Knotweed Treatment
In the Cedar River Municipal Watershed
2016

Annual Report
Seattle Public Utilities Committee
Seattle City Council

Sally Nickelson
Major Watersheds Invasive Species Program Manager
Seattle Public Utilities, Watershed Management Division

January 9, 2017
EXECUTIVE SUMMARY
Seattle Public Utilities has been treating Bohemian knotweed in the Cedar River Municipal Watershed with the herbicide imazapyr annually since 2010. Three city ordinances have authorized this treatment (2010-2012, 2013-2015, and 2016-2018). A total of 18 acres has been treated in the past seven years: 7.7 acres seven times, 7.9 acres six times, 0.3 acres five times, and 2.1 acres four times. It generally takes eight or more consecutive annual treatments to eradicate large knotweed patches, because of the large root mass and the plant’s ability to compartmentalize, shutting off portions of the root system to the herbicide. There have been no spills during the treatments, and no herbicide has entered the municipal water supply.

Herbicide use closely tracks the total knotweed leaf biomass, because the herbicide is applied to all leaves on each plant. The maximum legally allowed application rate for imazapyr is 96 ounces per acre. The maximum amount used in the watershed was 43.5 ounces per acre (a total of 678 ounces) in 2011. This decreased to 2.6 ounces per acre (a total of 46 ounces) in 2016, reflecting a 16-fold decrease in the above-ground biomass of knotweed in the municipal watershed from pre-treatment levels. Annual cost of the herbicide treatment has decreased from a high of $32,000 in 2011 to $7,000 in 2016.

From 2010 through 2016, SPU staff surveyed over 1,100 acres of off-road habitat for knotweed. In 2013, an additional 2.15 acres of knotweed, mostly at the Taylor townsite, were found and treated for the first time. No other patches have been found since 2013. In addition to the 1,100 acres, staff also survey approximately 475 acres of off-road habitat and over 300 miles of road annually.

The two largest knotweed sites (Education Center and the Taylor townsite) have had extensive restoration efforts, starting in 2013. Numerous other non-native invasive species, including Himalayan blackberry, evergreen blackberry, Scots broom, and English ivy, started to take over the areas previously dominated by knotweed. We clear the non-natives annually and have planted a variety of native trees and shrubs that should eventually provide shade that will help suppress invasive plants in the future. At the Education Center, we have planted a total of 280 native trees (9 species) and 2,783 shrubs (34 species). At the Taylor townsite, we have planted a total of 2,738 native trees (9 species). In addition, we planted 6,430 native shrubs (24 species), to restore native habitat for birds, mammals, amphibians, and insects. This variety of native trees and shrubs was designed not only to restore basic ecological functioning, but also to provide a diversity of flowering plants to enhance pollinator habitat throughout the growing season.
BACKGROUND
The highly invasive species Bohemian knotweed (*Polygonum x bohemicum*) poses an extreme ecological threat, especially to riparian areas. Many years of experience by multiple agencies in the Pacific Northwest has found that herbicide is the only way to successfully treat large patches of knotweed. Consequently, since 2010 Seattle Public Utilities has been treating the knotweed within the Cedar River Municipal Watershed (CRMW) under special ordinances that allow the limited application of the herbicide imazapyr. For a full report on the threat posed by knotweed, the background that lead to this decision, as well as treatment results 2010-2012, see the report, Knotweed Treatment 2010-2012, Annual Report to City Council, online at: http://www.seattle.gov/util/cs/groups/public/@spu/@ssw/documents/webcontent/01_026334.pdf

This document includes a detailed risk assessment and literature review of the latest available science on the environmental and human health effects of imazapyr, including any possible effects of imazapyr on European honey bees. Additionally, it includes an evaluation of the long-term financial and environmental implications for knotweed control. Current research continues to find that imazapyr specifically targets enzymes found only in plants and thus has low direct toxicity to animals, including insects.

