R602.12.8 Stem walls. Masonry stem walls with a height and length of 48 inches (1219 mm) or less supporting a bracing unit or a Method CS-G, CS-PF or PFG braced wall panel shall be constructed in accordance with Figure R602.10.9. Concrete stem walls with a length of 48 inches $(1219 \mathrm{~mm})$ or less, greater than 12 inches $(305 \mathrm{~mm})$ tall
and less than 6 inches $(152 \mathrm{~mm})$ thick shall be reinforced sized and located in accordance with Figure R602.10.9.

SECTION R603 COLD-FORMED STEEL WALL FRAMING

R603.1 General. Elements shall be straight and free of any defects that would significantly affect structural performance. Cold-formed steel wall framing members shall be in accordance with the requirements of this section.

R603.1.1 Applicability limits. The provisions of this section shall control the construction of exterior cold-formed steel wall framing and interior load-bearing cold-formed steel wall framing for buildings not more than 60 feet (18 288 mm) long perpendicular to the joist or truss span, not more than 40 feet (12192 mm) wide parallel to the joist or truss span, and less than or equal to three stories above grade plane. Exterior walls installed in accordance with the provisions of this section shall be considered as loadbearing walls. Cold-formed steel walls constructed in accordance with the provisions of this section shall be limited to sites where the ultimate design wind speed is less than 139 miles per hour ($62 \mathrm{~m} / \mathrm{s}$), Exposure Category B or C, and the ground snow load is less than or equal to 70 pounds per square foot (3.35 kPa).
R603.1.2 In-line framing. Load-bearing cold-formed steel studs constructed in accordance with Section R603 shall be located in-line with joists, trusses and rafters in accordance with Figure R603.1.2 and the tolerances specified as follows:

1. The maximum tolerance shall be $3 / 4$ inch (19 mm) between the centerline of the horizontal framing member and the centerline of the vertical framing member.
2. Where the centerline of the horizontal framing member and bearing stiffener is located to one side of the centerline of the vertical framing member, the maximum tolerance shall be $1 / 8$ inch (3 mm) between the web of the horizontal framing member and the edge of the vertical framing member.

For SI: 1 inch $=25.4 \mathrm{~mm}$,
FIGURE R603.1.2
IN-LINE FRAMING

R603.2 Structural framing. Load-bearing cold-formed steel wall framing members shall be in accordance with this section.

R603.2.1 Material. Load-bearing cold-formed steel framing members shall be cold formed to shape from structuralquality sheet steel complying with the requirements of ASTM A 1003: Structural Grades 33 Type H and 50 Type H.

R603.2.2 Corrosion protection. Load-bearing coldformed steel framing shall have a metallic coating complying with ASTM A 1003 and one of the following:

1. A minimum of G 60 in accordance with ASTM A 653.
2. A minimum of AZ 50 in accordance with ASTM A 792.

R603.2.3 Dimension, thickness and material grade. Load-bearing cold-formed steel wall framing members shall comply with Figure R603.2.3(1) and with the dimensional and thickness requirements specified in Table R603.2.3. Additionally, C-shaped sections shall have a minimum flange width of $15 / 8$ inches (41 mm) and a maximum flange width of 2 inches (51 mm). The minimum lip size for C-shaped sections shall be $1 / 2$ inch (12.7 mm). Track sections shall comply with Figure R603.2.3(2) and shall have a minimum flange width of $1 \frac{1}{4}$ inches (32 mm). Minimum Grade 33 ksi steel shall be used wherever

33 mil and 43 mil thicknesses are specified. Minimum Grade 50 ksi steel shall be used wherever 54 and 68 mil thicknesses are specified.

TABLE R603.2.3
LOAD-BEARING COLD-FORMED STEEL STUD SIZES AND THICKNESSES

MEMBER DESIGNATION		
$350 S 162-\mathrm{t}$	WEB DEPTH (inches)	MINIMUM BASE STEEL THICKNESS mil (inches)
$550 S 162-\mathrm{t}$	3.5	$33(0.0329), 43(0.0428), 54(0.0538)$

For SI: 1 inch $=25.4 \mathrm{~mm} ; 1 \mathrm{mil}=0.0254 \mathrm{~mm}$.
a. The member designation is defined by the first number representing the member depth in hundredths of an inch, " S " representing a stud or joist member, the second number representing the flange width in hundredths of an inch, and the letter " t " shall be a number representing the minimum base metal thickness in mils.

R603.2.4 Identification. Load-bearing cold-formed steel framing members shall have a legible label, stencil, stamp or embossment with the following information as a minimum:

1. Manufacturer's identification.
2. Minimum base steel thickness in inches (mm).
3. Minimum coating designation.
4. Minimum yield strength, in kips per square inch (ksi) (MPa).
R603.2.5 Fastening. Screws for steel-to-steel connections shall be installed with a minimum edge distance and cen-ter-to-center spacing of $\frac{1}{2}$ inch (12.7 mm), shall be selfdrilling tapping and shall conform to ASTM C 1513. Structural sheathing shall be attached to cold-formed steel studs with minimum No. 8 self-drilling tapping screws that conform to ASTM C 1513. Screws for attaching structural sheathing to cold-formed steel wall framing shall have a minimum head diameter of 0.292 inch (7.4 mm) with countersunk heads and shall be installed with a minimum edge distance of $3 / 8$ inch (9.5 mm). Gypsum board shall be attached to cold-formed steel wall framing with
minimum No. 6 screws conforming to ASTM C 954 or ASTM C 1513 with a bugle-head style and shall be installed in accordance with Section R702. For connections, screws shall extend through the steel a minimum of three exposed threads. Fasteners shall have rust-inhibitive coating suitable for the installation in which they are being used, or be manufactured from material not susceptible to corrosion.
R603.2.6 Web holes, web hole reinforcing and web hole patching. Web holes, web hole reinforcing and web hole patching shall be in accordance with this section.

R603.2.6.1 Web holes. Web holes in wall studs and other structural members shall comply with all of the following conditions:

1. Holes shall conform to Figure R603.2.6.1.
2. Holes shall be permitted only along the centerline of the web of the framing member.
3. Holes shall have a center-to-center spacing of not less than 24 inches $(610 \mathrm{~mm})$.
4. Holes shall have a web hole width not greater than 0.5 times the member depth, or $1 \frac{1}{2}$ inches (38 mm).
5. Holes shall have a web hole length not exceeding $4^{1} / 2$ inches (114 mm).
6. Holes shall have a minimum distance between the edge of the bearing surface and the edge of the web hole of not less than 10 inches (254 mm).
Framing members with web holes not conforming to the above requirements shall be reinforced in accordance with Section R603.2.6.2, patched in accordance with Section R603.2.6.3 or designed in accordance with accepted engineering practice.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R603.2.6.1
WALL STUD WEB HOLES

R603.2.6.2 Web hole reinforcing. Web holes in gable endwall studs not conforming to the requirements of Section R603.2.6.1 shall be permitted to be reinforced if the hole is located fully within the center 40 percent of the span and the depth and length of the hole does not exceed 65 percent of the flat width of the web. The reinforcing shall be a steel plate or C-shape section with a hole that does not exceed the web hole size limitations of Section R603.2.6.1 for the member being reinforced. The steel reinforcing shall be the same thickness as the receiving member and shall extend not less than 1 inch $(25 \mathrm{~mm})$ beyond all edges of the hole. The steel reinforcing shall be fastened to the web of the receiving member with No. 8 screws spaced not more than 1 inch $(25 \mathrm{~mm})$ center-to-center along the edges of the patch with minimum edge distance of $1 / 2$ inch (12.7 mm).

R603.2.6.3 Hole patching. Web holes in wall studs and other structural members not conforming to the requirements in Section R603.2.6.1 shall be permitted to be patched in accordance with either of the following methods:

1. Framing members shall be replaced or designed in accordance with accepted engineering practice where web holes exceed the following size limits:
1.1. The depth of the hole, measured across the web, exceeds 70 percent of the flat width of the web.
1.2. The length of the hole measured along the web exceeds 10 inches (254 mm) or the depth of the web, whichever is greater.
2. Web holes not exceeding the dimensional requirements in Section R603.2.6.3, Item 1, shall be patched with a solid steel plate, stud section or track section in accordance with Figure R603.2.6.3. The steel patch shall, as a minimum, be the same thickness as the receiving member and shall extend not less than 1 inch (25 mm) beyond all edges of the hole. The steel patch shall be fastened to the web of the receiving member with No. 8 screws spaced not more than 1 inch (25 mm) cen-ter-to-center along the edges of the patch with a minimum edge distance of $1 / 2$ inch (12.7 mm).
R603.3 Wall construction. Exterior cold-formed steel framed walls and interior load-bearing cold-formed steel framed walls shall be constructed in accordance with the provisions of this section.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R603.2.6.3
WALL STUD WEB HOLE PATCH

R603.3.1 Wall to foundation or floor connection. Coldformed steel framed walls shall be anchored to foundations or floors in accordance with Table R603.3.1 and Figure R603.3.1(1), R603.3.1(2), R603.3.1(3) or R603.3.1(4).

Anchor bolts shall be located not more than 12 inches (305 mm) from corners or the termination of bottom tracks. Anchor bolts shall extend not less than 15 inches (381 mm) into masonry or 7 inches (178 mm) into concrete. Foundation anchor straps shall be permitted, in lieu of anchor bolts, if spaced as required to provide equivalent
anchorage to the required anchor bolts and installed in accordance with manufacturer's requirements.

R603.3.1.1 Gable endwalls. Gable endwalls with heights greater than 10 feet (3048 mm) shall be anchored to foundations or floors in accordance with Table R603.3.1.1(1) or R603.3.1.1(2).

TABLE R603.3.1
WALL TO FOUNDATION OR FLOOR CONNECTION REQUIREMENTS ${ }^{\text {a,b }}$

FRAMING CONDITION			ULTIMATE WIND SPEED AND EXPOSURE CATEGORY(mph)				
			115 B	126 B	$\begin{aligned} & <139 \mathrm{~B} \\ & \text { or } 115 \mathrm{C} \end{aligned}$	126 C	< 139 C
Wall bottom track to floor per Figure R603.3.1(1)			$\begin{gathered} \text { 1-No. } 8 \text { screw at } \\ 12^{\prime \prime} \text { o.c. } \end{gathered}$	$\begin{gathered} \text { 1-No. } 8 \text { screw at } \\ 12^{\prime \prime} \text { o.c. } \end{gathered}$	$\begin{gathered} \text { 1-No. } 8 \text { screw at } \\ 12^{\prime \prime} \text { o.c. } \end{gathered}$	$\begin{gathered} \text { 2-No. } 8 \text { screws at } \\ 12^{\prime \prime} \text { o.c. } \end{gathered}$	$\begin{gathered} \hline \text { 2-No. } 8 \text { screws at } \\ 12^{\prime \prime} \text { o.c. } \end{gathered}$
Wall bottom track to foundation per Figure R603.3.1(2) ${ }^{\text {d }}$			${ }^{1} 2^{\prime \prime}$ minimum diameter anchor bolt at 6' o.c.	$\begin{aligned} & 1 / 2^{\prime \prime} \text { minimum } \\ & \text { diameter anchor } \\ & \text { bolt at } 4^{\prime} \text { o.c. } \end{aligned}$	$\begin{aligned} & 1 / 2^{\prime \prime} \text { minimum } \\ & \text { diameter anchor } \\ & \text { bolt at } 4^{\prime} \text { o.c. } \end{aligned}$	$1 / 2^{\prime \prime}$ minimum diameter anchor bolt at 4' o.c.	$\begin{aligned} & 1 / 2^{\prime \prime \prime} \text { minimum } \\ & \text { diameter anchor } \\ & \text { bolt at } 4^{\prime} \text { o.c. } \end{aligned}$
Wall bottom track to wood sill per Figure R603.3.1(3)			Steel plate spaced at 4' o.c., with 4No. 8 screws and 4-10d or 6-8d common nails	Steel plate spaced at 3' o.c., with 4No. 8 screws and 4-10d or 6-8d common nails	Steel plate spaced at 3' o.c., with 4No. 8 screws and $4-10 \mathrm{~d}$ or $6-8 \mathrm{~d}$ common nails	Steel plate spaced at 2' o.c., with 4No. 8 screws and $4-10 \mathrm{~d}$ or $6-8 \mathrm{~d}$ common nails	Steel plate spaced at 2^{\prime} o.c., with $4-$ No. 8 screws and 4-10d or 6-8d common nails
$\begin{gathered} \text { Wind uplift } \\ \text { connector } \\ \text { strength } \\ (\mathrm{lbs})^{\text {t,e }} \end{gathered}$	Stud Spacing (inches)	Roof Span (feet)					
	16	24	NR	NR	NR	124	209
		28	NR	NR	62	151	249
		32	NR	NR	79	179	289
		36	NR	NR	94	206	329
		40	NR	61	117	239	374
	24	24	NR	NR	69	186	314
		28	NR	NR	93	227	374
		32	NR	NR	117	268	434
		36	NR	64	141	309	494
		40	NR	92	176	359	562

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound $=4.45 \mathrm{~N}$.
a. Anchor bolts are to be located not more than 12 inches from corners or the termination of bottom tracks such as, at door openings or corners. Bolts are to extend not less than 15 inches into masonry or 7 inches into concrete.
b. All screw sizes shown are minimum.
c. $\mathrm{NR}=$ Uplift connector not required.
d. Foundation anchor straps are permitted in place of anchor bolts, if spaced as required to provide equivalent anchorage to the required anchor bolts and installed in accordance with manufacturer's requirements.
e. See Figure R603.3.1(4) for details.

TABLE R603.3.1.1(1)
GABLE ENDWALL TO FLOOR CONNECTION REQUIREMENTS ${ }^{\text {a, }}$ b, c

$\begin{aligned} & \text { ULTIMA } \\ & \text { SP } \\ & \text { (m } \end{aligned}$	$\begin{aligned} & \text { E WIND } \\ & \text { ED } \\ & \text { h) } \end{aligned}$	WALL BOTTOM TRACK TO FLOOR JOIST OR TRACK CONNECTION		
		Stud height, \boldsymbol{h} (feet)		
B	C	$10<h \leq 14$	14 < $h \leq 18$	18<h<22
115	-	1-No. 8 screw @ 12" o.c.	1-No. 8 screw @ 12" o.c.	1-No. 8 screw @ 12" o.c.
126	110	1-No. 8 screw @ 12" o.c.	1-No. 8 screw @ 12" o.c.	1-No. 8 screw @ 12" o.c.
< 139	115	1-No. 8 screw @ 12" o.c.	1-No. 8 screw @ 12" o.c.	2-No. 8 screws @ 12" o.c.
-	126	1-No. 8 screw @ 12" o.c.	2-No. 8 screws @ 12" o.c.	1-No. 8 screw @ 8" o.c.
-	< 139	2-No. 8 screws @ 12" o.c.	1-No. 8 screw @ 8" o.c.	2-No. 8 screws @ 8" o.c.

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Refer to Table R603.3.1.1(2) for gable endwall bottom track to foundation connections.
b. Where attachment is not given, special design is required.
c. Stud height, h, is measured from wall bottom track to wall top track or brace connection height.

TABLE R603.3.1.1(2)
GABLE ENDWALL BOTTOM TRACK TO FOUNDATION CONNECTION REQUIREMENTS ${ }^{\text {a, }}$, ,

ULTIMATE WIND SPEED (mph)		MINIMUM SPACING FOR ${ }^{1 / 2}$-INCH-DIAMETER ANCHOR BOLTS ${ }^{\text {d }}$		
Exposure Category		Stud height, \boldsymbol{h} (feet)		
B	C	$10<h \leq 14$	$14<h \leq 18$	18<h 22
115	-	6'- $0^{\prime \prime}$ o.c.	5'- 7' o.c.	6'-0' o.c.
126	110	5'-10" o.c.	6'-0" o.c.	6'-0" o.c.
< 139	115	$4^{\prime}-10^{\prime \prime}$ o.c.	5'-6" o.c.	6'-0' o.c.
-	126	4'-1" o.c.	6'-0" o.c.	6'-0" o.c.
-	< 139	5'-1" o.c.	6'-0" o.c.	5'- 2' o.c.

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ foot $=304.8 \mathrm{~mm}$.
a. Refer to Table R603.3.1.1(1) for gable endwall bottom track to floor joist or track connection connections.
b. Where attachment is not given, special design is required.
c. Stud height, h, is measured from wall bottom track to wall top track or brace connection height.
d. Foundation anchor straps are permitted in place of anchor bolts if spaced as required to provide equivalent anchorage to the required anchor bolts and installed in accordance with manufacturer's requirements.

FIGURE R603.3.1(1)
WALL TO FLOOR CONNECTION

For SI: 1 inch $=25.4 \mathrm{~mm}$.

WALL CONSTRUCTION

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}$.
FIGURE R603.3.1(3)
WALL TO WOOD SILL CONNECTION

R603.3.2 Minimum stud sizes. Cold-formed steel walls shall be constructed in accordance with Figure R603.3.1(1), R603.3.1(2) or R603.3.1(3), as applicable.

Exterior wall stud size and thickness shall be determined in accordance with the limits set forth in Tables R603.3.2(2) through R603.3.2(16). Interior load-bearing wall stud size
and thickness shall be determined in accordance with the limits set forth in Tables R603.3.2(2) through R603.3.2(16) based upon an ultimate design wind speed of 115 miles per hour ($51 \mathrm{~m} / \mathrm{s}$), Exposure Category B, and the building width, stud spacing and snow load, as appropriate. Fastening requirements shall be in accordance with Section R603.2.5 and Table R603.3.2(1). Top and bottom tracks shall have the same minimum thickness as the wall studs.

Exterior wall studs shall be permitted to be reduced to the next thinner size, as shown in Tables R603.3.2(2) through R603.3.2(16), but not less than 33 mils (0.84 mm), where both of the following conditions exist:

1. Minimum of $1 / 2$-inch (12.7 mm) gypsum board is installed and fastened on the interior surface in accordance with Section R702.
2. Wood structural sheathing panels of minimum ${ }^{7} / 16^{-}$ inch-thick (11.1 mm) oriented strand board or $15 / 32^{-}$ inch-thick (12 mm) plywood are installed and fastened in accordance with Section R603.9.1 and Table R603.3.2(1) on the outside surface.
Interior load-bearing walls shall be permitted to be reduced to the next thinner size, as shown in Tables R603.3.2(2) through R603.3.2(16), but not less than 33 mils $(0.84 \mathrm{~mm})$, where not less than $\frac{1}{2}$-inch (12.7 mm) gypsum board is installed and fastened in accordance with Section R702 on both sides of the wall. The tabulated stud thickness for load-bearing walls shall be used when the
attic load is 10 pounds per square foot $(480 \mathrm{~Pa})$ or less. A limited attic storage load of 20 pounds per square foot (960 Pa) shall be permitted provided that the next higher snow load column is used to select the stud size from Tables R603.3.2(2) through R603.3.2(16).
For two-story buildings, the tabulated stud thickness for walls supporting one floor, roof and ceiling shall be used when the second-floor live load is 30 pounds per square foot (1440 Pa). Second-floor live loads of $40 \mathrm{psf}(1920 \mathrm{~Pa})$ shall be permitted provided that the next higher snow load column is used to select the stud size from Tables R603.3.2(2) through R603.3.2(11).

For three-story buildings, the tabulated stud thickness for walls supporting one or two floors, roof and ceiling shall be used when the third-floor live load is 30 pounds per square foot (1440 Pa). Third-floor live loads of 40 pounds per square foot $(1920 \mathrm{~Pa})$ shall be permitted provided that the next higher snow load column is used to select the stud size from Tables R603.3.2(12) through R603.3.2(16).

R603.3.2.1 Gable endwalls. The size and thickness of gable endwall studs with heights less than or equal to 10 feet (3048 mm) shall be permitted in accordance with the limits set forth in Table R603.3.2.1(1). The size and thickness of gable endwall studs with heights greater than 10 feet (3048 mm) shall be determined in accordance with the limits set forth in Table R603.3.2.1(2)

TABLE R603.3.2(1)
WALL FASTENING SCHEDULE ${ }^{\text {a }}$

DESCRIPTION OF BUILDING ELEMENT	NUMBER AND SIZE OF FASTENERS	
Wall stud to top or bottom track	2-No. 8 screws	SPACING OF FASTENERS
Structural sheathing to wall studs	No. 8 screws ${ }^{\text {b }}$	Each end of stud, one per flange
$1 / 2^{\prime \prime}$ gypsum board to framing	No. 6 screws	$6^{\prime \prime}$ o.c. on edges and $12^{\prime \prime}$ o.c. at intermediate supports

For SI: 1 inch $=25.4 \mathrm{~mm}$.
a. All screw sizes shown are minimum.
b. Screws for attachment of structural sheathing panels are to be bugle-head, flat-head, or similar head styles with a minimum head diameter of 0.29 inch.

WALL CONSTRUCTION

TABLE R603.3.2(2)
24-FOOT-WIDE BUILDING SUPPORTING ROOF AND CEILING ONLY ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUDSPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8 -foot Studs		9 -foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	33	33	33	33	33	33	33	33	33
				24	33	33	33	43	33	33	33	43	33	33	43	43
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	33	33	33	33	33	33	33	33	33	
126	110	350S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	43	43	43	43	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	33	33	33	33	43	
< 139	115	350S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	43	43	43	43	43	43	43	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	33	43	43	43	43	
-	126	350S162	16	33	33	33	33	33	33	33	33	43	43	43	43	
			24	43	43	43	43	43	43	43	43	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	43	43	43	43	43	43	43	43	
-	< 139	350S162	16	33	33	33	33	43	43	43	43	43	43	43	43	
			24	43	43	43	43	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	43	43	43	43	43	43	43	43	43	43	43	

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,

$$
1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa} .
$$

a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(3)
28-FOOT-WIDE BUILDING SUPPORTING ROOF AND CEILING ONLY ${ }^{\text {a, }}$ b, c, d

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUD SPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (pst)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	33	33	33	33	33	33	33	33	33
				24	33	33	43	43	33	33	43	43	33	33	43	54
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	33	33	33	43	
126	110	350S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	43	43	43	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	33	33	33	43	
< 139	115	350S162	16	33	33	33	33	33	33	33	33	33	33	33	43	
			24	33	33	43	43	43	43	43	43	43	43	43	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	43	43	43	43	
-	126	350S162	16	33	33	33	33	33	33	33	33	43	43	43	43	
			24	43	43	43	54	43	43	43	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	43	43	43	43	43	43	43	43	
-	< 139	350S162	16	33	33	33	33	43	43	43	43	43	43	43	43	
			24	43	43	43	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	43	43	43	43	43	43	43	43	43	43	43	43	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(4)
32-FOOT-WIDE BUILDING SUPPORTING ROOF AND CEILING ONLY ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{gathered} \text { MEMBER } \\ \text { SIZE } \end{gathered}$	STUDSPACING(inches) (inches)	MINIMUM STUD THICKNESS (mils)												
		8 -foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	33	33	33	33	33	33	33	33	43
				24	33	33	43	54	33	33	43	43	33	33	43	54
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	33	33	33	43	
126	110	350S162	16	33	33	33	33	33	33	33	33	33	33	33	43	
			24	33	33	43	54	33	33	43	54	43	43	43	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	33	33	33	43	
< 139	115	350S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	33	43	54	43	43	43	54	43	43	43	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	43	43	43	43	
-	126	350S162	16	33	33	33	43	33	33	33	43	43	43	43	43	
			24	43	43	43	54	43	43	43	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	43	43	43	43	43	43	43	43	
-	< 139	350S162	16	33	33	33	43	43	43	43	43	43	43	43	43	
			24	43	43	43	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	43	43	43	43	43	43	43	43	43	43	43	43	

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,

$$
1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa} .
$$

a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(5)
36-FOOT-WIDE BUILDING SUPPORTING ROOF AND CEILING ONLY ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATEWIND SPEEDAND EXPOSURECATEORY(mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUDSPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	43	33	33	33	43	33	33	33	43
				24	33	33	43	54	33	33	43	54	33	43	43	54
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	33	33	43	43	
126	110	350S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	33	33	43	54	33	33	43	54	43	43	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	33	33	43	43	
< 139	115	350S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	33	43	54	43	43	43	43	43	43	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	43	43	43	43	
-	126	350S162	16	33	33	33	43	33	33	33	43	43	43	43	43	
			24	43	43	43	54	43	43	43	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	43	43	43	43	43	43	43	43	
-	< 139	350S162	16	33	33	33	43	43	43	43	43	43	43	43	43	
			24	43	43	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	43	43	43	54	43	33	43	43	43	43	43	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(6)
40-FOOT-WIDE BUILDING SUPPORTING ROOF AND CEILING ONLY ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUDSPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	43	33	33	33	43	33	33	33	43
				24	33	33	43	54	33	33	43	54	43	43	54	54
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	54	33	33	43	43	33	33	43	54	
126	110	350S162	16	33	33	33	43	33	33	33	43	33	33	43	43	
			24	33	43	43	54	33	43	43	54	43	43	54	54	
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	33	
			24	33	33	43	54	33	33	43	43	33	33	43	54	
< 139	115	350S162	16	33	33	33	43	33	33	33	43	33	33	43	43	
			24	33	43	43	54	43	43	43	54	43	43	54	54	
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	33	43	54	33	33	43	43	43	43	43	54	
-	126	350S162	16	33	33	33	43	33	33	33	43	43	43	43	43	
			24	43	43	54	54	43	43	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	33	43	54	43	43	43	54	43	43	43	54	
-	< 139	350S162	16	33	33	43	43	43	43	43	43	43	43	43	54	
			24	43	43	54	54	54	54	54	54	54	54	54	68	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	54	43	43	43	54	

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,

$$
1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa} .
$$

a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(7)
24-FOOT-WIDE BUILDING SUPPORTING ONE FLOOR, ROOF AND CEILING ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered}\text { STUD } \\ \text { (inches) }\end{gathered}$ (inches)	MINIMUM STUD THICKNESS (mils)												
		8 -foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	33	33	33	33	33	33	33	33	43
				24	33	33	43	43	33	43	43	43	43	43	43	54
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	33	33	33	43	
126	110	350S162	16	33	33	33	33	33	33	33	33	33	33	33	43	
			24	33	43	43	43	43	43	43	43	43	43	43	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	33	33	33	43	
< 139	115	350S162	16	33	33	33	43	33	33	33	33	33	33	43	43	
			24	43	43	43	43	43	43	43	43	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	33	33	33	43	43	43	43	43	
-	126	350S162	16	33	33	33	43	33	33	33	43	43	43	43	43	
			24	43	43	43	54	43	43	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	33	43	43	43	43	43	43	43	43	43	
-	< 139	350S162	16	33	33	33	43	43	43	43	43	43	43	43	43	
			24	43	43	43	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	43	43	43	43	43	43	43	43	43	43	43	43	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$, $1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(8)
28-FOOT-WIDE BUILDING SUPPORTING ONE FLOOR, ROOF AND CEILING ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	\quad STUDSPACING(inches) (inches)	MINIMUM STUD THICKNESS (mils)												
		8 -foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	43	33	33	33	43	33	33	33	43
				24	43	43	43	54	43	43	43	54	43	43	43	54
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	33	33	43	43	
126	110	350S162	16	33	33	33	43	33	33	33	43	33	33	43	43	
			24	43	43	43	54	43	43	43	54	43	43	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	33	33	43	43	
< 139	115	350S162	16	33	33	33	43	33	33	33	43	43	43	43	43	
			24	43	43	43	54	43	43	43	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	33	33	43	43	43	43	43	43	
-	126	350S162	16	33	33	33	43	33	33	43	43	43	43	43	43	
			24	43	43	43	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	33	33	43	43	43	43	43	43	43	43	43	43	
-	< 139	350S162	16	33	33	43	43	43	43	43	43	43	43	43	54	
			24	43	43	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	33	33	33	33	33	33	33	33	33	
			24	43	43	43	43	43	43	43	43	43	43	43	43	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,

$$
1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa} .
$$

a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(9)
32-FOOT-WIDE BUILDING SUPPORTING ONE FLOOR, ROOF AND CEILING ${ }^{\text {a, }, ~ c, ~ d ~}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		MEMBER SIZE	STUD SPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	33	43	33	33	33	43	33	33	43	43
				24	43	43	43	54	43	43	43	54	43	43	54	54
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	43	43	54	33	33	43	43	33	33	43	43	
126	110	350S162	16	33	33	33	43	33	33	33	43	33	43	43	43	
			24	43	43	43	54	43	43	43	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	43	43	54	33	33	43	43	33	33	43	43	
< 139	115	350S162	16	33	33	43	43	33	33	33	43	43	43	43	43	
			24	43	43	54	54	43	43	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	43	43	54	33	33	43	43	43	43	43	54	
-	126	350S162	16	33	33	43	43	43	43	43	43	43	43	43	43	
			24	43	43	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	33	33	33	33	43	
			24	33	43	43	54	43	43	43	43	43	43	43	54	
-	< 139	350S162	16	43	43	43	43	43	43	43	43	43	43	54	54	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	43	43	43	43	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(10)
36-FOOT-WIDE BUILDING SUPPORTING ONE FLOOR, ROOF AND CEILING ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUDSPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9 -foot Studs				10-foot Studs								
		Ground Snow Load (pst)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	43	43	33	33	43	43	33	33	43	43
				24	43	43	54	54	43	43	54	54	54	54	54	54
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	54	43	43	43	54	
126	110	350S162	16	33	33	43	43	33	33	43	43	43	43	43	43	
			24	43	43	54	54	43	43	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	54	43	43	43	54	
< 139	115	350S162	16	33	33	43	43	33	33	43	43	43	43	43	54	
			24	43	43	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	54	43	43	43	54	
-	126	350S162	16	33	33	43	43	43	43	43	43	43	43	43	54	
			24	54	54	54	54	54	54	54	54	54	54	54	68	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	54	43	43	43	54	
-	< 139	350S162	16	43	43	43	43	43	43	43	43	43	54	54	54	
			24	54	54	54	54	54	54	54	54	54	54	54	68	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	43	54	43	43	43	54	43	43	43	54	

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,

$$
1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa} .
$$

a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.

- d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(11)
40-FOOT-WIDE BUILDING SUPPORTING ONE FLOOR, ROOF AND CEILING ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \text { STUD } \\ \begin{array}{c} \text { SPACING } \\ \text { (inches) } \end{array} \end{gathered}$	MINIMUM STUD THICKNESS (mils)												
		8 -foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	33	33	43	43	33	33	43	43	43	43	43	54
				24	43	43	54	54	43	43	54	54	54	54	54	54
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	54	54	43	43	43	54	43	43	43	54	
126	110	350S162	16	33	33	43	43	33	33	43	43	43	43	43	54	
			24	43	43	54	54	43	43	54	54	54	54	54	54	
		550S162	16	33	33	33	43	33	33	33	43	33	33	33	43	
			24	43	43	54	54	43	43	43	54	43	43	43	54	
< 139	115	350S162	16	33	33	43	43	43	43	43	43	43	43	43	54	
			24	43	43	54	54	54	54	54	54	54	54	54	68	
		550S162	16	33	33	43	43	33	33	33	43	33	33	33	43	
			24	43	43	54	54	43	43	43	54	43	43	43	54	
-	126	350S162	16	43	43	43	54	43	43	43	54	43	43	54	54	
			24	54	54	54	54	54	54	54	54	54	54	54	68	
		550S162	16	33	33	43	43	33	33	33	43	33	33	43	43	
			24	43	43	54	54	43	43	43	54	43	43	54	54	
-	< 139	350S162	16	43	43	43	54	43	43	43	54	54	54	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	68	
		550S162	16	33	33	43	43	33	33	33	43	33	33	43	43	
			24	43	43	54	54	43	43	43	54	43	43	54	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$
b. Design load assumptions:

Second-floor dead load is 10 psf .
Second-floor live load is 30 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(12)
24-FOOT-WIDE BUILDING SUPPORTING TWO FLOORS, ROOF AND CEILING ${ }^{\text {a, }}$, , , d

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		MEMBER SIZE	STUD SPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (pst)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	43	43	43	43	33	33	33	43	43	43	43	43
				24	54	54	54	54	43	43	54	54	54	54	54	54
		550S162	16	33	33	43	43	33	33	33	33	33	33	33	43	
			24	43	43	54	54	43	43	43	43	43	43	43	54	
126	110	350S162	16	43	43	43	43	33	33	33	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	43	43	33	33	33	33	33	33	33	43	
			24	43	43	54	54	43	43	43	43	43	43	43	54	
< 139	115	350S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	43	43	33	33	33	33	33	33	33	43	
			24	43	43	54	54	43	43	43	43	43	43	43	54	
-	126	350S162	16	43	43	43	43	43	43	43	43	43	43	43	54	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
		550S162	16	33	33	43	43	33	33	33	33	33	33	33	43	
			24	43	43	54	54	43	43	43	43	43	43	43	54	
-	< 139	350S162	16	43	43	43	43	43	43	43	43	54	54	54	54	
			24	54	54	54	54	54	54	54	54	54	54	54	68	
		550S162	16	33	33	43	43	33	33	33	33	33	33	33	43	
			24	43	43	54	54	43	43	43	43	43	43	43	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Top- and middle-floor dead load is 10 psf .
Top-floor live load is 30 psf .
Middle-floor live load is 40 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.

- d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(13)
28-FOOT-WIDE BUILDING SUPPORTING TWO FLOORS, ROOF AND CEILING ${ }^{\text {a }}$, $\mathrm{b}, \mathrm{c}, \mathrm{d}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{gathered} \text { MEMBER } \\ \text { SIZE } \end{gathered}$	$\underset{\substack{\text { STUD } \\ \text { (inches) }}}{\text { SPACIG }}$	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (pst)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	43	43	43	43	43	43	43	43	43	43	43	43
				24	54	54	54	54	54	54	54	54	54	54	54	54
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
126	110	350S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
< 139	115	350S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
-	126	350S162	16	43	43	43	43	43	43	43	43	43	43	54	54	
			24	54	54	54	54	54	54	54	54	54	54	54	68	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
-	< 139	350S162	16	43	43	43	43	43	43	43	43	54	54	54	54	
			24	54	54	54	54	54	54	54	54	68	68	68	68	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Top- and middle-floor dead load is 10 psf .
Top-floor live load is 30 psf .
Middle-floor live load is 40 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(14)
32-FOOT-WIDE BUILDING SUPPORTING TWO FLOORS, ROOF AND CEILINGa, $\mathrm{b}, \mathrm{c}, \mathrm{d}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	\quad STUD$\begin{gathered}\text { SPACING } \\ \text { (inches) }\end{gathered}$ (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (pst)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	43	43	43	54	43	43	43	43	43	43	43	54
				24	54	54	54	68	54	54	54	54	54	54	54	68
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
126	110	350S162	16	43	43	43	54	43	43	43	43	43	43	43	54	
			24	54	54	54	68	54	54	54	54	54	54	54	68	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
< 139	115	350S162	16	43	43	43	54	43	43	43	43	43	43	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	68	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
-	126	350S162	16	43	43	43	54	43	43	43	43	54	54	54	54	
			24	54	54	54	68	54	54	54	54	68	68	68	68	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
-	< 139	350S162	16	43	43	43	54	43	43	54	54	54	54	54	54	
			24	54	54	54	68	54	54	54	54	68	68	68	68	
		550S162	16	43	43	43	43	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,

$$
1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa} .
$$

a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Top- and middle-floor dead load is 10 psf .
Top-floor live load is 30 psf .
Middle-floor live load is 40 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.

- d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(15)
36-FOOT-WIDE BUILDING SUPPORTING TWO FLOORS, ROOF AND CEILING ${ }^{\text {a, }}$ b, c, d

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUDSPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8 -foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	54	54	54	54	43	43	43	54	54	54	54	54
				24	68	68	68	68	54	54	54	68	68	68	68	68
		550S162	16	43	43	43	54	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
126	110	350S162	16	54	54	54	54	43	43	43	54	54	54	54	54	
			24	68	68	68	68	54	54	54	68	68	68	68	68	
		550S162	16	43	43	43	54	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
< 139	115	350S162	16	54	54	54	54	43	43	43	54	54	54	54	54	
			24	68	68	68	68	54	54	54	68	68	68	68	68	
		550S162	16	43	43	43	54	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
-	126	350S162	16	54	54	54	54	43	43	54	54	54	54	54	54	
			24	68	68	68	68	54	54	54	68	68	68	68	68	
		550S162	16	43	43	43	54	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	
-	< 139	350S162	16	54	54	54	54	54	54	54	54	54	54	54	68	
			24	68	68	68	68	54	54	68	68	68	68	68	68	
		550S162	16	43	43	43	54	43	43	43	43	43	43	43	43	
			24	54	54	54	54	54	54	54	54	54	54	54	54	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$
b. Design load assumptions:

Top- and middle-floor dead load is 10 psf .
Top-floor live load is 30 psf .
Middle-floor live load is 40 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2(16)
40-FOOT-WIDE BUILDING SUPPORTING TWO FLOORS, ROOF AND CEILING ${ }^{\text {a, }}$, , , d

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		$\begin{aligned} & \text { MEMBER } \\ & \text { SIZE } \end{aligned}$	STUD SPACING (inches)	MINIMUM STUD THICKNESS (mils)												
		8-foot Studs		9-foot Studs				10-foot Studs								
		Ground Snow Load (psf)														
Exp. B	Exp. C			20	30	50	70	20	30	50	70	20	30	50	70	
115	-		350S162	16	54	54	54	54	54	54	54	54	54	54	54	54
				24	68	68	68	68	68	68	68	68	68	68	68	68
		550S162	16	54	54	54	54	43	43	54	54	43	43	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	54	
126	110	350S162	16	54	54	54	54	54	54	54	54	54	54	54	54	
			24	68	68	68	68	68	68	68	68	68	68	68	68	
		550S162	16	54	54	54	54	43	43	54	54	43	43	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	54	
< 139	115	350S162	16	54	54	54	54	54	54	54	54	54	54	54	54	
			24	68	68	68	68	68	68	68	68	68	68	68	68	
		550S162	16	54	54	54	54	43	43	54	54	43	43	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	54	
-	126	350S162	16	54	54	54	54	54	54	54	54	54	54	54	54	
			24	68	68	68	68	68	68	68	68	68	68	68	68	
		550S162	16	54	54	54	54	43	43	54	54	43	43	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	54	
-	< 139	350S162	16	54	54	54	54	54	54	54	54	54	54	54	54	
			24	68	68	68	68	68	68	68	68	68	68	68	-	
		550S162	16	54	54	54	54	43	43	54	54	43	43	54	54	
			24	54	54	54	68	54	54	54	54	54	54	54	54	

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$,
$1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion: $L / 240$.
b. Design load assumptions:

Top and middle floor dead load is 10 psf .
Top floor live load is 30 psf .
Middle floor live load is 40 psf .
Roof/ceiling dead load is 12 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.

- d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2.1(1)
ALL BUILDING WIDTHS GABLE ENDWALLS 8,9 OR 10 FEET IN HEIGHT ${ }^{\text {a, b, }, ~ d ~}$

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		MEMBER SIZE	STUD SPACING (inches)	MINIMUM STUD THICKNESS (mils)		
Exp. B	Exp. C			8-foot Studs	9-foot Studs	10-foot Studs
115	-	350S162	16	33	33	33
			24	33	33	33
		550S162	16	33	33	33
			24	33	33	33
126	110	350S162	16	33	33	33
			24	33	33	43
		550S162	16	33	33	33
			24	33	33	33
< 139	115	350 S162	16	33	33	33
			24	33	33	43
		550S162	16	33	33	33
			24	33	33	33
-	126	350S162	16	33	33	43
			24	43	43	54
		550S162	16	33	33	33
			24	33	33	33
-	< 139	350S162	16	33	43	43
			24	43	54	54
		550S162	16	33	33	33
			24	33	33	43

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$, $1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion L/240.
b. Design load assumptions:

Ground snow load is 70 psf.
Roof/ceiling dead load is 12 psf .
Floor dead load is 10 psf .
Floor live load is 40 psf .
Attic dead load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.3.2.1(2)
ALL BUILDING WIDTHS GABLE ENDWALLS OVER 10 FEET IN HEIGHT ${ }^{\text {a, }}$ b, c, d

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		MEMBER SIZE	STUD SPACING (inches)	MINIMUM STUD THICKNESS (mils)						
		Stud Height, \boldsymbol{h} (feet)								
Exp. B	Exp. C			$10<h \leq 12$	$12<h \leq 14$	$14<h \leq 16$	$16<h \leq 18$	$18<h \leq 20$	$20<h \leq 22$	
115	-		350S162	16	33	43	68	-	-	-
		24		43	68	-	-	-	-	
		550S162	16	33	33	33	43	54	54	
			24	33	33	43	54	68	-	
126	110	350S162	16	43	54	-	-	-	-	
			24	54	-	-	-	-	-	
		550S162	16	33	33	43	54	54	68	
			24	33	43	54	54	-	-	
< 139	115	350S162	16	43	68	-	-	-	-	
			24	68	-	-	-	-	-	
		550S162	16	33	43	43	54	68	-	
			24	43	54	54	68	-	-	
-	126	350S162	16	54	-	-	-	-	-	
			24	-	-	-	-	-	-	
		550S162	16	33	43	54	54	-	-	
			24	43	54	54	-	-	-	
-	< 139	350S162	16	54	-	-	-	-	-	
			24	-	-	-	-	-	-	
		550S162	16	43	54	54	68	-	-	
			24	54	54	68	-	-	-	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$, $1 \mathrm{ksi}=1,000 \mathrm{psi}=6.895 \mathrm{MPa}$.
a. Deflection criterion $L / 240$.
b. Design load assumptions:

Ground snow load is 70 psf .
Roof/ceiling dead load is 12 psf .
Floor dead load is 10 psf .
Floor live load is 40 psf .
Attic dead load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the wall studs.

