Water is the Link for Soil, Plant, and Atmosphere Continuum

Soo-Hyung Kim, Ph.D. Assistant Professor UW Botanic Garden / School of Forest Resources College of the Environment University of Washington

Overview

- Soil-Plant-Atmosphere Continuum
 - Function of water in plants
 - Plant response to water stress
 - Plant adaptation to water stress
- Redistribution of water by plants
- Methods to mitigate water stress
- Questions

Water and plants

- Water availability limits the productivity in many ecosystems
- Functions within a plant
 - Most of plant fresh weight comes from water (up to 90%)
 - Provide structure and support
 - Source of oxygen release form photosynthesis
 - Medium for transporting nutrients, metabolites, and plant hormones

Lost by transpiration through stomata

 Inevitable consequence of photosynthesis

PLANT PHYSIOLOGY, Fourth Edition, Figure 3.2 © 2006 Sinauer Associates, Inc.

Leaf gas-exchange

Stomata

Opening and closing are dynamically regulated

Ascent of Sap: How does water move to the tree top?

- "By suction"
- Where does the driving force for this suction come from?
- Water in the xylem is under tension
 - Water evaporating from the leaves (<u>transpiration</u>) creates this tension (i.e., suction)
 - Cohesion among water molecules provides a continuous water column
- Dixon and Joly (1894)
 - Cohesion-Tension theory

Koch et al. (2004) Nature 428: 851

Soil-Plant-Atmosphere Continuum (SPAC)

How can we test this theory? Use a pressure chamber (aka, pressure bomb)

Henry Dixon

P. F. Scholander

Soil water movement

- Evapotranspiration (ET)
 - Transpiration stream towards plants
 - Nutrients tag along
 - Surface evaporation
- Runoff
- Infiltration and seepage

evapotranspiration = transpiration + evaporation transpiration trees grass evaporation runoff groundwater recharge

Plant responses to water deficit

- Cell expansion slows down in the leaves
- Close the valves (stomata)
- Plants send more carbon to roots
- Shed leaves
- Accumulate solutes and hormones in the cells
 - Osmotic adjustments
- If dehydration continues?
 - The water column breaks (cavitation)

Plant adaptation to limited water

- Drought tolerators
 - Many evergreen perennials
 - Sclerophylous leaves, osmotic adjustment, conservative water use
- Drought avoider
 - Annuals, drought deciduous perennials
 - Timing of activities
- Drought escaper
 - Phreatophytes (deep rooted)
 - Reach water unavailable to other plants
 - Hydraulic lift, hydraulic redistribution

Plant adaptation to limited water

Xylem vessel diameter

Plant adaptation to limited water

 Drought escapers and hydraulic redistribution of water

Artemisia tridentata (sagebrush)

Water redistribution to neighboring plants

Brooks et al., 2006

Really redistributed by plants?

Figure 7. Profiles of deuterated water in soil samples collected at three distances from the watering site 36 d after the application of deuterated water began.

Brooks et al., 2006

Interesting findings but implications?

- Potential pathways
 - Liquid and vapor transport through soils
 - Through plant roots
 - Through mycorrhizal network
- Potential ideas for plant selection in water-wise landscapes
 - Mix in hydraulic redistributors in the landscape
 - Drip irrigate those plants for redistribution
 - Disclaimer: This idea has not been tested!

METHODS TO REDUCE WATER STRESS OF CONIFER SEEDLINGS IN SEATTLE FORESTS

LISA CIECKO, MSc

UNIVERSITY OF WASHINGTON SCHOOL OF FOREST RESOURCES CENTER FOR URBAN HORTICULTURE

EXPERIMENTAL TREATMENTS

WOOD CHIP MULCH

RAIN & RIPD

BIRD

RAIN BIRD

DRIP IRRIGATION

IRRIGATION GEL

2 x 3 Factorial:

- control
- irrigation gel
- drip irrigation
- mulch
- mulch + irrigation gel
- mulch + drip irrigation

SPECIES

GRAND FIR > WESTERN RED > WESTERN CEDAR HEMLOCK

LOCATION

W EST DUWAMISH GREENBELT

Interlaken Park

DESIGN

Measurements

- Site Conditions
 Soil chemical analysis
 Soil texture
 Canopy cover
 Microclimate
- Soil Moisture
 Watermark sensors

- Tree Health and Growth Height and diameter Root and shoot biomass Survivorship
- Stem Water Potential
 Pre-dawn plant water status

Western Hemlock March 2008

Western Hemlock August 2008

Soil Moisture : West Duwamish

Soil Moisture : Interlaken

SURVIVORSHIP

WESTERN RED CEDAR

Stem Water Potential in Summer of Year 1

SUMMARY

- To test the influence of:
 - Coarse wood chip mulch
 - Drip irrigation
 - Irrigation gel
- To understand each treatments influence on water stress
- To characterize environmental conditions at two parks

- Significant park differences
- No treatment influence at West Duwamish
- Mulch treatments had the most influence on at Interlaken
- Soil texture influenced soil moisture

Overview

- Soil-Plant-Atmosphere Continuum
 - Function of water in plants
 - Plant response to water stress
 - Plant adaptation to water stress
- Redistribution of water by plants
- Methods to mitigate water stress
- Questions

Thank you

Contact: soohkim@u.washington.edu

Methods for estimating landscape water use

WUCOLS 2000: Water use classification of landscape species www.water.ca.gov/wateruseefficiency/docs/wucols00.pdf

Weather (ET) based irrigation management

- Concept derived from crop irrigation
 - Weather-based irrigation systems determine water requirement based on:
 - ET (Evapotranspiration): Soil evaporation + plant transpiration
 - $ET = ET_0^*K_c$
 - ET₀: reference (or potential) ET
 - ET₀: Value available from weather station data
 - Determined by pan evaporation, cool-season turf, or model
 - K_c: Crop coefficient

Adjustments for landscape plants

- Adjust it to meet landscape ET (ET_L)
 - ET_L is determined in reference to ET₀
- Adjust it by:
 - K_c crop [species] coefficient
 - K_h hydrozone [microclimate] coefficient
 - K_d density [canopy area] coefficient
- Landscape coefficient (K_L)
 - $K_{L} = K_{c} K_{h} K_{d}$
- ET for a landscape planting (ET_L)
 - $ET_L = ET_0^*K_L$
- Amount of water to apply (W)
 - $W = ET_L/AE$
 - AE = application efficiency

Graphics: Clark & Green

K_L values vary with species and environment

Tree Water Loss as Fraction of ETo (Kc)

Data source: Dr. Roger Kjelgren

K_L values are closely correlated with density factor

Data source: Dr. Roger Kjelgren, Utah State Univ.