To date a total of three ordinances have been passed by Seattle City Council allowing knotweed treatment with imazapyr, each for a three-year period. This limited authority allows sufficient oversight and feedback from City Council and interested stakeholders on the knotweed program. The most recent ordinance (Number 124852) was passed on September 8, 2015, and allows treatment through 2018. All ordinances have limited the herbicide treatment to imazapyr, with water quality testing after each treatment, ongoing monitoring, and annual reports to City Council. The treatment is working very well on small patches and we continue to make slow but steady progress on the large patches. Details are provided later in this report.

For more information about the Watershed Invasive Species Program, see the Major Watersheds Invasive Species Management Plan, available online: http://www.seattle.gov/util/EnvironmentConservation/OurWatersheds/Habitat_Conservation_Plan/ManagingtheWatershed/ProtectWatershedHabitats/ProtectionEfforts/index.htm#invasiveSpecies.

SURVEYS FOR KNOTWEED
In 2013, on recommendations from interested stakeholders, we identified over 1,500 acres of off-road habitat that potentially could contain knotweed, based on location of known knotweed patches, streams and other water bodies, and extent of deciduous forest canopy. None of these sites had previously been surveyed for knotweed. These areas were sorted into high (1,219 acres) and medium (388 acres) priority based on their proximity to existing knotweed and flowing water. These off-road surveys were initially successful in finding more knotweed patches. In 2013 we found a total of 2.15 additional acres of knotweed (most in the old Taylor townsite), all of which were treated for the first time that year. By the end of 2016, less than 100 acres classified as high priority remain to be surveyed, and no further large knotweed patches have been found (Figure 1). We hope to survey the remaining high priority areas in early 2017.
In addition to these prioritized areas, we also annually survey approximately 475 acres of off-road habitat. This includes all known off-road knotweed patches plus areas routinely surveyed for other projects (e.g., wetlands surveyed for amphibian egg masses). We anticipate this level of survey to continue, and we will include additional priority acres as funding and staffing allow. We also conduct annual comprehensive invasive species surveys of more than 300 miles of road and 13 gravel pits (8 active) as part of the Early Detection/Rapid Response protocol used by the Major Watersheds Invasive Species Program. This level of road survey is also expected to continue. To date, knotweed dispersal appears to be by spread of plant fragments along travel corridors (streams, roads, wildlife paths). No new knotweed seedlings that appear to have been spread via seed have been found.

Figure 1. Off-road areas of high and medium priority to survey for knotweed, plus areas surveyed annually and areas surveyed by year, 2010–2016.
AREA TREATED WITH HERBICIDE
In 2016 we re-treated all areas previously treated with herbicide in 2010-2015 (Figure 2). A total of 7.7 acres were treated for the seventh time, 7.9 acres for the sixth time, 0.3 acres for the fifth time, and 2.1 acres for the fourth time. The reason for the different number of treatments is that the first ordinance was passed late in the year in 2010, so only about half of the known acres could logistically be treated that year (7.7 acres). The remainder of known acres were treated for the first time in 2011 (7.9 acres). Acres with fewer treatments include spots initially missed by the contractor and the off-road sites newly found in 2013. In summary, a total of 18 acres of now dispersed and scattered knotweed was treated with herbicide in 2016, of which 2.2 acres were within the hydrographic boundary of the Cedar River (Table 1).

Figure 2. All known knotweed in the Cedar River Municipal Watershed symbolized by year first treated. *Note: the hydrographic boundary GIS layer was recently updated to reflect the restoration project that reconnected the Webster/Walsh Lake drainage to Rock Creek. All knotweed in the Taylor townsite and ditch remains outside the hydrographic boundary.
Table 1. Number of knotweed-infested acres treated with imazapyr by site and year