- d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

R603.3.3 Stud bracing. The flanges of cold-formed steel studs shall be laterally braced in accordance with one of the following:

1. Gypsum board on both sides, structural sheathing on both sides, or gypsum board on one side and structural sheathing on the other side of load-bearing walls with gypsum board installed with minimum No. 6 screws in accordance with Section R702 and structural sheathing installed in accordance with Section R603.9 and Table R603.3.2(1).
2. Horizontal steel straps fastened in accordance with Figure R603.3.3(1) on both sides at mid-height for 8 -foot (2438 mm) walls, and at one-third points for 9 -foot and 10 -foot (2743 mm and 3048 mm) walls.

Horizontal steel straps shall be not less than $1 \frac{1}{2}$ inches in width and 33 mils in thickness (38 mm by 0.84 mm). Straps shall be attached to the flanges of studs with one No. 8 screw. In-line blocking shall be installed between studs at the termination of straps and at 12 -foot (3658 mm) intervals along the strap. Straps shall be fastened to the blocking with two No. 8 screws.
3. Sheathing on one side and strapping on the other side fastened in accordance with Figure R603.3.3(2). Sheathing shall be installed in accordance with Item 1. Steel straps shall be installed in accordance with Item 2.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
FIGURE R603.3.3(1)
STUD BRACING WITH STRAPPING ONLY

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
FIGURE R603.3.3(2)
STUD BRACING WITH STRAPPING AND SHEATHING MATERIAL

For SI: 1 inch $=25.4 \mathrm{~mm}$
FIGURE R603.3.5
TRACK SPLICE

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R603.4
CORNER FRAMING

R603.3.4 Cutting and notching. Flanges and lips of coldformed steel studs and headers shall not be cut or notched.
R603.3.5 Splicing. Steel studs and other structural members shall not be spliced. Tracks shall be spliced in accordance with Figure R603.3.5.
R603.4 Corner framing. In exterior walls, corner studs and the top tracks shall be installed in accordance with Figure R603.4.
R603.5 Exterior wall covering. The method of attachment of exterior wall covering materials to cold-formed steel stud wall framing shall conform to the manufacturer's installation instructions.

R603.6 Headers. Headers shall be installed above all wall openings in exterior walls and interior load-bearing walls. Box beam headers and back-to-back headers each shall be formed from two equal sized C -shaped members in accordance with Figures R603.6(1) and R603.6(2), respectively, and Tables R603.6(1) through R603.6(6). L-shaped headers shall be permitted to be constructed in accordance with AISI S230. Alternately, headers shall be permitted to be designed and constructed in accordance with AISI S100, Section D4.

R603.6.1 Headers in gable endwalls. Box beam and back-to-back headers in gable endwalls shall be permitted to be constructed in accordance with Section R603.6 or with the header directly above the opening in accordance with Figures R603.6.1(1) and R603.6.1(2) and the following provisions:

1. Two 362S162-33 for openings less than or equal to 4 feet (1219 mm).
2. Two 600S162-43 for openings greater than 4 feet $(1219 \mathrm{~mm})$ but less than or equal to 6 feet (1830 mm).
3. Two 800S162-54 for openings greater than 6 feet $(1829 \mathrm{~mm})$ but less than or equal to 9 feet (2743 mm).

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R603.6(1)
BOX BEAM HEADER

For SI: 1 inch $=25.4 \mathrm{~mm}$.

TABLE R603.6(1)
BOX-BEAM AND BACK-TO-BACK HEADER SPANS Headers Supporting Roof and Ceiling Only ${ }^{\text {a, }}, \mathrm{d}$

MEMBER DESIGNATION	GROUND SNOW LOAD (20 psf)					GROUND SNOW LOAD ($\mathbf{3 0} \mathrm{psf}$)				
	Building width ${ }^{\text {c }}$ (feet)					Building width ${ }^{\text {c }}$ (feet)				
	24	28	32	36	40	24	28	32	36	40
2-350S162-33	$3^{\prime}-3$ "	$2^{\prime}-8{ }^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	-	-	2'-8"	$2^{\prime}-2^{\prime \prime}$	-	-	-
2-350S162-43	4'-2"	3'-9"	3'-4"	$2^{\prime}-11^{\prime \prime}$	2'-7"	3'-9"	$3^{\prime}-4^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	2'-7"	$2^{\prime}-2^{\prime \prime}$
2-350S162-54	$6^{\prime}-2^{\prime \prime}$	5'-10"	$5^{\prime}-8^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	5'-11'	5'-8"	$5^{\prime}-2^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$
2-350S162-68	$6^{\prime}-7{ }^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$5^{\prime}-10^{\prime \prime}$	5'-8"	$6^{\prime}-4{ }^{\prime \prime}$	6'-1"	$5^{\prime}-10^{\prime \prime}$	5'-8"	5'-6"
2-550S162-33	4'-8"	$4^{\prime}-0^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	4'-1"	$3^{\prime}-6^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	-
2-550S162-43	$6^{\prime}-0^{\prime \prime}$	5'-4"	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-4^{\prime \prime}$	3'-11"	5'-5"	$4^{\prime}-10^{\prime \prime}$	4'-4"	3'-10"	$3^{\prime}-5{ }^{\prime \prime}$
2-550S162-54	8'-9"	$8^{\prime}-5 \prime \prime$	$8^{\prime}-1{ }^{\prime \prime}$	7'-9"	$7^{\prime}-3^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	$8^{\prime}-1^{\prime \prime}$	$7^{\prime}-8{ }^{\prime \prime}$	$7^{\prime}-2^{\prime \prime}$	$6^{\prime}-8{ }^{\prime \prime}$
2-550S162-68	9'-5"	$9^{\prime}-0{ }^{\prime \prime}$	$8^{\prime}-8^{\prime \prime}$	$8^{\prime}-4^{\prime \prime}$	$8^{\prime}-1{ }^{\prime \prime}$	$9^{\prime}-1{ }^{\prime \prime}$	$8^{\prime}-8^{\prime \prime}$	8'-4"	8'-1"	7'-10"
2-800S162-33	4'-5"	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-5^{\prime \prime}$	$3^{\prime}-1{ }^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	$3^{\prime}-1{ }^{\prime \prime}$	2'-9"	$2^{\prime}-3^{\prime \prime}$
2-800S162-43	7'-3"	$6^{\prime}-7{ }^{\prime \prime}$	5'-11"	5'-4"	$4^{\prime}-10^{\prime \prime}$	$6^{\prime}-7{ }^{\prime \prime}$	5'-11"	5'-4"	4'-9"	4'-3"
2-800S162-54	10'-10'	$10^{\prime}-2^{\prime \prime}$	9'-7"	$9^{\prime}-0^{\prime \prime}$	8'-5"	10'-2'	9'-7'	8'-11'	8'-4'	7'-9"
2-800S162-68	$12^{\prime}-8^{\prime \prime}$	11'-10"	11'-2"	10'-7"	$10^{\prime}-1{ }^{\prime \prime}$	11'-11"	11'-2"	10'-7"	$10^{\prime}-0^{\prime \prime}$	$9^{\prime}-6^{\prime \prime}$
2-1000S162-43	$7^{\prime}-10^{\prime \prime}$	$6^{\prime}-10^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	5'-6"	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	6'-1"	5'-5"	$4^{\prime}-11^{\prime \prime}$	4'-6"
2-1000S162-54	12'-3"	11'-5"	10'-9"	10'-2"	9'-6"	11'-6"	10'-9"	10'-1"	9'-5"	$8^{\prime}-9{ }^{\prime \prime}$
2-1000S162-68	14'-5"	13'-5"	12'-8"	$12^{\prime}-0^{\prime \prime}$	11'-6"	13'-6"	12'-8"	$12^{\prime}-0^{\prime \prime}$	11'-5"	$10^{\prime}-10^{\prime \prime}$
2-1200S162-54	12'-11"	11'-3"	$10^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	11'-5"	$10^{\prime}-0^{\prime \prime}$	9'-0"	$8^{\prime}-1^{\prime \prime}$	7'-4"
2-1200S162-68	15'-11'	14'-10'	$14^{\prime}-0^{\prime \prime}$	13'-4"	12'-8"	15'-0'	$14^{\prime}-0^{\prime \prime}$	13'-3'	12'-7"	11'-11"

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square inch $=6.895 \mathrm{kPa}$.
a. Deflection criteria: $L / 360$ for live loads, $L / 240$ for total loads.
b. Design load assumptions:

Roof/ceiling dead load is 12 psf .
Attic dead load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the header.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses

WALL CONSTRUCTION

TABLE R603.6(2)
BOX-BEAM AND BACK-TO-BACK HEADER SPANS Headers Supporting Roof and Ceiling Only $\mathrm{a}, \mathrm{b}, \mathrm{d}$

MEMBER DESIGNATION	GROUND SNOW LOAD (50 psf)					GROUND SNOW LOAD (70 psf)				
	Building width ${ }^{\text {c }}$ (feet)					Building width ${ }^{\text {c }}$ (feet)				
	24	28	32	36	40	24	28	32	36	40
2-350S162-33	-	-	-	-	-	-	-	-	-	-
2-350S162-43	$2^{\prime}-4^{\prime \prime}$	-	-	-	-	-	-	-	-	-
2-350S162-54	$4^{\prime}-8^{\prime \prime}$	4'-2"	$3^{\prime}-9^{\prime \prime}$	3'-5"	$3^{\prime}-1{ }^{\prime \prime}$	3'-7"	$3^{\prime}-2^{\prime \prime}$	2'-9"	$2^{\prime}-5^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$
2-350S162-68	5'-7"	5'-2"	4'-9"	$4^{\prime}-4 \prime$	3'-11"	4'-7"	$4^{\prime}-1$ '	3'-7"	$3^{\prime}-2^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$
2-550S162-33	$2^{\prime}-2^{\prime \prime}$	-	-	-	-	-	-	-	-	-
2-550S162-43	$3^{\prime}-8^{\prime \prime}$	$3^{\prime}-1{ }^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	-	-	2'-3"	-	-	-	-
2-550S162-54	6'-11"	$6^{\prime}-3^{\prime \prime}$	5'-9"	5'-3'	4'-9"	5'-6"	$4^{\prime}-11^{\prime \prime}$	4'-5"	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-5^{\prime \prime}$
2-550S162-68	$8^{\prime}-0^{\prime \prime}$	7'-6"	$6^{\prime}-11^{\prime \prime}$	$6^{\prime}-5^{\prime \prime}$	5'-11"	6'-9'	$6^{\prime}-1{ }^{\prime \prime}$	5'-6"	5'-0"	4'-7"
2-800S162-33	2'-7"	-	-	-	-	-	-	-	-	-
2-800S162-43	4'-6"	3'-9"	3'-1"	2'-5"	-	$2^{\prime}-10^{\prime \prime}$	-	-	-	-
2-800S162-54	$8^{\prime}-0^{\prime \prime}$	7'-3"	$6^{\prime}-8^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	5'-7"	$6^{\prime}-5^{\prime \prime}$	5'-9"	5'-1"	$4^{\prime}-7{ }^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$
2-800S162-68	9'-9"	$9^{\prime}-0{ }^{\prime \prime}$	$8^{\prime}-3^{\prime \prime}$	7'-8"	7'-1"	$8^{\prime}-0^{\prime \prime}$	7'-3'	6'-7"	$6^{\prime}-0^{\prime \prime}$	5'-6"
2-1000S162-43	$4^{\prime}-8^{\prime \prime}$	$4^{\prime}-1{ }^{\prime \prime}$	3'-6"	2'-9"	-	3'-3"	$2^{\prime}-2^{\prime \prime}$	-	-	-
2-1000S162-54	$9^{\prime}-1{ }^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	7'-3'	6'-7"	$6^{\prime}-0^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	6'-2"	5'-6"	$5^{\prime}-0^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$
2-1000S162-68	11'-1"	$10^{\prime}-2^{\prime \prime}$	9'-5"	8'-8"	$8^{\prime}-1{ }^{\prime \prime}$	9'-1"	8'-3"	7'-6"	$6^{\prime}-10^{\prime \prime}$	6'-3'
2-1200S162-54	7'-8"	$6^{\prime}-9^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$	5'-6"	$5^{\prime}-0^{\prime \prime}$	5'-10"	$5^{\prime}-1^{\prime \prime}$	4'-7"	$4^{\prime}-1{ }^{\prime \prime}$	$3^{\prime}-9^{\prime \prime}$
2-1200S162-68	$12^{\prime}-3^{\prime \prime}$	11'-3"	$10^{\prime}-4^{\prime \prime}$	9'-7"	8'-11"	10'-1'	9'-1"	$8^{\prime}-3^{\prime \prime}$	$7^{\prime}-6^{\prime \prime}$	6'-10"

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square inch $=6.895 \mathrm{kPa}$.
a. Deflection criteria: $L / 360$ for live loads, $L / 240$ for total loads.
b. Design load assumptions:

Roof/ceiling dead load is 12 psf .
Attic dead load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the header.

- d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.6(3)
BOX-BEAM AND BACK-TO-BACK HEADER SPANS Headers Supporting One Floor, Roof and Ceiling ${ }^{\text {a, }}$, , d

MEMBER DESIGNATION	GROUND SNOW LOAD (20 psf)					GROUND SNOW LOAD (30 psf)				
	Building width ${ }^{\text {c }}$ (feet)					Building width ${ }^{\text {c }}$ (feet)				
	24	28	32	36	40	24	28	32	36	40
2-350S162-33	-	-	-	-	-	-	-	-	-	-
2-350S162-43	$2^{\prime}-2^{\prime \prime}$	-	-	-	-	$2^{\prime}-1$ '	-	-	-	-
2-350S162-54	$4^{\prime}-4 \prime \prime$	$3^{\prime}-10^{\prime \prime}$	3'-5"	$3^{\prime}-1{ }^{\prime \prime}$	2'-9"	4'-3'	$2^{\prime \prime}-9{ }^{\prime \prime}$	3'-4"	$3^{\prime}-0^{\prime \prime}$	2'-8"
2-350S162-68	$5^{\prime}-0^{\prime \prime}$	4'-9"	4'-7"	4'-2"	3'-9"	$4^{\prime}-11^{\prime \prime}$	4'-8"	$4^{\prime}-6{ }^{\prime \prime}$	$4^{\prime}-1^{\prime \prime}$	$3^{\prime}-9^{\prime \prime}$
2-550S162-33	-	-	-	-	-	-	-	-	-	-
2-550S162-43	3'-5"	$2^{\prime}-9^{\prime \prime}$	$2^{\prime}-1$ "	-	-	$3^{\prime}-3^{\prime \prime}$	2'-7'	-	-	-
2-550S162-54	6'-6"	5'-10"	5'-3"	4'-9"	$4^{\prime}-4{ }^{\prime \prime}$	6'-4"	5'-9"	5'-2"	$4^{\prime}-8^{\prime \prime}$	4'-3"
2-550S162-68	$7^{\prime}-2^{\prime \prime}$	$6^{\prime}-10^{\prime \prime}$	$6^{\prime}-5^{\prime \prime}$	5'-11"	5'-6"	$7^{\prime}-0^{\prime \prime}$	$6^{\prime}-9{ }^{\prime \prime}$	$6^{\prime}-4 \prime \prime$	$5^{\prime}-10^{\prime \prime}$	5'-4'
2-800S162-33	2'-1"	-	-	-	-	-	-	-	-	-
2-800S162-43	4'-2"	3'-4"	2'-7"	-	-	4'-0'	3'-3'	2'-5"	-	-
2-800S162-54	7'-6"	6'-9"	$6^{\prime}-2^{\prime \prime}$	5'-7'	$5^{\prime}-0^{\prime \prime}$	7'-5"	$6^{\prime}-8^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	5'-5"	$4^{\prime}-11^{\prime \prime}$
2-800S162-68	9'-3'	8'-5"	7'-8"	7'-1'	$6^{\prime}-6{ }^{\prime \prime}$	9'-1"	$8^{\prime}-3^{\prime \prime}$	7'-7"	7'0"	$6^{\prime}-5{ }^{\prime \prime}$
2-1000S162-43	4'-4"	3'-9"	$2^{\prime}-11^{\prime \prime}$	-	-	4'-3'	$3^{\prime}-8{ }^{\prime \prime}$	2'-9"	-	-
2-1000S162-54	$8^{\prime}-6^{\prime \prime}$	7'-6"	$6^{\prime}-8{ }^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	5'-5"	$8^{\prime}-4^{\prime \prime}$	7'-4'	$6^{\prime}-6^{\prime \prime}$	$5^{\prime}-10^{\prime \prime}$	5'-4'
2-1000S162-68	10'-6"	9'-7"	8'-9"	$8^{\prime}-0^{\prime \prime}$	7'-5"	10'-4'	9'-5'	8'-7"	7'-11'	7'-3'
2-1200S162-54	$7^{\prime}-1{ }^{\prime \prime}$	6'-2"	5'-6"	$5^{\prime}-0^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	5'-5"	$4^{\prime}-10^{\prime \prime}$	4'-5"
2-1200S162-68	11'-7"	10'-7"	9'-8'	8'-11'	$8^{\prime}-2^{\prime \prime}$	11'-5"	10'-5"	9'-6"	8'-9"	$8^{\prime}-0^{\prime \prime}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square inch $=6.895 \mathrm{kPa}$.
a. Deflection criteria: $L / 360$ for live loads, $L / 240$ for total loads.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Roof/ceiling dead load is 12 psf .
Second-floor live load is 30 psf .
Attic dead load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the header.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

WALL CONSTRUCTION

TABLE R603.6(4)
BOX-BEAM AND BACK-TO-BACK HEADER SPANS Headers Supporting One Floor, Roof and Ceiling ${ }^{\text {a, }}$,, d

MEMBER DESIGNATION	GROUND SNOW LOAD (50 psf)					GROUND SNOW LOAD (70 psf)				
	Building width ${ }^{\text {c }}$ (feet)					Building width ${ }^{\text {c }}$ (feet)				
	24	28	32	36	40	24	28	32	36	40
2-350S162-33	-	-	-	-	-	-	-	-	-	-
2-350S162-43	-	-	-	-	-	-	-	-	-	-
2-350S162-54	3'-5"	$3^{\prime \prime}-0^{\prime \prime}$	2'-7"	$2^{\prime}-2^{\prime \prime}$	-	$2^{\prime}-8{ }^{\prime \prime}$	2'-2"	-	-	-
2-350S162-68	4'-6"	4'-1'	3'-8"	$3^{\prime}-3$ "	$2^{\prime}-11^{\prime \prime}$	3'-9'	3'-3'	$2^{\prime}-10^{\prime \prime}$	2'-5"	$2^{\prime}-1$ '
2-550S162-33	-	-	-	-	-	-	-	-	-	-
2-550S162-43	$2^{\prime}-0^{\prime \prime}$	-	-	-	-	-	-	-	-	-
2-550S162-54	5'-3"	$3^{\prime}-8{ }^{\prime \prime}$	4'-1"	$3^{\prime}-8{ }^{\prime \prime}$	3'-2"	4'-3"	3'-8'	$3^{\prime}-1{ }^{\prime \prime}$	2'-7"	$2^{\prime}-0 \prime \prime$
2-550S162-68	6'-5"	$5^{\prime}-10^{\prime \prime}$	5'-3'	4'-9"	$4^{\prime}-4{ }^{\prime \prime}$	5'-5'	4'-9"	$4^{\prime}-3$ ' ${ }^{\prime \prime}$	3'-9"	3'-4'
2-800S162-33	-	-	-	-	-	-	-	-	-	-
2-800S162-43	2'-6"	-	-	-	-	-	-	-	-	-
2-800S162-54	6'-1"	5'-5'	$4^{\prime}-10^{\prime \prime}$	4'-3'	$3^{\prime}-9{ }^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	4'-3"	$3^{\prime}-8{ }^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	2'-5"
2-800S162-68	7'-8'	6'-11'	$6^{\prime}-3^{\prime \prime}$	5'-9"	5'-2"	6'-5'	5'-9"	5'-1"	4'-6"	$4^{\prime}-0^{\prime \prime}$
2-1000S162-43	$2^{\prime}-10^{\prime \prime}$	-	-	-	-	-	-	-	-	-
2-1000S162-54	6'-7"	$5^{\prime}-10^{\prime \prime}$	5'-3'	4'-9"	$4^{\prime}-3{ }^{\prime \prime}$	5'-4'	4'-9' ${ }^{\prime \prime}$	$4^{\prime}-1{ }^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	2'-9"
2-1000S162-68	8'-8"	7'-10'	7'-2'	6'-6"	5'-11"	7'-4"	$6^{\prime}-6^{\prime \prime}$	5'-9"	5'-1"	4'-6"
2-1200S162-54	5'-6"	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-4 \prime \prime$	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-7{ }^{\prime \prime}$	4'-5"	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	3'-2"	$2^{\prime}-11^{\prime \prime}$
2-1200S162-68	9'-7"	8'-8"	7'-11'	7'-2'	6'-6"	$8^{\prime}-1{ }^{\prime \prime}$	7'-2'	$6^{\prime}-4^{\prime \prime}$	5'-8"	$5^{\prime}-0^{\prime \prime}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square inch $=6.895 \mathrm{kPa}$.
a. Deflection criteria: $L / 360$ for live loads, $L / 240$ for total loads.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Roof/ceiling dead load is 12 psf .
Second-floor live load is 30 psf .
Attic dead load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the header
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.6(5)
BOX-BEAM AND BACK-TO-BACK HEADER SPANS Headers Supporting Two Floors, Roof and Ceiling ${ }^{\text {a, }}$, d

MEMBER DESIGNATION	GROUND SNOW LOAD (20 psf)					GROUND SNOW LOAD (30 psf)				
	Building width ${ }^{\text {c }}$ (feet)					Building width ${ }^{\text {c }}$ (feet)				
	24	28	32	36	40	24	28	32	36	40
2-350S162-33	-	-	-	-	-	-	-	-	-	-
2-350S162-43	-	-	-	-	-	-	-	-	-	-
2-350S162-54	2'-5"	-	-	-	-	$2^{\prime}-4^{\prime \prime}$	-	-	-	-
2-350S162-68	$3^{\prime}-6{ }^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{\prime}-1{ }^{\prime \prime}$	-	3'-5'	$2^{\prime}-11^{\prime \prime}$	2'-6"	$2^{\prime}-0^{\prime \prime}$	-
2-550S162-33	-	-	-	-	-	-	-	-	-	-
2-550S162-43	-	-	-	-	-	-	-	-	-	-
2-550S162-54	$3^{\prime}-11^{\prime \prime}$	3'-3"	$2^{\prime}-8{ }^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	-	$3^{\prime}-10^{\prime \prime}$	3'-3"	2'-7"	-	-
2-550S162-68	5'-1'	4'-5"	3'-10"	$3^{\prime}-3$ "	2'-9"	5'-0'	4'-4"	3'-9"	3'-3'	2'-9"
2-800S162-33	-	-	-	-	-	-	-	-	-	-
2-800S162-43	-	-	-	-	-	-	-	-	-	-
2-800S162-54	4'-7'	3'-10"	3'-1'	2'-5"	-	4'-6"	3'-9"	3'-0"	2'-4"	-
2-800S162-68	6'-0'	5'-3'	4'-7"	3'-11'	3'-4"	$6^{\prime}-0^{\prime \prime}$	5'-2"	$4^{\prime}-6{ }^{\prime \prime}$	3'-11"	3'-3"
2-1000S162-43	-	-	-	-	-	-	-	-	-	-
2-1000S162-54	5'-0"	4'-4"	3'-6"	2'-9"	-	$4^{\prime}-11^{\prime \prime}$	4'-3"	3'-5"	2'-7"	-
2-1000S162-68	6'-10"	$6^{\prime}-0^{\prime \prime}$	5'-3"	4'-6"	3'-10"	$6^{\prime}-9{ }^{\prime \prime}$	5'-11"	5'-2'	4'-5"	3'-9"
2-1200S162-54	4'-2"	3'-7'	$3^{\prime}-3$ "	$2^{\prime}-11^{\prime \prime}$	-	$4^{\prime}-1{ }^{\prime \prime}$	3'-7"	$3^{\prime}-2{ }^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	-
2-1200S162-68	7'-7'	6'-7'	5'-9"	5'-0'	$4^{\prime}-2^{\prime \prime}$	7'-6"	6'-6"	5'-8"	$4^{\prime}-10^{\prime \prime}$	4'-1'

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square inch $=6.895 \mathrm{kPa}$.
a. Deflection criteria: $L / 360$ for live loads, $L / 240$ for total loads.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Roof/ceiling dead load is 12 psf .
Second-floor live load is 40 psf
Third-floor live load is 30 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the header.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

TABLE R603.6(6)
BOX-BEAM AND BACK-TO-BACK HEADER SPANS Headers Supporting Two Floors, Roof and Ceiling ${ }^{\text {a, }}$ b, d

MEMBER DESIGNATION	GROUND SNOW LOAD (50 psf)					GROUND SNOW LOAD (70 psf)				
	Building width ${ }^{\text {c }}$ (feet)					Building width ${ }^{\text {c }}$ (feet)				
	24	28	32	36	40	24	28	32	36	40
2-350S162-33	-	-	-	-	-	-	-	-	-	-
2-350S162-43	-	-	-	-	-	-	-	-	-	-
2-350S162-54	2'-2"	-	-	-	-	-	-	-	-	-
2-350S162-68	3'-3'	2'-9"	$2^{\prime}-3 \prime \prime$	-	-	$2^{\prime}-11^{\prime \prime}$	$2^{\prime}-5^{\prime \prime}$	-	-	-
2-550S162-33	-	-	-	-	-	-	-	-	-	-
2-550S162-43	-	-	-	-	-	-	-	-	-	-
2-550S162-54	3'-7"	2'-11"	$2^{\prime}-3^{\prime \prime}$	-	-	$3^{\prime}-3^{\prime \prime}$	2'-7"	-	-	-
2-550S162-68	4'-9"	$2^{\prime}-1{ }^{\prime \prime}$	$3^{\prime}-6{ }^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-5^{\prime \prime}$	4'-4"	3'-9"	3'-2"	$2^{\prime}-8{ }^{\prime \prime}$	2'-1"
2-800S162-33	-	-	-	-	-	-	-	-	-	-
2-800S162-43	-	-	-	-	-	-	-	-	-	-
2-800S162-54	4'-3'	3'-5"	$2^{\prime}-8{ }^{\prime \prime}$	-	-	3'-9"	$3^{\prime}-0{ }^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	-	-
2-800S162-68	$5^{\prime}-8^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$3^{\prime}-7{ }^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	$2^{\prime}-7{ }^{\prime \prime}$
2-1000S162-43	-	-	-	-	-	-	-	-	-	-
2-1000S162-54	4'-8"	3'-11"	$3^{\prime}-1{ }^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	-	4'-3"	3'-5"	2'-7"	-	-
2-1000S162-68	$6^{\prime}-5^{\prime \prime}$	5'-7"	$4^{\prime}-9^{\prime \prime}$	$4^{\prime}-1{ }^{\prime \prime}$	3'-4"	5'-11"	5'-1"	4'-5"	3'-8"	$2^{\prime}-11^{\prime \prime}$
2-1200S162-54	3'-11"	$3^{\prime}-5^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-4^{\prime \prime}$	-	3'-7"	3'-2"	$2^{\prime}-10^{\prime \prime}$	-	-
2-1200S162-68	7'-1'	6'-2"	5'-3'	$4^{\prime}-6{ }^{\prime \prime}$	$3^{\prime}-8^{\prime \prime}$	6'-6"	5'-8"	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per square inch $=6.895 \mathrm{kPa}$.
a. Deflection criteria: $L / 360$ for live loads, $L / 240$ for total loads.
b. Design load assumptions:

Second-floor dead load is 10 psf .
Roof/ceiling dead load is 12 psf .
Second-floor live load is 40 psf
Third-floor live load is 30 psf .
Attic live load is 10 psf .
c. Building width is in the direction of horizontal framing members supported by the header.
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

R603.7 Jack and king studs. The number of jack and king studs installed on each side of a header shall comply with Table R603.7(1). King, jack and cripple studs shall be of the same dimension and thickness as the adjacent wall studs. Headers shall be connected to king studs in accordance with Table R603.7(2) and the following provisions:

1. For box beam headers, one-half of the total number of required screws shall be applied to the header and onehalf to the king stud by use of C-shaped or track member in accordance with Figure R603.6(1). The track or C-shaped sections shall extend the depth of the header minus $1 / 2$ inch (12.7 mm) and shall have a minimum thickness not less than that of the wall studs.
2. For back-to-back headers, one-half the total number of screws shall be applied to the header and one-half to the king stud by use of a minimum 2-inch by 2 -inch (51 mm by 51 mm) clip angle in accordance with Figure R603.6(2). The clip angle shall extend the depth of the header minus $\frac{1}{2}$ inch (12.7 mm) and shall have a minimum thickness not less than that of the wall studs. Jack
and king studs shall be interconnected with structural sheathing in accordance with Figures R603.6(1) and R603.6(2).

FIGURE R603.6.1(1)
BOX BEAM HEADER IN GABLE ENDWALL

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R603.6.1(2)
BACK-TO-BACK HEADER IN GABLE ENDWALL

TABLE R603.7(1)
TOTAL NUMBER OF JACK AND KING STUDS REQUIRED AT EACH END OF AN OPENING

SIZE OF OPENING (feet-inches)	24-INCH O.C. STUD SPACING		16-INCH O.C. STUD SPACING	
	No. of jack studs	No. of king studs	No. of jack studs	No. of king studs
Up to $3^{\prime}-6^{\prime \prime}$	1	1	1	1
$>3^{\prime}-6^{\prime \prime}$ to $5^{\prime}-0^{\prime \prime}$	1	2	2	2
$>5^{\prime}-0^{\prime \prime}$ to $5^{\prime}-6^{\prime \prime}$	1	2	2	2
$>5^{\prime}-6^{\prime \prime}$ to $8^{\prime}-0^{\prime \prime}$	1	2	2	2
$>8^{\prime}-0^{\prime \prime}$ to $10^{\prime}-6^{\prime \prime}$	2	2	3	3
$>10^{\prime}-6^{\prime \prime}$ to $12^{\prime}-0^{\prime \prime}$	2	2	3	3
$>12^{\prime}-0^{\prime \prime}$ to $13^{\prime}-0^{\prime \prime}$	2	3	3	3
$>13^{\prime}-0^{\prime \prime}$ to $14^{\prime}-0^{\prime \prime}$	2	3	3	3
$>14^{\prime}-0^{\prime \prime}$ to $16^{\prime}-0^{\prime \prime}$	2	3	4	4
$>16^{\prime}-0^{\prime \prime}$ to $18^{\prime}-0^{\prime \prime}$	3	3	4	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.

TABLE R603.7(2)
HEADER TO KING STUD CONNECTION REQUIREMENTS ${ }^{\text {a, }, ~ b, ~ c, ~ d ~}$

HEADER SPAN (feet)	ULTIMATE WIND SPEED (mph), EXPOSURE CATEGORY	
	110, Exposure Category C or less than 139, Exposure Category B	Less than 139, Exposure Category C
$\leq 4^{\prime}$	4-No. 8 screws	6-No. 8 screws
$>4^{\prime}$ to 8^{\prime}	4-No. 8 screws	8-No. 8 screws
$>8^{\prime}$ to 12^{\prime}	6-No. 8 screws	10-No. 8 screws
$>12^{\prime}$ to 16^{\prime}	8-No. 8 screws	12-No. 8 screws

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound $=4.448 \mathrm{~N}$.
a. All screw sizes shown are minimum.
b. For headers located on the first floor of a two-story building or the first or second floor of a three-story building, the total number of screws is permitted to be reduced by 2 screws, but the total number of screws shall not be less than four.
c. For roof slopes of $6: 12$ or greater, the required number of screws shall be permitted to be reduced by half, but the total number of screws shall not be less than four.
d. Screws can be replaced by an uplift connector that has a capacity of the number of screws multiplied by 164 pounds.

R603.8 Head and sill track. Head track spans above door and window openings and sill track spans beneath window openings shall comply with Table R603.8. For openings less than 4 feet (1219 mm) in height that have both a head track and a sill track, multiplying the spans by 1.75 shall be permit-
ted in Table R603.8. For openings less than or equal to 6 feet $(1829 \mathrm{~mm})$ in height that have both a head track and a sill track, multiplying the spans in Table R603.8 by 1.50 shall be permitted.

TABLE R603.8
HEAD AND SILL TRACK SPAN

ULTIMATE WIND SPEED AND EXPOSURE CATEGORY (mph)		ALLOWABLE HEAD AND SILL TRACK SPAN ${ }^{\text {a, b, }}$ (feet-inches)					
		TRACK DESIGNATION ${ }^{\text {d }}$					
B	C	350T125-33	350T125-43	350T125-54	550T125-33	550T125-43	550T125-54
115	-	$4^{\prime}-10^{\prime \prime}$	$5^{\prime}-5^{\prime \prime}$	$6^{\prime}-0{ }^{\prime \prime}$	5'-8"	6'-3"	$6^{\prime}-10^{\prime \prime}$
126	110	$4^{\prime}-6{ }^{\prime \prime}$	5'-1"	$5^{\prime}-8^{\prime \prime}$	5'-4"	$5^{\prime}-11^{\prime \prime}$	6'-5"
< 139	115	$4^{\prime}-2^{\prime \prime}$	4'-9"	5'-4"	$5^{\prime}-1{ }^{\prime \prime}$	5'-7"	$6^{\prime}-1{ }^{\prime \prime}$
-	126	$3^{\prime}-11^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$5^{\prime}-0{ }^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	5'-4"	$5^{\prime}-10^{\prime \prime}$
-	< 139	$3^{\prime}-8^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$4^{\prime}-9{ }^{\prime \prime}$	$4^{\prime}-1^{\prime \prime}$	5'-1"	5'-7'

- For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. Deflection limit: $L / 240$.
- b. Head and sill track spans are based on components and cladding wind pressures and 48 -inch tributary span.
c. For openings less than 4 feet in height that have both a head track and sill track, the spans are permitted to be multiplied by 1.75 . For openings less than or equal to 6 feet in height that have both a head track and a sill track, the spans are permitted to be multiplied by a factor of 1.5 .
d. Minimum Grade 33 ksi steel shall be used for 33 mil and 43 mil thicknesses. Minimum Grade 50 ksi steel shall be used for 54 and 68 mil thicknesses.

R603.9 Structural sheathing. Structural sheathing shall be installed in accordance with Figure R603.9 and this section on all sheathable exterior wall surfaces, including areas above and below openings.

R603.9.1 Sheathing materials. Structural sheathing panels shall consist of minimum ${ }^{7} / 16$-inch-thick (11 mm) oriented strand board or ${ }^{15} / 32$-inch-thick $(12 \mathrm{~mm})$ plywood.
R603.9.2 Determination of minimum length of fullheight sheathing. The minimum length of full-height sheathing on each braced wall line shall be determined by multiplying the length of the braced wall line by the percentage obtained from Table R603.9.2(1) and by the plan aspect-ratio adjustment factors obtained from Table R603.9.2(2). The minimum length of full-height sheathing shall be not less than 20 percent of the braced wall line length.

To be considered full-height sheathing, structural sheathing shall extend from the bottom to the top of the wall without interruption by openings. Only sheathed, fullheight wall sections, uninterrupted by openings, which are not less than 48 inches (1219 mm) wide, shall be counted toward meeting the minimum percentages in Table R603.9.2(1). In addition, structural sheathing shall comply with all of the following requirements:

1. Be installed with the long dimension parallel to the stud framing and shall cover the full vertical height of wall from the bottom of the bottom track to the top of the top track of each story. Installing the long dimension perpendicular to the stud framing or using shorter segments shall be permitted provided that the horizontal joint is blocked as described in Item 2.
2. Be blocked where the long dimension is installed perpendicular to the stud framing. Blocking shall be not less than $33 \mathrm{mil}(0.84 \mathrm{~mm})$ thickness. Each hori-
zontal structural sheathing panel shall be fastened with No. 8 screws spaced at 6 inches $(152 \mathrm{~mm})$ on center to the blocking at the joint.
3. Be applied to each end (corners) of each of the exterior walls with a minimum 48-inch-wide (1219 mm) panel.
Exception: Where stone or masonry veneer is installed, the required length of full-height sheathing and overturning anchorage required shall be determined in accordance with Section R603.9.5.

R603.9.2.1 Full height sheathing. The minimum percentage of full-height structural sheathing shall be multiplied by 1.10 for 9 -foot-high (2743 mm) walls and multiplied by 1.20 for 10 -foot-high (3048 mm) walls.
R603.9.2.2 Full-height sheathing in lowest story. In the lowest story of a dwelling, multiplying the percentage of full-height sheathing required in Table R603.9.2(1) by 0.6 shall be permitted provided holddown anchors are provided in accordance with Section R603.9.4.2.

FIGURE R603.9
STRUCTURAL SHEATHING FASTENING PATTERN

R603.9.3 Structural sheathing fastening. Edges and interior areas of structural sheathing panels shall be fastened to framing members and tracks in accordance with Figure R603.9 and Table R603.3.2(1). Screws for attachment of structural sheathing panels shall be bugle-head, flat-head, or similar head style with a minimum head diameter of 0.29 inch (8 mm).

For continuously sheathed braced wall lines using wood structural panels installed with No. 8 screws spaced 4 inches (102 mm) on center at all panel edges and 12 inches (304.8 mm) on center on intermediate framing members, the following shall apply:

1. Multiplying the percentages of full-height sheathing in Table R603.9.2(1) by 0.72 shall be permitted.
2. For bottom track attached to foundations or framing below, the bottom track anchor or screw connection spacing in Tables R505.3.1(1) and R603.3.1 shall be multiplied by two-thirds

R603.9.4 Uplift connection requirements. Uplift connections shall be provided in accordance with this section.

R603.9.4.1 Ultimate design wind speeds greater than 126 mph . Where ultimate design wind speeds exceed 126 miles per hour ($56 \mathrm{~m} / \mathrm{s}$), Exposure Category C walls shall be provided with direct uplift connections in accordance with AISI S230, Section E13.3, and AISI S230, Section F7.2, as required for 139 miles per hour ($62 \mathrm{~m} / \mathrm{s}$), Exposure Category C.
R603.9.4.2 Hold-down anchor. Where the percentage of full-height sheathing is adjusted in accordance with Section R603.9.2.2, a hold-down anchor, with a strength of 4,300 pounds (19 kN), shall be provided at each end of each full-height sheathed wall section used to meet the minimum percent sheathing requirements of Section R603.9.2. Hold-down anchors shall be attached to back-to-back studs; structural sheathing panels shall have edge fastening to the studs, in accordance with Section R603.9.3 and AISI S230, Table E11-1.

A single hold-down anchor, installed in accordance with Figure R603.9.4.2, shall be permitted at the corners of buildings.

TABLE R603.9.2(1)
MINIMUM PERCENTAGE OF FULL-HEIGHT STRUCTURAL SHEATHING ON EXTERIOR WALLS ${ }^{\mathrm{a}, \mathrm{b}}$

WALL SUPPORTING	ROOF SLOPE	ULTIMATE WIND SPEED AND EXPOSURE				
		115 B	126 B	< 139 B	126 C	< 139 C
			110 C	115 C		
Roof and ceiling only (one story or top floor of two- or three-story building).	3:12	9	9	12	16	20
	6:12	13	15	20	26	35
	9:12	23	25	30	50	58
	12:12	33	35	40	66	75
One story, roof and ceiling (first floor of a two-story building or second floor of a three-story building).	3:12	27	30	35	50	66
	6:12	28	30	40	58	74
	9:12	38	40	55	74	91
	12:12	45	50	65	100	115
Two stories, roof and ceiling (first floor of a three-story building).	3:12	45	51	58	84	112
	6:12	43	45	60	90	113
	9:12	53	55	80	98	124
	12:12	57	65	90	134	155

For SI: $1 \mathrm{mph}=0.447 \mathrm{~m} / \mathrm{s}$.
a. Linear interpolation is permitted.
b. For hip-roofed homes the minimum percentage of full-height sheathing, based upon wind, is permitted to be multiplied by a factor of 0.95 for roof slopes not exceeding 7:12 and a factor of 0.9 for roof slopes greater than 7:12.

TABLE R603.9.2(2)
FULL-HEIGHT SHEATHING LENGTH ADJUSTMENT FACTORS

PLAN ASPECT RATIO	LENGTH ADJUSTMENT FACTORS	
	Short wall	Long wall
$1: 1$	1.0	1.0
$1.5: 1$	1.5	0.67
$2: 1$	2.0	0.50
$3: 1$	3.0	0.33
$4: 1$	4.0	0.25

For SI: 1 inch $=25.4 \mathrm{~mm}$.

R603.9.5 Structural sheathing for stone and masonry veneer. Where stone and masonry veneer are installed in accordance with Section R703.8, the length of full-height sheathing for exterior and interior wall lines backing or perpendicular to and laterally supporting walls with veneer shall comply with this section.

R603.9.5.1 Seismic Design Category C. In Seismic Design Category C, the length of structural sheathing for walls supporting one story, roof and ceiling shall be the greater of the amounts required by Section R603.9.2, except Section R603.9.2.2 shall be permitted.
R603.9.5.2 Seismic Design Categories $D_{\mathbf{0}}, D_{\mathbf{1}}$ and $D_{\mathbf{2}}$. In Seismic Design Categories $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}, the required length of structural sheathing and overturning anchorage shall be determined in accordance with Tables R603.9.5(1), R603.9.5(2), R603.9.5(3), and R603.9.5(4). Overturning anchorage shall be installed on the doubled studs at the end of each full-height wall segment.

