Water Line of Business – Overview and Priorities

Customer Review Panel

January 31, 2020
Today’s Discussion

1. Quick Background
 - Overview
 - Finances
 - Service Levels and Goals

2. Current SBP Action Plans and next steps for 2021-2026

3. Strategic Priorities for 2021-2026
The Big Picture: Overview Statistics

- 1.4 million customers
 - About half Seattle retail, half wholesale
- 100,000 acres in two watersheds, seasonal wellfield
 - Seattle City Light hydroelectric plants
- 193 miles of transmission pipelines
- 1,680 miles of distribution mains
- 250+ million gallons of treated water storage
- Many pump stations, valves, fire hydrants, service lines

- # Employees: 364
- # Unions: 12

- Regulators:
 - Department of Health
 - Department of Ecology
The Big Picture: Seattle’s Regional Water System
The Big Picture: Water Consumption and Water Conservation

Total Seattle Regional Water System Annual Demand in Millions of Gallons per Day: 1930-2017

- Annual Consumption in MGD
- Historical Maximum & Current Consumption Levels
- Population
- Consumption Trend Line

Seattle Public Utilities
The Big Picture: Overview Statistics for Rates and Bills

Rates and Bills

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Current Rate Path</td>
<td>3 years; 2018-2020</td>
</tr>
<tr>
<td>Billing Mechanism</td>
<td>Combined Utility Bill</td>
</tr>
<tr>
<td>2019 Operating Revenue</td>
<td>$282 million</td>
</tr>
<tr>
<td>Number of Customer Accounts</td>
<td>- 192,000 retail accounts</td>
</tr>
<tr>
<td></td>
<td>- Water also sold to Cascade Water Alliance and 18 other wholesale customers</td>
</tr>
<tr>
<td>Rate Methodology</td>
<td>- Retail bills based on metered water usage and meter size, with higher seasonal rates in the summer</td>
</tr>
<tr>
<td></td>
<td>- Wholesale bills based on contracts and metered water use</td>
</tr>
<tr>
<td>Retail Customer Classes</td>
<td>Two subclasses: residential and commercial; very similar rates</td>
</tr>
</tbody>
</table>
The Big Picture: Drinking Water Process from Source to Tap
Sources and Uses of Drinking Water Funds

Water Fund Revenues and Expenses (2019, $ in Millions)

Revenues:
- Residential, $93.4, 33%
- Commercial, $102.6, 36%
- Private Fire, $3.9, 1%
- Public Fire, $9.7, 4%
- Other, $16.1, 6%
- Wholesale, $56.2, 20%

Expenses:
- D&M, $110,699, 39%
- Debt Services, $83,799, 30%
- Taxes, $41,112, 15%
- CIP, $46,665, 16%

Seattle Public Utilities
Drinking Water Financial Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Target</th>
<th>Rate Study</th>
<th>Current Projection</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt Service Coverage</td>
<td>1.70x</td>
<td>1.93x</td>
<td>2.09x</td>
<td>Above Target</td>
</tr>
<tr>
<td>Net Income</td>
<td>Generally Positive</td>
<td>$48.2M</td>
<td>$56.3M</td>
<td>Above Target</td>
</tr>
<tr>
<td>Cash-Funded CIP (% Rate Study Average)</td>
<td>20% min. over rate study period*</td>
<td>34.3%</td>
<td>45.0%</td>
<td>Above Target</td>
</tr>
<tr>
<td>& Cash Contribution</td>
<td></td>
<td>$41.8M</td>
<td>$23.1M</td>
<td></td>
</tr>
<tr>
<td>Year-End Operating Cash</td>
<td>$10.6M (1/12th Operating Expense)</td>
<td>$32.0M</td>
<td>$125.5M</td>
<td>Above Target</td>
</tr>
</tbody>
</table>

* Formal policy target is based on average across rate setting period, but also provides for a 15% annual minimum for rate setting purposes.
Drinking Water Rates and Affordability

• Rate path

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>2.0%</td>
<td>2.5%</td>
<td>3.7%</td>
<td>5.0%</td>
<td>4.1%</td>
<td>5.0%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Wastewater</td>
<td>4.1%</td>
<td>8.1%</td>
<td>9.9%</td>
<td>8.9%</td>
<td>1.3%</td>
<td>2.6%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Drainage</td>
<td>10.7%</td>
<td>9.2%</td>
<td>9.7%</td>
<td>9.9%</td>
<td>7.9%</td>
<td>4.7%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>3.1%</td>
<td>3.3%</td>
<td>4.0%</td>
<td>3.0%</td>
<td>3.8%</td>
<td>2.8%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Combined</td>
<td>4.3%</td>
<td>5.7%</td>
<td>7.0%</td>
<td>6.8%</td>
<td>3.7%</td>
<td>3.6%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>2.0%</td>
<td>2.5%</td>
<td>3.7%</td>
<td>5.0%</td>
<td>4.1%</td>
<td>5.0%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Wastewater</td>
<td>4.1%</td>
<td>7.4%</td>
<td>7.4%</td>
<td>7.4%</td>
<td>4.5%</td>
<td>2.4%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Drainage</td>
<td>10.7%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>9.0%</td>
<td>8.6%</td>
</tr>
<tr>
<td>Solid Waste*</td>
<td>3.1%</td>
<td>3.3%</td>
<td>3.2%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>3.1%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Combined</td>
<td>4.3%</td>
<td>5.3%</td>
<td>5.6%</td>
<td>5.9%</td>
<td>4.6%</td>
<td>4.3%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