<table>
<thead>
<tr>
<th>Cedar River Hydrographic Boundary</th>
<th>Site</th>
<th>Number of acres</th>
<th>Treatment Year</th>
<th>Total Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside</td>
<td>Masonry Dam</td>
<td>0.31</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.19</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cedar Falls</td>
<td>1.55</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.71</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.06</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.11</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Ed Center/ Rattlesnake Lake</td>
<td>3.04</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.11</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.06</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.71</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Border</td>
<td>1.11</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.31</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Taylor</td>
<td>7.66</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.63</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Total Outside</td>
<td>2.23</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.78</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

TREATMENT LOGISTICS
In 2016 we used the same application method and herbicide concentration as in 2010 – 2015, i.e., a targeted backpack foliar spray of 1% aquatic formulation imazapyr mixed with 0.5-1% modified vegetable oil surfactant and a small amount of non-toxic blue dye in water. It was applied strictly according to label instructions, including restrictions such as not applying during rain, wind, or when there is a temperature inversion. All the same safety procedures were followed, with certified herbicide applicators on site performing all the mixing of the tank solutions. No spills, injuries, or any adverse effects were incurred by SPU staff or the contract crew members conducting any of the applications.

In 2016, as in the previous two years, knotweed plants were often quite small and difficult to see amongst the thick understory of shrubs and tall grass. In addition, plants had a large variation in timing of growth, with small newly emerged growth found as early as May and as late as October. To get as much herbicide into the root system as possible, we attempt to time the herbicide application when the plants have put on maximum leaves, but before the leaves start to senesce. Application when the plant is actively growing and during the pre-bud stage, i.e., before the plant starts to flower, has been reported to be the most effective. This timing varies
depending on elevation and site-specific conditions. For untreated knotweed at elevations in the CRMW, flowering generally occurs in early September, so the target timing is mid to late August. However, because we bend the canes prior to the first application and the vast majority of plants that have been treated at least once do not flower, the pre-bud issue was generally not applicable. The other primary consideration on timing of application is the weather. August is generally the driest month, with September weather being less predictable. For these multiple reasons, we target treatment during August whenever possible.

To ensure that we treated all knotweed plants, we surveyed and treated each large site twice, four to six weeks apart. Plants treated with imazapyr showed signs of decline within that time and were easily identifiable. During the second survey, we treated any newly emerged or previously missed plants. Other land managers in western Washington have also found this to be a useful technique. During 2016, the second survey and treatment occurred in mid to late September. As in previous years, no flowering plants were found.

The majority of the herbicide was applied in terrestrial environments and did not require a permit. All treatment sites were more than 250 feet away from the Cedar River and the nearest large patch was over 10 miles from the municipal water intake at Landsburg. A small percentage of the application occurred in a riparian area in the Issaquah Creek watershed and was covered by an Aquatic Noxious Weed General Permit from the Washington State Department of Ecology under the Washington State Department of Agriculture National Pollutant Discharge Elimination System (NPDES) general permit. This area is outside the hydrographic boundary and does not drain into water that reaches the Cedar River and the municipal water intake at Landsburg. None of the herbicide application occurred in water.

AMOUNT OF IMAZAPYR APPLIED

In all treatment sites combined, the average application was 2.6 ounces imazapyr per acre (with a range of two to five). This rate compares with a maximum allowable application rate of 96 ounces per acre. Total amount of imazapyr applied in 2016 was 46 ounces spread over 18 acres. Of this amount, a total of 6.9 ounces was applied inside the hydrographic boundary, spread over 2.2 acres. Total amount of herbicide applied has declined each year, from approximately 43 ounces per acre in 2010 and 2011, to an average of 2.6 ounces per acre in 2016 (Table 2). The decline in application rate is due to the decreasing above-ground biomass of the knotweed resulting from the herbicide treatments (see following section).