TABLE R603.9.5(1)
REQUIRED LENGTH OF FULL-HEIGHT SHEATHING AND ASSOCIATED OVERTURNING ANCHORAGE FOR WALLS SUPPORTING WALLS WITH STONE OR MASONRY VENEER AND USING 33-MIL COLD-FORMED STEEL FRAMING AND 6-INCH SCREW SPACING ON THE PERIMETER OF EACH PANEL OF STRUCTURAL SHEATHING

$\begin{aligned} & \text { SEISMIC } \\ & \text { DESIGN } \\ & \text { CATEGORY } \end{aligned}$	STORY	BRACED WALL LINE LENGTH						SINGLE-STORY HOLD-DOWN FORCE (pounds)	CUMULATIVE HOLD-DOWN FORCE (pounds)
		10	20	30	40	50	60		
		Minimum total length of braced wall panels required along each braced wall line (feet)							
D_{0}		3.3	4.7	6.1	7.4	8.8	10.2	3,360	-
	$\triangle \square \square$	5.3	8.7	12.1	15.4	18.8	22.2	3,360	6,720
		7.3	12.7	18.0	23.4	28.8	34.2	3,360	10,080
D_{1}	$\triangle \square \square$	4.1	5.8	7.5	9.2	10.9	12.7	3,360	-
	$\triangle \square \square$	6.6	10.7	14.9	19.1	23.3	27.5	3,360	6,720
	$\triangle \square \square$	9.0	15.7	22.4	29.0	35.7	42.2	3,360	10,080
D_{2}		5.7	8.2	10.6	13.0	15.4	17.8	3,360	-
		9.2	15.1	21.1	27.0	32.9	38.8	3,360	6,720
	$\triangle \square \square$	12.7	22.1	31.5	40.9	50.3	59.7	3,360	10,080

TABLE R603.9.5(2)
REQUIRED LENGTH OF FULL-HEIGHT SHEATHING AND ASSOCIATED OVERTURNING ANCHORAGE FOR WALLS SUPPORTING WALLS WITH STONE OR MASONRY VENEER AND USING 43-MIL COLD-FORMED STEEL FRAMING AND 6-INCH SCREW SPACING ON THE PERIMETER OF EACH PANEL OF STRUCTURAL SHEATHING

$\begin{aligned} & \text { SEISMIC } \\ & \text { DESIGN } \\ & \text { CATEGORY } \end{aligned}$	STORY	$\underset{\text { (feet) }}{\text { BRACED LINE LENGTH }}$						SINGLE-STORY HOLD-DOWN FORCE (pounds)	CUMULATIVE HOLD-DOWN FORCE (pounds)
		10	20	30	40	50	60		
		Minimum total length of braced wall panels required along each braced wall line (feet)							
D_{0}		2.8	4.0	5.1	6.3	7.5	8.7	3,960	-
	$\stackrel{\theta}{\square}-\mathrm{B}$	4.5	7.4	10.2	13.1	16.0	18.8	3,960	7,920
		6.2	10.7	15.3	19.9	24.4	29.0	3,960	11,880
D_{1}		3.5	4.9	6.4	7.8	9.3	10.7	3,960	-
		5.6	9.1	12.7	16.2	19.8	23.3	3,960	7,920
		7.7	13.3	19.0	24.6	30.3	35.9	3,960	11,880
D_{2}		4.9	6.9	9.0	11.0	13.1	15.1	3,960	-
		7.8	12.9	17.9	22.9	27.9	32.9	3,960	7,920
		10.8	18.8	26.7	34.7	42.7	50.7	3,960	11,880

TABLE R603.9.5(3)
REQUIRED LENGTH OF FULL-HEIGHT SHEATHING AND ASSOCIATED OVERTURNING ANCHORAGE FOR WALLS SUPPORTING WALLS WITH STONE OR MASONRY VENEER AND USING 33-MIL COLD-FORMED STEEL FRAMING AND 4-INCH SCREW SPACING ON THE PERIMETER OF EACH PANEL OF STRUCTURAL SHEATHING

$\begin{aligned} & \text { SEISMIC } \\ & \text { DESIGN } \\ & \text { CATEGORY } \end{aligned}$	STORY	BRACED WALL LINE LENGTH (feet)						SINGLE-STORY HOLD-DOWN FORCE (pounds)	CUMULATIVE HOLD-DOWN FORCE (pounds)
		10	20	30	40	50	60		
		Minimum total length of braced wall panels required along each braced wall line (feet)							
D_{0}		2.5	3.6	4.6	5.7	6.8	7.8	4,392	-
		4.0	6.6	9.2	11.8	14.4	17.0	4,392	8,784
		5.6	9.7	13.8	17.9	22.0	26.2	4,392	13,176
D_{1}		3.1	4.4	5.7	7.1	8.4	9.7	4,392	-
		5.0	8.2	11.4	14.6	17.8	21.0	4,392	8,784
		6.9	12.0	17.1	22.2	27.3	32.4	4,392	13,176
D_{2}		4.4	6.2	8.1	10.0	11.8	13.7	4,392	-
		7.1	11.6	16.1	20.6	25.1	29.7	4,392	8,784
	$\triangle \square \square$	9.7	16.9	24.1	31.3	38.5	45.7	4,392	13,176

TABLE R603.9.5(4)
REQUIRED LENGTH OF FULL-HEIGHT SHEATHING AND ASSOCIATED OVERTURNING ANCHORAGE FOR WALLS SUPPORTING WALLS WITH STONE OR MASONRY VENEER AND USING 43-MIL COLD-FORMED STEEL FRAMING AND 4-INCH SCREW SPACING ON the perimeter of each panel of structural sheathing

SEISMIC DESIGN CATEGORY	STORY	BRACED WALL LINE LENGTH						SINGLE-STORY HOLD-DOWN FORCE (pounds)	CUMULATIVE HOLD-DOWN FORCE (pounds)
		10	20	30	40	50	60		
		Minimum total length of braced wall panels required along each braced wall line (feet)							
D_{0}	$\square \square$	1.9	2.7	3.4	4.2	5.0	5.8	5,928	-
	$\triangle \square$	3.0	4.9	6.8	8.8	10.7	12.6	5,928	11,856
D_{1}	$\square \square$	2.3	3.3	4.3	5.2	6.2	7.2	5,928	-
	$\square \square$	3.7	6.1	8.5	10.8	13.2	15.6	5,928	11,856
D_{2}	$\square \square$	3.3	4.6	6.0	7.4	8.7	10.1	5,928	-
	$\square \square$	5.2	8.6	11.9	15.3	18.6	22.0	5,928	11,856

SECTION R604

WOOD STRUCTURAL PANELS

R604.1 Identification and grade. Wood structural panels shall conform to DOC PS 1, DOC PS 2 or ANSI/APA PRP 210, CSA O437 or CSA O325. Panels shall be identified by a grade mark or certificate of inspection issued by an approved agency.
R604.2 Allowable spans. The maximum allowable spans for wood structural panel wall sheathing shall not exceed the values set forth in Table R602.3(3).
R604.3 Installation. Wood structural panel wall sheathing shall be attached to framing in accordance with Table R602.3(1) or R602.3(3).

SECTION R605 PARTICLEBOARD

R605.1 Identification and grade. Particleboard shall conform to ANSI A208.1 and shall be so identified by a grade mark or certificate of inspection issued by an approved agency. Particleboard shall comply with the grades specified in Table R602.3(4).

SECTION R606

GENERAL MASONRY CONSTRUCTION

R606.1 General. Masonry construction shall be designed and constructed in accordance with the provisions of this section, TMS 403 or in accordance with the provisions of TMS 402/ ACI 530/ASCE 5.

R606.1.1 Professional registration not required. When the empirical design provisions of Appendix A of TMS 402/ACI 530/ASCE 5, the provisions of TMS 403, or the provisions of this section are used to design masonry, project drawings, typical details and specifications are not required to bear the seal of the architect or engineer responsible for design, unless otherwise required by the state law of the jurisdiction having authority.
R606.2 Masonry construction materials.
R606.2.1 Concrete masonry units. Concrete masonry units shall conform to the following standards: ASTM C 55 for concrete brick; ASTM C 73 for calcium silicate face brick; ASTM C 90 for load-bearing concrete masonry units; ASTM C 744 for prefaced concrete and calcium silicate masonry units; or ASTM C 1634 for concrete facing brick.
R606.2.2 Clay or shale masonry units. Clay or shale masonry units shall conform to the following standards: ASTM C 34 for structural clay load-bearing wall tile; ASTM C 56 for structural clay nonload-bearing wall tile; ASTM C 62 for building brick (solid masonry units made from clay or shale); ASTM C 1088 for solid units of thin
veneer brick; ASTM C 126 for ceramic-glazed structural clay facing tile, facing brick and solid masonry units; ASTM C 212 for structural clay facing tile; ASTM C 216 for facing brick (solid masonry units made from clay or shale); ASTM C652 for hollow brick (hollow masonry units made from clay or shale); or ASTM C1405 for glazed brick (single-fired solid brick units).

Exception: Structural clay tile for nonstructural use in fireproofing of structural members and in wall furring shall not be required to meet the compressive strength specifications. The fire-resistance rating shall be determined in accordance with ASTM E 119 or UL 263 and shall comply with the requirements of Section R302.
R606.2.3 AAC masonry. AAC masonry units shall conform to ASTM C 1386 for the strength class specified.
R606.2.4 Stone masonry units. Stone masonry units shall conform to the following standards: ASTM C 503 for marble building stone (exterior); ASTM C 568 for limestone building stone; ASTM C 615 for granite building stone; ASTM C 616 for sandstone building stone; or ASTM C 629 for slate building stone.
R606.2.5 Architectural cast stone. Architectural cast stone shall conform to ASTM C 1364.

R606.2.6 Second hand units. Second hand masonry units shall not be reused unless they conform to the requirements of new units. The units shall be of whole, sound materials and free from cracks and other defects that will interfere with proper laying or use. Old mortar shall be cleaned from the unit before reuse.
R606.2.7 Mortar. Except for mortars listed in Sections R606.2.8, R606.2.9 and R606.2.10, mortar for use in masonry construction shall meet the proportion specifications of Table R606.2.7 or the property specifications of ASTM C 270. The type of mortar shall be in accordance with Sections R606.2.7.1, R606.2.7.2 and R606.2.7.3.

R606.2.7.1 Foundation walls. Mortar for masonry foundation walls constructed as set forth in Tables R404.1.1(1) through R404.1.1(4) shall be Type M or S mortar.
R606.2.7.2 Masonry in Seismic Design Categories A, B and C. Mortar for masonry serving as the lateral-force-resisting system in Seismic Design Categories A, B and C shall be Type M, S or N mortar.
R606.2.7.3 Masonry in Seismic Design Categories $\mathbf{D}_{\mathbf{0}}, \mathbf{D}_{\mathbf{1}}$ and $\mathbf{D}_{\mathbf{2}}$. Mortar for masonry serving as the lat-eral-force-resisting system in Seismic Design Categories D_{0}, D_{1} and D_{2} shall be Type M or S Portland cement-lime or mortar cement mortar.
-
TABLE R606.2.7 MORTAR PROPORTIONS ${ }^{\text {a, }}$ b

MORTAR	TYPE	PROPORTIONS BY VOLUME (cementitious materials)								Aggregate ratio (measured in damp, loose conditions)
		Portland cement or blended cement	Mortar cement			Masonry cement			Hydrated lime ${ }^{c}$ or lime putty	
			M	S	N	M	s	N		
Cement-lime	$\begin{gathered} \hline \mathrm{M} \\ \mathrm{~S} \\ \mathrm{~N} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	-	- - -	-	-	-	-	$1 / 4$ over $1 / 4$ to $1 / 2$ over $1 / 2$ to $1 / 4$ over $11 / 4$ to $21 / 2$	Not less than $2 \frac{1}{4}$ and not more than 3 times the sum of separate volumes of lime, if used, and cement
Mortar cement	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{gathered} \frac{1}{1 / 2} \\ - \\ - \end{gathered}$	- - - -	- - 1 -	1 1 -1 1	- - - -	- - - -	-	-	
Masonry cement	$\begin{gathered} \hline \mathrm{M} \\ \mathrm{M} \\ \mathrm{~S} \\ \mathrm{~S} \\ \mathrm{~N} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \frac{1}{1 / 2} \\ & \frac{-}{-} \end{aligned}$				- - - -	- - - -	1 1 1 1	-	

For SI: 1 cubic foot $=0.0283 \mathrm{~m}^{3}, 1$ pound $=0.454 \mathrm{~kg}$.
a. For the purpose of these specifications, the weight of 1 cubic foot of the respective materials shall be considered to be as follows:

Portland Cement	94 pounds	Masonry Cement	Weight printed on bag
Mortar Cement	Weight printed on bag	Hydrated Lime	40 pounds
Lime Putty (Quicklime)	80 pounds	Sand, damp and loose	80 pounds of dry sand

b. Two air-entraining materials shall not be combined in mortar.
c. Hydrated lime conforming to the requirements of ASTM C 207.

R606.2.8 Surface-bonding mortar. Surface-bonding mortar shall comply with ASTM C 887. Surface bonding of concrete masonry units shall comply with ASTM C 946.

R606.2.9 Mortar for AAC masonry. Thin-bed mortar for AAC masonry shall comply with Article 2.1 C. 1 of TMS 602/ACI 530.1/ASCE 6. Mortar used for the leveling
courses of AAC masonry shall comply with Article 2.1 C. 2 of TMS 602/ACI 530.1/ASCE 6.

R606.2.10 Mortar for adhered masonry veneer. Mortar for use with adhered masonry veneer shall conform to ASTM C 270 Type S or Type N or shall comply with ANSI A118.4 for latex-modified portland cement mortar.
R606.2.11 Grout. Grout shall consist of cementitious material and aggregate in accordance with ASTM C 476
or the proportion specifications of Table R606.2.11. Type M or Type S mortar to which sufficient water has been added to produce pouring consistency shall be permitted to be used as grout.

R606.2.12 Metal reinforcement and accessories. Metal reinforcement and accessories shall conform to Article 2.4 of TMS 602/ACI 530.1/ASCE 6.

TABLE R606.2.11
GROUT PROPORTIONS BY VOLUME FOR MASONRY CONSTRUCTION

TYPE	PORTLAND CEMENT OR BLENDED CEMENT SLAG CEMENT	HYDRATED LIME OR LIME PUTTY	AGGREGATE MEASURED IN A DAMP, LOOSE CONDITION	
	Fine	1	0 to $1 / 10$	$21 / 4$ to 3 times the sum of the volume of the cementitious materials
Coarse	1	0 to $1 / 10$	$2 \frac{1}{1} / 4$ to 3 times the sum of the volume of the cementitious materials	1 to 2 times the sum of the vol- umes of the cementitious materials

R606.3 Construction requirements.

R606.3.1 Bed and head joints. Unless otherwise required or indicated on the project drawings, head and bed joints shall be $3 / 8$ inch $(9.5 \mathrm{~mm})$ thick, except that the thickness of the bed joint of the starting course placed over foundations shall be not less than $1 / 4$ inch (6.4 mm) and not more than $3 / 4$ inch (19.1 mm). Mortar joint thickness for loadbearing masonry shall be within the following tolerances from the specified dimensions:

1. Bed joint: $+\frac{1}{8}$ inch $(3.2 \mathrm{~mm})$.
2. Head joint: $-1 / 4$ inch $(6.4 \mathrm{~mm}),+3 / 8$ inch $(9.5 \mathrm{~mm})$.
3. Collar joints: $-\frac{1}{4}$ inch $(6.4 \mathrm{~mm}),+\frac{3}{8}$ inch $(9.5 \mathrm{~mm})$.

R606.3.2 Masonry unit placement. The mortar shall be sufficiently plastic and units shall be placed with sufficient pressure to extrude mortar from the joint and produce a tight joint. Deep furrowing of bed joints that produces voids shall not be permitted. Any units disturbed to the extent that initial bond is broken after initial placement shall be removed and relaid in fresh mortar. Surfaces to be in contact with mortar shall be clean and free of deleterious materials.

R606.3.2.1 Solid masonry. Solid masonry units shall be laid with full head and bed joints and all interior vertical joints that are designed to receive mortar shall be filled.

R606.3.2.2 Hollow masonry. For hollow masonry units, head and bed joints shall be filled solidly with mortar for a distance in from the face of the unit not less than the thickness of the face shell.
R606.3.3 Installation of wall ties. The installation of wall ties shall be as follows:

1. The ends of wall ties shall be embedded in mortar joints. Wall ties shall have not less than $5 / 8$-inch (15.9 mm) mortar coverage from the exposed face.
2. Wall ties shall not be bent after being embedded in grout or mortar.
3. For solid masonry units, solid grouted hollow units, or hollow units in anchored masonry veneer, wall ties shall be embedded in mortar bed not less than $1 \frac{1}{2}$ inches (38 $\mathrm{mm})$.
4. For hollow masonry units in other than anchored masonry veneer, wall ties shall engage outer face shells by not less than $\frac{1}{2}$ inch (13 mm).
R606.3.4 Protection for reinforcement. Bars shall be completely embedded in mortar or grout. Joint reinforcement embedded in horizontal mortar joints shall not have less than $5 / 8$-inch (15.9 mm) mortar coverage from the exposed face. Other reinforcement shall have a minimum coverage of one bar diameter over all bars, but not less than $3 / 4$ inch (19 mm), except where exposed to weather or soil, in which case the minimum coverage shall be 2 inches (51 mm).
R606.3.4.1 Corrosion protection. Minimum corrosion protection of joint reinforcement, anchor ties and wire fabric for use in masonry wall construction shall conform to Table R606.3.4.1.

TABLE R606.3.4.1
MINIMUM CORROSION PROTECTION

MASONRY METAL ACCESSORY	STANDARD
Joint reinforcement, interior walls	ASTM A 641, Class 1
Wire ties or anchors in exterior walls completely embedded in mortar or grout	ASTM A 641, Class 3
Wire ties or anchors in exterior walls not completely embedded in mortar or grout	ASTM A 153, Class B-2
Joint reinforcement in exterior walls or interior walls exposed to moist environ- ment	ASTM A 153, Class B-2
Sheet metal ties or anchors exposed to weather	ASTM A 153, Class B-2
Sheet metal ties or anchors completely embedded in mortar or grout	ASTM A 653, Coating Designation G60
Stainless steel hardware for any exposure	ASTM A 167, Type 304

R606.3.5 Grouting requirements.
R606.3.5.1 Grout placement. Grout shall be a plastic mix suitable for pumping without segregation of the constituents and shall be mixed thoroughly. Grout shall be placed by pumping or by an approved alternate method and shall be placed before any initial set occurs and not more than $1 \frac{1}{2}$ hours after water has been added. Grout shall be consolidated by puddling or mechanical vibrating during placing and reconsolidated after excess moisture has been absorbed but before plasticity is lost. Grout shall not be pumped through aluminum pipes.

Maximum pour heights and the minimum dimensions of spaces provided for grout placement shall conform to Table R606.3.5.1. Grout shall be poured in lifts of 8 -foot (2438 mm) maximum height. Where a total grout pour exceeds 8 feet (2438 mm) in height, the grout shall be placed in lifts not exceeding 64 inches $(1626 \mathrm{~mm})$ and special inspection during grouting shall be required. If the work is stopped for 1 hour or longer, the horizontal construction joints shall be formed by stopping all tiers at the same elevation and with the grout 1 inch (25 mm) below the top.

TABLE R606.3.5.1
GROUT SPACE DIMENSIONS AND POUR HEIGHTS

GROUT TYPE	$\underset{\text { (feet) }}{\text { GROUT POUR MAXIMUM HEIGHT }}$	MINIMUM WIDTH OF GROUT SPACES ${ }^{\text {a, }}$ b (inches)	MINIMUM GROUT ${ }^{\text {b, c }}$ SPACE DIMENSIONS FOR GROUTING CELLS OF HOLLOW UNITS (inches \times inches)
Fine	1	0.75	1.5×2
	5	2	2×3
	12	2.5	2.5×3
	24	3	3×3
Coarse	1	1.5	1.5×3
	5	2	2.5×3
	12	2.5	3×3
	24	3	3×4

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
a. For grouting between masonry wythes.
b. Grout space dimension is the clear dimension between any masonry protrusion and shall be increased by the horizontal projection of the diameters of the horizontal bars within the cross section of the grout space.
c. Area of vertical reinforcement shall not exceed 6 percent of the area of the grout space.

R606.3.5.2 Cleanouts. Provisions shall be made for cleaning the space to be grouted. Mortar that projects more than $\frac{1}{2}$ inch (12.7 mm) into the grout space and any other foreign matter shall be removed from the grout space prior to inspection and grouting. Where required by the building official, cleanouts shall be provided in the bottom course of masonry for each grout pour where the grout pour height exceeds 64 inches (1626 mm). In solid grouted masonry, cleanouts shall be spaced horizontally not more than 32 inches (813 mm) on center. The cleanouts shall be sealed before grouting and after inspection.
R606.3.5.3 Construction. Requirements for grouted masonry construction shall be as follows:

1. Masonry shall be built to preserve the unobstructed vertical continuity of the cells or spaces to be filled. In partially grouted construction, cross webs forming cells to be filled shall be fullbedded in mortar to prevent leakage of grout. Head and end joints shall be solidly filled with mortar for a distance in from the face of the wall or unit not less than the thickness of the longitudinal face shells.
2. Vertical reinforcement shall be held in position at top and bottom and at intervals not exceeding 200 diameters of the reinforcement.
3. Cells containing reinforcement shall be filled solidly with grout.
4. The thickness of grout or mortar between masonry units and reinforcement shall be not less than $\frac{1}{4}$ inch $(6.4 \mathrm{~mm})$, except that $\frac{1}{4}$-inch (6.4 mm) bars shall be permitted to be laid in horizontal mortar joints not less than $1 / 2$ inch (12.7 mm) thick, and steel wire reinforcement shall be permitted to be laid in horizontal mortar joints not less than twice the thickness of the wire diameter.
R606.3.6 Grouted multiple-wythe masonry. Grouted multiple-wythe masonry shall conform to all the requirements specified in Section R606.3.5 and the requirements of this section.

R606.3.6.1 Bonding of backup wythe. Where all interior vertical spaces are filled with grout in multiplewythe construction, masonry headers shall not be permitted. Metal wall ties shall be used in accordance with Section R606.13.2 to prevent spreading of the wythes and to maintain the vertical alignment of the wall. Wall ties shall be installed in accordance with Section R606.13.2 where the backup wythe in multiple-wythe construction is fully grouted.
R606.3.6.2 Grout barriers. Vertical grout barriers or dams shall be built of solid masonry across the grout space the entire height of the wall to control the flow of
the grout horizontally. Grout barriers shall be not more than 25 feet (7620 mm) apart. The grouting of any section of a wall between control barriers shall be completed in one day without interruptions greater than 1 hour.
R606.3.7 Masonry bonding pattern. Masonry laid in running and stack bond shall conform to Sections R606.3.7.1 and R606.3.7.2.

R606.3.7.1 Masonry laid in running bond. In each wythe of masonry laid in running bond, head joints in successive courses shall be offset by not less than onefourth the unit length, or the masonry walls shall be reinforced longitudinally as required in Section R606.3.7.2.
R606.3.7.2 Masonry laid in stack bond. Where unit masonry is laid with less head joint offset than in Section R606.3.7.1, the minimum area of horizontal reinforcement placed in mortar bed joints or in bond beams spaced not more than 48 inches (1219 mm) apart shall be 0.0007 times the vertical cross-sectional area of the wall.
R606.4 Thickness of masonry. The nominal thickness of masonry walls shall conform to the requirements of Sections R606.4.1 through R606.4.4.

R606.4.1 Minimum thickness. The minimum thickness of masonry bearing walls more than one story high shall be 8 inches (203 mm). Solid masonry walls of one-story dwellings and garages shall be not less than 6 inches (152 mm) in thickness where not greater than 9 feet (2743 mm) in height, provided that where gable construction is used, an additional 6 feet (1829 mm) is permitted to the peak of the gable. Masonry walls shall be laterally supported in either the horizontal or vertical direction at intervals as required by Section R606.6.4.
R606.4.2 Rubble stone masonry wall. The minimum thickness of rough, random or coursed rubble stone masonry walls shall be 16 inches (406 mm).
R606.4.3 Change in thickness. Where walls of masonry of hollow units or masonry-bonded hollow walls are decreased in thickness, a course of solid masonry or masonry units filled with mortar or grout shall be constructed between the wall below and the thinner wall above, or special units or construction shall be used to transmit the loads from face shells or wythes above to those below.
R606.4.4 Parapet walls. Unreinforced solid masonry parapet walls shall be not less than 8 inches (203 mm) thick and their height shall not exceed four times their thickness. Unreinforced hollow unit masonry parapet walls shall be not less than 8 inches (203 mm) thick, and their height shall not exceed three times their thickness. Masonry parapet walls in areas subject to wind loads of 30 pounds per square foot (1.44 kPa) located in Seismic Design Category $\mathrm{D}_{0}, \mathrm{D}_{1}$ or D_{2}, or on townhouses in Seismic Design Category C shall be reinforced in accordance with Section R606.12.
R606.5 Corbeled masonry. Corbeled masonry shall be in accordance with Sections R606.5.1 through R606.5.3.

R606.5.1 Units. Solid masonry units or masonry units filled with mortar or grout shall be used for corbeling.

R606.5.2 Corbel projection. The maximum projection of one unit shall not exceed one-half the height of the unit or one-third the thickness at right angles to the wall. The maximum corbeled projection beyond the face of the wall shall not exceed:

1. One-half of the wall thickness for multiwythe walls bonded by mortar or grout and wall ties or masonry headers.
2. One-half the wythe thickness for single wythe walls, masonry-bonded hollow walls, multiwythe walls with open collar joints and veneer walls.
R606.5.3 Corbeled masonry supporting floor or roofframing members. Where corbeled masonry is used to support floor or roof-framing members, the top course of the corbel shall be a header course or the top course bed joint shall have ties to the vertical wall.
R606.6 Support conditions. Bearing and support conditions shall be in accordance with Sections R606.6.1 through R606.6.4.

R606.6.1 Bearing on support. Each masonry wythe shall be supported by at least two-thirds of the wythe thickness.
R606.6.2 Support at foundation. Cavity wall or masonry veneer construction shall be permitted to be supported on an 8 -inch (203 mm) foundation wall, provided the 8 -inch (203 mm) wall is corbeled to the width of the wall system above with masonry constructed of solid masonry units or masonry units filled with mortar or grout. The total horizontal projection of the corbel shall not exceed 2 inches (51 mm) with individual corbels projecting not more than one-third the thickness of the unit or one-half the height of the unit. The hollow space behind the corbeled masonry shall be filled with mortar or grout.
R606.6.3 Beam supports. Beams, girders or other concentrated loads supported by a wall or column shall have a bearing of not less than 3 inches (76 mm) in length measured parallel to the beam upon solid masonry not less than 4 inches (102 mm) in thickness, or upon a metal bearing plate of adequate design and dimensions to distribute the load safely, or upon a continuous reinforced masonry member projecting not less than 4 inches (102 mm) from the face of the wall.

R606.6.3.1 Joist bearing. Joists shall have a bearing of not less than $1 \frac{1}{2}$ inches (38 mm), except as provided in Section R606.6.3, and shall be supported in accordance with Figure R606.11(1).
R606.6.4 Lateral support. Masonry walls shall be laterally supported in either the horizontal or the vertical direction. The maximum spacing between lateral supports shall not exceed the distances in Table R606.6.4. Lateral support shall be provided by cross walls, pilasters, buttresses or structural frame members where the limiting distance is taken horizontally, or by floors or roofs where the limiting distance is taken vertically.

SPACING OF LATERAL SUPPORT FOR MASONRY WALLS

CONSTRUCTION	MAXIMUM WALL LENGTH TO THICKNESS OR WALL HEIGHT TO THICKNESS ${ }^{\text {a,b }}$
Bearing walls:	
Solid or solid grouted	20
All other	18
Nonbearing walls:	
Exterior	18
Interior	36

For SI: 1 foot $=304.8 \mathrm{~mm}$.
a. Except for cavity walls and cantilevered walls, the thickness of a wall shall be its nominal thickness measured perpendicular to the face of the wall. For cavity walls, the thickness shall be determined as the sum of the nominal thicknesses of the individual wythes. For cantilever walls, except for parapets, the ratio of height to nominal thickness shall not exceed 6 for solid

- masonry, or 4 for hollow masonry. For parapets, see Section R606.4.4.
b. An additional unsupported height of 6 feet is permitted for gable end walls.

R606.6.4.1 Horizontal lateral support. Lateral support in the horizontal direction provided by intersecting masonry walls shall be provided by one of the methods in Section R606.6.4.1.1 or R606.6.4.1.2.

R606.6.4.1.1 Bonding pattern. Fifty percent of the units at the intersection shall be laid in an overlapping masonry bonding pattern, with alternate units having a bearing of not less than 3 inches (76 mm) on the unit below.

R606.6.4.1.2 Metal reinforcement. Interior non-load- bearing walls shall be anchored at their intersections, at vertical intervals of not more than 16 inches (406 mm) with joint reinforcement of not less than 9 gage [0.148 inch $(4 \mathrm{~mm})$], or $1 / 4$-inch (6 mm) galvanized mesh hardware cloth. Intersecting masonry walls, other than interior nonloadbearing walls, shall be anchored at vertical intervals of not more than 8 inches (203 mm) with joint reinforcement of not less than 9 gage and shall extend not less than 30 inches (762 mm) in each direction at the intersection. Other metal ties, joint reinforcement or anchors, if used, shall be spaced to provide equivalent area of anchorage to that required by this section.
R606.6.4.2 Vertical lateral support. Vertical lateral support of masonry walls in Seismic Design Category A, B or C shall be provided in accordance with one of the methods in Section R606.6.4.2.1 or R606.6.4.2.2.

R606.6.4.2.1 Roof structures. Masonry walls shall be anchored to roof structures with metal strap anchors spaced in accordance with the manufacturer's instructions, $1 / 2$-inch (13 mm) bolts spaced not more than 6 feet (1829 mm) on center, or other approved anchors. Anchors shall be embedded not less than 16 inches (406 mm) into the masonry, or be hooked or welded to bond beam reinforcement placed not less than 6 inches (152 mm) from the top of the wall.
R606.6.4.2.2 Floor diaphragms. Masonry walls shall be anchored to floor diaphragm framing by metal strap anchors spaced in accordance with the manufacturer's instructions, $1 / 2$-inch-diameter (13 mm) bolts spaced at intervals not to exceed 6 feet
(1829 mm) and installed as shown in Figure R606.11(1), or by other approved methods.
R606.7 Piers. The unsupported height of masonry piers shall not exceed 10 times their least dimension. Where structural clay tile or hollow concrete masonry units are used for isolated piers to support beams and girders, the cellular spaces shall be filled solidly with grout or Type M or S mortar, except that unfilled hollow piers shall be permitted to be used if their unsupported height is not more than four times their least dimension. Where hollow masonry units are solidly filled with grout or Type M, S or N mortar, the allowable compressive stress shall be permitted to be increased as provided in Table R606.9.

R606.7.1 Pier cap. Hollow piers shall be capped with 4 inches (102 mm) of solid masonry or concrete, a masonry cap block, or shall have cavities of the top course filled with concrete or grout.
R606.8 Chases. Chases and recesses in masonry walls shall not be deeper than one-third the wall thickness, and the maximum length of a horizontal chase or horizontal projection shall not exceed 4 feet (1219 mm), and shall have not less than 8 inches (203 mm) of masonry in back of the chases and recesses and between adjacent chases or recesses and the jambs of openings. Chases and recesses in masonry walls shall be designed and constructed so as not to reduce the required strength or required fire resistance of the wall and in no case shall a chase or recess be permitted within the required area of a pier. Masonry directly above chases or recesses wider than 12 inches (305 mm) shall be supported on noncombustible lintels.
R606.9 Allowable stresses. Allowable compressive stresses in masonry shall not exceed the values prescribed in Table R606.9. In determining the stresses in masonry, the effects of all loads and conditions of loading and the influence of all forces affecting the design and strength of the several parts shall be taken into account.

R606.9.1 Combined units. In walls or other structural members composed of different kinds or grades of units, materials or mortars, the maximum stress shall not exceed the allowable stress for the weakest of the combination of units, materials and mortars of which the member is composed. The net thickness of any facing unit that is used to resist stress shall be not less than $1 \frac{1}{2}$ inches (38 mm).
R606.10 Lintels. Masonry over openings shall be supported by steel lintels, reinforced concrete or masonry lintels or masonry arches, designed to support load imposed.
R606.11 Anchorage. Masonry walls shall be anchored to floor and roof systems in accordance with the details shown in Figure R606.11(1), R606.11(2) or R606.11(3). Footings shall be permitted to be considered as points of lateral support.

CONSTRUCTION; COMPRESSIVE STRENGTH	ALLOWABLE COMPRESSIVE STRESSES ${ }^{\text {a }}$ GROSS CROSS-SECTIONAL AREA ${ }^{\text {b }}$	
	Type M or S mortar	Type N mortar
Solid masonry of brick and other solid units of clay or shale; sand-lime or concrete brick: $\begin{aligned} & 8,000+\mathrm{psi} \\ & 4,500 \mathrm{psi} \\ & 2,500 \mathrm{psi} \\ & 1,500 \mathrm{psi} \end{aligned}$	$\begin{aligned} & 350 \\ & 225 \\ & 160 \\ & 115 \end{aligned}$	$\begin{aligned} & 300 \\ & 200 \\ & 140 \\ & 100 \end{aligned}$
Grouted ${ }^{\mathrm{c}}$ masonry, of clay or shale; sand-lime or concrete: $\begin{aligned} & 4,500+\mathrm{psi} \\ & 2,500 \mathrm{psi} \\ & 1,500 \mathrm{psi} \end{aligned}$	$\begin{aligned} & 225 \\ & 160 \\ & 115 \end{aligned}$	$\begin{aligned} & 200 \\ & 140 \\ & 100 \end{aligned}$
Solid masonry of solid con crete masonry units: $\begin{aligned} & 3,000+\mathrm{psi} \\ & 2,000 \mathrm{psi} \\ & 1,200 \mathrm{psi} \end{aligned}$	$\begin{aligned} & 225 \\ & 160 \\ & 115 \end{aligned}$	$\begin{aligned} & 200 \\ & 140 \\ & 100 \end{aligned}$
Masonry of hollow loadbearing units: $\begin{aligned} & 2,000+\mathrm{psi} \\ & 1,500 \mathrm{psi} \\ & 1,000 \mathrm{psi} \\ & 700 \mathrm{psi} \end{aligned}$	$\begin{gathered} 140 \\ 115 \\ 75 \\ 60 \end{gathered}$	$\begin{gathered} 120 \\ 100 \\ 70 \\ 55 \end{gathered}$
Hollow walls (cavity or masonry bonded ${ }^{\mathrm{d}}$) solid units: $\begin{aligned} & 2,500+\mathrm{psi} \\ & 1,500 \mathrm{psi} \end{aligned}$ Hollow units	$\begin{gathered} 160 \\ 115 \\ 75 \end{gathered}$	$\begin{aligned} & 140 \\ & 100 \\ & 70 \end{aligned}$
Stone ashlar masonry: Granite Limestone or marble Sandstone or cast stone	$\begin{aligned} & 720 \\ & 450 \\ & 360 \end{aligned}$	$\begin{aligned} & 640 \\ & 400 \\ & 320 \end{aligned}$
Rubble stone masonry: Coarse, rough or random	120	100

For SI: 1 pound per square inch $=6.895 \mathrm{kPa}$.
a. Linear interpolation shall be used for determining allowable stresses for masonry units having compressive strengths that are intermediate between those given in the table.
b. Gross cross-sectional area shall be calculated on the actual rather than nominal dimensions.
c. See Section R606.13.
d. Where floor and roof loads are carried upon one wythe, the gross crosssectional area is that of the wythe under load; if both wythes are loaded, the gross cross-sectional area is that of the wall minus the area of the cavity between the wythes. Walls bonded with metal ties shall be considered as cavity walls unless the collar joints are filled with mortar or grout.

R606.12 Seismic requirements. The seismic requirements of this section shall apply to the design of masonry and the construction of masonry building elements located in Seismic Design Category $\mathrm{D}_{0}, \mathrm{D}_{1}$ or D_{2}. Townhouses in Seismic Design Category C shall comply with the requirements of Section R606.12.2. These requirements shall not apply to
glass unit masonry conforming to Section R610, anchored masonry veneer conforming to Section R703.8 or adhered masonry veneer conforming to Section R703.12.

R606.12.1 General. Masonry structures and masonry elements shall comply with the requirements of Sections R606.12.2 through R606.12.4 based on the seismic design category established in Table R301.2(1). Masonry structures and masonry elements shall comply with the requirements of Section R606.12 and Figures R606.11(1), R606.11(2) and R606.11(3) or shall be designed in accordance with TMS 402/ACI 530/ASCE 5 or TMS 403.

R606.12.1.1 Floor and roof diaphragm construction. Floor and roof diaphragms shall be constructed of wood structural panels attached to wood framing in accordance with Table R602.3(1) or to cold-formed steel floor framing in accordance with Table R505.3.1(2) or to cold-formed steel roof framing in accordance with Table R804.3. Additionally, sheathing panel edges perpendicular to framing members shall be backed by blocking, and sheathing shall be connected to the blocking with fasteners at the edge spacing. For Seismic Design Categories $\mathrm{C}, \mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2}, where the width-to-thickness dimension of the diaphragm exceeds 2 -to-1, edge spacing of fasteners shall be 4 inches (102 mm) on center.
R606.12.2 Seismic Design Category C. Townhouses located in Seismic Design Category C shall comply with the requirements of this section.

R606.12.2.1 Minimum length of wall without openings. Table R606.12.2.1 shall be used to determine the minimum required solid wall length without openings at each masonry exterior wall. The provided percentage of solid wall length shall include only those wall segments that are 3 feet (914 mm) or longer. The maximum clear distance between wall segments included in determining the solid wall length shall not exceed 18 feet (5486 mm). Shear wall segments required to meet the minimum wall length shall be in accordance with Section R606.12.2.2.3.

LEDGER BOLT SIZE AND SPACING		
JOIST SPAN	BOLT SIZE AND SPACING	
	ROOF	FLOOR
10 FT .	$\begin{aligned} & 1 / 2 \text { AT } 2 \mathrm{FT} .6 \mathrm{IN} . \\ & 7 / 8 \mathrm{AT} 3 \mathrm{FT} .6 \mathrm{IN} . \end{aligned}$	$\begin{aligned} & 1 / 2 \text { AT } 2 \text { FT. } 0 \mathrm{IN} . \\ & 7 / 8 \text { AT } 2 \mathrm{FT} .9 \mathrm{IN} . \end{aligned}$
$10-15 \mathrm{FT}$.	$1 /{ }_{2}$ AT 1 FT. 9 IN . ${ }^{7 / 8}$ AT 2 FT. 6 IN .	$\begin{aligned} & 1 / 2 \text { AT } 1 \text { FT. } 4 \mathrm{IN} . \\ & 7 / 8 \text { AT } 2 \mathrm{FT} .0 \mathrm{IN} . \end{aligned}$
15-20 FT.	$\begin{aligned} & 1 / 2 \mathrm{AT} 1 \mathrm{FT} .3 \mathrm{IN} . \\ & 7 / 8 \mathrm{AT} 2 \mathrm{FT} .0 \mathrm{IN} . \end{aligned}$	$\begin{aligned} & 1 / 2 \text { AT } 1 \mathrm{FT} .0 \mathrm{IN} . \\ & 7 / 8 \text { AT } 1 \mathrm{FT} .6 \mathrm{IN} . \end{aligned}$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0 .479 \mathrm{kPa}$.
Note: Where bolts are located in hollow masonry, the cells in the courses receiving the bolt shall be grouted solid.

MINIMUM REINFORCEMENT FOR MASONRY WALLS

2 IN. PLATE WITH $1 / 2$ IN. Φ BOLTS NOT MORE THAN 4 FT O.C. EMBEDDED 4 IN. MIN.

LINTEL STEEL
SEE SECTION R606.10
$3 \mathrm{IN} . \times 3 \mathrm{IN} . \times 1 / 4 \mathrm{IN}$. CLIP
ANGLE 4 FT O.C.

BOND BEAM STEEL TWO $1 / 2$ IN. BARS

ONE $1 / 2 \mathrm{IN}$. BOLT

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.

$3 \mathrm{IN} . \times 31 / 4 \mathrm{IN}$. CLIP ANGLE 4 FT. O.C. ONE $1 / 2$ © IN. BOLT

TABLE R606.12.2.1
MINIMUM SOLID WALL LENGTH ALONG EXTERIOR WALL LINES

SESIMIC DESIGN CATEGORY	MINIMUM SOLID WALL LENGTH (percent)		

$\mathrm{NP}=$ Not permitted, except with design in accordance with the International Building Code.
a. For all walls, the minimum required length of solid walls shall be based on the table percent multiplied by the dimension, parallel to the wall direction under consideration, of a rectangle inscribing the overall building plan.

R606.12.2.2 Design of elements not part of the lateral force-resisting system.

R606.12.2.2.1 Load-bearing frames or columns. Elements not part of the lateral force-resisting system shall be analyzed to determine their effect on the response of the system. The frames or columns shall be adequate for vertical load carrying capacity and induced moment caused by the design story drift.
R606.12.2.2 2 Masonry partition walls. Masonry partition walls, masonry screen walls and other masonry elements that are not designed to resist vertical or lateral loads, other than those induced by their own weight, shall be isolated from the structure so that vertical and lateral forces are not imparted to these elements. Isolation joints and connectors between these elements and the structure shall be designed to accommodate the design story drift.
R606.12.2.2.3 Reinforcement requirements for masonry elements. Masonry elements listed in Section R606.12.2.2.2 shall be reinforced in either the horizontal or vertical direction as shown in Figure R606.11(2) and in accordance with the following:

1. Horizontal reinforcement. Horizontal joint reinforcement shall consist of not less than two longitudinal W1.7 wires spaced not more than 16 inches (406 mm) for walls greater than 4 inches (102 mm) in width and not less than one longitudinal W1.7 wire spaced not more than 16 inches (406 mm) for walls not exceeding 4 inches (102 mm) in width; or not less than one No. 4 bar spaced not more than 48 inches (1219 $\mathrm{mm})$. Where two longitudinal wires of joint reinforcement are used, the space between these wires shall be the widest that the mortar joint will accommodate. Horizontal reinforcement shall be provided within 16 inches (406 mm) of the top and bottom of these masonry elements.
2. Vertical reinforcement. Vertical reinforcement shall consist of not less than one No. 4 bar spaced not more than 48 inches (1219 mm). Vertical reinforcement shall be located within 16 inches (406 mm) of the ends of masonry walls.

R606.12.2.3 Design of elements part of the lateral force-resisting system.