• Affordability metrics (being developed)
Where We Are in Our Capital Investments

Historic and Proposed Capital Facilities Plan Spending through 2040
(2018-2023 Adopted CIP, plus 2024-2040 Estimate, in thousands of 2017 dollars)

* Other includes Fleets, Facilities, Security, Information Technology, SCADA and other miscellaneous projects.
Drinking Water Service Levels & Goals

Service Levels

- Provide reliable, high-quality, aesthetically pleasing water that meets all regulatory requirements
- Meet all environmental requirements, including instream flow requirements and performance commitments in tribal and agency agreements/permits
- Meet requirements for system pressure and flow
- Limit unplanned outages in the water system
- Respond promptly to customer issues

Goals

- Environmental stewardship
- Public health protection
- Community centered
- Affordability and equity
- Resiliency
- Long term asset management
- Long term financial stability
SBP Action Plans - What’s Changed since 2017?

2017
- Move Seattle levy – funding for utility impacts
- Better understanding of seismic hazards in the Puget Sound region
- Drought of 2015
- Continued study of climate change
- Increasing costs for street work
- Keeping up with growth (new taps)

Now
- Some Move Seattle projects delayed
- Seismic study complete, implementation started
- More climate change analysis underway
- Street costs still increasing, new tap volume still high
SBP Action Plans

- Action Plan #2 – Fund Opportunity Infrastructure Work that Supports Transportation Projects

- Action Plan #3 – Expand Maintenance of the Water Distribution System

- Action Plan #4 – Expand Water Modeling

Refer to Action Plan summary table
SBP Strategic Priorities for the next 3-6 Years

• Aging infrastructure / asset management

• Seismic study implementation
 • Short-term actions
 • Long-term capital planning

• Climate change
 • Water supply for people and instream flow requirements
 • Watersheds, including wildfires
Aging Infrastructure

• Life cycle management for sustainability
• Asset-by-asset approach, plus high-level strategic planning to tie it all together
• Working on a utility-wide assessment of asset management
Discrete Assets (Easier to Inspect)

<table>
<thead>
<tr>
<th>Asset</th>
<th>Condition</th>
<th>Certainty</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar Watershed Reservoirs and Dams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolt Watershed Reservoirs and Dams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Youngs Reservoir and Dams</td>
<td></td>
<td></td>
<td>Cascades Dam</td>
</tr>
<tr>
<td>Transmission-Area Buildings</td>
<td></td>
<td></td>
<td>Older buildings</td>
</tr>
<tr>
<td>In-Town Buildings</td>
<td></td>
<td></td>
<td>Older buildings</td>
</tr>
<tr>
<td>Landsburg Buildings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Treatment Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Reservoirs (Treated Water)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Water Tanks and Standpipes</td>
<td></td>
<td></td>
<td>Coatings, seismic</td>
</tr>
<tr>
<td>Water Pump Stations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distributed Assets (More Difficult to Inspect)

<table>
<thead>
<tr>
<th>Asset</th>
<th>Condition</th>
<th>Certainty</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar Watershed Transportation System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolt Watershed Transportation System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Transmission Pipes and Appurtenances</td>
<td></td>
<td></td>
<td>More inspection needed, difficult</td>
</tr>
<tr>
<td>Water Distribution Pipes</td>
<td></td>
<td></td>
<td>Cannot inspect easily</td>
</tr>
<tr>
<td>Water Utilidors</td>
<td></td>
<td></td>
<td>More inspection needed, difficult</td>
</tr>
<tr>
<td>Water Meters (Wholesale and Retail)</td>
<td></td>
<td></td>
<td>Testing frequency</td>
</tr>
<tr>
<td>Water Valves</td>
<td></td>
<td></td>
<td>Deferred maintenance</td>
</tr>
<tr>
<td>Water Hydrants</td>
<td></td>
<td></td>
<td>Deferred maintenance</td>
</tr>
</tbody>
</table>
Example of Distributed, Difficult to Inspect Assets: Data-Driven Decision Making