Table 2. Total amount of imazapyr applied and application rate by year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount Imazapyr (oz)</th>
<th>Area Treated (ac)</th>
<th>Application Rate (oz/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>334</td>
<td>7.7</td>
<td>43.4</td>
</tr>
<tr>
<td>2011</td>
<td>678</td>
<td>15.6</td>
<td>43.5</td>
</tr>
<tr>
<td>2012</td>
<td>241</td>
<td>15.9</td>
<td>15.2</td>
</tr>
<tr>
<td>2013</td>
<td>163</td>
<td>18.01</td>
<td>9.1</td>
</tr>
<tr>
<td>2014</td>
<td>120</td>
<td>18.01</td>
<td>6.7</td>
</tr>
<tr>
<td>2015</td>
<td>61</td>
<td>18.01</td>
<td>3.4</td>
</tr>
<tr>
<td>2016</td>
<td>46</td>
<td>18.01</td>
<td>2.6</td>
</tr>
</tbody>
</table>
IMAZAPYR TREATMENT RESULTS
In 2016 most of the smaller knotweed sites, especially those along the watershed border, had either no or very few small stems. Above ground knotweed leaf biomass has declined to just over a third of 2014 levels, and by over 16 times from pre-treatment levels, indicated by the decline in application rate. Because we attempt to evenly coat every leaf on each plant, application rate is a good proxy for leaf biomass and demonstrates the success we’ve had in decreasing knotweed in the municipal watershed.

Most of the larger sites that have received five or six previous treatments still had numerous small to medium knotweed plants scattered throughout the site, indicating that the large root mass, although clearly damaged, was not yet dead. Experts hypothesize that the root system can compartmentalize, shutting off some sections from receiving an adequate herbicide dose. Because the rhizomes (roots that can sprout) can be up to 65 feet long and seven feet deep, that is potentially a very large reservoir. It is important to wait until all root segments send up shoots so sufficient herbicide can be applied to each segment of the root system to kill it. Because roots can essentially hibernate for several years without sending up shoots, this process can take many years.

A visual record of Education Center knotweed response to treatment and site restoration through the years is found in Appendix I. This site has had the most re-growth and represents the worst-case scenario in the municipal watershed.

WATER QUALITY TEST RESULTS
In each year, 2010-2016, water samples were taken both before (baseline) and after (post-treatment) the herbicide application. Samples were taken from two locations on the Cedar River (one at the point closest to a knotweed patch = 250 feet away, and the other at the Landsburg water supply intake facility), one location at Rattlesnake Lake, and one location on a small creek running through the Taylor townsite. All water samples were analyzed for imazapyr at Pacific Agricultural Laboratory (PACLAB) in Portland, Oregon. PACLAB specializes in analysis of all types of pesticides and has an extremely low detection limit for imazapyr (0.02 ug/L, or 0.02 parts per billion). There were two samples (one in 2014 and one in 2015) that were inadvertently contaminated – one at the laboratory and one in the field (gloves stored adjacent to the chemical bottle were inadvertently used), but these problems were quickly detected and corrected. No imazapyr was detected in any of the municipal water samples in any of the years.

COSTS
Cumulative total cost to treat 18 acres of knotweed with herbicide from 2010 through 2016 was approximately $111,000. Annual cost per acre to treat the knotweed with imazapyr has declined from a high of $3,400 in 2010 to $386 in 2016. This compares with a cumulative cost of approximately $200,000 ($44,000 per acre) to treat small scattered patches of knotweed by covering with geotextile fabric, a treatment we tried experimentally on a total of 4.5 acres from 2004 to 2012. Covering was only marginally successful on very small patches. The larger patches were still alive after more than eight years of continual covering. Fabric experimentally taken up along active roads was replaced and will be left down indefinitely. Isolated patches away from active roads and formerly covered were spot-treated with herbicide. Area treated and amount of herbicide used on these small patches was negligible.
Total annual cost to treat the knotweed with herbicide has decreased from a high of about $32,000 in 2011 to about $7,000 in 2016. This annual cost is expected to continue to decline as there are fewer and fewer knotweed plants to treat. It will likely stabilize at around $5,000 because staff will need to continue to survey and monitor all the sites, which takes approximately 50 person hours to thoroughly survey and treat the entire 18 acres. Contractor time and cost has declined each year, and we anticipate that by 2018 staff alone will do all the survey and treatment. The time and cost to continue to control knotweed after 2018 should be easily covered by the existing watershed Invasive Species Management Program budget and staff.