R606.12.2.3.1 Connections to masonry shear walls. Connectors shall be provided to transfer forces between masonry walls and horizontal elements in accordance with the requirements of Section 4.1.4 of TMS 402/ACI 530/ASCE 5. Connectors shall be designed to transfer horizontal design forces acting either perpendicular or parallel to the wall, but not less than 200 pounds per linear foot ($2919 \mathrm{~N} / \mathrm{m}$) of wall. The maximum spacing between connectors shall be 4 feet (1219 mm). Such anchorage mechanisms shall not induce tension stresses perpendicular to grain in ledgers or nailers.
R606.12.2.3.2 Connections to masonry columns. Connectors shall be provided to transfer forces between masonry columns and horizontal elements in accordance with the requirements of Section 4.1.4 of TMS 402/ACI 530/ASCE 5. Where anchor bolts are used to connect horizontal elements to the tops of columns, the bolts shall be placed within lateral ties. Lateral ties shall enclose both the vertical bars in the column and the anchor bolts. There shall be not less than two No. 4 lateral ties provided in the top 5 inches (127 mm) of the column.
R606.12.2.3.3 Minimum reinforcement requirements for masonry shear walls. Vertical reinforcement of not less than one No. 4 bar shall be provided at corners, within 16 inches (406 mm) of each side of openings, within 8 inches (203 mm) of each side of movement joints, within 8 inches (203 mm) of the ends of walls, and at a maximum spacing of 10 feet (3048 mm).

Horizontal joint reinforcement shall consist of not less than two wires of W1.7 spaced not more than 16 inches (406 mm); or bond beam reinforcement of not less than one No. 4 bar spaced not more than 10 feet (3048 mm) shall be provided. Horizontal reinforcement shall be provided at the bottom and top of wall openings and shall extend not less than 24 inches (610 mm) nor less than 40 bar diameters past the opening; continuously at structurally connected roof and floor levels; and within 16 inches (406 mm) of the top of walls.
R606.12.3 Seismic Design Category D_{0} or D_{1}. Structures in Seismic Design Category D_{0} or D_{1} shall comply with
the requirements of Seismic Design Category C and the additional requirements of this section. AAC masonry shall not be used for the design of masonry elements that are part of the lateral force-resisting system.

R606.12.3.1 Design requirements. Masonry elements other than those covered by Section R606.12.2.2.2 shall be designed in accordance with the requirements of Chapters 1 through 7 and Sections 8.1 and 8.3 of TMS 402, ACI 530/ASCE 5 and shall meet the minimum reinforcement requirements contained in Sections R606.12.3.2 and R606.12.3.2.1. Otherwise, masonry shall be designed in accordance with TMS 403.

Exception: Masonry walls limited to one story in height and 9 feet (2743 mm) between lateral supports need not be designed provided they comply with the minimum reinforcement requirements of Sections R606.12.3.2 and R606.12.3.2.1.

R606.12.3.2 Minimum reinforcement requirements for masonry walls. Masonry walls other than those covered by Section R606.12.2.2.3 shall be reinforced in both the vertical and horizontal direction. The sum of the cross-sectional area of horizontal and vertical reinforcement shall be not less than 0.002 times the gross
cross-sectional area of the wall, and the minimum cross-sectional area in each direction shall be not less than 0.0007 times the gross cross-sectional area of the wall. Reinforcement shall be uniformly distributed. Table R606.12.3.2 shows the minimum reinforcing bar sizes required for varying thicknesses of masonry walls. The maximum spacing of reinforcement shall be 48 inches (1219 mm) provided that the walls are solid grouted and constructed of hollow open-end units, hollow units laid with full head joints or two wythes of solid units. The maximum spacing of reinforcement shall be 24 inches (610 mm) for all other masonry.

R606.12.3.2.1 Shear wall reinforcement requirements. The maximum spacing of vertical and horizontal reinforcement shall be the smaller of onethird the length of the shear wall, one-third the height of the shear wall, or 48 inches (1219 mm). The minimum cross-sectional area of vertical reinforcement shall be one-third of the required shear reinforcement. Shear reinforcement shall be anchored around vertical reinforcing bars with a standard hook.

TABLE R606.12.3.2
MINIMUM DISTRIBUTED WALL REINFORCEMENT FOR BUILDINGS ASSIGNED TO SEISMIC DESIGN CATEGORY D_{0} or D_{1}

NOMINAL WALL THICKNESS (inches)	MINIMUM SUM OF THE VERTICAL AND HORIZONTAL REINFORCEMENT AREAS (square inches per foot)	MINIMUM REINFORCEMENT AS DISTRIBUTED IN BOTH HORIZONTAL AND VERTHCAL DIRECTIONS (square inches per foot)	MINUMUM BAR SIZE FOR REINFORCEMENT SPACED AT 48 INCHES
6	0.135	0.047	\#4
8	0.183	0.064	\#5
10	0.231	0.081	$\# 6$
12	0.279	0.098	$\# 6$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ square inch per foot $=2064 \mathrm{~mm}^{2} / \mathrm{m}$.
a. Based on the minimum reinforcing ratio of 0.002 times the gross cross-sectional area of the wall.
b. Based on the minimum reinforcing ratio each direction of 0.0007 times the gross cross-sectional area of the wall.

R606.12.3.3 Minimum reinforcement for masonry columns. Lateral ties in masonry columns shall be spaced not more than 8 inches (203 mm) on center and shall be not less than $3 / 8$-inch $(9.5 \mathrm{~mm})$ diameter. Lateral ties shall be embedded in grout.
R606.12.3.4 Material restrictions. Type N mortar or masonry cement shall not be used as part of the lateral force-resisting system.
R606.12.3.5 Lateral tie anchorage. Standard hooks for lateral tie anchorage shall be either a 135-degree (2.4 rad) standard hook or a 180-degree (3.2 rad) standard hook.
R606.12.4 Seismic Design Category $\mathbf{D}_{\mathbf{2}}$. Structures in Seismic Design Category D_{2} shall comply with the requirements of Seismic Design Category D_{1} and to the additional requirements of this section.

R606.12.4.1 Design of elements not part of the lateral force-resisting system. Stack bond masonry that is not part of the lateral force-resisting system shall have a horizontal cross-sectional area of reinforcement of not less than 0.0015 times the gross cross-sectional area of
masonry. Table R606.12.4.1 shows minimum reinforcing bar sizes for masonry walls. The maximum spacing of horizontal reinforcement shall be 24 inches (610 mm). These elements shall be solidly grouted and shall be constructed of hollow open-end units or two wythes of solid units.

TABLE R606.12.4.1
MINIMUM REINFORCING FOR STACKED BONDED MASONRY WALLS IN SEISMIC DESIGN CATEGORY D_{2}

NOMINAL WALL THICKNESS (inches)	MINIMUM BAR SIZE SPACED AT 24 INCHES
6	$\# 4$
8	$\# 5$
10	$\# 5$
12	$\# 6$

For SI: 1 inch $=25.4 \mathrm{~mm}$.
R606.12.4.2 Design of elements part of the lateral force-resisting system. Stack bond masonry that is part of the lateral force-resisting system shall have a horizontal cross-sectional area of reinforcement of not less than 0.0025 times the gross cross-sectional area of masonry.

Table R606.12.4.2 shows minimum reinforcing bar sizes for masonry walls. The maximum spacing of horizontal reinforcement shall be 16 inches (406 mm). These elements shall be solidly grouted and shall be constructed of hollow open-end units or two wythes of solid units.

TABLE R606.12.4.2
MINIMUM REINFORCING FOR STACKED BONDED MASONRY WALLS IN SEISMIC DESIGN CATEGORY D 2

NOMINAL WALL THICKNESS (inches)	MINIMUM BAR SIZE SPACED AT 16 INCHES
6	$\# 4$
8	$\# 5$
10	$\# 5$
12	$\# 6$

For SI: 1 inch $=25.4 \mathrm{~mm}$.

\squareR606.13 Multiple-wythe masonry. The facing and backing of multiple-wythe masonry walls shall be bonded in accordance with Section R606.13.1, R606.13.2 or R606.13.3. In cavity walls, neither the facing nor the backing shall be less than 3 inches (76 mm) nominal in thickness and the cavity shall be not more than 4 inches (102 mm) nominal in width. The backing shall be not less than as thick as the facing.

Exception: Cavities shall be permitted to exceed the 4inch (102 mm) nominal dimension provided tie size and tie spacing have been established by calculation.
R606.13.1 Bonding with masonry headers. Bonding with solid or hollow masonry headers shall comply with Sections R606.13.1.1 and R606.13.1.2.

R606.13.1.1 Solid units. Where the facing and backing (adjacent wythes) of solid masonry construction are bonded by means of masonry headers, not less than 4 percent of the wall surface of each face shall be composed of headers extending not less than 3 inches (76 mm) into the backing. The distance between adjacent full-length headers shall not exceed 24 inches (610 mm) either vertically or horizontally. In walls in which a single header does not extend through the wall, headers from the opposite sides shall overlap not less than 3 inches (76 mm), or headers from opposite sides shall be covered with another header course overlapping the header below not less than 3 inches (76 mm).
R606.13.1.2 Hollow units. Where two or more hollow units are used to make up the thickness of a wall, the stretcher courses shall be bonded at vertical intervals not exceeding 34 inches (864 mm) by lapping not less than 3 inches (76 mm) over the unit below, or by lapping at vertical intervals not exceeding 17 inches (432 mm) with units that are not less than 50 percent thicker than the units below.
R606.13.2 Bonding with wall ties or joint reinforcement. Bonding with wall ties or joint reinforcement shall comply with Section R606.13.2.3.

R606.13.2.1 Bonding with wall ties. Bonding with wall ties, except as required by Section R607, where the facing and backing (adjacent wythes) of masonry walls are bonded with ${ }^{3} / 16^{\text {-inch-diameter }}(5 \mathrm{~mm}$) wall ties embedded in the horizontal mortar joints, there shall be not less
than one metal tie for each $4 \frac{1}{2}$ square feet $\left(0.418 \mathrm{~m}^{2}\right)$ of wall area. Ties in alternate courses shall be staggered. The maximum vertical distance between ties shall not exceed 24 inches (610 mm), and the maximum horizontal distance shall not exceed 36 inches (914 mm). Rods or ties bent to rectangular shape shall be used with hollow masonry units laid with the cells vertical. In other walls, the ends of ties shall be bent to 90 -degree (0.79 rad) angles to provide hooks not less than 2 inches (51 mm) long. Additional bonding ties shall be provided at all openings, spaced not more than 3 feet (914 mm) apart around the perimeter and within 12 inches (305 mm) of the opening.
R606.13.2 . Bonding with adjustable wall ties. Where the facing and backing (adjacent wythes) of masonry are bonded with adjustable wall ties, there shall be not less than one tie for each 2.67 square feet $\left(0.248 \mathrm{~m}^{2}\right)$ of wall area. Neither the vertical nor the horizontal spacing of the adjustable wall ties shall exceed 24 inches (610 mm). The maximum vertical offset of bed joints from one wythe to the other shall be 1.25 inches (32 mm). The maximum clearance between connecting parts of the ties shall be $1 / 16$ inch (2 mm). Where pintle legs are used, ties shall have not less than two $3 / 16^{3}$-inch-diameter (5 mm) legs.
R606.13.2 3 Bonding with prefabricated joint reinforcement. Where the facing and backing (adjacent wythes) of masonry are bonded with prefabricated joint reinforcement, there shall be not less than one cross wire serving as a tie for each 2.67 square feet (0.248 m^{2}) of wall area. The vertical spacing of the joint reinforcement shall not exceed 16 inches (406 mm). Cross wires on prefabricated joint reinforcement shall not be smaller than No. 9 gage. The longitudinal wires shall be embedded in the mortar.
R606.13.3 Bonding with natural or cast stone. Bonding with natural and cast stone shall conform to Sections R606.13.3.1 and R606.13.3.2.

R606.13.3.1 Ashlar masonry. In ashlar masonry, bonder units, uniformly distributed, shall be provided to the extent of not less than 10 percent of the wall area. Such bonder units shall extend not less than 4 inches (102 mm) into the backing wall.
R606.13.3.2 Rubble stone masonry. Rubble stone masonry 24 inches (610 mm) or less in thickness shall have bonder units with a maximum spacing of 3 feet (914 mm) vertically and 3 feet (914 mm) horizontally, and if the masonry is of greater thickness than 24 inches (610 mm), shall have one bonder unit for each 6 square feet $\left(0.557 \mathrm{~m}^{2}\right)$ of wall surface on both sides.

R606.14 Anchored and adhered masonry veneer.

R606.14.1 Anchored veneer. Anchored masonry veneer installed over a backing of wood or cold-formed steel shall meet the requirements of Section R703.8.
R606.14.2 Adhered veneer. Adhered masonry veneer shall be installed in accordance with the requirements of Section R703.12.

SECTION R607

GLASS UNIT MASONRY

R607.1 General. Panels of glass unit masonry located in load-bearing and nonload-bearing exterior and interior walls shall be constructed in accordance with this section.

- R607.2 Materials. Hollow glass units shall be partially evacuated and have a minimum average glass face thickness of $3 / 16$ inch (5 mm). The surface of units in contact with mortar shall be treated with a polyvinyl butyral coating or latexbased paint. The use of reclaimed units is prohibited.
R607.3 Units. Hollow or solid glass block units shall be standard or thin units.

R607.3.1 Standard units. The specified thickness of standard units shall be not less than $3 / 8$ inches (98 mm).

R607.3.2 Thin units. The specified thickness of thin units shall be not less than $3^{1 / 8}$ inches (79 mm) for hollow units and not less than 3 inches (76 mm) for solid units.
R607.4 Isolated panels. Isolated panels of glass unit masonry shall conform to the requirements of this section.

R607.4.1 Exterior standard-unit panels. The maximum area of each individual standard-unit panel shall be 144 square feet ($13.4 \mathrm{~m}^{2}$) where the design wind pressure is 20 pounds per square foot (958 Pa). The maximum area of such panels subjected to design wind pressures other than 20 pounds per square foot (958 Pa) shall be in accordance with Figure R607.4.1. The maximum panel dimension between structural supports shall be 25 feet (7620 mm) in width or 20 feet (6096 mm) in height.

For SI: 1 square foot $=0.0929 \mathrm{~m}^{2}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
FIGURE R607.4.1
GLASS UNIT MASONRY DESIGN WIND LOAD RESISTANCE

R607.4.2 Exterior thin-unit panels. The maximum area of each individual thin-unit panel shall be 85 square feet $\left(7.9 \mathrm{~m}^{2}\right)$. The maximum dimension between structural supports shall be 15 feet (4572 mm) in width or 10 feet $(3048 \mathrm{~mm})$ in height. Thin units shall not be used in applications where the design wind pressure as stated in Table R301.2(1) exceeds 20 pounds per square foot (958 Pa).
R607.4.3 Interior panels. The maximum area of each individual standard-unit panel shall be 250 square feet $\left(23.2 \mathrm{~m}^{2}\right)$. The maximum area of each thin-unit panel shall be 150 square feet $\left(13.9 \mathrm{~m}^{2}\right)$. The maximum dimension
between structural supports shall be 25 feet (7620 mm) in width or 20 feet (6096 mm) in height.
R607.4.4 Curved panels. The width of curved panels shall conform to the requirements of Sections R607.4.1, R607.4.2 and R607.4.3, except additional structural supports shall be provided at locations where a curved section joins a straight section, and at inflection points in multicurved walls.
R607.5 Panel support. Glass unit masonry panels shall conform to the support requirements of this section.

R607.5.1 Deflection. The maximum total deflection of structural members that support glass unit masonry shall not exceed $1 / 600$.

R607.5.2 Lateral support. Glass unit masonry panels shall be laterally supported along the top and sides of the panel. Lateral supports for glass unit masonry panels shall be designed to resist not less than 200 pounds per lineal feet ($2918 \mathrm{~N} / \mathrm{m}$) of panel, or the actual applied loads, whichever is greater. Except for single unit panels, lateral support shall be provided by panel anchors along the top and sides spaced not greater than 16 inches (406 mm) on center or by channel-type restraints. Single unit panels shall be supported by channel-type restraints.

Exceptions:

1. Lateral support is not required at the top of panels that are one unit wide.
2. Lateral support is not required at the sides of panels that are one unit high.
R607.5.2.1 Panel anchor restraints. Panel anchors shall be spaced not greater than 16 inches (406 mm) on center in both jambs and across the head. Panel anchors shall be embedded not less than 12 inches (305 mm) and shall be provided with two fasteners so as to resist the loads specified in Section R607.5.2.
R607.5.2.2 Channel-type restraints. Glass unit masonry panels shall be recessed not less than 1 inch (25 mm) within channels and chases. Channel-type restraints shall be oversized to accommodate expansion material in the opening, packing and sealant between the framing restraints, and the glass unit masonry perimeter units.

- R607.6 Sills. Before bedding of glass units, the sill area shall be covered with a water base asphaltic emulsion coating. The coating shall be not less than $1 / 8$ inch (3 mm) thick.
- R607.7 Expansion joints. Glass unit masonry panels shall be provided with expansion joints along the top and sides at all structural supports. Expansion joints shall be not less than $3 / 8$ inch (10 mm) in thickness and shall have sufficient thickness to accommodate displacements of the supporting structure. Expansion joints shall be entirely free of mortar and other debris and shall be filled with resilient material.
- R607.8 Mortar. Glass unit masonry shall be laid with Type S or N mortar. Mortar shall not be retempered after initial set. Mortar unused within $1 \frac{1}{2}$ hours after initial mixing shall be discarded.
- R607.9 Reinforcement. Glass unit masonry panels shall have horizontal joint reinforcement spaced not greater than 16 inches (406 mm) on center located in the mortar bed joint. Horizontal joint reinforcement shall extend the entire length of the panel but shall not extend across expansion joints. Longitudinal wires shall be lapped not less than 6 inches (152 mm) at splices. Joint reinforcement shall be placed in the bed joint immediately below and above openings in the panel. The reinforcement shall have not less than two parallel longitudinal wires of size W1.7 or greater, and have welded cross wires of size W1.7 or greater.

R607.10 Placement. Glass units shall be placed so head and bed joints are filled solidly. Mortar shall not be furrowed. Head and bed joints of glass unit masonry shall be $\frac{1}{4}$ inch (6.4 mm) thick, except that vertical joint thickness of radial panels shall be not less than $1 / 8$ inch (3 mm) or greater than $5 / 8$ inch $(16 \mathrm{~mm})$. The bed joint thickness tolerance shall be minus ${ }^{1} / 16$ inch $(1.6 \mathrm{~mm})$ and plus $1 / 8$ inch (3 mm). The head joint thickness tolerance shall be plus or minus $1 / 8$ inch (3 mm).

SECTION R608

EXTERIOR CONCRETE WALL CONSTRUCTION

R608.1 General. Exterior concrete walls shall be designed and constructed in accordance with the provisions of this section or in accordance with the provisions of PCA 100 or ACI 318. Where PCA 100, ACI 318 or the provisions of this section are used to design concrete walls, project drawings, typical details and specifications are not required to bear the seal of the architect or engineer responsible for design, unless otherwise required by the state law of the jurisdiction having authority.

R608.1.1 Interior construction. These provisions are based on the assumption that interior walls and partitions, both load-bearing and nonload-bearing, floors and roof/ceiling assemblies are constructed of light-framed construction complying with the limitations of this code and the additional limitations of Section R608.2. Design and construction of light-framed assemblies shall be in accordance with the applicable provisions of this code. Where secondstory exterior walls are of light-framed construction, they shall be designed and constructed as required by this code.

Aspects of concrete construction not specifically addressed by this code, including interior concrete walls, shall comply with ACI 318.
R608.1.2 Other concrete walls. Exterior concrete walls constructed in accordance with this code shall comply with the shapes and minimum concrete cross-sectional dimensions of Table R608.3. Other types of forming systems resulting in concrete walls not in compliance with this section shall be designed in accordance with ACI 318.
R608.2 Applicability limits. The provisions of this section shall apply to the construction of exterior concrete walls for buildings not greater than 60 feet (18288 mm) in plan dimensions, floors with clear spans not greater than 32 feet (9754 mm) and roofs with clear spans not greater than 40 feet (12 192 mm). Buildings shall not exceed 35 feet (10668 mm) in mean roof height or two stories in height above grade. Floor/ceiling dead loads shall not exceed 10 pounds per square foot (479 Pa), roof/ceiling dead loads shall not exceed 15 pounds per square foot (718 Pa) and attic live loads shall not exceed 20 pounds per square foot (958 Pa). Roof overhangs shall not exceed 2 feet (610 mm) of horizontal projection beyond the exterior wall and the dead load of the overhangs shall not exceed 8 pounds per square foot (383 Pa).

Walls constructed in accordance with the provisions of this section shall be limited to buildings subjected to a maximum design wind speed of $160 \mathrm{mph}(72 \mathrm{~m} / \mathrm{s})$ Exposure B, 136 mph $(61 \mathrm{~m} / \mathrm{s})$ Exposure C and $125 \mathrm{mph}(56 \mathrm{~m} / \mathrm{s}$) Exposure D. Walls constructed in accordance with the provisions of this
section shall be limited to detached one- and two-family dwellings and townhouses assigned to Seismic Design Category A or B , and detached one- and two-family dwellings assigned to Seismic Design Category C.

Buildings that are not within the scope of this section shall be designed in accordance with PCA 100 or ACI 318.
R608.3 Concrete wall systems. Concrete walls constructed in accordance with these provisions shall comply with the shapes and minimum concrete cross-sectional dimensions of Table R608.3.

R608.3.1 Flat wall systems. Flat concrete wall systems shall comply with Table R608.3 and Figure R608.3(1) and have a minimum nominal thickness of 4 inches (102 mm).

R608.3.2 Waffle-grid wall systems. Waffle-grid wall systems shall comply with Table R608.3 and Figure R608.3(2) and shall have a minimum nominal thickness of 6 inches $(152 \mathrm{~mm})$ for the horizontal and vertical concrete members (cores). The core and web dimensions shall comply with Table R608. 3. The maximum weight of wafflegrid walls shall comply with Table R608.3.
R608.3.3 Screen-grid wall systems. Screen-grid wall systems shall comply with Table R608.3 and Figure R608.3(3) and shall have a minimum nominal thickness of 6 inches $(152 \mathrm{~mm})$ for the horizontal and vertical concrete members (cores). The core dimensions shall comply with Table R608.3. The maximum weight of screen-grid walls shall comply with Table R608.3.

TABLE R608.3
DIMENSIONAL REQUIREMENTS FOR WALLS ${ }^{\text {a, }}$ b

WALL TYPE AND NOMINAL THICKNESS	$\underset{\substack{\text { MAXIMUM } \\ \text { (pst) }}}{\text { WALL WEIGHT }}$	MINIMUM WIDTH, W, OF VERTICAL CORES (inches)	$\begin{aligned} & \text { MINIMUM } \\ & \text { THICKNESS, T, OF } \\ & \text { VERTICAL CORES } \\ & \text { (inches) } \end{aligned}$	MAXIMUM SPACING OF VERTICAL CORES (inches)	MAXIMUM SPACING OF HORIZONTAL CORES (inches)	MINIMUM WEB THICKNESS (inches)
$4^{\prime \prime}$ Flat $^{\text {d }}$	50	N/A	N/A	N/A	N/A	N/A
$6^{\prime \prime}$ Flat $^{\text {d }}$	75	N/A	N/A	N/A	N/A	N/A
$8^{\prime \prime}$ Flat $^{\text {d }}$	100	N/A	N/A	N/A	N/A	N/A
$10^{\prime \prime}$ Flat $^{\text {d }}$	125	N/A	N/A	N/A	N/A	N/A
6" Waffle-grid	56	$8^{\text {e }}$	$5.5{ }^{\text {e }}$	12	16	2
8" Waffle-grid	76	$8^{\text {f }}$	$8^{\text {f }}$	12	16	2
6" Screen-grid	53	6.25^{g}	$6.25^{\text {g }}$	12	12	N/A

For SI: 1 inch $=25.4 \mathrm{~mm} ; 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ pound per cubic foot $=2402.77 \mathrm{~kg} / \mathrm{m}^{3}, 1$ square inch $=645.16 \mathrm{~mm}^{2}, 1 \mathrm{inch}{ }^{4}=42 \mathrm{~cm}^{4}$.

- a. Width "W," thickness "T," spacing and web thickness, refer to Figures R608.3(2) and R608.3(3).
b. N/A indicates not applicable.
c. Wall weight is based on a unit weight of concrete of 150 pcf. For flat walls the weight is based on the nominal thickness. The tabulated values do not include any allowance for interior and exterior finishes.
d. Nominal wall thickness. The actual as-built thickness of a flat wall shall not be more than $1 / 2$ inch less or more than $1 / 4$ inch more than the nominal dimension indicated.
e. Vertical core is assumed to be elliptical-shaped. Another shape core is permitted provided the minimum thickness is 5 inches, the moment of inertia, I, about the centerline of the wall (ignoring the web) is not less than 65 inch 4, and the area, A, is not less than 31.25 square inches. The width used to calculate A and I shall not exceed 8 inches.
f. Vertical core is assumed to be circular. Another shape core is permitted provided the minimum thickness is 7 inches, the moment of inertia, I, about the centerline of the wall (ignoring the web) is not less than $200 \mathrm{inch}^{4}$, and the area, A, is not less than 49 square inches. The width used to calculate A and I shall not exceed 8 inches.
g. Vertical core is assumed to be circular. Another shape core is permitted provided the minimum thickness is 5.5 inches, the moment of inertia, I, about the centerline of the wall is not less than 76 inch 4, and the area, A, is not less than 30.25 square inches. The width used to calculate A and I shall not exceed 6.25 inches.

PLAN VIEW
SEE TABLE 608.3 FOR MINIMUM DIMENSIONS

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R608.3(2)
WAFFLE-GRID WALL SYSTEM

FIGURE R608.3(3)
SCREEN-GRID WALL SYSTEM

- R608.4 Stay-in-place forms. Stay-in-place concrete forms shall comply with this section.

R608.4.1 Surface burning characteristics. The flame spread index and smoke-developed index of forming material, other than foam plastic, left exposed on the interior shall comply with Section R302.9. The surface burning characteristics of foam plastic used in insulating concrete forms shall comply with Section R316.3.
R608.4.2 Interior covering. Stay-in-place forms constructed of rigid foam plastic shall be protected on the interior of the building as required by Sections R316.4 and R702.3.4. Where gypsum board is used to protect the foam plastic, it shall be installed with a mechanical fastening system. Use of adhesives is permitted in addition to mechanical fasteners.
R608.4.3 Exterior wall covering. Stay-in-place forms constructed of rigid foam plastics shall be protected from sunlight and physical damage by the application of an approved exterior wall covering complying with this code. Exterior surfaces of other stay-in-place forming systems shall be protected in accordance with this code.

Requirements for installation of masonry veneer, stucco and other finishes on the exterior of concrete walls and other construction details not covered in this section shall comply with the requirements of this code.
R608.4.4 Flat ICF wall systems. Flat ICF wall system forms shall conform to ASTM E 2634.
R608.5 Materials. Materials used in the construction of concrete walls shall comply with this section.

R608.5.1 Concrete and materials for concrete. Materials used in concrete, and the concrete itself, shall conform to requirements of this section, PCA 100 or ACI 318.

R608.5.1.1 Cements. The following standards as referenced in Chapter 44 shall be permitted to be used.

1. ASTM C 150
2. ASTM C 595
3. ASTM C 1157

R608.5.1.2 Concrete mixing and delivery. Mixing and delivery of concrete shall comply with ASTM C 94 or ASTM C 685.

- R608.5.1.3 Maximum aggregate size. The nominal maximum size of coarse aggregate shall not exceed one-fifth the narrowest distance between sides of forms, or three-fourths the clear spacing between reinforcing bars or between a bar and the side of the form.

Exception: When approved, these limitations shall not apply where removable forms are used and workability and methods of consolidation permit concrete to be placed without honeycombs or voids.

- R608.5.1.4 Proportioning and slump of concrete. Proportions of materials for concrete shall be established to provide workability and consistency to permit concrete to be worked readily into forms and around reinforcement under conditions of placement to be employed, without segregation or excessive bleeding.

Slump of concrete placed in removable forms shall not exceed 6 inches (152 mm).

Exception: When approved, the slump is permitted to exceed 6 inches (152 mm) for concrete mixtures that are resistant to segregation, and are in accordance with the form manufacturer's recommendations.

Slump of concrete placed in stay-in-place forms shall exceed 6 inches (152 mm). Slump of concrete shall be determined in accordance with ASTM C 143.
R608.5.1.5 Compressive strength. The minimum specified compressive strength of concrete, $f^{\prime}{ }_{c}$, shall comply with Section R402.2 and shall be not less than 2,500 pounds per square inch (17.2 MPa) at 28 days.
R608.5.1.6 Consolidation of concrete. Concrete shall be consolidated by suitable means during placement and shall be worked around embedded items and reinforcement and into corners of forms. Where stay-inplace forms are used, concrete shall be consolidated by internal vibration.

Exception: When approved, self-consolidating concrete mixtures with slumps equal to or greater than 8 inches (203 mm) that are specifically designed for placement without internal vibration need not be internally vibrated.

R608.5.2 Steel reinforcement and anchor bolts.

R608.5.2.1 Steel reinforcement. Steel reinforcement shall comply with ASTM A 615, ASTM A 706, or ASTM A 996. ASTM A 996 bars produced from rail steel shall be Type R.
R608.5.2.2 Anchor bolts. Anchor bolts for use with connection details in accordance with Figures R608.9(1) through R608.9(12) shall be bolts with heads complying with ASTM A 307 or ASTM F 1554. ASTM A 307 bolts shall be Grade A with heads. ASTM F 1554 bolts shall be Grade 36 minimum. Instead of bolts with heads, it is permissible to use rods with threads on both ends fabricated from steel complying with ASTM A 36. The threaded end of the rod to be embedded in the concrete shall be provided with a hex or square nut.
R608.5.2.3 Sheet steel angles and tension tie straps. Angles and tension tie straps for use with connection details in accordance with Figures R608.9(1) through R608.9(12) shall be fabricated from sheet steel complying with ASTM A 653 SS, ASTM A 792 SS, or ASTM A 875 SS. The steel shall be minimum Grade 33 unless a higher grade is required by the applicable figure.
R608.5.3 Form materials and form ties. Forms shall be made of wood, steel, aluminum, plastic, a composite of cement and foam insulation, a composite of cement and wood chips, or other approved material suitable for supporting and containing concrete. Forms shall provide sufficient strength to contain concrete during the concrete placement operation.

Form ties shall be steel, solid plastic, foam plastic, a composite of cement and wood chips, a composite of cement and foam plastic, or other suitable material capable of resisting the forces created by fluid pressure of fresh concrete.

R608.5.4 Reinforcement installation details.

R608.5.4.1 Support and cover. Reinforcement shall be secured in the proper location in the forms with tie wire or other bar support system such that displacement will not occur during the concrete placement operation. Steel reinforcement in concrete cast against the earth shall have a minimum cover of 3 inches (76 mm). Minimum cover for reinforcement in concrete cast in removable forms that will be exposed to the earth or weather shall be $1 \frac{1}{2}$ inches (38 mm) for No. 5 bars and smaller, and 2 inches (50 mm) for No. 6 bars and larger. For concrete cast in removable forms that will not be exposed to the earth or weather, and for concrete cast in stay-in-place forms, minimum cover shall be $3 / 4$ inch (19 mm). The minus tolerance for cover shall not exceed the smaller of one-third the required cover and $3 / 8$ inch (10 mm). See Section R608.5.4.4 for cover requirements for hooks of bars developed in tension.
R608.5.4.2 Location of reinforcement in walls. For location of reinforcement in foundation walls and above-grade walls, see Sections R404.1.3.3.7.2 and R608.6.5, respectively.

R608.5.4.3 Lap splices. Vertical and horizontal wall reinforcement required by Sections R608.6 and R608.7 shall be the longest lengths practical. Where splices are necessary in reinforcement, the length of lap splices shall be in accordance with Table R608.5.4(1) and Figure R608.5.4(1). The maximum gap between noncontact parallel bars at a lap splice shall not exceed the smaller of one-fifth the required lap length and 6 inches (152 mm). See Figure R608.5.4(1).
R608.5.4.4 Development of bars in tension. Where bars are required to be developed in tension by other
provisions of this code, development lengths and cover for hooks and bar extensions shall comply with Table R608.5.4(1) and Figure R608.5.4(2). The development lengths shown in Table R608.5.4(1) shall apply to bundled bars in lintels installed in accordance with Section R608.8.2.2.
R608.5.4.5 Standard hooks. Where reinforcement is required by this code to terminate with a standard hook, the hook shall comply with Figure R608.5.4(3).

TABLE R608.5.4(1)
LAP SPLICE AND TENSION DEVELOPMENT LENGTHS

	BAR SIZENO.	YIELD STRENGTH OF STEEL, $f_{y^{-}}$psi (MPa)	
		40,000 (280)	60,000 (420)
		Splice length or tension development length (inches)	
Lap splice length-tension	4	20	30
	5	25	38
	6	30	45
Tension development length for straight bar	4	15	23
	5	19	28
	6	23	34
Tension development length for: a. 90-degree and 180 -degree standard hooks with not less than $2 \frac{1}{2}$ inches of side cover perpendicular to plane of hook, and b. 90 -degree standard hooks with not less than 2 inches of cover on the bar extension beyond the hook.	4	6	9
	5	7	11
	6	8	13
Tension development length for bar with 90-degree or 180-degree standard hook having less cover than required above.	4	8	12
	5	10	15
	6	12	18

For SI: 1 inch $=25.4 \mathrm{~mm}$.

For SI: 1 inch $=25.4 \mathrm{~mm}$.

For SI: 1 degree $=0.0175 \mathrm{rad}$.
FIGURE R608.5.4(2)
DEVELOPMENT LENGTH AND COVER FOR HOOKS AND BAR EXTENSION

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ degree $=0.0175 \mathrm{rad}$.
FIGURE R608.5.4(3)
STANDARD HOOKS

MAXIMUM SPACING FOR ALTERNATIVE BAR SIZE AND/OR ALTERNATIVE GRADE OF STEEL ${ }^{\text {a, } \mathrm{b}, \mathrm{c}}$

BAR SPACING FROM APPLICABLE TABLE IN SECTION R608.6 (inches)	BAR SIZE FROM APPLICABLE TABLE IN SECTION R608.6														
	\#4					\#5					\#6				
	Alternate bar size and/or alternate grade of steel desired														
	Grade 60		Grade 40			Grade 60		Grade 40			Grade 60		Grade 40		
	\#5	\#6	\#4	\#5	\#6	\#4	\#6	\#4	\#5	\#6	\#4	\#5	\#4	\#5	\#6
	Maximum spacing for alternate bar size and/or alternate grade of steel (inches)														
8	12	18	5	8	12	5	11	3	5	8	4	6	2	4	5
9	14	20	6	9	13	6	13	4	6	9	4	6	3	4	6
10	16	22	7	10	15	6	14	4	7	9	5	7	3	5	7
11	17	24	7	11	16	7	16	5	7	10	5	8	3	5	7
12	19	26	8	12	18	8	17	5	8	11	5	8	4	6	8
13	20	29	9	13	19	8	18	6	9	12	6	9	4	6	9
14	22	31	9	14	21	9	20	6	9	13	6	10	4	7	9
15	23	33	10	16	22	10	21	6	10	14	7	11	5	7	10
16	25	35	11	17	23	10	23	7	11	15	7	11	5	8	11
17	26	37	11	18	25	11	24	7	11	16	8	12	5	8	11
18	28	40	12	19	26	12	26	8	12	17	8	13	5	8	12
19	29	42	13	20	28	12	27	8	13	18	9	13	6	9	13
20	31	44	13	21	29	13	28	9	13	19	9	14	6	9	13
21	33	46	14	22	31	14	30	9	14	20	10	15	6	10	14
22	34	48	15	23	32	14	31	9	15	21	10	16	7	10	15
23	36	48	15	24	34	15	33	10	15	22	10	16	7	11	15
24	37	48	16	25	35	15	34	10	16	23	11	17	7	11	16
25	39	48	17	26	37	16	35	11	17	24	11	18	8	12	17
26	40	48	17	27	38	17	37	11	17	25	12	18	8	12	17
27	42	48	18	28	40	17	38	12	18	26	12	19	8	13	18
28	43	48	19	29	41	18	40	12	19	26	13	20	8	13	19
29	45	48	19	30	43	19	41	12	19	27	13	20	9	14	19
30	47	48	20	31	44	19	43	13	20	28	14	21	9	14	20
31	48	48	21	32	45	20	44	13	21	29	14	22	9	15	21
32	48	48	21	33	47	21	45	14	21	30	15	23	10	15	21
33	48	48	22	34	48	21	47	14	22	31	15	23	10	16	22
34	48	48	23	35	48	22	48	15	23	32	15	24	10	16	23
35	48	48	23	36	48	23	48	15	23	33	16	25	11	16	23
36	48	48	24	37	48	23	48	15	24	34	16	25	11	17	24
37	48	48	25	38	48	24	48	16	25	35	17	26	11	17	25
38	48	48	25	39	48	25	48	16	25	36	17	27	12	18	25
39	48	48	26	40	48	25	48	17	26	37	18	27	12	18	26
40	48	48	27	41	48	26	48	17	27	38	18	28	12	19	27
41	48	48	27	42	48	26	48	18	27	39	19	29	12	19	27
42	48	48	28	43	48	27	48	18	28	40	19	30	13	20	28
43	48	48	29	44	48	28	48	18	29	41	20	30	13	20	29
44	48	48	29	45	48	28	48	19	29	42	20	31	13	21	29
45	48	48	30	47	48	29	48	19	30	43	20	32	14	21	30
46	48	48	31	48	48	30	48	20	31	44	21	32	14	22	31
47	48	48	31	48	48	30	48	20	31	44	21	33	14	22	31
48	48	48	32	48	48	31	48	21	32	45	22	34	15	23	32

For SI: 1 inch $=25.4 \mathrm{~mm}$.
a. This table is for use with tables in Section R608.6 that specify the minimum bar size and maximum spacing of vertical wall reinforcement for foundation walls and above-grade walls. Reinforcement specified in tables in Section R608.6 is based on Grade 60 (420 MPa) steel reinforcement.
b. Bar spacing shall not exceed 48 inches on center and shall be not less than one-half the nominal wall thickness.
c. For Grade $50(350 \mathrm{MPa})$ steel bars (ASTM A 996, Type R), use spacing for Grade $40(280 \mathrm{MPa})$ bars or interpolate between Grade 40 (280 MPa) and Grade 60 (420 MPa).

R608.5.4.6 Webs of waffle-grid walls. Reinforcement, including stirrups, shall not be placed in webs of waf-fle-grid walls, including lintels. Webs are permitted to have form ties.
R608.5.4.7 Alternate grade of reinforcement and spacing. Where tables in Sections R404.1.3 and R608.6 specify vertical wall reinforcement based on minimum bar size and maximum spacing, which are based on Grade $60(420 \mathrm{MPa})$ steel reinforcement, different size bars or bars made from a different grade of steel are permitted provided an equivalent area of steel per linear foot of wall is provided. Use of Table R608.5.4(2) is permitted to determine the maximum bar spacing for different bar sizes than specified in the tables and/or bars made from a different grade of steel. Bars shall not be spaced less than one-half the wall thickness, or more than 48 inches (1219 mm) on center.
R608.5.5 Construction joints in walls. Construction joints shall be made and located to not impair the strength of the wall. Construction joints in plain concrete walls, including walls required to have not less than No. 4 bars at 48 inches (1219 mm) on center by Section R608.6, shall be located at points of lateral support, and not less than one No. 4 bar shall extend across the construction joint at a spacing not to exceed 24 inches (610 mm) on center. Construction joint reinforcement shall have not less than 12 inches (305 mm) embedment on both sides of the joint. Construction joints in reinforced concrete walls shall be located in the middle third of the span between lateral supports, or located and constructed as required for joints in plain concrete walls.

Exception: Vertical wall reinforcement required by this code is permitted to be used in lieu of construction joint reinforcement, provided the spacing does not exceed 24 inches (610 mm), or the combination of wall reinforcement and No. 4 bars described in Section R608.5.5 does not exceed 24 inches (610 mm).

R608.6 Above-grade wall requirements.

R608.6.1 General. The minimum thickness of load-bearing and nonload-bearing above-grade walls and reinforcement shall be as set forth in the appropriate table in this section based on the type of wall form to be used. The wall shall be designed in accordance with ACI 318 where the wall or building is not within the limitations of Section R608.2, where design is required by the tables in this section or where the wall is not within the scope of the tables in this section.

Above-grade concrete walls shall be constructed in accordance with this section and Figure R608.6(1), R608.6(2), R608.6(3) or R608.6(4). Above-grade concrete walls that are continuous with stem walls and not laterally supported by the slab-on-ground shall be designed and constructed in accordance with this section. Concrete walls shall be supported on continuous foundation walls or slabs-on-ground that are monolithic with the footing in accordance with Section R403. The minimum length of solid wall without openings shall be in accordance with Section R608.7. Reinforcement around openings, includ-
ing lintels, shall be in accordance with Section R608.8. Lateral support for above-grade walls in the out-of-plane direction shall be provided by connections to the floor framing system, if applicable, and to ceiling and roof framing systems in accordance with Section R608.9. The wall thickness shall be equal to or greater than the thickness of the wall in the story above.
R608.6.2 Wall reinforcement for wind. Vertical wall reinforcement for resistance to out-of-plane wind forces shall be determined from Table R608.6(1), R608.6(2), R608.6(3) or R608.6(4). For the design of nonload-bearing walls, in Tables R608.6(1), R608.6(2) and R608.6(3) use the appropriate column labeled "Top." (see Sections R608.7.2.2.2 and R608.7.2.2.3). There shall be a vertical bar at corners of exterior walls. Unless more horizontal reinforcement is required by Section R608.7.2.2.1, the minimum horizontal reinforcement shall be four No. 4 bars [Grade $40(280 \mathrm{MPa})$] placed as follows: top bar within 12 inches $(305 \mathrm{~mm})$ of the top of the wall, bottom bar within 12 inches (305 mm) of the finish floor and one bar each at approximately one-third and two-thirds of the wall height.
R608.6.3 Continuity of wall reinforcement between stories. Vertical reinforcement required by this section shall be continuous between elements providing lateral support for the wall. Reinforcement in the wall of the story above shall be continuous with the reinforcement in the wall of the story below, or the foundation wall, if applicable. Lap splices, where required, shall comply with Section R608.5.4.3 and Figure R608.5.4(1). Where the abovegrade wall is supported by a monolithic slab-on-ground and footing, dowel bars with a size and spacing to match the vertical above-grade concrete wall reinforcement shall be embedded in the monolithic slab-on-ground and footing the distance required to develop the dowel bar in tension in accordance with Section R608.5.4.4 and Figure R608.5.4(2) and lap-spliced with the above-grade wall reinforcement in accordance with Section R608.5.4.3 and Figure R608.5.4(1).