- Water mains
 - Many of them
 - Difficult to inspect, estimate useful remaining life
- Monitor indirect trends
 - Break rates
 - Leakage rates
- Look at new technologies
 - Cost savings for installation
 - Better inspection methods
- Adjust replacement rate based on data
SPU - Watermain Failures and Distribution System Leakage

- Benchmarking data:
 - National average
 ~15-20 failures/100 mi
 - West Coast average
 ~10-15 failures/100 mi
 - DSL goal <10%
Replacement & Renewal Strategy – Long Term

Replacement Forecast (miles)

- Unlined Cast Iron
- Lined Cast Iron
- Ductile Iron
- Galvanized Iron/Steel
- Steel

Year

Pipe (miles)

[Graph showing the forecast for pipe replacement over a long-term period with a peak around 2038 and a decline thereafter.]
Aging Infrastructure: Rate Path Impacts

• Recommended to ramp up watermain replacement program
 • Currently 1 mile/year
 • Seek to ramp up to 2 miles/year in the next 6 years
Aging Infrastructure: Performance Measurements

- Continue to track and report watermain break trends
- Report on any changes in the target replacement rate, with associated rate impacts
 - Adjust long-term plan based on data
- Test technologies such as pipe lining instead of "dig and replace"
Seismic
Seismic: Mitigation Approach – Short Term Measures (Next 15 to 20 Years)

• Enhance emergency preparedness and response planning
 • Earthquake-specific response plan
 • Significantly augment pipeline repair material stocks
 • Assess adequacy/improve emergency drinking water

• Develop/implement isolation and control strategies
 • Reservoir isolation valves
 • Explore isolating areas of large amounts of pipe damage
 • Add valves to make isolation easier
Seismic: Mitigation Approach – Long Term Measures (Next 50 Plus Years)

• Build It Right (Now Until Forever)
 • Use earthquake-resistant pipe when pipe is replaced
 • Design new facilities to remain functional

• Upgrade Vulnerable Critical Facilities (Next 50 Plus Years)
 • Most vulnerable transmission pipelines locations (Cedar system has top priority)
 • Critical facilities
 • Large volume reservoirs
 • Key pump stations and support facilities
 • Life-safety
Seismic: Capital Planning Recommendations

• $15 to $20 million per year – 50+ years
• Refer to Seismic Study Executive Summary for a list of proposed projects
• Options analysis for all projects
 • Proactive upgrade options
 • Operational response until replacement
 • Example: a vulnerable pipe crossing
 • Proactive replacement/seismic upgrade of pipe
 • Open trench replacement
 • Slip-line pipe
 • Wait until condition-related replacement
 • Install emergency connections
 • Place spare pipe immediately adjacent
Seismic: Rate Path Impacts

• Recommended a 50-year capital improvements program based on prioritization and affordability considerations
• Considered accelerating 50-year CIP into shorter timeframe
 • Rate impact significant
Seismic: Performance Measurements

• Implement short-term recommendations
• Implement capital projects compared to proposed schedule
 • Use of asset management principles for options analysis balancing cost and risk
Climate Change

• Water Supply
 • Less snowpack for spring reservoir refill
 • Drier summers, lower reservoir drawdown in summer/fall
 • Wetter winters, more dynamic flood mgmt

• Watersheds
 • Drier summers, higher fire risk
 • Wetter winters, flood impacts
Climate Change and Water Supply

• Currently in third round of climate change planning since 2000
 • Previous studies used small numbers of global climate models
 • Current study uses many more models
• Using more climate models resulted in more uncertainty
 • Pivoting away from specific climate-based predictions
 • Moving towards planning based on drivers for future adaptation options, such as lower snowpack and more precipitation falling as rain
Climate Change and Water System Plan (WSP) Forecasts

• Currently have extra capacity in the drinking water system
• Anticipated to remain that way for many decades...
 • But must assess climate change impacts on supply and demand
Climate Change and Watersheds

• Completed watershed vulnerability to climate change
• Recommended adaptation strategies to increase resilience
 • Forests and streams
 • Road crossings
• Conducting wildfire risk assessment
Climate Change: Rate Path Impacts

- Recommended to perform additional studies
 - No significant O&M or capital projects right now
- Additional studies may inform future needs for added O&M or capital needs
Climate Change: Performance Measurements

• Water Supply
 • Complete adaptation planning with different strategies and options to improve resiliency
 • Prioritize lower cost options that are easier to implement and resolve constraints now and, in the future
 • Identify triggers that might move SPU towards more costly water supply alternatives

• Watersheds
 • Implement adaptation strategies to improve resiliency
 • Monitor to determine effectiveness, learn and continue to adapt
 • Define wildfire risk and identify triggers that may prompt SPU to consider additional strategies

• Report back on potential rate impacts, if studies recommend significant O&M or CIP projects