SR 520 West Approach Bridge North

Julie Meredith
SR 520 Program Director

Lynn Peterson
Secretary of Transportation

Daniel Babuca
West Approach Bridge Engineering Manager
Seattle Design Commission Coordination – 2011 – 2012

• Sep. 2012: Vision Endorsement. At the conclusion of the SCDP, the Seattle Design Commission endorsed the vision developed with the Subcommittee.

• Fall / winter 2012: West Approach Bridge North (WABN). Using the Vision, WSDOT began working with the Subcommittee to develop the major, permanent elements of WABN.

• Nov. 2012: SDC Concurrence. The SDC concurred on the major WABN elements.
Seattle Design Commission Coordination – 2013 – Ongoing

- **Jun. 2013**: WABN 60% PS&E review
- **Sep. 2013**: Montlake area informational meeting
- **Nov. 2013**: 90% WABN PS&E review
- **Jan. 2014**: 100% WABN PS&E review
- **Ongoing**: WSDOT will continue to coordinate with the Subcommittee as additional project funding is received.
ABOVE-BRIDGE ELEMENTS

BELVEDERE LUMINAIRES

BELVEDERE

Foster Island

SIGN BRIDGE

SIGN BRIDGE, UTILITY PLATFORM & BELVEDERE

SIGN BRIDGE

NAVIGATION CHANNEL

FLOATING BRIDGE

BELVEDERE SIGN BRIDGE

BELVEDERE SIGN BRIDGE, UTILITY PLATFORM & BELVEDERE

BELVEDERE SIGN BRIDGE
REGIONAL SHARED-USE PATH (RSUP)
RAILING TRANSITION AT FLOATING BRIDGE SENTINEL
2' LED mounted at 4' height, rotated 30 degrees, spaced 15 feet o.c.
RSUP AT DUSK
INTEGRATED LED LUMINAIRE
BELVEDERE RAIL & LUMINAIRE

WOOD TOP RAIL

3" = 1'-0"

NOTES

1. SEE STRUCTURAL FOR ADDITIONAL RAILING DETAILS
2. REFER TO BRIDGE RAILINGS AND SITE FURNITURE SECTIONS IN SPECIAL PROVISIONS FOR ADDITIONAL INFORMATION AND REQUIREMENTS
BENCHES
THE CROSSING EXPERIENCE: MARKINGS, TEXTURES & TURBULENCE

Bridge Length (ft) 6000

<table>
<thead>
<tr>
<th>mph*</th>
<th>feet per hour</th>
<th>feet per min</th>
<th>feet per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike fast</td>
<td>20</td>
<td>105,600</td>
<td>1,760</td>
</tr>
<tr>
<td>Bike moderate</td>
<td>14</td>
<td>73,920</td>
<td>1,232</td>
</tr>
<tr>
<td>Run</td>
<td>9</td>
<td>47,520</td>
<td>792</td>
</tr>
<tr>
<td>Walk</td>
<td>3.1</td>
<td>16,368</td>
<td>273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.09</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.12</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.19</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>0.55</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.77</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>1.70</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>2.30</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>2.98</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>3.32</td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td>3.79</td>
<td>3.79</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>4.26</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>4.75</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>5.11</td>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>5.63</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>6.14</td>
<td>6.14</td>
<td></td>
</tr>
</tbody>
</table>

*Just guessing! Should confirm typical speeds

http://en.wikipedia.org/wiki/Preferred_walking_speed

Visual flow

The rate at which the environment flows past the eyes seems to be a mechanism for regulating walking speed. In virtual environments, the gain in visual flow can be decoupled from a person’s actual walking speed, much as one might experience when walking on a conveyor belt. There, the environment flows past an individual more quickly than their walking speed would predict (higher than normal visual gain). At higher than normal visual gains, individuals prefer to walk more slowly, while at lower than normal visual gains, individuals prefer to walk more quickly.[2] This behavior is consistent with returning the visually observed speed back toward the preferred speed and suggests that vision is used to correctively maintain walking speed at a value that is perceived to be optimal. Moreover, the dynamics of this visual influence on preferred walking speed are rapid - when visual gains are changed suddenly, individuals adjust their speed within a few seconds.[17] The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that directly senses metabolic rate and iteratively adjusts walking speed.

Street View from bike lane on I-90 bridge
TEXTURED SURFACE PATTERN
TEXTURED SURFACE PATTERN

BROOM FINSIHED CONCRETE

6" WIDE X ~1/8" DEEP
SMOOTH BAND -
TROWELED / TOOLED FINISH
PATTERN AT UTILITY PLATFORM BELVEDERES
BAR GRATING & CONCRETE
Figure 89. Photos. Specimen DS-1 column damage after cyclic testing.
ABOVE-BRIDGE ELEMENTS

BELVEDERE LUMINAIRES
Foster Island SIGN BRIDGE, UTILITY PLATFORM
& BELVEDERE SIGN BRIDGE, UTILITY PLATFORM
& BELVEDERE SIGN BRIDGE, UTILITY PLATFORM
& BELVEDERE SIGN BRIDGE

FRAME 3 EXPANSION JOINT EXPANSION JOINT EXPANSION JOINT EXPANSION JOINT EXPANSION JOINT EXPANSION JOINT

NAVIGATION CHANNEL

NORTH ELEVATION

PLAN

DRAFT January 2014

WASHINGTON STATE
DEPARTMENT OF TRANSPORTATION

520