Exception: Where reinforcement in the wall above cannot be made continuous with the reinforcement in the wall below, the bottom of the reinforcement in the wall above shall be terminated in accordance with one of the following:

1. Extend below the top of the floor the distance required to develop the bar in tension in accordance with Section R608.5.4.4 and Figure R608.5.4(2).
2. Lap-spliced in accordance with Section R608.5.4.3 and Figure R608.5.4(1) with a dowel bar that extends into the wall below the distance required to develop the bar in tension in accordance with Section R608.5.4.4 and Figure R608.5.4(2).
Where a construction joint in the wall is located below the level of the floor and less than the distance required to develop the bar in tension, the distance required to develop the bar in tension shall be measured from the top of the concrete below the joint. See Section R608.5.5.

EECTION CUT THROUGH FLAT WALL FOR VERTICAL CORE OF A WAFFLE- OR SCREEN-GRID WALL

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R608.6(1)
ABOVE-GRADE CONCRETE WALL CONSTRUCTION ONE STORY

SECTION CUT THROUGH FLAT WALL OR VERTICAL CORE OF WAFFLE- OR SCREEN-GRID WALL

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R608.6(2)
ABOVE-GRADE CONCRETE WALL CONSTRUCTION CONCRETE FIRST STORY AND LIGHT-FRAMED SECOND STORY

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R608.6(3)
ABOVE-GRADE CONCRETE WALL
CONSTRUCTION TWO-STORY

TABLE R608.6(1)
MINIMUM VERTICAL REINFORCEMENT FOR FLAT ABOVE-GRADE WALLS ${ }^{\text {a, }}$ b, c, d, e

MAXIMUM WIND SPEED (mph)			MAXIMUM UNSUPPORTED WALL HEIGHT PER STORY (feet)	MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches) ${ }^{\text {f }}$, g								
			Nominal ${ }^{\text {h }}$ wall thickness (inches)									
Exposure Category				4		6		8		10		
B	C	D		Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	
115				8	4@48	4@48	4@48	4@48	4@48	4@48	4@48	4@48
			9	4@48	4@39	4@48	4@48	4@48	4@48	4@48	4@48	
			10	4@41	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
120			8	4@48	4@43	4@48	4@48	4@48	4@48	4@48	4@48	
			9	4@48	4@36	4@48	4@48	4@48	4@48	4@48	4@48	
			10	4@37	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
130	110		8	4@48	4@38	4@48	4@48	4@48	4@48	4@48	4@48	
			9	4@39	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
			10	4@34	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
140	119	110	8	4@43	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
			9	4@34	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
			10	4@34	4@31	4@48	4@48	4@48	4@48	4@48	4@48	
150	127	117	8	4@37	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
			9	4@34	4@33	4@48	4@48	4@48	4@48	4@48	4@48	
			10	4@31	4@27	4@48	4@48	4@48	4@48	4@48	4@48	
160	136	125	8	4@34	4@34	4@48	4@48	4@48	4@48	4@48	4@48	
			9	4@34	4@29	4@48	4@48	4@48	4@48	4@48	4@48	
			10	4@27	4@24	4@48	4@48	4@48	4@48	4@48	4@48	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square inch $=1.895 \mathrm{kPa}, 1 \mathrm{square}$ foot $=0.0929 \mathrm{~m}^{2}$.
a. Table is based on ASCE 7 components and cladding wind pressures for an enclosed building using a mean roof height of 35 feet, interior wall area 4 , an effective wind area of 10 square feet, topographic factor, $K_{z t}$, equal to 1.0 , and Risk Category II.
b. Table is based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$
c. See Section R608.6.5 for location of reinforcement in wall.
d. Deflection criterion is $L / 240$, where L is the unsupported height of the wall in inches.
e. Interpolation is not permitted.
f. Where No. 4 reinforcing bars at a spacing of 48 inches are specified in the table as indicated by shaded cells, use of bars with a minimum yield strength of $40,000 \mathrm{psi}$ or $60,000 \mathrm{psi}$ is permitted.
g. Other than for No. 4 bars spaced at 48 inches on center, table values are based on reinforcing bars with a minimum yield strength of 60,000 psi. Vertical reinforcement with a yield strength of less than 60,000 psi or bars of a different size than specified in the table are permitted in accordance with Section R608.5.4.7 and Table R608.5.4(2).
h. See Table R608.3 for tolerances on nominal thicknesses.
i. "Top" means gravity load from roof or floor construction bears on top of wall. "Side" means gravity load from floor construction is transferred to wall from a wood ledger or cold-formed steel track bolted to side of wall. For nonload-bearing walls where floor framing members span parallel to the wall, use of the "Top" bearing condition is permitted.

TABLE R608.6(2)
MINIMUM VERTICAL REINFORCEMENT FOR WAFFLE-GRID ABOVE-GRADE WALLS ${ }^{\text {a }, ~ b, ~ c, ~ d, ~ e ~}$

MAXIMUM WIND SPEED (mph)			MAXIMUM UNSUPPORTED WALL HEIGHT PER STORY (feet)	MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches) ${ }^{\text {t }}$ g				
			Nominal ${ }^{\text {h }}$ wall thickness (inches)					
Exposure Category				6		8		
B	c	D		Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	
115				8	4@48	4@48	4@48	4@48
			9	4@48	5@43	4@48	4@48	
			10	5@47	5@37	4@48	4@48	
120			8	4@48	5@48	4@48	4@48	
			9	4@48	5@40	4@48	4@48	
			10	5@43	5@37	4@48	4@48	
130	110		8	4@48	5@42	4@48	4@48	
			9	5@45	5@37	4@48	4@48	
			10	5@37	5@37	4@48	4@48	
140	119	110	8	4@48	5@38	4@48	4@48	
			9	5@39	5@37	4@48	4@48	
			10	5@37	5@35	4@48	4@48	
150	127	117	8	5@43	5@37	4@48	4@48	
			9	5@37	5@37	4@48	4@48	
			10	5@36	6@44	4@48	4@48	
160	136	125	8	5@38	5@37	4@48	4@48	
			9	5@37	6@47	4@48	4@48	
			10	6@45	6@39	4@48	6@46	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square inch $=6.895 \mathrm{kPa}, 1$ square foot $=0.0929 \mathrm{~m}^{2}$.
a. Table is based on ASCE 7 components and cladding wind pressures for an enclosed building using a mean roof height of 35 feet, interior wall area 4 , an effective wind area of 10 square feet, topographic factor, $K_{z t}$, equal to 1.0 , and Risk Category II.
b. Table is based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$.
c. See Section R608.6.5 for location of reinforcement in wall.
d. Deflection criterion is $L / 240$, where L is the unsupported height of the wall in inches.
e. Interpolation is not permitted
f. Where No. 4 reinforcing bars at a spacing of 48 inches are specified in the table as indicated by shaded cells, use of bars with a minimum yield strength of $40,000 \mathrm{psi}$ or $60,000 \mathrm{psi}$ is permitted.
g. Other than for No. 4 bars spaced at 48 inches on center, table values are based on reinforcing bars with a minimum yield strength of 60,000 psi. Maximum spacings shown are the values calculated for the specified bar size. Where the bar used is Grade 60 and the size specified in the table, the actual spacing in the wall shall not exceed a whole-number multiple of 12 inches such as, $12,24,36$ and 48 , that is less than or equal to the tabulated spacing. Vertical reinforcement with a yield strength of less than $60,000 \mathrm{psi}$ or bars of a different size than specified in the table are permitted in accordance with Section R608.5.4.7 and Table R608.5.4(2).
h. See Table R608.3 for minimum core dimensions and maximum spacing of horizontal and vertical cores.
i. "Top" means gravity load from roof or floor construction bears on top of wall. "Side" means gravity load from floor construction is transferred to wall from a wood ledger or cold-formed steel track bolted to side of wall. For nonload-bearing walls and where floor framing members span parallel to the wall, the "top" bearing condition is permitted to be used.

TABLE R608.6(3)
MINIMUM VERTICAL REINFORCEMENT FOR 6-INCH SCREEN-GRID ABOVE-GRADE WALLS ${ }^{\text {a, }}$ b, c, d, e

MAXIMUM WIND SPEED (mph)			MAXIMUM UNSUPPORTED WALL HEIGHT PER STORY (feet)	MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches) ${ }^{\text {f }}$ g ${ }^{\text {d }}$		
			Nominal ${ }^{\text {h }}$ wall thickness (inches)			
Exposure Category				6		
B	C	D		Top ${ }^{\text {i }}$	Side ${ }^{\text {i }}$	
115				8	4@48	4@48
			9	4@48	5@41	
			10	4@48	6@48	
120			8	4@48	4@48	
			9	4@48	5@38	
			10	5@42	6@48	
130	110		8	4@48	5@41	
			9	5@44	6@48	
			10	5@35	6@48	
140	119	110	8	4@48	5@36	
			9	5@38	6@48	
			10	6@48	6@48	
150	127	117	8	5@42	6@48	
			9	6@48	6@48	
			10	6@48	6@42	
160	136	125	8	5@37	6@48	
			9	6@48	6@45	
			10	6@44	6@38	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square inch $=6.895 \mathrm{kPa}, 1$ square foot $=0.0929 \mathrm{~m}^{2}$.
a. Table is based on ASCE 7 components and cladding wind pressures for an enclosed building using a mean roof height of 35 feet, interior wall area 4 , an effective wind area of 10 square feet, topographic factor, $K_{z t}$, equal to 1.0, and Risk Category II.
b. Table is based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$.
c. See Section R608.6.5 for location of reinforcement in wall.
d. Deflection criterion is $L / 240$, where L is the unsupported height of the wall in inches.
e. Interpolation is not permitted.
f. Where No. 4 reinforcing bars at a spacing of 48 inches are specified in the table as indicated by shaded cells, use of bars with a minimum yield strength of $40,000 \mathrm{psi}$ or $60,000 \mathrm{psi}$ is permitted.
g. Other than for No. 4 bars spaced at 48 inches on center, table values are based on reinforcing bars with a minimum yield strength of 60,000 psi. Maximum spacings shown are the values calculated for the specified bar size. Where the bar used is Grade 60 and the size specified in the table, the actual spacing in the wall shall not exceed a whole-number multiple of 12 inches such as, 12, 24, 36 and 48 , that is less than or equal to the tabulated spacing. Vertical reinforcement with a yield strength of less than 60,000 psi or bars of a different size than specified in the table are permitted in accordance with Section R608.5.4.7 and Table R608.5.4(2).
h. See Table R608.3 for minimum core dimensions and maximum spacing of horizontal and vertical cores.
i. "Top" means gravity load from roof or floor construction bears on top of wall. "Side" means gravity load from floor construction is transferred to wall from a wood ledger or cold-formed steel track bolted to side of wall. For nonload-bearing wall and where floor framing members span parallel to the wall, use of the "Top" bearing condition is permitted.

TABLE R608.6(4)
MINIMUM VERTICAL REINFORCEMENT FOR FLAT, WAFFLE- AND SCREEN-GRID
ABOVE-GRADE WALLS DESIGNED CONTINUOUS WITH FOUNDATION STEM WALLS ${ }^{\text {a, }}$, c, d, e, k,

MAXIMUM WIND SPEED (mph)			HEIGHT OF STEM WALL ${ }^{\text {h, }}$ (feet)	MAXIMUM DESIGN LATERAL SOIL LOAD (pst/ft)	MAXIMUM UNSUPPORTED HEIGHT OF ABOVEGRADE WALL (feet)	MINIMUM VERTICAL REINFORCEMENT-BAR SIZE AND SPACING (inches) ${ }^{\text {t, }}$ g							
			Wall type and nominal thickness ${ }^{\text {(}}$ (inches)										
Expo	ure Ca					Flat				Waffle		Screen	
B	C	D				4	6	8	10	6	8	6	
115				3	30	8	4@30	4@48	4@48	4@48	4@22	4@26	4@21
			10			4@23	$5 @ 43$	4@48	4@48	4@17	4@20	4@16	
			60		10	4@19	5@37	4@48	4@48	4@14	4@17	4@14	
			6	30	10	DR	5@21	6@35	4@48	DR	4@10	DR	
				60	10	DR	$5 @ 12$	6@25	6@28	DR	DR	DR	
120			3	30	8	4@28	4@48	4@48	4@48	4@21	4@48	4@20	
					10	4@22	5@41	4@48	4@48	4@16	4@19	4@15	
				60	10	4@18	$5 @ 35$	4@48	4@48	4@14	4@17	4@13	
			6	30	10	DR	5@21	6@35	4@48	DR	4@10	DR	
				60	10	DR	5 @12	6@25	6@28	DR	DR	DR	
130	110		3	30	8	4@25	4@48	4@48	$4 @ 48$	4@18	4@22	4@18	
					10	4@19	5@36	4@48	4@48	4@14	4@17	4@13	
			6	60	10	4@16	5@34	4@48	4@48	4@12	4@17	4@12	
				30	10	DR	5@19	6@35	4@48	DR	4@9	DR	
				60	10	DR	5 @12	6@24	6@28	DR	DR	DR	
140	119	110	3	30	8	4@22	5@42	4@48	4@48	4@16	4@20	4@16	
					10	$4 @ 17$	5@34	4@48	4@48	4@21	$4 @ 17$	4@12	
				60	10	4@15	5@34	4@48	4@48	4@11	4@17	4@10	
			6	30	10	DR	5@18	6@35	6@35	DR	4@48	DR	
				60	10	DR	5@11	6@23	6@28	DR	DR	DR	
150	127	117	3	30	8	4@20	5@37	4@48	4@48	4@15	4@18	4@14	
					10	4@15	5@34	4@48	4@48	4@11	4@17	4@11	
				60	10	4@13	5@34	4@48	4@48	$4 @ 10$	4@16	4@9	
			6	30	10	DR	5 @17	6@33	6@32	DR	4@8	DR	
				60	10	DR	DR	6@22	6@28	DR	DR	DR	
160	136	125	3	30	8	4@18	5@34	4@48	$4 @ 48$	4@13	4@17	4@13	
					10	4@13	5@34	4@48	4@48	4@10	4@16	4@9	
				60	10	4@11	5@31	6@45	4@48	4@9	4@14	4@8	
			6	30	10	DR	5@15	6@31	6@30	DR	4@7	DR	
				60	10	DR	DR	6@21	6@27	DR	DR	DR	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound per square inch $=6.895 \mathrm{kPa}, 1$ square foot $=0.0929 \mathrm{~m}^{2}$.
a. Table is based on ASCE 7 components and cladding wind pressures for an enclosed building using a mean roof height of 35 feet, interior wall area 4 , an effective wind area of 10 square feet, topographic factor, $K_{z t}$, equal to 1.0, and Risk Category II.
b. Table is based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$.
c. See Section R608.6.5 for location of reinforcement in wall.
d. Deflection criterion is $L / 240$, where L is the height of the wall in inches from the exterior finish ground level to the top of the above-grade wall.
e. Interpolation is not permitted. For intermediate values of basic wind speed, heights of stem wall and above-grade wall, and design lateral soil load, use next higher value.
f. Where No. 4 reinforcing bars at a spacing of 48 inches are specified in the table as indicated by shaded cells, use of bars with a minimum yield strength of $40,000 \mathrm{psi}$ or $60,000 \mathrm{psi}$ is permitted.
g. Other than for No. 4 bars spaced at 48 inches on center, table values are based on reinforcing bars with a minimum yield strength of 60,000 psi. Maximum spacings shown are the values calculated for the specified bar size. In waffle and screen-grid walls where the bar used is Grade 60 and the size specified in the table, the actual spacing in the wall shall not exceed a whole-number multiple of 12 inches such as, $12,24,36$ and 48 , that is less than or equal to the tabulated spacing. Vertical reinforcement with a yield strength of less than $60,000 \mathrm{psi}$ and/or bars of a different size than specified in the table are permitted in accordance with Section R608.5.4.7 and Table R608.5.4(2).
h. Height of stem wall is the distance from the exterior finish ground level to the top of the slab-on-ground.
i. Where the distance from the exterior finish ground level to the top of the slab-on-ground is equal to or greater than 4 feet, the stem wall shall be laterally supported at the top and bottom before backfilling. Where the wall is designed and constructed to be continuous with the above-grade wall, temporary supports bracing the top of the stem wall shall remain in place until the above-grade wall is laterally supported at the top by floor or roof construction.
j. See Table R608.3 for tolerances on nominal thicknesses, and minimum core dimensions and maximum spacing of horizontal and vertical cores for waffleand screen-grid walls.
k. Tabulated values are applicable to construction where gravity loads bear on top of wall, and conditions where gravity loads from floor construction are transferred to wall from a wood ledger or cold-formed steel track bolted to side of wall. See Tables R608.6(1), R608.6(2) and R608.6(3).

1. $\mathrm{DR}=$ Design Required.

R608.6.4 Termination of reinforcement. Where indicated in Items 1 through 3, vertical wall reinforcement in the top-most story with concrete walls shall be terminated with a 90-degree (1.57 rad) standard hook complying with Section R608.5.4.5 and Figure R608.5.4(3).

1. Vertical bars adjacent to door and window openings required by Section R608.8.1.2.
2. Vertical bars at the ends of required solid wall segments (see Section R608.7.2.2.2).
3. Vertical bars (other than end bars, see Item 2) used as shear reinforcement in required solid wall segments where the reduction factor for design strength, R_{3}, used is based on the wall having horizontal and vertical shear reinforcement (see Section R608.7.2.2.3).
The bar extension of the hook shall be oriented parallel to the horizontal wall reinforcement and be within 4 inches $(102 \mathrm{~mm})$ of the top of the wall.

Horizontal reinforcement shall be continuous around the building corners by bending one of the bars and lapsplicing it with the bar in the other wall in accordance with Section R608.5.4.3 and Figure R608.5.4(1).

Exception: In lieu of bending horizontal reinforcement at corners, separate bent reinforcing bars shall be permitted provided that the bent bar is lap-spliced with the horizontal reinforcement in both walls in accordance with Section R608.5.4.3 and Figure R608.5.4(1).
In required solid wall segments where the reduction factor for design strength, R_{3}, is based on the wall having horizontal and vertical shear reinforcement in accordance with Section R608.7.2.2.1, horizontal wall reinforcement shall be terminated with a standard hook complying with Section R608.5.4.5 and Figure R608.5.4(3) or in a lapsplice, except at corners where the reinforcement shall be continuous as required.
R608.6.5 Location of reinforcement in wall. Except for vertical reinforcement at the ends of required solid wall segments, which shall be located as required by Section R608.7.2.2.2, the location of the vertical reinforcement shall not vary from the center of the wall by more than the greater of 10 percent of the wall thickness and $3 / 8$-inch (10 mm). Horizontal and vertical reinforcement shall be located to provide not less than the minimum cover required by Section R608.5.4.1.

R608.7 Solid walls for resistance to lateral forces.

R608.7.1 Length of solid wall. Each exterior wall line in each story shall have a total length of solid wall required by Section R608.7.1.1. A solid wall is a section of flat, wafflegrid or screen-grid wall, extending the full story height without openings or penetrations, except those permitted by Section R608.7.2. Solid wall segments that contribute to the total length of solid wall shall comply with Section R608.7.2.

R608.7.1.1 Length of solid wall for wind. Buildings shall have solid walls in each exterior endwall line (the side of a building that is parallel to the span of the roof or floor framing) and sidewall line (the side of a building that is perpendicular to the span of the roof or floor fram-
ing) to resist lateral in-plane wind forces. The site-appropriate basic wind speed and exposure category shall be used in Tables R608.7(1A) through (1C) to determine the unreduced total length, $U R$, of solid wall required in each exterior endwall line and sidewall line. For buildings with a mean roof height of less than 35 feet (10 668 mm), the unreduced values determined from Tables R608.7(1A) though (1C) are permitted to be reduced by multiplying by the applicable factor, R_{1}, from Table R608.7(2); however, reduced values shall be not less than the minimum values in Tables R608.7(1A) through (1C). Where the floor-to-ceiling height of a story is less than 10 feet (3048 mm), the unreduced values determined from Tables R608.7(1A) through (C), including minimum values, are permitted to be reduced by multiplying by the applicable factor, R_{2}, from Table R608.7(3). To account for different design strengths than assumed in determining the values in Tables R608.7(1A) through (1C), the unreduced lengths determined from Tables R608.7(1A) through (1C), including minimum values, are permitted to be reduced by multiplying by the applicable factor, R_{3}, from Table R608.7(4). The reductions permitted by Tables R608.7(2), R608.7(3) and R608.7(4) are cumulative.
The total length of solid wall segments, $T L$, in a wall line that comply with the minimum length requirements of Section R608.7.2.1 [see Figure R608.7(1)] shall be equal to or greater than the product of the unreduced length of solid wall from Tables R608.7(1A) through (1C), $U R$ and the applicable reduction factors, if any, from Tables R608.7(2), R608.7(3) and R608.7(4) as indicated by Equation R6-1.
$T L \geq R_{1} \cdot R_{2} \cdot R_{3} \cdot U R$
(Equation R6-1)
where:
$T L=$ Total length of solid wall segments in a wall line that comply with Section R608.7.2.1 [see Figure R608.7(1)].
$R_{1}=1.0$ or reduction factor for mean roof height from Table R608.7(2).
$R_{2}=1.0$ or reduction factor for floor-to-ceiling wall height from Table R608.7(3).
$R_{3}=1.0$ or reduction factor for design strength from Table R608.7(4).
$U R=$ Unreduced length of solid wall from Tables R608.7(1A) through (1C).
The total length of solid wall in a wall line, $T L$, shall be not less than that provided by two solid wall segments complying with the minimum length requirements of Section R608.7.2.1.

To facilitate determining the required wall thickness, wall type, number and grade of vertical bars at each end of each solid wall segment, and whether shear reinforcement is required, use of Equation R6-2 is permitted.
$R \leq \frac{T L}{R_{1} \cdot R_{2} \cdot U R}$
(Equation R6-2)

After determining the maximum permitted value of the reduction factor for design strength, R_{3}, in accordance with Equation R6-2, select a wall type from Table R608.7(4) with R_{3} less than or equal to the value calculated.

R608.7.2 Solid wall segments. Solid wall segments that contribute to the required length of solid wall shall comply with this section. Reinforcement shall be provided in accordance with Section R608.7.2.2 and Table R608.7(4). Solid wall segments shall extend the full story-height without openings, other than openings for the utilities and other building services passing through the wall. In flat walls and waffle-grid walls, such openings shall have an
area of less than 30 square inches ($19355 \mathrm{~mm}^{2}$) without any dimension exceeding $6 \frac{1}{4}$ inches (159 mm), and shall not be located within 6 inches (152 mm) of the side edges of the solid wall segment. In screen-grid walls, such openings shall be located in the portion of the solid wall segment between horizontal and vertical cores of concrete and opening size and location are not restricted provided there is not any concrete removed.

TABLE R608.7(1A)
UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN EACH EXTERIOR ENDWALL
FOR WIND PERPENDICULAR TO RIDGE ONE STORY OR TOP STORY OF TWO STORY ${ }^{\text {a, }, ~ d, ~ e, ~ f, ~} g$

SIDEWALL LENGTH (feet)	$\begin{aligned} & \text { ENDWALL } \\ & \text { LENGTH } \\ & \text { (feet) } \end{aligned}$	ROOF SLOPE	UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN ENDWALLS FOR WIND PERPENDICULAR TO RIDGE (feet)						
			Basic Wind Speed (mph) Exposure						
			115B	120B	130B	140B	150B	160B	Minimum ${ }^{\text {b }}$
					110C	119C	127C	136C	
						110D	117D	125D	
15	15	<1:12	1.03	1.12	1.32	1.53	1.76	2.00	0.92
		5:12	1.43	1.56	1.83	2.12	2.43	2.77	1.15
		7:12	2.00	2.18	2.56	2.97	3.41	3.88	1.25
		12:12	3.20	3.48	4.09	4.74	5.44	6.19	1.54
	30	<1:12	1.03	1.12	1.32	1.53	1.76	2.00	0.98
		5:12	1.43	1.56	1.83	2.12	2.43	2.77	1.43
		7:12	2.78	3.03	3.56	4.13	4.74	5.39	1.64
		12:12	5.17	5.63	6.61	7.67	8.80	10.01	2.21
	45	< 1:12	1.03	1.12	1.32	1.53	1.76	2.00	1.04
		5:12	1.43	1.56	1.83	2.12	2.43	2.77	1.72
		7:12	3.57	3.88	4.56	5.28	6.07	6.90	2.03
		12:12	7.15	7.78	9.13	10.59	12.16	13.84	2.89
	60	< $1: 12$	1.03	1.12	1.32	1.53	1.76	2.00	1.09
		5:12	1.43	1.56	1.83	2.12	2.43	2.77	2.01
		7:12	4.35	4.73	5.55	6.44	7.39	8.41	2.42
		12:12	9.12	9.93	11.66	13.52	15.52	17.66	3.57
30	15	< 1:12	1.84	2.01	2.35	2.73	3.13	3.57	1.82
		5:12	2.56	2.78	3.27	3.79	4.35	4.95	2.23
		7:12	3.61	3.93	4.61	5.34	6.13	6.98	2.42
		12:12	5.61	6.10	7.16	8.31	9.54	10.85	2.93
	30	< 1:12	1.84	2.01	2.35	2.73	3.13	3.57	1.93
		5:12	2.56	2.78	3.27	3.79	4.35	4.95	2.75
		7:12	4.92	5.35	6.28	7.29	8.37	9.52	3.12
		12:12	8.92	9.71	11.39	13.22	15.17	17.26	4.14
	45	< 1:12	1.84	2.01	2.35	2.73	3.13	3.57	2.03
		5:12	2.56	2.78	3.27	3.79	4.35	4.95	3.26
		7:12	6.23	6.78	7.96	9.23	10.60	12.06	3.82
		12:12	12.23	13.31	15.63	18.12	20.80	23.67	5.36
	60	< $1: 12$	1.84	2.01	2.35	2.73	3.13	3.57	2.14
		5:12	2.56	2.78	3.27	3.79	4.35	4.95	3.78
		7:12	7.54	8.21	9.64	11.17	12.83	14.60	4.52
		12:12	15.54	16.92	19.86	23.03	26.44	30.08	6.57
(continued)									

TABLE R608.7(1A)-continued
UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN EACH EXTERIOR ENDWALL FOR WIND PERPENDICULAR TO RIDGE ONE STORY OR TOP STORY OF TWO STORYa, c, d, e, f, g

$\begin{aligned} & \text { SIDEWALL } \\ & \text { LENGTH } \\ & \text { (feet) } \end{aligned}$	ENDWALL LENGTH (feet)	ROOF SLOPE	UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN ENDWALLS FOR WIND PERPENDICULAR TO RIDGE (feet)						
			Basic Wind Speed (mph) Exposure						
			115B	120B	130B	140B	150B	160B	Minimum ${ }^{\text {b }}$
					110C	119C	127C	136C	
						110D	117D	125D	
60	15	< 1:12	3.42	3.72	4.36	5.06	5.81	6.61	3.63
		5:12	4.75	5.17	6.06	7.03	8.07	9.19	4.40
		7:12	6.76	7.36	8.64	10.02	11.51	13.09	4.75
		12:12	10.35	11.27	13.23	15.34	17.61	20.04	5.71
	30	< 1:12	3.42	3.72	4.36	5.06	5.81	6.61	3.83
		5:12	4.75	5.17	6.06	7.03	8.07	9.19	5.37
		7:12	9.12	9.93	11.66	13.52	15.52	17.66	6.07
		12:12	16.30	17.75	20.83	24.16	27.73	31.55	8.00
	45	< 1:12	3.55	3.87	4.54	5.27	6.05	6.88	4.03
		5:12	4.94	5.37	6.31	7.31	8.40	9.55	6.34
		7:12	11.71	12.75	14.97	17.36	19.93	22.67	7.39
		12:12	22.70	24.71	29.00	33.64	38.62	43.94	10.29
	60	< 1:12	3.68	4.01	4.71	5.46	6.27	7.13	4.23
		5:12	5.11	5.57	6.54	7.58	8.70	9.90	7.31
		7:12	14.38	15.66	18.37	21.31	24.46	27.83	8.71
		12:12	29.30	31.90	37.44	43.42	49.85	56.72	12.57

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound-force per linear foot $=0.146 \mathrm{kN} / \mathrm{m}, 1$ pound per square foot $=47.88 \mathrm{~Pa}$.
a. Tabulated lengths were derived by calculating design wind pressures in accordance with Figure 28.4-1 of ASCE 7 for a building with a mean roof height of 35 feet, topographic factor, $K_{z t}$ equal to 1.0 , and Risk Category II. For wind perpendicular to the ridge, the effects of a 2 -foot overhang on each endwall are included. The design pressures were used to calculate forces to be resisted by solid wall segments in each. The forces to be resisted by each wall line were then divided by the default design strength of 840 pounds per linear foot of length to determine the unreduced length, $U R$, of solid wall length required in each endwall. The actual mean roof height of the building shall not exceed the least horizontal dimension of the building.
b. Tabulated lengths in the "minimum" column are based on the requirement of Section 28.4.4 of ASCE 7 that the main windforce-resisting system be designed for a minimum pressure of 16 psf multiplied by the wall area of the building and 8 psf multiplied by the roof area of the building projected onto a vertical plane normal to the assumed wind direction. Tabulated lengths in shaded cells are less than the "minimum" value. Where the minimum controls, it is permitted to be reduced in accordance with Notes c, d and e. See Section R608.7.1.1.
c. For buildings with a mean roof height of less than 35 feet, tabulated lengths are permitted to be reduced by multiplying by the appropriate factor, R_{1}, from Table R608.7(2). The reduced length shall be not less than the "minimum" value shown in the table.
d. Tabulated lengths for "one story or top story of two story" are based on a floor-to-ceiling height of 10 feet. Tabulated lengths for "first story of two story" are based on floor-to-ceiling heights of 10 feet each for the first and second story. For floor-to-ceiling heights less than assumed, use the lengths in this table or Table R608.7 (1B) or (1C), or multiply the value in the table by the reduction factor, R_{2}, from Table R608.7(3)
e. Tabulated lengths are based on the default design shear strength of 840 pounds per linear foot of solid wall segment. The tabulated lengths are permitted to be reduced by multiplying by the applicable reduction factor for design strength, R_{3}, from Table R608.7(4).
f. The reduction factors, R_{1}, R_{2} and R_{3}, in Tables R608.7(2), R608.7(3), and R608.7(4), respectively, are permitted to be compounded, subject to the limitations of Note b. However, the minimum number and minimum length of solid wall segments in each wall line shall comply with Sections R608.7.1 and R608.7.2.1, respectively.
g. For intermediate values of sidewall length, endwall length, roof slope and basic wind speed, use the next higher value, or determine by interpolation.

TABLE R608.7(1B)
UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN EACH EXTERIOR ENDWALL FOR WIND PERPENDICULAR TO RIDGE FIRST STORY OF TWO STORY ${ }^{\text {a, }, ~ d, ~ e, ~ i, ~} g$

$\underset{\substack{\text { Leet) }}}{\text { SIDEWALL }}$	$\underset{\text { (feet) }}{\text { ENDWALL }}$	ROOF SLOPE	UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN ENDWALLS FOR WIND PERPENDICULAR TO RIDGE						
			Basic Wind Speed (mph) Exposure						
			115B	120B	130B	140B	150B	160B	Minimum ${ }^{\text {b }}$
					110C	119C	127C	136C	
						110D	117D	125D	
15	15	< 1:12	2.98	3.25	3.81	4.42	5.07	5.77	2.54
		5:12	4.13	4.50	5.28	6.12	7.03	8.00	2.76
		7:12	4.31	4.70	5.51	6.39	7.34	8.35	2.87
		12:12	5.51	6.00	7.04	8.16	9.37	10.66	3.15
	30	< 1:12	2.98	3.25	3.81	4.42	5.07	5.77	2.59
		5:12	4.13	4.50	5.28	6.12	7.03	8.00	3.05
		7:12	5.09	5.55	6.51	7.55	8.67	9.86	3.26
		12:12	7.48	8.15	9.56	11.09	12.73	14.49	3.83
	45	< 1:12	2.98	3.25	3.81	4.42	5.07	5.77	2.65
		5:12	4.13	4.50	5.28	6.12	7.03	8.00	3.34
		7:12	5.88	6.40	7.51	8.71	10.00	11.37	3.65
		12:12	9.46	10.30	12.09	14.02	16.09	18.31	4.51
	60	< 1:12	2.98	3.25	3.81	4.42	5.07	5.77	2.71
		5:12	4.13	4.50	5.28	6.12	7.03	8.00	3.63
		7:12	6.66	7.25	8.51	9.87	11.32	12.89	4.04
		12:12	11.43	12.45	14.61	16.94	19.45	22.13	5.19
30	15	< 1:12	5.32	5.79	6.80	7.89	9.05	10.30	5.06
		5:12	7.39	8.04	9.44	10.95	12.57	14.30	5.47
		7:12	7.94	8.65	10.15	11.77	13.51	15.37	5.65
		12:12	9.94	10.82	12.70	14.73	16.91	19.24	6.17
	30	< 1:12	5.32	5.79	6.80	7.89	9.05	10.30	5.16
		5:12	7.39	8.04	9.44	10.95	12.57	14.30	5.98
		7:12	9.25	10.07	11.82	13.71	15.74	17.91	6.35
		12:12	13.25	14.43	16.93	19.64	22.54	25.65	7.38
	45	< 1:12	5.32	5.79	6.80	7.89	9.05	10.30	5.27
		5:12	7.39	8.04	9.44	10.95	12.57	14.30	6.50
		7:12	10.56	11.50	13.50	15.65	17.97	20.45	7.06
		12:12	16.56	18.03	21.16	24.55	28.18	32.06	8.60
	60	< 1:12	5.32	5.79	6.80	7.89	9.05	10.30	5.38
		5:12	7.39	8.04	9.44	10.95	12.57	14.30	7.01
		7:12	11.87	12.93	15.17	17.60	20.20	22.98	7.76
		12:12	19.87	21.64	25.40	29.45	33.81	38.47	9.81

(continued)

TABLE R608.7(1B)-continued
UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN EACH EXTERIOR ENDWALL
FOR WIND PERPENDICULAR TO RIDGE FIRST STORY OF TWO STORY ${ }^{\text {a, }} \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$

$\underset{\substack{\text { SIDEWALL } \\ \text { (feet) }}}{\text { (feNGTH }}$	$\underset{\text { (feet) }}{\text { ENDWALL }}$	ROOF SLOPE	UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN ENDWALLS FOR WIND PERPENDICULAR TO RIDGE						
			Basic Wind Speed (mph) Exposure						
			115B	120B	130B	140B	150B	160B	Minimum ${ }^{\text {b }}$
					110C	119C	127C	136C	
						110D	117D	125D	
60	15	< 1:12	9.87	10.74	12.61	14.62	16.79	19.10	10.10
		5:12	13.71	14.93	17.52	20.32	23.33	26.54	10.87
		7:12	15.08	16.42	19.27	22.35	25.66	29.20	11.22
		12:12	18.67	20.33	23.86	27.67	31.77	36.14	12.19
	30	< 1:12	9.87	10.74	12.61	14.62	16.79	19.10	10.30
		5:12	13.71	14.93	17.52	20.32	23.33	26.54	11.85
		7:12	17.44	18.99	22.29	25.85	29.67	33.76	12.54
		12:12	24.62	26.81	31.46	36.49	41.89	47.66	14.48
	45	< 1:12	10.27	11.18	13.12	15.21	17.47	19.87	10.50
		5:12	14.26	15.52	18.22	21.13	24.26	27.60	12.82
		7:12	20.21	22.01	25.83	29.95	34.39	39.12	13.86
		12:12	31.20	33.97	39.87	46.23	53.07	60.39	16.76
	60	< 1:12	10.64	11.59	13.60	15.77	18.11	20.60	10.70
		5:12	14.77	16.09	18.88	21.90	25.14	28.60	13.79
		7:12	23.05	25.09	29.45	34.15	39.21	44.61	15.18
		12:12	37.97	41.34	48.52	56.27	64.60	73.49	19.05

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound force per linear foot $=0.146 \mathrm{kN} / \mathrm{m}, 1$ pound per square foot $=47.88 \mathrm{~Pa}$.
a. Tabulated lengths were derived by calculating design wind pressures in accordance with Figure 28.4-1 of ASCE 7 for a building with a mean roof height of 35 feet, topographic factor, $K_{z t}$, equal to 1.0, and Risk Category II. For wind perpendicular to the ridge, the effects of a 2 -foot overhang on each endwall are included. The design pressures were used to calculate forces to be resisted by solid wall segments in each endwall. The forces to be resisted by each wall line were then divided by the default design strength of 840 pounds per linear foot of length to determine the unreduced length, $U R$, of solid wall length required in each endwall. The actual mean roof height of the building shall not exceed the least horizontal dimension of the building.
b. Tabulated lengths in the "minimum" column are based on the requirement of Section 28.4.4 of ASCE 7 that the main windforce-resisting system be designed for a minimum pressure of 1016 psf multiplied by the wall area of the building and 8 psf multiplied by the roof area of the building projected onto a vertical plane normal to the assumed wind direction. Tabulated lengths in shaded cells are less than the "minimum" value. Where the minimum controls, it is permitted to be reduced in accordance with Notes c, d and e. See Section R608.7.1.1.
c. For buildings with a mean roof height of less than 35 feet, tabulated lengths are permitted to be reduced by multiplying by the appropriate factor, R_{1}, from Table R608.7(2). The reduced length shall be not less than the "minimum" value shown in the table.
d. Tabulated lengths for "one story or top story of two story" are based on a floor-to-ceiling height of 10 feet. Tabulated lengths for "first story of two story" are based on floor-to-ceiling heights of 10 feet each for the first and second story. For floor-to-ceiling heights less than assumed, use the lengths in this table or Table R608.7 1 A) or (1 C), or multiply the value in the table by the reduction factor, R_{2}, from Table R608.7(3).
e. Tabulated lengths are based on the default design shear strength of 840 pounds per linear foot of solid wall segment. The tabulated lengths are permitted to be reduced by multiplying by the applicable reduction factor for design strength, R_{3}, from Table R608.7(4).
f. The reduction factors, R_{1}, R_{2} and R_{3}, in Tables R608.7(2), R608.7(3), and R608.7(4), respectively, are permitted to be compounded, subject to the limitations of Note b. However, the minimum number and minimum length of solid wall segments in each wall line shall comply with Sections R608.7.1 and R608.7.2.1, respectively.
g. For intermediate values of sidewall length, endwall length, roof slope and basic wind speed, use the next higher value, or determine by interpolation.