SITE RESTORATION
Ensuring knotweed treatment sites are repopulated with native plants following treatment is the most effective method for preventing re-infestation of knotweed and other invasive plants. Our goal is to restore areas formerly occupied by knotweed to naturally functioning ecosystems dominated by a variety of native trees and shrubs. This restoration will both increase resistance to future invasions by non-native species and provide high quality habitat for native wildlife, including birds, mammals, amphibians, and insects. Most large sites formerly occupied by knotweed became infested with other non-native invasive species after treatment. Consequently, these sites need continued restoration work, including removal of other invasive species and planting native trees and shrubs.

In 2013 the non-profit group Friends of the Cedar River Watershed (FCRW), in conjunction with SPU, received a 5-year King Conservation District grant (total of $46,000) to restore the formerly knotweed-infested area near the Education Center to native trees and shrubs. The grant funds a several volunteer events and six weeks of Washington Conservation Crew (WCC) time spread over the five years (through 2017). It also funds the purchase of approximately 2,800 native plants. In 2015 FCRW dissolved and Forterra assumed management of the grant.

In 2013-2016 SPU and FCRW staff, volunteers, and WCC crews cleared the Education Center site of invasive blackberry (Rubus armeniacus and Rubus laciniatus), English ivy (Hedera helix), black locust (Robinia pseudoacacia), foxglove (Digitalis purpurea), mullein (Verbascum thapsus), Scots broom (Cytisus scoparius), and birdsfoot trefoil (Lotus corniculaus) that had invaded the area formerly dominated by knotweed. SPU staff partitioned the site into different planting zones, each with different long-term goals and specific planting plans (Figure 3). A total of 280 native trees (nine species) and 2,783 shrubs (34 species) were planted from late 2013 through 2016 (Table 3). In addition, volunteers and contractors moved several hundred yards of mulch, surrounding each native planting with mulch to help suppress non-native weeds and provide more growing space for the plantings. We will continue to densify native plantings as needed, both from purchased stock and from transplanting appropriate species from nearby sites in the municipal watershed.
Figure 3. Location of the seven planting zones near the Education Center

Education Center Restoration Site
Planting Zones
- Riparian
- Slope
- Main
- View
- Conifer
- Shade
- Understory

0 70 140 280 Feet
Table 3. Species and number of native trees and shrubs planted near the Education Center, 2013-2016

<table>
<thead>
<tr>
<th>Trees</th>
<th></th>
<th>Shrubs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Big-leaf maple</td>
<td>15</td>
<td>Cascara</td>
<td>75</td>
</tr>
<tr>
<td>Cherry, bitter</td>
<td>50</td>
<td>Oregon grape, tall</td>
<td>130</td>
</tr>
<tr>
<td>Cottonwood, black</td>
<td>15</td>
<td>Ceanothus, redstem</td>
<td>50</td>
</tr>
<tr>
<td>Crabapple, Pacific</td>
<td>25</td>
<td>Currant, red-flowering</td>
<td>85</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>30</td>
<td>Dogbane, spreading</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redtwig dogwood</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fern, Deer</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fern, Oak</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fern, Sword</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gale, Sweet</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goatsbeard</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hawthorn, black</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hazelnut, beaked</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indian plum</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kinnickinnick</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mock orange</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ninebark, Pacific</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ocean spray</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oregon grape, tall</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red elderberry</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhododendron, Pacific</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rose, baldhip</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rose, peafruit</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rose, Nootka</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salal</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salmonberry</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serviceberry</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Snowberry</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spirea</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thimbleberry</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Twinberry</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vine maple</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willow, Hookers</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willow, Pacific</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willow, Sitka</td>
<td>170</td>
</tr>
<tr>
<td>Total trees planted</td>
<td>280</td>
<td>Total shrubs planted</td>
<td>2,783</td>
</tr>
</tbody>
</table>