TABLE R608.7(1C)
UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN EACH EXTERIOR SIDEWALL FOR WIND PARALLEL TO RIDGE ${ }^{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}}$

SIDEWALL LENGTH (feet)	$\underset{\text { (feet) }}{\substack{\text { ENDWALL } \\ \text { LENGTH }}}$	$\begin{aligned} & \text { ROOF } \\ & \text { SLOPE } \end{aligned}$	UNREDU	ENGTH,	SOLID	REQUIR	DEWA	WIND P	TO RIDGE
						ind Spe	h) Expos		
			115B	120B	130B	140B	150B	160B	Minimum ${ }^{\text {b }}$
					110C	119C	127C	136C	
						110D	117D	125D	
			One story or top story of two story						
<30	15	< 1:12	1.08	1.18	1.39	161	1.84	2.10	0.90
		5:12	1.29	1.40	1.65	1.91	2.19	2.49	1.08
		7:12	1.38	1.50	1.76	2.04	2.35	2.67	1.17
		12:12	1.63	1.78	2.09	2.42	2.78	3.16	1.39
	30	< 1:12	2.02	2.20	2.59	3.00	3.44	3.92	1.90
		5:12	2.73	2.97	3.48	4.04	4.64	5.28	2.62
		7:12	3.05	3.32	3.89	4.51	5.18	5.89	2.95
		12:12	3.93	4.27	5.02	5.82	6.68	7.60	3.86
	45	< 1:12	3.03	3.30	3.87	4.49	5.15	5.86	2.99
		5:12	4.55	4.96	5.82	6.75	7.74	8.81	4.62
		7:12	5.24	5.71	6.70	7.77	8.92	10.15	5.36
		12:12	7.16	7.79	9.14	10.61	12.17	13.85	7.39
	60	< 1:12	4.11	4.47	5.25	6.09	6.99	7.96	4.18
		5:12	6.78	7.39	8.67	10.05	11.54	13.13	7.07
		7:12	8.00	8.71	10.22	11.85	13.61	15.48	8.38
		12:12	11.35	12.36	14.51	16.82	19.31	21.97	12.00
60	45	< 1:12	3.17	3.46	4.06	4.70	5.40	6.14	2.99
		5:12	4.75	5.18	6.07	7.04	8.09	9.20	4.62
		7:12	5.47	5.96	6.99	8.11	9.31	10.59	5.36
		12:12	7.45	8.11	9.52	11.04	12.68	14.43	7.39
	60	< 1:12	4.41	4.81	5.64	6.54	7.51	8.54	4.18
		5:12	7.22	7.86	9.23	10.70	12.29	13.98	7.07
		7:12	8.50	9.25	10.86	12.59	14.46	16.45	8.38
		12:12	12.02	13.09	15.36	17.81	20.45	23.27	12.00

(continued)

TABLE R608.7(1C)-continued UNREDUCED LENGTH, UR, OF SOLID WALL REQUIRED IN EACH EXTERIOR SIDEWALL FOR WIND PARALLEL TO RIDGE ${ }^{\mathrm{a}, ~} \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$

$\underset{\substack{\text { Leet) }}}{\text { SIDEWALLL }}$	$\underset{\text { (feet) }}{\substack{\text { ENDWALL } \\ \text { LENGTH }}}$	ROOF SLOPE	UNRED	ENGTH	SOLID	REQUIR	DEWAL	WIND	TO RIDGE
						ind Spe	osure (m		
			115B	120B	130B	140B	150B	160B	Minimum ${ }^{\text {b }}$
					110 C	119C	127C	136 C	
						110D	117D	125D	
			First story of two story						
< 30	15	< 1:12	3.03	3.30	3.88	4.49	5.16	5.87	2.52
		5:12	3.24	3.52	4.14	4.80	5.51	6.26	2.70
		7:12	3.33	3.62	4.25	4.93	5.66	6.44	2.79
		12:12	3.58	3.90	4.58	5.31	6.10	6.94	3.01
	30	< 1:12	5.50	5.99	7.03	8.16	9.36	10.65	5.14
		5:12	6.21	6.76	7.93	9.20	10.56	12.01	5.86
		7:12	6.52	7.10	8.34	9.67	11.10	12.63	6.19
		12:12	7.41	8.06	9.46	10.97	12.60	14.33	7.10
	45	< 1:12	8.00	8.71	10.22	11.85	13.61	15.48	7.85
		5:12	9.52	10.37	12.17	14.11	16.20	18.43	9.48
		7:12	10.21	11.12	13.05	15.14	17.38	19.77	10.21
		12:12	12.13	13.20	15.50	17.97	20.63	23.47	12.25
	60	<1:12	10.56	11.50	13.50	15.65	17.97	20.44	10.65
		5:12	13.24	14.41	16.91	19.62	22.52	25.62	13.54
		7:12	14.45	15.73	18.46	21.41	24.58	27.97	14.85
		12:12	17.80	19.38	22.75	26.38	30.29	34.46	18.48
60	45	<1:12	8.39	9.14	10.72	12.44	14.28	16.25	7.85
		5:12	9.97	10.86	12.74	14.78	16.97	19.30	9.48
		7:12	10.69	11.64	13.66	15.84	18.19	20.69	10.21
		12:12	12.67	13.80	16.19	18.78	21.56	24.53	12.25
	60	< 1:12	11.37	12.38	14.53	16.85	19.35	22.01	10.65
		5:12	14.18	15.44	18.12	21.02	24.13	27.45	13.54
		7:12	15.46	16.83	19.75	22.91	26.29	29.92	14.85
		12:12	18.98	20.66	24.25	28.13	32.29	36.74	18.48

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}, 1$ pound force per linear foot $=0.146 \mathrm{kN} / \mathrm{m}, 1$ pound per square foot $=47.88 \mathrm{~Pa}$.
a. Tabulated lengths were derived by calculating design wind pressures in accordance with Figure 28.4-1 of ASCE 7 for a building with a mean roof height of 35 feet, topographic factor, K_{z}, equal to 1.0 , and Risk Category II. The design pressures were used to calculate forces to be resisted by solid wall segments in each sidewall. The forces to be resisted by each wall line were then divided by the default design strength of 840 pounds per linear foot of length to determine the unreduced length, $U R$, of solid wall length required in each sidewall. The actual mean roof height of the building shall not exceed the least horizontal dimension of the building.
b. Tabulated lengths in the "minimum" column are based on the requirement of Section 28.4.4 of ASCE 7 that the main windforce-resisting system be designed for a minimum pressure of 16 psf multiplied by the wall area of the building and 8 psf multiplied by the roof area of the building projected onto a vertical plane normal to the assumed wind direction. Tabulated lengths in shaded cells are less than the "minimum" value. Where the minimum controls, it is permitted to be reduced in accordance with Notes c, d and e. See Section R608.7.1.1.
c. For buildings with a mean roof height of less than 35 feet, tabulated lengths are permitted to be reduced by multiplying by the appropriate factor, R_{1}, from Table R608.7(2). The reduced length shall be not less than the "minimum" value shown in the table
d. Tabulated lengths for "one story or top story of two story" are based on a floor-to-ceiling height of 10 feet. Tabulated lengths for "first story of two story" are based on floor-to-ceiling heights of 10 feet each for the first and second story. For floor-to-ceiling heights less than assumed, use the lengths in this table or Table R608.7(1A) or (1B), or multiply the value in the table by the reduction factor, R_{2}, from Table R608.7(3).
e. Tabulated lengths are based on the default design shear strength of 840 pounds per linear foot of solid wall segment. The tabulated lengths are permitted to be reduced by multiplying by the applicable reduction factor for design strength, R_{3}, from Table R608.7(4).
f. The reduction factors, R_{1}, R_{2} and R_{3}, in Tables R608.7(2), R608.7(3), and R608.7(4), respectively, are permitted to be compounded, subject to the limitations of Note b. However, the minimum number and minimum length of solid walls segments in each wall line shall comply with Sections R608.7.1 and R608.7.2.1, respectively.
g. For intermediate values of sidewall length, endwall length, roof slope and basic wind speed, use the next higher value, or determine by interpolation.

TABLE R608.7(2)
REDUCTION FACTOR, R_{1}, FOR BUILDINGS WITH MEAN ROOF HEIGHT LESS THAN 35 FEET ${ }^{\text {a }}$

MEAN ROOF HEIGHT (feet)	REDUCTION FACTOR \boldsymbol{R}_{1}, FOR MEAN ROOF HEIGHT		
	Exposure category		
	B	C	D
<15	0.96	0.84	0.87
20	0.96	0.89	0.91
25	0.96	0.93	0.94
30	0.96	0.97	0.98
35	1.00	1.00	1.00

For SI: 1 foot $=304.8 \mathrm{~mm}, 1$ degree $=0.0175 \mathrm{rad}$.
a. See Section R608.7.1.1 and Note c to Table R608.7(1A) for application of reduction factors in this table. This reduction is not permitted for "minimum" values.
b. For intermediate values of mean roof height, use the factor for the next greater height, or determine by interpolation.
c. Mean roof height is the average of the roof eave height and height of the highest point on the roof surface, except that for roof slopes of less than or equal to $2 \frac{1}{8}: 12$ (10 degrees), the mean roof height is permitted to be taken as the roof eave height.

REDUCTION FACTOR, R_{2}, FOR FLOOR-TO-CEILING WALL HEIGHTS LESS THAN 10 FEET ${ }^{\text {a, }}$ b

STORY UNDER CONSIDERATION	$\underset{\text { (feet) }}{\text { FLOOR-TO-CEILING HEIGHT }}{ }^{\text {(fict }}$	ENDWALL LENGTH (feet)	ROOF SLOPE	REDUCTION FACTOR, \boldsymbol{R}_{2}
Endwalls-for wind perpendicular to ridge				
One story or top story of two story	8	15	< 5:12	0.83
			7:12	0.90
			12:12	0.94
		60	<5:12	0.83
			7:12	0.95
			12:12	0.98
First story of two story	16 combined first and second story	15	< 5:12	0.83
			7:12	0.86
			12:12	0.89
		60	< 5:12	0.83
			7:12	0.91
			12:12	0.95
Sidewalls-for wind parallel to ridge				
One story or top story of two story	8	15	< 1:12	0.84
			5:12	0.87
			7:12	0.88
			12:12	0.89
		60	< 1:12	0.86
			5:12	0.92
			7:12	0.93
			12:12	0.95
First story of two story	16 combined first and second story	15	< 1:12	0.83
			5:12	0.84
			7:12	0.85
			12:12	0.86
		60	< 1:12	0.84
			5:12	0.87
			7:12	0.88
			12:12	0.90

For SI: 1 foot $=304.8 \mathrm{~mm}$.
a. See Section R608.7.1.1 and Note d to Table R608.7(1A) for application of reduction factors in this table.
b. For intermediate values of endwall length, and/or roof slope, use the next higher value, or determine by interpolation.
c. Tabulated values in Table R608.7(1A) and (1C) for "one story or top story of two story" are based on a floor-to-ceiling height of 10 feet. Tabulated values in Table R608.7(1B) and (1C) for "first story of two story" are based on floor-to-ceiling heights of 10 feet each for the first and second story. For floor to ceiling heights between those shown in this table and those assumed in Table R608.7(1A), (1B) or (1C), use the solid wall lengths in Table R608.7(1A), (1B) or (1C), or determine the reduction factor by interpolating between 1.0 and the factor shown in this table.

TABLE R608.7(4)
REDUCTION FACTOR FOR DESIGN STRENGTH, R_{3}, FOR FLAT, WAFFLE- AND SCREEN-GRID WALLS ${ }^{\text {a, }}$ c

NOMINAL THICKNESS OF WALL (inches)	VERTICAL BARS AT EACH END OF SOLID WALL SEGMENT		VERTICAL REINFORCEMENT LAYOUT DETAIL [see Figure R608.7(2)]	REDUCTION FACTOR, R_{3}, FOR LENGTH OF SOLID WALL				
			Horizontal and vertical shear reinforcement provided					
	N			No		Yes ${ }^{\text {d }}$		
				40,000 ${ }^{\text {b }}$	60,000 ${ }^{\text {b }}$	40,000 ${ }^{\text {b }}$	60,000 ${ }^{\text {b }}$	
Flat walls								
4	2	4		1	0.74	0.61	0.74	0.50
	3	4	2	0.61	0.61	0.52	0.27	
	2	5	1	0.61	0.61	0.48	0.25	
	3	5	2	0.61	0.61	0.26	0.18	
6	2	4	3	0.70	0.48	0.70	0.48	
	3	4	4	0.49	0.38	0.49	0.33	
	2	5	3	0.46	0.38	0.46	0.31	
	3	5	4	0.38	0.38	0.32	0.16	
8	2	4	3	0.70	0.47	0.70	0.47	
	3	4	5	0.47	0.32	0.47	0.32	
	2	5	3	0.45	0.31	0.45	0.31	
	4	4	6	0.36	0.28	0.36	0.25	
	3	5	5	0.31	0.28	0.31	0.16	
	4	5	6	0.28	0.28	0.24	0.12	
10	2	4	3	0.70	0.47	0.70	0.47	
	2	5	3	0.45	0.30	0.45	0.30	
	4	4	7	0.36	0.25	0.36	0.25	
	6	4	8	0.25	0.22	0.25	0.13	
	4	5	7	0.24	0.22	0.24	0.12	
	6	5	8	0.22	0.22	0.12	0.08	
Waffle-grid walls ${ }^{\text {e }}$								
6	2	4	3	0.78	0.78	0.70	0.48	
	3	4	4	0.78	0.78	0.49	0.25	
	2	5	3	0.78	0.78	0.46	0.23	
	3	5	4	0.78	0.78	0.24	0.16	
8	2	4	3	0.78	0.78	0.70	0.47	
	3	4	5	0.78	0.78	0.47	0.24	
	2	5	3	0.78	0.78	0.45	0.23	
	4	4	6	0.78	0.78	0.36	0.18	
	3	5	5	0.78	0.78	0.23	0.16	
	4	5	6	0.78	0.78	0.18	0.13	
Screen-grid walls ${ }^{\text {e }}$								
6	2	4	3	0.93	0.93	0.70	0.48	
	3	4	4	0.93	0.93	0.49	0.25	
	2	5	3	0.93	0.93	0.46	0.23	
	3	5	4	0.93	0.93	0.24	0.16	

For SI: 1 inch $=25.4 \mathrm{~mm}, 1,000$ pounds per square inch $=6.895 \mathrm{MPa}$.
a. See Note e to Table R608.7(1A) for application of adjustment factors in this table.
b. Yield strength in pounds per square inch of vertical wall reinforcement at ends of solid wall segments.
c. Values are based on concrete with a specified compressive strength, f_{c}^{\prime}, of 2,500 psi. Where concrete with f_{c}^{\prime} of not less than 3,000 psi is used, values in shaded cells are permitted to be decreased by multiplying by 0.91 .
d. Horizontal and vertical shear reinforcement shall be provided in accordance with Section R608.7.2.2.
e. Each end of each solid wall segment shall have rectangular flanges. In the through-the-wall dimension, the flange shall be not less than $5 \frac{1}{2}$ inches for 6 -inchnominal waffle- and screen-grid walls, and not less than $7 \frac{1}{2}$ inches for 8 -inch-nominal waffle-grid walls. In the in-plane dimension, flanges shall be long enough to accommodate the vertical reinforcement required by the layout detail selected from Figure R608.7(2) and provide the cover required by Section R608.5.4.1. If necessary to achieve the required dimensions, form material shall be removed or use of flat wall forms is permitted.

FIGURE R608.7(1)
MINIMUM SOLID WALL LENGTH

R608.7.2.1 Minimum length of solid wall segment and maximum spacing. Only solid wall segments equal to or greater than 24 inches (610 mm) in length shall be included in the total length of solid wall required by Section R608.7.1. In addition, not more than two solid wall
segments equal to or greater than 24 inches (610 mm) in length and less than 48 inches (1219 mm) in length shall be included in the required total length of solid wall. The maximum clear opening width shall be 18 feet (5486 mm). See Figure R608.7(1).

R608.7.2.2 Reinforcement in solid wall segments.

R608.7.2.2.1 Horizontal shear reinforcement. Where reduction factors for design strength, R_{3}, from Table R608.7(4) based on horizontal and vertical shear reinforcement being provided are used, solid wall segments shall have horizontal reinforcement consisting of minimum No. 4 bars. Horizontal shear reinforcement shall be the same grade of steel required for the vertical reinforcement at the ends of solid wall segments by Section R608.7.2.2.2.

The spacing of horizontal reinforcement shall not exceed the smaller of one-half the length of the solid wall segment, minus 2 inches (51 mm), and 18 inches (457 mm). Horizontal shear reinforcement shall terminate in accordance with Section R608.6.4.
R608.7.2.2.2 Vertical reinforcement. Vertical reinforcement applicable to the reduction factor(s) for design strength, R_{3}, from Table R608.7(4) that is used, shall be located at each end of each solid wall segment in accordance with the applicable detail in Figure R608.7(2). The No. 4 vertical bar required on each side of an opening by Section R608.8.1.2 is permitted to be used as reinforcement at the ends of solid wall segments where installed in accordance with the applicable detail in Figure R08.7(2). There shall be not less than two No. 4 bars at each end of solid wall segments located as required by the applicable detail in Figure R608.7(2). One of the bars at each end of solid wall segments shall be deemed to meet the requirements for vertical wall reinforcement required by Section R608.6.

The vertical wall reinforcement at each end of each solid wall segment shall be developed below the bottom of the adjacent wall opening [see Figure R608.7(3)] by one of the following methods:

1. Where the wall height below the bottom of the adjacent opening is equal to or greater than 22 inches (559 mm) for No. 4 or 28 inches (711 mm) for No. 5 vertical wall reinforcement, reinforcement around openings in accordance with Section R608.8.1 shall be sufficient.
2. Where the wall height below the bottom of the adjacent opening is less than required by Item 1 above, the vertical wall reinforcement adjacent to the opening shall extend into the footing far enough to develop the bar in tension in accordance with Section R608.5.4.4 and Figure R608.5.4(2), or shall be lap-spliced with a dowel that is embedded in the footing far enough to develop the dowel-bar in tension.
R608.7.2.2.3 Vertical shear reinforcement. Where reduction factors for design strength, R_{3}, from Table R608.7(4) based on horizontal and vertical shear reinforcement being provided are used, solid wall segments shall have vertical reinforcement consisting of minimum No. 4 bars. Vertical shear reinforcement shall be the same grade of steel required by Section R608.7.2.2.2 for the vertical reinforcement
at the ends of solid wall segments. The spacing of vertical reinforcement throughout the length of the segment shall not exceed the smaller of one third the length of the segment, and 18 inches (457 mm). Vertical shear reinforcement shall be continuous between stories in accordance with Section R608.6.3, and shall terminate in accordance with Section R608.6.4. Vertical shear reinforcement required by this section is permitted to be used for vertical reinforcement required by Table R608.6(1), R608.6(2), R608.6(3) or R608.6(4), whichever is applicable.
R608.7.2.3 Solid wall segments at corners. At all interior and exterior corners of exterior walls, a solid wall segment shall extend the full height of each wall story. The segment shall have the length required to develop the horizontal reinforcement above and below the adjacent opening in tension in accordance with Section R608.5.4.4. For an exterior corner, the limiting dimension is measured on the outside of the wall, and for an interior corner the limiting dimension is measured on the inside of the wall. See Section R608.8.1. The length of a segment contributing to the required length of solid wall shall comply with Section R608.7.2.1.

The end of a solid wall segment complying with the minimum length requirements of Section R608.7.2.1 shall be located not more than 6 feet $(1829 \mathrm{~mm})$ from each corner.
R608.8 Requirements for lintels and reinforcement around openings.

R608.8.1 Reinforcement around openings. Reinforcement shall be provided around openings in walls equal to or greater than 2 feet (610 mm) in width in accordance with this section and Figure R608.8(1), in addition to the minimum wall reinforcement required by Sections R404.1.3, R608.6 and R608.7. Vertical wall reinforcement required by this section is permitted to be used as reinforcement at the ends of solid wall segments required by Section R608.7.2.2.2 provided it is located in accordance with Section R608.8.1.2. Wall openings shall have a minimum depth of concrete over the width of the opening of 8 inches (203 mm) in flat walls and waffle-grid walls, and 12 inches (305 mm) in screen-grid walls. Wall openings in waffle-grid and screen-grid walls shall be located such that not less than one-half of a vertical core occurs along each side of the opening.

 -

,

FIGURE R608.7(2)
VERTICAL REINFORCEMENT LAYOUT DETAIL
 WALL HEIGHT BELOW OPENING IS LESS THAN REQUIRED BY SECTION R608.7.2.2.2

FIGURE R608.7(3)
VERTICAL WALL REINFORCEMENT ADJACENT TO WALL OPENINGS

R608.8.1.1 Horizontal reinforcement. Lintels complying with Section R608.8.2 shall be provided above wall openings equal to or greater than 2 feet $(610 \mathrm{~mm})$ in width.

Exception: Continuous horizontal wall reinforcement placed within 12 inches (305 mm) of the top of the wall story as required in Sections R404.1.2.2 and R608.6.2 is permitted in lieu of top or bottom lintel reinforcement required by Section R608.8.2 provided that the continuous horizontal wall reinforcement meets the location requirements specified in Figures R608.8(2), R608.8(3), and R608.8(4) and the size requirements specified in Tables R608.8(2) through R608.8(10).
Openings equal to or greater than 2 feet (610 mm) in width shall have not less than one No. 4 bar placed within 12 inches (305 mm) of the bottom of the opening. See Figure R608.8(1).

Horizontal reinforcement placed above and below an opening shall extend beyond the edges of the opening the dimension required to develop the bar in tension in accordance with Section R608.5.4.4.
R608.8.1.2 Vertical reinforcement. Not less than one No. 4 bar [Grade 40 (280 MPa)] shall be provided on each side of openings equal to or greater than 2 feet (610 mm) in width. The vertical reinforcement required by this section shall extend the full height of the wall story and shall be located within 12 inches (305 mm) of each
side of the opening. The vertical reinforcement required on each side of an opening by this section is permitted to serve as reinforcement at the ends of solid wall segments in accordance with Section R608.7.2.2.2, provided it is located as required by the applicable detail in Figure R608.7(2). Where the vertical reinforcement required by this section is used to satisfy the requirements of Section R608.7.2.2.2 in waffle- and screen-grid walls, a concrete flange shall be created at the ends of the solid wall segments in accordance with Table R608.7(4), Note e. In the top-most story, the reinforcement shall terminate in accordance with Section R608.6.4.

R608.8.2 Lintels. Lintels shall be provided over all openings equal to or greater than 2 feet (610 mm) in width. Lintels with uniform loading shall conform to Sections R608.8.2.1 and R608.8.2.2, or Section R608.8.2.3. Lintels supporting concentrated loads, such as from roof or floor beams or girders, shall be designed in accordance with ACI 318.

R608.8.2.1 Lintels designed for gravity load-bearing conditions. Where a lintel will be subjected to gravity load condition 1 through 5 of Table R608.8(1), the clear span of the lintel shall not exceed that permitted by Tables R608.8(2) through R608.8(8). The maximum clear span of lintels with and without stirrups in flat walls shall be determined in accordance with Tables R608.8(2) through R608.8(5), and constructed in accordance with Figure R608.8(2). The maximum clear span of lintels with and without stirrups in waffle-grid walls shall be
determined in accordance with Tables R608.8(6) and R608.8(7), and constructed in accordance with Figure R608.8(3). The maximum clear span of lintels with and without stirrups in screen-grid walls shall be determined in accordance with Table R608.8(8), and constructed in accordance with Figure R608.8(4).

Where required by the applicable table, No. 3 stirrups shall be installed in lintels at a maximum spacing of $d / 2$ where d equals the depth of the lintel, D, less the cover of the concrete as shown in Figures R608.8(2) through R608.8(4). The smaller value of d computed for the top and bottom bar shall be used to determine the maximum stirrup spacing. Where stirrups are required in a lintel with a single bar or two bundled bars in the top and bottom, they shall be fabricated like the letter "c" or "s" with 135-degree (2.36 rad) standard hooks at each end that comply with Section R608.5.4.5 and Figure R608.5.4(3) and installed as shown in Figures R608.8(2) through R608.8(4). Where two bars are required in the top and bottom of the lintel and the bars are not bundled, the bars shall be separated by not less than 1 inch (25 mm). The free end of the stirrups shall be fabricated with 90 - or 135-degree (1.57 or 2.36 rad) standard hooks that comply with Section R608.5.4.5 and Figure R608.5.4(3) and installed as shown in Figures R608.8(2) and R608.8(3). For flat, waffle-grid and screen-grid lintels, stirrups are not required in the center distance, A, portion of spans in accordance with Figure R608.8(1) and Tables R608.8(2) through R608.8(8). See Section R608.8.2.2, Item 5, for requirement for stirrups through out lintels with bundled bars.

R608.8.2 2 Bundled bars in lintels. It is permitted to bundle two bars in contact with each other in lintels if all of the following are observed:

1. Bars equal to or less than No. 6 are bundled.
2. Where the wall thickness is not sufficient to provide not less than 3 inches (76 mm) of clear space beside bars (total on both sides) oriented horizontally in a bundle, the bundled bars shall be oriented in a vertical plane.
3. Where vertically oriented bundled bars terminate with standard hooks to develop the bars in tension beyond the support (see Section R608.5.4.4), the hook extensions shall be staggered to provide not less than 1 inch (25 mm) clear spacing between the extensions.
4. Bundled bars shall not be lap spliced within the lintel span and the length on each end of the lintel that is required to develop the bars in tension.
5. Bundled bars shall be enclosed within stirrups throughout the length of the lintel. Stirrups and the installation thereof shall comply with Section R608.8.2.1.
R608.8.2.3 Lintels without stirrups designed for nonload-bearing conditions. The maximum clear span of lintels without stirrups designed for nonload-bearing conditions of Table R608.8(1).1 shall be determined in
accordance with this section. The maximum clear span of lintels without stirrups in flat walls shall be determined in accordance with Table R608.8(9), and the maximum clear span of lintels without stirrups in walls of waffle-grid or screen-grid construction shall be determined in accordance with Table R608.8(10).

ELEVATION OF WALL
For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
FIGURE R608.8(1)
REINFORCEMENT OF OPENINGS

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R608.8(2)
LINTEL FOR FLAT WALLS

(a) SINGLE FORM HEIGHT SECTION CUT THROUGH VERTICAL CORE OF A WAFFLE-GRID LINTEL

(b) DOUBLE FORM HEIGHT SECTION CUT THROUGH VERTICAL CORE OF A WAFFLE-GRID LINTEL
*FOR BUNDLED BARS, SEE SECTION R608.8.2.2.

NOTE: CROSS-HATCHING REPRESENTS THE AREA IN WHICH FORM MATERIAL SHALL BE REMOVED, IF NECESSARY, TO CREATE FLANGES CONTINUOUS THE LENGTH OF THE LINTEL. FLANGES SHALL HAVE A MINIMUM THICKNESS OF 3 IN., AND A MINIMUM WIDTH OF 5 IN. AND 7 IN. IN 6 IN. NOMINAL AND 8 IN. NOMINAL WAFFLE-GRID WALLS, RESPECTIVELY. SEE NOTE a TO TABLES R608.8(6) AND R608.8(10).

For SI: 1 inch $=25.4 \mathrm{~mm}$.

(a) SINGLE FORM HEIGHT SECTION CUT THROUGH VERTICAL CORE OF A SCREEN-GRID LINTEL

(b) DOUBLE FORM HEIGHT SECTION CUT THROUGH VERTICAL CORE OF A SCREEN-GRID LINTEL
*FOR BUNDLED BARS, SEE SECTION R608.8.2.2
NOTE: CROSS-HATCHING REPRESENTS THE AREA IN WHICH FORM MATERIAL SHALL BE REMOVED, IF NECESSARY, TO CREATE FLANGES CONTINUOUS THE LENGTH OF THE LINTEL. FLANGES SHALL HAVE A MINIMUM THICKNESS OF 2.5 IN. AND A MINIMUM WIDTH OF 5 IN. SEE NOTE a TO TABLES R608.8(8) AND R608.8(10).

For SI: 1 inch $=25.4 \mathrm{~mm}$.

TABLE R608.8(1)
LINTEL DESIGN LOADING CONDITIONS ${ }^{\text {a, }} \mathrm{b}, \mathrm{d}$

DESCRIPTION OF LOADS AND OPENINGS ABOVE INFLUENCING DESIGN OF LINTEL			DESIGN LOAD CONDITION ${ }^{\text {c }}$
Opening in wall of top story of two-story building, or first story of one-story building			
Wall supporting loads from roof, including attic floor, if applicable, and	Top of lintel equal to or less than W/2 below top of wall		2
	Top of lintel greater than W/2 below top of wall		NLB
Wall not supporting loads from roof or attic floor			NLB
Opening in wall of first story of two-story building where wall immediately above is of concrete construction, or opening in basement wall of one-story building where wall immediately above is of concrete construction			
LB ledger board mounted to side of wall with bottom of ledger less than or equal to W/2 above top of lintel, and	Top of lintel greater than W/2 below bottom of opening in story above		1
	Top of lintel less than or equal to W/2	Opening is entirely within the footprint of the opening in the story above	1
		Opening is partially within the footprint of the opening in the story above	4
LB ledger board mounted to side of wall with bottom of ledger more than W/2 above top of lintel			NLB
NLB ledger board mounted to side of wall with bottom of ledger less than or equal to W/2 above top of lintel, or no ledger board, and	Top of lintel greater than W/2 below bottom of opening in story above		NLB
	Top of lintel less than or equal to W/2 below bottom of opening in story above, and	Opening is entirely within the footprint of the opening in the story above	NLB
		Opening is partially within the footprint of the opening in the story above	1
Opening in basement wall of two-story building where walls of two stories above are of concrete construction			
LB ledger board mounted to side of wall with bottom of ledger less than or equal to W/2 above top of lintel, and	Top of lintel greater than W/2 below bottom of opening in story above		1
	Top of lintel less than or equal to W/2	Opening is entirely within the footprint of the opening in the story above	1
	and	Opening is partially within the footprint of the opening in the story above	5
LB ledger board mounted to side of wall with bottom of ledger more than W/2 above top of lintel			NLB
NLB ledger board mounted to side of wall with bottom of ledger less than or equal to W/2 above top of lintel, or no ledger board, and	Top of lintel greater than W/2 below bottom of opening in story above		NLB
	Top of lintel less than or equal to W/2 below bottom of opening in story above, and	Opening is entirely within the footprint of the opening in the story above	NLB
		Opening is partially within the footprint of the opening in the story above	1
Opening in wall of first story of two-story building where wall immediately above is of light-framed construction, or opening in basement wall of one-story building where wall immediately above is of light-framed construction			
Wall supporting loads from roof, second floor and top-story wall of light-framed construction, and	Top of lintel equal to or less than W/2 below top of wall		3
	Top of lintel greater than W/2 below top of wall		NLB
Wall not supporting loads from roof or second floor			NLB

a. LB means load bearing, NLB means nonload bearing, and W means width of opening.
b. Footprint is the area of the wall below an opening in the story above, bounded by the bottom of the opening and vertical lines extending downward from the edges of the opening
c. For design loading condition "NLB" see Tables R608.8(9) and R608.8(10). For all other design loading conditions, see Tables R608.8(2) through R608.8(8).
d. A NLB ledger board is a ledger attached to a wall that is parallel to the span of the floor, roof or ceiling framing that supports the edge of the floor, ceiling or roof.

TABLE R608.8(2)
MAXIMUM ALLOWABLE CLEAR SPANS FOR 4-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

LINTEL DEPTH,$\boldsymbol{D}^{\text {g }}$(inches)	NUMBER OF bARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{n}}, f_{y}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2				4		5	
			Maximum ground snow load (pst)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
8	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		3-2	3-4	2-4	2-6	2-2	2-1	2-0	2-0	2-0
		40,000	5-2	5-5	4-1	4-3	3-10	3-7	3-4	2-9	2-9
		60,000	6-2	6-5	4-11	5-1	4-6	4-2	3-8	2-11	2-10
		40,000	6-3	6-7	5-0	5-2	4-6	4-2	3-8	2-11	2-10
		60,000	DR								
	Center dis	ance $A^{\mathrm{k}, 1}$	1-1	1-2	0-8	0-9	0-7	0-6	0-5	0-4	0-4
12	Span without stirrup ${ }^{\text {i, }}{ }^{\text {j }}$		3-4	3-7	2-9	2-11	2-8	2-6	2-5	2-2	2-2
	1-\#4	40,000	6-7	7-0	5-4	5-7	5-0	4-9	4-4	3-8	3-7
		60,000	7-11	8-6	6-6	6-9	6-0	5-9	5-3	4-5	4-4
	1-\#5	40,000	8-1	8-8	6-7	6-10	6-2	5-10	5-4	4-6	4-5
		60,000	9-8	10-4	7-11	8-2	7-4	6-11	6-2	4-10	4-8
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	9-1	9-8	7-4	7-8	6-10	6-6	6-0	4-10	4-8
		60,000	DR								
	Center distance $A^{\mathrm{k}, 1}$		1-8	1-11	1-1	1-3	1-0	0-11	0-9	0-6	0-6
16	Span without stirrups ${ }^{\text {i, }}$		4-7	5-0	3-11	4-0	3-8	3-7	3-4	3-1	3-0
	1-\#4	40,000	6-8	7-3	5-6	5-9	5-2	4-11	4-6	3-10	3-8
		60,000	9-3	10-1	7-9	8-0	7-2	6-10	6-3	5-4	5-2
	1-\#4	40,000	9-6	10-4	7-10	8-2	7-4	6-11	6-5	5-5	5-3
		60,000	11-5	12-5	9-6	9-10	8-10	8-4	7-9	6-6	6-4
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	10-7	11-7	8-10	9-2	8-3	7-9	7-2	6-1	5-11
		60,000	12-9	13-10	10-7	11-0	9-10	9-4	8-7	6-9	6-6
	2-\#5	40,000	13-0	14-1	10-9	11-2	9-11	9-2	8-2	6-6	6-3
		60,000	DR								
	Center distance ${ }^{\mathrm{k}, 1}$		2-3	2-8	1-7	1-8	1-4	1-3	1-0	0-9	0-8
20	Span without stirrup ${ }^{\text {i, }}{ }^{\text {j }}$		5-9	6-5	5-0	5-2	4-9	4-7	4-4	3-11	3-11
	1-\#4	40,000	7-5	8-2	6-3	6-6	5-10	5-7	5-1	4-4	4-2
		60,000	9-0	10-0	7-8	7-11	7-1	6-9	6-3	5-3	5-1
	1-\#5	40,000	9-2	10-2	7-9	8-1	7-3	6-11	6-4	5-4	5-2
		60,000	12-9	14-2	10-10	11-3	10-1	9-7	8-10	7-5	7-3
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	11-10	13-2	10-1	10-5	9-4	8-11	8-2	6-11	6-9
		60,000	14-4	15-10	12-1	12-7	11-3	10-9	9-11	8-4	8-1
	2-\#5	40,000	14-7	16-2	12-4	12-9	11-4	10-6	9-5	7-7	7-3
		60,000	17-5	19-2	14-9	15-3	13-5	12-4	11-0	8-8	8-4
	2-\#6	40,000	16-4	18-11	12-7	13-3	11-4	10-6	9-5	7-7	7-3
		60,000	DR								
	Center distance $A^{\mathrm{k}, 1}$		2-9	3-5	2-0	2-2	1-9	1-7	1-4	0-11	0-11

(continued)

TABLE R608.8(2)-continued
MAXIMUM ALLOWABLE CLEAR SPANS FOR 4-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{a}$, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

LINTEL DEPTH, D(inches)	NUMBER OF bARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{h}}$, f_{y} (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1								
			Maximum ground snow load (psf)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
24	Span without stirrup ${ }^{\text {i, }}{ }^{\text {j }}$		6-11	7-9	6-1	6-3	5-9	5-7	5-3	4-9	4-8
	1-\#4	40,000	8-0	9-0	6-11	7-2	6-5	6-2	5-8	4-9	4-8
		60,000	9-9	11-0	8-5	8-9	7-10	7-6	6-11	5-10	5-8
	1-\#5	40,000	10-0	11-3	8-7	8-11	8-0	7-7	7-0	5-11	5-9
		60,000	13-11	15-8	12-0	12-5	11-2	10-7	9-10	8-3	8-0
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	12-11	14-6	11-2	11-6	10-5	9-10	9-1	7-8	7-5
		60,000	15-7	17-7	13-6	13-11	12-7	11-11	11-0	9-3	9-0
	2-\#5	40,000	15-11	17-11	13-7	14-3	12-8	11-9	10-8	8-7	8-4
		60,000	19-1	21-6	16-5	17-1	15-1	14-0	12-6	9-11	9-7
	2-\#6	40,000	17-7	21-1	14-1	14-10	12-8	11-9	10-8	8-7	8-4
		60,000	DR								
	Center distance $A^{\text {k, }}$ I		3-3	4-1	2-5	2-7	2-1	1-11	1-7	1-2	1-1

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. See Table R608.3 for tolerances permitted from nominal thickness.
b. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Note j.
c. Table values are based on uniform loading. See Section R608.8.2 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $1 / 2$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads and between lintel depths.
f. DR indicates design required.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than $d / 2$.
j. Where concrete with a minimum specified compressive strength of 3,000 psi is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
k. Center distance, A, is the center portion of the clear span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.

1. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
m . The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel clear spans in the table greater than 18 feet are shown for interpolation and information only.

TABLE R608.8(3)
MAXIMUM ALLOWABLE CLEAR SPANS FOR 6-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a, }, ~ b, ~} \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

$\begin{aligned} & \text { LINTEL DEPTH, } \\ & \boldsymbol{D}^{\text {g }} \\ & \text { (inches) } \end{aligned}$	NUMBER OF BARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL	StEEL YieLd STRENGTH ${ }^{\mathrm{h}}, f_{y}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
			Maximum ground snow load (psf)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
8	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		4-2	4-8	3-1	3-3	2-10	2-6	2-3	2-0	2-0
	1-\#4	40,000	5-1	5-5	4-2	4-3	3-10	3-6	3-3	2-8	2-7
		60,000	6-2	6-7	5-0	5-2	4-8	4-2	3-11	3-3	3-2
	1-\#5	40,000	6-3	6-8	5-1	5-3	4-9	4-3	4-0	3-3	3-2
		60,000	7-6	8-0	6-1	6-4	5-8	5-1	4-9	3-8	3-6
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	7-0	7-6	5-8	5-11	5-3	4-9	4-5	3-8	3-6
		60,000	DR								
	Center distance $A^{\mathrm{k}, 1}$		1-7	1-10	1-1	1-2	0-11	0-9	0-8	0-5	0-5
12	Span without stirrups ${ }^{\text {i, }}$		4-2	4-8	3-5	3-6	3-2	2-11	2-9	2-5	2-4
	1-\#4	40,000	5-7	6-1	4-8	4-10	4-4	3-11	3-8	3-0	2-11
		60,000	7-9	8-6	6-6	6-9	6-1	5-6	5-1	4-3	4-1
	1-\#5	40,000	7-11	8-8	6-8	6-11	6-2	5-7	5-2	4-4	4-2
		60,000	9-7	10-6	8-0	8-4	7-6	6-9	6-3	5-2	5-1
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	8-11	9-9	7-6	7-9	6-11	6-3	5-10	4-10	4-8
		60,000	10-8	11-9	8-12	9-4	8-4	7-6	7-0	5-10	5-8
	2-\#5	40,000	10-11	12-0	9-2	9-6	8-6	7-8	7-2	5-6	5-3
		60,000	12-11	14-3	10-10	11-3	10-1	9-0	8-1	6-1	5-10
	2-\#6	40,000	12-9	14-0	10-8	11-1	9-7	8-1	7-3	5-6	5-3
		60,000	DR								
	Center distance $A^{\text {k, }}$		2-6	3-0	1-9	1-10	1-6	1-3	1-1	0-9	0-8
16	Span without stirrups ${ }^{\text {i, }}$		5-7	6-5	4-9	4-11	4-5	4-0	3-10	3-4	3-4
	1-\#4	40,000	6-5	7-2	5-6	5-9	5-2	4-8	4-4	3-7	3-6
		60,000	7-10	8-9	6-9	7-0	6-3	5-8	5-3	4-4	4-3
	1-\#5	40,000	7-11	8-11	6-10	7-1	6-5	5-9	5-4	4-5	4-4
		60,000	11-1	12-6	9-7	9-11	8-11	8-0	7-6	6-2	6-0
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	10-3	11-7	8-10	9-2	8-3	7-6	6-11	5-9	5-7
		60,000	12-5	14-0	10-9	11-1	10-0	9-0	8-5	7-0	6-9
	2-\#5	40,000	12-8	14-3	10-11	11-4	10-2	9-2	8-7	6-9	6-6
		60,000	15-2	17-1	13-1	13-7	12-3	11-0	10-3	7-11	7-7
	2-\#6	40,000	14-11	16-9	12-8	13-4	11-4	9-8	8-8	6-9	6-6
		60,000	DR								
	$\text { Center distance } A^{\mathrm{k}, 1}$		3-3	4-1	2-5	2-7	2-1	1-9	1-6	1-0	1-0

(continued)

TABLE R608.8(3)-continued
MAXIMUM ALLOWABLE CLEAR SPANS FOR 6-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a, }, ~} \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

$\begin{aligned} & \text { LINTEL DEPTH, } \\ & \boldsymbol{D}_{\boldsymbol{D}^{g}}^{\text {(inches) }} \end{aligned}$	NUMBER OF BARS AND BAR SIZE IN TOP AND вотtom OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{\boldsymbol{y}}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
			Maximum ground snow load (psf)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
20	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		6-11	8-2	6-1	6-3	5-8	5-2	4-11	4-4	4-3
	1-\#5	40,000	8-9	10-1	7-9	8-0	7-3	6-6	6-1	5-1	4-11
		60,000	10-8	12-3	9-5	9-9	8-10	8-0	7-5	6-2	6-0
	$\begin{aligned} & \hline 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-11	11-4	8-9	9-1	8-2	7-4	6-10	5-8	5-7
		60,000	13-9	15-10	12-2	12-8	11-5	10-3	9-7	7-11	7-9
	2-\#5	40,000	14-0	16-2	12-5	12-11	11-7	10-6	9-9	7-11	7-8
		60,000	16-11	19-6	15-0	15-6	14-0	12-7	11-9	9-1	8-9
	2-\#6	40,000	16-7	19-1	14-7	15-3	13-1	11-3	10-2	7-11	7-8
		60,000	19-11	22-10	17-4	18-3	15-6	13-2	11-10	9-1	8-9
	Center distance $A^{\mathrm{k}, 1}$		3-11	5-2	3-1	3-3	2-8	2-2	1-11	1-4	1-3
24	Span without stirrups ${ }^{\text {i }}$, ${ }^{\text {a }}$		8-2	9-10	7-4	7-8	6-11	6-4	5-11	5-3	5-2
	1-\#5	40,000	9-5	11-1	8-7	8-10	8-0	7-3	6-9	5-7	5-5
		60,000	11-6	13-6	10-5	10-9	9-9	8-9	8-2	6-10	6-8
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	10-8	12-6	9-8	10-0	9-0	8-2	7-7	6-4	6-2
		60,000	12-11	15-2	11-9	12-2	11-0	9-11	9-3	7-8	7-6
	2-\#5	40,000	15-2	17-9	13-9	14-3	12-10	11-7	10-10	9-0	8-9
		60,000	18-4	21-6	16-7	17-3	15-6	14-0	13-1	10-4	10-0
	2-\#6	40,000	18-0	21-1	16-4	16-11	14-10	12-9	11-8	9-2	8-11
		60,000	21-7	25-4	19-2	20-4	17-2	14-9	13-4	10-4	10-0
	Center distance $A^{\mathrm{k}, 1}$		4-6	6-2	3-8	4-0	3-3	2-8	2-3	1-7	1-6

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pounds per square foot $=0.0479 \mathrm{kPa}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. See Table R608.3 for tolerances permitted from nominal thickness.
b. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Note j.
c. Table values are based on uniform loading. See Section R608.8.2 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $\frac{1}{2}$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads and between lintel depths.
f. DR indicates design required.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than $d / 2$.
j. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
k. Center distance, A, is the center portion of the clear span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.

1. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
m . The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel clear spans in the table greater than 18 feet are shown for interpolation and information only.

TABLE R608.8(4)
MAXIMUM ALLOWABLE CLEAR SPANS FOR 8-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a, }, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

$\begin{gathered} \text { LINTEL DEPTH, } \\ \begin{array}{c} D^{g} \\ \text { (inches) } \end{array} \end{gathered}$	NUMBER OF BARS AND BAR SIZE IN TOP AND воттом OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{y}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
			Maximum ground snow load (psf)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
8	Span without stirrups ${ }^{\text {i, }}$		4-4	4-9	3-7	3-9	3-4	2-10	2-7	2-1	2-0
	1-\#4	40,000	4-4	4-9	3-7	3-9	3-4	2-11	2-9	2-3	2-2
		60,000	6-1	6-7	5-0	5-3	4-8	4-0	3-9	3-1	3-0
	1-\#5	40,000	6-2	6-9	5-2	5-4	4-9	4-1	3-10	3-2	3-1
		60,000	7-5	8-1	6-2	6-5	5-9	4-11	4-7	3-9	3-8
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	6-11	7-6	5-9	6-0	5-4	4-7	4-4	3-6	3-5
		60,000	8-3	9-0	6-11	7-2	6-5	5-6	5-2	4-2	4-1
	2-\#5	40,000	8-5	9-2	7-0	7-3	6-6	5-7	5-3	4-2	4-0
		60,000	DR								
	Center distance $A^{\text {k, }}$ I		2-1	2-6	1-5	1-6	1-3	0-11	0-10	0-6	0-6
12	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		4-10	5-8	4-0	4-2	3-9	3-2	3-0	2-7	2-6
	1-\#4	40,000	5-5	6-1	4-8	4-10	4-4	3-9	3-6	2-10	2-10
		60,000	6-7	7-5	5-8	5-11	5-4	4-7	4-3	3-6	3-5
	1-\#5	40,000	6-9	7-7	5-9	6-0	5-5	4-8	4-4	3-7	3-6
		60,000	9-4	10-6	8-1	8-4	7-6	6-6	6-1	5-0	4-10
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	8-8	9-9	7-6	7-9	7-0	6-0	5-8	4-7	4-6
		60,000	10-6	11-9	9-1	9-5	8-5	7-3	6-10	5-7	5-5
	2-\#5	40,000	10-8	12-0	9-3	9-7	8-7	7-5	6-11	5-6	5-4
		60,000	12-10	14-5	11-1	11-6	10-4	8-11	8-4	6-7	6-4
	2-\#6	40,000	12-7	14-2	10-10	11-3	10-2	8-3	7-6	5-6	5-4
		60,000	DR								
	Center distance $A^{\text {k, }}$		3-2	4-0	2-4	2-6	2-0	1-6	1-4	0-11	0-10
16	Span without stirrups ${ }^{\text {i, }}$		6-5	7-9	5-7	5-10	5-2	4-5	4-2	3-7	3-6
	1-\#4	40,000	6-2	7-1	5-6	5-8	5-1	4-5	4-2	3-5	3-4
		60,000	7-6	8-8	6-8	6-11	6-3	5-5	5-1	4-2	4-0
	1-\#5	40,000	7-8	8-10	6-10	7-1	6-4	5-6	5-2	4-3	4-1
		60,000	9-4	10-9	8-4	8-7	7-9	6-8	6-3	5-2	5-0
	2-\#4	40,000	8-8	10-0	7-8	8-0	7-2	6-2	5-10	4-9	4-8
	1-\#6	60,000	12-0	13-11	10-9	11-2	10-0	8-8	8-1	6-8	6-6
	2-\#5	40,000	12-3	14-2	11-0	11-4	10-3	8-10	8-3	6-9	6-7
		60,000	14-10	17-2	13-3	13-8	12-4	10-8	10-0	7-11	7-8
	2-\#6	40,000	14-6	16-10	13-0	13-5	12-1	10-1	9-2	6-11	6-8
		60,000	17-5	20-2	15-7	16-1	14-6	11-10	10-8	7-11	7-8
	Center distance ${ }^{\text {k, }}$ I		4-1	5-5	3-3	3-6	2-10	2-1	1-10	1-3	1-2

(continued)

TABLE R608.8(4)-continued
MAXIMUM ALLOWABLE CLEAR SPANS FOR 8-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a, } b, ~ c, ~ d, ~ e, ~ f, ~ m ~}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

$\begin{gathered} \text { LINTEL DEPTH, } \\ \boldsymbol{D}^{\text {(inches) }} \end{gathered}$	NUMBER OF BARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL	$\begin{aligned} & \text { STEEL YIELD } \\ & \text { STRENGTH }{ }_{(\mathrm{psi}} \mathrm{m}^{\text {, }}, f_{y} \end{aligned}$	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
			Maximum ground snow load (psf)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
20	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		7-10	9-10	7-1	7-5	6-7	5-8	5-4	4-7	4-6
	1-\#5	40,000	8-4	9-11	7-8	8-0	7-2	6-3	5-10	4-9	4-8
		60,000	10-2	12-1	9-5	9-9	8-9	7-7	7-1	5-10	5-8
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-5	11-3	8-8	9-0	8-1	7-0	6-7	5-5	5-3
		60,000	11-6	13-8	10-7	11-0	9-11	8-7	8-0	6-7	6-5
	2-\#5	40,000	11-9	13-11	10-10	11-2	10-1	8-9	8-2	6-8	6-7
		60,000	16-4	19-5	15-0	15-7	14-0	12-2	11-4	9-3	9-0
	2-\#6	40,000	16-0	19-0	14-9	15-3	13-9	11-10	10-10	8-3	8-0
		60,000	19-3	22-11	17-9	18-5	16-7	13-7	12-4	9-3	9-0
	Center distance $A^{\text {k, }}$		4-10	6-10	4-1	4-5	3-7	2-8	2-4	1-7	1-6
24	Span without stirrups ${ }^{\text {i, }}$		9-2	11-9	8-7	8-11	8-0	6-11	6-6	5-7	5-6
	1-\#5	40,000	8-11	10-10	8-6	8-9	7-11	6-10	6-5	5-3	5-2
		60,000	10-11	13-3	10-4	10-8	9-8	8-4	7-10	6-5	6-3
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	10-1	12-3	9-7	9-11	8-11	7-9	7-3	6-0	5-10
		60,000	12-3	15-0	11-8	12-1	10-11	9-5	8-10	7-3	7-1
	2-\#5	40,000	12-6	15-3	11-11	12-4	11-1	9-7	9-0	7-5	7-3
		60,000	17-6	21-3	16-7	17-2	15-6	13-5	12-7	10-4	10-1
	2-\#6	40,000	17-2	20-11	16-3	16-10	15-3	13-2	12-4	9-7	9-4
		60,000	20-9	25-3	19-8	20-4	18-5	15-4	14-0	10-7	10-3
	$\text { Center distance } A^{\mathrm{k}, I}$		5-6	8-1	4-11	5-3	4-4	3-3	2-10	1-11	1-10

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$, Grade $40=280 \mathrm{MPa}$; Grade $60=420 \mathrm{MPa}$.
Note: Top and bottom reinforcement for lintels without stirrups shown in shaded cells shall be equal to or greater than that required for lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups.
a. See Table R608.3 for tolerances permitted from nominal thickness.
b. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Note j.
c. Table values are based on uniform loading. See Section R608.8.2 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $\frac{1}{2}$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads and between lintel depths.
f. DR indicates design required.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than $d / 2$.
j. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
k. Center distance, A, is the center portion of the clear span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.

1. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
m . The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel clear spans in the table greater than 18 feet are shown for interpolation and information only.

TABLE R608.8(5)
MAXIMUM ALLOWABLE CLEAR SPANS FOR 10-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

$\begin{gathered} \text { LINTEL DEPTH, } \\ \boldsymbol{D}^{\text {g }} \\ \text { (inches) } \end{gathered}$	NUMBER OF BARS AND BAR SIZE IN TOP AND воттом OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{\boldsymbol{y}}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
			Maximum ground snow load (pst)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
8	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		6-0	7-2	4-7	4-10	4-1	3-1	2-11	2-3	2-2
	1-\#4	40,000	4-3	4-9	3-7	3-9	3-4	2-9	2-7	2-1	2-1
		60,000	5-11	6-7	5-0	5-3	4-8	3-10	3-8	2-11	2-11
	1-\#5	40,000	6-1	6-9	5-2	5-4	4-9	3-11	3-9	3-0	2-11
		60,000	7-4	8-1	6-3	6-5	5-9	4-9	4-6	3-7	3-7
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	6-10	7-6	5-9	6-0	5-5	4-5	4-2	3-4	3-4
		60,000	8-2	9-1	6-11	7-2	6-6	5-4	5-0	4-1	4-0
	2-\#5	40,000	8-4	9-3	7-1	7-4	6-7	5-5	5-1	4-1	4-0
		60,000	9-11	11-0	8-5	8-9	7-10	6-6	6-1	4-8	4-6
	2-\#6	40,000	9-9	10-10	8-3	8-7	7-9	6-4	5-10	4-1	4-0
		60,000	DR								
	Center distance $A^{\text {k, }}$ I		2-6	3-1	1-10	1-11	1-7	1-1	0-11	0-7	0-7
12	Span without stirrups ${ }^{\text {i, }}{ }^{\text {j }}$		5-5	6-7	4-7	4-10	4-3	3-5	3-3	2-8	2-8
	1-\#4	40,000	5-3	6-0	4-8	4-10	4-4	3-7	3-4	2-9	2-8
		60,000	6-5	7-4	5-8	5-10	5-3	4-4	4-1	3-4	3-3
	1-\#5	40,000	6-6	7-6	5-9	6-0	5-5	4-5	4-2	3-5	3-4
		60,000	7-11	9-1	7-0	7-3	6-7	5-5	5-1	4-2	4-0
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	7-4	8-5	6-6	6-9	6-1	5-0	4-9	3-10	3-9
		60,000	10-3	11-9	9-1	9-5	8-6	7-0	6-7	5-4	5-3
	2-\#5	40,000	10-5	12-0	9-3	9-7	8-8	7-2	6-9	5-5	5-4
		60,000	12-7	14-5	11-2	11-6	10-5	8-7	8-1	6-6	6-4
	2-\#6	40,000	12-4	14-2	10-11	11-4	10-2	8-5	7-8	5-7	5-5
		60,000	14-9	17-0	13-1	13-6	12-2	10-0	9-1	6-6	6-4
	Center distance $A^{\mathrm{k}, 1}$		3-9	4-11	2-11	3-2	2-7	1-9	1-7	1-0	1-0
16	Span without stirrups ${ }^{\text {i,j }}$		7-1	9-0	6-4	6-8	5-10	4-9	4-6	3-9	3-8
	1-\#4	40,000	5-11	7-0	5-5	5-8	5-1	4-3	4-0	3-3	3-2
		60,000	7-3	8-7	6-8	6-11	6-3	5-2	4-10	3-11	3-10
	1-\#5	40,000	7-4	8-9	6-9	7-0	6-4	5-3	4-11	4-0	3-11
		60,000	9-0	10-8	8-3	8-7	7-9	6-5	6-0	4-11	4-9
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	8-4	9-11	7-8	7-11	7-2	5-11	5-7	4-6	4-5
		60,000	10-2	12-0	9-4	9-8	8-9	7-3	6-10	5-6	5-5
	2-\#5	40,000	10-4	12-3	9-6	9-10	8-11	7-4	6-11	5-8	5-6
		60,000	14-4	17-1	13-3	13-8	12-4	10-3	9-8	7-10	7-8
	2-\#6	40,000	14-1	16-9	13-0	13-5	12-2	10-1	9-6	7-0	6-10
		60,000	17-0	20-2	15-8	16-2	14-7	12-0	10-11	8-0	7-9
	Center distance ${ }^{\text {k, }}$		4-9	6-8	4-0	4-4	3-6	2-5	2-2	1-5	1-4

(continued)

TABLE R608.8(5)-continued
MAXIMUM ALLOWABLE CLEAR SPANS FOR 10-INCH-NOMINAL THICK FLAT LINTELS IN LOAD-BEARING WALLS ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{m}}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

$\begin{gathered} \text { LINTEL DEPTH, } \\ \begin{array}{c} D^{g} \\ \text { (inches) } \end{array}, \end{gathered}$	NUMBER OF BARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL		DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
			Maximum ground snow load (psf)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
20	Span without stirrups ${ }^{\text {i, }} \mathrm{j}$		8-7	11-4	8-1	8-5	7-5	6-1	5-9	4-10	4-9
	1-\#4	40,000	6-5	7-10	6-2	6-4	5-9	4-9	4-6	3-8	3-7
		60,000	7-10	9-7	7-6	7-9	7-0	5-10	5-6	4-5	4-4
	1-\#5	40,000	8-0	9-9	7-8	7-11	7-2	5-11	5-7	4-6	4-5
		60,000	9-9	11-11	9-4	9-8	8-9	7-3	6-10	5-6	5-5
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-0	11-1	8-8	8-11	8-1	6-9	6-4	5-2	5-0
		60,000	11-0	13-6	10-6	10-11	9-10	8-2	7-9	6-3	6-2
	2-\#5	40,000	11-3	13-9	10-9	11-1	10-0	8-4	7-10	6-5	6-3
		60,000	15-8	19-2	15-0	15-6	14-0	11-8	11-0	8-11	8-9
	2-\#6	40,000	15-5	18-10	14-8	15-2	13-9	11-5	10-9	8-6	8-3
		60,000	18-7	22-9	17-9	18-5	16-7	13-10	12-9	9-5	9-2
	Center distance $A^{\text {k, }}$		5-7	8-4	5-1	5-5	4-5	3-1	2-9	1-10	1-9
24	Span without stirrups ${ }^{\text {i, }} \mathrm{j}$		9-11	13-7	9-9	10-2	9-0	7-5	7-0	5-10	5-9
	1-\#5	40,000	8-6	10-8	8-5	8-8	7-10	6-6	6-2	5-0	4-11
		60,000	10-5	13-0	10-3	10-7	9-7	8-0	7-6	6-1	6-0
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-7	12-1	9-6	9-9	8-10	7-5	7-0	5-8	5-6
		60,000	11-9	14-9	11-7	11-11	10-10	9-0	8-6	6-11	6-9
	2-\#5	40,000	12-0	15-0	11-9	12-2	11-0	9-2	8-8	7-1	6-11
		60,000	14-7	18-3	14-4	14-10	13-5	11-2	10-7	8-7	8-5
	2-\#6	40,000	14-3	17-11	14-1	14-7	13-2	11-0	10-4	8-5	8-3
		60,000	19-11	25-0	19-7	20-3	18-4	15-3	14-5	10-10	10-7
	Center distance $A^{\mathrm{k}, \mathrm{I}}$		6-3	9-11	6-1	6-6	5-4	3-9	3-4	2-2	2-1

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
Note: Top and bottom reinforcement for lintels without stirrups shown in shaded cells shall be equal to or greater than that required for lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups.
a. See Table R608.3 for tolerances permitted from nominal thickness.
b. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Note j.
c. Table values are based on uniform loading. See Section R608.8.2 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $1 / 2$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads and between lintel depths.
f. DR indicates design required.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than $d / 2$.
j. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
k. Center distance, A, is the center portion of the clear span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.

1. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
m . The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel clear spans in the table greater than 18 feet are shown for interpolation and information only.

MAXIMUM ALLOWABLE CLEAR SPANS FOR 6-INCH-TABLE R608.8(6) MAXIMUM ROOF CLEAR SPAN 40 FEET AND MAXIMUM FLOOR SPAN 32 FEET

				DESIG	OADIN	NDITI	DETER	ED FR	TABLE	8.8(1)	
LINT	NUMBER OF BARS AND BAR	LD	1								
D^{g}	SIZE IN TOP AND	STRENGTH ${ }^{\mathrm{h}}, f_{y}$				ximum	und sin	load (p			
	BOTTOM OF LINTEL		-	30	70	30	70	30	70	30	70
					Max	m clea	an of l	(feet -	es)		
	Span withou	stirrups ${ }^{\mathrm{k}, 1}$	2-7	2-9	2-0	2-1	2-0	2-0	2-0	2-0	2-0
		40,000	5-2	5-5	4-0	4-3	3-7	3-3	2-11	2-4	2-3
		60,000	5-9	6-3	4-0	4-3	3-7	3-3	2-11	2-4	2-3
$8^{\text {i }}$	1-\#5	40,000	5-9	6-3	4-0	4-3	3-7	3-3	2-11	2-4	2-3
		60,000	5-9	6-3	4-0	4-3	3-7	3-3	2-11	2-4	2-3
	2-\#4	40,000	5-9	6-3	4-0	4-3	3-7	3-3	2-11	2-4	2-3
	1-\#6	60,000	DR								
	Center dis	ance $A^{\text {m, }} \mathrm{n}$	0-9	0-10	0-6	0-6	0-5	0-5	0-4	STL	STL
	Span withou	stirrups ${ }^{\text {k, }}$ I	2-11	3-1	2-6	2-7	2-5	2-4	2-3	2-1	2-0
		40,000	5-9	6-2	4-8	4-10	4-4	4-1	3-9	3-2	3-1
	1-\#4	60,000	8-0	8-7	6-6	6-9	6-0	5-5	4-11	3-11	3-10
		40,000	8-1	8-9	6-8	6-11	6-0	5-5	4-11	3-11	3-10
12^{1}	1-\#5	60,000	9-1	10-3	6-8	7-0	6-0	5-5	4-11	3-11	3-10
	$\begin{aligned} & \hline 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-1	9-9	6-8	7-0	6-0	5-5	4-11	3-11	3-10
	Center dis	ance $A^{\text {m, }} \mathrm{n}$	1-3	1-5	0-10	0-11	0-9	0-8	0-6	STL	STL
	Span withou	stirrups ${ }^{\mathrm{k}, 1}$	4-0	4-4	3-6	3-7	3-4	3-3	3-1	2-10	2-10
	1 \#4	40,000	6-7	7-3	5-6	5-9	5-2	4-10	4-6	3-9	3-8
		60,000	8-0	8-10	6-9	7-0	6-3	5-11	5-5	4-7	4-5
		40,000	8-2	9-0	6-11	7-2	6-5	6-0	5-7	4-8	4-6
	1-\#5	60,000	11-5	12-6	9-3	9-9	8-4	7-7	6-10	5-6	5-4
$16^{\text {i }}$	2-\#4	40,000	10-7	11-7	8-11	9-3	8-3	7-7	6-10	5-6	5-4
	1-\#6	60,000	12-2	14-0	9-3	9-9	8-4	7-7	6-10	5-6	5-4
	2-\#5	40,000	12-2	14-2	9-3	9-9	8-4	7-7	6-10	5-6	5-4
		60,000	DR								
	Center dis	ance $A^{\mathrm{m}, \mathrm{n}}$	1-8	2-0	1-2	1-3	1-0	0-11	0-9	STL	STL
20^{1}	Span withou	stirrups ${ }^{\text {k, }}$ I	5-0	5-6	4-6	4-7	4-3	4-1	4-0	3-8	3-8
	1-\#4	40,000	7-2	8-2	6-3	6-6	5-10	5-6	5-1	4-3	4-2
		60,000	8-11	9-11	7-8	7-11	7-1	6-8	6-2	5-2	5-0
	1-\#5	40,000	9-1	10-2	7-9	8-1	7-3	6-10	6-4	5-4	5-2
		60,000	12-8	14-2	10-11	11-3	10-2	9-6	8-9	7-1	6-10
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	10-3	11-5	8-9	9-1	8-2	7-8	7-1	6-0	5-10
		60,000	14-3	15-11	11-9	12-5	10-8	9-9	8-9	7-1	6-10
	2-\#5	40,000	14-6	16-3	11-6	12-1	10-4	9-6	8-6	6-11	6-8
		60,000	DR								
	Center distance $A^{\mathrm{m}, \mathrm{n}}$		2-0	2-6	1-6	1-7	1-3	1-1	1-0	STL	STL

(continued)

TABLE R608.8(6)-continued
MAXIMUM ALLOWABLE CLEAR SPANS FOR 6-INCH-THICK WAFFLE-GRID LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a, } b, ~} \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{o}$ MAXIMUM ROOF CLEAR SPAN 40 FEET AND MAXIMUM FLOOR SPAN 32 FEET

$\begin{gathered} \text { LINTEL DEPTH, } \\ D^{g} \\ \text { (inches) } \end{gathered}$	NUMBER OF BARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL	Steel yield STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{y}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1								
			Maximum ground snow load (pst)								
			-	30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
$24{ }^{\text {j }}$	Span without stirrups ${ }^{\text {k, }}$		6-0	6-8	5-5	5-7	5-3	5-0	4-10	4-6	4-5
	1-\#4	40,000	7-11	9-0	6-11	7-2	6-5	6-0	5-7	4-8	4-7
		60,000	9-8	10-11	8-5	8-9	7-10	7-4	6-10	5-9	5-7
	1-\#5	40,000	9-10	11-2	8-7	8-11	8-0	7-6	7-0	5-10	5-8
		60,000	12-0	13-7	10-6	10-10	9-9	9-2	8-6	7-2	6-11
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	11-1	12-7	9-8	10-1	9-1	8-6	7-10	6-7	6-5
		60,000	15-6	17-7	13-6	14-0	12-8	11-10	10-8	8-7	8-4
	2-\#5	40,000	15-6	17-11	12-8	13-4	11-6	10-7	9-7	7-10	7-7
		60,000	DR								
	Center distance $A^{\text {m, n }}$		2-4	3-0	1-9	1-11	1-6	1-4	1-2	STL	STL

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ foot $=304.8 \mathrm{~mm}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. Where lintels are formed with waffle-grid forms, form material shall be removed, if necessary, to create top and bottom flanges of the lintel that are not less than 3 inches in depth (in the vertical direction), are not less than 5 inches in width for 6 -inch-nominal waffle-grid forms and not less than 7 inches in width for 8 -inch-nominal waffle-grid forms. See Figure R608.8(3). Flat form lintels shall be permitted in place of waffle-grid lintels. See Tables R608.8(2) through R608.8(5).
b. See Table R608.3 for tolerances permitted from nominal thicknesses and minimum dimensions and spacing of cores.
c. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Notes 1 and n . Table values are based on uniform loading. See Section R608.8.2 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $1 / 2$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads.
f. DR indicates design required. STL - stirrups required throughout lintel.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Lintels less than 24 inches in depth with stirrups shall be formed from flat-walls forms [see Tables R608.8(2) through R608.8(5)], or, if necessary, form material shall be removed from waffle-grid forms so as to provide the required cover for stirrups. Allowable spans for lintels formed with flat-wall forms shall be determined from Tables R608.8(2) through R608.8(5).
j. Where stirrups are required for 24 -inch deep lintels, the spacing shall not exceed 12 inches on center.
k. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than $d / 2$.

1. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
m . Center distance, A, is the center portion of the span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.
n . Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
o. The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel spans in the table greater than 18 feet are shown for interpolation and information only.

MAXIMUM ALLOWABLE CLEAR SPANS FOR 8-INCH-THICK WAFFLE-GRID LINTELS IN LOAD-BEARING WALLS ${ }^{\text {a }, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{o}}$ MAXIMUM ROOF CLEAR SPAN 40 FEET AND MAXIMUM FLOOR CLEAR SPAN 32 FEET

$\begin{aligned} & \text { LINTEL DEPTH, } \\ & \boldsymbol{D}^{\text {g }} \\ & \text { (inches) } \end{aligned}$	NUMBER OF BARS AND BAR SIZE IN TOP AND BOTTOM OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{\boldsymbol{y}}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
				Maximum ground snow load (psf)							
				30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
$8^{\text {i }}$	Span with stirrups ${ }^{\text {k, }}$		2-6	2-9	2-0	2-1	2-0	2-0	2-0	2-0	2-0
	1-\#4	40,000	4-5	4-9	3-7	3-9	3-4	3-0	2-10	2-3	2-2
		60,000	5-6	6-2	4-0	4-3	3-7	3-1	2-10	2-3	2-2
	1-\#5	40,000	5-6	6-2	4-0	4-3	3-7	3-1	2-10	2-3	2-2
	Center distance $A^{\mathrm{m}, \mathrm{n}}$		0-9	0-10	0-6	0-6	0-5	0-4	0-4	STL	STL
$12^{\text {i }}$	Span without stirrups ${ }^{\text {k, 1 }}$		2-10	3-1	2-6	2-7	2-5	2-3	2-2	2-0	2-0
	1-\#4	40,000	5-7	6-1	4-8	4-10	4-4	3-11	3-8	3-0	2-11
		60,000	6-9	7-5	5-8	5-11	5-4	4-9	4-5	3-8	3-7
	1-\#5	40,000	6-11	7-7	5-10	6-0	5-5	4-10	4-6	3-9	3-7
		60,000	8-8	10-1	6-7	7-0	5-11	5-2	4-8	3-9	3-7
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	8-8	9-10	6-7	7-0	5-11	5-2	4-8	3-9	3-7
		60,000	8-8	10-1	6-7	7-0	5-11	5-2	4-8	3-9	3-7
	Center distance $A^{\text {m, n }}$		1-2	1-5	0-10	0-11	0-9	0-7	0-6	STL	STL
16^{i}	Span without stirrups ${ }^{\text {k, }}$		3-10	4-3	3-6	3-7	3-4	3-2	3-0	2-10	2-9
	1-\#4	40,000	6-5	7-2	5-6	5-9	5-2	4-8	4-4	3-7	3-6
		60,000	7-9	8-9	6-9	7-0	6-3	5-8	5-3	4-4	4-3
	1-\#5	40,000	7-11	8-11	6-10	7-1	6-5	5-9	5-4	4-5	4-4
		60,000	9-8	10-11	8-4	8-8	7-10	7-0	6-6	5-2	5-1
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-0	10-1	7-9	8-0	7-3	6-6	6-1	5-0	4-11
		60,000	11-5	13-10	9-2	9-8	8-3	7-2	6-6	5-2	5-1
	Center distance $A^{\text {m, n }}$		1-6	1-11	1-2	1-3	1-0	0-10	0-8	STL	STL
$20^{\text {i }}$	Span without stirrups ${ }^{\text {k, I }}$		4-10	5-5	4-5	4-7	4-3	4-0	3-11	3-7	3-7
	1-\#4	40,000	7-0	8-1	6-3	6-5	5-10	5-3	4-11	4-1	3-11
		60,000	8-7	9-10	7-7	7-10	7-1	6-5	6-0	4-11	4-10
	1-\#5	40,000	8-9	10-1	7-9	8-0	7-3	6-6	6-1	5-1	4-11
		60,000	10-8	12-3	9-6	9-10	8-10	8-0	7-5	6-2	6-0
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	9-10	11-4	8-9	9-1	8-2	7-4	6-10	5-8	5-7
		60,000	12-0	13-10	10-8	11-0	9-11	9-0	8-4	6-8	6-6
	2-\#5	40,000	12-3	14-1	10-10	11-3	10-2	8-11	8-1	6-6	6-4
		60,000	14-0	17-6	11-8	12-3	10-6	9-1	8-4	6-8	6-6
	Center distance $A^{\mathrm{m}, \mathrm{n}}$		1-10	2-5	1-5	1-7	1-3	1-0	0-11	STL	STL

(continued)

TABLE R608.8(7)-continued
MAXIMUM ALLOWABLE CLEAR SPANS FOR 8-INCH-THICK WAFFLE-GRID LINTELS IN LOAD-BEARING WALLS ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{o}}$ MAXIMUM ROOF CLEAR SPAN 40 FEET AND MAXIMUM FLOOR CLEAR SPAN 32 FEET

$\begin{gathered} \text { LINTEL DEPTH, } \\ \boldsymbol{D}^{\text {g }} \\ \text { (inches) } \end{gathered}$	NUMBER OF BARS AND BAR SIZE IN TOP AND вотTOM OF LINTEL	Steel yield STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{y}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1	2		3		4		5	
				Maximum ground snow load (psf)							
				30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
24^{j}	Span without stirrups ${ }^{\mathrm{k}, \text { I }}$		5-9	6-7	5-5	5-6	5-2	4-11	4-9	4-5	4-4
	1-\#4	40,000	7-6	8-10	6-10	7-1	6-5	5-9	5-5	4-6	4-4
		60,000	9-2	10-9	8-4	8-8	7-10	7-1	6-7	5-6	5-4
	1-\#5	40,000	9-5	11-0	8-6	8-10	8-0	7-2	6-8	5-7	5-5
		60,000	11-5	13-5	10-5	10-9	9-9	8-9	8-2	6-10	6-8
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	10-7	12-5	9-8	10-0	9-0	8-1	7-7	6-3	6-2
		60,000	12-11	15-2	11-9	12-2	11-0	9-11	9-3	7-8	7-6
	2-\#5	40,000	13-2	15-6	12-0	12-5	11-2	9-11	9-2	7-5	7-3
		60,000	16-3	21-0	14-1	14-10	12-9	11-1	10-1	8-1	7-11
	2-\#6	40,000	14-4	18-5	12-6	13-2	11-5	9-11	9-2	7-5	7-3
	Center distance $A^{\text {m, n }}$		2-1	2-11	1-9	1-10	1-6	1-3	1-1	STL	STL

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ foot $=304.8 \mathrm{~mm}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. Where lintels are formed with waffle-grid forms, form material shall be removed, if necessary, to create top and bottom flanges of the lintel that are not less than 3 inches in depth (in the vertical direction), are not less than 5 inches in width for 6 -inch-nominal waffle-grid forms and not less than 7 inches in width for 8 -inch-nominal waffle-grid forms. See Figure R608.8(3). Flat form lintels shall be permitted in lieu of waffle-grid lintels. See Tables R608.8(2) through R608.8(5).
b. See Table R608.3 for tolerances permitted from nominal thicknesses and minimum dimensions and spacing of cores.
c. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Notes 1 and n . Table values are based on uniform loading. See Section R608.8.2 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $\frac{1}{2}$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads.
f. DR indicates design required. STL - stirrups required throughout lintel.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Lintels less than 24 inches in depth with stirrups shall be formed from flat-walls forms [see Tables R608.8(2) through R608.8(5)], or, if necessary, form material shall be removed from waffle-grid forms so as to provide the required cover for stirrups. Allowable spans for lintels formed with flat-wall forms shall be determined from Tables R608.8(2) through R608.8(5).
j. Where stirrups are required for 24 -inch deep lintels, the spacing shall not exceed 12 inches on center.
k. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than $d / 2$.

1. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
m . Center distance, A, is the center portion of the span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.
n . Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
o. The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel spans in the table greater than 18 feet are shown for interpolation and information only.

TABLE R608.8(8)
MAXIMUM ALLOWABLE CLEAR SPANS FOR 6-INCH-THICK SCREEN-GRID LINTELS IN LOAD-BEARING WALLS ${ }^{a}, \mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{p}$ ROOF CLEAR SPAN 40 FEET AND FLOOR CLEAR SPAN 32 FEET

LINTEL DEPTH,(inches)	NUMBER OF BARS AND BAR SIZE IN TOP AND вотtom OF LINTEL	STEEL YIELD STRENGTH ${ }^{\mathrm{h}}, \boldsymbol{f}_{y}$ (psi)	DESIGN LOADING CONDITION DETERMINED FROM TABLE R608.8(1)								
			1								
				Maximum ground snow load (pst)							
				30	70	30	70	30	70	30	70
			Maximum clear span of lintel (feet - inches)								
$12^{\text {i,j }}$	Span without stirrups		2-9	2-11	2-4	2-5	2-3	2-3	2-2	2-0	2-0
$16^{\text {i,j }}$	Span without stirrups		3-9	4-0	3-4	3-5	3-2	3-1	3-0	2-9	2-9
$20^{\text {i,j }}$	Span without stirrups		4-9	5-1	4-3	4-4	4-1	4-0	3-10	3-7	3-7
24^{k}	Span without stirrups ${ }^{1, \mathrm{~m}}$		5-8	6-3	5-2	5-3	5-0	4-10	4-8	4-4	4-4
	1-\#4	40,000	7-11	9-0	6-11	7-2	6-5	6-1	5-8	4-9	4-7
		60,000	9-9	11-0	8-5	8-9	7-10	7-5	6-10	5-9	5-7
	1-\#5	40,000	9-11	11-2	8-7	8-11	8-0	7-7	7-0	5-11	5-9
		60,000	12-1	13-8	10-6	10-10	9-9	9-3	8-6	7-2	7-0
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	11-2	12-8	9-9	10-1	9-1	8-7	7-11	6-8	6-6
		60,000	15-7	17-7	12-8	13-4	11-6	10-8	9-8	7-11	7-8
	2-\#5	40,000	14-11	18-0	12-2	12-10	11-1	10-3	9-4	7-8	7-5
		60,000	DR								
	Center distance $A^{\mathrm{n}, \mathrm{o}}$		2-0	2-6	1-6	1-7	1-4	1-2	1-0	STL	STL

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ foot $=304.8 \mathrm{~mm}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. Where lintels are formed with screen-grid forms, form material shall be removed if necessary to create top and bottom flanges of the lintel that are not less than 5 inches in width and not less than 2.5 inches in depth (in the vertical direction). See Figure R608.8(4). Flat form lintels shall be permitted in lieu of screen-grid lintels. See Tables R608.8(2) through R608.8(5).
b. See Table R608.3 for tolerances permitted from nominal thickness and minimum dimensions and spacings of cores.
c. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Notes m and o . Table values are based on uniform loading. See Section R608.7.2.1 for lintels supporting concentrated loads.
d. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $1 / 2$-inch, whichever is less.
e. Linear interpolation is permitted between ground snow loads.
f. DR indicates design required. STL indicates stirrups required throughout lintel.
g. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
h. Stirrups shall be fabricated from reinforcing bars with the same yield strength as that used for the main longitudinal reinforcement.
i. Stirrups are not required for lintels less than 24 inches in depth fabricated from screen-grid forms. Top and bottom reinforcement shall consist of a No. 4 bar having a yield strength of 40,000 psi or $60,000 \mathrm{psi}$.

- j. Lintels between 12 and 24 inches in depth with stirrups shall be formed from flat-wall forms [see Tables R608.8(2) through R608.8(5)], or form material shall be removed from screen-grid forms to provide a concrete section comparable to that required for a flat wall. Allowable spans for flat lintels with stirrups shall be determined from Tables R608.8(2) through R608.8(5).
k. Where stirrups are required for 24 -inch deep lintels, the spacing shall not exceed 12 inches on center.

1. Allowable clear span without stirrups applicable to all lintels of the same depth, D. Top and bottom reinforcement for lintels without stirrups shall be not less than the least amount of reinforcement required for a lintel of the same depth and loading condition with stirrups. All other spans require stirrups spaced at not more than 12 inches.
m . Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, clear spans for lintels without stirrups shall be permitted to be multiplied by 1.05 . If the increased span exceeds the allowable clear span for a lintel of the same depth and loading condition with stirrups, the top and bottom reinforcement shall be equal to or greater than that required for a lintel of the same depth and loading condition that has an allowable clear span that is equal to or greater than that of the lintel without stirrups that has been increased.
n . Center distance, A, is the center portion of the span where stirrups are not required. This is applicable to all longitudinal bar sizes and steel yield strengths.
o. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, center distance, A, shall be permitted to be multiplied by 1.10 .
p. The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel spans in the table greater than 18 feet are shown for interpolation and information only.

TABLE R608.8(9)
MAXIMUM ALLOWABLE CLEAR SPANS FOR FLAT LINTELS WITHOUT STIRRUPS IN NONLOAD-BEARING WALLS ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}, \mathrm{h}}$

$\begin{gathered} \text { LINTEL DEPTH, } \\ \text { (inches) } \end{gathered}$	NUMBER OF BARS AND BAR SIZE	STEEL YIELD STRENGTH, f_{y} (psi)	NOMINAL WALL THICKNESS (inches)							
			4		6		8		10	
			Lintel Supporting							
			Concrete Wall	Lightframed Gable						
			Maximum Clear Span of Lintel (feet - inches)							
8	1-\#4	40,000	10-11	11-5	9-7	11-2	7-10	9-5	7-3	9-2
		60,000	12-5	11-7	10-11	13-5	9-11	13-2	9-3	12-10
	1-\#5	40,000	12-7	11-7	11-1	13-8	10-1	13-5	9-4	13-1
		60,000	DR	DR	12-7	16-4	11-6	14-7	10-9	14-6
	$\begin{aligned} & \hline 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	DR	DR	12-0	15-3	10-11	15-0	10-2	14-8
		60,000	DR	DR	DR	DR	12-2	15-3	11-7	15-3
	2-\#5	40,000	DR	DR	DR	DR	12-7	16-7	11-9	16-7
		60,000	DR	DR	DR	DR	DR	DR	13-3	16-7
	2-\#6	40,000	DR	DR	DR	DR	DR	DR	13-2	17-8
		60,000	DR							
12	1-\#4	40,000	11-5	9-10	10-6	12-0	9-6	11-6	8-9	11-1
		60,000	11-5	9-10	11-8	13-3	10-11	14-0	10-1	13-6
	1-\#5	40,000	11-5	9-10	11-8	13-3	11-1	14-4	10-3	13-9
		60,000	11-5	9-10	11-8	13-3	11-10	16-0	11-9	16-9
	$\begin{aligned} & 2-\# 4 \\ & 1-\# 6 \end{aligned}$	40,000	DR	DR	11-8	13-3	11-10	16-0	11-2	15-6
		60,000	DR	DR	11-8	13-3	11-10	16-0	11-11	18-4
	2-\#5	40,000	DR	DR	11-8	13-3	11-10	16-0	11-11	18-4
		60,000	DR	DR	11-8	13-3	11-10	16-0	11-11	18-4
16	1-\#4	40,000	13-6	13-0	11-10	13-8	10-7	12-11	9-11	12-4
		60,000	13-6	13-0	13-8	16-7	12-4	15-9	11-5	15-0
	1-\#5	40,000	13-6	13-0	13-10	17-0	12-6	16-1	11-7	15-4
		60,000	13-6	13-0	13-10	17-1	14-0	19-7	13-4	18-8
	$\begin{aligned} & \hline \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	13-6	13-0	13-10	17-1	13-8	18-2	12-8	17-4
		60,000	13-6	13-0	13-10	17-1	14-0	20-3	14-1	-
	2-\#5	40,000	13-6	13-0	13-10	17-1	14-0	20-3	14-1	-
		60,000	DR	DR	13-10	17-1	14-0	20-3	14-1	-
20	1-\#4	40,000	14-11	15-10	13-0	14-10	11-9	13-11	10-10	13-2
		60,000	15-3	15-10	14-11	18-1	13-6	17-0	12-6	16-2
	1-\#5	40,000	15-3	15-10	15-2	18-6	13-9	17-5	12-8	16-6
		60,000	15-3	15-10	15-8	20-5	15-9	-	14-7	20-1
	$\begin{aligned} & \text { 2-\#4 } \\ & 1-\# 6 \end{aligned}$	40,000	15-3	15-10	15-8	20-5	14-11	-	13-10	-
		60,000	15-3	15-10	15-8	20-5	15-10	-	15-11	-
	2-\#5	40,000	15-3	15-10	15-8	20-5	15-10	-	15-11	-
		60,000	15-3	15-10	15-8	20-5	15-10	-	15-11	-

(continued)

MAXIMUM ALLOWABLE CLEAR SPANS FOR FLAT LINTELS WITHOUT STIRRUPS IN NONLOAD-BEARING WALLS ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g}, \mathrm{h}}$

$\begin{gathered} \text { LINTEL DEPTH, } \\ \text { (inches) } \end{gathered}$	NUMBER OF BARS AND BAR SIZE	STEEL YIELD STRENGTH, $\boldsymbol{f}_{\boldsymbol{y}}$ (psi)	NOMINAL WALL THICKNESS (inches)							
			4		6		8		10	
			Lintel Supporting							
			Concrete Wall	Lightframed Gable						
			Maximum Clear Span of Lintel (feet - inches)							
24	1-\#4	40,000	16-1	17-1	13-11	15-10	12-7	14-9	11-8	13-10
		60,000	16-11	18-5	16-1	19-3	14-6	18-0	13-5	17-0
	1-\#5	40,000	16-11	18-5	16-3	19-8	14-9	18-5	13-8	17-4
	1-\#5	60,000	16-11	18-5	17-4	-	17-0	-	15-8	-
	2-\#4	40,000	16-11	18-5	17-4	-	16-1	-	14-10	-
	1-\#6	60,000	16-11	18-5	17-4	-	17-6	-	17-1	-
	2-45	40,000	16-11	18-5	17-4	-	17-6	-	17-4	-
	2-\#5	60,000	16-11	18-5	17-4	-	17-6	-	17-8	-

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. See Table R608.3 for tolerances permitted from nominal thickness.
b. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Note e.
c. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $\frac{1}{2}$ inch, whichever is less.
d. Linear interpolation between lintels depths, D, is permitted provided the two cells being used to interpolate are shaded.
e. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, spans in cells that are shaded shall be permitted to be multiplied by 1.05 .
f. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.
g. DR indicates design required
h. The maximum clear opening width between two solid wall segments shall be 18 feet. See Section R608.7.2.1. Lintel spans in the table greater than 18 feet are shown for interpolation and information purposes only.

TABLE R608.8(10)
MAXIMUM ALLOWABLE CLEAR SPANS FOR WAFFLE-GRID AND SCREEN-GRID LINTELS WITHOUT STIRRUPS IN NONLOADBEARING WALLS ${ }^{\text {c, }, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}}$

$\begin{aligned} & \text { LINTEL DEPTH } \\ & D \\ & \text { (inches) } \end{aligned}$	FORM TYPE AND NOMINAL WALL THICKNESS (inches)					
	6-inch Waffle-grid ${ }^{\text {a }}$		8 -inch Waffle-grid ${ }^{\text {a }}$		6-inch Screen-grid ${ }^{\text {b }}$	
	Lintel supporting					
	Concrete Wall	Light-framed Gable	Concrete Wall	Light-framed Gable	Concrete Wall	Light-framed Gable
	Maximum Clear Span of Lintel (feet - inches)					
8	10-3	8-8	8-8	8-3	-	-
12	9-2	7-6	7-10	7-1	8-8	6-9
16	10-11	10-0	9-4	9-3	-	-
20	12-5	12-2	10-7	11-2	-	-
24	13-9	14-2	11-10	12-11	13-0	12-9

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$, Grade $40=280 \mathrm{MPa}$, Grade $60=420 \mathrm{MPa}$.
a. Where lintels are formed with waffle-grid forms, form material shall be removed, if necessary, to create top and bottom flanges of the lintel that are not less than 3 inches in depth (in the vertical direction), are not less than 5 inches in width for 6 -inch waffle-grid forms and not less than 7 inches in width for 8 -inch - waffle-grid forms. See Figure R608.8(3). Flat form lintels shall be permitted in lieu of waffle-grid lintels. See Tables R608.8(2) through R608.8(5).
b. Where lintels are formed with screen-grid forms, form material shall be removed if necessary to create top and bottom flanges of the lintel that are not less than 5 inches in width and not less than 2.5 inches in depth (in the vertical direction). See Figure R608.8(4). Flat form lintels shall be permitted in lieu of screen-grid lintels. See Tables R608.8(2) through R608.8(5).
c. See Table R608.3 for tolerances permitted from nominal thickness and minimum dimensions and spacing of cores.
d. Table values are based on concrete with a minimum specified compressive strength of $2,500 \mathrm{psi}$. See Note g.
e. Deflection criterion is $L / 240$, where L is the clear span of the lintel in inches, or $\frac{1}{2}$-inch, whichever is less.
f. Top and bottom reinforcement shall consist of a No. 4 bar having a minimum yield strength of $40,000 \mathrm{psi}$.
g. Where concrete with a minimum specified compressive strength of $3,000 \mathrm{psi}$ is used, spans in shaded cells shall be permitted to be multiplied by 1.05 .
h. Lintel depth, D, is permitted to include the available height of wall located directly above the lintel, provided that the increased lintel depth spans the entire length of the lintel.