In 2014-2016 at the Taylor townsite and overflow ditch, contract crews cleared the original 6.67 knotweed-infested acres plus adjacent wetlands and nearby areas of invasive species, including invasive blackberry, foxglove, mullein, and non-native thistles. We planted a total of 2,738 native trees that will eventually provide long-term shade to suppress future invasive plants. In addition, we planted 6,430 native shrubs, to restore native habitat and ecological functioning (see Table 4 for number planted by species). We split the area into 16 different planting sites, and developed specific prescriptions and species mixes for each site, depending on the amount of soil moisture and sun exposure (Figure 4).

In both the Education Center and the Taylor townsite restoration projects, the variety of native trees and shrubs was designed not only to restore ecological functioning, but also to provide a diversity of flowering plants to enhance pollinator habitat. Pollinators in the watershed include bees, butterflies, moths, flies, beetles, birds, and bats. The trees and shrubs we plant have a variety of different flower colors and shapes, with flowering periods that vary throughout the growing season, providing nectar and pollen to many pollinator species. Numerous bee species,
especially the native western bumblebee (*Bombus occidentalis*), have suffered population declines in recent years, so are of particular concern. Bumblebees are often the first bees active in spring and the last bees active in fall, so flowers at these times of year are especially important. Plants such as Indian plum, red-flowering current, vine maple, and Oregon grape provide early flowers, Pacific ninebark, red-twig dogwood, and oceanspray provide late spring and early summer flowers, and goatsbeard and the native roses flower during summer. Late flowering plants are primarily forbs, including goldenrod, pearly everlasting, yarrow, and asters, but also include western flowering dogwood. We plan to add forbs where appropriate in open sunny areas. This diversity of native species provides better pollinator habitat than non-native invasive plants, which flower for single short periods, often during the middle of the growing season.

Table 4. Number and species of native trees and shrubs planted at the Taylor townsite

<table>
<thead>
<tr>
<th>Trees</th>
<th></th>
<th>Shrubs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cherry, bitter</td>
<td>325</td>
<td>Sedge, thick-headed</td>
<td>200</td>
</tr>
<tr>
<td>Cottonwood, black</td>
<td>325</td>
<td>Western hemlock</td>
<td>220</td>
</tr>
<tr>
<td>Crabapple, Pacific</td>
<td>320</td>
<td>Western redcedar</td>
<td>494</td>
</tr>
<tr>
<td>Noble fir</td>
<td>135</td>
<td>Western white pine</td>
<td>280</td>
</tr>
<tr>
<td>Shore Pine</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total trees planted</td>
<td>2,738</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shrubs</th>
<th></th>
<th>Shrubs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascara</td>
<td>425</td>
<td>Sedge, thick-headed</td>
<td>200</td>
</tr>
<tr>
<td>Ceanothus, red-stem</td>
<td>300</td>
<td>Serviceberry</td>
<td>300</td>
</tr>
<tr>
<td>Choke cherry</td>
<td>25</td>
<td>Snowberry, western</td>
<td>300</td>
</tr>
<tr>
<td>Current, red-flowering</td>
<td>350</td>
<td>Snowbrush</td>
<td>300</td>
</tr>
<tr>
<td>Dogwood, red osier</td>
<td>300</td>
<td>Spirea</td>
<td>50</td>
</tr>
<tr>
<td>Indian plum</td>
<td>310</td>
<td>Sweet gale</td>
<td>200</td>
</tr>
<tr>
<td>Mock-orange</td>
<td>320</td>
<td>Thimbleberry</td>
<td>200</td>
</tr>
<tr>
<td>Ninebark, Pacific</td>
<td>300</td>
<td>Twinberry</td>
<td>300</td>
</tr>
<tr>
<td>Rose, Nootka</td>
<td>350</td>
<td>Willow, hooker</td>
<td>350</td>
</tr>
<tr>
<td>Rose, peafruit</td>
<td>50</td>
<td>Willow, Pacific</td>
<td>300</td>
</tr>
<tr>
<td>Sedge, Dewey's</td>
<td>400</td>
<td>Willow, Scoulers</td>
<td>300</td>
</tr>
<tr>
<td>Sedge, slough</td>
<td>200</td>
<td>Willow, Sitka</td>
<td>300</td>
</tr>
<tr>
<td>Total shrubs planted</td>
<td>6,430</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. Planting sites at the Taylor townsit, categorized as wet, dry, or both