- R608.9 Requirements for connections-general. Concrete walls shall be connected to footings, floors, ceilings and roofs in accordance with this section.

R608.9.1 Connections between concrete walls and light-framed floor, ceiling and roof systems. Connections between concrete walls and light-framed floor, ceiling and roof systems using the prescriptive details of Figures R608.9(1) through R608.9(12) shall comply with this section and Sections R608.9.2 and R608.9.3.

R608.9.1.1 Anchor bolts. Anchor bolts used to connect light-framed floor, ceiling and roof systems to concrete walls in accordance with Figures R608.9(1) through R608.9(12) shall have heads, or shall be rods with threads on both ends with a hex or square nut on the end embedded in the concrete. Bolts and threaded rods shall comply with Section R608.5.2.2. Anchor bolts with J- or L-hooks shall not be used where the connection details in these figures are used.

R608.9.1.2 Removal of stay-in-place form material at bolts. Holes in stay-in-place forms for installing bolts for attaching face-mounted wood ledger boards to the wall shall be not less than 4 inches (102 mm) in diameter for forms not greater than $1 \frac{1}{2}$ inches (38 mm) in thickness, and increased 1 inch (25 mm) in diameter for each $\frac{1}{2}$-inch (12.7 mm) increase in form thickness. Holes in stay-in-place forms for installing bolts for attaching face-mounted cold-formed steel tracks to the wall shall be not less than 4 inches (102 mm) square. The wood ledger board or steel track shall be in direct contact with the concrete at each bolt location.

Exception: A vapor retarder or other material less than or equal to $\frac{1}{16}$ inch (1.6 mm) in thickness is permitted to be installed between the wood ledger or cold-formed track and the concrete.
R608.9.2 Connections between concrete walls and light-framed floor systems. Connections between concrete walls and light-framed floor systems shall be in accordance with one of the following:

1. For floor systems of wood frame construction, the provisions of Section R608.9.1 and the prescriptive details of Figures R608.9(1) through R608.9(4), where permitted by the tables accompanying those figures. Portions of connections of wood-framed floor systems not noted in the figures shall be in accordance with Section R502, or AWC WFCM, if applicable. Wood framing members shall be of a species having a specific gravity equal to or greater than 0.42.
2. For floor systems of cold-formed steel construction, the provisions of Section R608.9.1 and the prescriptive details of Figures R608.9(5) through R608.9(8), where permitted by the tables accompanying those figures. Portions of connections of cold-formedsteel framed floor systems not noted in the figures shall be in accordance with Section R505, or AISI S230, if applicable.
3. Proprietary connectors selected to resist loads and load combinations in accordance with Appendix A (ASD) or Appendix B (LRFD) of PCA 100.
4. An engineered design using loads and load combinations in accordance with Appendix A (ASD) or Appendix B (LRFD) of PCA 100.
5. An engineered design using loads and material design provisions in accordance with this code, or in accordance with ASCE 7, ACI 318, and AWC NDS for wood frame construction or AISI S100 for coldformed steel frame construction.
R608.9.3 Connections between concrete walls and light-framed ceiling and roof systems. Connections between concrete walls and light-framed ceiling and roof systems shall be in accordance with one of the following:
6. For ceiling and roof systems of wood frame construction, the provisions of Section R608.9.1 and the prescriptive details of Figures R608.9(9) and R608.9(10), where permitted by the tables accompanying those figures. Portions of connections of wood-framed ceiling and roof systems not noted in the figures shall be in accordance with Section R802, or AWC WFCM, if applicable. Wood framing members shall be of a species having a specific gravity equal to or greater than 0.42 .
7. For ceiling and roof systems of cold-formed-steel construction, the provisions of Section R608.9.1 and the prescriptive details of Figures R608.9(11) and R608.9(12), where permitted by the tables accompanying those figures. Portions of connections of cold-formed-steel framed ceiling and roof systems not noted in the figures shall be in accordance with Section R804, or AISI S230, if applicable.
8. Proprietary connectors selected to resist loads and load combinations in accordance with Appendix A (ASD) or Appendix B (LRFD) of PCA 100.
9. An engineered design using loads and load combinations in accordance with Appendix A (ASD) or Appendix B (LRFD) of PCA 100.
10. An engineered design using loads and material design provisions in accordance with this code, or in accordance with ASCE 7, ACI 318, and AWC NDS for wood-frame construction or AISI S100 for cold-formed-steel frame construction.
R608.10 Floor, roof and ceiling diaphragms. Floors and roofs in buildings with exterior walls of concrete shall be designed and constructed as diaphragms. Where gable-end walls occur, ceilings shall be designed and constructed as diaphragms. The design and construction of floors, roofs and ceilings of wood framing or cold-formed-steel framing serving as diaphragms shall comply with the applicable requirements of this code, or AWC WFCM or AISI S230, if applicable. Wood framing members shall be of a species having a specific gravity equal to or greater than 0.42.

DETAIL A - PLAN VIEW

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.

TABLE R608.9(1)
WOOD-FRAMED FLOOR TO SIDE OF CONCRETE WALL, FRAMING PERPENDICULAR ${ }^{\text {a, }}$ b

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	$\begin{aligned} & \text { BASIC WIND SPEED } \\ & (\mathrm{mph}) \end{aligned}$					
		115B	120B	130B	140B	150B	160B
				110C	119 C	127C	136 C
					110D	117D	125D
12	12						
12	24						
12	36						
12	48						
16	16						
16	32						
16	48						
19.2	19.2						
19.2	38.4						

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(1). Use of this detail is permitted where a cell is not shaded and prohibited where shaded.
b. Wall design per other provisions of Section R608 is required.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.
FIGURE R608.9(2)
WOOD-FRAMED FLOOR TO SIDE OF CONCRETE WALL, FRAMING PARALLEL

TABLE R608.9(2)
WOOD-FRAMED FLOOR TO SIDE OF CONCRETE WALL, FRAMING PARALLELa, b

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115b	120B	130B	140B	150B	160B
				110 C	119 C	127C	136 C
					110D	117D	125D
12	12						
12	24						
12	36						
12	48						
16	16						
16	32						
16	48						
19.2	19.2						
19.2	38.4						
24	24						
24	48						

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(2). Use of this detail is permitted where a cell is not shaded and prohibited where shaded.
b. Wall design per other provisions of Section R608 is required.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.

WOOD-FRAMED FLOOR TO TOP OF CONCRETE WALL FRAMING, PERPENDICULAR

TABLE R608.9(3)
WOOD-FRAMED FLOOR TO TOP OF CONCRETE WALL, FRAMING PERPENDICULAR

ANCHOR BOLT SPACING (inches)	tension tie spacing (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119C	127C	136C
					110D	117D	125D
12	12						6
12	24					6	6
12	36					6	6
12	48				6	6	6
16	16					6	6A
16	32				6	6	6A
16	48			6	6	6	6A
19.2	19.2				6A	6 A	6B
19.2	38.4			6	6A	6 A	6B
24	24			6A	6B	6B	6B
24	48		6	6A	6B	6B	8B

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(3). Use of this detail is permitted where cell is not shaded.
b. Wall design per other provisions in Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.
d. Numbers 6 and 8 indicate minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(3). For the remainder of the wall, see Note b.
e. Letter "A" indicates that a minimum nominal 3×6 sill plate is required. Letter " B " indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal $3 \times$ 6 sill plate are required.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.
FIGURE R608.9(4)
WOOD-FRAMED FLOOR TO TOP OF CONCRETE WALL, FRAMING PARALLEL

TABLE R608.9(4)
WOOD-FRAMED FLOOR TO TOP OF CONCRETE WALL, FRAMING PARALLEL

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119 C	127C	136 C
					110D	117D	125D
12	12						6
12	24					6	6
12	36					6	6
12	48				6	6	6
16	16					6	6A
16	32				6	6	6 A
16	48			6	6	6	6A
19.2	19.2				6A	6 A	6B
19.2	38.4			6	6A	6A	6B
24	24			6A	6B	6B	6B
24	48		6	6A	6B	6B	8B

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(4). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.
d. Numbers 6 and 8 indicate minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(4). For the remainder of the wall, see Note b.
e. Letter "A" indicates that a minimum nominal 3×6 sill plate is required. Letter "B" indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal $3 \times$ 6 sill plate are required.

FIGURE R608.9(5)
COLD-FORMED STEEL FLOOR TO SIDE OF CONCRETE WALL, FRAMING PERPENDICULAR

TABLE R608.9(5)
COLD-FORMED STEEL-FRAMED FLOOR TO SIDE OF CONCRETE WALL, FRAMING PERPENDICULAR ${ }^{\text {a, } b, ~ c ~}$

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110 C	119 C	127C	136 C
					110D	117D	125D
12	12						
12	24						
12	36						
12	48						
16	16						
16	32						
16	48						
19.2	19.2						
19.2	38.4						
24	24						
24	48						

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.4470 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(5). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.

TENSION TIE. 64 MIL $\times 2$ IN. $\times 6$ FT. 0 LENGTH MINIMUM GRADE
IN. $\times 4$ IN. SOLID CONCRETE BEHIND

E (in.)	wall type
$2^{3 / 4}$ in.	4 in. flat
$43 / 4$ in.	6 in. flat 6 in. waffle-grid 6 in. screen-grid
$63 / 4$ in.	8 in. flat 10 in. flat 8 in. waffle-grid

DETAIL B - PLAN VIEW
or SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.
FIGURE R608.9(6)
COLD-FORMED STEEL FLOOR TO SIDE OF CONCRETE WALL, FRAMING PARALLEL

TABLE R608.9(6)
COLD-FORMED STEEL-FRAMED FLOOR TO SIDE OF CONCRETE WALL, FRAMING PARALLEL ${ }^{\text {a, }, ~ c ~}$

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119C	127C	136 C
					110D	117D	125D
12	12						
12	24						
12	36						
12	48						
16	16						
16	32						
16	48						
19.2	19.2						
19.2	38.4						
24	24						
24	48						

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(6). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.

COLD-FORMED STEEL-FRAMED FLOOR TO TOP OF CONCRETE WALL, FRAMING PERPENDICULAR ${ }^{\text {Ta, }}$, $\mathrm{c}, \mathrm{d}, \mathrm{e}$

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110 C	119C	127C	136 C
					110D	117D	125D
12	12						6
12	24					6	6
16	16					6	6A
16	32				6	6	6 A
19.2	19.2				6A	6A	6B
19.2	38.4			6	6A	6 A	6B
24	24			6 A	6B	6B	6B

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(7). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.
d. Number 6 indicates minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(7). For the remainder of the wall, see Note b.
e. Letter "A" indicates that a minimum nominal 3×6 sill plate is required. Letter " B " indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal 3×6 sill plate are required.

DETAIL B - PLAN VIEW
For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ inch $=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.

TABLE R608.9(8)
COLD-FORMED STEEL-FRAMED FLOOR TO TOP OF CONCRETE WALL, FRAMING PARALLELa, b, c, d, e

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119C	127C	136 C
					110D	117D	125D
12	12						6
12	24					6	6
16	16					6	6A
16	32				6	6	6A
19.2	19.2				6A	6A	6B
19.2	38.4			6	6A	6 A	6B
24	24			6A	6B	6B	6B

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(8). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.
d. Number 6 indicates minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(8). For the remainder of the wall, see Note b.
e. Letter "A" indicates that a minimum nominal 3×6 sill plate is required. Letter " B " indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal $3 \times$ 6 sill plate are required.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ inch $=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.

TABLE R608.9(9)
WOOD-FRAMED ROOF TO TOP OF CONCRETE WALL, FRAMING PERPENDICULAR ${ }^{\text {a }}$, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119 C	127C	136 C
					110D	117D	125D
12	12						6
12	24						6
12	36					6	6
12	48				6	6	6
16	16					6	6
16	32					6	6
16	48				6	6	6
19.2	19.2					6	6
19.2	38.4				6	6	
24	24				6		
24	48			6	8B		

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(9). Use of this detail is permitted where cell a is not shaded, prohibited where shaded
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.
d. Numbers 6 and 8 indicate minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(9). For the remainder of the wall, see Note b.
e. Letter "B" indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal 3×6 sill plate are required.

ANCHOR BOLT WITH $1 / 4 \times 3 \times 3$ STEEL
PLATE WASHER. SEE TABLE R608.9(10)
 FOR SPACING

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.
FIGURE R608.9(10)
WOOD-FRAMED ROOF TO TOP OF CONCRETE WALL, FRAMING PARALLEL

TABLE R608.9(10)
WOOD-FRAMED ROOF TO TOP OF CONCRETE WALL, FRAMING PARALLELa, b, c, d, e

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119C	127C	136 C
					110D	117D	125D
12	12						6
12	24						6
12	36					6	6
12	48				6	6	6
16	16					6	6
16	32					6	6
16	48				6	6	6
19.2	19.2					6	6
19.2	38.4				6	6	
24	24				6		
24	48			6	8B		

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{mile}$ per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(10). Use of this detail is permitted where a cell is not shaded, prohibited where shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in cells that do not contain a number.
d. Numbers 6 and 8 indicate minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(10). For the remainder of the wall, see Note b.
e. Letter "B" indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal 3×6 sill plate are required.

WHERE CEILING DIAPHRAGM IS NOT PROVIDED,
DIAPHRAGM BOUNDARY FASTENING SHALL BE IN ACCORDANCE WITH TABLE R804.3. WHERE CEILING DIAPHRAGM IS PROVIDED, DIAPHRAGM FASTENING SHALL BE IN ACCORDANCE WITH AISI S230

WHERE CEILING DIAPHRAGM IS PROVIDED, CONTINUOUS STRAP SHALL BE IN ACCORDANCE WITH AISI S230

WHERE CEILING DIAPHRAGM NOT PROVIDED, 43 MIL MINIMUM BREAK SHAPE EACH RAFTER BAY. WHERE CEILING DIAPHRAGM IS PROVIDED BREAK SHAPE SHALL BE IN ACCORDANCE WITH AISI S230

WHERE CEILING DIAPHRAGM IS NOT PROVIDED, 10d COMMON NAILS HORIZONTAL, SPACING TO MATCH DIAPHRAGM BOUNDARY FASTENING SHALL BE IN ACCORDANCE WITH TABLE R602.3(1). WHERE CEILING DIAPHRAGM IS PROVIDED, SEE AISI S230

FROM SHEATHING TO JOISTS WITH TENSION TIES ATTACHED.

- CEILING DIAPHRAGM WHERE REQUIRED W/43 MIL ANGLE, NO. 8 SCREWS TO STEEL, 10d NAILS TO WOOD SILL. SEE TABLE R804.3 FOR DIAPHRAGM BOUNDARY FASTENER SPACING

WOOD 2×6 MINIMUM SILL PLATE TYPICAL, 3×6 WHERE REQUIRED BY TABLE R608.9(11)
$1 / 2 \operatorname{IN}$. DIAMETER ANCHOR BOLT TYPICAL $5 / 8$ IN. WHERE REQUIRED. SEE TABLE R608.9(11) FOR SIZE AND SPACING

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1$ inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.
FIGURE R608.9(11)
COLD-FORMED STEEL ROOF TO TOP OF CONCRETE WALL, FRAMING PERPENDICULAR

TABLE R608.9(11)
WOOD-FRAMED ROOF TO TOP OF CONCRETE WALL, FRAMING PERPENDICULAR ${ }^{\text {a }}$, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110C	119C	127C	136C
					110D	117D	125D
12	12						6
12	24						6
16	16					6	6
16	32					6	6
19.2	19.2					6	6
19.2	38.4				6	6	6
24	24				6	6A	6B

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(11). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4-inch-nominal wall is permitted in unshaded cells that do not contain a number.
d. Number 6 indicates minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(11). For the remainder of the wall, see Note b.
e. Letter "A" indicates that a minimum nominal 3×6 sill plate is required. Letter " B " indicates that a $5 / 8$-inch-diameter anchor bolt and a minimum nominal $3 \times$ 6 sill plate are required.

For SI: $1 \mathrm{mil}=0.0254 \mathrm{~mm}, 1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ pound-force $=4.448 \mathrm{~N}$.

COLD-FORMED STEEL ROOF TO TOP OF CONCRETE WALL, FRAMING PARALLEL

TABLE R608.9(12)
COLD-FORMED STEEL ROOF TO TOP OF CONCRETE WALL, FRAMING PARALLEL ${ }^{\text {a, }}$ b, c, d, e

ANCHOR BOLT SPACING (inches)	TENSION TIE SPACING (inches)	BASIC WIND SPEED (mph) AND WIND EXPOSURE CATEGORY					
		115B	120B	130B	140B	150B	160B
				110 C	119C	127C	136 C
					110D	117D	125D
12	12						6
12	24						6
16	16					6	6
16	32					6	6
19.2	19.2					6	6
19.2	38.4				6	6	6
24	24				6	6	6B

For SI: 1 inch $=25.4 \mathrm{~mm}$, 1 mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
a. This table is for use with the detail in Figure R608.9(12). Use of this detail is permitted where a cell is not shaded.
b. Wall design per other provisions of Section R608 is required.
c. For wind design, minimum 4 -inch-nominal wall is permitted in cells that do not contain a number.
d. Number 6 indicates minimum permitted nominal wall thickness in inches necessary to develop required strength (capacity) of connection. As a minimum, this nominal thickness shall occur in the portion of the wall indicated by the cross-hatching in Figure R608.9(12). For the remainder of the wall, see Note b.
e. Letter " B " indicates that a $5 / 8$-inch-diameter anchor bolt is required.

SECTION R609

EXTERIOR WINDOWS AND DOORS

R609.1 General. This section prescribes performance and construction requirements for exterior windows and doors installed in walls. Windows and doors shall be installed and flashed in accordance with the fenestration manufacturer's written instructions. Window and door openings shall be flashed in accordance with Section R703.4. Written installation instructions shall be provided by the fenestration manufacturer for each window or door.
R609.2 Performance. Exterior windows and doors shall be designed to resist the design wind loads specified in Table R301.2(2) adjusted for height and exposure in accordance with Table R301.2(3) or determined in accordance with ASCE 7 using the allowable stress design load combinations of ASCE 7. Design wind loads for exterior glazing not part of a labeled assembly shall be permitted to be determined in accordance with Chapter 24 of the International Building Code.
[W]R609.3 Testing and labeling. Exterior windows and sliding doors shall be tested by an approved independent laboratory, and bear a label identifying manufacturer, performance characteristics and approved inspection agency to indicate compliance with AAMA/WDMA/CSA 101/I.S.2/A440. Exterior side-hinged doors shall be tested and labeled as conforming to AAMA/WDMA/CSA 101/I.S.2/A440 or AMD 100, or comply with Section R609.5.

Exceptions:

1. Decorative glazed openings.
2. Custom exterior windows and doors manufactured by a small business shall be exempt from all testing requirements in Section R609 provided they meet the applicable provisions of Chapter 24 of the International Building Code.

R609.3.1 Comparative analysis. Structural wind load design pressures for window and door units different than the size tested in accordance with Section R609.3 shall be permitted to be different than the design value of the tested unit where determined in accordance with one of the following comparative analysis methods:

1. Structural wind load design pressures for window and door units smaller than the size tested in accordance with Section R609.3 shall be permitted to be higher than the design value of the tested unit provided such higher pressures are determined by accepted engineering analysis. Components of the smaller unit shall be the same as those of the tested unit. Where such calculated design pressures are used, they shall be validated by an additional test of the window or door unit having the highest allowable design pressure.
2. In accordance with WDMA I.S.11.

R609.4 Garage doors. Garage doors shall be tested in accordance with either ASTM E 330 or ANSI/DASMA 108, and shall meet the acceptance criteria of ANSI/DASMA 108.
R609.5 Other exterior window and door assemblies. Exterior windows and door assemblies not included within the scope of Section R609.3 or R609.4 shall be tested in accordance with ASTM E 330. Glass in assemblies covered by this exception shall comply with Section R308.5.
R609.6 Wind-borne debris protection. Protection of exterior windows and glass doors in buildings located in windborne debris regions shall be in accordance with Section R301.2.1.2.

R609.6.1 Fenestration testing and labeling. Fenestration shall be tested by an approved independent laboratory, listed by an approved entity, and bear a label identifying manufacturer, performance characteristics, and approved
inspection agency to indicate compliance with the requirements of the following specification(s):

1. ASTM E 1886 and ASTM E 1996; or
2. AAMA 506.

R609.7 Anchorage methods. The methods cited in this section apply only to anchorage of window and glass door assemblies to the main force-resisting system.

R609.7.1 Anchoring requirements. Window and glass door assemblies shall be anchored in accordance with the published manufacturer's recommendations to achieve the design pressure specified. Substitute anchoring systems used for substrates not specified by the fenestration manufacturer shall provide equal or greater anchoring performance as demonstrated by accepted engineering practice.
R609.7.2 Anchorage details. Products shall be anchored in accordance with the minimum requirements illustrated in Figures R609.7.2(1), R609.7.2(2), R609.7.2(3), R609.7.2(4), R609.7.2(5), R609.7.2(6), R609.7.2(7) and R609.7.2(8).

R609.7.2.1 Masonry, concrete or other structural substrate. Where the wood shim or buck thickness is less than $1 \frac{1}{2}$ inches (38 mm), window and glass door assemblies shall be anchored through the jamb, or by jamb clip and anchors shall be embedded directly into the masonry, concrete or other substantial substrate material. Anchors shall adequately transfer load from the window or door frame into the rough opening substrate [see Figures R609.7.2(1) and R6097.2(2)].

Where the wood shim or buck thickness is $1 \frac{1}{2}$ inches (38 mm) or more, the buck is securely fastened to the masonry, concrete or other substantial substrate, and the buck extends beyond the interior face of the window or door frame, window and glass door assemblies shall be anchored through the jamb, or by jamb clip, or through the flange to the secured wood buck. Anchors shall be embedded into the secured wood buck to adequately transfer load from the window or door frame assembly [see Figures R609.7.2(3), R6097.2(4) and R609.7.2(5)].

R609.7.2.2 Wood or other approved framing material. Where the framing material is wood or other approved framing material, window and glass door assemblies shall be anchored through the frame, or by frame clip, or through the flange. Anchors shall be embedded into the frame construction to adequately transfer load [see Figures R609.7.2(6), R609.7.2(7) and R609.7.2(8)].

FIGURE R609.7.2(2) FRAME CLIP

FIGURE R609.7.2(3) THROUGH THE FRAME

FIGURE R609.7.2(4) FRAME CLIP

FIGURE R609.7.2(5) THROUGH THE FLANGE

FIGURE R609.7.2(6) THROUGH THE FLANGE

FIGURE R609.7.2(7) FRAME CLIP

FIGURE R609.7.2(8) THROUGH THE FLANGE

- R609.8 Mullions. Mullions shall be tested by an approved testing laboratory in accordance with AAMA 450, or be engineered in accordance with accepted engineering practice. Mullions tested as stand-alone units or qualified by engineering shall use performance criteria cited in Sections R609.8.1, R609.8.2 and R609.8.3. Mullions qualified by an actual test
of an entire assembly shall comply with Sections R609.8.1 and R609.8.3.

R609.8.1 Load transfer. Mullions shall be designed to transfer the design pressure loads applied by the window and door assemblies to the rough opening substrate.
R609.8.2 Deflection. Mullions shall be capable of resisting the design pressure loads applied by the window and door assemblies to be supported without deflecting more than $L / 175$, where L is the span of the mullion in inches.
R609.8.3 Structural safety factor. Mullions shall be capable of resisting a load of 1.5 times the design pressure loads applied by the window and door assemblies to be supported without exceeding the appropriate material stress levels. If tested by an approved laboratory, the 1.5 times the design pressure load shall be sustained for 10 seconds, and the permanent deformation shall not exceed 0.4 percent of the mullion span after the 1.5 times design pressure load is removed.

SECTION R610 STRUCTURAL INSULATED PANEL WALL CONSTRUCTION

R610.1 General. Structural insulated panel (SIP) walls shall be designed in accordance with the provisions of this section. Where the provisions of this section are used to design structural insulated panel walls, project drawings, typical details and specifications are not required to bear the seal of the architect or engineer responsible for design, unless otherwise required by the state law of the jurisdiction having authority.
R610.2 Applicability limits. The provisions of this section shall control the construction of exterior structural insulated panel walls and interior load-bearing structural insulated panel walls for buildings not greater than 60 feet (18288 mm) in length perpendicular to the joist or truss span, not greater than 40 feet (12192 mm) in width parallel to the joist or truss span and not greater than two stories in height with each wall not greater than 10 feet (3048 mm) high. Exterior walls installed in accordance with the provisions of this section shall be considered as load-bearing walls. Structural insulated panel walls constructed in accordance with the provisions of this section shall be limited to sites where the ultimate design wind speed $\left(V_{u l t}\right)$ is not greater than 155 miles per hour ($69 \mathrm{~m} / \mathrm{s}$), Exposure B or 140 miles per hour ($63 \mathrm{~m} / \mathrm{s}$) Exposure C, the ground snow load is not greater than 70 pounds per foot (3.35 kPa), and the seismic design category is A, B or C .
R610.3 Materials. SIPs shall comply with the following criteria:

R610.3.1 Core. The core material shall be composed of foam plastic insulation meeting one of the following requirements:

1. ASTM C 578 and have a minimum density of 0.90 pounds per cubic feet $\left(14.4 \mathrm{~kg} / \mathrm{m}^{3}\right)$.
2. Polyurethane meeting the physical properties shown in Table R610.3.1.
3. An approved alternative.

All cores shall meet the requirements of Section R316.
R610.3.2 Facing. Facing materials for SIPs shall be wood structural panels conforming to DOC PS 1 or DOC PS 2, each having a minimum nominal thickness of $7 / 16$ inch (11 mm) and shall meet the additional minimum properties specified in Table R610.3.2. Facing shall be identified by a grade mark or certificate of inspection issued by an approved agency.

R610.3.3 Adhesive. Adhesives used to structurally laminate the foam plastic insulation core material to the structural wood facers shall conform to ASTM D 2559 or approved alternative specifically intended for use as an adhesive used in the lamination of structural insulated panels. Each container of adhesive shall bear a label with the adhesive manufacturer's name, adhesive name and type and the name of the quality assurance agency.

TABLE R610.3.1
MINIMUM PROPERTIES FOR POLYURETHANE INSULATION USED AS SIPS CORE

PHYSICAL PROPERTY	POLYURETHANE
Density, core nominal (ASTM D 1622)	$2.2 \mathrm{lb} / \mathrm{ft}^{3}$
Compressive resistance at yield or 10\% deformation, whichever occurs first (ASTM D 1621)	19 psi (perpendicular to rise)
Flexural strength, min. (ASTM C 203)	30 psi
Tensile strength, min. (ASTM D 1623)	35 psi
Shear strength, min. (ASTM C 273)	25 psi
Substrate adhesion, min. (ASTM D 1623)	22 psi
Water vapor permeance of 1.00-in. thickness, max. (ASTM E 96)	2.3 perm
Water absorption by total immersion, max. (ASTM C 272)	4.3% (volume)
Dimensional stability (change in dimensions), max. [ASTM D 2126 (7 days at $158^{\circ} \mathrm{F} / 100 \%$ humidity and 7 days at $-20^{\circ} \mathrm{F}$)]	2%

For SI: 1 pound per cubic foot $=16.02 \mathrm{~kg} / \mathrm{m}^{3}, 1$ pound per square inch $=6.895 \mathrm{kPa},{ }^{\circ} \mathrm{C}=\left[\left({ }^{\circ} \mathrm{F}\right)-32\right] 1.8$.
TABLE R610.3.2
MINIMUM PROPERTIES ${ }^{\text {a }}$ FOR ORIENTED STRAND BOARD FACER MATERIAL IN SIP WALLS

THICKNESS	PRODUCT	FLATWISE STIFFNESS ${ }^{\text {b }}$ ($\mathrm{lbf-in}^{2} / \mathrm{ft}$)		FLATWISE STRENGTH ${ }^{\text {c }}$ (lbf-in/ft)		$\underset{(\mathrm{lbf} / \mathrm{ft})}{\mathrm{TENSION}^{\mathrm{C}}}$		$\underset{(p \mathrm{pf})}{\text { DENSITY }^{\mathrm{d}}}$
		Along	Across	Along	Across	Along	Across	
$7 / 16$	Sheathing	55,600	16,500	1,040	460	7,450	5,800	34

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{lbf}-\mathrm{in}^{2} / \mathrm{ft}=9.415 \times 10^{-6} \mathrm{kPa} / \mathrm{m}, 1 \mathrm{lbf}-\mathrm{in} / \mathrm{ft}=3.707 \times 10^{-4} \mathrm{kN} / \mathrm{m}, 1 \mathrm{lbf} / \mathrm{ft}=0.0146 \mathrm{~N} / \mathrm{mm}, 1 \mathrm{pound}$ per cubic foot $=16.018 \mathrm{~kg} / \mathrm{m}^{3}$.

- a. Values listed in Table R610.3.2 are qualification test values and are not to be used for design purposes.
b. Mean test value shall be in accordance with Section 7.6 of DOC PS 2.
c. Characteristic test value (5 th percent with 75% confidence).
d. Density shall be based on oven-dry weight and oven-dry volume.
- R610.3.4 Lumber. The minimum lumber framing material used for SIPs prescribed in this document is NLGA graded No. 2 Spruce-pine-fir. Substitution of other wood species/grades that meet or exceed the mechanical properties and specific gravity of No. 2 Spruce-pine-fir shall be permitted.
R610.3.5 SIP screws. Screws used for the erection of SIPs as specified in Section R610.5 shall be fabricated from steel, shall be provided by the SIP manufacturer and shall be sized to penetrate the wood member to which the assembly is being attached by not less than 1 inch (25 $\mathrm{mm})$. The screws shall be corrosion resistant and have a minimum shank diameter of 0.188 inch (4.7 mm) and a minimum head diameter of 0.620 inch (15.5 mm).
R610.3.6 Nails. Nails specified in Section R610 shall be common or galvanized box unless otherwise stated.
R610.4 SIP wall panels. SIPs shall comply with Figure R610.4 and shall have minimum panel thickness in accordance with Tables R610.5(1) and R610.5(2) for above-grade walls. SIPs shall be identified by grade mark or certificate of inspection issued by an approved agency.

R610.4.1 Labeling. Panels shall be identified by grade mark or certificate of inspection issued by an approved agency. Each (SIP) shall bear a stamp or label with the following minimum information:

1. Manufacturer name/logo.
2. Identification of the assembly.
3. Quality assurance agency.

R610.5 Wall construction. Exterior walls of SIP construction shall be designed and constructed in accordance with the provisions of this section and Tables R610.5(1) and R610.5(2) and Figures R610.5(1) through R610.5(5). SIP walls shall be fastened to other wood building components in accordance with Tables R602.3(1) through R602.3(4).

Framing shall be attached in accordance with Table R602.3(1) unless otherwise provided for in Section R610.

R610.5.1 Top plate connection. SIP walls shall be capped with a double top plate installed to provide overlapping at corner, intersections and splines in accordance with Figure R610.5.1. The double top plates shall be made up of a single 2 by top plate having a width equal to the
width of the panel core, and shall be recessed into the SIP below. Over this top plate a cap plate shall be placed. The cap plate width shall match the SIP thickness and overlap the facers on both sides of the panel. End joints in top plates shall be offset not less than 24 inches (610 mm).

R610.5.2 Bottom (sole) plate connection. SIP walls shall have full bearing on a sole plate having a width equal to the nominal width of the foam core. Where SIP walls are supported directly on continuous foundations, the wall wood sill plate shall be anchored to the foundation in accordance with Figure R610.5.2 and Section R403.1.
R610.5.3 Wall bracing. SIP walls shall be braced in accordance with Section R602.10. SIP walls shall be considered continuous wood structural panel sheathing for purposes of computing required bracing. SIP walls shall meet the requirements of Section R602.10.4.2 except that SIP corners shall be fabricated as shown in Figure R610.9. Where SIP walls are used for wall bracing, the SIP bottom plate shall be attached to wood framing below in accordance with Table R602.3(1).

FIGURE R610.4 SIP WALL PANEL

TABLE R610.5(1)
MINIMUM THICKNESS FOR SIP WALL SUPPORTING SIP OR LIGHT-FRAME ROOF ONLY (inches) ${ }^{\text {a }}$

BUILDING WIDTH (ft)																	
ULTIMATE DESIGN WIND SPEED $V_{\text {ult }}(\mathrm{mph})$		$\begin{aligned} & \text { SNOW } \\ & \text { LOAD } \\ & \text { (psf) } \end{aligned}$	24			28			32			36			40		
Exp. B	Exp. C		Wall Height (feet)														
			8	9	10	8	9	10	8	9	10	8	9	10	8	9	10
110	-	20	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
		30	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
		50	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
		70	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	6.5
115	-	20	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
		30	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
		50	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	6.5
		70	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	4.5	DR
130	110	20	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	4.5	DR
		30	4.5	4.5	6.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	4.5	DR	4.5	4.5	DR
		50	4.5	4.5	DR	4.5	4.5	DR	4.5	4.5	DR	4.5	6.5	DR	4.5	DR	DR
		70	4.5	4.5	DR	4.5	DR	DR	4.5	DR	DR	4.5	DR	DR	DR	DR	DR
140	120	20	4.5	6.5	DR	4.5	6.5	DR	4.5	DR	DR	4.5	DR	DR	4.5	DR	DR
		30	4.5	6.5	DR	4.5	DR	DR									
		50	4.5	DR	DR	4.5	DR										
		70	4.5	DR													

For SI: $1 \mathrm{inch}=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
$\mathrm{DR}=$ design required.
a. Design assumptions:

Maximum deflection criteria: $L / 240$.
Maximum roof dead load: 10 psf .
Maximum roof live load: 70 psf .
Maximum ceiling dead load: 5 psf .
Maximum ceiling live load: 20 psf .
Wind loads based on Table R301.2 (2).
Strength axis of facing material applied vertically.

TABLE R610.5(2)
MINIMUM THICKNESS FOR SIP WALL SUPPORTING SIP OR LIGHT-FRAME ONE STORY AND ROOF ONLY (inches) ${ }^{\text {a }}$

BUILDING WIDTH (ft)																	
ULTIMATE DESIGN WIND SPEED $V_{u l t}(\mathrm{mph})$		$\begin{aligned} & \text { SNOW } \\ & \text { LOAD } \\ & \text { (psf) } \end{aligned}$	24			28			32			36			40		
Exp B			Wall Height (feet)														
			8	9	10	8	9	10	8	9	10	8	9	10	8	9	10
110	-	20	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	4.5	DR
		30	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	6.5	DR
		50	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	DR	DR	DR	DR	DR
		70	4.5	4.5	6.5	4.5	4.5	DR	4.5	DR							
115	-	20	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	4.5	DR	4.5	DR	DR
		30	4.5	4.5	4.5	4.5	4.5	6.5	4.5	4.5	DR	4.5	6.5	DR	4.5	DR	DR
		50	4.5	4.5	6.5	4.5	4.5	DR	4.5	DR	DR	4.5	DR	DR	DR	DR	DR
		70	4.5	4.5	DR	4.5	DR										
120	-	20	4.5	4.5	6.5	4.5	4.5	DR	4.5	4.5	DR	4.5	DR	DR	4.5	DR	DR
		30	4.5	4.5	DR	4.5	4.5	DR	4.5	6.5	DR	4.5	DR	DR	DR	DR	DR
		50	4.5	4.5	DR	4.5	DR	DR	4.5	DR							
		70	4.5	DR	DR	4.5	DR										
130	110	20	4.5	6.5	DR	4.5	DR	DR	4.5	DR							
		30	4.5	DR	DR	4.5	DR										
		50	4.5	DR													
		70	DR														

For SI: 1 Inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.
$\mathrm{DR}=$ Design required.
a. Design assumptions:

Maximum deflection criteria: $L / 240$.
Maximum roof dead load: 10 psf .
Maximum roof live load: 70 psf .
Maximum ceiling dead load: 5 psf .
Maximum ceiling live load: 20 psf .
Maximum second-floor dead load: 10 psf .
Maximum second-floor live load: 30 psf .
Maximum second-floor dead load from walls: 10 psf .
Maximum first-floor dead load: 10 psf .
Maximum first-floor live load: 40 psf .
Wind loads based on Table R301.2 (2).
Strength axis of facing material applied vertically.

For SI: 1 foot $=304.8 \mathrm{~mm}$.
FIGURE R610.5(1)
MAXIMUM ALLOWABLE HEIGHT OF SIP WALLS

For SI: 1 foot $=304.8 \mathrm{~mm}$.

MAXIMUM ALLOWABLE HEIGHT OF SIP WALLS

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R610.5(3)
TRUSSED ROOF TO TOP PLATE CONNECTION

For SI: 1 inch $=25.4 \mathrm{~mm}$.
Note: Figures illustrate SIP-specific attachment requirements. Other connections shall be made in accordance with Tables R602.3(1) and (2) as appropriate.
FIGURE R610.5(4)
SIP WALL-TO-WALL PLATFORM FRAME CONNECTION

For SI: 1 inch = 25.4 mm .
Note: Figures illustrate SIP-specific attachment requirements. Other connections shall be made in accordance with Tables R602.3(1) and (2), as appropriate.
FIGURE R610.5(5)
SIP WALL-TO-WALL BALLOON FRAME CONNECTION (I-Joist floor shown for Illustration only)

For SI: 1 inch = 25.4 mm .

Notes:

1. Top plates shall be continuous over header.
2. Lower 2 x top plate shall have a width equal to the SIP core width and shall be recessed into the top edge of the panel. Cap plate shall be placed over the recessed top plate and shall have a width equal to the SIPs width.
3. SIP facing surfaces shall be nailed to framing and cripples with 8 d common or galvanized box nails spaced 6 inches on center.
4. Galvanized nails shall be hot-dipped or tumbled. Framing shall be attached in accordance to Section R602.3(1) unless otherwise provide for in Section R610.

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$.
FIGURE R610.5.2
SIP WALL TO CONCRETE SLAB FOR FOUNDATION WALL ATTACHMENT

R610.6 Interior load-bearing walls. Interior load-bearing walls shall be constructed as specified for exterior walls.
R610.7 Drilling and notching. The maximum vertical chase penetration in SIPs shall have a maximum side dimension of 2 inches (51 mm) centered in the panel. Vertical chases shall have a minimum spacing of 24 inches $(610 \mathrm{~mm})$ on center. A maximum of two horizontal chases shall be permitted in each wall panel-one at 14 inches (360 mm) plus or minus 2 inches (51 mm) from the bottom of the panel and one at 48 inches (1220 mm) plus or minus 2 inches $(51 \mathrm{~mm})$ from the bottom edge of the SIPs panel. Additional penetrations are permitted where justified by analysis.
R610.8 Connection. SIPs shall be connected at vertical inplane joints in accordance with Figure R610.8 or by other approved methods.
R610.9 Corner framing. Corner framing of SIP walls shall be constructed in accordance with Figure R610.9.
R610.10 Headers. SIP headers shall be designed and constructed in accordance with Table R610.10 and Figure R610.5.1. SIP headers shall be continuous sections without splines. Headers shall be not less than $11^{7} / 8$ inches (302 mm) deep. Headers longer than 4 feet (1219 mm) shall be constructed in accordance with Section R602.7.

R610.10.1 Wood structural panel box headers. Wood structural panel box headers shall be allowed where SIP headers are not applicable. Wood structural panel box headers shall be constructed in accordance with Figure R602.7.3 and Table R602.7.3.

For SI: 1 inch $=25.4 \mathrm{~mm}$.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
FIGURE R610.9

SIP CORNER FRAMING DETAIL

TABLE R610.10
MAXIMUM SPANS FOR $11^{7} / 8^{-I N C H-D E E P ~ S I P ~ H E A D E R S ~(f e e t) ~}{ }^{\text {a }}$

LOAD CONDITION	SNOW LOAD (psf)	BUILDING width (feet)				
		24	28	32	36	40
Supporting roof only	20	4	4	4	4	2
	30	4	4	4	2	2
	50	2	2	2	2	2
	70	2	2	2	N/A	N/A
Supporting roof and one-story	20	2	2	N/A	N/A	N/A
	30	2	2	N/A	N/A	N/A
	50	2	N/A	N/A	N/A	N/A
	70	N/A	N/A	N/A	N/A	N/A

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound per square foot $=0.0479 \mathrm{kPa}$.
N/A = Not Applicable.
a. Design assumptions:

Maximum deflection criterion: $L / 360$.
Maximum roof dead load: 10 psf.
Maximum ceiling load: 5 psf .
Maximum second-floor live load: 30 psf .
Maximum second-floor dead load: 10 psf .
Maximum second-floor dead load from walls: 10 psf .

[^0]: For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}, 1$ pound $=4.45 \mathrm{~N}, 1$ mile per hour $=0.447 \mathrm{~m} / \mathrm{s}$.