2017 PLANS AND MONITORING
We plan to monitor all known knotweed patches and re-treat with imazapyr as needed in 2017. We anticipate the sites will require less herbicide than used in 2016, as the amount of knotweed growth should continue to decline. We will continue to monitor for knotweed patches during our annual road and gravel pit surveys and will conduct off-road surveys in high priority areas as funding and staffing allows. If we find any additional knotweed patches, we treat them in 2017 under the current ordinance. As in previous years, we will re-check the large knotweed patches four to six weeks after treatment, and, weather-permitting, will treat any newly emerged or untreated plants at that time.

LONG-TERM IMPLICATIONS FOR KNOTWEED CONTROL
We are hopeful that by the end of 2018, the 15.6 acres that will have received eight or nine imazapyr treatments will have either been completely eradicated, or at such a low level that we can control any small growth by non-herbicide means (long-term covering). The 2.4 acres that will have received only six or seven treatments may or may not be reduced to this state by 2018, depending on site-specific conditions. By 2018 all large sites where natural regeneration of native trees and shrubs is insufficient will have been planted to native species.
If left untreated, there is evidence that the small amount of live knotweed present at treatment sites can return to the original infestation level in as little as three seasons, eventually surpassing the infestation level present prior to any investments in knotweed control. This would result in the loss of progress toward long-term knotweed control, increased future control costs, degradation of environmental quality, and the alteration of the sustainable ecological services of invaded sites. In addition, it could jeopardize the extensive ongoing restoration projects along the Cedar River downstream of Landsburg. As mentioned above, long-term maintenance and control costs of knotweed in the CRMW should be minimal. However, an ongoing monitoring program is essential to ensure that all known knotweed is eradicated and any newly discovered patches are treated before they have a chance to spread.
APPENDIX I

Photographic record of results of knotweed treatment with imazapyr and site restoration at the Education Center, 2010 – 2016. This site has had the most knotweed re-growth of any of the large treatment sites, so represents the worst case scenario during this time period.
Knotweed before initial 2010 treatment. 12-foot tall knotweed covered the entire site.
May 2011. Spring after the first treatment, showing the dead canes from the first treatment. Canes had been bent prior to treatment to facilitate access for the applicators.
August 2011. One year after first treatment, showing dead canes, knotweed regrowth, and initial invasion by Himalayan blackberry.
September 2012. One year after 2nd treatment, showing scattered medium sized knotweed plants. Dead canes had been hand-cleared from the site to make finding re-growth easier.
September 2012. Invasive black locust take over a portion of the site one year after 2nd treatment. Mullein, foxglove, and other non-native plants are also starting to invade.
September 2013. One year after 3rd treatment and initial KCD grant restoration work (blackberry, locust, other invasive species removal, planting native trees and shrubs).
October 2014. One year after 4th treatment, with continued KCD grant restoration work (spreading mulch, planting).
August 2015. One year after 5th treatment, showing small scattered knotweed plants amongst the planted native trees and shrubs.
September 2016. One year after 6th treatment, with small scattered knotweed plants still growing amongst the planted native trees and shrubs.
September 2016. Trees and shrubs planted on the site have had high survival and are growing vigorously